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Abstract We prove that if a non-transferable utility (NTU) game is cardinally
balanced and if, at every individually rational and efficient payoff vector, every non-
zero normal vector to the set of payoff vectors feasible for the grand coalition is
strictly positive, then the inner core is nonempty. The condition on normal vectors
is satisfied if the set of payoff vectors feasible for the grand coalition is non-leveled.
An NTU game generated by an exchange economy where every consumer has a
continuous, concave, and strongly monotone utility function satisfies our sufficient
condition. Our proof relies on Qin’s theorem on the nonemptiness of the inner core.
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1 Introduction

The inner core is a solution concept for a non-transferable utility (NTU) game.
Players’ utilities are not transferable, but an inner core payoff vector is stable even
if players can transfer their utilities with some fictitious rates λ. Namely, at an
inner core payoff vector, any coalition cannot improve upon the λ-weighted sum
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of utilities. This stability is stronger than the one required for the core. Thus, the
inner core is a refinement of the core.

The inner core is of significance in the relations to (1) Walrasian equilibria for
some economies, and to (2) the strictly inhibitive set of payoff vectors that are
stable against randomized blocking plans. An exchange economy or a production
economy generates a unique NTU game, but an NTU game may be generated by
multiple economies. Billera [3] proposed a method how to induce a production
economy from a totally cardinally balanced NTU game so that the economy actually
generates the given NTU game. Qin [14] proved that the inner core of a totally
cardinally balanced NTU game coincides with the set of utility vectors at Walrasian
equilibria for Billera’s induced production economy.1 Inoue [9] constructed a
coalition production economy generating a given NTU game and proved that the
inner core coincides with the set of utility vectors at Walrasian equilibria for his
induced coalition production economy.

When a payoff vector can be improved upon by multiple coalitions, it is not clear
which coalition actually improves upon the payoff vector. Myerson [12, Section 9.8]
considered the following scenario. A mediator who is not a player of a given game
randomly chooses a coalition and payoffs to the members of the coalition. Every
player accepts the mediator’s randomized blocking plan if, conditional on being a
member of a coalition, the expected payoff to him is better than the given payoff
to him. The strictly inhibitive set is the set of payoff vectors that are feasible for
the grand coalition and that are stable against randomized blocking plans. Qin [13]
proved that the inner core is always a subset of the strictly inhibitive set and, in some
classes of NTU games, these two sets coincide.

A sufficient condition for the inner core to be nonempty was given by Qin [15,
Theorem 1]. Although his sufficient condition is mathematically general, it is not
easy to check whether a given NTU game satisfies the condition. Accordingly, it is
useful to give classes of NTU games satisfying Qin’s sufficient condition. Qin [15,
Corollary 1] proved that every cardinally balanced-with-slack NTU game satisfies
his own sufficient condition. We give another class of NTU games satisfying
Qin’s sufficient condition: If an NTU game is cardinally balanced and if, at every
individually rational and efficient payoff vector, every non-zero normal vector to
the set of payoff vectors feasible for the grand coalition is strictly positive, then the
NTU game satisfies Qin’s sufficient condition for the inner core to be nonempty. The
condition on normal vectors is met if the set of payoff vectors feasible for the grand
coalition is non-leveled. Our class of NTU games with the nonempty inner core
contains NTU games generated by exchange economies where every consumer has a
continuous, concave, and strongly monotone utility function. de Clippel and Minelli
[8] proved that the utility vector at a Walrasian equilibrium for such an exchange

1Furthermore, given an NTU game and given any payoff vector in the inner core, Qin [14]
constructed a production economy generating the given NTU game such that the given payoff
vector in the inner core is the utility vector at the unique Walrasian equilibrium for his induced
production economy. Brangewitz and Gamp [6] extended this result from one point in the inner
core to a closed subset with certain properties.
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economy is always in the inner core and, therefore, the nonemptiness of the inner
core follows from the well-known existence theorem of a Walrasian equilibrium.
Hence, our theorem extends de Clippel and Minelli’s class of NTU games with the
nonempty inner core.

In the present paper, we prove our theorem on the nonemptiness of the inner
core by applying Qin’s [15] theorem. There are two other methods of proof of
our theorem. The first way is due to Aubin [2, Theorem 2.1, Proposition 2.3].
Aubin adopted an abstract description of an NTU game. If we adopt a specified
“representative function” of an NTU game, what Aubin called “an equilibrium for a
representative function” turns out to be an inner core payoff vector. Since Aubin
proved the existence of an equilibrium for a representative function, he indeed
proved the nonemptiness of the inner core. At an inner core payoff vector, fictitious
transfer rates λ of utilities must be strictly positive. Aubin first finds nonnegative
fictitious transfer rates λ with certain properties and then provides a sufficient
condition (condition (c) of Proposition 2 in Sect. 3) for λ to be strictly positive.2

As discussed in Sect. 3, Aubin’s sufficient condition for λ to be strictly positive can
be slightly weakened. The second way is due to Inoue [11] who took two steps as
well as Aubin [2]. Inoue [11] first gives a new coincidence theorem, a synthesis of
Brouwer’s fixed point theorem and a stronger separation theorem for convex sets
due to Debreu and Schmeidler [7], and then, by applying the coincidence theorem,
he obtains nonnegative fictitious transfer rates of utilities with certain properties.
Inoue’s [11] second step of the proof is the same as Aubin’s [2].

The present paper is organized as follows. In Sect. 2, we give a precise description
of an NTU game and the definition of the inner core. Also, we give Qin’s sufficient
condition for the inner core to be nonempty (Theorem 1). In Sect. 3, we provide
characterizations of the efficient surface with strictly positive normal vectors. In
Sect. 4, we prove the nonemptiness of the inner core (Theorem 2). In Sect. 5, we
prove that our class of NTU games with the nonempty inner core contains de
Clippel and Minelli’s class of NTU games generated by exchange economies with
continuous, concave, and strongly monotone utility functions. In Sect. 6, we give
some remarks.

2 NTU Games and the Inner Core

We begin with some notation. We follow the notation of Qin [15]. Let N =
{1, . . . , n} be a set with n ≥ 2 elements and let RN be the n-dimensional Euclidean
space of vectors x with coordinates xi indexed by i ∈ N . The inner product of x and
y in R

N is denoted by x · y, i.e., x · y = ∑
i∈N xiyi . For x, y ∈ R

N , we write x ≥ y

if xi ≥ yi for every i ∈ N ; x � y if xi > yi for every i ∈ N . The symbol 0 denotes

2Inoue [10, Appendix] summarizes Aubin’s description of an NTU game and reproduces Aubin’s
method of proof.
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the origin in R
N as well as the real number zero. Let RN++ = {x ∈ R

N | x � 0}.
For a nonempty subset S of N , let RS = {x ∈ R

N | xi = 0 for every i ∈ N \ S},
let RS+ = {x ∈ R

S | xi ≥ 0 for every i ∈ S}, and let eS ∈ R
N be the characteristic

vector of S, i.e., eS
i = 1 if i ∈ S and 0 otherwise. For x ∈ R

N , xS denotes the
projection of x to R

S . Let � = {λ ∈ R
N+ | ∑i∈N λi = 1}, �◦ = {λ ∈ � | λ � 0},

and, for every m ≥ n, �1/m = {λ ∈ � | λi ≥ 1/m for every i ∈ N}.
We regard N as the set of n players. Let N be the family of all nonempty subsets

of N , i.e., N = {S ⊆ N | S �= ∅}. Elements in N are called coalitions. A non-
transferable utility game (NTU game, for short) with n players is a correspondence
V : N � R

N such that, for every S ∈ N , V (S) is a nonempty subset of RS and
satisfies V (S) − R

S+ = V (S). An NTU game is compactly generated if, for every
S ∈ N , there exists a nonempty compact subset CS of RS with V (S) = CS − R

S+.
In the present paper, we consider only compactly generated NTU games V with
V (N) convex.

The core is the set of payoff vectors which is feasible for the grand coalition N

and which cannot be improved upon by any coalition. By adopting a different notion
of improvement by a coalition, we can define the inner core.

Definition 1

(1) The core C(V ) of NTU game V is the set of payoff vectors u ∈ R
N such that

u ∈ V (N) and there exists no S ∈ N and u′ ∈ V (S) with u′
i > ui for every

i ∈ S.
(2) The inner core IC(V ) of NTU game V is the set of payoff vectors u ∈ R

N such
that u ∈ V (N) and there exists λ ∈ R

N++ such that, for every S ∈ N and every
u′ ∈ V (S), λS · u ≥ λS · u′ holds.

By definition, we have IC(V ) ⊆ C(V ). The vector λ ∈ R
N++ in the definition

of the inner core represents fictitious transfer rates of utilities among players. Note
that u ∈ IC(V ) if and only if u ∈ V (N) ∩ C(Vλ) for some λ ∈ R

N++, where
Vλ : N � R

N is the λ-transfer game defined by

Vλ(S) =
{
u ∈ R

S
∣
∣ λ · u ≤ λ · u′ for some u′ ∈ V (S)

}
for every S ∈ N .

Note also that we can restrict the space of fictitious transfer rates to �◦.
For β ∈ R

N+ , let

�(β) =
⎧
⎨

⎩
γ = (γS)S∈N

∣
∣
∣
∣
∣
∣
γS ≥ 0 for every S ∈ N and

∑

S∈N
γS eS = β

⎫
⎬

⎭

and let �̂(β) = {γ ∈ �(β) | γN = 0}. Note that �(eN) is the set of balancing vectors
of weights. An NTU game V is cardinally balanced if, for every γ ∈ �(eN),

∑

S∈N
γS V (S) ⊆ V (N).
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This notion of balancedness is stronger than the balancedness due to Scarf [16].
Scarf’s ordinal balancedness is sufficient for the nonemptiness of the core. For
our theorem (Theorem 2) on the nonemptiness of the inner core, this stronger
balancedness is assumed.

Before we give a condition equivalent to the cardinal balancedness, we introduce
some notation. Let V : N � R

N be a compactly generated NTU game with V (N)

convex. For every S ∈ N , let CS be a compact subset of RS generating V (S), i.e.,
V (S) = CS −R

S+, and let CN be also convex. For every λ ∈ R
N+ and every S ∈ N ,

define

vλ(S) = max {λ · u | u ∈ V (S)} = max {λ · u | u ∈ CS} .

Note that, by Berge’s maximum theorem, RN+ � λ → vλ(S) ∈ R is continuous. For
every i ∈ N , let bi ∈ R be the utility level that player i can achieve by himself, i.e,

bi = max {ui ∈ R |u ∈ V ({i})} .

Define a correspondence B : RN++ � R
N by

B(λ) = {u ∈ V (N) | λ · u = vλ(N)} = {u ∈ CN | λ · u = vλ(N)} .

Note that B(λ) is positively homogeneous of degree zero.
The following proposition gives a condition equivalent to the cardinal balanced-

ness.

Proposition 1 Let V : N � R
N be a compactly generated NTU game with V (N)

convex. Then, V is cardinally balanced if and only if, for every λ ∈ �◦ and every
γ ∈ �̂(eN),

∑
S∈N γS vλ(S) ≤ vλ(N).

This equivalence is due to Shapley (see Qin [15, Proposition 1]).
For m ≥ n, define continuous functions pm : � → R

N++ and βm : � → R
N+ \{0}

by

pm
j (λ) =

{
λj if λj ≥ 1/m,

1/m if λj < 1/m,

and

βm
j (λ) = λj

pm
j (λ)

=
{

1 if λj ≥ 1/m,

mλj if λj < 1/m.

We are now ready to give Qin’s theorem [15, Theorem 1] on the nonemptiness of
the inner core. Inoue [11] gives another proof to the theorem.
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Theorem 1 (Qin) Let V : N � R
N be a compactly generated NTU game with

V (N) convex. If there exists m ≥ n such that

(i) for every λ ∈ �1/m and every γ ∈ �̂(eN),
∑

S∈N γS vλ(S) ≤ vλ(N), and
(ii) for every λ ∈ �◦ \ �1/m and every γ ∈ �̂(βm(λ)), there exists u ∈ B(pm(λ))

such that
∑

S∈N γS vpm(λ)(S) ≤ λ · u,

then the inner core IC(V ) of V is nonempty.

By Proposition 1, condition (i) is weaker than the cardinal balancedness. Qin [15,
Corollary 1] gives a class of NTU games that satisfy both conditions (i) and (ii) for
some m: If a compactly generated NTU game V with V (N) convex is cardinally
balanced with slack, i.e., for every γ ∈ �̂(eN),

∑
S∈N γS V (S) is a subset of the

interior of V (N), then V satisfies conditions (i) and (ii) for some m ≥ n, and,
therefore, the inner core of V is nonempty.

Theorem 2 in Sect. 4 gives another class of NTU games with the nonempty inner
core.

3 Characterization of Efficient Surface with Strictly Positive
Normal Vectors

In the next section, we prove the nonemptiness of the inner core for an NTU game
V where the normal cone to V (N) at any individually rational and efficient payoff
vector is a subset of RN++ ∪ {0}. In this section, we provide characterizations of the
set of individually rational and efficient payoff vectors with the above mentioned
property.

Let V (N) be a nonempty, closed, convex subset of RN generated by a compact
set CN ⊆ R

N , i.e., V (N) = CN − R
N+ . Let b ∈ R

N be such that {x ∈ V (N) | x ≥
b} �= ∅. Define

Eff(V (N), b)

= {
x ∈ V (N)

∣
∣ x ≥ b, there exists no x ′ ∈ V (N) with x ′ ≥ x and x ′ �= x

}

and

Effw(V (N), b) = {
x ∈ V (N)

∣
∣ x ≥ b, there exists no x ′ ∈ V (N) with x ′ � x

}
.

The set Eff(V (N), b) (resp. Effw(V (N), b)) is the set of individually rational and
efficient payoff vectors (resp. individually rational and weakly efficient payoff
vectors).

Remark 1

(1) ∅ �= Eff(V (N), b) ⊆ Effw(V (N), b).
(2) Effw(V (N), b) is compact.



The Nonemptiness of the Inner Core 91

The nonemptiness of Eff(V (N), b) in statement (1) follows from the assumption
that V (N) is compactly generated and {x ∈ V (N) | x ≥ b} �= ∅. Statement (2) can
be easily shown.

The following lemma gives a characterization of Effw(V (N), b) by normal
vectors to V (N).3

Lemma 1

Effw(V (N), b)

= {x ∈ V (N) | x ≥ b,

there exists λ ∈ � such that, for every y ∈ V (N), λ · x ≥ λ · y}.

Proof Let x ∈ Effw(V (N), b). Then, x ∈ V (N) and x ≥ b. Furthermore, V (N) ∩
({x} + R

N++) = ∅. By the separation theorem for convex sets, there exists λ ∈
R

N \ {0} such that, for every y ∈ V (N) and every z ∈ {x} + R
N++, λ · z ≥ λ · y.

Then, we have λ ∈ R
N+ \ {0}. By normalization, we may assume that λ ∈ �. Since

the inner product is continuous, we have λ · x ≥ λ · y for every y ∈ V (N).
We next prove the inverse inclusion. Let x ∈ V (N) be such that x ≥ b and there

exists λ ∈ � such that, for every y ∈ V (N), λ · x ≥ λ · y. Suppose, to the contrary,
that x �∈ Effw(V (N), b). Then, there exists x ′ ∈ V (N) with x ′ � x. Thus, we have
λ · x ′ > λ · x, a contradiction. Hence, we have x ∈ Effw(V (N), b). ��

The following proposition gives a characterization of the individually rational
and efficient surface such that every non-zero normal vector to V (N) at every point
of the surface is strictly positive.

Proposition 2 The following three conditions are equivalent.

(a) Let x ∈ Eff(V (N), b) and λ ∈ R
N \ {0} be such that λ · x = maxy∈V (N) λ · y.

Then, λ � 0. Namely, for every x ∈ Eff(V (N), b), the normal cone to V (N) at
x is a subset of RN++ ∪ {0}.4

(b) There exists b′ ∈ R
N such that b′ � b and Eff(V (N), b′) = Effw(V (N), b′).

(c) For every x ∈ V (N) with x ≥ b and every S ∈ N with S � N , there exist
ε, δ > 0 such that x − ε eS + δ eN\S ∈ V (N).

Condition (b) holds if V (N) is non-leveled, i.e., x = y whenever x and y are
on the boundary of V (N) and x ≥ y. Condition (c) is due to Aubin [2, Proposition
2.3]. Although Eff(V (N), b) need not be closed (see Arrow et al. [1] for such an
example), condition (a) implies that Eff(V (N), b) is closed as shown by the next
lemma.

3For a convex subset A of RN and x ∈ A, λ ∈ R
N is normal to A at x if λ · x ≥ λ · y for every

y ∈ A.
4For a convex subset A of RN and x ∈ A, the normal cone to A at x is the set of all vectors λ ∈ R

N

normal to A at x.
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Lemma 2 Condition (a) of Proposition 2 implies that

Eff(V (N), b) = Effw(V (N), b).

Therefore, under condition (a), Eff(V (N), b) is compact.

Proof of Lemma 2 Suppose, to the contrary, that Eff(V (N), b) � Effw(V (N), b).
Then, there exists x ∈ Effw(V (N), b) with x �∈ Eff(V (N), b). By Lemma 1, there
exists λ ∈ � such that, for every y ∈ V (N), λ · x ≥ λ · y.

Claim 1 λi = 0 for some i ∈ N .

Proof of Claim 1 Suppose, to the contrary, that λ � 0. Since x ∈ V (N), x ≥ b,
and x �∈ Eff(V (N), b), there exists x ′ ∈ V (N) with x ′ ≥ x and x ′ �= x. Therefore,
we have λ · x ′ > λ · x, a contradiction. Thus, λi = 0 for some i ∈ N . ��

Define S = {i ∈ N | λi = 0}. By Claim 1 above, we have S �= ∅. Define

A =
{
y ∈ V (N)

∣
∣
∣ yN\S = xN\S, yS ≥ xS

}
.

Since A is nonempty and compact, A has a maximal element with respect to ≥, i.e.,
there exists ȳ ∈ A such that there exists no y ′ ∈ A with y ′ ≥ ȳ and y ′ �= ȳ. Note
that, for every x ′ ∈ V (N) with x ′ ≥ x, we have x ′ ∈ A, since λ·x = maxy∈V (N) λ·y.

Claim 2 ȳ ∈ Eff(V (N), b).

Proof of Claim 2 Suppose, to the contrary, that ȳ �∈ Eff(V (N), b). Then, there
exists y ′ ∈ V (N) with y ′ ≥ ȳ and y ′ �= ȳ. Since y ′ ≥ ȳ ≥ x, we have y ′ ∈ A. This
contradicts that ȳ is a maximal element in A. Thus, ȳ ∈ Eff(V (N), b). ��

Since ȳN\S = xN\S , we have λ · ȳ = λ ·x = maxy∈V (N) λ ·y. Thus, by condition
(a), we have λ � 0, which contradicts that λi = 0 for every i ∈ S. Therefore,
Eff(V (N), b) = Effw(V (N), b). The compactness of Eff(V (N), b) follows from
Remark 1. This completes the proof of Lemma 2. ��
Remark 2 By Lemma 2, we can replace Eff(V (N), b) by Effw(V (N), b) in condi-
tion (a) of Proposition 2.

We are now ready to prove Proposition 2.

Proof of Proposition 2 (a) ⇒ (b): Suppose, to the contrary, that for every r ∈ N,

Eff(V (N), b − 1/r eN) � Effw(V (N), b − 1/r eN).

Then, for every r ∈ N, there exists xr ∈ Effw(V (N), b − 1/r eN) such that xr �∈
Eff(V (N), b − 1/r eN). By Lemma 1, for every r ∈ N, there exists λr ∈ � with
λr · xr = maxy∈V (N) λr · y. For every r ∈ N, define Ir = {i ∈ N | λr

i = 0}. Since
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xr �∈ Eff(V (N), b − 1/r eN), we have Ir �= ∅ for every r ∈ N.5 Since N has
finitely many nonempty subsets, there exists S ∈ N such that Ir = S for infinitely
many r . By passing to a subsequence if necessary, we may assume that Ir = S for
every r . Since both sequences (xr)r and (λr )r are bounded, by passing to further
subsequences if necessary, we have

xr → x and λr → λ ∈ �.

Then, x ∈ V (N) and x ≥ b. Thus, we have also that x ∈ Effw(V (N), b). By
Lemma 2, x ∈ Eff(V (N), b). Since λr

i = 0 for every i ∈ S and every r , we have
λi = 0 for every i ∈ S. Since λ̃ → maxy∈CN λ̃ · y is continuous, from

λr · xr = max
y∈V (N)

λr · y = max
y∈CN

λr · y,

it follows that

λ · x = max
y∈CN

λ · y = max
y∈V (N)

λ · y.

Since λi = 0 for every i ∈ S, we have a contradiction.
(b) ⇒ (c): Let x ∈ V (N) with x ≥ b and let ∅ �= S � N . Since b′ � b, there exists
ε > 0 such that x − ε eS ≥ b′. Since x − ε eS �∈ Eff(V (N), b′) = Effw(V (N), b′)
and V (N) − R

N+ = V (N), there exists δ > 0 such that x − ε eS + δ eN ∈ V (N).
Since x − ε eS + δ eN\S ≤ x − ε eS + δ eN , we have x − ε eS + δ eN\S ∈ V (N).
(c) ⇒ (a): Let x ∈ Eff(V (N), b) and λ ∈ R

N \{0} be such that λ·x = maxy∈V (N) λ·
y. Since V (N) = CN −R

N+ , we have λ ∈ R
N+ . Suppose, to the contrary, that λi = 0

for some i ∈ N . By condition (c), there exist ε, δ > 0 such that x−ε e{i}+δ eN\{i} ∈
V (N). Since

λ ·
(
x − ε e{i} + δ eN\{i}) = λ · x + δ

∑

j∈N\{i}
λj > λ · x,

we have a contradiction. Thus, λ � 0. ��
Remark 3 If a compactly generated NTU game V satisfies one of the conditions of
Proposition 2, its inner core IC(V ) is closed.

Proof Let b ∈ R
N be such that bi = max{ui ∈ R | u ∈ V ({i})} for every i ∈ N .

Let (xr)r be a sequence in IC(V ) such that xr → x. Since xr ∈ Eff(V (N), b) for
every r and since, by Lemma 2, Eff(V (N), b) is closed, we have x ∈ Eff(V (N), b).
For every r , let λr ∈ �◦ be such that, for every S ∈ N , λr,S · xr ≥ vλr (S). Since
(λr )r is a bounded sequence, by passing to a subsequence if necessary, we have
λr → λ ∈ �. Since � � λ̃ → vλ̃(S) ∈ R is continuous, we have λS · x ≥ vλ(S)

5This can be shown by the same argument as Claim 1 in the proof of Lemma 2.
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for every S ∈ N . Thus, in particular, λ · x = maxy∈V (N) λ · y. By condition (a) of
Proposition 2, we have λ ∈ �◦. Therefore, we have x ∈ IC(V ). Hence, IC(V ) is
closed. ��

The following example illustrates that condition (a), (b), or (c) of Proposition 2
can be weakened for the nonemptiness of the inner core.

Example 1 Let N = {1, 2} and let V : N � R
N be such that bi = max{ui ∈

R | u ∈ V ({i})} = 1 for i ∈ N and

V (N) =
{
u ∈ R

N |u1 + u2 ≤ 3, u1 ≤ 2, u2 ≤ 3
}

.

Then, V is compactly generated and V (N) is convex. Note that x := (2, 1) ∈
Eff(V (N), b) (see Fig. 1). The vector λ := (1, 0) is normal to V (N) at x. Thus,
condition (a) of Proposition 2 is violated. In this example, however, V (N) can
be extended to V ′(N) such that the pair (V ′(N), b) satisfies condition (a) of
Proposition 2 and the inner core of the extended NTU game V ′ is not larger than the
inner core of V . Therefore, we can weaken the conditions of Proposition 2 sufficient
for the nonemptiness of the inner core of V .

For example, define

V ′(N) =
{
u ∈ R

N | u1 + u2 ≤ 3, u1 ≤ 3, u2 ≤ 3
}

.

,

Fig. 1 V of Example 1
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The shaded region in Fig. 1 is extended. The pair (V ′(N), b) satisfies condition (a)
of Proposition 2. Any payoff vector y in the extended region is not in the inner core
of the new game V ′, because it violates the individual rationality. Thus, the inner
core IC(V ′) of V ′ is not larger than the inner core IC(V ) of V . By the extension of
V (N), since the normal cone to the set of payoff vectors feasible for N at x becomes
smaller,6 IC(V ′) can be smaller than IC(V ).7 In this example, however, both inner
cores are the same.

Condition (d) of the following proposition represents that, for some extension
V ′(N) of V (N), every non-zero normal vector to V ′(N) at every payoff vector in
Eff(V ′(N), b) is strictly positive.

Proposition 3 The following two conditions are equivalent.

(d) There exists a nonempty, closed, convex subset V ′(N) of RN such that V (N) ⊆
V ′(N), V ′(N) is generated by a compact set C′

N , {x ∈ V (N) | x ≥ b} = {x ∈
V ′(N) | x ≥ b}, and condition (a) of Proposition 2 holds for (V ′(N), b), i.e.,

[

x ∈ Eff(V ′(N), b), λ ∈ R
N \ {0}, and λ · x = max

y∈V ′(N)
λ · y

]

implies λ � 0.

(e) There exists a compact subset K of �◦ such that for every x ∈ Effw(V (N), b),
there exists λ ∈ K with λ · x = maxy∈V (N) λ · y.

Clearly, condition (a) of Proposition 2 implies condition (d). Thus, by Proposi-
tions 2 and 3, we have

(a) ⇔ (b) ⇔ (c) ⇒ (d) ⇔ (e).

Proof of Proposition 3 (d) ⇒ (e): Define a correspondence ξ : Eff(V ′(N), b) � �

by

ξ(x) =
{

λ ∈ �

∣
∣
∣
∣ λ · x = max

y∈V ′(N)
λ · y

}

.

Then, by Lemma 1, ξ is nonempty-valued. By Lemma 2, condition (d) implies that
Eff(V ′(N), b) = Effw(V ′(N), b) and this common set is compact. It is clear that ξ

is compact-valued and upper hemi-continuous. Thus, ξ(Eff(V ′(N), b)) is compact.
Let K = ξ(Eff(V ′(N), b)). By condition (d), we have K ⊆ �◦. From {x ∈

V (N) | x ≥ b} = {x ∈ V ′(N) | x ≥ b}, it follows that

Effw(V (N), b) = Effw(V ′(N), b) = Eff(V ′(N), b).

6In this example, (2/3, 1/3) is normal to V (N) at x, but this vector is not normal to V ′(N) at x.
7For an example of IC(V ′) � IC(V ), see Example 2.
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Therefore, for every x ∈ Effw(V (N), b), there exists λ ∈ K with

λ · x = max
y∈V ′(N)

λ · y ≥ max
y∈V (N)

λ · y.

Since x ∈ V (N), we have λ · x = maxy∈V (N) λ · y.
(e) ⇒ (d): By condition (e), for every x ∈ Effw(V (N), b), we choose and fix a
λx ∈ K with λx · x = maxy∈V (N) λx · y. Let b′ ∈ R

N be such that b′ � b and
b′ ≤ y for every y ∈ CN , where CN is a compact set generating V (N). Define

C′
N =

{
y ∈ R

N
∣
∣ y ≥ b′ and, for every x ∈ Effw(V (N), b), λx · y ≤ λx · x

}
.

Then, CN ⊆ C′
N and thus C′

N is nonempty. We have also that C′
N is compact and

convex. Define V ′(N) = C′
N −R

N+ . Then, V ′(N) is nonempty, closed, convex, and
satisfies V (N) ⊆ V ′(N). Therefore, {y ∈ V (N) | y ≥ b} ⊆ {y ∈ V ′(N) | y ≥ b}.
Claim 3 {y ∈ V ′(N) | y ≥ b} ⊆ {y ∈ V (N) | y ≥ b}.
Proof of Claim 3 Let ȳ ∈ V ′(N) be such that ȳ ≥ b. Suppose, to the contrary, that
ȳ �∈ V (N). Let z̄ ∈ R

N be the closest point in {y ∈ V (N) | y ≥ b} from ȳ, i.e.,
z̄ ∈ V (N), z̄ ≥ b, and

‖ȳ − z̄‖ = min {‖ȳ − z‖ | z ∈ V (N), z ≥ b} ,

where ‖ · ‖ stands for the Euclidean norm. Since {y ∈ V (N) | y ≥ b} is nonempty,
compact, and convex, z̄ is uniquely determined.

We prove that ȳ − z̄ ∈ R
N+ \ {0}. Since ȳ �∈ V (N) and z̄ ∈ V (N), we have

ȳ − z̄ �= 0. Suppose, to the contrary, that ȳi < z̄i for some i ∈ N . Define ẑ ∈ R
N by

ẑj =
{

z̄j if j �= i,

ȳi if j = i.

Since z̄ ≥ b and ȳ ≥ b, we have ẑ ≥ b. We have also that ẑ ∈ {z̄} − R
N+ ⊆

V (N) − R
N+ = V (N). Since ‖ȳ − ẑ‖ < ‖ȳ − z̄‖, we have a contradiction. Hence,

ȳ − z̄ ∈ R
N+ \ {0}.

We next prove that z̄ ∈ Effw(V (N), b). Suppose, to the contrary, that z̄ �∈
Effw(V (N), b). Then, there exists z′ ∈ V (N) with z′ � z̄. Since ȳ − z̄ ∈ R

N+ \ {0},
ȳk > z̄k for some k ∈ N . Define z̃ ∈ R

N by

z̃j =
{

z̄j if j �= k,

min{ȳk, z
′
k} if j = k.

Since z′ � z̄ ≥ b and ȳ ≥ b, we have z̃ ≥ b. We have also that z̃ ∈ {z′} − R
N+ ⊆

V (N) − R
N+ = V (N). Since ‖ȳ − z̃‖ < ‖ȳ − z̄‖, we have a contradiction. Hence,

z̄ ∈ Effw(V (N), b).
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From z̄ ∈ Effw(V (N), b), it follows that λz̄ ∈ K ⊆ �◦ and λz̄ · z̄ =
maxy∈V (N) λz̄ ·y. Since λz̄ � 0 and ȳ − z̄ ∈ R

N+ \ {0}, we have λz̄ · ȳ > λz̄ · z̄. Thus,
by the definition of V ′(N), we have ȳ �∈ V ′(N), which is a contradiction. Therefore,
we have proven that {y ∈ V ′(N) | y ≥ b} ⊆ {y ∈ V (N) | y ≥ b}. ��

It remains to prove that condition (a) of Proposition 2 holds for (V ′(N), b). Let
x ∈ Eff(V ′(N), b) and λ ∈ R

N \ {0} be such that λ · x = maxy∈V ′(N) λ · y. Since
V ′(N) − R

N+ = V ′(N), we have λ ∈ R
N+ . Suppose, to the contrary, that λi = 0

for some i ∈ N . Since b′ � b, we have x − α e{i} ≥ b′ for sufficiently small
α > 0. Since K ⊆ �◦ is compact, there exists δ > 0 such that for every λ′ ∈ K

and every j ∈ N , λ′
j > δ holds. Thus, for every z ∈ Effw(V (N), b), we have

λz · (α e{i}) = αλz
i > αδ. For every z ∈ Effw(V (N), b), since x ∈ V ′(N), we have

λz · z ≥ λz · x. Let l ∈ N be such that λl > 0. Then, for every z ∈ Effw(V (N), b),

λz ·
(
x − α e{i} + αδ e{l}) ≤ λz · z + λz ·

(
−α e{i} + αδ e{l})

< λz · z − αδ + αδ = λz · z.

Since x − α e{i} + αδ e{l} ≥ b′, we have

x − α e{i} + αδ e{l} ∈ C′
N ⊆ V ′(N).

We have also that

λ ·
(
x − α e{i} + αδ e{l}) = λ · x + αδλl > λ · x,

which contradicts that λ · x = maxy∈V ′(N) λ · y. Therefore, λ � 0. This completes
the proof of Proposition 3. ��

The following example inspired by Qin [13, Example 2] illustrates that (1)
IC(V ′) can be strictly smaller than IC(V ) and (2) the inner core IC(V ) of V need
not be closed when V satisfies condition (d) or (e) of Proposition 3. Recall that if V

satisfies one of the conditions of Proposition 2, IC(V ) is closed (see Remark 3).

Example 2 Let N = {1, 2, 3}. An NTU game V : N � R
N is given by

V ({1, 2}) = {u ∈ R
{1,2}
+ | u2

1 + u2
2 ≤ 4/25} − R

{1,2}
+ ,

V (N) = {u ∈ R
N | u · eN = 1 and u ≥ 0} − R

N+ , and

V (S) = {(0, 0, 0)} − R
S+ for any other coalition S.

Then, V is compactly generated, V (N) is convex, and b = 0 ∈ R
N .

Note that, for every t ∈ (2/5, 1], we have x(t) := (0, t, 1− t) ∈ IC(V ) as shown
below. Let t ∈ (2/5, 1]. Then, x(t) ∈ V (N). For λ := (λ1, (1−λ1)/2, (1−λ1)/2) ∈
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R
N with λ1 ∈ (0, 1/3), let

z =
⎛

⎝ 4λ1

5
√

1 − 2λ1 + 5λ2
1

,
2(1 − λ1)

5
√

1 − 2λ1 + 5λ2
1

, 0

⎞

⎠ ∈ V ({1, 2}).

Then, vλ({1, 2}) = λ{1,2} · z. Thus,

λ{1,2} · x(t) − vλ({1, 2}) = λ{1,2} · x(t) −λ{1,2} · z = 1 − λ1

2
· t −

√
1 − 2λ1 + 5λ2

1

5
.

For sufficiently small λ1 > 0, e.g., λ1 = (t − 2/5)/2, we have

1 − λ1

2
· t −

√
1 − 2λ1 + 5λ2

1

5
> 0.

Thus, vλ({1, 2}) ≤ λ{1,2} · x(t) for sufficiently small λ1 > 0. Since 0 < λ1 < 1/3,
we have vλ(N) = (1 − λ1)/2 = λ · x(t). Since vλ(S) = 0 for any other coalition S,
it is clear that vλ(S) = 0 ≤ λS · x(t). Thus, for every t ∈ (2/5, 1], x(t) ∈ IC(V )

holds.
Let x∗ := (0, 1/2, 1/2) ∈ IC(V ). Note that x∗ ∈ Eff(V (N), 0) and the vector

(0, 1/2, 1/2) ∈ � is normal to V (N) at x∗. Thus, the pair (V (N), 0) does not satisfy
condition (a) of Proposition 2. Define V ′ : N � R

N by

V ′(N) =
{
u ∈ R

N
∣
∣
∣u · eN = 1 and u ≥ −1/5 eN

}
− R

N+

and V ′(S) = V (S) for every S ∈ N \ {N}. Then, the pair (V ′(N), 0) satisfies
condition (d) of Proposition 3.

We prove that x∗ �∈ IC(V ′). Since μ := (1/3, 1/3, 1/3) ∈ � is a unique normal
vector to V ′(N) at x∗ and since

max
u∈V ′({1,2})

μ{1,2} · u = 1

3
·
√

2

5
+ 1

3
·
√

2

5
= 2

√
2

15
>

1

6
= μ{1,2} · x∗,

we have x∗ �∈ IC(V ′). Hence, IC(V ′) � IC(V ).
We finally prove that IC(V ) is not closed. Let y := (0, 2/5, 3/5). For every

λ ∈ �◦, we have vλ({1, 2}) > λ{1,2} · y. Thus, y �∈ IC(V ). Since x(t) ∈ IC(V ) for
every t ∈ (2/5, 1] and x(t) → y as t → 2/5, IC(V ) is not closed. Therefore, even
if an NTU game satisfies condition (d) or (e) of Proposition 3, its inner core need
not be closed.
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4 Nonemptiness of the Inner Core

We give the main result.

Theorem 2 Let V : N � R
N be a compactly generated NTU game with

V (N) convex. If V is cardinally balanced and if V satisfies condition (d) or (e)
of Proposition 3, then the inner core IC(V ) of V is nonempty.

We prove this theorem by applying Theorem 1.

Proof of Theorem 2 Note first that the inner core satisfies the following covariance
property.

Lemma 3 Let V : N � R
N be an NTU game and let a ∈ R

N . Define an NTU
game V + a : N � R

N by

(V + a)(S) = V (S) + {aS} for every S ∈ N .

Then, IC(V + a) = IC(V ) + {a}.
This can be easily shown, so we omit the proof.

Since, by Proposition 3, conditions (d) and (e) are equivalent, we may assume
that V satisfies condition (e). Let b′ ∈ R

N be such that b′ � b and, for every
S ∈ N and every y ∈ CS , b′ ≤ y, where CS is a compact subset of RS with V (S) =
CS − R

S+. We define V ′ as in the proof of (e) ⇒ (d). By condition (e), for every
x ∈ Effw(V (N), b), we choose and fix a λx ∈ K with λx · x = maxy∈V (N) λx · y.
Define

C′
N = {y ∈ R

N | y ≥ b′ and, for every x ∈ Effw(V (N), b), λx · y ≤ λx · x},

V ′(N) = C′
N − R

N+ , and V ′(S) = V (S) for every S ∈ N with S � N . By the
proof of (e) ⇒ (d) of Proposition 3, V ′(N) satisfies all the properties of condition
(d). Define an NTU game V̂ by V̂ = V ′ −b′. Then, V̂ (N) is convex, V̂ is cardinally
balanced,8 and, for every S ∈ N , V̂ (S) is generated by a compact subset of RS+.
Since IC(V̂ + b′) = IC(V ′) ⊆ IC(V ), by Lemma 3, it suffices to prove that
IC(V̂ ) �= ∅. We will prove that V̂ satisfies all the conditions of Theorem 1. Since
V̂ is cardinally balanced, by Proposition 1, condition (i) of Theorem 1 is met for V̂

and for every m ≥ n. It remains to prove that condition (ii) is met for V̂ and for
some m ≥ n, i.e., there exists m ≥ n such that, for every λ ∈ �◦ \ �1/m and every
γ ∈ �̂(βm(λ)), there exists y ∈ B(pm(λ)) with

∑
S∈N γS vpm(λ)(S) ≤ λ · y, where

B(pm(λ)) and vpm(λ) are defined for NTU game V̂ .
Since, by the definition of b′, for every S ∈ N \ {N} and every y ∈ CS , y ≥ b′

holds and since, for every y ∈ C′
N , y ≥ b′ holds, for every m ≥ n, every λ ∈

8Since V is cardinally balanced and V (N) ⊆ V ′(N), V ′ is cardinally balanced. Thus, V̂ = V ′ −b′
also is cardinally balanced.
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�◦ \ �1/m, and every S ∈ N , we have vpm(λ)(S) ≥ 0. Since 0 ≤ βm(λ) ≤ eN

for every λ ∈ �, V̂ is cardinally balanced, and vpm(λ)(S) ≥ 0 for every S ∈ N ,
we have, for every m ≥ n, every λ ∈ �◦ \ �1/m, every γ ∈ �̂(βm(λ)), and every
y ∈ B(pm(λ)),

∑

S∈N
γS vpm(λ)(S) ≤ vpm(λ)(N) = pm(λ) · y.

Thus, it suffices to prove that there exists m ≥ n such that, for every λ ∈ �◦ \ �1/m

and every y ∈ B(pm(λ)), pm(λ) · y ≤ λ · y holds.
Since K ⊆ �◦ is compact, there exists k ≥ n with K ⊆ �1/k. Let m ∈ N be

such that m > (n − 1)(k − n + 1) + 1.

Claim 4 m > k.

Proof of Claim 4 Since k ≥ n ≥ 2, we have

m − k > (n − 1)(k − n + 1) + 1 − k = k(n − 2) − (n − 1)2 + 1

≥ n(n − 2) − (n − 1)2 + 1 = 0.

Hence, m > k. ��
Claim 5 Let λ ∈ �◦ \ �1/m and x ∈ Effw(V̂ (N), 0) be such that

λ · x = max
y∈V̂ (N)

λ · y.

Then, for every i ∈ N with λi < 1/m, xi = 0 holds.

Proof of Claim 5 Suppose, to the contrary, that xi > 0 for some i ∈ N with λi <

1/m. Since λ ∈ � and λi < 1/m, there exists j ∈ N \ {i} such that

λj >
1 − 1

m

n − 1
= m − 1

m(n − 1)
.

Define

E =
{
y ∈ R

N+
∣
∣
∣ yN\{i,j} = xN\{i,j}, μ · y ≤ μ · x for every μ ∈ �1/k

}
.

We first prove that E ⊆ C′
N − {b′}. Let y ∈ E. Since x ∈ V̂ (N) = C′

N − {b′} −
R

N+ , we have x + b′ ∈ C′
N − R

N+ . Hence, by the definition of C′
N , for every z ∈

Effw(V (N), b), λz · (x + b′) ≤ λz · z holds. Since λz ∈ K ⊆ �1/k,

λz · (y + b′) ≤ λz · (x + b′) ≤ λz · z.
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Since y ≥ 0, we have y + b′ ≥ b′. Thus, y + b′ ∈ C′
N . Hence, y ∈ C′

N − {b′} and
E ⊆ C′

N − {b′}.
For every l ∈ N , define μk,l ∈ �1/k by μ

k,l
t = 1/k for t ∈ N \ {l} and μ

k,l
l =

1 − (n − 1)/k. Then, {μk,1, . . . , μk,n} is the set of all extreme points of �1/k.
Therefore,

E =
{
y ∈ R

N+
∣
∣
∣ yN\{i,j} = xN\{i,j}, μk,l · y ≤ μk,l · x for every l ∈ N

}

=
{
y ∈ R

N+
∣
∣
∣ yN\{i,j} = xN\{i,j}, μk,i · y ≤ μk,i · x, μk,j · y ≤ μk,j · x

}

= {y ∈ R
N+ | yN\{i,j} = xN\{i,j}, (k − n + 1)yi + yj ≤ (k − n + 1)xi + xj ,

yi + (k − n + 1)yj ≤ xi + (k − n + 1)xj }.

Define z∗ ∈ R
N by

z∗N\{i,j} = xN\{i,j},
z∗
i = 0,

z∗
j = xj + 1

k−n+1xi

(See Fig. 2). Then, z∗ ∈ E ⊆ C′
N − {b′} ⊆ V̂ (N). Since λj > m−1

m(n−1)
and m >

(n − 1)(k − n + 1) + 1, we have

λj

k − n + 1
>

m − 1

m(n − 1)(k − n + 1)
>

m − 1

m(m − 1)
= 1

m
> λi.

,

,

Fig. 2 Definition of z∗{i,j}
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Therefore, since xi > 0, we have

λ · z∗ = λ · xN\{i,j} + λj xj + λj

k − n + 1
xi

> λ · xN\{i,j} + λj xj + λixi

= λ · x = max
y∈V̂ (N)

λ · y ≥ λ · z∗,

a contradiction. Therefore, xi = 0 for every i ∈ N with λi < 1/m. ��
Define σm : � → �1/(m+n−1) by

σm
j (λ) = pm

j (λ)

pm(λ) · eN
.

Since

B(pm(λ)) =
{

y ∈ V̂ (N)

∣
∣
∣
∣
∣
pm(λ) · y = max

z∈V̂ (N)

pm(λ) · z
}

=
{

y ∈ V̂ (N)

∣
∣
∣
∣
∣
σm(λ) · y = max

z∈V̂ (N)

σm(λ) · z
}

=
{

y ∈ C′
N − {b′}

∣
∣
∣
∣
∣
σm(λ) · y = max

z∈V̂ (N)
σm(λ) · z

}

,

by Lemma 1 and the definition of b′, we have B(pm(λ)) ⊆ Effw(V̂ (N), 0) for every
λ ∈ �. Let λ ∈ �◦ \ �1/m and let i ∈ N with λi < 1/m. Then, pm

i (λ) = 1/m and
pm(λ) · eN > 1. Thus, σm

i (λ) < 1/m. By Claim 5, for every λ ∈ �◦ \ �1/m, every
y ∈ B(pm(λ)), and every i ∈ N with λi < 1/m, yi = 0 holds. Therefore, for every
λ ∈ �◦ \ �1/m and every y ∈ B(pm(λ)),

pm(λ) · y =
∑

j :λj ≥1/m

pm
j (λ)yj +

∑

j :λj <1/m

pm
j (λ)yj

=
∑

j :λj ≥1/m

pm
j (λ)yj =

∑

j :λj ≥1/m

λjyj = λ · y.

Hence, condition (ii) of Theorem 1 holds for V̂ and m. Thus, IC(V̂ ) �= ∅. As we
mentioned before, this implies that IC(V ) �= ∅. ��

Qin [15, Example 1] exemplifies that, if a cardinally balanced NTU game does
not satisfy condition (d) or (e) of Proposition 3, then its inner core can be empty. We
give another example of a totally cardinally balanced NTU game V with every V (S)
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, ,

, ,

, ,

,,

,,

Fig. 3 V (N) of Example 3

polyhedral such that the inner core IC(V ) of V is empty.9 Billera and Bixby [4]
proved that any totally cardinally balanced NTU game with every V (S) polyhedral
can be generated by an exchange economy where agents’ consumption sets have
the form [0, 1]l and their utility functions are concave and continuous. Therefore,
by the following example, the nonemptiness of the inner core is irrelevant to such
representation of NTU games. It should be worth mentioning that in the first step
of the proof of Billera and Bixby’s representation, the inner core plays an essential
role. Actually, x̄ in the proof of Lemma 3.2 of Billera and Bixby [4] is an inner core
payoff vector.

Example 3 Let N = {1, 2, 3}. An NTU game V : N � R
N is given by

V ({i}) = {(0, 0, 0)} − R
{i}
+ for every i ∈ N,

V ({1, 2}) = {(1, 1/2, 0)} − R
{1,2}
+ ,

V ({1, 3}) = {(1, 0, 1)} − R
{1,3}
+ ,

V ({2, 3}) = {(0, 0, 0)} − R
{2,3}
+ , and

V (N) = {x ∈ R
N | xi ≤ 1 for every i ∈ N and x2 + x3 ≤ 1}.

Then, b = 0 ∈ R
N . Figure 3 depicts V (N) ∩ R

N+ . Note that every V (S) is a
polyhedron. For a balancing vector γ with γ{1,2} = γ{1,3} = γ{2,3} = 1/2 and

9An NTU game V is totally cardinally balanced if every subgame of V is cardinally balanced, i.e.,
for every S ∈ N and every γ ∈ �(eS ),

∑
T ∈N γT V (T ) ⊆ V (S) holds.



104 T. Inoue

γS = 0 otherwise, we have

1

2

(

1,
1

2
, 0

)

+ 1

2
(1, 0, 1) + 1

2
(0, 0, 0) =

(

1,
1

4
,

1

2

)

∈ V (N).

For any other balancing vector γ ′ of weights, we can show that
∑

S∈N γ ′
S V (S) ⊆

V (N). Hence, V is cardinally balanced. Moreover, any subgame of V is cardinally
balanced and, therefore, V is totally cardinally balanced. Since (1, 0, 0) is normal
to V (N) at (1, 1/2, 1/2) ∈ Eff(V (N), 0) and since (1, 1/2, 1/2) � b, there exists
no V ′(N) satisfying condition (d) of Proposition 3.

We prove that IC(V ) = ∅. Let λ ∈ R
N++. Since λ{1,3} · (1, 0, 1) > λ{1,3} · x for

every x ∈ V (N) with x ≥ 0 and x �= (1, 0, 1), payoff vector (1, 0, 1) is a unique
candidate of an element of the inner core. Since (1, 1/2, 0) ∈ V ({1, 2}) and

λ{1,2} ·
(

1,
1

2
, 0

)

= λ1 + 1

2
λ2 > λ1 = λ{1,2} · (1, 0, 1),

payoff vector (1, 0, 1) is not in the inner core. Therefore, IC(V ) = ∅.

5 NTU Games Generated by Exchange Economies

de Clippel and Minelli [8, Proposition 1] proved that, in an exchange economy
where every agent has a continuous, concave, and strongly monotone utility
function, the utility vector at any Walrasian allocation is always in the inner core.
Since there exists a Walrasian equilibrium for such an exchange economy, the inner
core is nonempty. In this section, we prove that an NTU game generated by such
an exchange economy satisfies condition (a) of Proposition 2. Thus, by Theorem 2,
its inner core is nonempty. Therefore, our class of NTU games with the nonempty
inner core contains de Clippel and Minelli’s [8] class.

An exchange economy with n consumers is a list of the commodity space R
L,

where L is a finite set of commodities, and consumers’ characteristics (ui, ωi)i∈N

such that, for every consumer i, utility function ui : R
L+ → R is continuous,

concave, and strongly monotone, and endowment vector ωi is in R
L+ \ {0}. An

exchange economy is denoted by E = (RL, (ui , ωi)i∈N). For every coalition
S ∈ N , let FE (S) be the set of feasible S-allocations, i.e.,

FE (S) =
{

(zi)i∈S

∣
∣
∣
∣
∣
zi ∈ R

L+ for every i ∈ S and
∑

i∈S

(
zi − ωi

)
= 0

}

.

A feasible N-allocation (zi)i∈N is a Walrasian allocation for E if there exists a
price vector p ∈ R

L such that, for every i ∈ N , p ·zi ≤ p ·ωi and ui(zi) ≥ ui(y) for
every y ∈ R

L+ with p · y ≤ p · ωi . Let W(E ) be the set of all Walrasian allocations
for E .



The Nonemptiness of the Inner Core 105

A feasible N-allocation (zi)i∈N is an inner core allocation for E if there exists
λ ∈ R

N++ such that, for every S ∈ N and every (yi)i∈S ∈ FE (S),
∑

i∈S λiu
i(zi) ≥∑

i∈S λiu
i(yi) holds. Let IC(E ) be the set of all inner core allocations for E .

An exchange economy E = (RL, (ui , ωi)i∈N) generates an NTU game VE :
N � R

N by defining

VE (S)

=
{
v ∈ R

S
∣
∣
∣ there exists (zi)i∈S ∈ FE (S) such that, for every i ∈ S, vi ≤ ui(zi)

}
.

Since FE (S) is nonempty, compact, and convex for every S ∈ N , NTU game VE
is compactly convexly generated. Note that, for every i ∈ N ,

bi = max{vi ∈ R | v ∈ VE ({i})} = ui(ωi),

and IC(VE ) = {(ui(zi))i∈N | (zi)i∈N ∈ IC(E )}.
Qin [13, Remark 2] states the following without proof. For completeness, we

give its proof.

Proposition 4 Let E = (RL, (ui, ωi)i∈N) be an exchange economy where, for
every i ∈ N , ui : R

L+ → R is continuous, concave, and strongly monotone,
and ωi ∈ R

L+ \ {0}. Then, NTU game VE generated by E satisfies condition (a)
of Proposition 2, i.e., if x ∈ Eff(VE (N), b) and λ ∈ R

N \ {0} satisfy λ · x =
maxy∈VE (N) λ · y, then λ � 0.

Proof Let x ∈ Eff(VE (N), b) and λ ∈ R
N\{0} be such that λ·x = maxy∈VE (N) λ·y.

Since VE (N)−R
N+ = VE (N), we have λ ∈ R

N+ . Suppose, to the contrary, that there
exists j ∈ N with λj = 0. Since λ ∈ R

N+ \ {0}, there exists k ∈ N with λk > 0.
From x ∈ VE (N), it follows that there exists a feasible N-allocation (zi)i∈N such
that ui(zi) ≥ xi for every i ∈ N . Since uj (zj ) ≥ xj ≥ bj = uj (ωj ), ωj ∈ R

L+\{0},
and uj is strongly monotone, we have zj ∈ R

L+ \ {0}. Define an allocation (yi)i∈N

by

yi =
⎧
⎨

⎩

zi if i ∈ N \ {j, k},
zk + zj if i = k,

0 if i = j.

Then, (yi)i∈N is a feasible N-allocation. Therefore, u := (ui(yi))i∈N ∈ VE (N).
Since λj = 0, λk > 0, and uk(zk + zj ) > uk(zk), we have

λ · u =
∑

i∈N

λiu
i(yi) =

∑

i∈N\{j,k}
λiu

i(zi) + λku
k(zk + zj ) + λju

j (0)

>
∑

i∈N\{j,k}
λiu

i(zi) + λku
k(zk) + λju

j (zj ) ≥ λ · x.
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This contradicts that λ · x = maxy∈VE (N) λ · y. Therefore, λ � 0 and hence VE
satisfies condition (a). ��
Since an exchange economy with the properties in Proposition 4 generates a
cardinally balanced NTU game,10 by Theorem 2, we have the following.

Corollary 1 Let E = (RL, (ui , ωi)i∈N) be an exchange economy where, for every
i ∈ N , ui : R

L+ → R is continuous, concave, and strongly monotone, and ωi ∈
R

L+\{0}. Then, the inner core IC(VE ) of NTU game VE generated by E is nonempty.

We can show this corollary without relying on Theorem 2. de Clippel and Minelli
[8, Proposition 1] proved the inclusion W(E ) ⊆ IC(E ) for an exchange economy
E satisfying the properties in Corollary 1. Since there exists a Walrasian equilibrium
for E , the inner core of VE is nonempty.

6 Concluding Remarks

The inner core has a relation to the strictly inhibitive set, the set of payoff vectors
stable against randomized blocking plans (see Myerson [12, Section 9.8] and Qin
[13]). For a compactly generated NTU game, its inner core is a subset of the
strictly inhibitive set (Qin [13, Theorem 2]). Thus, our Theorem 2 gives a sufficient
condition for the nonemptiness of the strictly inhibitive set. Furthermore, if V (S) is
convex for every S ∈ N and if V satisfies one of the conditions of Proposition 2,
then the inner core coincides with the strictly inhibitive set (Qin [13, Theorem 4]).

By Proposition 4, an exchange economy with continuous, concave, and strongly
monotone utility functions generates an NTU game satisfying the cardinal balanced-
ness and condition (a) of Proposition 2. Since different economies can generate
the same NTU game, exchange economies without the properties in Proposition 4
or production economies may generate NTU games satisfying condition (d) or
(e) of Proposition 3. Billera [3] proved that every compactly generated, totally
cardinally balanced NTU game V with every V (S) convex can be generated by
a production economy where every consumer has a upper semi-continuous and
concave utility function on a compact convex consumption set and has his own
compact convex production set. Billera’s induced production economy can be
converted to an exchange economy (see Billera and Bixby [5]). Inoue [9] proved that
every compactly generated NTU game can be generated by a coalition production
economy. In both induced economies due to Billera [3] and due to Inoue [9], the
inner core coincides with the set of utility vectors at Walrasian allocations (see Qin
[14] and Inoue [9], respectively). Thus, if an NTU game satisfies all the assumptions
of Theorem 2, then there exists a Walrasian equilibrium for both Billera’s and
Inoue’s induced economies.

10This can be shown by the same method as Billera and Bixby [4, Theorem 2.1].
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