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Abstract Given the growing popularity of wearable smart watch with the capabil-
ity to detect human hand movements, this paper studies the potential to recognize
fatigue driving based on steering operation by using a wearable smart watch. The
sensor data used includes acceleration and angular velocity data related to drivers’
operation behavior. We analyze the sensors’ data features of smart watch under
drivers’ fatigue and normal states, and select 13 principal characteristic parameters
by using the method of principal component analysis (PCA). Then the recognition
model of fatigue driving based on support vector machine (SVM) is established. The
results show that the proposed method recognizes the drivers’ fatigue or normal state
more effectively than other methods and its accuracy can reach 83.29%.

Keywords Fatigue driving · Operation behavior · Smart watch · Support vector
machine

1 Introduction

Driving is a hard task that drivers always have to watch road andmake right operation
decisions on time. They are subsequently prone to fatigue after driving for a long
time and the ability to control the vehicle will be weakening. Studies show more
than 35% of serious traffic accidents are caused by fatigue driving [1]. Therefore, it
is necessary to recognize driver’s fatigue state effectively by some advancedmethods
for reducing traffic accidents caused by fatigue driving.

In the existing literature, researchers have made full use of many factors to rec-
ognize fatigue driving, which include drivers’ facial expression [2, 3], physiological
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characteristics [4, 5] and operation behavior [6–8]. Facial expression-based meth-
ods are recognized by analyzing changes of facial expression, such as yawning
and blinking. Nevertheless, many external factors, such as illumination and head
position change, have an important impact on recognition accuracy. Physiological
characteristics-basedmethods are high in accuracy, butmajority of themneed to place
many sensors on drivers’ body for data acquisition, which often make the drivers
uncomfortable. Operation behavior-based methods recognize drivers’ fatigue state
by analyzing operation changes of steering wheel and vehicle status, such as the stan-
dard deviation of the steering wheel angle and lane departure, which can avoid the
shortcomings of the previous methods and have become an important part of fatigue
driving recognition research. Wei et al. [9] chose the lateral position and steering
wheel angle as the input data of neural network and trained it by BP algorithm. His
experiment results showed that this method is effective to recognize drivers’ fatigue
level. Mcdonald et al. [10] analyzed the characteristics of drivers’ steering data and
established a fatigue driving recognition model based on random forest algorithm,
which had a higher classification accuracy.

However, the existing majority of operation behavior based methods are to collect
the related data by installing various sensors on steering wheel and vehicle, which are
too complicated to be practical. In recent years, wearable smart watch with a variety
of sensors, have been widely popularized and used to detect human body motion in
some research works.Mannini et al. [11] utilized wrist-worn accelerometer to collect
wrist and ankle motion data and classified behavior into four classes: sedentariness,
cycling, ambulation and other, and the results showed high classification accuracy
for ankle data (95.0%) and wrist data (84.7%). Shoaib et al. [12] used wrist-worn
motion sensors to recognize hand gestures and it can accurately detect 13 activities.
These researches have showed thatmotion sensors inwearable devices can accurately
reflect human’s behavior.

According to the above analysis, this paper studies a fatigue driving recognition
method based on steering operation by using a smart watch. Thirteen characteristic
parameters are extracted from smart watch’s sensors based on driving simulation
experiment and the fatigue driving recognition model is established based on support
vector machine. The test results prove that we can use smart watch to recognize the
drivers’ fatigue or normal state. This work uses no other external sensors, bringing
about a low cost, user-friendly and simple recognition system.

2 Experiments of Data Acquisition

2.1 Experimental Design

Driving experiments are carried out on the Multi-Vehicle Cooperative Simulation
Platform, as shown in Fig. 1, in Key Laboratory of Dependable Service Computing
in Cyber Physical SocietyMinistry of Education (CPS-DSC), ChongqingUniversity.
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Fig. 1 Driving simulation
platform

Fig. 2 Simulation scene

The simulation road is a 100 km long highway of part of theYuxiang highway located
between Chongqing and Hunan province, with two lane in one direction. The smart
watch used in the experiment is TicWatch, and it has acceleration sensor, gyroscope
sensor, gravity sensor and geomagnetic sensor. Ten participants (six men and four
womenhave an average of 3.5 years driving experience) agedbetween24 and30years
old took part in the experiment from 13:00 pm to 14:30 pm, who are most likely to be
fatigued in this period. They have had a good command of the driving scene before
the experiment and are asked to wear smart watch for driving during experiments,
as shown in Fig. 2. Besides, all participants are required to reduce the lane change
and keep the speed of 80 ± 10 km/h when the vehicle is moving.

2.2 Data Acquisition

In the process of the whole experiments, three types of data are recorded syn-
chronously, including:

(1) The data values of smart watch’s acceleration sensor, gyroscope sensor, gravity
sensor, and geomagnetic sensor are recorded at the frequency of 10 Hz;

(2) Video of the drivers’ facial expression;
(3) The drivers’ self-evaluation of fatigue or normal state every ten minutes

according to the Karolinska Sleepiness Scale (KSS) [13].
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The video of drivers’ facial expression and the drivers’ self-evaluation are used to
judge the drivers’ states. There may be a deviation between drivers’ self-evaluation
and actual fatigue degree. In order to improve the accuracy of the fatigue degree, three
trained experts evaluate the drivers’ states according to the video in different periods
and modify the KSS score of the drivers’ self-evaluation. In this study, driving state
of the driver is classified into two classes. If KSS score≤3, the driver is under normal
state and is under fatigue state while KSS score ≥7 [14].

3 Methods

3.1 Method Design

In order to establish the fatigue recognition model and recognize the drivers’ states
effectively, there are several key steps to do, including driving simulation experi-
ment, coordinate system transformation, characteristic extraction (principal compo-
nent analysis), training and testing recognition model of fatigue driving based on
SVM, as shown in Fig. 3.

3.2 Data Processing

The motion sensors of smart watch use a standard 3-axis device coordinate system
to express data values. The X-axis is horizontal and points to the right, the Y-axis

Recognition model of fatigue 
driving based on SVM

Data collection 
of smart watch

Model validation

Characteristic extraction

Dimension-reduction of 
characteristics using Principal 

component analysis (PCA)

Characteristic extraction

Coordinate system transformation

Drivers’ states (fatigued or normal)

Driving simulation experiment

Fig. 3 Flow diagram of fatigue recognition model
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Fig. 4 Device coordinate
system

Z-axis

Y-axis

X-axis

Fig. 5 World’s coordinate
system

X-axis

Y-axis

Z-axis

is vertical and points up, and the Z-axis points toward the outside of the screen, as
shown in Fig. 4. The attitude of smart watch will be constantly changing in the course
of data acquisition and the data values of gravitational acceleration on the three axes
will be changing too. Therefore, it is critical to eliminate the effect of gravitational
acceleration on the data values of acceleration sensor.

We transform the data values of acceleration sensor fromdevice coordinate system
to theworld’s coordinate systemwhoseX-axis is tangential to the ground and roughly
points East, Y-axis is tangential to the ground and points towards the magnetic North
Pole, and Z-axis points towards the sky vertically (as shown in Fig. 5):
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where x, y, z express the values of acceleration sensor in the device coordinate system
and x ′, y′, z′ are in the world’s coordinate system, R expresses a 3 × 3 row-major
matrix that can be computed with the values of gravity sensor and geomagnetic
sensor. When the values of acceleration sensor in the world’s coordinate system is
got, only the value of Z-axis contains the constant of gravitational acceleration and
we can eliminate it directly.
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3.3 Characteristics Extraction

3.3.1 Analysis and Extraction of Characteristics

The data of drivers’ steering operation includes rotation acceleration and angular
velocity of steering wheel that we can get from smart watch’s motion sensors. Take
rotation acceleration for an example, Figs. 6 and 7 are the data change graphs of
rotation acceleration (relative to the world’s coordinate system) under normal driving
and fatigue driving respectively. It can be seen from the graphs that the steering
wheel is corrected frequently and the acceleration amplitude of correction is small
under normal driving.However, the correction frequencydecreases and the correction
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Fig. 6 Acceleration under normal driving
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Fig. 7 Acceleration under fatigue driving

amplitude of acceleration becomes larger under fatigue driving. To summarize, the
correction frequency and amplitude are different under two different driving states.

In order to describe different driving states more accurately, a series of statisti-
cal characteristic parameters are defined as listed in Table 1. Taking the duration
of fatigue operation and real-time of the recognition model into account, the time
window in data series is ten seconds when extracting each characteristic parameter.
PLAA and PSAA mean the percentage of the acceleration amplitude that is greater
or less than a threshold of the time window:

PLAA =
∑n

i=1 L Ai

n
× 100%, L Ai =

{
1, i f Ai ≥ mean_Q2(AF)

0, i f Ai < mean_Q2(AF)
(2)
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Table 1 Characteristic parameters and meaning

Characteristic parameters Meaning

MA Mean acceleration of steering wheel (X-axis/Y-axis/Z-axis)

SDA Standard deviation of steering wheel acceleration
(X-axis/Y-axis/Z-axis)

RMSA Root mean square of steering wheel acceleration

PLAA Percentage of large acceleration amplitude

PSAA Percentage of small acceleration amplitude

MAV Mean angular velocity of steering wheel (X-axis/Y-axis/Z-axis)

SDAV Standard deviation of steering wheel angular velocity
(X-axis/Y-axis/Z-axis)

RMSAV Root mean square of steering wheel angular velocity

PLAVA Percentage of large angular velocity amplitude

PSAVA Percentage of small angular velocity amplitude

PSAA =
∑n

i=1 SAi

n
× 100%, SAi =

{
1, i f Ai < mean_Q2(AN )

0, i f Ai ≥ mean_Q2(AN )
(3)

where n is the data number of the time window, Ai expresses the value of synthetic
acceleration in data series, mean_Q2(AF) is the mean value of synthetic accelera-
tion that is greater thanmedian in data series under fatigue state, andmean_Q2(AN )

is the mean value of synthetic acceleration that is greater than median in data series
under normal state. PLAVA and PSAVAmean the percentage of the angular velocity
amplitude that is greater or less than a threshold of the time window:

PLAV A =
∑n

i=1 LVi

n
× 100%, LVi =

{
1, i f AVi ≥ mean_Q2(AV F)

0, i f AVi < mean_Q2(AV F)
(4)

PSAV A =
∑n

i=1 SVi

n
× 100%, SVi =

{
1, i f AVi < mean_Q2(AV N )

0, i f AVi ≥ mean_Q2(AV N )
(5)

where n is the data number of the time window, AVi expresses the value of synthetic
angular velocity in data series, mean_Q2(AV F) is the mean value of synthetic
angular velocity that is greater than median in data series under fatigue state, and
mean_Q2(AV N ) is the mean value of synthetic angular velocity that is greater than
median in data series under normal state.We got a total of 953 samples and randomly
selected 600 samples are used to train the recognition model and the other samples
are used to test the model.
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Fig. 8 Contribution rate of the principal components

3.3.2 Principal Component Analysis

We know the number of characteristic parameters is far more than ten because the
coordinate system has three axes in Table 1. There may be a strong correlation
among these parameters and they have a significant impact on the performance
of the recognition algorithm. Thus, it is import to reduce dimensionality of these
parameters consisting of some interrelated parameters, while retaining as much as
possible of the variation present in them. In this paper, the normalized characteristic
data is analyzed by the method of Principal Component Analysis (PCA) and the
number of characteristic parameters is reduced from 18 to 13. As shown in Fig. 8,
the final 13 principal component parameters are inputs of the recognition model.

3.4 Recognition Model

3.4.1 Support Vector Machine (SVM)

Since the SVM was firstly proposed in 1995 by Cortes and Vapnik [15], it had been
widely used for its good classification performance. The principle of support vector
machines is to find an optimal hyperplane that separates two classes and is at equal
distance from the two. The margin between the optimal hyperplane and the two
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classes is maximal. As shown in Fig. 9, H is an optimal hyperplane and it is at equal
distance from H1 and H2.

Suppose a sample set to be {(xi , yi )}, i = 1, 2, . . . ,m, x ∈ Rn, yi ∈ {−1, 1},
where there are m samples for training the SVM, Rn is the n-dimensional feature
vector and yi is the category label. When the feature vectors of samples in different
classes are linearly separable, the hyperplaneω ·x+b = 0 must satisfy the following
inequalities that can separate all samples accurately:

yi (ω · xi + b) ≥ 1, i = 1, 2, . . . ,m (6)

The margin can be calculated as:

min{xi |yi=1 }
ω · xi + b

‖ω‖ − max{xi |yi=−1 }
ω · xi + b

‖ω‖ = 2

‖ω‖ (7)

The optimal hyperplane requires the maximization of the margin, which is to
mean:

max
1

2
‖ω‖2 = 1

2
(ω · ω) (8)

After using the Lagrange dual transformation, the optimal solution of the
following objective function is the optimal hyperplane:

⎧⎪⎪⎨
⎪⎪⎩

max
m∑
i=1

αi − 1
2

m∑
i, j=1

αiα j yi y j
(
xi · x j

)

s.t. yi [(ω · xi ) + b] − 1 ≥ 0,
m∑
i=1

yiαi = 0 , αi ≥ 0, i = 1, 2, . . . ,m
(9)

where αi is Lagrange multiplier of sample data i.

Fig. 9 Optimal hyperplane
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When the classification problem is nonlinearly separable, the n-dimensional fea-
ture vector can bemapped into a higher dimensional space by using themapping rela-
tionship of z = �(x) and the nonlinear classification problemwill be linearly separa-
ble by using appropriate kernel function k

(
xi , x j

)
in high-dimensional space. Then,

the optimal solution of the following objective function is the optimal hyperplane:

⎧⎪⎪⎨
⎪⎪⎩

max
m∑
i=1

αi − 1
2

m∑
i, j=1

αiα j yi y j k
(
xi · x j

)

s.t. yi [(ω · zi ) + b] − 1 ≥ 0,
m∑
i=1

yiαi = 0, αi ≥ 0, i = 1, 2, . . . ,m
(10)

3.4.2 Model Training

To recognize the driver’s fatigue state accurately, this paper uses SVM algorithm for
fatigue recognition. Polynomial kernel and radial basis function (RBF) kernel are two
popular kernels commonly used in SVM classification at present. Considering that
the RBF kernel can realize nonlinear mapping and less hyper parameters can reduce
the complexity of the SVM model compared to polynomial kernel, we choose RBF
as the kernel for recognition model of fatigue driving. There are two parameters
C and g are not known before model training, where penalty factor C expresses
the tolerance of error and g in the RBF kernel has an important impact on model
prediction. In order to improve the prediction performance of the model, the grid
search algorithm is used to optimize the parameters C and g in this paper and the
results of optimization are shown in Fig. 10. Finally, the recognition model is trained
by using the two optimal parameters and randomly selected 600 samples collected
from previous experiments.

The results of parameter selection(isohypse)
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Fig. 10 Results of parameter optimization
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4 Experimental Results and Discussion

After trained, the recognition model is tested with the other 353 samples, including
168 samples of normal state and 185 samples of fatigue state, and the test results are
shown in Table 2. Accuracy is calculated as:

accuracy = (T P + T N )
/
T × 100% (11)

where TP expresses the number of fatigue state correctly recognized as fatigue; TN
expresses the number of normal state correctly recognized as normal, and T means
the total test sample number of fatigue and normal state.

Table 2 shows the recognitionmodel,which can classify the drivers’ states into two
classes, correctly identifies 131 samples of normal state and 163 samples of fatigue
state and the accuracy of classification is 83.29%. Figure 11 shows the performance
of the used model in this paper and the other related models for fatigue driving
recognition. All of these models are trained and tested using the same samples with
previous SVM. From Fig. 11, we can conclude that the classification accuracy of
SVM used in this paper is higher than other models.

Besides, it is noticed that 37 of 168 normal state samples are incorrectly classified
and misjudgment is up to 22.02% in Table 2. The reason for the high misjudgment
may be that the current characteristic parameters are not enough and the personal
driving style may have an impact on it. In order to improve the recognition accuracy,
we will further analyze the data characteristics under different driving states and

Table 2 The test results of the recognition model

The drivers’ actual state The recognition results of
model

Total Accuracy (%)

Fatigue Normal

Fatigue 163 22 185 83.29

Normal 37 131 168

82.15 78.47 76.49
82.44 83.29
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Fig. 11 Performance comparison for different methods
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combine with other recognition methods. For the impact of driving style, we will
also consider building personalized recognition model of fatigue driving by using
smart watch in the following study.

5 Conclusion

The steering operation of a driver under fatigue and normal states will be different.
This paper designs and implements a recognition method of fatigue driving based
on steering operation by using wearable smart watch. In this proposed method, thir-
teen principal characteristic parameters are selected from smart watch’s sensors by
using PCA, and fatigue driving recognition model is established based on SVM. The
test results prove that we can use smart watch to recognize the drivers’ fatigue or
normal state effectively. We also compare the used model in this paper to the other
related models. Consequently, the classification accuracy of SVM is better than the
other models. This method uses no other external sensors, is low cost, user-friendly
and simple. We will further consider more characteristics and build personalized
recognition model by using smart watch to improve the accuracy.
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