Impact of Network Load for Anomaly)
Detection in Software-Defined e
Networking

Ashish Gupta, Bharat Didwania, Gaurav Singh, Hari Prabhat Gupta,
Rahul Mishra and Tanima Dutta

Abstract Software-Defined Networking (SDN) introduces a new network paradigm
for separating the control plane and data plane. The control plane manages the packet
flow in the data plane of the network. The anomaly detection in the context of SDN
is to identify potentially harmful traffic. If an anomaly occurs because of malicious
packets in SDN, inspecting the payload of packets is an effective way to recognize
abnormal traffic. In this paper, we consider different bandwidths and topologies of the
network for the detection of an anomaly in SDN. We also evaluate the performance
of the SDN on the same network. We have implemented different tree topologies
on OpenFlow controller using Mininet network emulator. We considered OpenFlow
messages as a performance metric for evaluating the performance of the network
with different tree topologies.

Keywords Anomaly detection + Mininet network emulator * Software-defined
networking

A. Gupta - H. P. Gupta (X)) - R. Mishra - T. Dutta
Department of Computer Science and Engineering, IIT (BHU), Varanasi, India
e-mail: hariprabhat.cse @iitbhu.ac.in

A. Gupta
e-mail: ashishg.rs.cse1 6@iitbhu.ac.in

R. Mishra
e-mail: rahulmishra.rs.csel7 @iitbhu.ac.in

T. Dutta
e-mail: tanima.cse @iitbhu.ac.in
B. Didwania - G. Singh

Department of Electrical Engineering, IIT (BHU), Varanasi, India
e-mail: bharat.didwania.eee 14 @iitbhu.ac.in

G. Singh
e-mail: gaurav.singh.eee14 @iitbhu.ac.in

© Springer Nature Singapore Pte Ltd. 2020 127
M. L. Kolhe et al. (eds.), Advances in Data and Information Sciences,

Lecture Notes in Networks and Systems 94,

https://doi.org/10.1007/978-981-15-0694-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0694-9_13&domain=pdf
mailto:hariprabhat.cse@iitbhu.ac.in
mailto:ashishg.rs.cse16@iitbhu.ac.in
mailto:rahulmishra.rs.cse17@iitbhu.ac.in
mailto:tanima.cse@iitbhu.ac.in
mailto:bharat.didwania.eee14@iitbhu.ac.in
mailto:gaurav.singh.eee14@iitbhu.ac.in
https://doi.org/10.1007/978-981-15-0694-9_13

128 A. Gupta et al.

1 Introduction

Software-Defined Networking (SDN) is a mechanism of improving network effi-
ciency, management, and security by separating the control and data plane of the
network [10, 11]. In the traditional networking concept, two important functions are
as follows: first decide how to process incoming packets, e.g., to which physical port
the packets will forward, and then output the data to the predecided port. In SDN,
these two mentioned tasks are decoupled into data plane functions and control plane
functions. The separation of control plane and data plane makes a vertical decentral-
ization of the traditional network. The forwarding decision (control plane) is made
by a controller, which manages and operates a network through open interfaces. The
controller located above the data plane maintains a centralized view of the entire
network, which provides a decisive advantage over the current network architec-
tures. The logically centralized architecture supports programmability of the control
plane that allows bifurcation of control plane functionality from network devices
like routers, switches, etc., to specified controller instances running in a software as
shown in Fig. 1.

The controllers in SDN have granular control over the switches to handle data
and the ability to automatically prioritize or block certain types of packets. This
increases network efficiency without investing in expensive and application-specific
network switches. Multiple types of network technologies are designed for SDN
that can make the network more agile and flexible to support the visualization of
the server. It also supports storage infrastructure of the data center. In short, SDN
can be defined as an approach for designing, building, and managing networks that
creates a decentralization by separating the control plane from the data plane of the
network. In other words, it is the separation of the network infrastructure and the
control functions of the network.

Fig. 1 Illustration of the
SDN Architecture with _ o)
anomaly detection Application Layer é
Northbound “L° U~ U g
APL L JF P b £
CSDN mNetwork ServicesJ B
Controller > -
Control Layer (Control Plane) é
o U UL
Soutli)]());md L @... | é;
w ‘@ g
Infrastructure Layer (Data Plane)

Impact of Network Load for Anomaly Detection in Software-Defined Networking 129

Figure 1 shows that the control plane act as a middleware between the network
devices at the bottom and the network applications at the top. In SDN, flow manage-
ment is a crucial task for making the network intelligent. The network intelligence
by controlling the flows in the network is provided by the brain of the network, i.e.,
controllers. The switches and routers in SDN are not provided with any intelligence
and they therefore simply accept rules from the controller for forwarding the packets.
SDN mainly uses two interfaces, i.e., southbound and northbound interfaces. The
southbound interface is used to pass information from the SDN controller to routers
and switches. Similarly, the northbound interface is used to relay information from
the SDN controller to applications and services that are running over the network.
OpenFlow is a protocol used in SDN for providing centralized control functionality
to the switches and traffic flows in a given network.

The growing popularity and recent advancements in SDN enable the inclusion of
management plane along with control and data planes. The software services that
can help in remotely monitoring and configuring the controller function are part of
the management plane. It includes the definition of the policies of the network and
its execution on the control plane, where data is forwarded by the data plane.

With the invention of the SDN, there is an architectural and structural modification
in the traditional network. The logical centralization of SDN helps in dynamically
adjusting the data traffic from a single point of control, i.e., controller. In SDN,
the single point control is beneficial in providing the vertical decentralization of
network and increasing the network efficiency but it is a vulnerable point for attack.
The person who can get the access of the controller can demolish the entire network
performance.

The intrusion detection in SDN is one of the critical attacks where less attention
from the researcher is paid despite a huge amount of work done in the area of
Openflow. The work emphasized on anomaly detection in SDN is covered in [4, 6,
7, 12]. In [4], the authors have used the Openflow architecture for detecting DDoS
attack. In [12], the authors used various anomaly detection algorithms in experiments,
where the algorithm was validated in both Small Office/Home Office (SOHO) and
purely home networks. In [5, 6], the authors have used the OpenFlow protocol for
enhancing the Remote Triggered Black Hole (RTBH) routing approach such that it
can help to overcome the DDoS attack. The authors in [16] proposed an algorithm that
is capable of dynamically changing the measurement granularity in both spatial and
temporal dimensions for balancing the trade-off between error monitoring overhead
and accuracy of anomaly detection. The author in [15] has elaborated attack scenarios
and implementing them as SDN applications. They have used machine learning
algorithms that are evaluated for their aptitude to detect anomalies in the SDN control
plane.

e OUR CONTRIBUTIONS: In this paper, we consider different bandwidth of the net-
work for detection of an anomaly in SDN. We also evaluate the performance of the
SDN on the same network with different tree topologies. We have implemented
tree topology on the OpenFlow controller using Mininet network emulator. We

130 A. Gupta et al.

considered OpenFlow messages as performance metrics for evaluating the perfor-
mance of the network with different tree topologies.

The rest of the paper is organized as follows: In the next section, we discuss
anomaly detection approaches in SDN. The experiment parameters, performance
metrics, and results are given in Sects. 3 and 4 conclude this paper.

2 Anomaly Detection

The aim of the anomaly detection technique is to identify potentially harmful traffic
in the computer network. Anomalies in the computer network are defined as the
patterns in data that do not resemble a well-defined notion of normal traffic flow in
the network [8, 9, 13, 15]. If an anomaly occurs because of malicious packets (e.g.,
originating from malware), inspecting the packet’s payload is an effective way to rec-
ognize abnormal traffic. Two types of payload-based classifiers exist—Deep Packet
Inspection (DPI) and Stochastic Packet Inspection (SPI). These methods provide very
accurate results; however, the computational costs are high. Thus, approaches that
merely need header fields instead of packet payload are required. However, building
a strict model which is able to isolate the normal network traffic is very difficult.
Hence, detecting anomalies in network traffic is a complex task. Traffic classification
can also be employed to detect anomalies in a network.

In this paper, we are using rule-based traffic filtering as a subset of common
protocols. We consider that the packet which has to pass through the centralized
SDN controller must satisfy at least one filtering rule. In the case of filtering rule
satisfaction, the flows are installed on the data plane. These installed rules help
in packet forwarding inside the network in the future course of action without any
involvement of the controller. In our experiment, we include non-IP packets and TCP
packets. The controller computes an anomaly count based upon the arrival pattern
of each byte of the data packet in the network. A predefined threshold is calculated
for matching each packet against it. If the frequency of arrival of the packet is more
than the threshold, then it is declared as an anomaly. Figure 1 illustrates a packet
passing through the SDN controller. The anomaly detection process works with the
SDN controller. The packet flows in the switch if the anomaly detection conditions
are satisfied.

3 Experimental Results

In SDN, various types of OpenFlow messages have different impacts on user traffic.
The accuracy and granularity of network flow measurement play an important role in
anomaly detection in a network. In this paper, we investigate an easier and effective
mechanism for implementing SDN in Mininet.

Impact of Network Load for Anomaly Detection in Software-Defined Networking 131

3.1 Experimental Setup on Mininet

In the proposed anomaly detection method, we used Mininet network emulator ver-
sion 2.2.1 for creating network topologies in SDN [1]. Mininet is written in Python
programming language and creates Open vSwitch version 2.0.2. We used POX con-
troller that is a Python programming language based open source SDN controller.
We created three tree topologies on Mininet. The first topology (Topology 1) consists
of two OpenFlow virtual switches, two hosts, and a controller. The second topology
(Topology 2) consists of three OpenFlow virtual switches, six hosts, and a controller.
The third topology (Topology 3) consists of three OpenFlow virtual switches, four
hosts, and a controller. Figure 2 illustrates all three topologies. The controller was
made to run on a separate Internet Protocol (IP) address to avoid unnecessary traffic
and for the proper capture of OpenFlow messages. We used Wireshark for capturing
the traffic.

Fig. 2 Illustration of
different tree topologies that | Controller (C0) |

are considered for
experimentation Switch (S1) Switch (S2)

Host (H1) Host (H2)
(a) Topology 1

| Controller (CO) |

l
Host (H6) 4| Switch (S1) ost (H5) |

[Switch (S2) | [Switch (S3) |

Host (H1) | [Host (H2) | Host (H3) | Host (H4) |
(b) Topology 2

| Controller (C0) |

[Switch (S2) | [Switch (S3) |

Host (H1) | [Host (H3) | Host (H2) | Host (H4) |
(c) Topology 3

132 A. Gupta et al.

3.2 Dataset and Traffic Generation

We are using CAIDA dataset [14] in order to generate network traffic that aims to
evaluate our anomaly detection method. Since the dataset size was huge, we split
the dataset into smaller files using Wireshark. We replaced the IP addresses in
the dataset with the IP addresses of the hosts in Mininet topology using bittwiste.
The dataset was replayed using tcpreplay [3] at different speeds in mbps. In order
to delete the flow tables of the switches after each and every packet, we modified
the POX controller [2] code so that the controller may receive all the packets in
[2_learning.py.

3.3 Impact on Packet Transmission

We run tcpreplay for different speeds in packet transmission and count the number
of packets received by the controller. For anomaly detection, we have to use the
minimum possible speed of traffic in order to check all the packets. We can get
control messages for all the packets as the controller is deleting the flows after each
packet. We set the bandwidth of topology links in miniedit at different bandwidths
and calculated the number of packets received by the controller. We have considered
three topologies as shown in Fig.2. The packet dataset was replayed at different
speeds using tcpreplay. The number of packets received was determined by using
Wireshark and we observed that:

1. Below the set threshold bandwidth, the number of packets received increased by
increasing the speed of replay.

2. Above the set bandwidths, the number of received packets remained almost the
same.

We used three different topologies for analysis which were with varying depths
and complexities. The results illustrate that with the increase in the complexity of
the topology, the number of received packets also increases for the same speed of
replay. We used iperf command to cross-check whether the bandwidths were set
with accuracy.

Figure 3 illustrates the impact of the network topologies (Topology 1, Topology 2,
and Topology 3) and network speed on the OpenFlow messages. Part (a) and Part (b)
of Fig. 3 illustrate that the OpenFlow messages count increases with an increase in
the network data flow speed. The figure shows that Topology 1 requires less number
of messages than Topology 3. This is because Topology 1 consists of less number
of switches. The figure shows that the low network speed requires less number of
OpenFlow messages. An interesting observation from the results is that less number
of switches (i.e., Topology 1) require less OpenFlow messages and therefore the time
complexity of anomaly detection will decrease.

Impact of Network Load for Anomaly Detection in Software-Defined Networking 133

Fig. 3 Impact of network
topologies and speed on the
OpenFlow messages

No. of Open Flow messages

No. of Open Flow messages

60
50
40
30
20
10

0

60
50
40
30
20
10

Tépologyl TRXRRA
Topology 2 Zmaes
Topology 3 mmmmmm

o]
0%

o

<X

{o3
3

2

0

7%
<

TR

]

0

o

3%

ERSERIE
X
KX

2
&:«‘ 5,

%
SR
2

50

oz

%%
0%

0%
0%

%

X

ORI

2
%

A

%S
RS
SR

12

>

=

S
O e R R R AT

< x X

358

5
Speed of traffic replay (in Mbps)

(a) Network Speed 6Mbps.

—_
(=}

Tc‘)pologyl RS
Topology 2 &aassd
Topology 3 mwm

e

0

%

K
SRS

5

K

QR

m'v
OB CA S

503

P

® (50
P S

o 528

0 5%

5 2255

00 o5
o <

S RS,

Speed of traffic replay (in Mbps)
(b) Network Speed 3Mbps.

4 Conclusion and Future Work

In this paper, we considered different network topologies to evaluate the perfor-
mance of SDN. We have implemented the topologies on OpenFlow controller using
the Mininet network emulator. We implemented the anomaly detection process on
OpenFlow SDN controller. The process is written in Python programming language.
We have used a standard database to evaluate the performance of SDN. We con-
sidered OpenFlow messages as performance metrics for evaluating the performance
of the network. The results show that the number of OpenFlow messages increases
with the speed of the network. We also observed that the network topology plays an
important role in improving the performance of SDN. As a future work, we plan to
detect anomalous packets by implementing machine learning algorithms in the SDN
controllers. We will train our model on network dataset and merge this model with

an SDN controller.

Acknowledgements This work is supported by the Science and Engineering Research Board
(SERB) file number ECR/2016/000406/ES, project entitled as Development of an Energy-efficient
Wireless Sensor Network for Precision Agriculture, and scheme Early Career Research Award.

134

A. Gupta et al.

References

BN =

10.

11.

12.

15.

16.

. (2016) Mininet: An Instant Virtual Network on yout Laptop. http://mininet.org.

. (2016) POX: An Openflow controller. http://www.noxrepo.org/pox/about-po.

. AppNeta. (2016). Tcpreplay. http://tcpreplay.synfin.net.

. Braga, R., Mota, E., & Passito. A. (2010). Lightweight DDoS flooding attack detection using

NOX/OpenFlow. In Proceedings of IEEE Conference on Local Computer Networks (LCN), pp.
408-415.

. Giotis, K., Androulidakis, G., & Maglaris, V. (2014). Leveraging SDN for efficient anomaly

detection and mitigation on legacy networks. In Proceedings of European Workshop on Software
Defined Networks, pp. 85-90.

. Giotis, K., Argyropoulos, C., Androulidakis, G., Kalogeras, D., & Maglaris, V. (2014). Com-

bining OpenFlow and sFlow for an effective and scalable anomaly detection and mitigation
mechanism on SDN environments. Computer Networks, 62, 122—136.

. Gupta, H. P, Rao, S. V., & Tamarapalli, V. (2015). Analysis of stochastic k-coverage and

connectivity in sensor networks with boundary deployment. IEEE Transactions on Intelligent
Transportation Systems, 16(4), 1861-1871.

. Gupta, H. P, Rao, S. V., & Venkatesh, T. (2016). Sleep scheduling protocol for k-coverage of

three-dimensional heterogeneous wsns. IEEE Transactions on Vehicular Technology, 65(10),
8423-8431.

. Gupta, H. P, Venkatesh, T., Rao, S. V., Dutta, T., & Iyer, R. R. (2017). Analysis of cover-

age under border effects in three-dimensional mobile sensor networks. IEEE Transactions on
Mobile Computing, 16(9), 2436-2449.

Lange, S., et al. (2015). Heuristic approaches to the controller placement problem in large scale
sdn networks. IEEE Transactions on Network and Service Management, 12(1), 4-17.

Lopes, F. A., Santos, M., Fidalgo, R., & Fernandes, S. (2016). A software engineering perspec-
tive on sdn programmability. I[EEE Communications Surveys Tutorials, 18(2), 1255-1272.
Mehdi, S. A., Khalid, J., & Khayam, S. A. (2011). Revisiting traffic anomaly detection using
software defined networking. I: Proceedings of International Symposium on Recent Advances
in Intrusion Detection (RAID), Springer Berlin Heidelberg, pp. 161-180.

. Prabhu, G., & Jagatheesan, S. (2018) An efficient predictive network anamoly detection and

visualization. International Journal of Engineering Science, 16651.

. Singh, K. J., Thongam, K., & De, T. (2018). Detection and differentiation of application layer

ddos attack from flash events using fuzzy-ga computation. IET Information Security, 12(6),
502-512.

Sommer, V. (2014). Anomaly detection in the SDN control plane. Master’s thesis, Technische
Universitit Miinchen.

Zhang, Y. (2013). An adaptive flow counting method for anomaly detection in SDN. In Pro-
ceedings of ACM Conference on Emerging Networking Experiments and Technologies, pp.
25-30.

http://mininet.org
http://www.noxrepo.org/pox/about-po
http://tcpreplay.synfin.net

	Impact of Network Load for Anomaly Detection in Software-Defined Networking
	1 Introduction
	2 Anomaly Detection
	3 Experimental Results
	3.1 Experimental Setup on Mininet
	3.2 Dataset and Traffic Generation
	3.3 Impact on Packet Transmission

	4 Conclusion and Future Work
	References

