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Abstract. In this work, we introduce an integer version of ring-LWE (I-
RLWE) over the polynomial rings and present a public key encryption
based on I-RLWE. The security of our scheme relies on the computational
hardness assumption of the I-RLWE problem.
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1 Introduction

Many cryptographic schemes based on discrete logarithms and integer factoring
problems are no longer secure once the quantum computer becomes a reality.
This is because Shor [21] presented an efficient quantum algorithm that solves
these computational number theory problems. Currently, the most promising
quantum-safe works are based on the hardness of lattice problems like LWE-
based cryptosystems [20], Ring-LWE-based cryptosystems [13] and NTRU [11].

The LWE-based cryptographic schemes have strong security confidence. How-
ever, they also have key sizes and computation times that are at least quadratic
in the security parameter. To improve the efficiency of these schemes, Lyuba-
shevsky, Peikert, and Regev [13] defined a ring-based variant of LWE (RLWE)
that uses algebraic structure, and described a polynomial time quantum reduc-
tion from worst-case problems on ideal lattices to the decisional RLWE. The
LWE-based schemes can directly adapt to the RLWE-based analogues, whose
key sizes and computation times reduce to almost linear in the security parame-
ter. Furthermore, in recent years, several new cryptographic schemes have been
proposed around the RLWE problem [4,6,14,15].

On one hand, the schemes based on RLWE over the polynomial rings (RLWE)
have an advantage of efficiency. On the other hand, the RLWE-based schemes
also have some shortcomings. Especially, for the RLWE problems over the dif-
ferent polynomial rings, their computational efficiency is different and needs to
be re-optimized implementation for each of them.

This work is trying to solve the above problem. That is, we introduce an
integer version of the ring-LWE (I-RLWE) over the polynomial ring that unifies
the framework of RLWEs over the different polynomial rings, and present a new
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public key encryption based on I-RLWE. We observe that the integer version
of the hard problem recently appeared in the work [2]. In [2], Aggarwal, Joux,
Prakash, and Santha proposed a new public-key cryptosystem (AJPS) using an
integer version of NTRU, whose security relies on the conjectured hardness of
the Mersenne low hamming ratio assumption. However, Beunardeau, Connolly,
Géraud, and Naccache [3] presented an algorithm that recovers the secret key
from the public key much faster than the security estimates in [2].

1.1 Our Contribution

Our main contribution is to describe an integer variant of ring-LWE over the
polynomial ring (I-RLWE) and present a I-RLWE-based public key encryption.

In the RLWE over the polynomial ring, given q a prime integer, and a list of
samples (al,bl = als + el) ∈ R2

q , where Rq = Zq[x]/〈xn + 1〉, s ∈ Rq, al ∈ Rq

are chosen independently and uniformly from Z
n
q , and el is chosen independently

according to the probability distribution χ = DZn,σ, find s. In the first variant of
LWE, s is chosen from the error distribution χ rather than uniformly at random,
the choice of other parameters remains unchanged. This variant becomes no
easier to solve than the decisional LWE [1,17].

In this work, we introduce an integer version of RLWE over the polynomial
rings (I-RLWE). In the I-RLWE problem, we replace x with q and convert RLWE
over the polynomial ring into I-RLWE. Given p = qn +1, we draw many samples
(al, bl = als+el) ∈ Z

2
p, where al, s ← Rq, el ← DZn,σ, and al =

∑n

i=0
al,iq

i, s =
∑n

i=0
siq

i, el =
∑n

i=0
el,iq

i, the problem is to find s. Similarly, we can also
generate a variant by sampling from the error distribution s ← χ and generating
s. For this case, we also call to sample s from χ.

Our second contribution is to present a public key encryption (PKE) based
on I-RLWE. Given a sample of I-RLWE (a, b = as + 2e) ∈ Z

2
p that samples s, e

from the error distribution χ, and plaintext m =
∑n

i=0
miq

i with m ∈ {0, 1}n,
one first chooses r, e1, e2 from χ, and generates a ciphertext as (c1 = [ar +
2e1]p, c2 = [br + 2e2 + m]p). To decrypt the ciphertext (c1, c2), one computes
c = [c2 − c1s]p = [2e2 + m − 2e1s]p =

∑n

i=0
ciq

i, and recovers the plaintext m
from c. This is because all ci’s that only depend χ are “small”. Concrete details
see Sect. 4.

Organization. Section 2 recalls some background. Section 3 describes an integer
variant of RLWE over the polynomial ring and some related properties. Section 4
presents a public key encryption using this variant of RLWE. Finally, we conclude
this paper.

2 Preliminaries

2.1 Notations

Let Z,Q,R denote the ring of integers, the field of rational numbers, and the
field of real numbers. Let n be a positive integer and power of 2. Notation
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[n] denotes the set {1, 2, ..., n}. Let R = Z[x]/〈xn + 1〉, Rq = Zq[x]/〈xn + 1〉,
and K = Q[x]/〈xn + 1〉. Vectors are denoted in bold lowercase (e.g. a), and
matrices in bold uppercase (e.g. A). We denote by aj the j-th entry of a vector
a, and ai,j the element of the i-th row and j-th column of A. We denote by
‖a‖2 (abbreviated as ‖a‖) the Euclidian norm of a. For A ∈ Rd×d, we define
‖A‖ = max{‖ai,j‖, i, j ∈ [d]}, where ‖ai,j‖ is the Euclidian norm corresponding
to the coefficient vector of ai,j .

We denote [a]q = a mod q ∈ [0, q − 1] throughout this work. Similarly, for
a ∈ Z

n (or a ∈ R ), [a]q denotes each entry (or each coefficient) [aj ]q ∈ [0, q − 1]
of a.

2.2 Lattices and Ideal Lattices

An n-dimensional full-rank lattice L ⊂ R
n is the set of all integer linear com-

binations
∑n

i=1 yibi of n linearly independent vectors bi ∈ R
n. If we arrange

the vectors bi as the columns of matrix B ∈ R
n×n, then L = {By : y ∈ Z

n}.
We say that B spans L if B is a basis for L. Given a basis B of L, we define
P (B) = {By|y ∈ R

n and yi ∈ [−1/2, 1/2)} as the parallelization corresponding
to B. We let det(B) be the determinant of B.

Given g ∈ R, we let I = 〈g〉 be the principal ideal lattice in R generated by
g, whose Z-basis is Rot(g) = (g, x · g, ..., xn−1 · g).

Given c ∈ R
n , σ > 0, the Gaussian distribution of a lattice L is defined

as DL,σ,c = ρσ,c(x)/ρσ,c(L) for x ∈ L , where ρσ,c(x) = exp(−π‖x − c‖2/σ2)),
ρσ,c(L) =

∑
x∈L

ρσ,c(x). In the following, we will write DL,σ,0 as DL,σ . We
denote a Gaussian sample as x ← DL,σ (or x ← DI,σ ) over the lattice L (or
ideal lattice I ).

Micciancio and Regev [16] introduced the smoothing parameter of lattices.
For an n-dimensional lattice L, and positive real ε > 0, we define its smoothing
parameter ηε(L) to be the smallest s such that ρ1/s(L∗\{0}) ≤ ε, where L∗ is
the dual lattice of L.

Lemma 2.1 (Lemma 3.3 [16]). For any n-dimensional lattice L and positive
real ε > 0, ηε(L) ≤ √

ln(2n(1 + 1/ε))/π · λn(L).

Lemma 2.2 (Lemma 4.4 [16]). For any n-dimensional lattice L, vector c ∈ R
n

and reals 0 < ε < 1, s ≥ ηε(L), we have

Pr
x←DL,s,c

{‖x − c‖ > s
√

n} ≤ 1 + ε

1 − ε
· 2−n.

2.3 Ring-LWE in Polynomial Rings

Throughout this paper, we only consider the integer version of ring-LWE for the
special ring R. However, we notice if the expansion factor of a polynomial ring
R = Zq[x]/〈f(x)〉 is small, then one can directly generate the integer version of
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this ring using our method. For the ring-LWE defined by the number fields [13],
we will further study their integer versions.

For simplicity, we recall the ring-LWE over the polynomial rings. We sample
a secret s ∈ R from some Gaussian distribution instead of uniform distribution
over Rq, since the latter is easily be transformed into the former [1,17].

Definition 2.3 (Ring-LWE Distribution). Let χ be a Gaussian distribution
with parameter σ over R. Given a secret s ← RZn,σ, a sample from the ring-LWE
distribution As,σ over Rq ×Rq is generated by choosing a ← U(Rq), e ← DZn,σ,
and outputting (a,b = as + e) ∈ Rq × Rq.

Definition 2.4 (Computational Ring-LWE). The computational ring-LWE
problem, denoted RLWEq,σ, is defined as follows: given arbitrary many indepen-
dent samples from As,σ, find s.

Definition 2.5 (Decisional Ring-LWE). The decisional ring-LWE problem,
denoted DRLWEq,σ, is to distinguish with non-negligible advantage between
arbitrary many independent samples from As,σ, and the same number of uni-
formly random and independent samples from Rq × Rq.

According to [7], the ring-LWE over the polynomial ring R = Z[x]/〈xn + 1〉
is equivalent to the hard ring-LWE defined in [13].

Lemma 2.6 (Theorem 3.6 [13]). Let K be the mth cyclotomic number field
having dimension n = ϕ(m) and R = OK be its ring of integers. Let α <√

log n/n, and q ≥ 2, q = 1 mod m be a poly(n)-bounded prime such that αq ≥
ω(

√
log n). Then there is a polynomial-time quantum reduction from O(

√
n/α)-

approximate SIVP (or SVP) on ideal lattices in K to DRLWEq,σ, where σ =
α(n/ log n)1/4.

3 Integer Version of Ring-LWE

This section introduces an integer variant of the ring-LWE over the polynomial
rings, and describes some related properties.

For simplicity, we let n be the security parameter, q > n3 a prime, R =
Z[x]/〈xn + 1〉 a ring, p = qn + 1, χ be a Gaussian distribution with parameter
σ =

√
n over R, unless otherwise stated.

Definition 3.1 (I-RLWE Distribution). Given a secret s =
∑n−1

i=0
siq

i with
s ← DZn,σ, a sample from the I-RLWE distribution As,σ over Zp × Zp is gen-

erated by choosing at random a ← Zp, e =
∑n−1

i=0
eiq

i with e ← DZn,σ, and
outputting (a, b = as + e) ∈ Zp × Zp.

Definition 3.2 (Computational I-RLWE). The computational integer ring-
LWE problem, denoted I-RLWEq,σ, is defined as follows: given arbitrary many
independent samples from As,σ, find s.
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Definition 3.3 (Decisional I-RLWE). The decisional integer ring-LWE
problem, denoted I-DRLWEq,σ, is to distinguish with non-negligible advantage
between arbitrary many independent samples from As,σ, and the same number
of uniformly random and independent samples from Zp × Zp.

In the following, we describe several related properties of I-RLWE using
lemmas.

Given an element f ∈ R, if all coefficients fi, i ∈ {0, · · · , n− 1} of f are small,
then we can generate an integer modulo p corresponding to f.

Lemma 3.4. Suppose that f =
[ ∑n−1

i=0
fiq

i

]

p

=
∑n−1

i=0
hiq

i with |fi| < q/2−1.

Then

hi = [fi − hi−1]q =

{
fi − hi−1 fi − hi−1 ≥ 0
fi − hi−1 + q fi − hi−1 < 0

where for i ∈ [n − 1],

hi−1 =

{
0 hi−1 ≤ q/2
1 hi−1 > q/2

;

for i = 0,

h−1 = hn−1 =

{
0 hn−1 ≤ q/2
−1 hn−1 > q/2

.

Proof. First, we determine hn−1 by fn−1 as follows:
Case 1: fn−1 < 0.
Since hn−1 = [fn−1 − hn−2]q and hn−2 ≥ 0, we have fn−1 − hn−2 < 0. So,

hn−1 > q/2 and h−1 = −1.
Case 2: fn−1 > 0.
By hn−2 ≤ 1, we get fn−1 − hn−2 ≥ 0. So, hn−1 < q/2 and hn−1 = 0.
Case 3: fn−1 = 0.

In this case, hn−1 depends on fn−2. h−1 = −1 when fn−2 < 0, and hn−1 = 0
when fn−1 > 0.

Similarly, if fn−2 = 0, then hn−1 recursively depends on fn−3, · · · , f1.
Now we use the induction method to prove the result.
For induction basis, consider i = 0.

If hn−1 = −1, then hn−1 > q/2. So, f =
∑n−1

i=0
hiq

i >
∑n−1

i=0
|fi|qi by

|fi| < q/2 − 1. As a result, fn−1 < 0.

Again, by |fi| < q/2 − 1, we have −p <
∑n−1

i=0
fiq

i < 0. Hence,

f =
∑n−1

i=0
fiq

i + p

=
∑n−1

i=0
fiq

i + qn + 1

= (fn−1 + q)qn−1 +
∑n−2

i=1
fiq

i + f0 + 1

= (fn−1 + q)qn−1 +
∑n−2

i=1
fiq

i + f0 − hn−1
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That is, h0 = [f ]q = [f0 − hn−1]q. Hence, if f0 − hn−1 < 0, then h0 =
f0 − hn−1 + q, otherwise h0 = f0 − hn−1.

If hn−1 = 0, then 0 ≤ hn−1 ≤ q/2. So, f =
∑n−1

i=0
hiq

i =
∑n−1

i=0
fiq

i by

|fi| < q/2 − 1. Consequence, fn−1 ≥ 0. Hence, h0 = [f ]q = [f0]q = [f0 − hn−1]q.
By induction step, we assume that hi is correct for i ≤ k.
Now, we prove i = k + 1.

Since f =
[∑n−1

i=0
fiq

i

]

p

=
∑n−1

i=0
fiq

i + rp for some r ∈ {0, 1}, we have

[f ]qk+2 =
[ ∑n−1

i=0
fiq

i + rp

]

qk+2

=
[ ∑k+1

i=0
fiq

i + r
]
qk+2

=
∑k+1

i=0
hiq

i

.

If hk > q/2, then hk = 1 and fk−hk−1 < 0. So, −qk+1/2 <
∑k

i=0
fiq

i+r < 0

by |fi| < q/2 − 1. That is,
∑k

i=0
hiq

i = qk+1 +
∑k

i=0
fiq

i + r. Thus,

[ ∑k+1

i=0
fiq

i + r
]
qk+2 =

[
(fk+1 − 1)qk+1 + qk+1 +

∑k

i=0
fiq

i + r
]
qk+2

=
[
(fk+1 − 1)qk+1 +

∑k

i=0
hiq

i
]
qk+2

=
∑k+1

i=0
hiq

i

Hence, we obtain hk+1 = [fk+1 − 1]q = [fk+1 − hk]q.
If hk < q/2, then hk = 0 and fk − hk−1 > 0. Similarly, we can get hk+1 =

[fk+1]q = [fk+1 − hk]q. �
Given two ring elements f,g ∈ R, if their coefficients are all “small”, then

the corresponding integer of their product is equal to the product of their cor-
responding integers modulo p.

Lemma 3.5. Suppose that f =
[ ∑n−1

i=0
fiq

i
]
p
, g =

[∑n−1

i=0
giq

i
]
p

with f ←
DZn,σ, g ← DZn,σ. Then h = [fg]p =

∑n−1

i=0
hiq

i, where

hi =
[ ∑

[j+k]n=i
(−1)�(j+k)/n�fjgk − hi−1

]

q

,

hi−1 =

{
0 hi−1 ≤ q/2
1 hi−1 > q/2

, i ∈ [n − 1];

hi−1 = hn−1 =

{
0 hn−1 ≤ q/2
−1 hn−1 > q/2

, i = 0.
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Proof. By f =
[∑n−1

j=0
fjq

j
]
p
, g =

[ ∑n−1

k=0
gkqk

]
p
, we have

h = [fg]p

= [
∑n−1

j=0
fjq

j ×
∑n−1

k=0
gkqk]p

= [
∑n−1

i=0
aiq

i]p,

where ai =
∑

[j+k]n=i
(−1)�(j+k)/n�fjgk, i = 0, 1, · · · , n − 1.

By Lemma 2.2, |fj | < n, |gk| < n with overwhelming probability. So, we have
|ai| ≤

∑
[j+k]n=i

|fj ||gk| ≤ n3 < q/2 − 1.

Hence, the result is directly obtained by Lemma3.4. �
In Lemma 3.5, we only consider the product of two ring elements with “small”

coefficients. However, in the RLWE problem over the polynomial ring, only the
coefficients of one element are “small”, the coefficients of another element are
uniformly distributed modulo q. So, in the following lemma, we give the rela-
tionship between the product of the corresponding integers of two elements and
the corresponding integer of the product of two elements.

Lemma 3.6. Given a ← Rq, s ← DZn,σ, b = as ∈ Rq, suppose that

a =
[ ∑n−1

i=0
aiq

i

]

p

, b =
[∑n−1

i=0
biq

i

]

p

, s =
[ ∑n−1

i=0
siq

i

]

p

.

Then,

[as − b]p =
∑n−1

i=0
riq

i,

where {
|ri| < n2 − n + 3 ri ≤ q/2
|ri − q| < n2 − n + 3 ri > q/2

.

Proof. By b = as ∈ Rq, we have

bi =
[ ∑

[j+k]n=i
(−1)�(j+k)/n�ajsk

]

q

=
∑

[j+k]n=i
(−1)�(j+k)/n�ajsk + cbiq

Since s ← DZn,σ, |sk| < n by Lemma 2.2. By a ← Rq, |aj | < q. So

|
∑

[j+k]n=i
(−1)�(j+k)/n�ajsk| �

∑
[j+k]n=i

|aj ||sk|

�
∑

[j+k]n=i
(n − 1)|aj |

< n(n − 1)q

Hence |cbi | < n(n − 1) + 1.
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Let h = [as]p =
∑n−1

i=0
hiq

i. Then,

hi =
[ ∑

[j+k]n=i
(−1)�(j+k)/n�ajsk + cbi−1 − hi−1

]

q

=
[
bi − cbiq + cbi−1 − hi−1

]
q

=
[
bi + cbi−1 − hi−1

]
q
,

where for i ∈ [n − 1],

hi−1 =

⎧
⎪⎨

⎪⎩

0 0 ≤ bi−1 + cbi−2 − hi−2 < q

1 bi−1 + cbi−2 − hi−2 < 0
−1 bi−1 + cbi−2 − hi−2 ≥ q

;

for i = 0,

h−1 = hn−1 =

⎧
⎪⎨

⎪⎩

0 0 ≤ bn−1 + cbn−2 − hn−2 < q

−1 bn−1 + cbn−2 − hn−2 < 0
1 bn−1 + cbn−2 − hn−2 ≥ q

.

Thus, we obtain

[as − b]p = [h − b]p

= [
∑n−1

i=0
(hi − bi)qi]p

=
[
(−cbn−1 + hn−1)q0 +

∑n−1

i=1
(cbi−1 − hi−1)qi

]
p

=
∑n−1

i=0
riq

i,

Since |cbi |+ |hi| < n2−n+2 < q/2−1, i ∈ {0, 1, · · · , n−1}, so by Lemma 3.4

ri =

{
[−cbn−1 + hn−1 + rn−1]q i = 0
[cbi−1 − hi−1 − ri−1]q i ∈ [n − 1].

where, for i ∈ [n − 1],

ri−1 =

{
0 ri−1 ≤ q/2
1 ri−1 > q/2

;

for i = 0,

r−1 = rn−1 =

{
0 rn−1 ≤ q/2
−1 rn−1 > q/2

.

The result follows by |cbi | + |hi| + |ri−1| < n2 − n + 3. �
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4 Public Key Encryption

In this section, we first present a public key encryption based on the I-RLWE
problem. Then we show its correctness and give its security assumption.

4.1 Construction

Let n be the security parameter.

Key Generation: (pk, sk) ← KeyGen(1n).

(1) Choose a prime q = O(n3), and set p = qn + 1.
(2) Choose at random a ← Zp.
(3) Sample s ← DZn,σ, e ← DZn,σ with σ = O(

√
n).

(4) Set s =
∑n−1

i=0
siq

i, e =
∑n−1

i=0
2eiq

i.
(5) Set b = [as + e]p.
(6) Output the public key pk = {q, (a, b)}, and the secret key sk = {s}.

Encryption: (c1, c2) ← Enc(pk,m).

(1) Given a plaintext m ∈ {0, 1}n, set m =
∑n−1

i=0
miq

i.
(2) Sample r ← DZn,σ, e1, e2 ← DZn,σ.

(3) Set r =
∑n−1

i=0
riq

i, ej =
∑n−1

i=0
2ejiq

i, j ∈ [2].
(4) Compute c1 = [ar + e1]p, c2 = [br + e2 + m]p.
(5) Output (c1, c2) a ciphertext.

Decryption: m ← Dec(sk, (c1, c2)).

(1) Given sk and a ciphertext (c1, c2), compute t0 = [c2 − c1s]p.
(2) For i = 0, 1, · · · , n − 1

(2.1) Compute di = [ti]q.
(2.2) Compute ti+1 = �ti/q�.
(2.3) If di > q/2, then set di = di − q, ti+1 = ti+1 + 1.

(3) Set d0 = d0 − 1 if dn−1 < 0.
(4) Set mi = [di]2, i ∈ {0, 1, · · · , n − 1}.
(5) Output the plaintext m.

Remark 4.1. (1) Our scheme uses the parity of noise in a ciphertext to
encode a plaintext. Similar to [13], we can also use �q/2� to compute

m =
∑n−1

i=0
(mi�q/2�)qi and generate a ciphertext. In this case, the decryp-

tion algorithm seem to be easier. That is, it directly determines the ith plain-
text bit by checking di. If q/4 < di < (3/4)q, then mi = 1; otherwise mi = 0.
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(2) To improve the efficiency of our scheme, we can use some special number
q = 2t with a positive integer t. This is because the encryption and decryp-
tion algorithms take less time. Furthermore, the multiplication between two
large integers can directly apply FFT-based algorithms [10], as a result, our
scheme can use an arbitrary positive integer n instead of n = 2k in RLWE
that is to use FFT-based algorithms.

(3) The NTRU scheme over the polynomial rings [11,22] can be directly con-
verted into an integer scheme of NTRU. For example, consider the NTRU
scheme in [22]. Let q = 2t, p = qn − 1 with a prime n, the public key h =
3f/(3g+1) ∈ Zq[x]/〈xn − 1〉, and the secret key s = 3g+1 ∈ Z[x]/〈xn − 1〉.
Then, one can generate an integer scheme of NTRU as follows: the public

key is h =
[ ∑n−1

i=0
hiq

i

]

p

, and the secret key s =
[∑n−1

i=0
siq

i

]

p

.

4.2 Correctness

For the correctness of our scheme, we only require to prove that the algorithm
Dec correctly recover the plaintext in a ciphertext.

Lemma 4.2. Given sk and a ciphertext (c1, c2), the algorithm Dec correctly
decrypts the plaintext m.

Proof. By Enc, we have c1 = [ar + e1]p, c2 = [br + e2 + m]p. Since b = [as + e]p,
by Dec, we get

t0 = [c2 − c1s]p
= [br + e2 + m − (ar + e1)s]p
= [er + e2 − e1s + m]p

=
∑n−1

i=0
diq

i.

Since r =
∑n−1

i=0
riq

i, s =
∑n−1

i=0
siq

i, e =
∑n−1

i=0
2eiq

i, ej =
∑n−1

i=0
2ejiq

i,
we obtain

er = [
∑n−1

i=0
(2

∑
[j+k]n=i

(−1)�(j+k)/n�ejrk)qi]p = [
∑n−1

i=0
2uiq

i]p

e1s = [
∑n−1

i=0
(2

∑
[j+k]n=i

(−1)�(j+k)/n�e1jsk)qi]p = [
∑n−1

i=0
2viq

i]p

t0 = [er + e2 − e1s + m]p = [
∑n−1

i=0
(2ui + 2e2i − 2vi + mi)qi]p =

∑n−1

i=0
diq

i

Using Lemma 2.2, we get |2ui| < 2n3, |2vi| < 2n3, |2e1i | < 2n. So,

|2ui + 2e2i − 2vi + mi| < 4n3 + 2n + 1 < q/2 − 1, i ∈ {0, 1, · · · , n − 1}.

By Lemma 3.4, di = [2ui + 2e2i − 2vi + mi − di−1]q, i ∈ {0, 1, · · · , n − 1}.
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For i = 0, we have

d0 = [2u0 + 2e20 − 2v0 + m0 − dn−1]q

=

{
2u0 + 2e20 − 2v0 + m0 − dn−1 2u0 + 2e20 − 2v0 + m0 − dn−1 ≥ 0
2u0 + 2e20 − 2v0 + m0 − dn−1 + q 2u0 + 2e20 − 2v0 + m0 − dn−1 < 0

By Step (2.3), if d0 > q/2, then d0 = d0 − q = 2u0 + 2e20 − 2v0 + m0 − dn−1,
otherwise d0 = 2u0 + 2e20 − 2v0 + m0 − dn−1.

Using Step (3), the algorithm Dec subtracts dn−1 according to the sign of
dn−1, and obtain d0 = 2u0 + 2e20 − 2v0 + m0. Thus, m0 = [d0]2 by Step (4).

Similarly, Dec can correctly recover all other bits of the plaintext m by
mi = [di]2, i ∈ {1, · · · , n − 1}. �

4.3 Security Assumption

The security of our public key encryption is based on the following assumption.

Definition 4.3 I-DRLWEq,σ Assumption. For any probabilistic distin-
guisher D that solves the I-DRLWEq,σ problem, its advantage ε is negligible
in security parameter n.

Lemma 4.4. Under I-DRLWEq,σ assumption, the public key encryption scheme
(Enc,Dec) described in Sect. 4 is secure against chosen plaintext attack.

Proof. Given m0,m1 corresponding to plaintext vectors m0,m1 ∈ {0, 1}n, let
ci,1 = [ari + ei,1]p, ci,2 = [bri + ei,2 + mi]p be the ciphertexts of mi, i = 0, 1,
where ri ← DZn,σ, ei,1, ei,2 ← DZn,σ. We denote ci = (ci,1, ci,2), i = 0, 1.

By contradiction, assume that there exists a polynomial time algorithm B,
so that

|Pr[B(c0) = 1] − Pr[B(c1) = 1]| ≥ n−O(1). (1)

We assume c ← U(Z2
p). By I-DRLWEq,σ assumption, for any polynomial

time algorithm A

|Pr[A(ci) = 1] − Pr[A(c) = 1]| ≤ negli(n), i = 0, 1. (2)

Therefore,

|Pr[B(c0) = 1] − Pr[B(c1) = 1]|
≤ |Pr[B(c0) = 1] − Pr[A(c) = 1] + Pr[A(c) = 1] − Pr[B(c1) = 1]|
≤ |Pr[B(c0) = 1] − Pr[A(c) = 1]| + |Pr[A(c) = 1] − Pr[B(c1) = 1]|
≤ negl0(n) + negl1(n)
= negl(n),

(3)

where negl0(n),negl1(n), and negl(n) are negligible functions in n.
This is a contradiction for the expression (1) and (3). �
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5 Conclusions

In this work, we introduce an integer version of ring-LWE (I-RLWE) over the
polynomial rings, and present a public key encryption based on I-RLWE whose
security relies on a new computational hardness assumption of the I-RLWE
problem.

In the future, we will build the relationship between RLWE over the poly-
nomial ring and I-RLWE. We will also study between the one-dimensional LWE
problem with structural noise and the hard one-dimensional LWE problem with
non-structural noise [5].
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