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Abstract. Searchable encryption (SE) is a new cryptographic technique
that allows data users searching for the files of their interests over huge
amounts of encrypted files on the cloud. When it comes to multi-user set-
ting, more issues should be addressed comparing to single-user setting,
including key distribution, search privilege control and access control. In
this paper, we propose DMU-ABSE, a dynamic multi-user ciphertext-
policy attribute-based searchable encryption scheme with file deletion
and user revocation. We manipulate an attribute-based encryption to
achieve fine-grained search privilege control and hidden policy in multi-
user setting while searching time of the proposed scheme is constant
(O(1)). With the help of proxy re-encryption, we build one searchable
index matrix by different owners in order to improve the searching effi-
ciency. Furthermore, our scheme implements access control by embedding
decryption keys into the index matrix. The proposed scheme is proved
IND-CKA and IND-CPA semantically secure and experimental results
shows that our scheme is efficient.

Keywords: Dynamic multi-user searchable encryption · Cipher-policy
attribute-based encryption · Proxy re-encryption

1 Introduction

With the rapid growth of cloud computing technology, an increasing number of
files, including documents, emails, videos, music and so on, have been outsourced
to third-party cloud servers to make full use of powerful calculation capacity
and massive storage space of cloud. These outsourced data usually contains
sensitive information and business secrets which should not be leaked to the
dishonest cloud server. To ensure data confidentiality and user privacy, data
owners have to encrypt their data before outsourcing them to cloud. However, it
is usually difficult to perform computation or search tasks over encrypted data.
It is also infeasible for a user to download the entire archive when he needs to
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search within it. Searchable encryption is proposed to solve this problem [15].
It enables users to search over encrypted data that have been outsourced to
the cloud servers. In searchable encryption, data owners encrypt the files and
generate associated indexes, which can be used to search over the whole data
set without leaking information, before upload them to the cloud server [1].
When a data user wants to search for the files of his interest, he first generates a
search trapdoor with keyword and then submits it to the cloud server. Finally,
the cloud server performs the search operation and return the matched files to
the data user without leaking any information [4]. According to the number of
data owners and data users, SE schemes can be categorized into four models:
one-to-one SE, one-to-many SE, many-to-one SE, and many-to-many SE.

When it comes to the many-to-many scenario, which is also called multi-user
searchable encryption (MUSE) [6], access control is usually required to manage
who is allowed to search and access the data. For example, different position
in a company or university should be granted different search privileges over
different files. Attribute-based encryption (ABE), in which data user is defined
by a set of attributes, is known as a typical way to achieve fine-grained access
control. There are two types of ABE schemes: key-policy ABE (KP-ABE) [7] and
ciphertext-policy ABE (CP-ABE) [11], distinguished by the access policy embed
in whether the ciphertext or the private key. In 2014, attribute-based encryption
searchable encryption (ABSE) was introduced by Khader [9], and he discussed
the security of the ABSE scheme. In ABSE schemes, only the data users whose
attribute set satisfies the access policy have the access to search for the cor-
responding keywords. Zheng [18] proposed a verifiable attribute-based keyword
search (VABKS), which enables user to verify whether the cloud has faithfully
executed the search operation and return the true search result. In 2016, Sun
[16] proposed a more general construction which supports user revocation and
expressive search capability. However, the access policy is exposed in the air
in [16]. In 2017, Wang [17] proposed a multi-value-independent ABKS scheme
which makes the search time constant, irrelevant to the number of attributes,
and hides the access policy. However it does not support dynamic update. More-
over, comparing to the single-user scheme, the multi-user scheme faces a series
number of additional challenges. For example, how to distribute different private
keys of different users and prevent collusion between users, and meanwhile keep
high search efficiency in the same time is a challenging problem.

In this paper, we focus on the multi-user searchable encryption scheme which
enables dynamic deletion operation while keeping highly efficiency and semantic
security and propose a dynamic multi-user attribute-based searchable encryp-
tion, DMU-ABSE. In order to support access control, we improve an attribute-
based encryption [17] to achieve fine-grained access control in multi-user search-
able encryption, which is hidden-policy, constant size and non-deterministic.
Besides, inspired by a single-user dynamic searchable encryption [8], we adopt
index matrix and proxy re-encryption (PRE) to improve the proposed multi-user
searchable scheme with respect to allowing update and deletion operations and
reducing search time overhead. Proxy re-encryption (PRE) [3] is based on the
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public-key system. In a PRE system, proxy server can use a proxy re-encryption
key to transform the ciphertext to another ciphertext under different secret keys
without leaking any information about the plaintext and keys [14]. At last we will
give security proof of DMU-ABSE. Experiments will also be given to show that
it is efficient. In summary, we contribute a multi-user attribute-based searchable
encryption scheme that is:

1. Hidden policy: Existing ABE schemes usually store access policy in the plain-
text form in the encrypted index. Our scheme hides the access policy to
prevent cloud server from learning the exact access policy of each file.

2. Constant trapdoor: The length of search tokens in existing attribute-based
searchable encryption is usually linear to the number of attributes. But they
are irrelevant in the proposed scheme.

3. Non-deterministic: Search trapdoor is non-deterministic in our scheme so that
the trapdoor generated for an arbitrary keyword varies every time.

4. User revocation & File deletion: Our scheme provides the revocation algo-
rithm to revoke the search authority to a user and deletion algorithm of a file
on the cloud to support dynamic archives.

5. Decryption function: In traditional searchable encryption schemes, the search
function is separated from decryption function. Our scheme supports access
control on both searching and decryption functions.

6. Security: Security proofs will be given to show that our scheme is IND-CKA
and IND-CPA secure in the generic bilinear group model which prevents
collusion between different users.

2 System Model

2.1 System Roles

Our scheme mainly consists of five entities, namely trusted authority, data own-
ers, data users, cloud server and proxy server in Fig. 1. The trusted authority
is responsible for generating independent secret keys for data owners and data
users, and system public keys. Each data owner firstly uses symmetric encryp-
tion to encrypt his original files and generate corresponding keyword indexes
embed with access policy. And then data owners send these encrypted files and
keyword indexes to the proxy server. Then, the proxy server re-encrypts these
indexes and sends to the cloud server. The cloud server stores the re-encrypted
indexes into an index matrix. While a data user wants to search for the files
with target keyword, he firstly creates a search trapdoor by the keyword and
secret key, and then sends the trapdoor to the proxy server. The proxy server
re-encrypts the trapdoor and sends it to the cloud server to search in the index
matrix. Finally, the cloud server returns all the matched files and corresponding
decryption keys to the data owner.



20 J. Liu et al.

Fig. 1. System model

2.2 Application Scenario

The proposed scheme can be applied to many scenarios, such as personal health
records (PHR) systems in which a huge amounts of patients updating their
health records to the cloud and doctors can search for the target population
or symptoms for research. Besides, it also can be applied to online subscription
system where commercial publishers share charging data like videos or music
with online subscribers.

2.3 Definition

– Setup(1λ) → PK,MSK,MPK
Setup takes as input a security parameter λ, returns a public key PK, a
master key MSK, and a master proxy key MPK.

– Enroll(MSK, ID) → EKID, RKID

Enroll algorithm is run by trusted authority, that takes as input the master
key MSK and the new enrolled user ID. It returns enroll key EKID and
corresponding proxy re-encryption key RKID.

– KeyGenUser(MSK,S) → SK
KeyGenUser algorithm is run by trusted authority, which takes as input the
master key MSK and attributes set of a data user. It returns secret key SK
for the data user.

– Encrypt(PK,M ∈ G2, EKID,W,A) → Cw

Encrypt algorithm takes as input the public key PK, a decryption key of
the file M ∈ G1, the enroll key EKID, keywords list W = (w1, w2, ..., wm)
and the corresponding access structure A, and generates an index ciphertext
Cw. Only the secret keys satisfies S =A have access to search and decrypt
index ciphertext Cw. Besides, the original file is supposed to be encrypted in
symmetric encryption such as AES with symmetric key M ∈ G1.

– Re-Encrypt(MPK,Cw, RKID) → C ′
w

Re-Encrypt algorithm is run by proxy server, which takes as input the master
proxy key MPK, an encrypted index Cw and the re-encryption key RKID

of the user ID, and outputs the re-encrypted index C ′
w which will be send to

the cloud server.
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– MatrixBuild(C ′
w, id,M) → M

′

MatrixBuild algorithm is run by cloud server after receiving the re-encrypted
index C ′

w and file id from proxy server. It inserts the encrypted indexes into
the index matrix M in Fig. 2.

– Trapdoor (SK,EKID, w) → tw
Trapdoor algorithm is run by data user, which takes as input the secret key
SK and a keyword w, it returns a search token tw.

– Re-Trapdoor(MPK, tw, RKID) → t′w
Re-encryption algorithm is run by proxy server, which takes as input the
master proxy key MPK, a search token tw, and returns a re-encrypted token
t′w and sends it to cloud server.

– Search(t′w,M) → R
Search algorithm is run by the cloud server to search for the target files in
the index matrix M with t′w. It returns the list R of all matched files and
corresponding index ciphertext.

– Decrypt(SK,Cid) → M
Decrypt algorithm takes as input an index ciphertext Cid and a secret key
SK, and returns the message M if S satisfies A embed in the ciphertext Cid.
S is the attribute set used to generate SK. And then M can used to decrypt
the file id.

– FileDeletion(id,M)
File-Deletion algorithm takes as input the id of the file to be deleted, and the
cloud server deletes the file and all corresponding index blocks in the index
matrix M logically.

– Revocation(ID)
Because of graduation, retirement or anything else, when a user wants to leave
the system, his search privilege should be revoked. Revocation algorithm takes
as input the user ID, and revokes his update and search permission.

2.4 System Adversarial Model

We now define the security for DMU-ABSE in the sense of semantic security in
the generic bilinear group model.

We assume that cloud server and proxy server are semi-honest-but-curious,
while proxy server won’t collude with cloud server or any user. Firstly, we need to
ensure that re-encrypt index label Lp which is send to the cloud server does not
reveal any information about w. We define security against an active attacker
who is able to obtain trapdoors for any w of his choice. Even under such attack,
the attacker should not be able to distinguish an encryption of a keyword w0

from an encryption of a keyword w1 for which he did not obtain the trapdoor.
Formally, we define security against an active adversary A using the following
game between a challenger B and the adversary A:

1. The challenger B runs the Setup algorithm and give public parameters PK
to adversary A.
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Fig. 2. Storage structure - Index matrix M

2. The adversary A can adaptively ask the challenger B for the trapdoor for the
keyword w

3. At some point, the adversary A sends the challenger B two keyword w0, w1 on
which it wishes to be challenged. The challenger B picks a random b ∈ {0, 1}
and gives the adversary the challenge index label L∗

p.
4. Adversary A can continue to ask for re-trapdoor t′w for any keyword w with

the restriction that w �= w0, w1.
5. Eventually, the adversary A outputs b′ ∈ {0, 1} and wins the game if b = b′

The advantage of an adversary is defined to be Adv = |Pr[b = b′] − 1/2|.
Definition 1. (IND-CKA) DMU-ABSE is semantically secure against an adap-
tive chosen keyword attack if all probabilistic polynomial-time (PPT) attackers
have at most negligible advantage in λ in the above security game.

We now define security for DMU-ABSE to ensure that Cid does not reveal
any information about M . We define security against an active attacker who
is able to obtain secret keys which cannot decrypt the challenge ciphertext.
Formally, we define security against an active adversary A using the following
game between a challenger B and the adversary A.

1. The challenger B runs the Setup algorithm and give public parameters PK
to adversary A.

2. The adversary A can adaptively ask the challenger B for the secret key for
sets of S1, S2, ..., Sq1.

3. At some point, the adversary A sends the challenger B two message M0,M1

on which it wishes to be challenged. In addition the adversary A gives a
challenge access structure A. The only restriction is that such that none of the
sets S1, S2, ..., Sq1 from phase (2) satisfy the access structure. The challenger
B picks a random b ∈ {0, 1} and gives the adversary the challenge ciphertext
C∗

id.
4. Adversary A can continue to ask for secret SK for any sets with the restriction

that none of the attributes Sq1+1, Sq1+2, ..., Sq satisfy the challenge access
structure.

5. Eventually, the adversary A outputs b′ ∈ {0, 1} and wins the game if b = b′
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The advantage of an adversary is defined to be Adv = |Pr[b = b′] − 1/2| in the
game.

Definition 2. (IND-CPA) DMU-ABSE is semantically secure against an adap-
tive chosen plaintext attack if all probabilistic polynomial-time (PPT) attackers
have at most negligible advantage in λ in the above security game.

3 Preliminaries

In this section, we will introduce some background on bilinear maps and generic
group model.

3.1 Access Structure

There are several kinds of access structure in ABE scheme, such as threshold
structure, tree-based structure and AND-gate structure. In our construction, we
adopt a series of AND-gate on multi-value attribute as our access structure. It
is assumed that the total number of attributes set is n, and all n attributes be
indexed as U = att1, att2, ..., attn. For every attribute atti ∈ U, (i = 1, 2, ..., n),
Vi = vi,1, vi,2, ..., vi,ni

be a set of possible values of atti, where ni is the number
of the possible values for atti. Each user is defined as an attribute list S =
(x1, x2, ..., xn), where xi ∈ Vi. The access structure in ciphertext is defined as
A = (W1,W2, ...,Wn), where Wi ∈ Vi. The attribute list S will satisfy the access
structure A if and only if xi = Wi, (i = 1, 2, ..., n).

3.2 Bilinear Maps

A bilinear map is a map e : G × G → GT with the following properties:

1. Bilinearity: ∀u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) �= 1.
3. Computability: e(u, v) is efficiently computable for any u, v ∈ G.

3.3 Generic Group Model

Let Υ = (p,G,GT , e) ← Pair(1λ). It is defined by [2] that: considering
three random encodings ψ0, ψ1 : Zp → {0, 1}m, where m > 3log(p). Let
G = {ψ0(x)|x ∈ Zp} and GT = {ψ1(x)|x ∈ Zp}. Oracles are used to compute the
induced group action on G,GT and compute a non-degenerate multilinear map
e : G × G → GT . Random oracles are also given to present the hash functions
H1,H2,H3.
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4 DMU-ABSE

4.1 Construction

1. Setup(1λ) → PK,MSK,MPK
Let G and GT be groups of order p, and let e : G×G → GT be the bilinear
map. The algorithm randomly chooses α, β, ν ∈ Zp, g, h ∈ G and three hash
functions H1: {0, 1}∗ → G, H2: {0, 1}∗ → Zp, H3: {0, 1}∗ → {0, 1}λ. let
A = e(g, g)α, B = gβ , V = hν . The system generates public key PK =
(γ, g,A,B,H1,H2,H3), the master key MSK = (α, β, ν), and the master
proxy key MPK = V . MPK is send to the proxy server only.

2. Enroll(MSK, ID) → EKID, RKID

Trusted authority randomly chooses a number rID ∈ Zp for the user ID and
calculates RKID = gν/rID ,M1 = grID ,M2 = hrID . Finally, the enroll key
EKID = (M1,M2) is send to user ID, (ID,RKID) is send to proxy server.

3. KeyGenUser(MSK,S) → SK
Trusted authority takes input as a set of attributes S = (x1, x2, ...xn) and
selects random r, ri ∈ Zp(i = 1, 2, ..., n), set rs =

∑n
i=1 ri. For each attribute

xi ∈ S, trusted authority calculates D̂i = gri · H1(xi)r, D1 = g(α+rs)/β ,
D2 =

∏n
i=1 H1(xi)β , D3 = gr. The search key is send to data user as

<SK = (D1,D2,D3, {D̂i}|xi ∈ S)>

4. Encrypt(PK,M ∈ G2, EKID,W,A) → Cw

Given a decryption key of the file M ∈ G1 and an AND gate policy A =
(W1,W2...,Wn), and keywords list W = (w1, w2, ..., wm) in the file id, data
owner selects random number s1, s2 ∈ Z

∗
p and calculate C1 = Bs1 , C2 =

gs1 , C3 = M · As1 , Ĉi = H1(Wi)s1 , Ck
4 = M

H2(wk)
1 · Ms2

2 , where wk ∈
(w1, w2, ...wm), C5 = gs2 . Finally, encrypted file id and all these encrypted
indexes will be send to proxy server.

<{Cwk
}k=1,...,m| Cwk

= (C1, C2, C3, C
k
4 , C5, Ĉi)>

5. Re-Encrypt(MPK,Cw, RKID) → C ′
w

For every {Cwk
}k=1,...,m, the proxy server calculates the re-encrypted label

Lk
p and sends the re-encrypted indexes with corresponding encrypted file to

the cloud server:

<{C ′
wk

}
k=1,...,m

| C ′
wk

= (C1, C2, C3, Ĉi, L
k
p), Lk

p = H3(
e(Ck

4 , RKID)
e(C5, V )

)>

6. MatrixBuild(C ′
w, id,M) → M

′

The cloud server firstly stores the file id and marks its address as Aid. Then
it queries the look-up table T for every label Lk

p in {C ′
wk

}:
(a) If T[Lk

p] = NULL, create a linked list L and sets the value of T[Lk
p] as

the pointer of the list L;
(b) If T[Lk

p] �= NULL, set L as the value of T[Lk
p];
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(c) Finally it creates a new index block value < Cid, Aid, tagbit >, where
Cid = (C1, C2, C3, Ĉi), and tagbit = 0 and adds it to the end of the
linked list L.

(d) After all {C ′
wk

} have been inserted, it creates a file array list Lid
f indexed

by the file id and adds all the blocks above into the list.
7. Trapdoor (SK,EKID, w) → tw

Data user randomly selects t ∈ Z
∗
p and calculates tk1 = Dt

2, tk2 = Bt,

tk3 = M
H2(w)
1 · M t

2, tk4 = gt, then sets the trapdoor of the chosen keyword
w as:

<tw = (tk1, tk2, tk3, tk4)>

8. Re-Trapdoor(MPK, tw, RKID) → t′w
Proxy server calculates re-encrypted label Lp, and sends the re-encrypted
trapdoor t′w to the cloud server:

<t′w = (tk1, tk2, Lp), Lp = H3(
e(tk3, RKID)

e(tk4, V )
)>

9. Search(t′w,M) → R
The cloud server searches for Lp in the look-up table, sets Pw = T[Lp] and
creates a new empty result list R, then follows:

(a) If Pw = NULL, return R and abort;
(b) If tagbit = 1, delete this linked list block and go to step (d);
(c) Retrieve index ciphertext Cid = (C1, C2, C3, Ĉi) in Pw and run the Test

Equation e(tk1, C2) = e(
∏n

i=1 Ĉi, tk2) to check whether data user’s
attributes satisfy the access policy embed in the ciphertext. If the equa-
tion holds, add Pw to R;

(d) Set Pw = next pointer of Pw and go to step (a);
After searching, cloud server finds out all encrypted files according to the
Aid in the list R, and returns them with corresponding index ciphertext Cid

in R to the data user.
10. Decrypt(SK,Cid) → M

After receiving the encrypted files and corresponding encrypted ciphertext
Cid, data user can calculate E if his attribute list S satisfies the access policy
A, i.e. xi = Wi(i = 1, 2, ..., n).

E =
n∏

i=1

e(D̂i, C2)
e(D3, Ĉi)

= e(g, g)rss1

Then data user can get the corresponding decryption key M of the encrypted
file by calculating

M =
C3

(e(D1, C1)/E)

11. FileDeletion(id,M)
The cloud server takes file id to find the file list L

id
f in the index matrix M,

and alters the tag bits from ‘0’ to ‘1’ in the index blocks in the list L
id
f .
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12. Revocation(ID)
The trusted authority uses ID to instruct the proxy server to delete the
corresponding tuple (ID,RKID) in the proxy server. Without RKID, user’s
indexes and trapdoors won’t be re-encrypted by the proxy server.

4.2 Correctness

Correctness (PRE): We now show that the Re-encryption and Re-
trapdoor generate same labels of the same keyword:

Lp = H3(
e(C4, RK)
e(C5, V )

) = H3(
e(MH2(w)

1 · Ms2
2 , gν/rID )

e(gs2 , hν)
)

= H3(
e(grIDH2(w) · hrIDs2 , gν/rID )

e(gs2 , hν)
) = H3(e(g, g)H2(w)ν) = H3(

e(tk3, RK)
e(tk4, V )

)

Correctness (Search): We now show the correctness of the Test Equation
in the Search phase:

e(tk1, C2) = e(Dt
2, g

s1) = e(
n∏

i=1

H(xi)βt, gs1) = e(
n∏

i=1

Ĉi, tk2)

Correctness (Decrypt): We now show the correctness of the Decrypt phase:

C3

(e(D1, C1)/E)
=

C3

e(gα+rs/β , gβs1)/e(g.g)rss1
=

M · eo(g, g)αs1

e(g.g)αs1
= M

5 Security Analysis

In this section, we will give the security analysis of our dynamic multi-user
attribute-based searchable encryption system proposed in Sect. 4.

We now prove that DMU-ABSE is IND-CKA secure in the generic bilinear
group model.

Theorem 1. Let γ = (p,G,GT , e) be defined as above. For any adversary A let
q be a bound on the total number of group elements it receives from queries it
makes to the oracles for the hash functions, groups G,GT , the bilinear map e,
and from its interaction with the IND-CKA security game. Then we have that
the advantage of the adversary in the IND-CKA security game is negligible in λ.

Proof. we initialize g = ψ0(1), gT = ψ1(1). We will write gx = ψ0(x), e(g, g)y =
ψ1(y). In the following queries, the adversary A will communicate with the
simulator B using the ψ-representations of the group elements. B interacts with
A in the security game as follows:

1. The challenger B randomly selects α, β ∈ Zp, g, h ∈ G and set public key as
A = e(g, g)α, B = gβ , V = hν , and sends the public key to adversary A. When
the adversary (or simulation) calls for the evaluation of H1,H2,H3 on any
string xi, a new random value ti is chosen from Zp (unless it has already been
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chosen), and the simulation provides gti as the response to H1(xi),H2(xi) and
ki = {0, 1}λ as the response to H3(xi).

2. On A’s secret key query for keyword w and user ID, a new random value
r(j) is chosen from Zp, and for every attribute xj ∈ Sj , new random values

r
(j)
i , r′

j are chosen from Zp. The simulator B computes: D1 = g
α+r(j)

β , D2 =
∏n

i=1 gt
(j)
i β , D3 = gr′

j , and for each attribute xi ∈ Si, i = (1, 2, ..., n), B
sets: D̂i = gr

(j)
i +t

(j)
i r′

j . The secret key is defined as SK = (D1,D2,D3, {D̂i}).
Finally, B randomly chooses tk, rk from Zp and generates the trapdoor of the
chosen keyword w by: tk1 = Dtk

2 , tk2 = Bt
k, tk3 = gH2(w)rkhrktk , tk4 = gt

k

and then re-encrypts tw by: Lp = H3(
e(tk3,gν/rk )

e(tk4,hν) ) = H3(e(g, g)H2(w)v). Then
simulator B sends the re-encrypted trapdoor t′w = (tk1, tk2, Lp) to adversary
A.

3. Eventually adversary A produces a pair of keyword w0 and w1 that it
wishes to be challenged on. The challenger B picks a random b ∈ {0, 1}
and creates the challenging trapdoor as follows: tk1 = Dtk

2 , tk2 = Btk ,
Lpb

= H3(e(g, g)H2(wb)v). Finally, simulator B sends t′wb
= (tk1, tk2, Lpb

)
to adversary A.

4. A repeats the query of phase (2) with the restriction that A did not previously
ask for the trapdoors t′w0

, t′w1
.

5. Eventually, the adversary A outputs b′ ∈ {0, 1}
We can instead consider a modified game in which the real challenging ciphertext
via substituting H3(e(g, g)H2(wb)v) for H2(e(g, g)θ). The probability for distin-
guishing H3(e(g, g)H2(w0)v) from e(g, g)θ is equal to half of the probability for
distinguishing H3(e(g, g)H2(w0)v) from H3(e(g, g)H2(w1)v).

Suppose hash functions H2 and H3 are respectively modeled as two random
oracles, and random value ki = {0, 1}λ is the response of H3(xi). Then the ideal
game for adversary A is to distinguish two random values k1 and k2 which are
randomly choose from {0, 1}λ. Obliviously the probability for distinguish k1 and
k2 is 0 unless there is a collision of H3.

The probability that “unexpected collision” occurs is at most O(q2/p) before
substitution by the Schwartz-Zipple lemma [13]. On the other hand, even if
the adversary could distinguish e(g, g)H2(w0)v and e(g, g)θ, he is still unable to
distinguish between H3(e(g, g)H2(w0)v) and H3(e(g, g)θ).

Therefore, we can conclude that A gains no unnegligible advantage in the
modified game, which means that A gains a negligible advantage in the IND-
CKA game. This completes the proof.

We now prove that DMU-ABSE is IND-CPA secure in the generic bilinear
group model.

Theorem 2. Let γ = (p,G,GT , e) be defined as above. For any adversary A let
q be a bound on the total number of group elements it receives from queries it
makes to the oracles for the hash functions, groups G,GT , the bilinear map e,
and from its interaction with the IND-CPA security game. Then we have that
the advantage of the adversary in the IND-CPA security game is O(q2/p).
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Proof. we initialize g = ψ0(1), gT = ψ1(1). We will write gx = ψ0(x), e(g, g)y =
ψ1(y). In the following queries, the adversary A will communicate with the
simulator B using the ψ-representations of the group elements. B interacts with
A in the security game as follows:

1. The challenger B randomly selects α, β ∈ Zp, and set public key as A =
e(g, g)α, B = gβ , and sends the public key to adversary A. When the adver-
sary (or simulation) calls for the evaluation of H1,H2 on any string xi, a new
random value ti is chosen from Zp (unless it has already been chosen), and
the simulation provides gti as the response to H1(xi), H2(xi).

2. On A’s secret key query for set Sj = {x1, x2, ..., xn}, a new random value
r(j) is chosen from Zp, and for every attribute xj ∈ Sj , new random values

r
(j)
i , r′

j are chosen from Zp. The simulator B computes: D1 = g
α+r(j)

β , D2 =
∏n

i=1 gt
(j)
i β , D3 = gr′

j , and for each attribute xi ∈ Si, i = (1, 2, ..., n), B sets:

D̂i = gr
(j)
i +t

(j)
i r′

j . The secret key is defined as SK = (D1,D2,D3, {D̂i}) Then
send the secret key SK to adversary A.

3. Eventually adversary A produces a pair of message M0 and M1 and a chal-
lenge access structure A. The challenger B selects random number s1 ∈ Z

∗
p,

picks a random b ∈ {0, 1} and sets C1 = gβs1 , C2 = gs1 , C3 = Mb · e(g, g)αs1 .
For each attribute in the AND gate A, let Ĉi = gtis1 , i = (1, 2, ..., n). These
values are sent to A.

4. A repeats the query of phase (2) with the restriction that A did not previously
ask for the secret key for the attribute set Si which satisfy the challenge access
structure A.

5. Eventually, the adversary A outputs b′ ∈ {0, 1}
We can instead consider a modified game in which the real challenging cipher-

text via substituting Mb ·e(g, g)αs1 for e(g, g)θ. The probability for distinguishing
M0 · e(g, g)αs1 from e(g, g)θ is equal to half of the probability for distinguishing
M0 · e(g, g)αs1 from M1 · e(g, g)αs1 .

We suppose that B’ simulation is prefect as long as no “unexpected collision”
happens. More precisely, we think of an oracle query as being a rational function
ν = η/ξ in the variables θ, α, β, t

(j)
i , t(j), r

(j)
i , r′

j , r(j), s1, s2. An unexpected
collision would be when two queries corresponding to two distinct formal rational
functions η/ξ = η′/ξ′ but where due to the random choices of these variables
values, we have that the values of η/ξ = η′/ξ′.

The probability that “unexpected collision” occurs is at most O(q2/p) before
substitution by the Schwartz-Zipple lemma [13]. The adversary’s view would
have been identically distributed even if B substitutes αs1 for variable θ. Since
θ only occurs as e(g, g)θ, we must have that ν − ν′ = γαs1 − γ′θ. The adversary
can almost never construct a query for e(g, g)γαs1 . To construct the term αs1,
the adversary can pairing s1β with (α + r(j))/β. In this way, A must create a
query polynomial containing γαs1+Σγ′s1r(j). In order to obtain a query of form
αs1, A must cancel the terms of form Σγ′s1r(j).

To construct the term αs1, the adversary can pairing s1β with (α + r(j))/β.
But according to the simulation, A cannot get the secret key. Thus A is
unable to get the form of αs1 and construct the query for e(g, g)γαs1 . By the
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Schwartz-Zipple lemma, we can conclude that A gains a negligible advantage in
the modified game, which means that A gains no unnegligible advantage in the
IND-CPA game. This completes the proof.

(a) Function comparison (b)Pairing times

Fig. 3. Performance comparison with other related works

6 Comparison and Experiments

Functionality Comparisons: We list the key features of our scheme in Fig. 3(a)
and make a comparison with several schemes, including MUSE-CK [5], KSF-
OABE [10], HP-CPABKS [12], ABKS-UR [16], and CP-ABKS [17], in terms
of supporting multi-user, constant-size trapdoor, hidden policy, file decryption
and dynamic operation. Among these schemes, [5,10,12] and [17] are based on
AND gate access structure. From the comparison, we can see that only [5] and
our scheme achieve multi-user setting. Only in [5,17] and our scheme, the size
of trapdoor are non-linear with the number of attributes involved in the access
policy. Besides, only our scheme and [17] support decryption of the encrypted
files in the search result. In particular, our multi-user attribute-based searchable
encryption system also supports dynamic operations on the cloud including file
updating and deleting.

Figure 3(b) demonstrates the comparison of pairing times of one search over-
head between HP-CPABKS [12], ABKS-UR [16] and our scheme. It shows the
number of pairing operations of our scheme does not change with the number of
attributes during encryption, while the number of pairing operation of [12] and
[16] are linear to the number of attributes. This makes our scheme more efficient
in the complicated attribute scenarios.

Experimental Evaluation: In order to show the efficiency of our system, we
conduct experiments with JPBC library on java8, which are executed on an AMD
Ryzen5 2500U at 2.0 GHz and 8 GB memory. We exploit the Type A pairings
conducted on the curve y2 = x3 + x over the field Zp for some prime p = 3
(mod 4). Experiments in Fig. 4(a) shows the relation between search time and
the number of attributes in archives of 1000 files. It can be seen that the number
of attributes barely influences the search time, which verifies that our scheme is
independent of the number of attributes. Then in the scenario that the size of
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(a) Different size of attributes set (b) Different size of keywords set

Fig. 4. Experimental results of average search time

the attribute set is 50, Fig. 4(b) shows the relation between search time and the
number of files. It indicates that even in a huge archive, the search time will be
reduced if the keywords set is increased, which implies our system is efficient in
practical scenarios.

7 Conclusion

In this paper, a dynamic multi-user ciphertext-policy attribute-based search-
able encryption system, DMU-ABSE, is presented. In DMU-ABSE, data owners
authorize data users in a fine-grained manner by specifying access policy in the
index ciphertexts. Meanwhile, DMU-ABSE achieves hidden-policy, constant size
and non-deterministic properties. With the collaboration of the proxy server,
the indexes and trapdoors will be re-encrypted before being sent to the cloud
server so that the cloud server can merge them into one index matrix and search
within it without learning any information. Furthermore, DMU-ABSE supports
dynamic archives and user revocation, which is more practical in the scenario of
PHR and online subscription systems. A concrete and formal proof is given to
show that the proposed scheme is IND-CKA and IND-CPA secure in the sense
of semantic security. The performance analysis demonstrates that the proposed
scheme is efficient and practical.
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