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Abstract. With the emerging of the Advanced Persistent Threat (APT) attacks,
many high-level information systems have faced a large number of serious
threats with characteristics of concealment, permeability, and pertinence.
However, existing methods and technologies cannot provide comprehensive and
promptly recognition for APT attack activities. To address this problem, we
propose an APT Alerts and Logs Correlation Method, named APTALCM, to
achieve the cyber situation comprehension. We firstly proposed a cyber situation
ontology for modeling the concepts and properties to formalize APT attack
activities; For recognize the APT attack intentions we also proposed a cyber
situation instances similarity measures method based on SimRank method.
Combining with instance similarity, we proposed the APT alert instances cor-
relation method to reconstruct APT attack scenarios and the APT log instances
correlation method to detect log instance communities. Through the coalescent
of these methods, APTALCM can accomplish the cyber situation comprehen-
sion effectively by recognizing the APT attack intentions. The exhaustive
experimental results show that the two kernel modules, i.e., Alert Instance
Correlation Module (AICM) and Log Instance Correlation Module (LICM) in
our APTALCM can achieve a high true positive rate and a low false positive
rate.

Keywords: Cyber situation comprehension + APT attack - Alert correlation -
Log correlation

1 Introduction

With the rapid advancement of the Internet infrastructure and the widely emerged
networking applications, the topological structure of information systems has per-
formed complexity and vulnerability. In this situation, network security management
has faced significant challenges. To cope with these increasingly complicated and
potential security threaten, various detection techniques have been proposed, like
vulnerability detection technology, malicious code detection method, intrusion detec-
tion system, etc. Almost all the above technologies are aiming to recognize the security
issues existing in the information systems. However, the biggest shortcoming of these
methods is that they cannot provide real-time recognition of the real threatens in a
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comprehensive scope, which limiting the ability of network security administrators to
make the most responsive decisions. Recently, to solve the above problem, the concept
of Cyber Situation Awareness (CSA) [1] has emerged. The main idea of CSA is to
recognize the attack activities scattering among a large amount of the noised data and
grasp the whole network security situation macroscopically. In this way, the infor-
mation system can make the responses appropriately and effectively to reduce the
damage caused by the various network attacks as possible. Among these powerful
network attacks, Advanced Persistent Threat (APT) is a kind of multiple-steps attack
with characteristics of concealment, permeability, and pertinence, which has caused
serious threats to all kinds of high-level information systems. To mitigate the negative
effects of APT, the key problem needs to be solved is designing the cyber situation core
technologies which aiming at APT attack recognition, comprehension and prediction.

To address the problems existing in the previous works, we propose an APT Alerts
and Logs Correlation Method, named APTALCM, to achieve the cyber situation
comprehension. The main contributions can be summarized as follows: (1) we propose
the cyber situation ontology for modeling the concepts and properties that are appro-
priate for cyber situation awareness; (2) then, we introduce a similarity measures
method based on cyber situation ontology providing to situation instances correlation;
(3) at last, according to the instance type differences (i.e., alert instance & log instance),
we present an APT alert instances correlation method to reconstruct APT attack sce-
narios and an APT log instances correlation method to detect log instance communities
to recognize APT attack intentions.

The rest of the paper organizes as follows. Section 2 summaries the related works
of Cyber Situation Awareness. Section 3 presents a cyber situation ontology for
modeling the concepts and properties to formalize APT attack activities. Then, we
introduce a cyber situation instances similarity measures method based on SimRank
method. At last, combining with instance similarity, we further propose the APT alert
instances correlation method to reconstruct APT attack scenarios and the APT log
instances correlation method to detect the log instance communities. Section 4 gives a
view of our experiments and analysis. Section 5 presents some conclusions.

2 Related Work

The situation is a key factor of CSA means the states of various objects in the cyber
systems represented by a set of measurement values. In other words, situation is a
global concept and all the objects in the cyber systems are synthesized. Any sole states
cannot be regarded as a situation that it focuses on the systematic perspective and
relationships between the objects in systems. Cyber situation awareness is a cognitive
process applied to cyber systems consisted of three phases. First, the original data
generated in the system fused and processed gradually to accomplish the semantics
extraction of the system states and activities. Then, the recognition procedure will
execute to obtain the exiting cyberspace activities and intentions of abnormal activities
in the cyberspace. At last, the representational cyber situations acquired based on the
effects of recognizing activities and intentions of abnormal activities in the cyber
systems. According to the definition and illustration of CSA, we can summarize the
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whole CSA processes into three specific operations: cyber situation perception, cyber
situation comprehension, and cyber situation projection. Among these operations,
cyber situation perception completes the measurement data fusion, semantics extrac-
tion, and activities recognition. Cyber situation comprehension achieves the recognized
activities intentions acquisition. Cyber situation projection estimates the threats
incurred by the activities intentions within the cyber systems. There are dialectical
unification relations between the three phases of CSA, means that they not only depend
on each other but also their outputs used respectively for diverse levels of security
management requirement.

Attack intention recognition is one of the primary objectives of cyber situation
comprehension and our work is mainly focused on the attack intention recognition of
APT. Existing works on attack intention recognition mostly focused on attack scenarios
reconstruction while ignoring the related non-aggressive activities’ contributions to
APT attack and multiple-step attack implementation. In addition to this, the intrusion
ontology used in the field of intrusion detection cannot be applied to the CSA paradigm
directly. Recently, statistical analysis mechanisms proposed to discover the relation-
ships between attack steps while it can only perform on static databases because of
these approaches depend on expert knowledge.

At present, the hot topics of cyber situation comprehension focus on two branches:
(1) match the alerts with acquired attack activities based on the priori knowledge;
(2) analyze the relationships between the alerts without prior knowledge. Cuppens et al.
[2] developed the LAMBDA programming to accomplish the description of templates
and matching process. The researchers [3—6] usually divide an attack activity into
several stages, like IKC Model [7]. At present, there are mainly two types of methods
based on similarity measure: The attribute similarity method and timing sequence
method. The key of these methods is definition of suitable similarity measure metric.
[8, 9] defined a similarity function and clustered the IDS alerts based on the similarities
between attributes. [10] proposed an alert correlation method based on Hidden Markov
Model to get the attack sequences with highest possibilities.

3 APT Alerts and Logs Correlation Method

The basic duty of cyber situation comprehension is analyzing the activities (include
attack activities) and recognizing the attack intention. We can acquire the activities in
two forms: attack alerts and host logs. As the quantity of activities in the information
systems is too large, it is impossible to correlate all the activities in the information
systems. Thus, we use the following two benchmarks to improve the efficiency of
activities correlation: (1) APT attack alerts are essential to be correlated generating the
APT attack scenarios; (2) the logs generated in the hosts infected by APT attacks are
essential to be correlated detecting the unaggressive malicious activities. According to
these two standpoints, the results of cyber situation comprehension contain APT attack
scenarios and log instance communities. Moreover, we propose an APT alerts and logs
correlation method (APTALCM) to achieve the cyber situation comprehension. The
architecture of APTALCM is shown in Fig. 1.
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Fig. 1. The architecture of APTALCM

Cyber situation ontology is proposed for modeling the concepts and properties of
cyber situation awareness paradigm. At present, there are no ontologies which are
enough mature to satisfy the requirement of cyber situation awareness. Therefore, in
this paper, we proposed APTALCM that defines a set of representational primitives to
model the domain of cyber situation as the cyber situation ontology. The input of this
phase is APT alerts and logs affected by APT attacks from various detect sensors and
the corresponding output is the cyber situation ontology instances.

After the cyber situation ontology construction, the situation ontology instances
will face two operation options according to the different instance types (alert instance
& log instance). That is, the alert instances raised from the preceding phase will be fed
to the alert instance correlation module (AICM) and the log instances will transmit to
the log instance correlation module (LICM). Specifically, the aim of the alert instance
correlation module is to recognize APT alert instances could be one part of an APT
attack scenario. The log instances correlation module enforces on the log instances
generate within the victim host to detect the log instance community and recognize the
potential malicious activities.

3.1 Cyber Situation Ontology Construction

According to the APTALCM architecture, the first module of APTALCM will convert
the received APT alerts and host logs into cyber situation ontology instances. Thus, our
first work is to propose a formal definition of cyber situation ontology. Different from
the previously proposed methods directly send the ontology instances to attack sce-
narios reconstruction module, we introduce a method based on the SimRank method to
calculate the similarity between cyber situation instances.

Cyber Situation Ontology Initialization. A widely accepted definition of ontology is
shown as follow: the ontology defines a set of representational primitives with which to
model a domain of knowledge or discourse. The representational primitives are typi-
cally classes (or concepts), attributes (or properties), and relationships (or relations
between class members).
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According to the ontology definition and the combination of the characteristics of
cyber situation, we introduce a formalized definition of the cyber situation ontology as
follow: O = (C,A,D,R,S). The elements (C,A,D,R,S) represent the set of classes
(alert or log), the set of attributes, the domain of the cyber situation ontology, the set of
relationships of the instances, and the set of similarity between the instances (alert
instances or log instances), respectively. Then, we define A(c;) to represent the attri-
butes of a class ¢;, I(¢;),, as an instance of the class ¢;. Besides, the attribute value of an
instance can be represented as A(I(c;),,) and SIM(I(c;),,,I(c;),) presents the similarity
between instances I(c;),, and I(c;),,.

The APT alert class consists of alert instances converted from APT alert detected by
various attack detection sensors and each alert instance represents a suspicious attack
step of an APT attack. In this paper, we set seven attributes for APT alert class to
analyze the characteristics of APT alerts output from different attack detection sensors:
Timestamp, Alert_Type, Src_Ip, Dest_Ip, Src_Port, Dest_Port, and Victim_Hostlp. The
attributes values of an alert instance stored in a 7-dimensional vector, A
(I(alert),,) = (a1, az,a3,a4,as,as, az).

The host log class consists of the log instances transformed from the log data
providing by the application programs, such as HTTP, Object access, Authentication,
Process create and WFP connect. The intrinsic of transforming the log data to log
instances is extracting representative attributes. In this work, we select 19 attributes
from the log data such as Tinestamp, Q_Domain, R_Ip, Pid, Ppid, Pname etc. As the
data generate from different application programs, not all the log instances have the
same attributes, we also give the log instance type. The attributes value of a log
instance can be presented as a 19-dimensional vector:A(I(log),,) = (a1, az. ..ais, a).
If a log instance only contains attributes al, a3, a5, the other elements of its attribute
vector are zero.

Calculate Instance Similarity. We proposed a cyber situation instance similarity
calculation method to provide a correlation basis for alert correlation module and log
correlation module. Each alert or log is an instance of cyber situation ontology and the
relationship between them can be presented as a labeled directed graph with similarity.
As its graphic character, the proposed method is based on the SimRank mechanism.

The SimRank mechanism provides a similarity measure of structural context where
the related objects are connected by directed edges. It defines a recursive function
calculating the similarity between object pairs based on the concept of context. The key
is objects are similar on the condition that referenced by similar objects.

We measure the similarity between the cyber situation instances, which belong to
the same class. In other words, we measure the similarity within the alert class and host
log class. To compare the similarity between two cyber situation instances I(c),, and
I(c), within the same class, we use the following two sets of parameters:

Attributes: The attributes of each cyber situation instance, A(I(c),,) and A(I(c),)

Correlated instances: The instances have already correlated to each cyber situation
instance I(c),, and I(c), presented as Co(I(c),,) and Co(I(c),).
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The basic similarity measure of cyber situation instances is calculating the similarity
between their attributes and the correlated instances. The formalized representation of
the similarity between two cyber situation instances is shown in Eq. (1).

SIM(I(c),,,1(c),) = vYSIMA(I(c),,,1(c),) + BSIMCo(1(c),,, I(c),) (1)
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It indicates that SIMA(I(c),,I(c),) € [0,1] and SIMCo(I(c),,,1(c),) € [0,1],
respectively. The two parameters vy and 3 are defined to normalize the impact degree
where y+pB=1. Therefore, we can draw the conclusion that
SIM(I(c),,,I(c),) € [0,1]. Then, we will give the formalized representation of
SIMA (I(c),,,1(c),) in a mutually recursive method. SIMA (I(c),,,I(c),) measures the
similarity between cyber situation instances based on attribute similarity,
SIMA (4;(I(c),,),Ai(I(c),)) measures the similarity between the attributes of each
cyber situation instance. Note that the similarity between same instances is 1 and other
conditions can be calculated in Eq. (2).

SIMA((1(c), . 1(c),) Z“‘ 'SIMA (4:(1(0),), Ai(1(0),))  (2)

The similarity between two attributes can be set as 1 on the condition of
Ai(I(c),,) = Ai(I(c),). If none of the attributes is the same, SIMA (I(c),,,I(c),) will be
calculated based on Eq. (3) where Co;(I(c),,) is the correlated instance to I(c),,. The
method of acquiring them will be discussed in Sects. 3.2 and 3.3.

oS IO i (Co1(e),), Coyle),)
[Co(i(c),)][Co1(),)]

SIMA (I(c),,, 1(c),) = 3)

The SIMCo(I(c),,,1(c),) measures the similarity between cyber situation instances
based on its correlated instances similarity and calculated in Eq. (4). On the condition
that either I(c),, or I(c), does not have any correlated instance, we will hardly infer any
similarity between them.

1 I(C)}ﬂ: I(C)n
SIMCo(I(c),,, I(c),) = { a3 ’"”Z‘““(")””SIMCO(C 0:(1(),).CoyI(e),))
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3.2 Alert Instances Correlation

As APT attack alerts are essential to be correlated generating the APT attack scenarios,
we focus on the APT attack scenarios construction. The APT attack usually performs
through a few steps with characteristics of persistent, targeted and aiming at the specific
object. The ultimate goal of APT is obtaining confidential data in the information
systems. To achieve this goal the attack process usually contains complex multi-
step. The alert instances constructed by cyber situation ontology construction module
belong to different APT attack step, Table 1 summarizes the matchup between APT
attack scenario steps and alert instances.

Table 1. The matchup between APT attack scenario steps and alert instances

Step number | APT Step Alerts instance

Step 2 (P) Point of entry I(p1) Domain_instance

I(p,) Disguised_exe_instance
I(p3) Hash_instance

Step 3 (C) C&C communication | I(¢;) Domain_flux_instance
I(cz) Ip_instance
I(c3) Ssl_instance
Step 5 (A) Asset/data discovery |I(a;) Scan_instance
(d1)

Step 6 (D) Data exfiltration 1(d,

Tor_intance

The first step (Intelligence Gathering) contains some passive process and the cor-
responding alerts are not easily be detected by network traffic sensors. The fourth step
(Lateral Movement) is internal traffic within the information system while the APT
alerts are generated based on inbound and outbound traffic. Based on the above facts
we only correlate the APT alert instances generated in Step 2, Step 3, Step 5 and Step 6
of an APT attack scenario.

The AICM outputs two kinds of correlated alert instance clusters:Clusters; and
Clustery,p,. Clusters, will be generated when AICM has correlated a full APT attack
scenario during the correlation duration has every step of an APT attack scenario.
Clusterg,, will be produced when AICM has correlated two or three rather than all steps
of an APT attack scenario during the correlation duration.

Alert Instance Filter (AIF). As the ATP alerts are produced by various detection
sensors, the same alert instances have the possibility of generating during a correlation
duration. The alert instance filter (AIF) discards the repeated and redundant alert
instances. It checks whether the new arriving alert instance has been constructed during
the correlation duration through compare the alert instance type and instance attributes
value of it with the previous instances. It is obvious that ignoring the invalid alert
instances can reduce computation cost of AICM.
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Alert Instance Cluster (AIC). Alert instance cluster (AIC) module assigns the alert
instances those are most similar to a certain cluster. An APT full steps scenario or sub-
steps scenario can present as alert instance clusters. As AIC is based on APT attack
scenario it restricts to three rules:

Rule 1. Alert instances, which belong to the same APT attack step, should not be
assigned to the same cluster.

Rule 2. The same types of alert instances should not be assigned to the same cluster.

Rule 3. The APT attack alert instances trigger time span should be within the corre-
lation duration and alert instances order should be in accord with the APT attack life
cycle.

All the generated alert instance clusters are presented as a directed graph; the
scattered alert instances are linked by directed edges based on the similarity. Then the
clusters will be consumed by the correlation indexing module. Each cluster is consisted
of maximum four ordered alert instances and recorded in an instance_cluster_dataset
(ICD). When a new alert instance arrives in the AIC module, we first check to which
APT attack step it belongs. Based on the different alert instance type AIC operates
different options. We have the conclusion: Point of entry (P) which the second step of
APT attack scenario is the first detectable attack step. When AIC get an alert instance
I(p;) it generates a new cluster and sets I(p;) to instance_1 recorded in ICD. When AIC
get an alert instance I(¢;), AIC inquires the similarity SIM(I(c;), I(p;)) where 1(p;) is
the instances already recorded in ICD in the order instance_1 of one existing cluster.
AIC adds the I(¢;) to the order instance_2 of the cluster which not only has the largest
value of SIM(I(c;), I(p;)) but also comply with Rulel, Rule 2 and Rule 3. Then we can
get the correlated instances of I(c;):Co(I(c;)) = I(p;), and send the Co(I(c;)) back to
the cyber situation ontology construction module for later instance similarity calcula-
tion. If there are no suitable alert instances I(p;) to be chosen, AIC generates a new
cluster and sets I(c;) at instance_2 recorded in ICD. The correlation operations of I(a;)
and I(d;) are similar to above. In general, we correlate the alert instance to the most
similar prior step alert instance has recorded. A correlation example is shown in Fig. 2.

cluster; cluster, cluster,
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® 000 @
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Fig. 2. The alert instance clusters construction
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APT Attack Scenario (AAS). APT attack scenario (ASS) module confirms the alert
instances belonging to the same alert instance cluster whether can construct a full or
sectional APT attack scenario. As we knew each ATP alert instance cluster is con-
structed incrementally, it has the possibility that later received alert instance reforms the
previously correlated alert instances. To address this problem, we add a parameter L;; to
the correlated links between every two alert instances, which belong to the same
cluster. The parameter L; has two values: 1 or 0. When the alert instance_i and
instance_j has the same Victim_HostIP the L; is set to 1; otherwise, the L; is set to 0.
The ASS will face four state of L; during the correlation. The four states and corre-
sponding operations are shown in Fig. 3 and described as follow:

(1,1): The APT alert instances can belong to a certain AAS.

(0, 1): The latest two alert instances are much more similar than the prior two alert
instance. Then the first link should be disconnected and construct a new instance
cluster contains the latest two alert instances waiting for coming correlation.
(1,0) : No evidences can trigger the disconnection, just waiting for later instances.
(0,0) : No evidences can trigger the disconnection, just waiting for later instances.

Step 1 @—/ \»@
Step 2 @*/ ]%@—/ U—b@
Step 3 @*/ 1%@ cluster ey @7/ ]*@

Fig. 3. The constructing AAS states evolution

We also introduce a parameter LinkNum to check the clustered APT alert instances
and discard the uncorrelated alert instances. LinkNum can be formulated as follow.

. 3
LlnkNumcluslerk = Z i=1j=i+1 Ll] (5)
instance _; € clustery,
instance_j € clustery,

LinkNum = 0. The APT alert instances in the cluster have no effect and cause with
each other; they cannot construct an APT attack scenario.

LinkNum = 1. The APT alert instances in the cluster can generate a correlation
between two alert instances and they can construct a Clusterg,, with two steps.
LinkNum = 2. The APT alert instances in the cluster can generate correlations
between three alert instances and they can construct a Clustery,, with three steps.
LinkNum = 3. The APT alert instances in the cluster can generate a correlation
between four alert instances constructing a Clusters; and present an APT attack
scenario.
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Then, we define an ASS vector to record the information of each correlated clusters.
The ASS vector is formally defined as follow:

assvy = (clustery,, LinkNum, Victim_Hostlp, SimDeg) (6)

The assvy vectors are the sectional output of cyber situation comprehension to be
used in future cyber situation projection. Meanwhile the LICM module can get the
attribute Victim_Hostlp from ASS vectors to set the correlation hosts range.

Module Implementation. We implement the algorithm of AICM module in C pro-
gramming language after getting the simulation dataset. The pseudo-code of the AICM
module is shown below (Fig. 4).

}/pedef struct else
struct TimeStamp arr(il[j] = C * (1.0+AB)/2.0;//
char Alert_Type[20]; Fompare each attribute and Complete the
char Src_Ip[20]; iteration
char Dest_Ip[20]; tend;
int Src_Port; }
int Dest_Port; Timecmp();//Sort by TimeStamp
JAttr;// Structure definition Check_sort();//Group by type
main{ //Construct the cluster
readtxt()//Read the information Linkcourt();//Calculate the linkcount
and convert Print();//Oput the cluster
it into a specified format lend

sim () {//similarity degree

do{ If ((edge[i][0] == 1 &&
edge[i][1] == 0 && edge[t][0] == 0 &&
edge[t][1] == 1) || (edge[i][0] == 0 &&
edge[i][1] == 1 && edge[t][0] == 1 &&
edge[t][1] == 0))

arr[i][j]=C* AB;

Fig. 4. The pseudo-code of AICM module

3.3 Log Instances Correlation

Advanced Persistent Threat (APT) attack has multiple stages for the sake of being
elusive and stealthy. Besides the APT alerts generated during the multiple stages, this
type of attack pattern inevitably leaves some log information spatio-temporally dis-
persed across victim hosts. LICM exploits the fundamental inter connections between
logs and detects the log instances communities. The preliminary correlation module
constructs the weighted graphs by correlating log instances generated at the victim
hosts (The Victim_Hostlps are got AICM). LICM can also discover the log instance
communities hid within the weighted graphs by log instances community detection
module.
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Preliminary Correlation (PC). The input of preliminary correlation module (PC) is
the log instances extracted from log data and the outputs are directed and weighted
graphs. In this work, we regard the log instances as nodes and regard the relationships
between them as edges. The weights of edges illustrate the similarity between log
instances and the directions of edges illustrate the effect and cause relationship between
them. Once the LICM gets an ASS vector from the AICM it begins to construct a
preliminary correlated graph based on the log instances generated at the victim host.
Some preprocessing may leave logs before the significant APT alerts occur, so we
correlate the log instances generated before the first alert instance for a short time of 7.
As the log instances generated in a timing sequence, preliminary correlation module
inquires the similarity from the cyber situation ontology construction module in the
same strategy. For example, at a victim host I(log), is the first log instance generated
within the CorrelationDuration. To construct a weighted and directed graph the sim-
ilarity between the log instances are regarded as weights according to the following
strategy:

[I(log),,1(log),,1(log)s, . . .,1(log),] is a log instance sequence generated according
to timing sequence. When PC module gets a new log instance I(log); by inquiring
the SIM(I(log),,1(log);), SIM(I(log),, I(log);).SIM(I(log) 5, I(l0g),),....SIM(I(log),_,,
I(log);) from the cyber situation ontology construction module. On the condition that
SIM(I(log);, I(log);) # O, create a directed edge from I(log); to I(log); set w; = SIM

(I(log);; 1(log);), generate a correlated instance of I(log); set Co, (I(log)j) =1I(log),

and pass back Co, (I(log) j) to cyber situation ontology construction module. Other-

wise, w; = 0. There are no correlated relationships (edges) between I(log), and I(log);.

The preliminary correlation module acquires the weighted graphs of log instances
and sends them to log instance community detection module for acquiring the cyber
situation comprehension output.

Log Instance Community Detection (LICD). Taking account for the log instance
graphs scale log instance community detection module has the demand of proposing an
efficient community detection method to extract the log instance communities from the
intricate directed and weighted correlated instance graph. Comparing the existing
diverse machine learning method used in communities detection, LICD module owns a
log instance community detection method based on the Louvain method, which has the
advantage of managing large-scale nodes networks.

At the initial phase of LICD, each log instance in the graph constructed from PC
module represents a single log instance community. Y ., @i, and >, ,,; respectively
presents the totality weights added on edges associate to log instances I(log); and
I(log) 1+Cl(log), and Cl(log), respectively represents the log instance community I(log), and

I(log)j belong to. The 6 — function in the LICD module is used to separate the log
instances which belong to the different log instance communities, means that
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0(i,j) = 1if i =, 0(i,j) = 0 otherwise. To compare the density degree of the corre-
lations within the log instance communities with the correlations cross the log instance
communities LICD introduces an evaluation index DenDeg defined as follow.

[OF Wi
DX,

[9)
1(log);.M(log);

Zl(lag),.l(log)j Wjj (Cl(log)[’ Cl(log),-)

DenDeg = (7)

Zl(log)i,l(log)j Wi

As soon as the LICD module finishes the log instance initialization, it repeats
actions to optimize the index DenDeg in the following strategies: for each log instance
I(log), shift I(log), from its attached log instance community cy(g), into its correlated
log instance Co, (I(log) k) attached communities. LICD evaluates the value change of
index DenDeg and places I(log), into the log instance community Cl(log),_in» Which has
the most obvious index DenDeg increase. If the maximum increase is not positive, the
log instance I(log), will not be shifted from its original log instance community. LICD
applies this process repeatedly and sequentially to each log instance until no ADenDeg
occurs, gets the detected log instance communities as the segmental output of cyber
situation comprehension.

Module Implementation. We implement the algorithm of LICM module in Python
after getting the log data. The LICM module pseudo-code is provided as follow
(Fig. 5):

#define MAX_VERTEX_NUM 20 simrank() //Calculation the similarity degree

typedef struct ArcBox { calc_similarity();

{ int tailvex,headvex; init_graph(); // Initialization of the graph
struct ArcBox *hlink, *tlink; while(new node occur)//When new nodes arrive,
InfoType *info; renew the graph

}ArcBox; //The struct of edge definition { ergodic_graph();

typedef struct VexNode calc_similarity();

{ VertexType data[20]; change_graph();

ArcBox *firstin, *firstout; }

}VexNode; //The struct of log nodes definition print(); //Output the result

typedef struct

{ VexNode xlist[MAX_VERTEX_NUM];
int vexnum,arcnum; louvain()//Clustering analysis

}OLGraph; //The struct of graph definition { calc_modularity(){

//Three main algorithms for(each node) // Evaluation the clustering degree

get_attributes() //Convert the log data into log instance {

key_word log[6]; //Five kinds of log data get_neighbor();
init_keyword(); //Initialization of the log data calc_modularity();
while() }
{ getline();//Read the log data }
find_keyword() if(new modularity occurs) // Iterative computations
{if(key_word in log)// Set the attribute vector value calc_modularity();
{set1; else
} print();
else set 0; }
} main()
}
return A[20];//Output the log instances get_attirbutes();
} simrank();
louvain();
¥

Fig. 5. The pseudo-code of LICM module
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4 Experimental Evaluation of APTALCM

4.1 Evaluation of the Alert Instance Correlation Module

As there is no available public data set can provide enough APT attack alerts, we adapt
to construct a specialized simulation data set. The function of the alert instance cor-
relation module is to recognize various alert instances could belong to a certain APT
attack scenario. To significantly evaluate the AICM module, the simulation data set
consists of APT alerts belong to APT attack scenarios and other general alerts do not
belong to APT attack scenario. The aim of this experiment is to verify whether the
AICM module can reconstruct the APT scenarios hidden in the constructed data set.

Data Generation. To construct the simulation data set we use Python to write a script,
which constructs two classes of alert: Correlative alerts be part of a Clustersy or
Clustery,; scattered alerts do not belong to any of the alert instance cluster.

We set seven attributes to each alert: Alert_Type, Timestamp, Src_Ip, Dest_Ip,
Src_Port, Dest_Port and Victim_Hostlp. To guarantee the randomness of the generated
alert we select the Alert_Type from the provided eight ATP alert type there in before.
We assign a random value start from 01 February 2019 00:00:01 to 30 March 2019
23:59:59 to Timestamp. The Src_Ip value is assigned based on the selected Alert_Type.

The Dest_Ip assigned randomly with an IP address on an enterprise network. We
select the Src_Port randomly from the 49 140 to 65 521 range which is usually
allocated dynamically to initiate a connection. We assign a random port number to
Dest_Port based on the Alert_Type. The Victim_Hostlp is assigned randomly with an
IP address on an enterprise network. We have generated 5000 APT alerts for the
simulation data set consisted with 150 Clusters;, 150 Clustery,, and 4000 random
isolated alerts. Then, the simulation data set for evaluate the AICM module has
accomplished.

Correlation Performance. We have applied the AICM module algorithm on the
constructed simulation data set. The correlation result is shown in Table 2. We choose
the False Positive Rate (FPR) and the True Positive Rate (TPR) as the correlation effect
measurement parameters. We can find the TPR of the two steps Clustery,, is higher
than any other clusters. It is obvious that the TPR is lower with the alert instance cluster
steps quantity increaser. This is mainly because more alert instances correlation process
will increase the possibility of the random isolated alert instances to be unexpected
correlated. When decreasing the TPR, the unexpected random isolated alert instances
correlation can also incur the False Positive correlation result. As the larger step

Table 2. Evaluation AICM module correlation result.

APT attack cluster Correlated quantity | FP | TP N P FPR | TPR
APT two steps cluster | 2#83 2%3512%48 4900 | 100 | 1.4% | 96%
APT three steps cluster | 3*106 3*%19|3*87 |4700| 300|1.2% |87%
APT full scenario 4*121 4*%10 | 4*120 | 4400 | 600 | 0.9% | 80%
Total APT cluster 968 167 | 837 |4000 | 1000 |4.2% | 83.7%
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quantity of the clusters the stronger ability they equipped to amend the previous cor-
relation by the later alert instances, the FPR is lower with the alert instance cluster steps
quantity increaser. In general, holistic TPR and FPR are well satisfied.

Performance Comparison Between AICM and Existing APT Detection Systems.
We compared the performance of the developed AICM module with the three typical
reconstruction methods of the APT scenarios to show the advantage of our method.
The comparative results are shown in Table 3.

Table 3. The comparative results between AICM and other APT scenarios reconstruct method.

APT scenarios reconstruct method | Efficiency | Step quantity | FPR TPR

AICM Real-time | Four steps 42% | 83.7%
Spear phishing based Real-time | One steps 159% |94.3%
TerminAPTor Real-time | Four steps 25.64% | 98.8%
C&C-based Off-line | One steps 1.2% | 79.6%

We can get the obvious results that other three proposed APT scenarios reconstruct
method are not able to handle the problem that how to balance the higher TPR and
lower FPR properly. As the only method can approximately get to the performance of
AICM, the C&C-based method has a disadvantage of failing to accomplish the real-
time APT scenarios reconstruct. It is nice to see the AICM has higher TPR with not too
high FPR.

4.2 Evaluation of the Log Instance Correlation Module

We implement the algorithm of LICM in Python and take full advantage of the con-
venience of package python-Louvain to accomplish log instance community detection.

The experiment environment described as follow: (1) a victim Windows 10 64-bit
operating system running on a host with an Intel Core i5-7200u 2.0 GHz CPU, 8 GB
RAM. (2) an attack Windows 10 64-bit operating system running on a host with an
Intel Core 17-8550u 2.53 GHz CPU, 16 GB RAM. We also assign extra roles to the
attack host: the FTP server, C&C server and Apache server.

Data Generation. To construct the log data set and evaluate the LICM module
algorithm we record the log data from the log providers and the log data quantity of
each provider shown as Table 4. We record the log data while using the experimental
machine by routinely work without perceiving that some operations have triggered
some APT attack activities. We get these log data after a particular attack has launched
on the computer system to simulate the APT attack scenario.

Correlation Performance. We have applied the LICM module algorithm on the
recorded log dataset to evaluate the performance of log community detection on 7 APT
attack scenarios such as Attack on Aerospace (AA), Hacking Team (HT), Tibetan and
HK (TH), Russian Campaign (RC), Op-Tropic Trooper (OTT), APT on Taiwan (AT),
and Op-Clandestine Fox (OCF). We also choose the FPR and TPR as the correlation
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Table 4. APT log instance size.

Log Quantity | Size (KB)
HTTP 3345 16530
Object access | 282 5789
Process create | 261 6420
DNS 510 72
WFP 734 18453

effect measurement parameters. The log instances within any detected community are
regarded as malicious ones and the others as benign ones. The TRP is the portion of the
correctly classified malicious log instance or benign log instance. The FPR is the
portion of the actual benign log instances unexpectedly classified to the malicious
cluster. From the results shown in Fig. 6, we can see that TPRs of LICM module works
well on the 7 typical APT scenarios and the FPRs are also medium.

Percentage%
3
Percentage%

3

& RS LR & s RS K¢

Fig. 6. Evaluation LICM module detection result
5 Conclusion

In this paper, we proposed an APT alerts and logs correlation method to accomplish the
cyber situation comprehension. To recognize attack intentions, a similarity measures
method based on SimRank is proposed. We also proposed an APT alert instances
correlation method to reconstruct APT attack scenarios and an APT log instances
correlation method to detect log instance communities. The experimental results show
that the APTALCM has higher TPR with acceptable FPR.
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