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Abstract Recent progress in sequencing technologies facilitates plant science
experiments through the availability of genome and transcriptome sequences.
Genome assemblies provide details about genes, transposable elements, and the gen-
eral genome structure. The availability of a reference genome sequence for a species
enables and supports numerous wet lab analyses and comprehensive bioinformatic
investigations e.g. genome-wide investigations of gene families. After generating a
genome sequence, gene prediction and the generation of functional annotations are
the major challenges. Although these methods were improved substantially over
the last years, incorporation of external hints like RNA-Seq reads is beneficial.
Once a high-quality sequence and annotation is available for a species, diversity
between accessions can be assessed by re-sequencing. This helps in revealing sin-
gle nucleotide variants, insertions and deletions, and larger structural variants like
inversions and transpositions. Identification of these variants requires sophisticated
bioinformatic tools and many of them were developed during past years. Sequence
variants can be harnessed for the genetic mapping of traits. Several mapping-by-
sequencing approaches were developed to find underlying genes for relevant traits
in crops. These genomic approaches are complemented by various transcriptomic
methods dominated by a very popular RNA-Seq technology. Transcript abundance
is measured via sequencing of the corresponding cDNA molecules. RNA-Seq reads
can be subjected to transcriptome assembly or gene expression analysis, e.g. for
the identification of transcripts abundance between different tissues, conditions, or
genotypes.
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19.1 Introduction

The genome of an organism determines its phenotype by setting the range of vari-
ability for numerous traits. Environmental factors shape the phenotype within this
predetermined range. Knowledge about the genome and genes of a species facilitates
various biological research projects. Research on Arabidopsis thaliana (A. thaliana)
Columbia–0 was boosted by the availability of the first plant genome sequence
(Somssich 2018). The transcriptome of an organism reveals which parts of the
genome are ‘active’ at a certain point in time, under specific conditions, and in a
defined cell type. Since the nucleic acid types DNA and RNA have very similar
biochemical properties, the investigation of genome and transcriptome can be per-
formed by similar methods. Both omics layers, genomics and transcriptomics, are
easily accessible by analytic methods, because general biochemical properties of
these nucleic acids are independent from the actual sequence. The intention of this
chapter is (1) to describe genomics and transcriptomics workflows which are com-
monly used in plant research, and (2) to list frequently deployed bioinformatic tools
for the analysis steps (Fig. 19.1).

19.2 Sequencing Technologies

Existing sequencing technologies can be grouped into different generations based
on their key properties. However, there is disagreement in the literature about this
classification system and the assignment of technologies to different generations
(Metzker 2010; Shendure et al. 2004; Shendure and Ji 2008; Schadt et al. 2010;
Glenn 2011; Quail et al. 2012; Goodwin et al. 2016; Peterson and Arick 2018). Here,
we distinguish between three generations: (I) Sanger chain termination sequenc-
ing and Maxam Gilbert sequencing as first generation sequencing technologies,
(II) Roche/454 pyrosequencing, IonTorrent, Solexa/Illumina, and Beijing Genomics
Institute (BGI) sequencing as second generation sequencing technologies, and (III)
Single molecule real time sequencing (Pacific Biosciences, PacBio) and nanopore
sequencing (Oxford Nanopore Technologies, ONT) as third generation sequencing
technologies. Technical details of these sequencing technologies were reviewed else-
where (Metzker 2009, 2010; Shendure and Ji 2008; Quail et al. 2012; Goodwin et al.
2016; Margulies et al. 2005; Mardis 2008a).

Since the invention of chain termination sequencing (Sanger and Coulson 1975;
Sanger et al. 1977), substantial technological advances paved the way for cost reduc-
tions. Therefore, broad application of high throughput sequencing (Metzker 2010)
and more recently long read sequencing technologies (Li et al. 2017) became possi-
ble. Sanger sequencing generates a single read per sample, while other technologies
produce large amounts of reads per sample and are hence crucial for many genome
sequencing projects. Length of reads produced from Roche 454 pyrosequencing and
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Fig. 19.1 Selected genomics and transcriptomicsworkflows in plant sciences. Theseworkflows
are deployed in many studies in plant research and the listed tools can be applied to perform the
displayed steps. Several alternative and additional tools are listed within this chapter
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IonTorrent is comparable to Sanger sequencing, but have reduced accuracy. Never-
theless, Illumina has been dominating the market for high throughput sequencing
with substantially shorter reads due to high accuracy and low costs of sequencing
technology. The BGI became a serious competitor during past years and is now
offering the generation of similar sequencing data-sets based on its own technolo-
gies. While Illumina sequencing platforms are distributed all around the globe, BGI
sequencing technology is exclusively available in China.

Paired-end sequencing provides the opportunity to analyze two ends of the same
molecule. Overlapping reads; e.g. 2 × 300 nt, can be merged, thus leading to a total
length of up to <600 nt. Sophisticated approaches like TrueSeq synthetic long reads
(McCoy et al. 2014) were developed to maximize the read length of second gen-
eration technologies up to several thousand nucleotides. Mate pair reads provide
information about the distance of both reads in addition to the mere sequences of
both reads. In mate pair sequencing technique, long DNA fragments are modified
at their ends, circularized, and fragmented. Fragments with marks are enriched and
finally sequenced as paired-end libraries. The size of the initial fragments determines
the distance of the two generated reads and can thus be considered as valuable linkage
information during genome assembly processes.

However, length of reads generated frommate-pair sequencing is inferior to those
generated by Oxford Nanopore Technologies (ONT) and Pacific Biosciences. From
ONT, the longest sequenced DNA molecule has been reported to be over 2 Mbp till
date (Payne et al. 2018) and the longest single read is close to 1Mbp (Jain et al. 2018).
Dropping sequencing costs and the rise of long read technologies enabled sequencing
projects for numerous plant species (Bolger et al. 2014a; Jiao and Schneeberger 2017;
Chen et al. 2018). Nevertheless, short reads are still valuable in projects; e.g. RNA-
Seq or re-sequencing projects, where a high number of tags is more important than
the read length.

In addition to generating extremely long reads at low costs, ONT also provides
the first portable sequencers, namely MinION and Flongel, that can be deployed in
field applications (Tyler et al. 2018; Pomerantz et al. 2018). Sequencing in the field
opens up opportunities, to monitor pathogens in the field accurately (Hu et al. 2019)
and to assess the biodiversity (Pomerantz et al. 2018). Real time base calling and the
start of downstream analysis before completion of a sequencing run are beneficial
when decisions are time critical (Stoiber and Brown 2017). Moreover, it also allows
researchers to stop the sequencing process once sufficient data is generated and to
commit the remaining sequencing capacity to other projects (Nguyen et al. 2017).

19.3 Genomics

19.3.1 Genome Assembly

Quality control and preprocessing Quality checks via FastQC (Andrews 2010)
or MultiQC (Ewels et al. 2016) are usually the first steps to assess the quality of
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sequencing data. Next, reads need to be preprocessed prior to a de novo assembly,
while this is not necessary for other applications like read mapping. Low quality
sequences and remaining adapter fragments are removed during the trimming pro-
cess, e.g. by trimmomatic (Bolger et al. 2014b). Removal of adapter sequences is
especially important for de novo genome assemblies, because these sequences can
occur in independent reads and cause themiss-join of random sequences into contigs.

Assembly concept A read can only represent a fraction of a complete genome
sequence. Hence, intense manual work or the application of sophisticated bioin-
formatic tools is necessary to reconstruct complete genome sequences based on
sequence reads (Mardis 2008b; Chaisson et al. 2009; Myers 2016). Initial sequenc-
ing projects involved the cloning of genomic fragments into vectors like bacterial
artificial chromosomes (BACs) prior to sequencing. Genome sequences were gener-
ated by sequencing several BACs consecutively and combining the BAC sequences
almost manually.

Second generation genome assemblies Especially, the rise of high throughput
sequencing methods caused shift from manually curated BAC-based high continu-
ity genome sequences towards whole genome shotgun draft assemblies. Dedicated
assemblers were developed to harness the full potential of the available data types, for
example combinations of paired-end and mate-pair data. SOAPdenovo2 (Luo et al.
2012), ALLPATHS-LG (Gnerre et al. 2011), Platanus (Kajitani et al. 2014), and
the proprietary CLC assembler (QIAGEN 2016) are examples for tools which were
successfully deployed for the assembly of plant genomes, but there are also many
alternatives (Table 19.1). Modification of parameters, especially k-mer sizes, should
be optimized empirically (Bradnam et al. 2013; Chikhi and Medvedev 2014; Shariat
et al. 2014; Salzberg et al. 2012). In addition, the best combination of data frommul-
tiple sequencing libraries and sequencing technologies needs to be identified. After
the generation of contigs in the assembly process, the information of mate pair and
paired-end data-sets can be used to connect contigs to scaffolds without knowing the
sequence enclosed between contigs of a scaffold. While some assemblers provide
this functionality, dedicated tools like SSPACE (Boetzer et al. 2011) are available.
Next, gaps between contigs within a scaffold can be partially closed, e.g. via Gap-
Filler (Boetzer and Pirovano 2012) or Sealer (Paulino et al. 2015). The reduced
sequencing costs allowed the assembly of plant genome sequences by single groups
(Pucker et al. 2016), but most genome sequences were highly fragmented. More
recently, the proprietary NRGene assembler (DeNovoMAGICTM) and the compet-
ing open source alternative TRITEX (Monat et al. 2019) are promising substantially
improved assemblies.

Third generation genome assemblies The assembly situation changed again when
long reads became available, thus enabling the generation of high continuity genome
assemblies for numerous plant species with moderate effort (Michael et al. 2018;
Pucker et al. 2019; Copetti et al. 2017; Lightfoot et al. 2017). The technological boost
on the sequencing side caused an explosion in the development of novel assemblers
and read correction tools which can handle noisy long reads efficiently (Table 19.2).
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Table 19.1 Assembler for second generation sequencing data

Name Availability Link References

CLC Licence required https://www.
qiagenbioinformatics.
com/products/clc-main-
workbench

QIAGEN (2016)

SOAPdenovo2 Binary available https://github.com/
aquaskyline/
SOAPdenovo2

Luo et al. (2012)

Velvet Installation required https://github.com/
dzerbino/velvet

Zerbino and Birney
(2008)

ALLPATHS-LG Installation required http://software.
broadinstitute.org/
allpaths-lg/blog/?page_
id=12

Gnerre et al. (2011)

Ray Installation required http://denovoassembler.
sourceforge.net

Boisvert et al. (2010)

Newbler Installation required http://sequencing.roche.
com

Margulies et al. (2005)

MaSuRCA Installation required https://github.com/
alekseyzimin/masurca

Zimin et al. (2013)

SGA Installation required https://github.com/
jts/sga

Simpson and Durbin
(2012)

Platanus Installation required http://platanus.bio.titech.
ac.jp

Kajitani et al. (2014)

This table is an incomplete list of tools that can be applied for the de novo plant genome assembly
based on second generation sequencing data

Table 19.2 Third generation assembler

Name Availability Link References

FALCON SMRT Link https://https://pacb.www.
pacb.com/training/smrt-link-
overview

Chin et al. (2016)

Canu Installation required https://https://github.com/
marbl/canu

Koren et al. (2017)

Flye Installation required https://github.com/
fenderglass/Flye

Kolmogorov et al. (2019)

Miniasm Installation required https://github.com/lh3/
miniasm

Li (2016)

wtdbg2 Installation required https://github.com/ruanjue/
wtdbg2

Ruan and Li (2019)

This table is an incomplete list of tools that can be applied for the de novo plant genome assembly
based on third generation sequencing data

https://www.qiagenbioinformatics.com/products/clc-main-workbench
https://github.com/aquaskyline/SOAPdenovo2
https://github.com/dzerbino/velvet
http://software.broadinstitute.org/allpaths-lg/blog/%3fpage_id%3d12
http://denovoassembler.sourceforge.net
http://sequencing.roche.com
https://github.com/alekseyzimin/masurca
https://github.com/jts/sga
http://platanus.bio.titech.ac.jp
https://www.pacb.com/training/smrt-link-overview
https://github.com/fenderglass/Flye
https://github.com/fenderglass/Flye
https://github.com/lh3/miniasm
https://github.com/ruanjue/wtdbg2
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FALCON (Chin et al. 2016), Canu (Koren et al. 2017), Flye (Kolmogorov et al. 2019),
Miniasm (Li 2016), and wtdbg2 (Ruan and Li 2019) are examples for frequently
applied assemblers. Depending on the sequencing coverage and repeat content, the
computational costs of assemblies can be high. Several hundred CPU hours, some
hundred GB of RAM, and several TB of disc space are often required to assemble
plant genomes. Assembled contigs can be joined into scaffolds based on additional
information like genetic linkage (Pucker et al. 2019;Gan et al. 2016), opticalmapping
information, e.g. from Bionano Genomics and OptGen (Jiao et al. 2017; Lin et al.
2012; Tang et al. 2015), and Hi-C (Jiao et al. 2017; Burton et al. 2013; Phillippy
2017). Genetic linkage can rely on molecular markers measured in the lab (Pucker
et al. 2019) or on sequencing ofmultiple individual plants of a segregating population
by a high throughput method (Gan et al. 2016). Optical mapping is a size estimation
of large DNA fragments which are generated by enzymatic restriction digest and
cut site specific coloring with fluorescent dyes. Hi-C measures the 3D distances of
genomic loci and assumes that neighboring sequences are also likely to be co-located
in 2D.

Due to the high error rate in long reads, raw assemblies require several polishing
steps. Firstly, long reads are aligned for correction, e.g. via BLASR (Chaisson and
Tesler 2012) and minimap2 (Li 2018). Arrow (Chin et al. 2016) can be applied to
polish assemblies based on PacBio reads, while nanopolish (Loman et al. 2015) is
the best choice for ONT reads. Secondly, highly accurate short reads are mapped to
the assembly to further correct the sequence in single copy regions. Paired-end or
mate pair reads provide higher specificity during the mapping compared to single
end reads. BWA-MEM (Li 2013) is a suitable read mapping tool and Pilon (Walker
et al. 2014) can be used for the detection and correction of assembly errors. Iter-
ative rounds of correction are possible. There is still an ongoing debate about the
optimal number of polishing rounds that should be performed (Koren et al. 2017;
Vaser et al. 2017). Since the most frequent error types are insertions/deletions, open
reading frames are often affected by apparent frameshifts and premature stop codons.
Therefore, the contribution of polishing approaches can be benchmarked based on
an increase/decrease of frameshifts and premature stop codons in protein encoding
genes. The optimal number of correction rounds can be determined by minimizing
the number of these variants.

Assembly validation After combining reads into contigs, the correctness of these
connections needs to be assessed. This assembly validation can be performed by
mapping all reads back to the generated sequence, e.g. via BWA-MEM (Li 2013),
and analyzing the distances of paired reads in this mapping, e.g. via REAPR (Hunt
et al. 2013). Alternative approaches like implemented in KAT (Mapleson et al. 2017)
inspect the assembly based on included k-mers. Most genome sequencing projects
involve the generation of multiple assemblies with different tools and parameter
settings. Selection of the best assembly can be challenging and criteria depend on
the proposed research questions. The largest reasonable assembly, the assembly with
the highest continuity, or the assembly resolving the highest number of genes might
be of interest. Benchmarking Universal Single-Copy Orthologs (BUSCO) (Simão
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et al. 2015) is a frequently applied method to assess the assembly completeness
and correctness. The underlying assumption is that all benchmarking genes should
appear exactly once in the assembly. Different benchmarking sets exist for different
taxonomic groups (Kriventseva et al. 2019). Due to a large phylogenetic distance
to other sequenced species, this might not be perfectly accurate for the species of
interest. However, the detection of single copy and complete genes is a good indicator
for a high quality assembly. High numbers of duplicated BUSCOs can indicate
separated haplophases. Recently, DOGMA (Dohmen et al. 2016) was released as an
alternative tool for the analysis of sequence set completeness which also comes with
an online version (https://domainworld-services.uni-muenster.de/dogma).

19.3.2 Gene Prediction

After generation and polishing of an assembly, the prediction of genes is often the
next step. Besides protein encoding genes, there are also various RNA genes, trans-
posable element genes, and numerous repeats which should be annotated as part of a
genomeproject. In general, predictions are distinguished into (I) intrinsic approaches,
which rely only on sequence properties, and (II) extrinsic approaches, which harness
sequence similarity to previously annotated sequences to transfer annotation. How-
ever, frequently applied tools are designed to harness the power of both approaches
(Table 19.3). AUGUSTUS (Stanke et al. 2006; Hoff and Stanke 2019) andGeneMark
derivatives (Lomsadze et al. 2005, 2014; Ter-Hovhannisyan et al. 2008; Borodovsky
and Lomsadze 2011) can predict genes ab initio without any external information.
BUSCO can be applied to generate parameter files for this gene prediction process
by assessing the gene structure of BUSCO genes (Waterhouse et al. 2018). In con-
trast to these ab initio approaches, GeMoMa (Keilwagen et al. 2016, 2018) combines
external hints to construct a gene annotation based on sequence alignments. The exon
intron structure of plant genes is posing a challenge to the gene prediction process,
because tools need to account for interruptions of an open reading frame by on aver-
age four to five introns per gene (Pucker and Brockington 2018). Intron borders are
often detected based on their conserved sequences: GT at the 5′ end and AG at the
3′ end. However, an average of at least 5% of all plant genes contains non-canonical
splice sites, i.e. deviations from the GT-AG combination (Pucker and Brockington
2018; Pucker et al. 2017). Most gene prediction tools exclude non-canonical splice
sites at least in the ab initio mode, because the number of possible gene models
increases substantially when permitting many more possible intron positions. There-
fore, external hints for intron positions are crucial to achieve an accurate prediction. If
the identification of all isoforms of a gene is of interest, the accurate annotation of all
exon intron borders is especially important. Expressed sequence tags (ESTs), contigs
of a transcriptome assembly, or unassembled RNA-Seq reads can be aligned to the
genomic sequence to generate hints. These sequences should originate from a broad
range of different samples, e.g. collected under different environmental conditions,

https://domainworld-services.uni-muenster.de/dogma


19 Genomics and Transcriptomics Advance in Plant Sciences 427

Table 19.3 Plant gene prediction tools

Name Availability Link References

AUGUSTUS Installation required https://github.com/Gaius-
Augustus/Augustus

Stanke et al. (2006)

BRAKER1 Installation required https://github.com/Gaius-
Augustus/BRAKER

Hoff et al. (2016)

GeneMark Installation required http://exon.gatech.edu/
GeneMark/license_
download.cgi

Ter-Hovhannisyan et al.
(2008), Borodovsky and
Lomsadze (2011),
Lomsadze et al. (2014)

GeMoMa Jar file http://www.jstacs.de/
index.php/GeMoMa

Keilwagen et al. (2016,
2018)

Gnomon Installation required ftp://ftp.ncbi.nih.gov/
toolbox/ncbi_tools ++/
CURRENT

Souvorov et al. (2010)

MAKER2 Registration required https://www.yandell-lab.
org/software/maker.html

Holt and Yandell (2011)

SNAP Installation required https://github.com/
KorfLab/SNAP

Korf (2004)

This table is an incomplete list of tools that can be applied for gene prediction on plant genome
assemblies

from different tissues, and different developmental stages. The accurate alignment of
transcript sequences to an assembly requires dedicated tools to account for introns.
While BLAT (Kent 2002) can align long sequences, STAR (Dobin et al. 2013; Dobin
and Gingeras 2015) is well suited for the split alignment of RNA-Seq reads. Dedi-
cated tools like exonerate (Slater and Birney 2005) allow the alignment of previously
annotated peptide sequences from other species. Resulting alignments can be con-
verted into gene prediction hints. Annotation pipelines like MAKER2 (Holt and
Yandell 2011), BRAKER1 (Hoff et al. 2016), and Gnomon (Souvorov et al. 2010)
can integrate the information from different hint sources with ab initio prediction.
While the prediction of protein encoding parts of a gene works relatively well, the
annotation of untranslated regions (UTRs) and other non-coding sequences is still
associated with a higher insecurity (Pucker et al. 2017; Haas et al. 2002; Fickett
and Hatzigeorgiou 1997). Quality of the gene prediction process is in general not
keeping pace with the rapid improvement of sequencing capacities and the frequent
generation of highly contiguous assemblies (Salzberg 2019).

Technological progress allows the systematic investigation of non-protein encod-
ing genes; e.g. through RNA-Seq experiments committed to the analysis of short
RNAs. INFERNAL (Nawrocki and Eddy 2013) and tRNAscan-SE2 (Chan et al.
2019) are tools for the prediction of pure RNA genes.

Masking of repeats, e.g. via RepeatMasker (Smit et al. 2015), is frequently per-
formed prior to the prediction of protein encoding genes, but this can actually have
almost no or even detrimental effects on the prediction accuracy of certain gene fam-
ilies (Bayer et al. 2018). Although transposable elements and other repeats account

https://github.com/Gaius-Augustus/Augustus
https://github.com/Gaius-Augustus/BRAKER
http://exon.gatech.edu/GeneMark/license_download.cgi
http://www.jstacs.de/index.php/GeMoMa
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools%e2%80%89%2b%2b/CURRENT
https://www.yandell-lab.org/software/maker.html
https://github.com/KorfLab/SNAP
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for the major proportion of many plant genomes (Michael 2014; Vicient and Casacu-
berta 2017), the annotation of repeats is often performedpoorly or omitted completely
(Flutre et al. 2011; El Baidouri et al. 2015; Hoen et al. 2015). There is a plethora of
annotation tools like RepeatScout (Price et al. 2005) and RepeatMasker (Smit et al.
2015). Bioinformatic pipelines were developed to account for weaknesses of single
tools and to combine the strengths of many individual tools (Estill and Bennetzen
2009; Saha et al. 2008; Bergman andQuesneville 2007). Onemajor issuewith the TE
and repeat annotation is the lack of a universal benchmarking study which could hint
to the best tool for certain purposes (Hoen et al. 2015; Lerat 2010). While the anno-
tation of protein encoding genes can be checked for completeness based on BUSCO
(Simão et al. 2015) and DOGMA (Dohmen et al. 2016; Kemena et al. 2019), there
is no such benchmarking data-set available for TEs.

Application examples Sequencing the genome of a plant species can provide
insights into specific adaptations to local environmental conditions. Crucihimalaya
himalaica is distributed at high altitudes at the Himalaya and the genome sequence
reveals a reduced number of pathogen response genes as well as an increased number
of DNA repair genes as response to a reduced amount of pathogens and an increased
UV exposure, respectively (Kemena et al. 2019).

19.3.3 Re-sequencing and Variant Calling

Once a suitable reference genome sequence is available, re-sequencing projects can
by-pass the laborious and expensive assembly step. Reads can be mapped to a refer-
ence sequence to identify differences between individuals of the same species or even
between closely related species. Since the re-sequencing dataset does not need to pro-
vide sufficient data for a de novo assembly, the costs for re-sequencing are low com-
pared to the initial genome project. Re-sequencing of over 1135 A. thaliana acces-
sions revealed insights into the genomic diversity of this species (Alonso-Blanco et al.
2016). Since accessions are adapted to local environmental conditions, this project
can reveal insights into adaptation mechanisms. Sequencing data also advances the
understanding of population structures, genomic diversity between accessions, and
genome evolution.

BWA-MEM (Li 2013) and bowtie2 (Langmead and Salzberg 2012) are frequently
applied tools for the mapping of reads to a reference sequence (Table 19.4). The
removal of PCR duplicates is necessary to avoid introducing a bias into following
coverage analyses or variant callings. PCR duplicates are reads originating from a
DNA fragment, which was amplified by PCR during the sequencing library prepa-
ration step. Functions like MarkDuplicates of Picard tools (Broad Institute 2019)
allow the identification and removal of reads or read pairs originating from identical
PCR products. This removal can be based on identical read sequences or identical
positions in the mapping to a reference sequence. The detection of copy number
variations depends on the equal representation of all genomic parts in the reads. PCR
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Table 19.4 Read mapping tools

Name Availability Link DNA/RNA References

BWA-MEM Installation
required

https://github.com/
lh3/bwa

DNA Li (2013)

Bowtie 2 Installation
required

https://github.com/
BenLangmead/
bowtie2

DNA Langmead and
Salzberg (2012)

GEM 3 Installation
required

https://github.com/
smarco/gem3-
mapper

DNA Marco-Sola et al.
(2012)

bbmap Jar file available https://sourceforge.
net/projects/bbmap

DNA Bushnell (2019)

Novoalign Trial available http://www.
novocraft.com/
products/novoalign

DNA NovoCraft (2010)

NextGenMap Installation
required

https://github.com/
Cibiv/
NextGenMap

DNA Sedlazeck et al.
(2013)

MAQ Installation
required

http://maq.
sourceforge.net/
maq-man.shtml

DNA Li (2019)

RMAP Installation
required

https://github.com/
smithlabcode/rmap

DNA Smith et al. (2009)

MOSAIK Installation
required

https://github.com/
wanpinglee/
MOSAIK

DNA Lee et al. (2014)

segemehl Installation
required

https://www.bioinf.
uni-leipzig.de/
Software/segemehl

RNA Hoffmann et al.
(2009)

STAR Installation
required

https://github.com/
alexdobin/STAR

RNA Dobin et al. (2013)

HISAT2 Binary available https://ccb.jhu.edu/
software/hisat2/
manual.shtml

RNA Kim et al. (2015)

This table is an incomplete list of tools which can be applied to map reads from second genera-
tion sequencing technologies against a reference sequence. While some tools are suitable for the
continuous alignment of DNA reads, others can generate split alignments for RNA-Seq reads

duplicates could cause the identification of false positive duplications by producing
a high numbers of identical reads which could display an apparent variant caused by
a PCR error in an early amplification step. The identification of sequence variants is
sensitive to PCR duplicates, because a certain number of reads displaying a variant
is frequently used as filter criteria to remove false positive variant calls.

There are numerous tools for the detection of genomic differences based on a
short read mapping (Table 19.5). Genome Analysis Tool Kit (GATK) (McKenna
et al. 2010; der Auwera et al. 2013), samtools/bcftools (Li et al. 2009a), and VarDict

https://github.com/lh3/bwa
https://github.com/BenLangmead/bowtie2
https://github.com/smarco/gem3-mapper
https://sourceforge.net/projects/bbmap
http://www.novocraft.com/products/novoalign
https://github.com/Cibiv/NextGenMap
http://maq.sourceforge.net/maq-man.shtml
https://github.com/smithlabcode/rmap
https://github.com/wanpinglee/MOSAIK
https://www.bioinf.uni-leipzig.de/Software/segemehl
https://github.com/alexdobin/STAR
https://ccb.jhu.edu/software/hisat2/manual.shtml
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Table 19.5 Variant callers

Name Availability Link Variants References

DeepVariant Installation required https://github.com/
google/deepvariant

Small Poplin et al. (2018)

GATK Jar file https://software.
broadinstitute.org/
gatk/download

Small McKenna et al.
(2010), der Auwera
et al. (2013)

SNVer Installation required http://snver.
sourceforge.net

Small Wei et al. (2011)

SAMtools Jar file http://samtools.
sourceforge.net

Small Li et al. (2009a)

VarDict Installation required https://github.com/
AstraZeneca-NGS/
VarDict

Small Lai et al. (2016)

VarScan 2 Jar file http://varscan.
sourceforge.net

Small Koboldt et al. (2012)

LoFreq Binary available https://csb5.github.
io/lofreq/installation

Small Wilm et al. (2012)

Platypus Installation required https://github.com/
andyrimmer/
Platypus

Small Rimmer et al. (2014)

SOAPsnp Installation required https://sourceforge.
net/projects/soapsnp

Small Li et al. (2009b)

Atlas-SNP2 Installation required https://sourceforge.
net/projects/atlas2

Small Shen et al. (2010)

FreeBayes Installation required https://github.com/
ekg/freebayes

Small Garrison and Marth
(2012)

SVIM Installation required https://github.com/
eldariont/svim

Large Heller and Vingron
(2018)

marginAlign Installation required https://github.com/
benedictpaten/
marginAlign

Large Jain et al. (2015)

GraphMap Installation required https://github.com/
isovic/graphmap

Large Sović et al. (2016)

PoreSeq Installation required https://github.com/
tszalay/poreseq

Large Szalay and
Golovchenko (2015)

This table is an incomplete list of tools which can be applied to identify sequence variants based
on reads mapped against a reference sequence. While some tools are restricted to the identification
of small variants, other can detect large structural variants

https://github.com/google/deepvariant
https://software.broadinstitute.org/gatk/download
http://snver.sourceforge.net
http://samtools.sourceforge.net
https://github.com/AstraZeneca-NGS/VarDict
http://varscan.sourceforge.net
https://csb5.github.io/lofreq/installation
https://github.com/andyrimmer/Platypus
https://sourceforge.net/projects/soapsnp
https://sourceforge.net/projects/atlas2
https://github.com/ekg/freebayes
https://github.com/eldariont/svim
https://github.com/benedictpaten/marginAlign
https://github.com/isovic/graphmap
https://github.com/tszalay/poreseq
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(Lai et al. 2016) can detect single nucleotide variations (SNVs) and small inser-
tions/deletions (InDels). The rise of long read sequencing technologies added sub-
stantially to the sensitivity of the insertion/deletion detection. Moreover, it allows
the identification of large scale structural rearrangements. GraphMap (Sović et al.
2016), marginAlign (Jain et al. 2015), and PoreSeq (Szalay and Golovchenko 2015)
can align long reads to a reference sequence to call variants. Other tools like SVIM
(Heller and Vingron 2018) rely on alignments generated by dedicated long read
aligners like minimap2 (Li 2018) or BLASR (Chaisson and Tesler 2012). Identi-
fied variants can be subjected to downstream filtering; e.g. based on the number of
supporting and contradicting reads.

Once the variants are identified, it is possible to assign functional annotations.
Established tools for this purpose are SnpEff (Cingolani et al. 2012) and ANNOVAR
(Wang et al. 2010). Based on the structural annotation of the reference sequence,
SnpEff and ANNOVAR assign functional implications like “premature stop codon”
or “frameshift” to single variants. Since these tools are predicting the effect for a sin-
gle variant at a time, NAVIP (Baasner et al. 2019) was developed for the integrated
annotation of all variants within one coding sequence. NAVIP accounts for com-
bined effects of neighboring variants, e.g. two short InDels which are both causing a
frameshift on their own, but result in a few substituted amino acids when considered
together.

19.3.4 Mapping by Sequencing

Forward genetics Forward genetics describes the genetic screening of mutants
which have been isolated based on an outstanding phenotype (Schneeberger 2014).
Crossing a mutant with a wild type plant and selfing of the F1 offspring leads to a
segregating F2 population. A large segregating population forms the basis for a for-
ward genetics screen. Such a population contains members with the wild-type and
mutant phenotypes, respectively. Except for the causal locus, the genotypes of this
population should display a random distribution of alleles. Since this population is
used for genetic mapping, it is called a mapping population. Genetic markers located
near the causal mutation will co-segregate with this mutation. As a result of this
linkage between the causal locus and flanking markers, one allele of the flanking
markers should be over-represented in the mutant plants. Due to a gradually decreas-
ing linkage, the frequency of the coupled marker allele should drop when moving
away from the causal locus. Therefore, the allele frequency can be used to pinpoint
loci of interest. Originally, the identification of the location of the causal mutation in
the genome of a mutant has been a long-lasting procedure requiring a high number of
genetic markers. Once a target region has been identified, this region was screened
for candidate genes. In order to validate the link between the assumed candidate
gene and the expected phenotype, complementation experiments were frequently
conducted. In following studies, the molecular function of the mutated gene was
often elucidated.
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Next generation forward genetics Technological advances in next generation
sequencing enable the use of small sequence variants as genetic markers. Since these
small sequence variants occur in large numbers, the resolution of the resulting genetic
map is extremely high. Allele frequencies at all sequence variants are calculated for
identification of genomic regions associated with the phenotype of interest (Garcia
et al. 2016). First approaches used bulk segregant analysis (BSA), where DNA from
the mapping population is pooled based on the phenotypes of individuals and then
sequenced, i.e. one pool comprises the wild type allele of a certain locus and the
other pool the mutant allele of the respective locus. Next, reads are mapped against
a reference genome sequence to detect sequence variants. In the next step, allele fre-
quencies for all small sequence variants are calculated. High allele frequencies can
indicate linkage with the causal locus. This approach is also known as mapping-by-
sequencing (MBS) and allows the fast and simple identification of causal mutations
through allele frequency deviations (Schneeberger 2014).

Mutagenesis Natural variation can provide mutants, but it is also possible to gener-
ate mutant plants via mutagenesis. DNA damaging agents deployed in these muta-
genesis experiments can be classified as physical mutagens (e.g. gamma radiation
and fast neutron bombardment) or chemical mutagens (e.g. ethyl methanesulfonate,
diepoxybutane, sodium azide) (Sikora et al. 2011). In order to achieve maximal
genetic variation with a minimum decrease in viability, mutagenic dosage and spe-
cific properties of the mutagen need to be considered (Sikora et al. 2011). High
mutagenic dosages likely result in a high number of mutations in the individual
genome, thus the high diversity around a causal mutation might impede the identifi-
cation (Schneeberger 2014). If a mutagen introduces large genomic rearrangements
(e.g. deletions or translocation of large regions), the resulting mutation density is
typically low compared to a mutagen, which causes predominantly single nucleotide
variations. Furthermore, large genomic rearrangementsmight impede or even prevent
the identification of the causal mutation by breaking apart a set of linked genes.

Biological material Mapping-by-sequencing (MBS) can be based on four different
sets of biological material. A classical mapping population scheme was frequently
used during the first MBS experiments. This involved outcrossing of mutagenized
plants with diverged strains followed by one round of selfing to generate the map-
ping population (Schneeberger et al. 2009; Cuperus et al. 2010). Sequencing was
performed on two genomic F2 pools of mutant and wildtype plants, respectively.
Starting with A. thaliana, this method was rapidly applied to other model organisms
(Wenger et al. 2010; Leshchiner et al. 2012). An isogenic population is generated
by crossing homozygous mutants with the non-mutagenized progenitor, resulting
in segregation of subtle phenotypic differences in the F2 population (Abe et al.
2012). Therefore, the only segregating genetic variation is that induced by muta-
gens. MBS is performed as described above. Homozygosity mapping uses only the
genomes of affected individuals, originally in the context of recessive disease alleles
in inbred humans (Lander andBotstein 1987). In order to identify the causal homozy-
gous mutation, the genomes are screened for regions with low heterozygosity. This
approach enables MBS for species where a generation of a mapping population is
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not feasible (Lander and Botstein 1987; Singh et al. 2013) and no prior knowledge
about the parental alleles (Voz et al. 2012) or crossing history is needed (Bowen
et al. 2012). Sequencing of individual mutant genomes (Schneeberger 2014) is an
expensive, but even more powerful approach. Phenotyping errors can contaminate
pools in MBS, but this approach allows an in silico pooling.

Resolution and accuracy In general, correct phenotyping of each individual of the
mapping population is essential for the accuracy of MBS approaches. Contamina-
tion of the mapping population with incorrectly phenotyped individuals results in a
larger mapping interval, thus complicating the identification of the causal mutation
(Greenberg et al. 2011). Therefore, the resolution of MBS depends on the sampling
size of correctly phenotyped and genotyped individuals in the mapping population
(Schneeberger 2014). However, the resolution is only slightly affected by the number
of backcrossed generations (James et al. 2013). As with conventional methods (e.g.
classic genetic markers), re-sequencing data can be used to fine map the trait(s) of
interest in a crossing population (Schneeberger and Weigel 2011). The higher the
number of recombinants analyzed, the narrower the final mapping interval. All vari-
ants can be considered as markers and thus the variant with the closest link to the trait
hints towards the genomic position of the underlying locus. Due to the high marker
density derived from natural polymorphisms in the recombinant mapping popula-
tion, a stringent marker selection decreases the number of false-positive markers.
However, at the same time the risk of excluding causal mutations increases, leading
to a critical trade-off.

Mapping-by-sequencing applications SHOREmap demonstrated the applicability
of MBS in A. thaliana (Schneeberger 2014; Schneeberger et al. 2009). Following
projects applied MBS to various crop species including sugar beet (Ries et al. 2016),
rice (Abe et al. 2012), maize (Liu et al. 2012), barley (Mascher et al. 2014), and
cotton (Chen et al. 2015). Liu et al. applied a modification of MBS to maize for the
identification of a drought tolerance locus: BSR-Seq (Liu et al. 2012). BSR-Seq uses
RNA-Seq reads for the identification of causal mutations without any prior knowl-
edge about polymorphic markers. As a proof of concept, RNA-Seq was performed
for the recessive glossy3 (gl3) mutation in a segregating F2 population. The gl3 gene
encodes a putative R2R3 type myb transcription factor, which regulates the biosyn-
thesis of very-long-chain fatty acids, which are precursors of epicuticular waxes.
Rice seedlings lacking glossy3 show an extremely thick epicuticular wax on juve-
nile leaves. By using this alternative MBS approach the gl3 locus was mapped to an
interval of approximately 2 Mb. In summary, mapping-by-sequencing is a powerful
technique, which will lead to (crop) plants that are well adapted to biotic and abiotic
stresses in the future.
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19.4 Transcriptomics

19.4.1 RNA-Seq

RNA-Seq, the sequencing of cDNAs, emerged as a valuable method for (1) gene
expression analysis, (2) de novo transcriptome assembly, and (3) the generation of
hints for the gene annotation. The Illumina sequencing workflow of cDNA is very
similar to the sequencing of genomic DNA. Besides RNA-Seq, the direct sequencing
of RNA became broadly available with ONT sequencing (Garalde et al. 2018). In
addition, PacBio provides Iso-Seq to reveal the sequence of full length transcripts,
which can facilitate gene annotation in plants (Minoche et al. 2015).

Gene expression analysis Short RNA-Seq reads replaced previous methods for
systematic gene expression analyses like microarrays almost completely (Wang et al.
2009; Nagalakshmi et al. 2008; Mortazavi et al. 2008). Without any prior knowledge
about the sequence, the abundance of transcripts can be quantified (Wang et al.
2009; Cheng et al. 2017a, b), e.g. by generating a de novo transcriptome assembly
based on the RNA-Seq reads (see below) (Haak et al. 2018; Müller et al. 2017).
RNA-Seq even allows to distinguish between different transcript isoforms of the
same gene (Wang et al. 2009; Cheng et al. 2017a, b). Saturation of the signal as
observed for microarrays is no longer an issue as the number of reads is proportional
to the transcript abundance (Wang et al. 2009;Mortazavi et al. 2008). Low amounts of
samples can be analyzed and transcripts with low abundance can be detected, because
a single read would be sufficient to reveal the presence of a certain transcript (Wang
et al. 2009; Hayashi et al. 2018). Transcript quantification can be performed based
on alignments against a reference sequence, e.g. using STAR (Dobin et al. 2013), or
alignment-free, e.g. viaKallisto (Bray et al. 2016) (Table 19.6). Information about the
transcript abundance can be subjected to downstream analysis like the identification
of differentially expressed genes between samples e.g. via DESeq2 (Love et al.
2014). An alternative approach is the identification of co-expressed genes or the
construction of co-expression networks as described in (van Dam et al. 2017) and
references therein.

Denovo transcriptome assembly RNA-Seq reads contain comprehensive informa-
tion about the transcript sequences. Therefore, a de novo assembly can be generated
to reveal the sequences of transcripts present in the analyzed sample (Schliesky et al.
2012). De novo transcriptome assemblies were frequently applied to discover candi-
date genes which are responsible for a certain trait of interest (Han et al. 2017, 2018;
Wu et al. 2017). One of the most popular transcriptome assemblers is Trinity (Haas
et al. 2013) which comprises three sequentially applied modules. Trinity performs
an in silico normalization of the provided reads, i.e. identical reads are filtered out
to achieve a similar coverage depth for all transcripts. Supplying stranded RNA-Seq
reads, i.e. reads originating from a specified strand, enables to distinguish between
reads originating frommRNAs and reads originating from regulatory antisense tran-
scripts. Trinity performed well in benchmarking studies (Hölzer and Marz 2019;
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Table 19.6 RNA-Seq gene expression tools

Name Availability Link Function References

featureCounts Binary available http://bioinf.
wehi.edu.au/
featureCounts/

Read counting Liao et al.
(2014)

HTSeq Installation
required

https://htseq.
readthedocs.io/
en/release_0.
11.1/

Read counting Anders et al.
(2015)

Kallisto Installation
required

https://
pachterlab.
github.io/
kallisto/about

Bray et al.
(2016)

DESeq 2 R package https://www.
bioconductor.
org/packages//2.
12/bioc/html/
DESeq2.html

Differential gene
expression
analysis

Love et al.
(2014)

Limma R package https://
bioconductor.
org/packages/
release/bioc/
html/limma.html

Differential gene
expression
analysis

Ritchie et al.
(2015)

PIANO R package https://
bioconductor.
org/packages/
release/bioc/
html/piano.html

GO/pathway
enrichment
analysis

Väremo et al.
(2013)

WEGO Online http://wego.
genomics.
org.cn/

GO enrichment
analysis

Ye et al. (2018)

gProfiler Online https://biit.cs.ut.
ee/gprofiler/gost

GO enrichment
analysis

Reimand et al.
(2007)

Mercator Online https://www.
plabipd.de/
portal/web/
guest/mercator4

Pathway
analysis

Schwacke et al.
(2019)

MapMan Online https://plabipd.
de/portal/
mapman

Pathway
analysis

Schwacke et al.
(2019)

BioMart Online http://plants.
ensembl.org/
biomart/
martview

Pathway
analysis

Smedley et al.
(2015)

Plant Reactome Online https://
plantreactome.
gramene.org

Pathway
analysis

Naithani et al.
(2017)

This table is an incomplete list of tools related to RNA-Seq analyses. Some tools allow the quantifi-
cation of transcript abundances, while others are involved in the statistical analysis of the resulting
abundance values

http://bioinf.wehi.edu.au/featureCounts/
https://htseq.readthedocs.io/en/release_0.11.1/
https://pachterlab.github.io/kallisto/about
https://www.bioconductor.org/packages//2.12/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/piano.html
http://wego.genomics.org.cn/
https://biit.cs.ut.ee/gprofiler/gost
https://www.plabipd.de/portal/web/guest/mercator4
https://plabipd.de/portal/mapman
http://plants.ensembl.org/biomart/martview
https://plantreactome.gramene.org
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Behera et al. 2017), but there are more tools that can be evaluated on a given data
set (Table 19.7). Several transcriptome assemblers including Cuffllinks (Trapnell
et al. 2010), Trinity (Haas et al. 2013), and StringTie (Pertea et al. 2015) allow the
integration of a genome sequence for reference-based or genome-guided assembly.

After generation of an initial assembly, very short sequences as well as bacterial
and fungal contamination sequences are usually filtered out based on sequence sim-
ilarity to databases. Since no introns are included in assembled transcript sequences,
the identification of protein coding regions can be performed by searching for open
reading frames of sufficient length. ORFfinder (Wheeler et al. 2003), OrfPredictor
(Min et al. 2005), and Transdecoder (Haas et al. 2013) can perform this task. Collaps-
ing very similar sequences is sometimes required and can be performed by CD-HIT
(Li and Godzik 2006; Fu et al. 2012). Once a final set of sequences is identified, the
assignment of a functional annotation is usually the next step. Sequence similarity
to functionally annotated databases like swissprot (Bairoch and Apweiler 2000; The

Table 19.7 De novo transcriptome assembly tools

Name Availability Link References

Trinity Installation required https://github.com/
trinityrnaseq/
trinityrnaseq

Haas et al. (2013)

rnaSPAdes Binary available http://cab.spbu.ru/
software/rnaspades

Bushmanova et al.
(2018)

SPAdes Binary available http://cab.spbu.ru/
software/spades

Bankevich et al. (2012)

Trans-ABySS Installation required https://github.com/
bcgsc/transabyss

Robertson et al. (2010)

Bridger Installation required https://github.com/
fmaguire/Bridger_
Assembler

Chang et al. (2015)

SOAPdenovo-Trans Installation required https://github.com/
aquaskyline/
SOAPdenovo-Trans

Xie et al. (2014)

Oases Installation required https://github.com/
dzerbino/oases

Schulz et al. (2012)

IDBA-Tran Installation required https://github.com/
loneknightpy/idba

Peng et al. (2013)

BinPacker Installation required https://github.com/
macmanes-lab/
BinPacker

Liu et al. (2016)

Shannon Installation required https://github.com/
sreeramkannan/
Shannon

Kannan et al. (2016)

This table is an incomplete list of tools which can be applied to generate plant transcriptome
assemblies based on RNA-Seq data

https://github.com/trinityrnaseq/trinityrnaseq
http://cab.spbu.ru/software/rnaspades
http://cab.spbu.ru/software/spades
https://github.com/bcgsc/transabyss
https://github.com/fmaguire/Bridger_Assembler
https://github.com/aquaskyline/SOAPdenovo-Trans
https://github.com/dzerbino/oases
https://github.com/loneknightpy/idba
https://github.com/macmanes-lab/BinPacker
https://github.com/sreeramkannan/Shannon
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UniProt Consortium 2017) can be harnessed to transfer the functional annotation to
the newly assembled sequences. InterProScan5 (Finn et al. 2017) assigns functional
annotations including gene ontology (GO) terms and identifies Pfam domains.

Gene prediction hints Since RNA-Seq reads reveal transcript sequences, they can
be incorporated in the prediction of genes. The alignment of RNA-Seq reads to a
genome assembly indicates the positions of introns through gaps in the alignment. In
addition, continuously aligned parts of RNA-Seq reads reveal exon positions. STAR
(Dobin et al. 2013) and HISAT2 (Kim et al. 2015) are suitable tools for the mapping
of RNA-Seq reads. If reads are already assembled into contigs, exonerate (Slater and
Birney 2005) could be utilized to align transcript sequences to an assembly.Dedicated
alignment tools also allow the incorporation of peptide sequences as hints by aligning
the sequences of well annotated species against the new assembly. Examples for such
peptide alignment tools are exonerate (Slater and Birney 2005) and BLAT (Kent
2002).

19.5 Future Directions

Recent developments in sequencing technologies enabled the cost-efficient genera-
tion of genome and transcriptome sequences for numerous plant species of inter-
est (Bolger et al. 2014a; Jiao and Schneeberger 2017). Most of the traditional
plant research already benefits from the availability of sequence information for
the respective species of interest. This technological progress enables completely
new research projects like comparative genomics of large taxonomic groups. Re-
sequencing projects, which rely on a reference sequence for comparison, might be
replaced by independent de novo genome assemblies for all samples of interest (Jiao
and Schneeberger 2017).

The availability of large sequence data-sets will also lead to more data-based
studies which just re-use the existing sequence data-sets. These publicly available
data-sets can be harnessed to answer novel questions which could not have been
addressed before (Pucker and Brockington 2018).

Availability of plant genome sequences can foster the research on and usage of
orphan crops (Chang et al. 2018) and help during de novo domestication of crops
(Fernie and Yan 2019). Intensifying research activity in this field is especially impor-
tant to cope with global warming and climatic changes.
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