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Abstract. In order to ensure a high level of security in computer networks, it is
important to prevent malicious behaviours from the intruders. However, high
volumes of network traffic make it difficult for intrusion detection systems
(IDSs) to separate abnormal network traffic from the normal ones. To alleviate
this problem, a window-based feature extraction method using the Benford’s
law has been proposed in this paper. Our method employs six features of the
divergence values, including the first digit and the first three digits of size
difference between traffic flows. Experiments are performed and evaluated using
the KDD99 dataset. To illustrate the advantages of our proposed method, three
popular classifiers, Multi-Layer Perceptron (MLP), Support Vector Machine
(SVM) and Naive Bayes are analysed using different combinations of these six
features as the input feature sets. The results demonstrated that the MLP clas-
sifier performs the best in classifying the normal, mixed and malicious windows
by correctly classifying the normal and malicious windows. This is particularly
useful to reduce the amount of network traffic that needs to be analysed. The
only exception is the mixed window which contains both normal flows and
attack flows, and it needs to be further analysed to distinguish normal flows from
malicious ones. Our method is fast and can be used as an early warning system
to trigger other more advanced IDSs to focus on the specific regions of the
network traffic. The combined system, incorporating our method with a
traditional IDS, can provide a lower FAR of 0.27% compared with 9.87% of the
isolated IDS, along with no significant reduction of the detection performance.
Moreover, the whole accuracy of the combined system achieves 92.09%.
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1 Introduction

The Internet has become an indispensable component of our daily life and it affects all
aspects of people’s lives. This has led to a great deal of attentions in the area of network
security both in the industry and academia. This is because any malicious intrusion or
attack against a network would cause serious consequences for an organization,
potentially impacting their reputation and financial stability. Therefore, unauthorized
access to communication or computer network must be detected, prevented and repelled
as soon as possible. Intrusion Detection Systems (IDSs) can be used to prevent unau-
thorized access to network resources by monitoring and analysing the network traffic.

To distinguish the attacks from the normal network access, various artificial
intelligence methods have been developed for solving problems that are related to the
intrusion detection, and the following methods are most commonly used in the liter-
ature [1-8]: support vector machine (SVM), decision tree, genetic algorithm (GA),
principal component analysis (PCA), Particle Swarm Optimization (PSO), K-nearest
neighbours, Naive Bayes networks, and Neural Networks such as Multi-Layer
perceptron and Self-organizing map. Their detection targets vary from any class of
anomalies to just a single class.

In general, IDSs deal with a tremendous amount of data which contains redundant
and irrelevant features resulting in excessive training and predictive time. To minimize
the computational costs and the number of data patterns need to be searched, various
feature selection and extraction techniques have been developed. The feature selection
techniques generally first rank the existing features according to their predictive sig-
nificance, and then select the most meaningful feature subset from the original features.
However, feature extraction techniques actually transform the features into linear
combinations of the original attributes. There are various techniques that can be used
for the feature extraction and selection. These include Genetic Algorithm (GA),
Information Gain, correlation coefficient, Partial Least Square (PLS), and Kernel
Principal Component Analysis (KPCA) [9-13].

In this paper, we propose a fast window-based feature extraction method based on the
Benford’s law to analyse and classify the KDD99 dataset. The proposed method is an
extension of a previous work [14], and it can be used as an early warning system and
incorporated into other IDSs. It composes of two phases. In the first phase, three machine
learning techniques, Multi-Layer Perceptron (MLP), Support Vector Machine
(SVM) and Naive Bayes are implemented and compared to evaluate the performance of
the features extracted over different training datasets reconstructed from the KDD99, and
then the classifier and the subset of features that perform the best are selected. In the
second phase, experiments are performed to compare the performance of when our
proposed method is used as an early warning system incorporated into an IDS that was
proposed in [15] with that of the IDS alone. The work in [15] has trained a classifier using
19 critical features chosen by the proposed feature reduction strategy called gradually
feature removal method rather than 41 original features in KDD99, which resulted in
contributing a more efficient intrusion system. The classifier used in the second phase is
MLP. Classifiers used in these two phases are trained and designed independently, and
the final results are aggregated from the individual ones in each model.
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The remainder of this paper is organized as follows. Section 2 introduces the
dataset used and Benford’s law. Section 3 describes the proposed method. Experiments
are conducted in Sect. 4. Results and analysis are presented in Sect. 5. Finally, we
conclude and discuss some future works in Sect. 6.

2 Materials and Methods

2.1 Data Set

The experimental data used in our experiments is a benchmark database KDD99. Till
now, KDD CUP’99 dataset is the only publicly available and widely used labelled
dataset for IDS. The KDD99 dataset contains two types of data, training data and test
data. Training data is consisted of seven weeks of network traffic, and the test data
contains two weeks of network traffic. The network traffic contains network-based
attacks inserted in the normal background data. The full dataset (18 MB, 743 MB
Uncompressed) contains 22 types of attacks and is employed for the purpose of
training. For testing, the “Corrected KDD” dataset containing 17 additional attacks is
used. These attacks are grouped into four major categories: denial of service (DOS),
unauthorized access from a remote machine (R2L), unauthorized access to local
supervisor privileges (U2R), probing, surveillance and other probing (Probe) [16].
Since our focus is the TCP transmission, these data are therefore extracted from the
KDD99 dataset for the experiments. The extracted data sets are composed of the
training data and test data, containing 1,820,596 records and 119,357 records,
respectively.

2.2 Benford’s Law

Benford’s law is an empirical law that states the probability distribution of the leading
digits for naturally occurring sets of numbers. According to Benford’s law, its sig-
nificant digits for a collection of numbers are not uniformly distributed. Instead, they
obey the distribution shown in Eq. (1). It was first proposed by Newcomb [17] in 1881.
In 1938, Frank Benford, whom this law was named after, re-discovered this
phenomenon by testing it on data from 20 different domains including the sizes of
populations, the surface areas of rivers, physical constants, molecular weights and so
on [18]. In 1995, Hill provided a statistical interpretation of this law and also gener-
alized it for all significant digits in [19].

1
Pd_10g10(1+ d> (1)

Where P, denotes the probability of d, d = 1,2,3,...,9.

Although Benford’s law has been applied in various fields for a long time, such as
forensic accounting, auditing, nature science and image forensics [20-23], its use in
network security has only been investigated until recently. Nevertheless, Benford’s law
has been demonstrated to be very effective and reliable in anomaly detection [24-26].
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3  Our Proposed Method

3.1 Construction of Feature Sets

KDD 99 consists of 41 features excluding the target-class label. In our recent research
[14], src_bytes, dst_bytes and bytes which are the sum of src_bytes and dst_bytes have
been proved to be effective parameters of the network flows that could be used for
Benford’s law in distinguishing the normal network flows from the malicious ones.
Thus, new features are reconstructed based on these three basic features.

Since the first-digit law is a distribution, a window-based method proposed in [28]
is employed to collect sufficient samples for a given feature. This is then used to
construct an observed distribution which can then be compared with the target distri-
bution for deviation detection. To compare the conformity of first-digit frequencies
with the logarithmic distribution in different windows, we use chi-square goodness-of-
fit statistics test [29]. The chi-square divergence is given as in Eq. (2).

p-x, ot @

Where Py is the expected frequency of digit, d is the first digit according to the
logarithmic distribution and Py is the actual observed frequency in the data set. In all
cases, the lower the discrepancy measure, the higher the similarity will be obtained
between the data set and the distribution.

In this paper, the Benford’s law divergence value is taken as a new feature of the
window. Firstly, the following features, src_bytes, dst_bytes and bytes of each flow, are
extracted and then divided into sets of consecutive windows. Window size is chosen as
W = 2000, which is a reasonable choice according to [14]. The difference is calculated
between every two contiguous flows in each window. The frequency of the first-digit in
each window is then computed. Finally, the results are compared with the expected
logarithmic distribution by applying the chi-square measure. Thus, three features are
constructed and they are denoted as src_bytes_chi, dst_bytes_chi and bytes_chi,
respectively. Since the results have been shown previously that the Benford’s Law can
be very effective in distinguishing between normal and malicious network flows
[24-26], especially when using multiple digits of the Benford’s Law [14], its first three
digits are also calculated, resulting in three features, src_bytes_chi_3, dst_bytes_chi_3
and bytes_chi_3.

To evaluate the performance of features extracted, the six features are divided into
three feature sets. Different feature sets are used to construct different data sets.
Detailed properties of each feature set have been tabulated in Table 1.

3.2 ClassLabelling of Instances

KDD99 has labels at the flow level, but our features works at the flow window level, so
flow labels need to be converted to flow window labels. Depending on whether the
windows contain attack flows or not, they are classified into three groups: normal,
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Table 1. Constructed feature sets and the corresponding features

Feature set | Feature Dimension

F_setl src_bytes_chi, dst_bytes_chi, bytes_chi 3

F_set2 src_bytes_chi_3, dst_bytes_chi_3 and bytes_chi_3 3

F_set3 src_bytes_chi, dst_bytes_chi, bytes_chi src_bytes_chi_3, 6
dst_bytes_chi_3, bytes_chi_3

mixed, and malicious. The normal group, as the name implies, contains all TCP flows
that are normal. The windows labeled mixed contain both normal and attack flows.
A window is labeled malicious if all TCP flows in this window are malicious.

3.3 Construction of Datasets

As already mentioned, the traffic flows in KDD99, which is used as the base dataset,
are divided into consecutive windows using a window-based method. Firstly,
non-overlapping is used with a window size W = 2000, resulting 317 normal windows,
83 mixed windows, 535 malicious windows and a total of 935. In order to obtain
sufficient instances, an overlapping window is then applied with sliding window steps
of 1000 and 100, respectively.

Similarly, non-overlapping strategy is adopted to reconstruct the test dataset from
the original test data set “Corrected KDD”. However, the new test dataset contains only
one normal window. To increase the number of normal windows, all normal traffic
flows in “Corrected KDD” are extracted, and non-overlapping is then re-applied to the
normal traffic flows. Thus, the final test dataset consists of 23 normal windows,
49 mixed windows and 9 malicious windows. The results of the constructed datasets
are illustrated in Table 2.

Table 2. The list of constructed datasets with their corresponding composition information

Dataset name Feature | Normal | Mixed | Malicious | Total

Trainset data 1 F_setl 317 83 535 935
Trainset data 1-1 | F_setl | 637 167 1065 1869
Trainset data 1-2 | F_setl | 6374 1638 | 10674 18686
Trainset data 2 | F_set2 | 317 83 535 935
Trainset data 2-1 | F_set2 | 637 167 1065 1869
Trainset data 2-2 | F_set2 | 6374 1638 | 10674 18686
Trainset data 3 | F_set3 | 317 83 535 935

Trainset data 3-1 | F_set3 | 637 167 1065 1869
Trainset data 3-2 | F_set3 | 6374 1638 | 10674 18686
Test data 1 F_setl 23 49 9 81
Test data 2 F_set2 23 49 9 81

Test data 3 F_set3 23 49 9 81
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3.4 Machine Learning Algorithms Applied to Intrusion Detection

3.4.1 Multilayer Perceptron

A neural network (NN) consists of information processing units which can mimic the
neurons of human brain [30]. It works by accepting input data, extracting rules and then
making decisions. Multilayer perceptron (MLP) is a feed-forward type of NN, which is
usually trained with the standard back propagation algorithm. A MLP network consists
of an input layer, one or more hidden layers, and an output layer of calculation nodes.
The layers are fully connected from one layer to the next one. Each node in hidden
layer and output layer has a nonlinear activation function, which enables MLP to
distinguish data that is not linearly separable. MLPs are very powerful pattern classi-
fiers that they can approximate virtually any input-output map with one or two hidden
layers [31].

3.4.2 Support Vector Machine

SVM (Support Vector Machine) is based on statistical learning theory by finding an
optimal hyperplane in the feature space that separates input dataset with maximum
margin [31]. It uses just a portion of the data called the support vectors that represent
the training data to train a model. Although linear SVM classifiers are efficient and
work well in many cases, it often happens that many datasets are not even close to
being linearly separable. To solve this problem, a kernel trick is applied, which
implicitly maps the inputs into high-dimensional feature spaces. There are three major
kernel functions, Sigmoid kernel, Polynomial kernel and Gaussian kernel which are
used to build SVM classifier. In addition to binary classification, SVMs can also handle
multiclass problems by reducing the multi-class task to several binary problems via
One-vs-One or One-vs-All strategy. One-vs-One multiclass SVMs are used for the
experiments in this paper.

3.4.3 Naive Bayes

A Naive Bayes classifier is a simplified probabilistic classification model based on
applying Bayes’s theorem, which estimates the conditional and prior probabilities to
generate a learning model, with a naive independence assumption between the features
[27]. Tt assumes that all features are conditionally independent given class. Despite the
fact that the strong independence assumption is generally poor and rarely true in real-
world applications, the naive Bayes classifiers perform surprisingly well in practice and
can be as effective as other more sophisticated classifiers. However, for intrusion
detection, the strong independent relation assumption may result in lower attack
detection accuracy when the features are correlated [34].

4 Our Proposed Method

The experiments consist of two phases: In the first phase, the windows passing through
are classified into three classes, normal, mixed and malicious, which can be used as an
early warning system. In the second phase, the network flows in mixed windows are
further classified into normal and attack using the IDS proposed in [15]. And then, we
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show the performance that our method is used as an early warning system combined
with the IDS. To show the advantages of our proposed method, the performances of
whole test data set detected by the single IDS are compared with the results of the
combined system.

4.1 Phase-1: Multiclass Classification

To perform multi-class classification, the models are first trained using different
training sets (Table 2). Each training set is evaluated with the corresponding test
dataset using three different machine learning algorithms, MLP, SVM, and Naive
Bayes.

The structure of MLP is composed of 3 layers, input, hidden and output layer. This
structure is commonly chosen as a basic structure for many applications such as image
processing. Whereas the number of units at the input layer is equal to the number of
selected features, the output layer consists of three softmax output neurons which is the
equal number of categories to be classified to make the network’s prediction. The
number of units at the hidden layer is set up based on the rules-of-thumb proposed in
[32]. Hyper-parameters which show the best performance are selected through trial and
error. ReLU function is used as a neuron function and MLP is learned using back
propagation.

The test dataset is then predicted to evaluate the performance of the trained models.
The trained models are divided into three groups based on the feature sets selected. In
each group, comparisons are performed to select the best performing model. Finally,
the comparison among the selected best models is made to determine the feature set
that performs best.

4.2 Phase-2: Anomaly Detection in Mixed Window

The main purpose of this phase is to further classify the traffic flows in mixed window
from phase-1 into corresponding two classes, i.e., normal or anomalies. The classifi-
cation returns back to flow level, and so does the features. The features used in this
phase are 19 original features in KDD99. For explicit information of the 19 features,
refer to [15].

In this phase, 10% of the KDD99 dataset is used as the training data. After training
the model, two test experiments are conducted using two different test datasets. One
consists of TCP traffic flows in the “mixed” windows classified by the best model
chosen in phase-1. The other is the whole test dataset of the group the best model
belongs to, and it is converted to flow level.

5 Results and Discussion

For MLP, Keras backend theano is used. SVM and Naive Bayes classifiers are con-
structed using a machine learning package called scikit-learn. The experiments are
conducted with Windows 10 as the test bed operating system on Intel i7-6700 HQ CPU
@ 2.60 GHz processor, 8 GB of RAM. All the codes are written in python.
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5.1 Phase-1
5.1.1 Classification Using MLP

Classifier is evaluated with a 10-fold cross validation, which is a standard technique for
estimating the performance of a classifier. The results of three groups are listed in
Tables 3, 4 and 5. It can be observed that the gap between the training accuracy and
validation accuracy narrows as the volume of training data sets grows, which means a
lower probability of overfitting. The best model in each group is chosen based on two
factors: validation accuracy and training time. Validation accuracy shows the gener-
alization ability of a model, to some extent, the higher the better. On the contrary, the
lower the training time, the less the system overhead. To summarize, the best models
are those trained by Trainset data 1, Trainset data 2-1 and Trainset data 3, as can be
seen from Table 3, 4 and 5, respectively.

Table 3. Performance comparisons among training data sets composed of F_setl

Dataset name

Training accuracy

Validation accuracy

Training time

Trainset data 1
Trainset data 1-1
Trainset data 1-2

93.48%
92.51%
92.93%

92.62% (2.28%)
92.29% (2.56%)
93.20% (0.79%)

17.682498 s
32.524289 s
150.547682 s

Table 4. Performance comparisons among training data sets composed of F_set2

Dataset name

Training accuracy

Validation accuracy

Training time

Trainset data 2
Trainset data 2-1
Trainset data 2-2

89.09%
92.88%
92.86%

90.79% (4.99%)
92.03% (2.45%)
92.80% (0.72%)

20.983321 s
14.954141 s
173.994690 s

Table 5. Performance comparisons among training data sets composed of F_set3

Dataset name

Training accuracy

Validation accuracy

Training time

Trainset data 3
Trainset data 3-1
Trainset data 3-2

93.69%
93.37%
93.59%

93.58% (1.91%)
92.88% (2.46%)
93.53% (0.51%)

15.837295 s
17.778418 s
236.564110 s

To evaluate the models obtained, data sets listed in Table 2 are tested by the
corresponding trained models. Specifically, models which are trained separately by
Trainset data 1, Trainset data 2-1 and Trainset data 3, are tested on Test data 1, Test
data 2 and Test data 3, respectively. Figure 1(a)—(c) illustrates the classification results
of test data sets via confusion matrices.

Confusion Matrixes show that all the normal and malicious windows in Test data 1
and 3 are correctly classified. In other words, the detection rate of both the normal and
malicious is 1.0. Furthermore, classification results of normal and malicious among the
three test sets have minor differences. The main difference lies in the classification of
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Fig. 1. Confusion matrixes for window classification using MLP: (a) Trainset data 1 with Test
data 1; (b) Trainset data 2-1 with Test data 2; (c) Trainset data 3 with Test data 3

mixed windows. Trainset data 2 performs the worst with only 18% of mixed windows
correctly classified, while the Trainset data 3 performs the best with 69% of mixed
windows correctly classified. Nevertheless, the average classification accuracy of Test
data 3, which achieved the best result, is as low as 81.48%. There is a gap of 12.1%
between validation accuracy and test accuracy.

The main reason is that % divergence, the feature of the mixed window is sensitive
to the number of attack flows in this window. Figure 2 shows the distributions of
normal TCP traffic flows in mixed windows in Trainset data 3 and Test data 3,
respectively. In Fig. 2, the percentage of normal flows on the total 2000 flows in a
window is shown horizontally, and the count of windows corresponding to x-axis is
shown vertically. As one can see, the majority of the normal TCP traffic flows in mixed
windows in Trainset data 3 account for 90% to 100%, i.e. most of these mixed
windows consist of more than 1800 normal TCP flows and less than 200 attack TCP
flows. However, Test data 3 shows just the opposite. The difference of normal flow
number between training set and test set results in different distributions of > diver-
gence value. That is, the value range regarding the same feature of mixed windows in
training set and test set is different, as can be seen in Fig. 3, resulting in incomplete
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Fig. 3. The value of different features composing the mixed windows in training samples and
test samples

training sets for mixed windows. Because the lower the attack flow number, the smaller
difference between mixed window and normal window. Similarly, the higher the attack
flow number, the smaller difference between mixed window and malicious window.
Therefore, these characteristics make it difficult to distinguish mixed windows from
normal and malicious ones.

Figure 4 shows the distribution of normal flows in mixed windows which were
classified as normal windows. As one can see, seven of 14 misclassified mixed win-
dows are those in which normal TCP traffic flow account for 90% to 100%. The
windows that were misclassified as malicious consist of 1999 attack TCP flows and
only one normal flow.

5.1.2 Classification Using SVM
For the SVM, the classifier is evaluated with 5-fold cross validation. The results
achieved for these three groups are listed in Tables 6, 7 and 8. Based on the two factors
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Table 6. Performance comparisons among training data sets composed of F_setl

Dataset name

Training accuracy

Validation accuracy

Training time

Trainset data 1
Trainset data 1-1
Trainset data 1-2

93.9%
93.63%
95.11%

93.40%
93.48%
94.70%

0.009569 s
0.036576 s
8.50749 s

Table 7. Performance comparisons among training data sets composed of F_set2

Dataset name

Training accuracy

Validation accuracy

Training time

Trainset data 2
Trainset data 2-1

Trainset data 2-2

94.65%
94.44%

95.75%

93.83%
93.69%

94.44%

0.026069 s
0.064608 s
1212.171683 s

Table 8. Performance comparisons among training data sets composed of F_set3

Dataset name

Training accuracy

Validation accuracy

Training time

Trainset data 3
Trainset data 3-1
Trainset data 3-2

94.55%
94.06%
96.91%

94.04%
93.8%
95.51%

0.021469 s
0.031255 s
294.210544 s

mentioned above in terms of accuracy and time efficiency, SVM classifiers trained by
Trainset data 1-1, Trainset data 2-1 and Trainset data 3-1 are then chosen. This is
because SVM classifiers achieve higher training accuracy and lower training time for
generating a model as compared with MLP classifiers. Confusion matrices of classi-
fication results using selected SVM classifiers are depicted in Fig. 5(a)—(c).

From Fig. 5, it can be seen, classification accuracies of the three classifiers are
approximately the same, with 66.67% having 416 support vectors, 62.96% having 290
support vectors and 64.20% having 312 support vectors, respectively. This indicates



68 L. Sun et al.

that the difference among feature sets in SVM does not cause a significant difference in
classification results as it did in MLP. However, since nearly half of the mixed
windows are misclassified as normal, the difficulty of classification in SVM still lies in
the mixed windows, which is similar to the case in MLP. In addition, as shown in
Fig. 5, one of nine malicious windows is classified as being mixed. Since mixed
windows will be further classified, windows that are mistakenly classified as mixed
theoretically do not affect the final result of anomaly detection in phase-2. However, in
this case, the classification process in phase-1 will be meaningless. In addition, Fig. 5
(b) shows that one in 23 normal windows is misclassified as malicious, which may
result in a tendency of higher false alarm rate that needs to be avoided.

malicious malicious

mixed mixed

True label
True label

normal normal

Predicted label Predicted label

(a) (b)

malicious

mixed

True label

normal

Predicted label

(©)

Fig. 5. Confusion matrixes for window classification using SVM: (a) Trainset data 1-1 with Test
data 1; (b)Trainset data 2-1 with Test data 2; (c) Trainset data 3-1 with Test data 3

5.1.3 Classification Using Naive Bayes

Tables 9, 10 and 11 illustrate the corresponding results of Naive Bayes classifiers. The
classification performance has been evaluated using a 10-fold cross validation proce-
dure. As shown in Table 9, classifiers using F_setl as the feature vector achieve the
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best performance. While Table 10 shows that F_set2 is not a good feature vector as the
Naive Bayes classifiers performed poorly in the learning process. In other words,
features in F_set2, src_bytes_chi_3, dst_bytes_chi_3 and bytes_chi_3 are not suffi-
ciently distinctive enough to use as features for Naive Bayes classifiers. In addition,
F_set3, combination of F_setl and F_set2, did not show any advantages of using all
these six features. In Tables 9, 10 and 11, the highest validation accuracy rates
achieved were approximately 93.36% for Trainset data 1, 34.03% for Trainset data 2-2
and 91.37% for Trainset data 3-2, respectively. As such, considering accuracy and time
efficiency, Naive Bayes classifiers trained by Trainset data 1, Trainset data 2-2 and
Trainset data 3-2 are chosen. The classification results of the chosen features are shown
in Fig. 6(a)—(c) via confusion matrices.

Table 9. Performance comparisons among training data sets composed of F_setl

Dataset name

Training accuracy

Validation accuracy

Training time

Trainset data 1 | 93.37% 93.36% 0.003971 s
Trainset data 1-1 |91.17% 90.53% 0s
Trainset data 1-2 | 91.44% 91.22% 0.019967 s

Table 10. Performance comparisons among training data sets composed of F_set2

Dataset name

Training accuracy

Validation accuracy

Training time

Trainset data 2
Trainset data 2-1
Trainset data 2-2

8.45%
34.08%
34.42%

10.39%
33.43%
34.03%

0s
Os
0.019979 s

Table 11. Performance comparisons among training data sets composed of F_set3

Dataset name

Training accuracy

Validation accuracy

Training time

Trainset data 3
Trainset data 3-1
Trainset data 3-2

67.59%
91.06%
91.64%

68.47%
90.53%
91.37%

0.004002 s
0s
0.01994 s

Figure 6(a)—(c) show that Trainset data 1 with test data 1, Trainset data 2-2 with test
data 2 and Trainset data 3-2 with test data 3 achieving classification results of
approximately 41.98%, 38.27%and 46.91%, respectively. Figure 6(a) shows that all
malicious and normal windows are correctly classified. However, only 4.08% mixed
window are detected. Figure 6(b) shows that the majority of the samples are classified
as normal. Since eight of nine malicious windows are misclassified as normal, the
classifier trained by Trainset data 2-2 is too insensitive to detect abnormal activities.
Figure 6(c) shows similar results to Fig. 6(a). However, there is a slight improvement
in distinguishing mixed windows from malicious windows.
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Fig. 6. Confusion matrixes for window classification using Naive Bayes: (a) Trainset data 1
with Test data 1; (b) Trainset data 2-2 with Test data 2; (c) Trainset data 3-2 with Test data 3

From the above analysis, MLP classifier trained by all six features achieved the
highest accuracy with 81.48% when compared to SVM with 66.67% and Naive Bayes
with 46.91%. Thus, the 34 mixed windows detected by the MLP classifier will be
further analyzed and then classified in phase-2.

5.2 Phase-2

Phase-2 further classifies the mixed window recognized in phase-1 into normal and
malicious traffic flows. Since the samples classified in phase-1 are all windows con-
taining 2000 traffic flows, windows classified as mixed need further classification to
obtain a better performance in accuracy of the whole dataset. Furthermore, the supe-
riority of the combined model compared to a single model will be evaluated in detail
via five metrics: accuracy, precision, recall, fl-score and false alarm rate. They are
commonly defined as follows:
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TP+ TN
Accuracy =
TP+ TN+ FP+ FN
Precisi TP
recision = ———
FP+ FP
TP
Recall = ———
TP+ FN
2TP
Fl —score = —————
2TP+FP+FN
FP
False alarmrate = ———
TP + FP

Where TP, FP, FN and TN are the number of True Positives, False Positives, False
Negatives and True Negative, respectively.

The reason for measuring the false alarm rate is that the cost incurred when IDS
misclassifies a normal flow as malicious could be very high. In addition, it is well
known that the false alarm occurs frequently in IDS experiments, so that it should be
considered when developing IDSs [33]. The time incurred for processing will also be
evaluated. The results obtained with respect to the evaluation metrics are provided in
Table 12.

Table 12. Performance comparisons between proposed combined system and single IDS

Approach Accuracy | Precision | Recall F1- False alarm | Testing time
score rate (sec)

combined 92.09% 99.73% 87.48% |93.2% 0.27% 0.34

IDS

single IDS | 93% 90.13% 97.83% 93.82% | 9.87% 0.80

Table 12 shows that the accuracy and F1-score of proposed method combining an
IDS is slightly lower as compared to the IDS alone, but it outperforms with a much
lower rate of only 0.27% FAR. Besides, the proposed approach consumes less time for
training and testing.

6 Conclusion

This paper presented an application of Benford’s law for anomaly-based network flow
IDS based on six new features as an early warning system for the detection of mali-
cious attacks. The six features used were src_bytes_chi, dst_bytes_chi, bytes_chi,
src_bytes_chi_3, dst_bytes_chi_3 and bytes_chi_3. Based on these six features, three
feature sets were selected to train the classifiers. The MLP classifier trained by all six
features was shown to perform the best in accurately distinguishing and classifying the



72 L. Sun et al.

normal or malicious windows from the mixed windows. The mixed windows were
further classified by combining our proposed method with existing IDSs to detect the
malicious network flows. The experimental results showed that the proposed IDS
improved the performance by reducing the computational complexity and decreasing
the FAR by approximately 9.6%. Our future work will focus on finding other optimum
subsets of features for the Benford’s law and the window size, in order to further
improve the overall performance of the proposed system.

Data Availability
The data used to support the findings of this study are available at http://kdd.ics.uci.
edu/databases/kddcup99/kddcup99.html.
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