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Chapter 3
Zinc Transporter Proteins: A Review 
and a New View from Biochemistry

Taiho Kambe, Eisuke Suzuki, and Taiki Komori

Abstract  Zinc is an essential biological metal found in approximately 10% of the 
human proteome. Zinc regulates a large number of proteins and their functions, 
including transcription factors, enzymes, adapters, receptors, and growth factors, 
acting as a structural or catalytic cofactor or as a signaling mediator. Increasing 
evidence indicates that the transport of zinc across biological membranes plays a 
pivotal role in its biological functions. Zinc transport is mostly mediated by two 
zinc transporter proteins, ZNT and ZIP. Members of both transporter families are 
involved in a variety of biological events, which in humans are often associated with 
health and disease. In this chapter, we review the current understanding of the bio-
chemical functions of both transporter protein families with a particular focus on 
their biological subgroupings.

Keywords  Zrt, Irt-like protein (ZIP) · Zn transporter (ZNT) · Solute carrier family 
(SLC) · Membrane transport · Cation diffusion facilitator (CDF)

3.1  �Introduction

Under physiological conditions, zinc is present as a divalent cation that does not 
have a redox potential. In contrast to copper and iron, it therefore does not require a 
redox reaction during membrane transport (Kambe 2013). Thus, precise spatiotem-
poral control of the expression of zinc transport proteins is critically important for 
net zinc transport across biological membranes. Increasing evidence suggests that 
the cellular concentration and distribution of zinc, which are mediated through zinc 
mobilization across cellular membranes, are highly involved in a large number of 
cellular responses, such as activation/repression of transcription and translation, 
post-translational controls including membrane trafficking and protein stability, and 
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activation/inactivation of many enzymes related to cellular signaling (Fukada and 
Kambe 2011; Maret and Li 2009). Therefore, understanding the physiological/path-
ological regulations and biochemical properties of zinc transport is essential for 
understanding the biological roles of zinc. In metazoans, cellular zinc transport is 
primarily mediated by two zinc transporter proteins, the Zn transporter (ZnT)/solute 
carrier family 30 (ZNT/SLC30A) and Zrt,  Irt-like protein (ZIP)/SLC39A (Fig. 3.1), 
that function as exporters and importers, respectively. In this chapter, the biochemi-
cal properties of these zinc transporter proteins are discussed. Their physiological 
and pathological roles are referred to in other chapters of this book.

3.2  �History of ZNT and ZIP Family Proteins

In 1995, the first mammalian zinc transporter was identified by expression cloning 
using zinc-sensitive mutant Baby hamster kidney cells (Palmiter and Findley 1995). 
Since then, more than 20 zinc transporters, including ZNTs and ZIPs, have been 
identified (Gaither and Eide 2001; Kambe et al. 2004), all of which can function as 
secondary active transporters. The importance of zinc transporters is unquestion-
able, with a growing number of studies showing their involvement in both physio-
logical and pathological processes. Before outlining their biochemical properties, 
we briefly discuss their historical backgrounds, which may give us important clues 
that would enable us to discover new functions of zinc transporter protein.

Fig. 3.1  Phylogeny of ZNT and ZIP family proteins. A neighbor-joining phylogenetic tree was 
generated with ClustalW, based on protein sequence alignments. (a) ZNT family members. (b) ZIP 
family members. In (A) and (B), the subfamily and subgroup classification assigned in this chapter 
are shown on the right
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The first zinc transporter protein of the ZNT family, named Zrc1p, was identified 
in Saccharomyces cerevisiae and confers resistance to high zinc concentrations 
(Kamizono et al. 1989). Subsequently, Cot1p and CzcD were identified in S. cerevi-
siae and the Cupriavidus metallidurans (formerly Alcaligenes eutrophus) strain 
CH34, both of which were also shown to confer resistance to high levels of zinc and 
other metals such as cobalt (Conklin et al. 1992; Nies 1992). Due to their sequence 
homology, these three proteins were grouped together and named cation diffusion 
facilitator (CDF) proteins (Gaither and Eide 2001). However, it was later discovered 
that, despite their name, CDF proteins do not serve as diffusion facilitators but func-
tion as secondary active transporters. Proteins within this family are conserved at all 
phylogenetic levels (Gaither and Eide 2001). The first mammalian ZNT family 
member, rat Znt1, was identified as a member of the CDF family (Palmiter and 
Findley 1995). The second ZNT transporter, Znt2, was identified by expression 
cloning (Palmiter et al. 1996a) with other ZNT family proteins identified by other 
methods, including EST and genome database searches (Chimienti et  al. 2004; 
Huang et al. 2002; Kambe et al. 2002; Kirschke and Huang 2003; Palmiter et al. 
1996b). To date, there are ten members of the ZNT family, ZNT1-ZNT10; however, 
ZNT9 has been shown to act as a nuclear receptor coactivator (GRIP1-associated 
coactivator 63 (GAC 63)) (Chen et al. 2007), although there are studies reporting its 
involvement in zinc metabolism (Perez et al. 2017). Since the zinc transport ability 
of ZNT9 is yet to be fully elucidated, we have excluded it from our ZNT family 
discussion (Figs. 3.2 and 3.3).

Homologs of the human ZNT family proteins have been found in the genome 
sequences of rats, mice, chickens, zebrafish, fruit flies, nematodes, yeast, and plants 
(Arabidopsis thaliana) and are shown in Table 3.1. This table highlights that ZNT 
family proteins are highly conserved in vertebrates, and in nematodes, yeast, and 
plants. However, species such as nematodes, yeast, and plants have family members 
that produce ZNT family proteins, which are not homologous to vertebrate mem-
bers. CDF family members are generally classified into three subfamilies, Zn-CDF, 
Zn/Fe-CDF, or Mn-CDF, based on their phylogenetic relationships and metal sub-
strate specificities (Kambe 2012). All vertebrate ZNT family members belong to the 
Zn-CDF subgroup (Fig.  3.2). CDF members with low homology to vertebrates 
(Table 3.1) belong to Zn/Fe-CDF or Mn-CDF subfamilies and have been shown to 
be involved in other divalent cation transport in addition to zinc, which suggests that 
these proteins play diverse roles in metal transport.

The identification of ZIP family members is somewhat confusing. Among the 
ZIP family, ZIP6 was the first to be identified. However, it was originally identified 
as a highly expressed gene in breast cancer and named LIV-1 (Manning et al. 1994), 
with its zinc transport activity not evident at that time (Taylor 2000). Numerous 
studies have since shown that members of the ZIP family, including ZIP6, are asso-
ciated with cancer development and metastasis (Bafaro et al. 2017) (see Chap. 16), 
which is consistent with the initial identification of ZIP6 in breast cancer. Zrt1p and 
Zrt2p zinc transporters were subsequently identified in S. cerevisiae (Zhao and Eide 
1996a, b) simultaneous to the identification of IRT1 iron transporter in A. thaliana 
(Eide et  al. 1996), all of which were identified from excellent genetic studies in 
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yeast. These findings lead to the name “ZIP” (ZRT, IRT-like protein) (Eng et al. 
1998), with the name suggesting that ZIP members can transport both zinc and iron, 
and possibly other divalent cations through a broader specificity. In fact, many 
recent studies show that mammalian ZIP family members can also transport manga-
nese and cadmium (see Sect. 3.4.4.2) (Aydemir and Cousins 2018; Jenkitkasemwong 
et al. 2012). After the identification of ZIP1, ZIP2, and ZIP3 from EST database 
searches, an important discovery for the ZIP family in mammals was the identifica-
tion of the SLC39A4/ZIP4 gene, whose mutated form is responsible for acroderma-
titis enteropathica, an inherited zinc deficiency disorder in humans. This finding 

Fig. 3.2  Cartoon of predicted structures of ZNT and ZIP family proteins. (A). Predicted topology 
of the ZNT protein is shown. ZNT protomers most likely have six transmembrane domains 
(TMDs), in which TMDs, I, II, IV, and V form a compact four-helical bundle and the remaining 
TMDs, III and VI, form a two-helical pair outside the bundle. TMD II and V of the compact four-
helical bundle create a transmembranous zinc binding site, which is formed by conserved aspartic 
acid (D) and histidine (H) residues. Predictions based on the structural properties of the bacterial 
homolog, YiiP (Coudray et al. 2013; Gupta et al. 2014; Lopez-Redondo et al. 2018; Lu et al. 2009; 
Lu and Fu 2007). ZNT proteins transport zinc from the cytosol into the extracellular space or 
intracellular compartments. (B) Predicted topology of the ZIP protein is shown. ZIP protomers are 
likely to have eight transmembrane domains (TMDs) consisting of a novel 3+2+3 TMD architec-
ture, in which the first three TMDs (I to III) are symmetrically related to the last three TMDs (VI 
to VIII) by a pseudo-twofold axis. The conserved amphipathic amino acid residues in TMD IV 
(histidine, asparagine (N), and aspartic acid) and in TMD V (two histidines and one glutamic 
acid (E) in the potential metalloprotease motif (HEXPHEXGD) in LIV-1 subfamily, which are 
indicated in bold) form a binuclear metal center within the TMDs. However, the amphipathic 
amino acid residues in TMD V are only partially conserved in other subfamilies. Prediction based 
on the structure of the bacterial ZIP protein homolog, BbZIP (Zhang et al. 2017). ZIP4’s long 
extracellular N-terminal region is divided into two structural domains, the helix-rich domain 
(HRD), and the PAL motif-domain (see text) (Zhang et al. 2016). ZIP family members transport 
zinc in the opposite direction to the ZNT family
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highlights the importance of the ZIP family for human and vertebrate physiopathol-
ogy. Other ZIP family proteins have been discovered in genome databases, with 14 
members now identified (Fig. 3.1) (Eide 2004; Jeong and Eide 2013).

Homologs of the human ZIP family have also been found in the genome 
sequences of rats, mice, chickens, zebrafish, fruit flies, nematodes, yeast, and plants 
(A. thaliana) and are shown in Table 3.2. This table shows that all ZIP family mem-
bers are highly conserved in mammals, as in the case of the ZNT family. ZIP family 
members are generally classified into four subfamilies, ZIP-I, ZIP-II, LIV-1, and 
gufA (Fig. 3.1) (see Sect. 3.4.2) (Dempski 2012; Gaither and Eide 2001; Kambe 
et al. 2004; Taylor and Nicholson 2003), based on their phylogenetic relationships. 
ZIP4 is essential for zinc absorption in mammals, but a homologous gene is not 
present in chickens.

A number of ZNT and ZIP transporters have been shown to be involved in human 
genetic disorders. Moreover, numerous mutant and knockout animals have been 
generated for most of their orthologues. The data in Tables 3.1 and 3.2 may prove to 
be useful for reorganizing the orthologue functions of both the protein families.

Fig. 3.3  Subcellular localization of ZNT and ZIP proteins from the view of subfamily and sub-
group. The subcellular localizations of ZNT and ZIP protein members are shown according to their 
subfamily and subgroup assignments described in the main text and Fig. 3.1. ZNT members are 
shown according to their subgroups: subgroup (i) ZNT1 and ZNT10; subgroup (ii) ZNT2, ZNT3, 
ZNT4, and ZNT8; subgroup (iii) ZNT5 and ZNT7; and subgroup (iv) ZNT6. ZIP family members, 
except for LIV-1, are shown according to their subfamily: subfamily (ZIP-I) ZIP9; subfamily 
(ZIP-II) ZIP1, ZIP2, and ZIP3; and subfamily (gufA) ZIP11. LIV-1 subfamily members are 
assigned into subgroups: subgroup (i) ZIP4 and ZIP12; subgroup (ii) ZIP8 and ZIP14; subgroup 
(iii) ZIP5, ZIP6, and ZIP10; and subgroup (iv) ZIP7 and ZIP13
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3.3  �ZNT Transporters

3.3.1  �Biochemical and Structural Properties of Bacterial  
ZNT Homologs

ZNT transporters function as zinc efflux proteins, transporting zinc from the cytosol 
into intracellular compartments or into the extracellular space. Based on high reso-
lution structures of the bacterial homolog YiiP (E. coli and S. oneidensis), which 
belongs to Zn/Fe-CDF subfamily (Coudray et al. 2013; Gupta et al. 2014; Lopez-
Redondo et al. 2018; Lu et al. 2009; Lu and Fu 2007), ZNT transporters are thought 
to form homodimers, enabling them to transport zinc across biological membranes. 
The structure of YiiP reveals a topology in which each protomer most likely has six 
transmembrane domains (TMDs) with cytosolic N- and C-termini, as predicted by 
hydrophobicity plots (Gaither and Eide 2001; Paulsen and Saier 1997). The TMDs 
are grouped into a compact four-helical bundle consisting of TMDs, I, II, IV, and V, 
and a two-helical pair outside the bundle, consisting of TMDs III and VI. The com-
pact four-helical bundle creates a channel in which the intramembranous tetrahedral 
zinc-binding site of TMDs II and V is located. This zinc-binding site consists of one 
histidine (H) and three aspartic acid (D) residues (DDHD core motif). 
Homodimerization of YiiP is stabilized by intermolecular salt-bridges which ensure 
the correct orientation of TMDs III and VI by interlocking the TMDs at the dimer 
interface (Lu et  al. 2009). Another zinc-binding site is formed in the cytosolic 
C-terminal region, which exhibits a binuclear zinc-coordination site. YiiP has a 
highly conserved metallochaperone-like structure, with a characteristic αββα struc-
ture despite a high degree of sequence variability (Cherezov et al. 2008; Higuchi 
et al. 2009; Uebe et al. 2018). Recently, a ZNT homolog lacking the C-terminal 
region was reported in a marine bacterium (Kolaj-Robin et al. 2015), suggesting 
that this region may not be required for zinc transport activity.

YiiP is functional as a proton-zinc exchanger, in which an alternative access mech-
anism is in operation. TMDs of YiiP can adopt cytosolic-facing (inward-facing) and 
periplasmic-facing (outward-facing) conformations, both of which can bind zinc or 
protons (Gupta et al. 2014; Lopez-Redondo et al. 2018). Zinc binding in the cytosolic 
C-terminal region may induce conformational changes in the TMDs, facilitating zinc 
transport by the alternative access mechanism (Coudray et al. 2013; Gupta et al. 2014; 
Lopez-Redondo et al. 2018) in which the extracellular proton provides a driving force 
for exporting zinc from the cytosol. This information provides the framework for 
exploring the biochemical and structural properties of ZNT transporters.

3.3.2  �Properties of ZNT Transporter Proteins

ZNT family proteins are predicted to have a similar topology to YiiP and, therefore, 
are thought to form homodimers (Fukunaka et al. 2009; Golan et al. 2016; Itsumura 
et al., 2013; Lasry et al. 2014; Murgia et al. 2008). The conserved motif of (F/Y)
G(W/Y/F)XRXE, which is positioned on the first cytosolic loop between TMDs II 
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and III, is thought to be involved in homodimer formation (Fig. 3.4) (Lasry et al. 
2012). The conserved arginine (R) in the motif is thought to be involved in the forma-
tion of intermolecular salt-bridges on the cytoplasmic membrane surface which are 
important for zinc transport (Figs. 3.2 and 3.4) (Fukue et al. 2018). In addition to 
homodimer formation, ZNT5 and ZNT6 form heterodimers (Fukunaka et al. 2009; 
Golan et al. 2015; Lasry et al. 2014; Suzuki et al. 2005b). Other ZNT members could 
also form heterodimers (Golan et  al. 2015; Zhao et  al. 2016), the significance of 
which is unclear. Similar to YiiP, ZNT proteins are functional as zinc-proton exchang-
ers (Ohana et al. 2009; Shusterman et al. 2014). This mechanism of zinc transport is 
reasonable, particularly in one subgroup (ZNT2, ZNT3, ZNT4, and ZNT8) (see Sect. 
3.3.3.2) which are localized to acidic compartments, such as endosomes, lysosomes, 
or intracellular vesicles. The activity of ZNT proteins may be tunable and could be 
controlled by the lipid composition of the vesicles where they are localized (Merriman 
et al. 2016). Recent computational simulations, based on energy calculations, of the 
ZNT zinc permeation pathway shows a favorable zinc translocation via the alterna-
tive access mechanism, consistent with the model of YiiP (Golan et al. 2018)

Interestingly, the DDHD core motif of YiiP changes to HDHD within TMDs II 
and V in most of the ZNT members (Fig. 3.3). Numerous biochemical studies reveal 
that this core motif is essential for zinc transport, as substitution of histidine or 
aspartic acid residues to alanine (A) abolishes zinc transport (Fujimoto et al. 2013; 
Ohana et  al. 2009; Tsuji et  al. 2017). In addition, ZNT10 has an altered motif, 
NDHD, within TMDs II and V (Fig. 3.3), that enables ZNT10 to transport manga-
nese (Leyva-Illades et al. 2014; Nishito et al. 2016) (see Sect. 3.3.3.1). Moreover, 
replacing the histidine residue in TMD II with aspartic acid (DDHD, i.e., the YiiP 
motif) in ZNT5 and ZNT8 allows it to transport cadmium as well as zinc (Hoch 
et al. 2012). Thus, this position in TMD II, which constitutes the intramembranous 
zinc-binding site, is critical for regulating metal substrate specificity. ZNT6 has no 
zinc transport activity, with two amino acids of the HDHD motif replaced by hydro-
phobic residues (Fig. 3.4). Instead, ZNT6 is functional as an auxiliary protomer of 

Fig. 3.4  (continued)  external loops (EL), and C-terminal cytosolic α-helices and β-sheets based 
on the crystal structure of YiiP are indicated in yellow, pink, turquoise, and lavender, respectively. 
Residues highlighted in red indicate the histidine (H) and aspartic acid (D) residues constituting 
the intramembranous zinc-binding site. Residues highlighted in black and gray are highly con-
served and semi-conserved, respectively. The asparagine residue (N) in TMD II of ZNT10, which 
has been speculated to be involved in the recognition of manganese, is indicated in green. Residues 
highlighted in light blue indicate the amino acid residues forming the cytosolic binuclear zinc-
coordination site. Residues highlighted in blue indicate the highly conserved arginine (R) and 
well-conserved glutamic acid (E) or glutamine (Q) likely involved in the formation of salt-bridges 
on the cytosolic side. The amino acid sequences at the C-terminal end of ZNT6 (30 aa) and ZNT10 
(4 aa) are not displayed in the alignment. The TMDs indicated in ZNT5 correspond to TMDs 
between X and XV. “-” denotes a gap in the alignment. Blue circles indicate the amino acid resi-
dues involved in zinc binding. The (F/Y)G(W/Y/F)XRXE sequence, which is proposed to be 
involved in dimerization, is indicated in lavender. Blue, green, red, or honey circles below the 
sequences indicate the amino acid residues involved in zinc binding (different color means the 
coordination of different zinc ions, and honey color means the coordination of zinc ion in the 
neighboring subunit). This figure is used and modified from Kambe et al. 2014 with permission
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Fig. 3.4  Sequence alignment of ZNT family proteins. The alignment is ordered according to simi-
larities among subfamilies. The putative transmembrane domains (TMD), intracel lular loops (IL), 
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the ZNT5 and ZNT6 heterodimer (Fukunaka et  al. 2009) (see Sect. 3.3.3.4). 
Interestingly, several plant ZNT homologs (e.g., MTP8, MTP9, and MTP11), which 
are known to be manganese transporters and are grouped within the Mn-CDF sub-
family of CDF proteins (Gustin et al. 2011; Pedas et al. 2014; Tsunemitsu et al. 
2018; Ueno et al. 2015), have a DDDD core motif. No orthologues have been found 
in vertebrate genomes (see Table 3.1).

Due to a lack of sequence similarity with YiiP, several unique features of ZNT 
transporter proteins have been determined in a number of biochemical studies. 
One such feature is the unique cytosolic histidine-rich loop with variable lengths 
between TMDs IV and V, which is also found in the plant ZNT homologs 
(Blindauer and Schmid 2010; Kambe et al. 2014). The histidine-rich loop was 
thought to be important for zinc transport or as a sensor for cytosolic zinc levels 
by coordinating cytosolic zinc through its histidine residues (Arus et al. 2013; 
Kawachi et al. 2008; Suzuki et al. 2005b; Tanaka et al. 2015; Tanaka et al. 2013). 
However, a ZNT mutant, in which all histidine residues in the loop are mutated 
to alanine, still possesses zinc transport activity, although this activity is 
decreased, indicating that the histidine residues are not essential for zinc trans-
port (Fukue et al. 2018). Another unique feature of the ZNT proteins, in compari-
son to YiiP, is the role of the cytosolic N-terminal region, which, in YiiP, is too 
short to study. A recent study indicates that ZNT members are likely to be func-
tional even when the N-terminal is absent, although this region could regulate 
zinc transport via an interaction with the cytosolic histidine-rich loop (Fukue 
et al. 2018). Thus far, the functions of the N-terminal region are reported as a 
mitochondrial sorting motif (Seo et al. 2011), a zinc binding (sensor) motif (Arus 
et al. 2013), and a potential protein–protein interaction motif resembling the leu-
cine zipper motif (Murgia et al. 1999), in addition to participating in the regula-
tion of zinc transport (Kawachi et al. 2012). Interestingly, ZNT5 has a uniquely 
long N-terminal sequence containing nine potential TMDs (Kambe et al. 2002), 
however its functional importance is not yet known.

The nine ZNT members described above all belong to the Zn-CDF subfamily of 
CDF proteins (Kambe 2012; Montanini et al. 2007). Further groupings, based on 
sequence similarity, subdivide them into four groups: (i) ZNT1 and ZNT10, (ii) 
ZNT2, ZNT3, ZNT4, and ZNT8, (iii) ZNT5 and ZNT7, and (iv) ZNT6 (Gustin et al. 
2011; Kambe 2012; Kambe et al. 2006) (Figs. 3.1 and 3.3). Subgroup (i) contains 
the cell surface localized ZNTs, although, despite it belonging to the Zn-CDF sub-
family, ZNT10 transports manganese. Subgroup (ii) contains transporters involved 
in intracellular compartments and vesicles, while subgroup (iii) contains transport-
ers involved in zinc transport in the early secretory pathway. Subgroup (iv) contains 
only ZNT6, which is functional as an auxiliary protomer without zinc transport 
activity, as described above.

T. Kambe et al.



37

3.3.3  �Biochemical Characterization of the ZNT Subgroups

Here, we provide a brief summary of each of the ZNT subgroups. For more detailed 
information about their physiopathological functions, we refer the reader to the fol-
lowing reviews, Bowers and Srai (2018), Hara et  al. (2017), and Kambe et  al. 
(2015). Additionally, the details of mice phenotypes have been described in other 
chapters of this book.

3.3.3.1  �ZNT1 and ZNT10 Subgroup

Both ZNT1 and ZNT10 are known to be functional at the plasma membrane as 
efflux transporters of cytosolic zinc and manganese, respectively (see above) 
(Palmiter and Findley 1995; Leyva-Illades et al. 2014; Nishito and Kambe 2019), 
although their intracellular localization is also reported. As mentioned above, their 
difference in metal substrate specificity is due to differences in their metal binding 
motifs (HDHD in ZNT1, NDHD in ZNT10). ZNT1 expression increases in response 
to excess zinc through binding of metal-response element-binding transcription 
factor-1 (MTF-1) to the metal response element (MRE) in its promoter, in a fashion 
similar to metallothionein (Langmade et al. 2000). This is consistent with its cellu-
lar function, which is to reduce the toxicity of excess zinc. In contrast, there are no 
reports describing manganese-induced expression of ZNT10, although such regula-
tion would be important as mutations of SL C30A10/ZNT10 gene result in parkin-
sonism with hypermanganesemia (Quadri et al. 2012; Tuschl et al. 2012). ZNT1 is 
thought to be mostly localized to the basolateral membrane in polarized cells 
(McMahon and Cousins 1998), while ZNT10 is reported to be localized to the api-
cal membrane (Taylor et al. 2019). Overall, they have a sequence similarity of 37% 
(Nishito et al. 2016), therefore, the differing amino acids may be responsible for 
their unique subcellular localizations, although the regulatory mechanisms for their 
trafficking to the cell surface have not yet been elucidated. Both have a very short 
cytosolic N-terminal region (Fukue et  al. 2018; Kambe et  al. 2014) (Fig.  3.3). 
Recently, ZNT10 was reported to be functional as a manganese-calcium exchanger 
(Levy et al. 2019), the mode of which needs to be further investigated.

3.3.3.2  �ZNT2, ZNT3, ZNT4, and ZNT8 Subgroup

These ZNT subgroup members are localized to the membranes of cytosolic secre-
tory vesicles and play essential roles in transporting zinc into their lumens (Hennigar 
and Kelleher 2012; Kambe 2011). This subgroup functions as zinc-proton 
exchangers and is able to do so due to the acidic environment of the vesicular lumen 
they transport to. Apart from ZNT4, these transporters are expressed in a tissue-
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specific manner. Zinc transport into cytosolic secretory vesicles is crucial as a high 
concentration of zinc, which is required for many physiological responses. Examples 
include the insulin granules in pancreatic β cells, which accumulate high levels of 
zinc mediated by ZNT8, and the presynaptic vesicles in a subset of glutamatergic 
neurons, which also accumulate high levels of zinc mediated by ZNT3. This zinc 
accumulation is essential for good health as single nucleotide polymorphisms in 
SLC30A8/ZNT8 are shown to be associated with an increased susceptibility to type 
2 diabetes (see Chap. 12), while ZNT3 is crucial for neuronal activity (see Chaps. 9 
and 11). High levels of zinc in breast milk are secreted through the vesicles of the 
secretory mammary epithelial cells (Lee and Kelleher 2016), which in humans is 
mediated by ZNT2. Thus, mutations of SLC30A2/ZNT2 gene cause transient neo-
natal zinc deficiency, another inherited zinc deficiency in humans (Golan et  al. 
2017). A similar phenotype (i.e., low levels of zinc secretion) was observed in mice 
with a loss of function Znt4 mutant (McCormick et al. 2016). ZNT2 plays a role in 
zinc transport into the cell granules of Paneth cells in the crypts of Lieberkühn of the 
small intestine (Podany et  al. 2016). There are other vesicles in the body which 
accumulate high levels of zinc, such as cytosolic vesicles in epithelial cells of the 
lateral prostate, pigment epithelial cells in the retina, and mast cells (Kambe et al. 
2014), whose zinc transport may also be controlled by ZNT family members within 
this subgroup. ZNT4 has been shown to localize to endosomes, lysosomes, and the 
trans-Golgi network, in addition to cytosolic vesicles. Consistent with this, ZNT4 is 
likely to play other roles, including in the regulation of several enzymes (McCormick 
and Kelleher 2012; Tsuji et al. 2017).

3.3.3.3  �ZNT5 and ZNT7 Subgroup

ZNT5 and ZNT7 are localized to the early secretory pathway, including the endo-
plasmic reticulum (ER) and the Golgi apparatus, both of which require efficient zinc 
transport. Impairment of zinc transport by both ZNT5 and ZNT7 most likely results 
in the misfolding or incomplete assembly of some zinc-containing proteins. This 
leads to a decrease in the activity of zinc-dependent ectoenzymes and zinc-dependent 
chaperone proteins that monitor and assist protein folding, which can trigger the 
unfolded protein response (UPR) (Ellis et al. 2004; Fukunaka et al. 2011; Ishihara 
et al. 2006; Takeda et al. 2018). Thus, both ZNTs are important for homeostasis in 
the early secretory pathway by mediating the zinc supply to the nascent proteins 
(Kambe et al. 2016, 2017). Consistent with this, the expression of ZNT5 mRNA is 
transcriptionally upregulated by the UPR (Ishihara et  al. 2006). Both ZNT5 and 
ZNT7 have a unique di-proline motif (PP-motif) in luminal loop 2, which is essen-
tial for the activation of ectoenzymes, such as alkaline phosphatases (Fujimoto et al. 
2016). This unique motif is highly conserved in most orthologues suggesting an 
important role in enzyme activation.
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3.3.3.4  �ZNT6 Subgroup

Co-immunoprecipitation, bimolecular fluorescence complementation, and genetic 
experiments show the heterodimerization of ZNT6 and ZNT5 (Fukunaka et  al. 
2009; Lasry et al. 2014; Suzuki et al. 2005a). The heterodimer formation of ZNT5 
and ZNT6 is a unique feature among the ZNT family and is highly conserved among 
ZNT5 and ZNT6 functional orthologues, such as those in nematode (Cdf5 and 
Toc1) (Fujimoto et al. 2016), yeast (Msc2p and Zrg17p in S. cerevisiae, and Cis4 
and Zrg17 in Schizosaccharomyces pombe) (Choi et al. 2018; Ellis et al. 2005; Ellis 
et al. 2004), and plant (MTP12 and MTP5 in A. thaliana) (Fujiwara et al., 2015). 
Each of these functional orthologues is also localized to the early secretory path-
way. Considering the conservation of heterodimer formation, it is interesting to note 
that the fruit fly does not possess orthologues of ZNT5 and ZNT6 (see Table 3.1), 
which may suggest a unique regulatory mechanism of zinc transport and physiology 
in the fruit fly.

3.4  �ZIP Transporters

3.4.1  �Biochemical and Structural Properties of Bacterial ZIP 
Homologs

As with ZNT proteins, recent structural studies reveal that ZIP homologs (Bordetella 
bronchiseptica ZIP (BbZIP)) form homodimers. These studies reveal that each pro-
tomer has eight TMDs with extracellular N- and C-termini (Zhang et al. 2017), as 
predicted in ZIP family proteins (Gaither and Eide 2001; Kambe et al. 2004). BbZIP 
has a novel 3+2+3 transmembrane architecture, in which the first three TMDs 
(TMDs I to III) are symmetrically related to the last three TMDs (TMDs VI to VIII) 
by a pseudo-twofold axis. The TMDs IV and V, which are symmetrically related by 
the same axis, are sandwiched between the three TMD repeats (Zhang et al. 2017). 
BbZIP has a binuclear metal center, which coordinates zinc and is formed by several 
conserved amphipathic amino acid residues, including histidine, asparagine (N), 
and aspartic acid, within TMD IV, and two histidine residues and one glutamic acid 
(E) in TMD V (Figs. 3.2 and 3.5). The latter amino acids correspond to those in the 
potential metalloprotease motif (HEXPHEXGD) of LIV-1 subfamily (see 3.4.4). An 
in vitro study using reconstituted proteoliposomes proposes that the zinc transport 
of BbZIP (reported as ZIPB (Lin et al. 2010)) may be by a selective electrodiffu-
sional channel. However, a definitive zinc transport mechanism for ZIP family pro-
teins has not yet been clarified.
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Fig. 3.5  Sequence alignment of ZIP family proteins. The alignment is ordered according to simi-
larities among subfamilies. The putative transmembrane domains (TMD), intracellular loops (IL), 

T. Kambe et al.



41

3.4.2  �Properties of ZIP Family Proteins

Proteins of the ZIP family form homodimers which enable them to transport zinc 
across membranes (Bin et al. 2011), as shown in BbZIP (Lin et al. 2010; Zhang 
et al. 2017). Moreover, recent studies show that they can also form heterodimers 
(Taylor et al. 2016) (see Sect. 3.4.4.3). ZIP family proteins are thought to have eight 
TMDs, in which the N- and C-terminal regions are located outside the plasma mem-
brane or in the lumen of intracellular compartments, as predicted by hydrophobicity 
plots (Taylor and Nicholson 2003) and computational modeling (Antala et al. 2015). 
This predicted topology is consistent with that of BbZIP (Zhang et al. 2017). The 
region, which is conserved the most among the ZIP family, is found in TMDs IV 
and V where numerous amphipathic amino acids, including a conserved histidine, 
asparagine, aspartic acid, and glutamic acid residues, are found (Fig. 3.2). These 
amino acid residues constitute an intramembranous binuclear zinc-binding site, and 
thus form a pore through which zinc passes, as shown in the BbZIP structure. A 
symport mechanism, whereby zinc is transported alongside bicarbonate ions, is sug-
gested (Gaither and Eide 2000; Girijashanker et  al. 2008) but has not been con-
firmed experimentally (Franz et al. 2018). Recently, a proton-mediated regulatory 
mechanism was proposed for regulating the velocity and directionality of zinc trans-
port by the ZIP family (Franz et al. 2018; Franz et al. 2014). Most ZIP family pro-
teins have a variable cytosolic loop that is rich in histidine residues between TMDs 
III and IV (Blindauer and Schmid 2010; Kambe et al. 2015). Its physiological func-
tion has not yet been elucidated but it may play a regulatory role in trafficking 
(Bowers and Srai 2018; Huang and Kirschke 2007) or contribute to binding and 
sensing of cytosolic zinc (Bafaro et  al. 2015), as suggested for the ZNT family. 
Moreover, histidine residues within the loop may have a unique function, as com-
plete substitution of all histidine residues to alanine in ZIP4 causes a loss of zinc-
induced ubiquitination and degradation, although this has no effect on zinc-stimulated 
endocytosis (Mao et al. 2007). The histidine residues (HXH motif) in the extracel-
lular loop between TMD II and III, which are conserved in a number of ZIP family 
members, are required for zinc sensing and zinc-induced endocytosis of ZIP4 (Chun 
et al. 2018) (Fig. 3.5). These results suggest that endocytosis of ZIP proteins, in 

Fig. 3.5  (continued) and external loops (EL) are shown below the alignment in yellow, pink, and 
turquoise, respectively. Residues highlighted in black and gray are highly conserved and semi-
conserved, respectively. Residues highlighted in red indicate the positions of residues important 
for zinc binding. Residues highlighted in blue indicate the positions of residues likely required for 
zinc sensing and zinc-induced endocytosis of a number of LIV-1 members. Conserved sequences 
in ZIP family proteins (PAL and HEXPHEXGD motifs) are indicated in lavender. The amino acid 
sequences of the N-terminal region of the LIV-1 subfamily members (the first nine proteins) are 
not displayed in the alignment, and the IL2 loop between TMD3 and TMD4 is omitted from the 
figure. “-” denotes a gap in the alignment. Blue or green circles below the sequences indicate the 
amino acid residues involved in zinc binding (different color means the coordination of different 
zinc ions). This figure is used and modified from Kambe et al. 2014 with permission
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response to excess zinc, is mediated via zinc binding to conserved sensory sequences. 
The long extracellular region of some ZIP family members is known to be cleaved 
during zinc deficiency and in response to other stimuli (Ehsani et al. 2012; Hogstrand 
et al. 2013; Kambe and Andrews 2009), which may be important for the regulation 
of their zinc transport activity or their cellular trafficking.

As described above, ZIP family members are classified into four subfamilies 
based on their phylogenetic relationships (Gaither and Eide 2001; Kambe et  al. 
2004). The 14 mammalian members are classified as ZIP-I (ZIP9), ZIP-II (ZIP1-
ZIP3), gufA (ZIP11), and LIV-1 (ZIP4–8, ZIP10, ZIP12-ZIP14) (Figs. 3.1 and 3.3) 
(Dempski 2012; Jeong and Eide 2013; Taylor and Nicholson 2003). Among them, 
the LIV-1 subfamily, whose name arises from its original identification in breast 
cancer, is the largest. LIV-1 subfamily members have a potential metalloprotease 
motif (HEXPHEXGD) in TMD V and an extracellular CPALLY motif (hereafter 
referred to as a PAL motif, see below) immediately preceding TMD I (Taylor et al., 
2007) (Figs. 3.2 and 3.5). LIV-1 subfamily proteins are further divided into four 
subgroups: (i) ZIP4 and ZIP12; (ii) ZIP8 and ZIP14; (iii) ZIP5, ZIP6, and ZIP10; 
and (iv) ZIP7 and ZIP13 (Kambe et al. 2006; Zhang et al. 2016) (Figs. 3.1 and 3.3), 
each of which has unique sequence similarities. ZIP4 and ZIP12 of subgroup (i) 
possess a helix rich domain (HRD) in addition to the PAL motif-domain in the 
extracellular N-terminal region (Zhang et al. 2016). Subgroup (ii) members have a 
unique ability to transport manganese and iron, in addition to zinc. Subgroup (iii) 
contains ZIPs whose extracellular region, proximal to the membrane, has a unique 
domain called a prion fold. Subgroup (iv) contains members which are localized to 
the early secretory pathway and transport zinc from the lumen to the cytosol.

3.4.3  �Biochemical Characterization of the ZIP Subfamilies

Here, we provide a brief summary of each of the ZIP subfamilies with the exception 
of LIV-1 which is further discussed in Sect. 3.4.4. For a more detailed discussion 
about the physiopathological functions of ZIP families, we refer the reader to the 
following reviews, Bowers and Srai (2018), Hara et al. (2017), and Kambe et al. 
(2015). Additionally, the details of mice phenotypes have been described in other 
chapters of this book.

3.4.3.1  �ZIP-I Subfamily

ZIP9 is the only member belonging to this subfamily in vertebrates (Matsuura et al. 
2009). ZIP9 is described as a dual-functioning protein because in addition to trans-
porting zinc across cellular membranes, it can also function as a high affinity mem-
brane androgen receptor through which testosterone activates G proteins thereby 
inducing cell signaling (Thomas et al. 2014). Thus, steroid and zinc signaling path-
ways cooperate to regulate physiological functions in mammalian cells through 
ZIP9 (Thomas et  al. 2018). ZIP9 is localized to the plasma membrane and 
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intracellular compartments, such as the Golgi (Berg et  al. 2014; Matsuura et  al. 
2009). It may regulate its function by altering its subcellular localization.

3.4.3.2  �ZIP–II Subfamily

ZIP-II subfamily includes ZIP1, ZIP2, and ZIP3. These proteins are homologous to 
each other, both in amino acid sequence and gene structure. In particular, regions of 
TMD IV are highly conserved (Dufner-Beattie et al. 2003; Kambe et al. 2014), with 
the aspartic acid residue observed in LIV-1 subfamily, which is expected to form a 
binuclear metal center, replaced by glutamic acid (Fig. 3.5). Moreover, the highly 
conserved histidine in TMD V, which is also expected to form a binuclear metal 
center, is replaced by a hydrophobic amino acid (valine (V) or leucine (L)) (Fig. 3.5), 
suggesting that the mechanism of zinc coordination in this subfamily may be differ-
ent from other ZIP homologs including LIV-1 subfamily. Consistent with their 
homology, the ZIP-II subfamily do have similar zinc transport mechanisms (Dufner-
Beattie et al. 2003). However, their expression is differentially regulated in a tissue-
specific manner. ZIP1 has been extensively investigated and its endocytosis and 
degradation are shown to be mediated through a di-leucine motif (LL motif, not 
shown in Fig.  3.5) within the variable cytosolic loop between TMD III and IV 
(Huang and Kirschke 2007). This motif is not conserved in ZIP2 and ZIP3. Mice 
containing knockouts of each individual gene show zinc-sensitive phenotypes dur-
ing pregnancy, similar to the phenotypes observed in triple knockout mice (Dufner-
Beattie et al. 2006; Kambe et al. 2008; Peters et al. 2007). This suggests that each 
protein has a unique cell-specific function that is required for adaptation to a zinc 
deficiency during development.

3.4.3.3  �gufA Subfamily

ZIP11 is the only vertebrate protein of the gufA subfamily. This subfamily includes 
the bacterial and archaeal ZupT (Yu et al. 2013) and S. cerevisiae Zrt3p, suggesting 
that the gufA subfamily proteins arose from an ancient zinc transporter. The bio-
logical functions or expression profiles of gufA subfamily members remains unclear, 
although its subcellular localization to the nucleus or Golgi apparatus is reported 
(Kelleher et al. 2012; Martin et al. 2013). Interestingly, ZIP11 almost lacks histidine 
and cysteine residues, which suggests that ZIP11 binds zinc in a different manner 
than other ZIP family members (Kambe et al. 2015; Yu et al. 2013).

3.4.4  �Biochemical Characterization of LIV-1 Subfamily

As mentioned above, LIV-1 subfamily members are further divided into four sub-
groups, (i) ZIP4 and ZIP12, (ii) ZIP8 and ZIP14, (iii) ZIP5, ZIP6, and ZIP10, and 
(iv) ZIP7 and ZIP13 (Kambe et al. 2006; Zhang et al. 2016). Recent reports indicate 
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unique physiopathological roles for each of the members, this is discussed in detail 
in other reviews (Bowers and Srai 2018; Hara et al. 2017; Kambe et al. 2015) and in 
other chapters of this book. Here, we provide a brief summary of each of the LIV-1 
subgroups.

3.4.4.1  �ZIP4 and ZIP12 Subgroup

While both ZIP4 and ZIP12 contain HRD and PAL motif-domains in the extracel-
lular N-terminal region (Zhang et al. 2016), their physiological functions are very 
different. The biochemistry, physiopathology, and structure of ZIP4 have been 
extensively studied, while much less is known about ZIP12. ZIP12 has been identi-
fied as an important molecule for neurulation and neurite extension (Chowanadisai 
et  al. 2013), and as a major regulator of hypoxia-induced pulmonary vascular 
remodeling (Zhao et al. 2015). The long extracellular N-terminal region of ZIP4 
forms a homodimer without the need for TMDs (Zhang et al. 2017), in which the 
PAL motif is crucial (Zhang et al. 2016). This region is cleaved during zinc defi-
ciency, raising the question as to how the cleavage is regulated. ZIP4 protein expres-
sion is regulated in response to zinc levels, while the regulation of ZIP12 expression 
has not yet been elucidated. Overall sequence similarity between ZIP4 and 
ZIP12 is 46%.

3.4.4.2  �ZIP8 and ZIP14 Subgroup

A prominent feature of this subgroup is that both proteins can transport iron and 
manganese as well as zinc (Aydemir and Cousins 2018; Jenkitkasemwong et  al. 
2012). Their involvement in iron and manganese transport is crucial as mutations 
within both genes result in disease, such as severe dysglycosylation due to a type II 
congenital disorder of glycosylation (CDG) (Boycott et al. 2015; Park et al. 2015) 
or childhood-onset parkinsonism-dystonia (Tuschl et al. 2016). Their unique metal-
binding specificities are most likely related to their sequences; ZIP8 and ZIP14 have 
glutamic acid in place of histidine in the HEXPHEXGD motif of TMD V (i.e., 
EEXPHELGD in both) (Fig.  3.5). However, this has not yet been tested at the 
molecular level. Both proteins are primarily localized to the plasma membrane, with 
some reports suggesting that their subcellular localization includes endosomes and 
lysosomes (Aydemir et  al. 2009; Guthrie et  al. 2015). Their physiopathological 
importance for zinc physiology is reported in many articles (Hojyo et al. 2011; Kim 
et al. 2014; Liu et al. 2013; Liuzzi et al. 2005).

3.4.4.3  ZIP5, ZIP6, and ZIP10 Subgroup

These three ZIPs have a unique extracellular domain in the region proximal to the 
membrane, called a prion fold, which may indicate an evolutionary link between them 
and prion proteins (Ehsani et al. 2011; Ehsani et al. 2012; Pocanschi et al. 2013). 
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This may also indicate their involvement in the etiology of prion diseases. Among 
these three, ZIP6 and ZIP10 share the highest homology and have been shown to 
form functional heterodimers in an interactome analysis (Brethour et  al. 2017; 
Taylor et al. 2016), which could explain the overlap in ZIP6- and ZIP10-dependent 
phenotypes, such as cancer development and metastasis (Brethour et al. 2017) or 
oocyte-to-embryo transitions (Kong et al. 2014). An important aspect is that Zip10-
knockout mice show significant phenotypes (Bin et  al. 2017b; Gao et  al. 2017; 
Hojyo et al. 2014; Miyai et al. 2014), which seem to be independent of ZIP6. In 
contrast to their extended expression, ZIP5 is expressed in a tissue-specific manner 
and is uniquely localized to the basolateral membrane in polarized cells, such as 
intestinal epithelial cells (Dufner-Beattie et al. 2004; Wang et al. 2004).

3.4.4.4  �ZIP7 and ZIP13 Subgroup

The N-terminal region of this subgroup is shorter than those of other LIV-1 subfam-
ily members, therefore sequence alignment of their PAL motifs is difficult (Fig. 3.5). 
Compared with other LIV-1 subfamily members, both proteins are uniquely local-
ized to the early secretory pathway, including the ER and Golgi apparatus. Zinc 
release from the early secretory pathway, mediated by these proteins, plays an 
important role in regulating cell signaling (Fukada et al. 2008; Fukunaka et al. 2017; 
Nimmanon et al. 2017; Taylor et al. 2012; Tuncay et al. 2017). Moreover, their zinc 
transport activity contributes to the homeostatic maintenance of the secretory path-
way (Bin et al. 2017a; Jeong et al. 2012; Ohashi et al. 2016). Notably, ZIP13 and its 
orthologues have a unique zinc coordination motif in TMD IV, in which the con-
served histidine is replaced by aspartic acid (DxxHNFxD sequence changes to 
NxxDNFxH) (Xiao et al. 2014) (Fig. 3.5). Considering the evidence for ZNT1 and 
ZNT10 subgroup (see Sect. 3.3.3.1) and ZIP8 and ZIP14 subgroup in the LIV-1 
subfamily (see Sect. 3.4.4.2), this change may alter the metal substrate specificity. 
Interestingly, the ZIP13 orthologue in the fruit fly is reported as an iron transporter, 
which mediates iron transport from the cytosol to the lumen of the ER or that of the 
Golgi (Xiao et al. 2019; Xiao et al. 2014), which is the opposite direction assumed 
for mammalian ZIP13. These findings raise the necessity for further investigation 
in ZIP13.

Compared with ZIP13, ZIP7 is conserved within other species (Table 3.2). Their 
physiological functions are extremely diverse but are related to the early secretory 
pathway, in particular the ER, and have been shown in yeast (yKE4p), drosophila 
(Catsup), nematode (ZipT-7.1), and plant (IAR1) (Groth et al. 2013; Kumanovics 
et al. 2006; Lasswell et al. 2000; Zhao et al. 2018), indicating its biological signifi-
cance. The histidine-rich sequence in the N-terminal region is highly conserved 
among ZIP7 orthologues (Adulcikas et  al 2018), suggesting that a unique 
zinc-sensing mechanism may be used. In mammals, ZIP7 expression is upregulated 
by the UPR and its loss results in disruption of ER functions (Ohashi et al. 2016; 
Tuncay et al. 2017), similar to ZNT5 and ZNT7 (see Sect. 3.3.3.3) (Ishihara et al. 
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2006; Tuncay et al. 2017). Thus, luminal zinc homeostasis in the early secretory 
pathway is regulated by both ZIPs and ZNTs.

3.5  �Concluding Remarks and Perspectives

A number of studies reveal that many ZIP and ZNT family proteins are involved in 
human genetic diseases. Moreover, various phenotypes of numerous knockout mice 
unveil the fundamental importance of ZNTs and ZIPs (see other chapters). This 
chapter summarized the biochemical features of both protein families, with a par-
ticular focus on their biological subgroupings. To our knowledge, this is the first 
time such a review has been attempted and is therefore useful in providing a com-
prehensive overview of both ZNT and ZIP families. Future studies should aim to 
elucidate the molecular mechanisms that enable both families to control their spa-
tiotemporal zinc transport. These studies would be facilitated by a comprehensive 
resource in which their classification and subgroups are described. This is required 
in order to further understand zinc signaling in physiopathological processes.
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