Flower Pollination Algorithm for Test)
Case Prioritization in Regression Testing | @i

Priyanka Dhareula® and Anita Ganpati

Abstract Flower Pollination Algorithm (FPA) is a significant addition made to
Nature Inspired Metaheuristic Optimization Algorithms (NIMOA). It is inspired by
the pollination process of flowering plants. In this research, FPA is used for Test Case
Prioritization (TCP) in Regression Testing (RT). The algorithm uses code coverage
of test cases as the input. The algorithm has no prior information of faults covered
by the test cases. This study deals with prioritizing (ordering) the test cases in such a
way that only those test cases are executed that covers maximum faults in minimum
time of execution. For validation of the results Average Percentage of Fault Detected
(APFD) metrics is used. APFD values for different ordering of test cases is calculated
for three applications written in Java. The empirical results of APFD metrics for FPA
order (TS) and FPA order (TS,) are better as compared to Random Order of Original
Test Suite (TS,) and Reverse Random Order of (TS,). Therefore, this paper states
that FPA for TCP gives efficient results in RT.

Keywords Regression testing - Test case prioritization - Flower pollination
algorithm - APFD

1 Introduction

Regression Testing (RT) is foremost the crucial part of software life cycle. Whenever
software changes RT is done in order to ensure the proper functioning of a software
[13]. With the changes in a software, the size of test suite also varies. As the software
evolves, the magnitude of test suite size becomes quite large. Rationally it is not
feasible to execute all the test cases due to limited time and cost constraints. Therefore,
it becomes important to deduce a mechanism to perform efficient RT with maximum
number of faults revealing test cases in minimum time. So, test case optimization

P. Dhareula (<) - A. Ganpati

Computer Science Department, Himachal Pradesh University,
Shimla 171005, Himachal Pradesh, India

e-mail: priyankarana.id@gmail.com

A. Ganpati
e-mail: anitaganpati @gmail.com

© Springer Nature Singapore Pte Ltd. 2020 155
S. Fong et al. (eds.), ICT Analysis and Applications, Lecture Notes
in Networks and Systems 93, https://doi.org/10.1007/978-981-15-0630-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0630-7_16&domain=pdf
http://orcid.org/0000-0002-9594-4850
http://orcid.org/0000-0001-6237-9114
mailto:priyankarana.id@gmail.com
mailto:anitaganpati@gmail.com
https://doi.org/10.1007/978-981-15-0630-7_16

156 P. Dhareula and A. Ganpati

techniques are required to perform early fault detection in affordable time and cost
[3]. Regression Test Case Optimization (RTCO) is further categorized into three main
branches of test case optimization namely; Retest All [15], Test Case Selection [4]
and Test Case Prioritization (TCP) [14]. In Retest All technique, all the test cases in
original test suite are executed. This technique is time consuming and very expensive.
Regression Test Case Selection executes subset of a test suite. Whereas, regression
TCP techniques [6] deals with maximum and early fault detection by ordering the
test cases based on priority given to them. Determining the faults covered by test
case in advance is very difficult and time-consuming process, since each test case
must be executed in advance to determine its fault coverage.

In the recent times Nature Inspired Metaheuristic Optimization Algorithms
(NIMOA) have gained huge popularity [22]. Most of the NIMOA belong to the
domain of Stochastic Algorithms (SA). SA are those algorithms whose outcome
does not depend on its starting point as they follow a random search. Keeping in
view the success of SA numerous algorithms for TCP in RT have been proposed
in recent times [6, 7, 12, 21]. In 2012, a new algorithm namely, Flower Pollina-
tion Algorithm (FPA) was developed by Xin-She Yang [1]. FPA is inspired by the
pollination process in flowering plants. Since, FPA is an optimization algorithm [8]
therefore, in this paper TCP was done using FPA without any prior knowledge of
faults covered by the test cases.

2 Related Work

Numerous studies have surfaced recently that adopted FPA in different domains like
engineering, wireless sensor networking, image and signal processing, communica-
tion, structural design, computer gaming, software engineering and global function
optimization [2, 11].

Alsewari et al. [1] proposed a strategy for Test Case Minimization based on
FPA. Their strategy is termed as Test Generator Flower Pollination Strategy (TGFP).
Their research is based on t-way testing. Where ‘¢’ represents the interaction strength
between parameters. For different interaction strength their strategy performed well.
Nasser et al. [10] proposed a hybridized FPA for generating ¢t-way test suite. The
main hybridized features used in their research are local search, mutation operator
and elitism feature. It is shown in their work that elitism based FPA performed better
than other variants of FPA.

Kabir et al. [5] proposed a technique to minimization test suite for -way testing
by using adaptive FPA. Their comparative analysis with existing techniques shows
that their algorithm showed improved performance. Nasser et al. [9] proposed a
Flower Strategy (FS) for generation of #-way test suite based on FPA. The research
also critically performed the comparison of adoption Optimization Algorithm (OA).
Their results show that FS outperforms OA based strategies.

Flower Pollination Algorithm for Test Case Prioritization ... 157

Yadav and Dutta [21] used Genetic Algorithm (GA) to prioritize the test cases
by using statement coverage as input to the algorithm. Average Percentage of State-
ments Covered (APSC) metrics is used to compute the efficiency of the algorithm.
Their approach is compared with other techniques of prioritization viz., random
prioritization and reverse prioritization. Their study gives optimum results.

Panwar et al. [12] proposed an improved version of Ant Colony Optimization
(ACO) algorithm to prioritize the test cases. Triangle classification problem is used
in this study. Their proposed technique is compared with different ordering of test
cases viz., reverse ordering, random ordering, optimal ordering and original ordering.
The antennas of ants are used to share the information for proposed approach. Their
approach achieves better results as compared to other orderings of the test cases.

3 Flower Pollination Algorithm (FPA)

FPA was developed in the year 2012 by Xin-She Yang. There are four main rules for
flower pollination process as discussed below [22].

I. Global pollination is achieved through biotic and cross-pollination process, and
pollen- carrying vectors transfer pollens through Levy flight (Rule 1)
II. Local pollination is achieved through abiotic and self- pollination (Rule 2)
III. Reproduction probability is equivalent to Flower Constancy (FC) that is
proportionate to the relationship between two flowers involved (Rule 3)
IV. Switch probability p ¢ [0,1] controls the global and local pollination (Rule 4)

Figure 1 represents the FPA developed by Yang [22].

NIMOA are analyzed by the way they explore their search space [22]. In principle
all algorithms have two main components i.e., exploitation and exploration which are
also known as intensification and diversification respectively. Exploitation is a local
search process which can leads to early convergence rate and may also get stuck at
local optimum since the final solution depends on starting point. Whereas, exploration
explore the global search space leading to a diverse set of solution. Exploration does
not get stuck at local optimum [22]. FPA is one of the newest NIMOA [2]. Flower
pollination is mainly related to the transfer of pollens, the transfer is achieved through
pollinators viz., birds, insects, bats and other animals [23].

Pollination can be achieved in two ways biotic and abiotic. Nearly 90% flowering
plants are a member of biotic pollination, the pollens are transferred with the help of
vectors. Whereas 10% pollination belong to abiotic form where no vector is needed
for transfer of pollens. The transfer of pollens take place with the help of water
and wind. Various vectors develop FC [22]. FC can be defined as the affinity that is
developed between the vector and the specific flower species. FC thus result in max-
imum transfer of pollens and reproduction of the same flower species. Biologically,
the objective of flower pollination can be explained as the survival of the fittest and
optimum reproduction of plants in number as well as fitness. Therefore, this natural
process encourages this research to use FPA for TCP for RT.

158 P. Dhareula and A. Ganpati

Maximize or minimize the Fitness Function f(x) for all x, where i=1ton
Create original population of n flower

Identify best flower from original population

Switch probability p £ [0,1] is defined

While (t<Maximum Generation)

For i=1 to n; where n is the number of flowers in the given population
If rand < p then perform global pollination

Perform Levy flight and draw L (step vector)

xil+l = xi: +TL {gl = x.t]

Else

Draw & from a uniform distribution in [0,1]

Perform local pollination as

xM=xt+e (x]: =%

End if

Calculate the fitness of new solution

If the fitness of new solution is better than previous solution then replace the previous solution
End for

Rank the solutions and keep the best solution found so far

End while

Fig. 1 Flower pollination algorithm (FPA)

4 FPA for TCP

This paper uses FPA for TCP to reduce overall time of execution in RT. FPA is used to
prioritize test cases from the original test suite (TS,) to give maximum fault coverage
in minimum time of execution. The algorithm uses code coverage criteria as an input
to prioritize test cases in TS,. Original population of test cases is randomly generated
and represented as TS, = (T'y, T», ..., T,). Figure 2 shows FPA for TCP.

5 Explanation of FPA for TCP

Original population of ‘n’ test cases is generated and the test suite is identified as
TS, = (T, T, , T,). For each test case its code coverage is considered as
the fitness function f(x;), where x; = (xy, x2,, X,). The code coverage of test
cases in TS, is used to prioritize the test cases. Test case with highest coverage is
maintained as g*. If multiple test cases have same coverage, then First Come First
Serve (FCFS) policy is adopted. A switch variable (p = 0.8) [23] is used to perform
local (exploitation) or global (exploration) pollination [23]. Random number ‘rand’
(value ranging between 0 and 1) is used to determine whether local pollination will
take place or global pollination will occur. If rand < p, global pollination is performed
and the fittest reproduction is represented as g* at rth iteration. In global pollination,
the fittest reproduction is ensured through pollens that can travel to long distance.
Therefore, for ¢ + 1 iteration the pollens/test cases are picked from the tth iteration.
Here the pollens are represented as test cases. In flower pollination vector has affinity

Flower Pollination Algorithm for Test Case Prioritization ... 159

Set the Fitness Function f(x) for all x, wherei=1ton

Set the original population of n test case as random solutions
Set g* as test case with maximum coverage

Set a switch variable p= 0.8

While (t< stopping criteria)

For i=1: n (all test case)

If rand < p then perform global pollination

Perform Levy flight and draw L (step vector)

Xim = xi‘ + YL {g* - xit]

Else

Draw ¢ from a uniform distribution in [0,1]

Perform local pollination as

Xt =xt+e {xjt - %)

End if

Calculate the fitness of new solution

If the fitness of new solution is better than previous solution
then replace the solution

End for

Rank the solutions and keep the best solution found so far
End while

Fig. 2 FPA for TCP

towards the pollens similarly test cases have affinity towards the fault. Those test cases
with higher fault detection capability are of great value and are carried forward to
the next generation of software. If we represent the fittest as g*. Then the FC and
first rule (Rule 1) can be mathematically formulated as shown in Eq. (1).

X =X+ 7 L(gx—X) (1)

In Eq. (1) X!*! is the ith pollen/test case at t + 1 iteration, X symbolizes the ith
pollen or the ith test case at iteration ¢, L is the strength of the pollination and has a
certain probability of distribution. In this paper all test cases/pollens are considered
to have FC or affinity toward the vector carrying them for pollination. Hence giving
equal chance to all the test cases/pollens to participate in pollination process (TCP).
For this reason, L (i.e., step size) is equated to one. To control the step size, I i.e.,
the scaling factor is used. It is assumed that uniform scaling is performed by vector
to visit pollens. Therefore, 1"is equated to one. Local pollination described in (Rule
2) and FC can be formulated as shown in Eq. 2.

X=X+ e(X) - X}) 2

Pollens are transferred from different flowers, but these flowers belong to a single
plant species. This simulates the FC in a small neighbourhood. Here j =i and k =i

160 P. Dhareula and A. Ganpati

+ 1 in the rth iteration. This emulates the FC behaviour in small area. A local random
walk variable ¢ is derived from a uniform distribution. This paper takes the value
of € as 0 or 1 representing either the test case is selected or not selected for further
prioritization; since it may be the case that in a given local area two test case cover
the same code. Therefore, redundant test cases are required to be discarded. Here
redundant test cases are those test case which give same code coverage. Therefore,
fifty percent of the chances of test cases with same coverage being selected is reduced.
This result in a reduced and prioritized set of test cases represented as test suite
TS;. TS, is exercised upon the application under consideration to determine the
number of faults covered by prioritized test suite TS;. The test cases now in TS;
are prioritized again to give test suite TS,. TS, gives maximum fault coverage in
reduced time of execution by removing those test cases that give redundant fault
coverage. Effectiveness of the final prioritized test suite TS, is determined with the
help of Average Percentage of Fault Detected Metrics (APFD). Let TS be the test
suite having n test cases and let F be the set of m faults identified by TS. Let F; be
first test case in original test suite TS, which identifies fault i. Therefore, APFD for
TS; is formulated as shown in Eq. (3).

Fi+Fh+F+...... F, 1
APED = 1 — 1+ + F3+ + L 3)
nm 2n

6 Implementation

FPA for TCP is implemented in Java using Eclipse IDE. Three applications namely,
Puzzle Game [16], Area and Perimeter [18] and Tritype [17] are used, which were
written in Java programming language. Area and Perimeter calculates the area and
perimeter of various mathematical shapes and tritype is a classic triangle classification
problem. TestNG tools is used to design the test scripts for all the applications
[19]. EclEmma tool is used to get the code coverage for applications used [20].
For the validation of results five versions of Puzzle Game, eight versions of Area
and Perimeter and six versions of Tritype applications were created. Each version
was seeded with a unique fault. Details of the applications used for experimental
evaluation are shown in Table 1.

Table 1 Details of applications used

Sr. no. | Name of the Size in LOC | Number of No. of test cases used
applications version/Unique fault
. Puzzle game 246 5 33
2. Area and perimeter 916 8 113
Tritype 106 6 45

Flower Pollination Algorithm for Test Case Prioritization ... 161

7 Results

For the explanation of empirical evaluation only one application is considered
namely, Puzzle Game. The original test suite (TS,) for Puzzle Game contains 33
test cases. Test cases are designed in no order viz., {T1, T2, T3, T4, ..., T2s, T2, ...,
T33}. There are five versions of Puzzle Game application with unique faults induced
in each version viz., {F, F», ..., Fs5}. TS, for Puzzle Game is given as input to the
FPA for TCP, the following sequence of test cases is given as the output from FPA
ie., TSy ={T3,Ts, Tg, T14, T2s, T27, T30}. So, the output of FPA is a test suite TS
consisting of seven test cases. TS| was exercised on all the versions of Puzzle Game
application to identify the faults covered by TS;. Table 2 shows the faults identified
by TS, for Puzzle Game.

In Table 2, circled cells represent the test case that first identifies a given fault,
which is also used to compute APFD metrics. It is evident from Table 2, that test case
T identifies maximum faults i.e., F'3, Fy4, F's. Hence, only T3 test case is enough to
identify faults F'3, F4 and F'5. Test case T'; is followed by T's and T'g that identifies
faults F, and F; respectively. Therefore, the prioritized sequence in final test suite
i.e., TS, = {T3, Ts, Tg} respectively. Table 3 shows the final test suite TS, for Puzzle
Game with the faults identified by TS,.

Table 2 Faults identified by TS| for puzzle game
Versions/Faults | Test Cases| T’ T T T T T T
i > 3 5 8 14 25 27 30

F; (Version 1) @ 1 1
F, (Version 2) @ 1
F; (Version 3)
F, (Version 4)
Fs5 (Version 5)

CleC

Table 3 Faults identified by TS, for puzzle game

* Versions/ Faults Test Cases T3 Ts Ts
F1 (Version 1) (I)
F> (Version 2) @

F3 (Version 3)
F4 (Version 4)
Fs5 (Version 5)

CCe

162 P. Dhareula and A. Ganpati

TS, gives complete fault coverage as was given by TS,. APFD metric value for
TSy = {T3, Ts, T, T14, Tas, Ty, T30} for Puzzle Game application using FPA is
shown in Eq. (4).

8+5+3+3+3 1
APFD =1 — ToAoHoF + 4)
33 x5 2 x 33

APFD =1 —0.13333 4 0.01515
APFD =1 —0.14848
APFD = 0.85152 in 0.48 s

Figure 3 shows the priority order and time of execution of TS;. Asitis evident from
the Fig. 4 that all the test case for TS; failed. Hence, TS; was efficient in covering
all the faults. Time of execution of TS; is 0.48 s. Similarly, for the Prioritized final
test suite TS, = {73, Ts, Ty} its APFD metric value for Puzzle Game application is
shown is Eq. (5).

8+5+3+3+3 1
APFD = | — ot 725+ (5)
33x5 2x33

APFD =1 —0.13333 4 0.01515
APFD =1 —0.14848
APFD = 0.85152in0.286 s

Figure 4 shows the priority order and time of execution for TS,,. Time of execution
of TS, is 0.268 s which is comparatively lower than the execution time of TS;.

For the validation of the results APFD metric is computer for different ordering
of test cases viz., FPA order (TS;), FPA order (TS;), Reverse FPA Order of (TS,),
Random Order of (TS,) and Reverse Random Order of (TS,) for Puzzle Game
application. It is also evident from Fig. 4 that the Prioritized Test Suite (TS;) covers
all faults with reduced test suite size and reduced time of execution as compared to
other ordering.

In Fig. 5 the random order of execution for original Test Suite (TS,) in 0.94 s is
shown.

In Table 4 APFD results and time of execution of all the application for different
ordering is shown viz., FPA order (TS;), FPA order (TS;), Reverse FPA Order of
(TS;), Random Order of (TS,) and Reverse Random Order of (TS,). It is evident
from Table 4 that the APFD results for FPA order (TS;) and FPA order (TS) are
better as compared to other ordering for all the three applications used in this study.

Flower Pollination Algorithm for Test Case Prioritization ... 163

= eclipse-workspace - Eclipse
File Edit Navigate Search Project

BvEYyLHE 2@ viviBid

1 Package Explorer & Consolﬂlﬂ’: Re

Search:

g% All Tests| & Failed Tests’Summary[
v & Default suite (0/7/0/0) (0.48 s)
v &it) Default test (0.48 s)
v @i FP_FinalTest)/Apps5

@ T3PTest4 (0.269 s)

gt TSPTest44 (0.023 s)

Bt T8PTest7 (0.114 s)

@ T14PTest13 (0.02 s)

g T25PTest13_1 (0.022 s)

gt T27PTest15_1 (0.014 s)

it T30PTest18 (0.018 s)

Fig. 3 Order and time of execution of TS

In Fig. 6 APFD results and time of execution of all the application for FPA order
(TS1), FPA order (TS;), Reverse FPA Order of (TS;,), Random Order of (TS,) and
Reverse Random Order of (TS,) is graphically represented.

8 Threat to Validity

The threat to validity for this study depends on various factors. Few aspects are that,
FPA follows a random search mechanism which may result in an inefficient test suite
giving minimal fault coverage and hence may not guarantee efficient results for TCP.
In the industrial environment the size of applications and number of actual faults can

164 P. Dhareula and A. Ganpati

& All Tests‘ &% Failed Tests | Summary[
v g Default suite (0/3/0/0) (0.268 s)
v &) Default test (0.268 s)
v @ Prioritized_FP_FinalTest/Apps5
g T3PTest4 (0.238 s)
& TSPTest44 (0.014 s)
&) T8PTest7 (0.016 s)

Fig. 4 Order and time of execution of TS,

% All Tests | &% Failed TestslSummary|
v gi) Default suite (0/33/0/0) (0.94 s)
v & Default test (0.94 s)
v g PuzzleTest

T28PTest16 (0.245 s)
g T26PTest14 1 (0.017 s)
g T27PTest15_1 (0.023 s)
& T15PTest14 (0.012 s)
&) T3PTest4 (0.075 s)

Fig. 5 Order and time of execution of random ordering of Tso

vary from large to very large including the variation in the operating environment,
whereas in this study small size application with few seeded faults have been used.
The value of control variables has been manipulated to suite the need of this study,
which may have otherwise led to inefficient results.

165

{8ar
9Ty LTy Slpcer
‘ep oy el ealy
Oy Tl 9¢ Yo 6Ly 6 ‘S8 9f 0cg ‘Tlp Ly ey
‘Iv g cev Tl oy <8l €06 7 €l <101 7 <€8 1 ‘8 S 6Ty 6l
SLp9lpvyeeyccy ‘LLy ¢SOL g < . Plpeccy <Ll eey
0Ty 8¢y < - ‘e ‘lpeeey vy teg (Os1)
Yrp e ser ‘legcLeg <ssy Ol 8l <0l vTy)Ins 159} SULIOPIO
8%1°0 | 981S€0 VELLLSL LU | €6L°0 | €9EEVO AN AL ALY AN/ ¥6°0 | 9LSLTO VAV ALTVAN A1 WOPUET 9SI2AdY 'S
(°1
‘Scrpeegq cley veg
Ol g 8l 9l ey
6Ty Ty St 68 €Ty ‘vr hpeTy ey
‘LpveEp Sep e v ‘Plpe8speleg Ity ‘Llpeccy vl <6l
Crrrrreees AN A A A ‘leg sy ‘6T S8 ‘lEL
‘8T 0Ty Ty 6y vy Corrmeeen ‘SOl g “LLy ‘Lpilpocy el Aom,bv
Ol <Stp<8lpcogy<cly ‘€8 1 101 g <€l 1 <06 AN A A)InS 189) E:%EO
8¥1°0 | ¥0LETO LWL I LOv | T6L0 | S9ETYO | 9L *S8L 0L OLL YT ¥6°0 | S8¥8€0 VALY ALTY ALV Jo SuniopIo wopuey 4
(1L g org (‘s
Sv0'0 £96¢€0 WL CL 9L '86L | 8LO0 | 969¢t°0 0518 %667 *80LT} | 6GT0 66080 (VALY ALV VdA JO I9pI0 9sIoAdy €
{801 7 <667 18 1
¥0°0 | 6€0L9°0 SELOLCL L | 88070 | 869¥1°0 OSLOPp LT lL} | 980 | TSISS0 (8251 1) (981) 1nsa1 vad K4
*wo_&
€901 7 <66 7 88 <18 |
‘LLy YLy 89 <091
oS g ISy v cTry
v Ov g 8ey <ley 9Ty ‘Ob g 6€ g “SE€ T ‘LT {oey Loy sty
S0'0 | 6€0L9°0 TCLOLOLTL L L | LOT0 | ¥6OPY'0 | MLLLSL LTI} | 850 | TSIS80 RAVALN ALV ALY 3] (JSpnsarvdd | 1
(s ur) sj[nsax (s ur) sj[nsax (s ur) sj[nsal
g, addv Sumopip | el | @ddv Sumopio | ownL | @ddv Sulsp1o ou
uoneorjdde odAyuiy, uoneorjdde 1ojowied pue eary uoneorjdde owes o[zzng posn wpuod[y | IS

Flower Pollination Algorithm for Test Case Prioritization ...

suoneoridde ay) [[e ur soyns 1s9) JO SULIGPIO SNOLILA JOJ UOTINOAXA JO W) Pue snsaI IdV dqeL

166 P. Dhareula and A. Ganpati

0.16 2
0.14 - 2 18
- 1.6
0.12
1.4
0.1 12
0.08 1
0.85152 0.85152 0.8099 I 1
-
0.06 g:":’: 0.67039 067039 0.8
(o x
g # : 0.6
0.42368 043363
0.04 0.38485 035186 s
=) 0.27576 -
0.23704
0.02 e ﬁﬁ = cacnnc E.
mel B 0
o] !
. : = e E
FPA Result (TS1) FPA Result (TSp) Reverse Order Result of FPA (TSp) Random Ordering Result of Original Reverse Random Ordering Result of
Test Suite (TSo) Original Tets Suite (TSo)
et Puzzle Game Application APFD Results ' Area and Perimeter Application APFD Results
e Tritype Application APFD Results = Tritype Application Time (in sec)
=m|jm= Puzzle Game Application Time (in sec) === Area and Perimeter Application Time (in sec)

Fig. 6 APFD results for various ordering of test suites for all the applications

9 Conclusion and Future Work

In this research, FPA is used for TCP in RT. FPA uses code coverage of test cases
without using any information of faults covered by the test cases. FPA is used to
prioritize/order the test cases for RT to give maximum fault coverage in minimum
time of execution. Three applications written in Java are used for empirical evaluation.
Test scripts for all the applications were designed using TestNG tool. For all the
applications three test suite ordering were considered namely, original test suite (TS,)
and two orderings generated by FPA (TS;) and (TS,,). FPA for TCP initially generated
prioritized test suite (TS;) which was further reduced and prioritized (ordered) to
get test Suite (TS). For validation of the results APFD metrics is used. APFD value
for different orderings of test cases in three applications is calculated. The results
of APFD metrics for FPA order (TS;) and FPA order (TS,) outperform the results
given by Reverse FPA Order of (TS;), Random Order of (TS,) and Reverse Random
Order of (TS,). Since FPA for TCP converged early for all the applications used in
this study, hence, only one iteration is used. Therefore, it can be stated that stopping
criteria of FPA for TCP depends on the type and size of the application being used. For
future validation of results an empirical evaluation of FPA for TCP will be performed
with different NIMOA.

References

1. Alsewari AA, Har HC, Homaid AA, Nasser AB, Zamli KZ, Tairan NM (2017) Test cases
minimization strategy based on flower pollination algorithm. In: International conference of
reliable information and communication technology 2017 Apr 23. Springer, Cham, pp 505-512.
https://doi.org/10.1007/978-3-319-59427-9_53

https://doi.org/10.1007/978-3-319-59427-9_53

Flower Pollination Algorithm for Test Case Prioritization ... 167

2.

10.

11.

12.

13.
14.

15.

16.
17.
18.

19.
20.
21.

22.
23.

Chiroma H, Shuib NL, Muaz SA, Abubakar Al, Ila LB, Maitama JZ (2015) A review of the
applications of bio-inspired flower pollination algorithm. Procedia Compu Sci 1(62):435-441.
https://doi.org/10.1016/j.procs.2015.08.438

. Harrold MJ, Gupta R, Soffa ML (1993) A methodology for controlling the size of a test suite.

ACM Trans Sof Eng Method (TOSEM) 2(3):270-285. https://doi.org/10.1145/152388.152391

. Jiang B, Wu Y, Zhang Y, Zhang Z, Chan WK (2018) ReTestDroid: towards safer regression

test selection for android application. In: 2018 IEEE 42nd annual computer software and
applications conference (COMPSAC) 2018 Jul 23, vol 1. IEEE, pp 235-244. https://doi.org/
10.1109/compsac.2018.00037

. Kabir MN, Ali J, Alsewari AA, Zamli KZ (2017) An adaptive flower pollination algorithm for

software test suite minimization. In: 2017 3rd international conference on electrical information
and communication technology (EICT) 2017 Dec 7. IEEE, pp 1-5. https://doi.org/10.1109/eict.
2017.8275215

. Khatibsyarbini M, Isa MA, Jawawi DN, Tumeng R (2018) Test case prioritization approaches

in regression testing: a systematic literature review. Inf Softw Technol 1(93):74-93. https://
doi.org/10.1016/j.infsof.2017.08.014

. Luo Q, Moran K, Poshyvanyk D, Di Penta M (2018) Assessing test case prioritization on

real faults and mutants. In: 2018 IEEE international conference on software maintenance and
evolution (ICSME) 2018 Sep 23. IEEE, pp 240-251. https://doi.org/10.1109/icsme.2018.00033

. Nabil E (2016) A modified flower pollination algorithm for global optimization. Expert Syst

Appl 15(57):192-203. https://doi.org/10.1016/j.eswa.2016.03.047

. Nasser AB, Sariera YA, Alsewari AA, Zamli KZ (2015) Assessing Optimization-based strate-

gies for T-way test suite generation: the case for flower-based strategy. In: 2015 IEEE inter-
national conference on control system, computing and engineering (ICCSCE) 2015 Nov 27.
IEEE, pp 150-155. https://doi.org/10.1109/iccsce.2015.7482175

Nasser AB, Zamli KZ, Alsewari AA, Ahmed BS (2018) Hybrid flower pollination algorithm
strategies for T-way test suite generation. PLoS ONE 13(5):e0195187. https://doi.org/10.1371/
journal.pone.0195187

Pant S, Kumar A, Ram M (2017) Flower pollination algorithm development: a state of art review.
Int J Syst Assur Eng Manag 8(2):1858-1866. https://doi.org/10.1007/s13198-017-0623-7
Panwar D, Tomar P, Harsh H and Siddique MH (2018) Improved meta-heuristic technique for
test case prioritization. In: Soft computing: theories and applications. Springer, Singapore, pp
647-664. https://doi.org/10.1007/978-981-10-5687-1_58

Pressman RS (2005) Software engineering: a practitioner’s approach. Palgrave Macmillan
Rothermel G, Untch RH, Chu C, Harrold MJ (1999) Test case prioritization: an empirical study.
In: Proceedings IEEE international conference on software maintenance-1999 (ICSM’99).
Software Maintenance for Business Change (Cat. No. 99CB36360). IEEE, pp 179-188. https://
doi.org/10.1109/icsm.1999.792604

Sivaji U, Shraban A, Varalaxmi V, Ashok M, Laxmi L (2019) Optimizing regression test suite
reduction. In: First international conference on artificial intelligence and cognitive computing.
Springer, Singapore, pp 187-192. https://doi.org/10.1007/978-981-13-1580-0_18
https://github.com/jkriti/JApps/blob/master/JApps.java
https://sir.csc.ncsu.edu/portal/bios/trityp.php
https://stackoverflow.com/questions/4479624/area-and-perimeter-calculation-of-various-
shapes?rq=1

https://testng.org/doc/download.html

https://www.eclemma.org/download.html

Yadav DK and Dutta S (2017) Regression test case prioritization technique using genetic
algorithm. In: Advances in computational intelligence 2017. Springer, Singapore, pp 133-140.
https://doi.org/10.1007/978-981-10-2525-9_13

Yang XS (2014) Nature-inspired optimization algorithms. Elsevier

Yang XS, Karamanoglu M, He X (2014) Flower pollination algorithm: a novel approach for
multiobjective optimization. Eng Optim 46(9):1222-1237. https://doi.org/10.1080/0305215X.
2013.832237

https://doi.org/10.1016/j.procs.2015.08.438
https://doi.org/10.1145/152388.152391
https://doi.org/10.1109/compsac.2018.00037
https://doi.org/10.1109/eict.2017.8275215
https://doi.org/10.1016/j.infsof.2017.08.014
https://doi.org/10.1109/icsme.2018.00033
https://doi.org/10.1016/j.eswa.2016.03.047
https://doi.org/10.1109/iccsce.2015.7482175
https://doi.org/10.1371/journal.pone.0195187
https://doi.org/10.1007/s13198-017-0623-7
https://doi.org/10.1007/978-981-10-5687-1_58
https://doi.org/10.1109/icsm.1999.792604
https://doi.org/10.1007/978-981-13-1580-0_18
https://github.com/jkriti/JApps/blob/master/JApps.java
https://sir.csc.ncsu.edu/portal/bios/trityp.php
https://stackoverflow.com/questions/4479624/area-and-perimeter-calculation-of-various-shapes%3frq%3d1
https://testng.org/doc/download.html
https://www.eclemma.org/download.html
https://doi.org/10.1007/978-981-10-2525-9_13
https://doi.org/10.1080/0305215X.2013.832237

	 Flower Pollination Algorithm for Test Case Prioritization in Regression Testing
	1 Introduction
	2 Related Work
	3 Flower Pollination Algorithm (FPA)
	4 FPA for TCP
	5 Explanation of FPA for TCP
	6 Implementation
	7 Results
	8 Threat to Validity
	9 Conclusion and Future Work
	References

