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Abstract With advent of social media, need for scheduling very large meetings
while proving a degree of privacy to the participants has become an important prob-
lem. Existing solutions based on a global calendar expose individuals data to the cal-
endar provider and thus are unsuitable for openmeetingswith quorumconstraints.We
propose an online distributed dynamicmeeting scheduler (ODDMS). It is able to effi-
ciently schedule meetings involving a large number of participants, without having
complete knowledge of individual participants and their preferences, thus preserving
privacy. The algorithm uses a modified negotiation-based distributed schedule that
resolves the problem of deadlock and contention using hidden naive Bayes learning
method. We compare our work with a baseline centralized algorithm and two exist-
ing algorithms based on voting mechanism and naive Bayesian methods. Simulation
studies show that ODDMS performs similar to baseline centralized algorithm under
light load condition and significantly outperforms the existing distributed algorithms
under heavy load condition.

Keywords Distributed system · Meeting scheduling · Knowledge base ·
Deadlock handling · Hidden naive Bayes · Contention avoidance

1 Introduction

Scheduling a meeting is a naturally distributed task which can be defined as a
method of finding the suitable and optimal time slot based on preferences and pri-
orities of both host and participants [6]. If participants involves are huge in num-
ber, i.e., in thousands, for example, social media-based meeting, alumni meetup,

A. Nigam (B) · S. Srivastava
Dhirubhai Ambani Institute of Information and Communication Technology,
Gandhinagar, India
e-mail: archana_nigam@daiict.ac.in

S. Srivastava
e-mail: sanjay_srivastava@daiict.ac.in

© Springer Nature Singapore Pte Ltd. 2020
S. Fong et al. (eds.), ICT Analysis and Applications, Lecture Notes
in Networks and Systems 93, https://doi.org/10.1007/978-981-15-0630-7_19

199

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0630-7_19&domain=pdf
mailto:archana_nigam@daiict.ac.in
mailto:sanjay_srivastava@daiict.ac.in
https://doi.org/10.1007/978-981-15-0630-7_19


200 A. Nigam and S. Srivastava

event schedules, etc., then such problem involves more complexity, as many meet-
ing being scheduled at the same time considering several constraints [8]. Till now
most of the work had been done for organization-level meetings; this motivates us
for a more realistic case where meeting scheduling for non-organizational setup is
involved. Realistic distributed meeting scheduling is an online problem in which a
new meeting arrives while the number of the meeting is being scheduled concur-
rently; therefore, the status of the local and non-local resources may change over
time [13]. In this paper, we are considering a multi-agent environment. There are
two types of agents in our system: host agent (HA) and participant agent (PA). HA
is responsible for scheduling the meeting on the users behalf. PA responds on behalf
of users who are in the guest list of the meeting. In centralized meeting scheduling,
a central host has all the information regarding preference and availability of partic-
ipants; therefore, the host takes a decision and schedules a meeting on their behalf.
However, this method breaches the privacy constraint as each participant and central
host can see the data of other participants and also participants remain isolated from
decision-making process. Whereas in distributed meeting scheduling, information is
kept private by sharing the limited information among entities which are involved
in a meeting; therefore, entities have partial information about each other [2]. This
information transfer is taken place through negotiation where an agent negotiates
with other agents to select a common schedule considering the user’s preferences
and calendar. Another approach in distributed meeting scheduling is a voting-based
method, HA releases a set of date, and all the PAs are asked to adapt date set accord-
ing to their constraint and rank the date set accordingly. Negotiation-based method
gives more freedom to the individual participant to take part in decision-making. In
the distributed system because of partial information, meeting scheduling requires
a large number of negotiation rounds and to make it converge learning method is
adopted. In an online distributed system, if negotiation will not converge in every
round, then with an increase in a number of pending meeting requests deadlock
condition may arise. In this paper, we are solving a contention and deadlock prob-
lem in distributed meeting scheduling system using a hidden naive Bayes learning
method. In this paper, we propose an online distributed dynamic meeting scheduler
(ODDMS) which efficiently schedules meetings involving a large number of partic-
ipants, without having complete knowledge of individual participants preferences,
thus preserving privacy. To make our systemmore realistic, we introduce two impor-
tant factors in our system: quorum and overlapped criteria. Quorum is defined as
the number of participants mandatory for the meeting to be held, and overlapped
criteria are defined as the number of participants common in more than one meeting.
Quorum is important as it signifies the minimum number of participants to success-
fully schedule a meeting, failing which meeting cannot be scheduled. We compare
ODDMS with techniques found in literature and the result shows that ODDMS per-
form better than most of the distributed meeting scheduling system. As per best
of our knowledge under this setting, no work has been done in the literature. The
paper is organized as follows: In Sect. 2, we discuss the literature review. In Sect. 3,
the problem statement is given. Section4 discusses the proposed architecture and
algorithm. Section5 discusses simulation results; we conclude in Sect. 6.
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2 Literature Survey

Doodle [5] is a well-known service that allows users to find all common availability.
However, it does not provide privacy as each user and doodle server can see the
busy or free state of every other user. To solve the distributed meeting scheduling
problem, two types of approaches were discussed in the literature: negotiation-based
and voting-based. In [10], the author solves distributed meeting scheduling problem
using negotiation technique, where a host agent communicate with all other agents
in order to schedule a meeting and feasible schedule is searched based on partici-
pants calendar information passed during negotiation. This approach does not takes
into account participant’s preferences, whereas in [11] participant’s preferences and
calendar information is communicated during negotiation, therefore, privacy is not
warranted. The main objective of using a learning method in distributed meeting
scheduling is to reduce the burden of negotiation by calculating the probability of
acceptance of the meeting based on past knowledge [7]. In [7], the author uses naive
Bayes classifier for calculating the probability of meeting acceptance. But the naive
Bayes classifier works for independent attributes, i.e., it considers only participants
availability, not considering other attributes such as preferences and priority. Also,
it does not use negotiation result for knowledge updating. In [13], Bayesian network
is used for learning users’ preference and this system learn from negotiation result.
But learning an optimal Bayesian network has been proved to be NP-hard [3]. In
fact, the most time-consuming step in learning a Bayesian network is learning the
structure [12].

Another approach in distributed meeting scheduling is voting-based meeting
scheduling system. In [2], host transfers a set of dates based on user preferences
and priority, and all the participants are asked to adapt the date set according to their
constraint and rank the date set accordingly. Date with a high number of votes is
chosen as a date for a meeting. Here only date attribute is taken into consideration,
other attributes such as time, day, duration are also important. Other concern with
negotiation-based and voting-based methods is that they will suffer in the highly
loaded scenario where a number of participants are common in more than one meet-
ing for the same time interval and if a quorum is also high. In online distributed
system, if negotiation will not converge in every round then with increase in number
of pending meeting requests deadlock condition may arise.

3 Problem Statement

Ameeting schedule is defined as a set of meetings for a group of participants. Given
a set of n meetings and j participants, a scheduling problem is represented as MS =
(A,M), where A = {1, 2, . . . , j} is the set of participant andM = {m1,m2, . . . ,mn}
is the set of n meetings to be scheduled. A time slot is represented as a day, date,
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hour tuple<Da, Dt, H>. A set of contiguous time slots is called a time interval. A
meeting is represented by a tuple:

mu = (A, h, dr, q, τ )

where A is a set of participants of the meeting; h is host agent of the meeting; dr is
the duration of the meeting in hours; and q is the quorum value.

τ is the time interval for which the meeting mu is finally scheduled and is repre-
sentedbyanordered set {<Dau, Dtu, Hu>,<Dau, Dtu, Hu + 1>, . . . , <Dau, Dtu,
Hu + dru − 1>} (here Dau gives the day, Dtu gives the date, and Hu gives the start-
ing hour for which meeting mu is scheduled) if the meeting could be scheduled, and
by null set otherwise.

3.1 Criteria for System Evaluation

In our system if multiple meeting requests arrive for a same time interval where par-
ticipants are common and quorum is high, then meeting scheduling will be difficult.
Therefore, offered load in our system is defined as

L =
{
L = Q̃ Õ, if τi = 1

0, otherwise
(1)

If n meeting request arrives correspond to i th time interval, Q̃ and Õ are the average
quorum and overlapped value, respectively, for n meetings. If there is no overlap then
the load is null.

We evaluate our system in terms of two first-order metrics, namely, efficiency
and satisfaction index. Efficiency reflects the degree to which system succeeds in
scheduling the important meetings. Satisfaction index reflects how much satisfy the
participants are corresponding to a particular schedule.

Efficiency is defined by the following equation:

ηi = |m|
|M | (2)

where M is total meeting request arrived; m is meeting finally scheduled in i time
interval.

Satisfaction index (SI) is defined as a meeting that is scheduled in the first round
itself corresponds to optimal time interval choice. Each round of negotiation needed
to schedule a meeting comes at a cost of lowered satisfaction. Thus, we define SI for
meeting in a time interval as a weighted average, with weight w = 1

r .
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SIi = 1

|m|
rmax∑
i=1

|mri |
i

, |m| =
∑

mri (3)

rmax is the maximum number of negotiation round required for meeting to schedule,
|mr | is the number of meeting scheduled in each negotiation round.

If there is total k, then S̃ I is the average SI, and η̃ is the average fraction ofmeeting
schedule for total k time interval. The primary objective function is to maximize
efficiency and satisfaction index simultaneously.

4 Online Distributed Dynamic Meeting Scheduler

In our proposed system, we are considering a multi-agent environment. There are
two types of agents in our system, host agent (HA) and participant agent (PA).
HA is responsible for scheduling the meeting on the user’s behalf. PA responds on
behalf of users who are in guest list of the meetings. HA calculates the probability
of acceptance of a meeting proposal based on past data. If the probability is high,
the proposal is sent to all the PAs. PA can accept the proposal if time interval is
free or send a pending message. Finally, if quorum criteria are met, then meeting
is confirmed else canceled. At most three rounds of negotiation are involved in our
system. Under such setting negotiation-based method works perfectly as compare to
voting-based method because negotiation-based method gives more freedom to the
individual PA to take part in decision-making. In distributed system due to partial
information, proposing a time interval suitable to all is a difficult task and it require
large number of negotiation rounds, thus there will be no guarantee that negotiation
method will converge. If there are n PA and meeting scheduling require r rounds of
negotiation, if r is large then the cost it incurred will be O(rn). To reduce the cost
of subsequent round and to make negotiation method converge, learning method is
adopted. Therefore to solve this problem, we are using a hidden naive Bayes learning
method (HNB) [12]. In online distributed system, if negotiation will not converge in
every round thenwith increase in number of pending requests deadlock conditionmay
arise. Another condition of deadlock which is common in distributed system is hold
and wait condition. We are solving the problem of deadlock using weighted priority
and time out mechanism. The architecture of both host and participant agents is
shown in Fig. 1. In HA architecture, a meeting request is given as input to contention
avoidance module, details will be discussed in Sect. 4.1. In contention avoidance
module, analysis function calculates the probability of acceptance ofmeeting request.
If probability of acceptance is higher, meeting request is send to all PA. On receiving
the message from PA, offer analyser module will check whether quorum criteria are
met or not. If met, changes are made into calendar and confirmation is send to PA.
On confirmation or rejection of meeting knowledge base is updated. Algorithm 1
describes the working of host agent, and Algorithm 2 describes the working of
participant agent. In PA architecture, on receiving a meeting request for the first time
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Fig. 1 Host agent and participant agent architecture

decision generator module will check the participant’s calendar. If meeting is already
booked reject message will be send, if time interval is free but there is request for
same time interval from other HA then priority of both the HAs is calculated.

Algorithm 1 Host agent
1: Input: Meeting request
2: procedure Contention avoidance
3: Input: Set D of past history data
4: Output: Probability of success or fail
5: if probability of success is high then
6: Send: meeting proposal to all participant, Call Offer analyser
7: end if
8: end procedure
9: procedure Offer analyser
10: if receive: accept ≥ q then
11: Send: Meeting Confirm;
12: else
13: call Meeting Pending;
14: end if
15: end procedure
16: procedure Meeting Pending
17: if round ≤ 2 then
18: negotiation round, call Offer analyser
19: else
20: Compute time out, call Offer analyser
21: end if
22: end procedure

PA send acceptance message to higher priority HA and pending to other. If time
interval is free and no conflict, then PA send acceptance to HA. If message is received
for the second round then theremight be deadlock between two requests for same time
interval. Therefore, decision generator performs deadlock handling by calculating
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the weighted priority of both the HAs; accept message will be send to one with
higher weighted priority and reject to other. If both the HAs have same weighted
priority, then PA will send nothing. Both HA will wait for time out. Knowledge
base is updated by decision generator and corresponding changes are made into the
calendar of participant.

4.1 Contention Avoidance with Hidden Naive Bayes

In distributed system, there is no guarantee that random negotiation method will
converge. Also the cost it incurred will be O(rn). Therefore to solve this problem
we are using a hidden naive Bayes learning method (HNB) [12]. The advantage
of HNB is as it consider various attributes like preferences, priority, availability
during learning. Instead of becoming slow when more situation is learned, it is more
responsive and improves its precision by learning from negotiation. Therefore, the
probability of success in organizing ameetingwill increase. InHNB learningmethod,
prior knowledge is combined with observed data to determine the final probability
of a hypothesis. It creates a hidden parent for each attribute, which combines the
influences from all other attributes [12]. {A1, A2, . . . , An} are n attributes and C is
the class node. The joint distribution represented by an HNB is defined as follows:

Algorithm 2 Participant agent
1: procedure Decision generator
2: Input: meeting proposal receive
3: if round == 1 then
4: Check calendar availability.
5: if available and no contention then
6: send: accepted
7: if available and contention then
8: send: pending, after comparing priority
9: else
10: send : reject
11: end if
12: end if
13: end if
14: if meeting confirm then
15: Update Calendar
16: end if
17: if round == 2 then
18: call: Deadlock Handling.
19: end if
20: end procedure
21: procedure Deadlock Handling
22: compute weighted priority to break tie
23: Update History
24: end procedure
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P(A1, . . . , An,C) = P(C)

n∏
i=1

P(Ai |Ahpi ,C) (4)

Here in our case class is either success or fail, and attributes are a participant agent,
date, time, day, andduration. For example, P(Agent = A, date = 10/5/2019, time=
10 am, day = Mon, duration = 2 h,C = success). We used the Laplace estimation
to avoid the zero-frequency problem [12].

4.2 Deadlock Handling

In online distributed system, if negotiation will not converge in every round then
with increase in number of pending meeting requests deadlock condition may arise.
Another condition of deadlock which is common in distributed system is hold and
wait condition. The problem of deadlock is solved by giving the preference to high
priority host agent to break the tie [4]. But in the worst case, if all the host agent has
the same priority then deadlock problem will remain the same. Therefore to solve
this issue, we use weighted priority between priority list defined by participants’
agent as well as priority list derived from the past meeting. To calculate weighted
priority we have a smoothing factor β.

Wp = β p + (1 − β)h, 0 ≤ β ≥ 1 (5)

where Wp is weighted priority, p is priority from priority database, and h is derived
priority from history database.

History database. To calculate h, we use naive Bayes classifier [9]. Host agent with
high h has done more number of meeting with the participant agent. In worst case if
weighted priority is again same for both the host agents, then we use timer to drop
particular host agent.

To = 2 × RTTa + acci
qi

(6)

where acci is total number of accept received for a meeting i , and qi is quorum
defined for meeting i . RTTa is the time of accept message reaching from participant
agent to host agent. Therefore, we are dropping the host agent whose work done is
less compare to other host agent.

5 Simulation Result

In this section, we simulate our design using JADE (Java Agent Development) [1]
framework. In our simulation test-bed, we have 1000 meetings spread across 20
time interval; multiple meetings are overlapped randomly in a single time interval.
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(a) Percentage of meeting scheduled as a
function of offered load

(b) Satisfaction index as a function of
offered load

Fig. 2 Performance and satisfaction index as a function of offered load

Each meeting involves number of participants between 500 and 2000. Performance
of ODDMS is measured using η and SI as a function of offered load. We compare
ODDMS with centralized algorithm, learning-based system [7] and voting-based
system [2].

In our simulation results centralized algorithm is used as a benchmark for a com-
parison, this is the optimal result that can be achieved. In Fig. 2a, we are comparing
η as a function of offered load between all the four algorithm. Under low load con-
dition, ODDMS perform similar to centralized algorithm because learning method
that we use is more restrictive, so it will send proposal to those who have a high
chance of acceptance. Under high load condition, voting-based method gives poor
performance because of increase in disagreement which increases the contention in
the system and leads to deadlock; similarly in naive Bayes learning algorithm, there
is no mechanism to detect and resolve deadlock. Therefore in both of these meth-
ods, the number of meeting schedule comes to zero. ODDMS performance is better
because we are handling deadlock and contention using learning method. In Fig. 2b,
we are comparing the satisfaction index of the four algorithm. In classical centralized
algorithm, host has all the preference and priority data of all agents; therefore, it has
complete knowledge of when to schedule meeting such that most of the agent will
be satisfied. In voting-based method, during moderate-high load condition number
of disagreement increases and this disagreement continues till meeting rejected or
accepted thus poor satisfaction index. In naiveBayesmethod, due to contention nego-
tiation round increases which degrade the performance of algorithm. In ODDMS, the
number of negotiation round is three; in worst case much less compare to voting and
naive Bayes because better scheduling decision is made based on the past knowledge
considering all the dependent attributes.
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6 Conclusion

We have proposed a distributed algorithm to solve the online meeting scheduling
problem. ODDMS is able to efficiently schedule meetings involving large number
of participants, without having complete knowledge of individual participants pref-
erences, thus preserving privacy. We introduce the notion of quorum and overlapped
criteria. We compare our ODDMS with voting and naive Bayes algorithm. Our sim-
ulation result shows that ODDMS is able to schedule about 43%more meeting under
low load condition and about 25% under high load condition. Similarly, quality of
the scheduled meeting is measured by satisfaction index (SI). SI is about 60% more
than the voting and naive Bayes distributed algorithmwhen offered load reaches to 1.
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