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Abstract. Learning from imbalanced data is a great challenge when
we use machine learning techniques to solve real-world problems. Imbal-
anced data can result in a classifier’s sub-optimal performance. More-
over, the distribution of the testing data may differ from that of the
training data, thus the true mis-classification costs is hard to predict at
the time of learning. In this paper, we present a comparative study on
various sampling techniques in terms of their effectiveness in improving
machine learning performance against class imbalanced data sets. In par-
ticular, we evaluate ten sampling techniques such as random sampling,
cluster-based sampling, and SMOTE. Two widely used machine learning
algorithms are applied to train the base classifiers. For the purpose of
evaluation, a number of data sets from different domains are used and
the results are analysed based on different metrics.

Keywords: Data mining · Machine learning · Class imbalance · Data
sampling

1 Introduction

The class imbalance problem is a challenge to data mining and machine learning,
and it is of crucial importance since last decade in many domains, such as network
intrusion detection, financial engineering, medical diagnostics, surveillance, and
even in-flight helicopter gearbox fault monitoring [13]. In certain cases, this has
caused a significant bottleneck in the performance attainable by traditional data
mining algorithms, which tend to bias to the majority class. That is, the accuracy
for majority class is high while the performance is poor for minority class. For
example, if a data sample contains of 95% of majority class and 5% of minority
class, thus an accuracy rate of 95% (which is in general a good accuracy) can
be achieved by classifying all examples to majority class. However, such a model
has no practical value in real-world problems. It is typically the minority class
in which the practitioners are more interested. Therefore, a natural question is
how to empower the classification performance when the data set is imbalanced?
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Class imbalance problem has been studied by many researchers [9,11,16].
So far, a common solution is using data sampling techniques to re-distribute
the data across classes. Generally speaking, a pre-sampling method balances
the training set, either by oversampling the minority class or undersampling
the majority class. A large amount of data sampling techniques have been pro-
posed in the past and some of them have been applied to address the class
imbalance problem. The simplest over-sampling method is to randomly dupli-
cate some of the minority instances (ROS), while a more complex version is
the synthetic minority class over sampling (SMOTE) [5] technique which arti-
ficially creates new minority examples from known examples. Han et al. [8]
proposed a Borderline-SMOTE over sampling approach, which improves upon
SMOTE by only oversampling minority class samples which are believed to be
on the border of the decision regions. Cluster-based oversampling (CBOS) [14]
attempts to even out the between-class imbalance as well as the within-class
imbalance. Meanwhile, the simplest under-sampling method is random under-
sampling (RUS), which randomly reduces data of the majority class. One-sided
selection (OSS) [15], which removes the majority class samples that are consid-
ered either redundant or noisy, is one of the earliest attempts to improve upon
the performance of random resampling. In addition, Wilson’s editing (WE) [1]
uses the kNN (Nearest Neighbor) technique with k = 3 to classify each sample in
the training set by using the remaining class, and remove those majority class
which are misclassified. Various data sampling techniques have been explored.
However, there is no universal solution and it is worth to explore which kind of
data sampling technique is more effective and efficient in balancing class distri-
bution in terms of the type of data and classifiers.

This paper presents an extensive experimental study on a variety of data
sampling techniques, with a focus on their effectiveness in terms of boosting the
classification performance of machine learning algorithms on class imbalanced
data sets. In particular, we use two popular algorithms, i.e., C4.5 Decision Tree
and Support Vector Machines, to train the base classifiers. The study is based on
a number of different imbalanced data sets from the PROMISE repository soft-
ware engineering databases [20]. To our knowledge, this is the first comprehen-
sive empirical investigation in comparing the performance of these data sampling
techniques among imbalanced data sets from different application domains.

The rest of the paper is organised as follows. Section 2 introduces the related
work, while the details of data sets and methodology are presented in Sect. 3.
Section 4 discusses the experimental results on different performance measures.
Conclusions and future work are provided in Sect. 5.

2 Related Work

Data-Perspective Approaches. Generally speaking, approaches to classifi-
cation with imbalanced data issues involve two main categories, i.e., data per-
spective and algorithm perspective. In this work, we mainly focus on sampling
techniques that is related to our study.
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Random Over-Sampling (ROS): The minority oversampling randomly selecting
a training example from the minority class, and then duplicating it. This may
usually cause over-fitting and longer training time during imbalance learning
process.

Random Under-Sampling (RUS): Majority under-sampling draws a random sub-
set from the majority class while discarding the rest instances. In doing so, the
class distribution can be balanced, however, some important information may
be lost when examples are removed from the training data set at random, and
especially when the data set is small.

Synthetic Minority Over-Sampling Techniques (SMOTE or SM) [5]: This tech-
nique adds new artificial minority attribute examples by extrapolating instances
from the k nearest neighbours (kNN) to the minority class instances. In our
experiments, the parameter k is set to five.

Border-SMOTE (BSM) [8]: BSM is an attempt to improve upon SMOTE by
only oversampling minority class instances which are considered to be on the
border of the minority-decision region. It can be described as follows: First,
determine kNN for each original sample xi ∈ Smin and identify the number of
nearest neighbours that belong to the majority class, then if k

2 < t < k is true,
xi ∈ Smin is considered as borderline instance, finally, SM is applied to create
new examples by using borderline samples.

Wilson’s Editing (WE) [1]: WE applies the kNN classifier with k = 3 to clas-
sify each example in the training set by using all the remaining examples, and
removes those majority class instances whose class label does not agree with the
class associated with the largest number of the k neighbours.

Cluster-Based Oversampling (CBOS) [14]: Before performing random oversam-
pling, CBOS first uses k-means algorithm to cluster the minority and majority
classes separately. All clusters in the majority class, except for the largest one,
are randomly oversampling as the same number of the training examples as the
largest cluster. Then the total number of the majority clusters are even out to
each cluster of minority clusters.

Cluster-Based Undersampling (CBUS) [18]: CBUS is not to balance the data
ratio of majority class of minority class into 1:1, instead to reduce the gap
between the numbers of minority class and minority class. Different from CBOS,
this method only clusters the majority class into K clusters and regard each
cluster as one subset of the majority class samples. After that CBUS combines
each cluster with the whole minority class, and then thecombined data sets will
considered as the updated training data sets. Finally, CBUS classifies all the
K data sets with a learning algorithm and chose the data set with the highest
accuracy for building the training model.



Learning from Imbalanced Data: A Comparative Study 267

One-Sided Selection (OSS) [15]: Similar to the idea of BSM, OSS aims to create a
training set consisting of safe cases by removing the considered either redundant
or noisy examples of the majority class examples. When using OSS, Borderline
and noisy cases are detected by Tomek links.

Ensemble Oversampling Algorithm (ENOS) [22]: ENOS integrates the informa-
tion decomposition algorithm, cluster-based oversampling and random oversam-
pling approaches. In specific, first the algorithm assumes that there are missing
instances which caused the data set to be imbalanced and the missing instances
are recovered by using information decomposition algorithm. After that, the
classification models from random oversampling and cluster-based oversampling
techniques are combined together, where majority voting is used to obtain the
final result.

Algorithm-Perspective Approaches. The goal of algorithm level learning
is to optimize the performance of the learning model on unseen data. Various
algorithms have been proposed in last decades. For example, cost-sensitive learn-
ing is regard as an important approach for the class imbalance problem. Many
cost-sensitive methods have been proposed, for instance, cost-sensitive boost-
ing [21], meta cost [7], adjusting misclassification costs algorithm [3], Genetic
Programming (GP) [10], and kernel-based one-class classifier via optimizing its
parameters [24]. Yang et al. [23] explore the use of cost-based soft-margin max-
imization method, which is used to penalize certain misclassified examples and
treats the positive and negative example differently. Besides, one-class learning
methods such as one-class SVMs [19] and neural networks [12] were proposed to
combat the over-fitting problem.

3 Methodology

3.1 Data Sets

In this work, we use data sets from the PROMISE repository software engi-
neering databases [20], which are listed in Table 1. Detailed information includes
data set name, data set size, the amount of minority class data, and the percent-
age of minority class data, and the class attribute. As can be seen in the table,
the data sets we use in this study cover a variety of sizes and imbalance levels.
More specifically, the percentage of minority class data varies from 2.2% (highly
imbalanced which can be regarded as imbalance due to rare minority instances)
to 12.4%. Besides, the size of data varies from the smallest data set with 253
data points to the largest data set with 17186 data points. Moreover, these data
sets represent different application domains.

3.2 Machine Learning Algorithms

In this paper, we employ two classic machine learning algorithms to build clas-
sifier models using unbalanced training data and evaluate their performance by
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Table 1. Data sets

Dataset Size #min %min #attr

MW1 253 27 10.7 38

MC1 1988 46 2.3 39

pc1 705 61 8.7 38

pc2 745 16 2.2 37

pc3 1077 134 12.4 38

pc4 1458 178 12.2 38

pc5 17186 516 3.0 39

unseen test data. These two algorithms are popular and widely used in the real
world. For the purpose of evaluation, we use the implementation of these algo-
rithms provided in Matlab 8.0.

C4.5 Decision Tree [17]. C4.5 improves upon ID3 by adding support for handling
missing values and tree pruning. It builds decision trees using an entropy-based
splitting criterion, which is sensitive to class imbalance in the training data. This
is because C4.5 works globally while not paying much attention to specific data
points.

Support Vector Machine (SVM) [6]. SVM is a classifier that for binary classifi-
cation, which attempt to find out a linear combination of the variables that best
divide the samples into two groups. The ideal separation is that the optimal
linear combination of variables can maximize the distance between the classes.
However, when the perfect separation is not possible, the optimal linear com-
bination will be determined by a criterion in order to minimize the number of
mis-classifications.

3.3 Performance Measure

In this work, we consider the minority class as the positive class and the majority
class as the negative class. Overall classification accuracy is not a good metric
for measuring the performance of classifiers in the face of imbalanced data. Thus
the evaluation of the classification models should be done by other criteria rather
than overall accuracy. In this work, we carry out the comparative study using four
performance metrics, which are based on the confusion matrix metrics including
true positive (TP), false positive (FP), true negative (TN), and false negative
(FN). The definition of performance metrics are described as follows.

Precision is the positive predictive value that measures the proportion of
positive results in classification that are true positive. The metric is widely used
in the evaluation of machine learning results. In particular, we focus on the
precision of the minority class in this work, which can be obtained through the
following equation.
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Precision =
TP

TP + FP

G-Measure (GM) is the geometric mean of the classification accuracy between
classes, and each class of poor accuracy will cause low GM value, which in turn
indicates that at least one class cannot be identified effectively. G-Measure can
be calculated using the following formula.

GM =
√
Recall · Precision

Cohen’s Kappa rate, which evaluates the merit of the classifier, is an alter-
native measure to accuracy because it compensates for random hits. Previous
studies [4] show that Kappa rate penalizes all-positive or all-negative predictions.
The value of Cohen’s Kappa ranges from -1 (total disagreement) to 0 (random
classification) to 1 (total agreement). It can be derived as follows.

Kappa =
N

k∑

i=1

xii −
k∑

i=1

xixi

N2 −
k∑

i=1

xixi

Matthew’s Correlation Coefficient is a single performance measure that con-
siders both error rates and mutual accuracy on both the minority class and
majority class in terms of confusion matrix. It will be less influenced by imbal-
anced data sets. The value of MCC ranges from 1 (perfect prediction) to -1 (the
worst prediction), while 0 indicates that the model produces random results.
According to an earlier study [2], MCC is regarded as a good singular measure
for imbalance learning problem.

MCC =
TP × TN − FP × FN

√
(TP + FP ) (TP + FN) (TN + FP ) (TN + FN)

3.4 Experimental Design

In this comparative study, we randomly choose 60% of the original data points
as training data and the other 40% are used as unseen testing data. We note that
all the data sampling techniques are only used to process the training data, while
the testing data are left alone. In this way, the testing data can better reflect the
real class distribution in real world problems. Therefore, the approach is more
practical and applicable.

Regarding the data sampling parameters, undersampling techniques are per-
formed at 20%, 50%, 70%, and 90% of the majority class, while oversampling
are performed at 200%, 500%, 700%, 900% of the minority class. For example,
running RUS 20 means 20% of majority class will be removed after applying
RUS method to the training data set. Similarly, ROS 200 means the data size
of minority class will be raised to 200% of the original. Moreover, BSM even,
CBOS even, CBUS even, OSS even, ROS even, RUS even, SM even, WE even,
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and Ensemble even are also considered in the evaluation. It means that the data
size of the minority class and majority class is even. For example, ROS even
means that the minority class and the majority class of each data set has the
same number of instances after applying ROS method with minority samples.
In addition, original data set are also divided into 60% for training the model
and the other 40% for testing in order to provide baseline for our experiments.
Hence, the classification results obtained from the original data without data
sampling are denoted as “None” in the results.

Table 2. Precision results across data sets

Classifier Data set Approach

None BSM CBOS CBUS OSS ROS RUS SM WE ENOS

C4.5 MW1 0.44 0.35 0.40 0.38 0.50 0.67 0.71 0.83 0.43 0.83

MC1 0.38 0.30 0.43 0.43 0.28 0.71 0.56 0.63 0.38 0.94

pc1 0.44 0.24 0.43 0.44 0.43 0.74 0.61 0.72 0.33 0.90

pc2 0.13 0.14 0.25 0.33 0.17 0.86 0.57 0.57 0.13 1.00

pc3 0.30 0.26 0.26 0.31 0.33 0.70 0.61 0.64 0.30 0.77

pc4 0.58 0.38 0.58 0.54 0.54 0.77 0.74 0.77 0.47 0.83

pc5 0.49 0.53 0.55 0.51 0.51 0.76 0.70 0.72 0.52 0.78

SVM MW1 0.40 0.32 0.43 0.40 0.43 0.54 0.62 0.43 0.38 0.58

MC1 0.08 0.09 0.13 0.50 0.08 0.17 0.12 0.09 0.08 0.17

pc1 0.21 0.22 0.43 0.56 0.20 0.38 0.27 0.23 0.21 0.65

pc2 0.07 0.06 0.13 0.25 0.11 0.40 0.17 0.17 0.07 0.40

pc3 0.24 0.24 0.35 0.29 0.25 0.37 0.25 0.24 0.24 0.40

pc4 0.33 0.34 0.29 0.30 0.32 0.74 0.33 0.39 0.33 0.66

pc5 0.29 0.31 0.57 0.56 0.30 0.30 0.29 0.34 0.31 0.58

4 Results

The best Precision, GM, Kappa, and MCC results obtained by each sampling
technique are presented in Tables 2, 3, 4 and 5 respectively. We can see that in
most situations, the data sampling techniques can improve the performance of
the machine learning classifiers. In particular, the ENOS algorithm benefits both
the C4.5 and SVM classifiers most by increasing all the metrics in most data
sets.

It is worth to notice that not all of the sampling techniques result in better
results than the model built directly from the original data set (i.e., the None
column in the tables) on Precision measure. Take Precision for C4.5 classifier
from Table 2 as an example, we can see that the methods such as BSM, CBOS,
CBUS, OSS, and WE perform worse than None. However, we are more interested
in the models that can correctly identify more minority class samples that may
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Table 3. GM results across data sets

Classifier Data set Approach

None BSM CBOS CBUS OSS ROS RUS SM WE ENOS

C4.5 MW1 0.4 0.44 0.32 0.42 0.46 0.78 0.57 0.64 0.34 0.78

MC1 0.24 0.22 0.26 0.47 0.34 0.75 0.52 0.62 0.24 0.86

pc1 0.39 0.3 0.44 0.54 0.43 0.8 0.61 0.68 0.36 0.84

pc2 0.14 0.15 0.2 0.33 0.33 0.76 0.5 0.5 0.14 0.8

pc3 0.36 0.32 0.3 0.41 0.39 0.78 0.69 0.71 0.37 0.8

pc4 0.53 0.5 0.57 0.54 0.58 0.79 0.71 0.76 0.5 0.81

pc5 0.49 0.51 0.53 0.53 0.57 0.75 0.68 0.7 0.54 0.76

SVM MW1 0.47 0.42 0.48 0.47 0.48 0.62 0.67 0.48 0.45 0.68

MC1 0.20 0.20 0.22 0.22 0.21 0.35 0.30 0.21 0.20 0.36

pc1 0.40 0.39 0.46 0.47 0.40 0.57 0.48 0.44 0.40 0.57

pc2 0.18 0.12 0.24 0.20 0.24 0.39 0.34 0.31 0.18 0.40

pc3 0.42 0.43 0.41 0.41 0.44 0.46 0.46 0.42 0.42 0.46

pc4 0.54 0.56 0.60 0.66 0.53 0.63 0.55 0.58 0.54 0.67

pc5 0.52 0.54 0.54 0.54 0.53 0.52 0.52 0.56 0.54 0.57

Table 4. Kappa results across data sets

Classifier Data set Approach

None BSM CBOS CBUS OSS ROS RUS SM WE ENOS

C4.5 MW1 0.34 0.34 0.25 0.34 0.36 0.74 0.51 0.59 0.27 0.75

MC1 0.21 0.19 0.22 0.45 0.31 0.74 0.50 0.61 0.21 0.85

pc1 0.32 0.22 0.38 0.48 0.38 0.78 0.57 0.65 0.30 0.82

pc2 0.12 0.14 0.19 0.31 0.18 0.74 0.49 0.49 0.12 0.77

pc3 0.28 0.23 0.21 0.31 0.32 0.74 0.65 0.67 0.28 0.78

pc4 0.46 0.40 0.52 0.47 0.47 0.77 0.68 0.72 0.43 0.79

pc5 0.47 0.50 0.51 0.51 0.55 0.74 0.67 0.69 0.52 0.75

SVM MW1 0.39 0.31 0.41 0.39 0.41 0.56 0.62 0.41 0.36 0.56

MC1 0.10 0.11 0.16 0.14 0.10 0.25 0.17 0.12 0.10 0.25

pc1 0.23 0.24 0.37 0.42 0.22 0.47 0.32 0.27 0.23 0.52

pc2 0.08 0.06 0.16 0.14 0.14 0.31 0.24 0.23 0.08 0.32

pc3 0.26 0.27 0.29 0.29 0.28 0.32 0.27 0.26 0.25 0.32

pc4 0.37 0.39 0.48 0.59 0.35 0.57 0.38 0.44 0.38 0.60

pc5 0.42 0.44 0.45 0.51 0.42 0.42 0.42 0.47 0.44 0.53

have a lower overall accuracy. To be more specific, Table 3 shows that CBOS,
CBUS, OSS, ROS, RUS, SM, and ENOS perform better than None for most
times. This is because GM measures the classification accuracy from both posi-
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Table 5. MCC results across data sets

Classifier Data set Approach

None BSM CBOS CBUS OSS ROS RUS SM WE ENOS

C4.5 MW1 0.34 0.35 0.25 0.34 0.37 0.75 0.53 0.60 0.28 0.76

MC1 0.23 0.20 0.25 0.45 0.32 0.74 0.51 0.61 0.23 0.86

pc1 0.33 0.22 0.38 0.49 0.38 0.78 0.57 0.65 0.30 0.83

pc2 0.12 0.14 0.19 0.31 0.29 0.75 0.49 0.49 0.12 0.74

pc3 0.29 0.23 0.21 0.32 0.32 0.75 0.65 0.68 0.28 0.78

pc4 0.46 0.42 0.52 0.47 0.50 0.77 0.68 0.72 0.43 0.79

pc5 0.47 0.50 0.51 0.52 0.56 0.74 0.67 0.69 0.52 0.75

SVM MW1 0.39 0.32 0.41 0.39 0.41 0.57 0.62 0.41 0.37 0.63

MC1 0.15 0.16 0.18 0.18 0.16 0.33 0.27 0.17 0.15 0.33

pc1 0.31 0.30 0.39 0.43 0.30 0.52 0.41 0.35 0.30 0.52

pc2 0.12 0.07 0.20 0.15 0.18 0.36 0.30 0.27 0.12 0.37

pc3 0.32 0.33 0.30 0.31 0.35 0.37 0.36 0.32 0.31 0.37

pc4 0.45 0.46 0.52 0.61 0.43 0.57 0.46 0.50 0.45 0.61

pc5 0.50 0.52 0.52 0.51 0.50 0.50 0.50 0.54 0.52 0.55

tive and negative perspectives, and low accuracy on either class will lead to low
GM value. While Table 4 demonstrates that almost all the sampling techniques
(except BSM and WE) can achieve higher Kappa value than None. Because
the Kappa rate penalises all-positive or all-negative predictions, and its value 1
means total agreement. Obviously, we can see that sampling methods such as
CBOS, ROS, RUS and ENOS can improve the imbalanced learning performance
in terms of Kappa performance measure while the rest are close with each other,
which are not much better than None. Finally, as we discussed before, MCC is
less influenced by imbalanced unseen test sets. Table 5 shows that ROS, RUS
and ENOS can result in higher MCC values in terms of average results.

Tables 2, 3 and 4 also show that when the data set is slightly imbalanced,
most of the sampling techniques do not perform much improvement in imbal-
anced learning. However, when the datasets becomes more imbalanced (e.g., pc2,
pc5, and MC1), almost all the sampling techniques perform better, which means
such sampling techniques can improve the performance of imbalanced learning.
Practically speaking, ROS, RUS and ENOS are the top three sampling tech-
niques when facing different kinds of imbalance ratio on different performance
measures.

In summary, we find that the ENOS algorithm boosts the performance of
C4.5 classifier in all metrics including Precision, GM, Kappa, and MCC in most
data sets, while ROS achieves the second best results. The case for the SVM
classifier is similar, ENOS performs the best for most of the times. Next comes
the ROS algorithm.
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5 Conclusions

In this paper, we present a comparative study for machine learning with imbal-
anced data. A variety of imbalanced data sets are used in the evaluation. The
main goal is to examine the performance of various data sampling approaches,
in terms of the boosting of the classification performance of C4.5 Decision Tree
and Support Vector Machines on class imbalance data, so as to provide practi-
cal guidance to machine learning practitioners when facing imbalanced learning
problem. Based on our extensive experiments, we find that data sampling tech-
niques can improve the performance of machine learning when data sets are
severely imbalanced. Besides, we find that the ensemble oversampling algorithm
and random oversampling achieve the top performance in most data sets and
both classifiers.
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