
Artificial Neural Network Based Load
Balancing in Cloud Environment

Sarita Negi, Neelam Panwar, Kunwar Singh Vaisla
and Man Mohan Singh Rauthan

Abstract With heavy demand for cloud technology, it is important to balance the
cloud load to deliver seamless Quality of Services to the different cloud users. To
address such issues, a new hybridized technique Artificial Neural Network based
Load Balancing (ANN-LB) is introduced to calculate an optimized Virtual Machine
(VM) load in cloud systems. The Particle Swarm Optimization (PSO) technique
is used to perform task scheduling. The performance of the proposed ANN-LB
approach has been analyzed with the existing CM-eFCFS, Round Robin, MaxMin,
and MinMin algorithms based on MakeSpan, Average Resource Utilization, and
Transmission Time. Calculated values and plotted graphs illustrate that the pre-
sented work is efficient and effective for load balancing. Hybridization of ANN and
iK-mean methods obtains a proper load balancing among VMs and results have been
remarkable.

Keywords Cloud computing · ANN · iK-mean · Clustering · Load balancing

1 Introduction

In the research computing world, (in 2000) a new trend Computing Technology has
arrived to change the working approach of computer and Internet users. From the
history of utility computing (or Computer utility, a computing resource package that
includes computation, services, storage, and computer resource in rent), researchers

S. Negi (B)
Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
e-mail: sarita.negi158@gmail.com

K. S. Vaisla
B.T.KIT, Dwarhat, Uttarakhand, India

S. Negi · N. Panwar · M. M. S. Rauthan
SOET, HNBGU, Srinagar, Garhwal 249161, Uttarakhand, India

© Springer Nature Singapore Pte Ltd. 2020
M. L. Kolhe et al. (eds.), Advances in Data and Information Sciences,
Lecture Notes in Networks and Systems 94,
https://doi.org/10.1007/978-981-15-0694-9_20

203

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0694-9_20&domain=pdf
mailto:sarita.negi158@gmail.com
https://doi.org/10.1007/978-981-15-0694-9_20

204 S. Negi et al.

have found that cloud is the most sophisticated, reliable, and service-oriented tech-
nology. Abstraction and Virtualization are the two major concepts of the cloud. In
Abstraction, the cloud hides implementation information from the user as data stored
in locations that are unknown and in Virtualization, resources are pooled and shared
by various users on the metered basis [1].

Uncontrolled growth of DataCenters (DC) may lead to a lack of availability of
resources. In such case, a load balancing policy can handle the cloud resources and
make resources available to each Host and VM. Scheduling of tasks and load balanc-
ing in virtual machines (VMs) is the NP-hard problem hence a suitable scheduling
technique is required to solve VM allocation problems [2]. The data that cloud pro-
vides to the user must be scheduled and balanced among VM and Hosts [3]. Live
migration of VM is a better approach to slow down the processing cost [4] whereas
cloud computational cost can be minimized through proper utilization of resources
[5]. Utilization of resources may be achieved through proper mapping and allocation
of tasks to VM and VM to Host [6]. Scheduling of tasks to single user and multi-
user has different aspects of delay bounds for the tasks. Such delay bounds can be
deduced by using offloading policy in edge cloud [7]. VM and task scheduling in
cloud computing provide flexibility, scalability, load sharing, etc. Proper scheduling
of resources improves load balancing such as VMmigration [8, 9] and taskmigration
[10, 11]. VM and task migration can have great impact on cloud performance. The
various approaches of task migration techniques are non-live migration, post-copy,
live migration, pre-copy, and triple TPM etc., [10]. VM live migration and its impact
should be low as higher migration increases the processing cost [12].

Management of cloud resources demands the implementation of efficient load
balancing techniques. Various categorizations of load balancing have been defined
for the traditional computing environment: Static,Dynamic, andMixedLoadBalance
[8]. As cloud provides the highmobility of nodes, the spatial distributed nodes need to
be balanced using Centralized, Distributed, and Hierarchal Load Balancing methods
[13]. This paper focuses on the concept of soft computing based technique, viz,
Artificial Neural Network (ANN). The objective of the research is to introduce the
process initiated by the VM manager using ANN-based Back Propagation Network
(BPN) method. BPN calculates the load of each available VMs and improved K-
mean (iK-means) clustering method performs clustering of VMs into underloaded
VMs and overloaded VMs. Incoming user tasks that are admitted to cloud at runtime
are allocated to underloaded VMs using the PSO algorithm.

The organization of the paper is as follows: Previous work on load balancing in the
cloud environment has been discussed in Sect. 2. Section 3 highlights the proposed
system model. Section 4 elaborates the implementation of the proposed model while
Sect. 5 explains the evaluated outcomes of the proposedwork. Finally, the conclusion
and future scope are covered in Sect. 6.

Artificial Neural Network Based Load Balancing … 205

2 Literature Review

Many researchers worked in load balancing to improve Quality of Service (QoS) of
cloud computing. The researches have suggested different methods for load balanc-
ing. In this section, various load balancing algorithms are discussed in detail.

Hamsinezhad et al. [10] add up task and VM migration schemes to achieve effi-
cient load balancing in a cloud environment. The work has shown the migration
methods on task by combining Yu-Router and Post-Copy migration methods. The
algorithm decreases the migration time, overhead, and transmitted data rate. The
authors have explained migration in a mesh network that partitions the network into
the subnetworks (Psub). The migration of Psub is given in Eq. (1). Number of stages
(S) for the migration of subtasks to the D.M is calculated using Eq. (2).

psub = (d/p × w/q × h/r) (1)

S = max(d/p × w/q × h/r) (2)

where the size of the network is represented by (p × q × r) and (d × w × h) is the
number of nodes distributed on the network. The research work of [10] reduces task
transmission time and data overhead but delay overhead is still a drawback of the
algorithm. These drawbacks motivate to introduce a new approach that enhances the
transmission time of tasks.

To minimize the workload between servers, an application live migration method
has been introduced for large-scale cloud networks [14]. The application live migra-
tion takes place by three events, i.e., workload arrival, workload departure, and work-
load resizing (varying resource size). Li et al. [14] introduced a concept of workload
in an encapsulation of application and the underlying operating system of VM. The
server node that is running VM is referred to as open box and the server node lack-
ing of VMs is referred to as close box. The arrival of workload is further assigned
to an open box. The work shows “how application (task) migration can perform
remapping of workloads to the resource node”. This migration reduces the num-
ber of open boxes. The size of workload has been divided into subintervals 2 M-2
and is represented in levels. The approach seems to be energy efficient but large
number of migrations can lead to high processing time. The use of three different
algorithms, i.e., workload arrival, workload departure, and workload recycling may
increase complexity of the network. The proposed approach reduces complexity by
introducing supervised learning approaches for load balancing.

Devi et al. [15] introduced an Improved Weighted Round Robin (IWRR) load
balancerwhere all the tasks are assigned to theVMsaccording to the IWRRscheduler.
After completion of each task, the IWRR load balancer checks if there is a need for
load balancing. If the number of tasks assigned to VM is higher, then the IWRR load
balancer identifies VMs load. IWRR estimates the possible completion time of all

206 S. Negi et al.

tasks assigned to that VM. The number of task migrations is significantly reduced
in IWRR load balancer due to widespread identifying of the most suitable VM for
each task. When overloaded VM drops below its threshold value, the task can be
migrated from overloaded to underloaded VM. In order to identify the VMs having
the highest and lowest load, load imbalance factor is calculated using the sum of
loads of all VM, load per unit capacity (LPC), and threshold (Ti), which are defined
in Eqs. (3), (4), and (5), respectively.

L =
∑k

i=1
li (3)

LPC = L∑m
i=1 ci

(4)

Ti = LPC × Ci (5)

where the number of VMs in a DataCenter (DC) is represented by i and Ci represents
the node capacity. VM load imbalance factor is defined by

VM load

⎧
⎨

⎩

< Ti − ∑k
v=1 li, Underloaded

> Ti − ∑k
v=1 li, Overloaded

= Ti − ∑k
v=1 li, Balanced

(6)

The drawbacks of the reviewed literatures motivate to introduce a new method of
finding VM load using intelligence artificial neural network method. The obtained
load is further clustered into underloaded and overloaded VMs; thus the tasks are
assigned to underloaded VMs. The introduced model focuses to enhance resource
utilization, transmission time, and makespan.

3 System Model and Proposed Work

3.1 Artificial Neural Network Based Load Balancing
(ANN-LB)

In this system model, it is assumed that there is a set of a physical machines
PM = (PM1, PM2…, PMM) where each PM holds the set of virtual machines VM =
(VM1,VM2….,VMj). For the execution, a number of tasks (t1, t2…,ti) are assigned
to VMs, respectively. VMs use their resources and run parallelly and independently.
Load balancing has always been necessary to remove imbalance execution of a task.

Artificial Neural Network Based Load Balancing … 207

The heavy load on the current VMs leads to unbalanced DCs and resource underuti-
lization. Such issues can be resolved by introducing the clustering process on VMs
in each PM based on current load of VMs. Based on the load, VMs are grouped.

3.1.1 Back Propagation Network (BPN)

The Back Propagation Network (BPN) is used to support several VMs all together
for load calculation with the aim to reduce clustering time. A supervised learning
ArtificialNeuralNetwork basedBPN is one of the best neural approaches.Rumelhart,
Hinton, and Williams introduced the BPN in 1986. It has the facility to propagate
errors toward the back from the output layer units to the hidden layer units.

The role of BPN is to calculate the load of VMs which is further realized by
improvedK-means (i-Kmean) for VM clustering. In the first step of the algorithm, all
VMs with their information are fed into the BPN to evaluate their current processing
load on VMs. BPN algorithm performs weight calculation during the learning period
of the network. It works on different phases: input Ai feed-forward, error back-
propagation, and weight updation (vij and wjk). The feed-forward phase is the testing
phase of BPN in which a number of hidden layers are used in the network to achieve
the desired output. It is important to train BPN for calculation of the VMs load. There
are various learning factors and activation functions that are responsible to train BPN.
The use of large number of weights in BPN may slow down the convergence of the
network. Hence, a Momentum Factor (η) is used to save the previous information
of weights for weight adjustment and for better solution. It enhances the weight
updation stage and makes fast convergence. Equations (7) and (8) are the weight
update expressions of the output layer units and the hidden layer units, respectively.

wjk(tk + 1) = wjk(tk) + α(δk)bk + η
[
wjk(tk) − wjk(tk − 1)

]
(7)

vij(tk + 1) = vij(tk) + α
(
δj

)
ai + η

[
vij(tk) − vij(tk − 1)

]
(8)

where wjk is the output weight between jth hidden layer unit and kth output layer
unit and, vij is the hidden weight between ith input layer unit and jth hidden layer
unit.tk is the targeted value of the network. To get trained output from the BPN, an
activation function is used which increases monotonically. BPN mostly uses binary
sigmoid function (or unipolar) that reduces computational burden during the learning
process as defined in Eq. (9),

f(x) = 1/(1 + e−λx) (9)

where λ is the steepness parameter.

208 S. Negi et al.

The capacity of VM includes a number of processors, Million Instruction Per
Second (MIPS) and bandwidth of that VM. The capacity and target (expected output)
of BPN is calculated using the following expression:

Cvmj = (
vmpj × vmmipsj + vmbwj

)
/100 (10)

Cvmj is the capacity, vmpj, vmmipsj, and vmbwj are the number of processors, MIPS,
and bandwidth on jth VM, respectively. Cvmj is used as an initial weight (vij) on
hidden layer units and calculated using Eq. (10). The initial load Ilij on each VM
denoted as VML = VML1, VML2…VMLj is obtained by the summation of the total
length of all tasks (task length as TL = {TL1, TL2…,TLi}) on jth VM expressed in
Eq. (11),

Ilij =
∑i

1
TLijj ∈ VM, i ∈ task (11)

Eok =
(
TLij/vmmipsj

)

((Ilij/vmmipsj)/Total Number ofVMs)
(12)

where TLij is the ith task length on jth VM. Eok is the expected (target) load of jth
VM to update the network weights through errors expressed in Eq. (12). Algorithm 1
illustrates each step of BPN that calculates the optimized load of VMs.

ALGORITHM 1: Back Propagation Network

Step1: Start For each VM (VM = VM1, VM2…VMj), receive vmpj, vmmipsj,
vmbwj, and TL information.

Step2: Initialize input dimension, number of hidden units, number of output units,
maximum epoch, learning rate (α), weight Wi, and Tk.

Step3: Calculate vij using Eq. (10). Set voj = 1 andwok = 1. The weights on output
layer wjk are set as random values between 0.0 to 0.1.

Step4: Calculate hidden input from input layer units (Ai),

hinj = V0j +
∑n

i=1

(
aivi j

)
(13)

hj = F
(
hinj

)
(14)

where hinj refers to the hidden input signal,v0j is the bias weight to hidden
layer, ai is the ith input unit, vij is the input weight from ith input unit to
jth hidden unit, and hi is the output of the ith hidden unit using Eq. (9).

Step5: Calculate output from the hidden layer,

bink = w0k +
∑p

i=1

(
hjwjk

)
(15)

Artificial Neural Network Based Load Balancing … 209

bk = F(bink) (16)

where bink is the ouput layer input signal,w0k is the bias weight to output
layer, wjk is the input weight from jth hidden unit to kth output unit, and
bk is the output of the kth output unit calculated using Eq. (9).

Step6: With the target pair Eok as Tk from Eq. (12), compute error-correcting
factor (δk) between output layer units and hidden layer units.

δk = (tk − (bk))F(bink) (17)

Binary sigmoid activation function from Eq. (9) is used to reduce the com-
putational burden.

Step7: Calculate delta output weight �wjk and bias correcting �w0k terms,

�wjk = α(δkhj) (18)

�w0k = α(δk) (19)

Step8: Calculate error terms δj between the hidden and input layer,

δinj =
∑m

k=1

(
δkwjk

)
(20)

δj = δinjF
(
hinj

)
(21)

Step9: Calculate delta hidden weights �vij and bias �v0j based on δj,

�vij = α δjtk (22)

�v0j = α δj (23)

Step10: Update output weight and bias unit using Eq. (7).
Step11: Update hidden weight and bias unit using Eq. (8).
Step12: If the specified number of epochs are reached or Bk = Tk, goto Step13,

else goto Step3.
Step13: Calculated load of VMj.
Step14: End

3.1.2 Improved K-Mean (iK-Mean)

The calculated load obtained from BPN forms the input to the iK-mean cluster
algorithm. The algorithm uses minimum distance data points of the cluster center.

210 S. Negi et al.

The procedure of the algorithm starts with an initial K cluster centers. The algorithm
calculates the minimum distance to classify the nearest cluster center of all data
points with each K selected number of centers. Next, the mean value of data to the
center value is modified. The process repeats until new center value becomes equal
to the previous center value. Finally, C1 (underloaded cluster) and C2 (overloaded
cluster) are formed where C1 = VMU = {VM1U,VM2U…VMiU} and C2 = VMo =
{VM1o, VM2o…VMio}.

3.1.3 Particle Swarm Optimization (PSO)

Incoming user tasks are allocated to underloaded VMs to maintain load balancing.
Task scheduling is performed by the PSO algorithm. PSO is a biological concept
based algorithm that is inspired by flocking of birds. A swarm-based intelligence
algorithm approach uses self-additive global search technique to achieve optimized
results. It initializes the particle (P). These are the potential solutions that move
into the problem space by subsequent current optimum particles. In PSO, each P is
represented by velocity and position which are obtained using Eqs. (24) and (25),
respectively. Each P adjusts its velocity and position according to its best position and
the position of the best particle (global best) in the entire population at each k iteration.
Fitness value (FV) is the problem specific and used to measure the performance of
a particle.

VP[k + 1] = w*VP[k] + Y1 ∗ rand1 ∗ (pbest − XP[k]) + Y2 ∗ rand2 ∗ (gbest − XP[k])
(24)

XP[k + 1] = XP[k] + VP[k + 1] (25)

where VP[k + 1] and VP[k] is the present velocity and earlier velocity of P, respec-
tively. XP[k + 1] and XP[k] are existing and earlier locations of P. Two cognitive and
social acceleration coefficients values are Y1 andY2 respectively and rand1, rand2
(between 0 and 1) are used as self-regulating random numbers in the velocity com-
putation. The population shows the particles in the search space.Best particle position
in the population is denoted by pbest and gbest. The pbest is the best particle that
has reached best outcome whereas best particle in global search space is denoted
as gbest. w represents inertia weights that are used to balance best local and global
search of particles. The value of w is a positive linear or nonlinear of time or a pos-
itive constant. Large w supports global exploration whereas small w supports local
exploration. Particles are initialized randomly. The velocities synchronize P move-
ment. At any point of time, the position of each P is influenced by its pbest in the
search space. The whole working of the PSO algorithm is listed in ALGORITHM 2.

Artificial Neural Network Based Load Balancing … 211

ALGORITHM 2: Particle Swam Optimization

Input: Initialize required parameters
 User tasks T= {t1, t2, t3……ti},k=0 and Under loaded VMU = {VM1U,VM2U…..,VMiU}

Output: Optimal mapping between T and VMU.
begin

Set particle dimension number of tasks in T
Initialize particles randomly (velocity Vi, location Xi) with pbest and gbest
for each ti T
while (k<epoches)
 Calculate FV for each particle and update Xi

 if current FV<pbest
Assign pbest Xi

 else
 Keep pbest
endif
for each pbest
Assign gbest highest pbest

if present gbest< fitness value
Allot gbest Xi

else
Keep previous gbest

endif
Assign VMU to particle with highest gbest
Assign ti to VMU

ti++
end while

end for
end

4 Implementation

The proposed Artificial Neural Network based Load Balancing (ANN-LB) algo-
rithms have been implemented for improved cloud load distribution among under-
loaded VMs. CloudSim tool has been used to simulate algorithms. The implemen-
tation is performed on 2.20 GHz processor with 16 GB memory.

BPN algorithm is used for load calculation of eachVM.To describe the theoretical
functioning of the BPN, we include five different tasks that are allocated to five
different VMs. The calculation is done for one epoch set to check the leniency of
the BPN algorithm. Even if VMs and tasks may increase, the working procedure
will remain the same. After performing BPN algorithm, the final calculated loads
of VM0, VM1, VM2, VM3, and VM4 are 0.199, 0.198, 0.203, 0.199, and 0.201,
respectively. VMi load obtained from BPNwill form the input to iK-Mean algorithm
to perform clustering between VM1, VM2…,VMi into clusters C1 (Underloaded
VMs) and C2 (Overloaded VMs) C1 = {0.199, 0.198, 0.199} C2 = {0.203, 0.201}.
Once the clustered VMs are obtained, the PSO algorithm schedules the runtime tasks
to the underloaded VMs. In the above-given case, initially we have five VMs and five
tasks. The tasks in the dynamic time will be assigned to VMs that belong to C2. The

212 S. Negi et al.

PSO technique initializes particles. These particles are nothing but the tasks taken
from the task list that are further assigned to the VMs. Using Eqs. (24) and (25),
each particle is initialized randomly with their velocity and position, respectively. A
particle represents allocation of user tasks to the VMs that have available resources.
This method manages load among VMs and gives load sharing facility to the cloud
environment.

5 Result and Discussion

In the result section, experimental observations are analyzed to examine the results of
ANN-LB algorithm. The proposed methods have been compared with CM-eFCFS,
RR (Round Robin), MaxMin, and MinMin algorithms. The illustration of cloud
metrics and achieved results is analyzed in the following section:

MakeSpan (M) is the completion time of VM that can be calculated from the initial
scheduling procedure time up to the final task completed. In thiswork,M is calculated
using Eq. (26).

M = max
(
CTj

)
(26)

This metric obtains the task completion time. The objective is to minimize the M
to achieve faster execution. Figure 1 illustrates the total MakeSpan for CM-eFCFS,
RR, MaxMin, andMinMin. Obtained results assured that introduced ANN-LB algo-
rithm has achieved 16%, 28%, 28%, and 52% less MakeSpan than CM-eFCFS, RR,
MaxMin, and MinMin, respectively.

Transmission Time (TXT) is the time utilized to transfer the ith task (ti) on VMj. It
is the ratio of ith task size and jth VM bandwidth. TXT is calculated using Eq. (27).

TXT = Sizei
BWj

(27)

Fig. 1 Calculated
MakeSpan for different
algorithms

0.00

5.00

10.00

15.00

20.00

25.00

CM-eFCFS RR MaxMin MinMin ANN-LB

M
ak

es
pa

n(
Se

c.
)

Algorithms

VM=510 15

Artificial Neural Network Based Load Balancing … 213

Fig. 2 Analysis on
transmission time

0.00

5.00

10.00

15.00

20.00

25.00

30.00

CM-eFCFS RR MaxMin MinMin ANN-LB
A

vg
. T

rn
as

m
is

si
on

 T
im

e
Algorithm

VM=510 15

where Sizei refers to the ith task size and BWj is the bandwidth of jth VM. Figure 2
clearly shows the graph representation of TXT for CM-eFCFS, RR, MaxMin, and
MinMin algorithms. The obtained result shows that the proposed algorithmmaintains
1.16, 7.04, 1.41, and 7.04% less TXT than CM-eFCFS, RR, MaxMin, and MinMin
algorithms respectively which show better result.

Average Resources Utilization (AU) shows the efficiency of the system to utilize
allocated cloud resources. Resource utilization should always be as high as possible
to reduce wastage of resources. AU of an algorithm is evaluated using Eq. (28),

AU =
∑

j∈VMs
CTj/MakeSpan × NumberofVMs (28)

Figure 3 depicts the average resource utilization (AU). The obtained results clearly
depict that ANN-LB algorithm attains higher utilizationwhich is approximately 93%
and 97% for 10 and 15 number of tasks, respectively. The obtained simulated results
are better than CM-eFCFS, RR, MaxMin, and MinMin algorithms.

Fig. 3 Comparative analysis
on average resource
utilization

0.00

0.20

0.40

0.60

0.80

1.00

1.20

CM-eFCFS RR MaxMin MinMin ANN-LB

A
vg

. R
es

ou
rc

e
U

til
iz

at
io

n(
%

)

Algorithms

VM=510 15

214 S. Negi et al.

6 Conclusion

The well responsive load-balancing technique plays the key role for a cloud comput-
ing environment that brings improvement for dynamic cloud. This paper, introduced
a hybrid approach of Artificial Neural Networking and Improved K-mean clustering-
based technique to achieve load balancing (ANN-LB). The role of BPN is to train
the system and to get an optimized load of VMs. These optimized loads of VMs
are further clustered into underloaded and overloaded. Dynamic tasks are assigned
to underload VMs using PSO-based task scheduling approach. We performed the
implementation in CloudSim tool and found that the effort has shown improvement
of cloud metric, i.e., Resource Utilization, Transmission Time and MakeSpan. The
ANN-based BPN approach has been remarkable for dynamic cloud environment. In
future, we are planning to expand the proposed work for the dynamic load balancing
by taking other performance parameters.

References

1. Sosinsky, B. (2011). Cloud computing Bible. Wiley.
2. Shabeera, T. P., Madu Kumar, S. D., Salam, M. S., & Krishnan, K. M. (2016). Optimizing VM

allocation and data placement for data-intensive applications in cloud using ACOmetaheuristic
algorithm. Engineering Science and Technology, an International Journal, 20(2), 616–628.

3. Guo, L. (2012). Task scheduling optimization in cloud computing based on heuristic algorithm.
Journal of Networks, 7(3), 547–553.

4. Choudhary, A., Govil, M. C., Shingh, G., Aawasthi, L. K., & Pilli, E. S. (2017). A critical
survey of live virtual machine migration techniques. Journal of Cloud Computing: Advances,
Systems and Application, 6(23), 1–41.

5. Li, T.,& Zhang, X. (2014). On the scheduling for adapting to dynamic changes of user task
in cloud computing environment. International Journal of Grid Distribution Computing, 7(3),
31–40.

6. Sharkh, M. A., Shami, & Ouda, A. (2017). Optimal and suboptimal resource allocation tech-
niques in cloud computing data centers. Journal of Cloud Computing: Advances, Systems and
Applications, Springer Open, 6, 1–17.

7. Zhao, T., Zhou, S., Guo, X., & Niu, Z. (2017). Task scheduling and resource allocation in
heterogeneous cloud for delay-bounded mobile edge computing. In SAC Symposium Cloud
Communications and Networking Track IEEE ICC.

8. Singh, A., Juneja, D., & Malhotra, M. (2015). Autonomous agent based load balancing algo-
rithm in cloud computing. International Conference on Advanced Technologies and applica-
tions (ICACTA), 45, 823–841.

9. Mollamotalebi, M., & Hajireza, S. (2017). Multi-objective dynamic management of virtual
machines in cloud environments. Journal of Cloud Computing: Advances, Systems and Appli-
cations, 6(16), 1–13.

10. Hamsinezhad, E., Shahbahrami, A., Hedayati, A., Zadeh, A. K., & Banirostam, H. (2013).
Presentation methods for task migration in cloud computing by combination of yu router and
post-copy. International Journal of Computer Science Issues (IJCSI), 10(1), 98–102.

11. Pop, F., Dobre, C., Cristea, V., & Besis, N. (2013). Scheduling of sporadic tasks with deadline
constrains in cloud environment. In 3rd IEEE International Conference on Advanced Informa-
tion Networking and Application (ICAINA), pp. 764–771.

Artificial Neural Network Based Load Balancing … 215

12. Xiao, Z., Song,W., & Chen, Q. (2013). Dynamic resource allocation using virtual machines for
cloud computing environment. IEEE Transaction on Parallel and Distributed Systems, 24(6),
1107–1117.

13. Katyal, M., & Mishra, A. (2013). A comparative study of load balancing algorithms in cloud
computing environment. International Journal of Distributed and Cloud Computing, 1, 5–14.

14. Li, B., Li, J., Huai, J., Wo, T., Li, Q. & Zhong, L. (2009). EnaCloud: An energy-saving appli-
cation live placement approach for cloud computing environments. International Conference
on Cloud Computing. IEEE, pp. 17–24.

15. Devi, D. C. &RhymendUthariaraj, V. (2016). Load balancing in cloud computing environment
using improvedweighted round robin algorithm for nonpreemptive dependent tasks. InHindawi
Publishing Corporation The Scientific World Journal, pp. 1–14.

	Artificial Neural Network Based Load Balancing in Cloud Environment
	1 Introduction
	2 Literature Review
	3 System Model and Proposed Work
	3.1 Artificial Neural Network Based Load Balancing (ANN-LB)

	4 Implementation
	5 Result and Discussion
	6 Conclusion
	References

