
Chapter 17
Convective Instabilities and Low
Dimensional Modeling

Pinaki Pal, Manojit Ghosh, Ankan Banerjee, Paromita Ghosh,
Yada Nandukumar and Lekha Sharma

Abstract Rayleigh-Bénard convection (RBC), where a horizontal layer of fluid is
kept between two conducting plates and the system is heated from below, provides a
simplifiedmodel of convection. RBC is a classical extended dissipative systemwhich
displays a plethora of instabilities and patterns very close to the onset of convection
for wide range of fluids. The study of these instabilities is an important topic of
research and several approaches are available for the investigation. This chapter
deals with the low dimensional modeling technique for investigating instabilities
and the associated pattern dynamics in RBC.

17.1 Introduction

The study of thermal convection has attracted the attention of the researchers formany
years due to its widespread appearance in many natural as well as industrial systems.
Examples of systems where convection plays a significant role in the dynamics
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are atmosphere, interiors of stars and planets, crystal growth industry, liquid metal
blanket etc. (Hartmann et al. 2001; Busse 1989; Miesch 2000; Hurle and Series
1994; Kirillov et al. 1995; Glatzmaier et al. 1999). Investigating thermal convection
in these real systems is often very complicated, as it may occur under arbitrary
geometry in presence of additional factors like magnetic field, rotation etc. However,
to understand the basic physics of convection, researchers consider a simplifiedmodel
of convection called Rayleigh-Bénard convection.

In this chapter, we consider RBC under rectangular geometry, which consists
of a thin layer of fluid, infinitely extended in horizontal directions, kept between
two horizontal conducting plates and the system is heated from below. The study of
thermal convection under this simplifiedmodel, has not only contributed significantly
to the understanding of basic physics of convection but also played crucial role in the
developments of the subjects like hydrodynamic instabilities (Chandrasekhar 1961;
Drazin and Reid 1981; Verma 2018), pattern formation (Cross and Hohenberg 1993;
Croquette 1989a, b) and nonlinear dynamics (Manneville 1990; Getling 1998; Busse
1978).

In spite of its simplicity, RBC exhibits a plethora of interesting convective phe-
nomena including instabilities, patterns, chaos and turbulence etc. The study of these
instabilities, patterns, chaos and turbulence for different fluids are important topics of
research in RBC for many years and still an active area of research (Chandrasekhar
1961; Ahlers et al. 2009; Bodenschatz et al. 2000; Lohse and Xia 2010; Busse 1985;
Pal and Kumar 2002; Nandukumar and Pal 2016; Dan et al. 2015, 2014; Pal et al.
2013; Dan et al. 2017).

In this chapter, we discuss low dimensional modeling technique for investigating
convective instabilities and the associated pattern dynamics near the onset of con-
vection under rectangular Rayleigh-Bénard geometry. This technique can be used
for investigating instabilities in a variety of extended dissipative systems including
rotating convection (Veronis 1966, 1959; Maity et al. 2013; Maity and Kumar 2014;
Pharasi and Kumar 2013), binary mixture (Kumar 1990), magnetoconvection (Pal
and Kumar 2012; Basak and Kumar 2015; Nandukumar and Pal 2015), and rotating
magnetoconvection (Ghosh and Pal 2017).

17.2 Physical System

We consider RBC system consisting of a thin horizontal layer of fluid of thickness
d , thermal expansion coefficient α, kinematic viscosity ν and thermal diffusivity
κ confined between two conducting plates. The system is heated from below. A
schematic diagram showing a cross sectional view of the RBC set up has been shown
in Fig. 17.1. The temperatures of the lower and upper plates are fixed at Tl and Tu

respectively so that an adverse temperature gradient β = Tl−Tu
d is maintained.
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Fig. 17.1 Sectional view of
a Rayleigh-Bénard
convection set up on a plane
perpendicular to y-axis

The above physical system is governed by the following set of equations
(Chandrasekhar 1961):

1. Equation of continuity:
∂ρ

∂t
+ ∇ · (ρv) = 0, (17.1)

where the symbols ρ, v and t respectively denote fluid density, velocity and time.
2. Energy balance equation:

ρ

[
∂

∂t
(CVT) + (v · ∇)(CVT)

]
= ∇ · (k∇T) + � − P(∇ · v), (17.2)

where CV , T, P, k and � represent specific heat at constant volume, temperature,
pressure, co-efficient of heat conduction and heat dissipation term respectively.

3. Equation of motion:

ρ

[
∂v
∂t

+ (v · ∇)v
]

= ρgê3 − ∇P + μ∇2v + μ

3
∇(∇ · v), (17.3)

where g is the acceleration due to gravity, ê3 is the unit vector along vertically
upward direction and μ is the dynamic viscosity of the fluid.

Equations (17.1)–(17.3) are the basic hydrodynamic equations of RBC. Now
Eqs. (17.1)–(17.3) are supplemented by the equation of state

ρ = ρ0[1 − α(T − Tl)], (17.4)

where α is the coefficient of volume expansion of the fluid and ρ0 is the reference
density of the fluid.

17.3 Boussinesq Approximation

Boussinesq approximation is widely used by the scientists for studying RBC
(Chandrasekhar 1961; Boussinesq 1903; Verma 2018). Under this approximation,
density is considered to be constant in all terms of the governing equations except in
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the buoyancy term of the equation of motion where the variation of density due to
temperature change is taken into account. Moreover, fluid properties like kinematic
viscosity, thermal diffusivity are assumed to be constant. Under this approximation,
Eq. (17.1) becomes,

∇ · v = 0, (17.5)

and Eqs. (17.2) and (17.3) respectively change to

∂T

∂t
+ (v · ∇)T = κ∇2T, (17.6)

∂v
∂t

+ (v · ∇)v = (1 + δρ

ρ0
)gê3 − 1

ρ0
∇P + ν∇2v, (17.7)

where δρ is the change in density, ν = μ

ρ0
is kinematic viscosity and κ = k

ρ0CV
is the

thermal diffusivity of the fluid.

17.4 Perturbation Equations

To study convective flow, we derive perturbation equations for the convective states
using the equations of the basic (conduction) state. In the following subsection basic
state equations are derived.

17.4.1 Basic State

In conduction state, the fluid is motionless. Therefore, we have

vb = (v1, v2, v3) ≡ (0, 0, 0), Tb ≡ T(z), (17.8)

where vb and Tb are the velocity and temperature at the basic state. Now, temperature
Tb of the fluid in basic state is deduced from Eq. (17.6) which is given by

Tb(z) = Tl − βz, (17.9)

where Tl is the temperature at the bottom layer, d is the thickness of the fluid layer
and βd (= �T = Tl − Tu) is the temperature difference of the lower and upper
plates.
The density distribution is then given by,

ρb(z) = ρ0(1 − αβz), (17.10)
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where ρ0 is the reference fluid density and α is the coefficient of volume expansion
of the fluid.

Hence the pressure distribution for this basic state is obtained by using
Eqs. (17.8), (17.9) and (17.10) in Eq. (17.7) which is given by

Pb(z) = P0 − gρ0(z + 1

2
αβz2), (17.11)

where Pb(z) is pressure distribution of the fluid in basic state and P0 is the reference
pressure of the fluid.

17.4.2 Convective State

As convection sets in, the basic fields given byEqs. (17.8), (17.9), (17.10) and (17.11)
are perturbed and let they are described by,

Tb(z) → T(x, y, z, t) = Tb(z) + θ(x, y, z, t),

Pb(z) → P(x, y, z, t) = Pb(z) + p(x, y, z, t),

vb(x, y, z, t) → v(x, y, z, t) = vb(x, y, z, t) + v(x, y, z, t),

ρb(z) → ρ(x, y, z, t) = ρb(z) + δρ = ρb(z) − ρ0αθ,

where T (x, y, z, t), P(x, y, z, t), v(x, y, z, t) = (v1, v2, v3) and ρ(x, y, z, t) are con-
vective temperature, pressure, velocity and density fields respectively. The fields θ , p,
v and δρ are the perturbations over the basic conduction state. Now, the equations of
motion, the energy equation and equation of continuity, for perturbed fields change to

∂v
∂t

+ (v · ∇)v = −∇p

ρ0
+ gαê3θ + ν∇2v, (17.12)

∂θ

∂t
+ (v · ∇)θ = β ê3 · v + κ∇2θ, (17.13)

∇ · v = 0. (17.14)

17.5 Boundary Conditions

Mathematical descriptionof a physical systemshould includeproper boundary condi-
tions along with the governing equations. In this section we discuss about the bound-
ary conditionswe have used to demonstrate the low dimensionalmodeling technique.
Now, irrespective of the nature of bounding surfaces, we must have v3 = 0 at the
horizontal bounding surfaces. The top and bottom plates are maintained at constant
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temperatures, which imply θ = 0. In this chapter, we consider free-slip boundaries
which mean the tangential stresses at the bounding plates vanish. Therefore, one gets

∂v1
∂z

= ∂v2
∂z

= 0 at the boundaries. (17.15)

Now differentiating the equation of continuity (17.14) with respect to z and
using (17.15), we get

∂2v3
∂z2

= 0, on free-slip boundaries. (17.16)

The vertical component of vorticity will satisfy

∂ω3

∂z
= 0, on free-slip surfaces. (17.17)

17.6 Nondimensionalization

To reduce the number of free parameters and the problems due to the large variation
of the values of the parameters, Eqs. (17.12)–(17.14) are made dimensionless. In this
chapter, we study convection in two different kinds of fluids namely high Prandtl-
number (Pr > 1) and low Prandtl-number (Pr < 1) fluids.

For low Prandtl-number fluid convection, we nondimensionalize the governing equa-
tions using the units d for length, viscous diffusion time d2

ν
for time and νβd

κ
for tem-

perature. Now if the primed quantities x′, y′, z′, t′ and θ ′ denote the dimensionless
quantities then the dimensional variables can be written as

x = dx′, y = dy′, z = dz′, t = d2

ν
t′ and θ = νβd

κ
θ ′.

Using these quantities, Eqs. (17.12)–(17.14) can bewritten in the dimensionless form
as

∂v′

∂t′
+ (v′ · ∇′)v′ = −∇′p′ + ∇′2v′ + Raθ ′ê3, (17.18)

Pr

[
∂θ ′

∂t′
+ (v′ · ∇′)θ ′

]
= ∇′2θ ′ + v3

′, (17.19)

∇′ · v′ = 0, (17.20)

whereRa = αβgd4

νκ
andPr = ν

κ
are two nondimensional numbers namely theRayleigh

number, which is the ratio of buoyancy and dissipative forces and the Prandtl number,
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which is the ratio of kinematic viscosity and thermal diffusivity respectively.

On the other hand, for high Prandtl number fluids, we use the scales βd
Ra for tem-

perature, thermal diffusion time scale d2

κ
for time and other scales same as the low

Prandtl-number fluids to nondimensionalize the governing equations. The dimen-
sionless equations in this case become

∂v′

∂t′
+ (v′ · ∇′)v′ = −∇′p′ + Pr∇′2v′ + Prθ ′ê3, (17.21)

∂θ ′

∂t′
+ (v′ · ∇′)θ ′ = ∇′2θ ′ + Rav3

′, (17.22)

∇′ · v′ = 0. (17.23)

In the subsequent sections we use the above dimensionless set of equations by drop-
ping the primes from all the variables and operators.

17.7 Linear Theory

We now determine the critical Rayleigh number (Rac) and critical wave number
(kc) at the onset of convection using the linear theory (Chandrasekhar 1961). The
linearized version of Eqs. (17.18)–(17.20) are given by

∂v
∂t

= −∇p + ∇2v + Raθ ê3, (17.24)

Pr
∂θ

∂t
= v3 + ∇2θ, (17.25)

∇ · v = 0. (17.26)

Taking twice curl of Eq. (17.24) we get the following equation

∂

∂t
∇2v3 = ∇4v3 + Ra∇2

H θ, (17.27)

for the vertical velocity, where ∇2
H = ∂2

∂x2
+ ∂2

∂y2
is the horizontal Laplacian. Elimi-

nating θ from (17.27) using (17.25) we get

[∇2(Pr∂t − ∇2)(∂t − ∇2) − Ra∇2
H ]v3 = 0. (17.28)

We consider the expansion of vertical velocity in normal modes as

v3(x, y, z, t) = W (z)exp[i(kxx + kyy) + σ t], (17.29)
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where, kx and ky are the wave numbers along x and y direction respectively and

k =
√
k2x + k2y is the horizontalwavenumber. InsertingEq. (17.29) inEq. (17.28), and

choosing a trial solutionW (z) = Asin(nπz), which is compatible with the boundary
conditions, we arrive at the stability condition

(n2π2 + k2)(n2π2 + k2 + Prσ)(n2π2 + k2 + σ) = Rak2. (17.30)

Since we are interested in stationary convection we set σ = 0 in Eq. (17.30) to get

(n2π2 + k2)3 = Rak2. (17.31)

Therefore, the Rayleigh number Ra is given by

Ra = (n2π2 + k2)3

k2
. (17.32)

We now find the minimum value of Ra which is the critical Rayleigh number (Rac)
for the onset of convection together with the corresponding critical wave number kc.
From Eq. (17.32) we observe that the minimum value of Ra occurs for a given k2

when n = 1. Therefore we have

Ra = (π2 + k2)3

k2
. (17.33)

The above equation imply that for all values of Ra less than that are given by
Eq. (17.33), disturbances associated with wave number k decay, while the same
disturbances grow when Ra exceeds the value given by (17.33). When the value
of Ra equals the value given by Eq. (17.33), the disturbances with wave number k
become marginally stable. Therefore, the Rac is determined by the condition

∂Ra

∂k2
= (π2 + k2)2(2k2 − π2)

k4
= 0. (17.34)

Which gives us k2 = π2

2 and the corresponding value of Rac as

Rac = 27

4
π4 ∼ 657.5114. (17.35)

Note that we get same critical values of the Rayleigh number (Rac) and critical wave
number (kc) even if we consider Eqs. (17.21)–(17.23) at the outset. In the following
discussion, we use another parameter called reduced Rayleigh number defined by
r = Ra

Rac
.
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17.8 Direct Numerical Simulations

For low dimensional modeling, the performance of direct numerical simulations for
some set of parameter values and the data obtained from there can be of great help.
Therefore, before going for low dimensional modeling, we perform DNS of the sys-
tem using a pseudo spectral code Tarang (Verma et al. 2013). In the simulation, verti-
cal velocity (v3), vertical vorticity (ω3) and temperature (θ) fields are expanded using
the set of orthogonal basis functions either with respect to {ei(lkxx+mkyy) sin(nπz) :
l,m, n = 0, 1, 2, . . .} or with respect to {ei(lkxx+mkyy) cos(nπz) : l,m, n = 0,
1, 2, . . .} whichever is compatible with the free-slip boundary conditions, where
kx, ky are the wave numbers along x and y directions respectively. Therefore, the
expressions of vertical velocity, vertical vorticity and temperature fields are given
by

v3(x, y, z, t) =
∑
l,m,n

Wlmn(t)e
i(lkxx+mkyy) sin (nπz), (17.36)

ω3(x, y, z, t) =
∑
l,m,n

Zlmn(t)e
i(lkxx+mkyy) cos (nπz), (17.37)

and θ(x, y, z, t) =
∑
l,m,n

Tlmn(t)e
i(lkxx+mkyy) sin (nπz). (17.38)

In the simulation, we set kx = ky = kc = π√
2
, the critical wave number. The aspect

ratio of the simulations is 2π
kc

: 2π
kc

: 1 ≡ 2
√
2 : 2√2 : 1. An open source software

called Fastest Fourier transform in the west (FFTW) (Frigo and Johnson 2005) is
used for computations in the Fourier space. Inverse Fourier transform routines of the
same package are used for mapping to the real space. For time advancement, fourth
order Runge-Kutta scheme with Courant-Friedrichs-Lewy (CFL) condition is used
in the code. Mostly 323 grid resolution is considered for the simulations. Note that,
323 grid resolution means the values of l, m and n in the above expansions are run
over the integers set {0, 1, 2, . . . , 31}. In the following we present some results of
DNS for illustrating low dimensional modeling technique.

17.8.1 Onset of Convection for Pr = 10

We perform DNS of the system for Pr = 10 to investigate the flow patterns close to
the onset of convection. Note that Eqs. (17.21)–(17.23) are used for the simulation.
Figure17.2 shows the time series ofW101 andW011 as well as flow pattern as observed
in DNS at r = 5. The flow pattern in this case is found to be two dimensional (2D)
rolls. This type of flow patterns are reported for high Prandtl number fluid convection
in Krishnamurti (1970), Busse and Whitehead (1971). In Sect. 17.9.1 we’ll show
the derivation of famous Lorenz model (1963) by using low dimensional modeling
technique and describe the origin of 2D rolls pattern at the onset of convection.
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Fig. 17.2 Time series of the Fourier modes W101 and W011 and flow patterns corresponding to 2D
rolls solutions as obtained from DNS for r = 5 and Pr = 10. Isotherms computed at the mid plane
z = 0.5 generate the pattern. Brown and blue regimes on the patterns represent hotter and colder
regions

17.8.2 Onset of Convection for Low Prandtl Number Fluids
in the Limit Pr → 0.

It has been shown earlier that the low Prandtl number fluid convection can be approx-
imated by considering the limit Pr → 0 (Thual 1992; Busse 1972; Pal et al. 2009,
2013). In this limit, the temperature Eq. (17.19) reduces to

∇2θ = −v3. (17.39)

We now simulate Eqs. (17.18), (17.20) and (17.39) to get an idea about the pattern
dynamics and bifurcation structure near the onset of convection. Figure17.3 shows
the time evolution of the significant Fouriermodes and associated pattern dynamics as
obtained fromDNS for r = 1.04. From the figure, it is clear that 2D rolls flowpatterns
oriented along y and x axes are periodically evolvedwith intermediate square patterns.
This flow regime is called oscillatory cross rolls of type-I (OCR-I). Interestingly, for a
higher r stationary solution is observed in DNS. Figure17.4 shows the time series as
well as flow pattern corresponding to this stationary solution. From the time series we
observe that the solution is stationary with W101 = W011 and pattern is of stationary
square (SQ) type. TheseDNS results are intriguing, investigation of the origin of these
flow patterns and the associated bifurcation structure follow naturally. However, this
is difficult to achieve in DNS, because, on one hand it is costly in terms of computer
time and on the other hand, DNS only capture the stable solutions of the system and
can not identify the unstable solutions. Due to this reason, low dimensional models
can be very useful. In the next section, we discuss how a low dimensional model can
be derived from the DNS data and successfully explains the origin of different flow
patterns to unfold a very rich bifurcation.
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Fig. 17.3 Time series of the Fourier modes W101 and W011 (first row) and flow patterns corre-
sponding to OCR-I solutions as obtained from DNS (second and third rows) for r = 1.04. The flow
patterns (a–h) correspond to the instants shown on the time series of the top panel. The flow patters
are isotherms computed at the mid plane z = 0.5

Fig. 17.4 Time series of the Fourier modesW101 andW011 (left) and flow patterns corresponding to
SQ solutions as obtained from DNS (right) for r = 1.28. The flow patterns are isotherms computed
at the mid plane z = 0.5. Brown regimes are hotter and blue regimes are colder

17.9 Low Dimensional Modeling

Weuse standardGalerkin technique (Galerkin 1915) to construct the lowdimensional
models. To start with, large scale modes in the vertical velocity, vertical vorticity and
temperature are selected from the DNS data by computing the energy contained
in the modes relative to the total energy. Then we retain only those modes in the
expansions of the vertical velocity (v3), vertical vorticity (ω3) and temperature (θ )
and write truncated series for these independent variables.
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The horizontal components of velocity field are then determined by using the
solenoidal property of the velocity and vorticity fieldswhich leads to the expressions:

∇2
Hv1 = −∂ω3

∂y
− ∂2v3

∂x∂z
, (17.40)

∇2
Hv2 = ∂ω3

∂x
− ∂2v3

∂y∂z
. (17.41)

where ∇2
H ≡ ∂2

∂x2 + ∂2

∂y2 is the horizontal Laplacian. The expressions for ω1 and ω2

are now obtained by taking the curl of the velocity vector v ≡ (v1, v2, v3). Once
the components of velocity, vorticity and temperature are calculated, for low Prandtl
number fluids we take curl twice of Eq. (17.18) and determine the following two
equations for vertical velocity and vorticity:

∂t(∇2v3) = ∇4v3 + Ra∇2
H θ

− ê3 · ∇ × [(ω·∇)v − (v·∇)ω] , (17.42)

∂tω3 = ∇2ω3 + [(ω·∇)v3 − (v·∇)ω3] . (17.43)

On the other hand, for high Prandtl number fluids, we take curl of Eq. (17.21) twice
and get

∂t(∇2v3) = Pr∇4v3 + Pr∇2
H θ

− ê3 · ∇ × [(ω·∇)v − (v·∇)ω] , (17.44)

∂tω3 = Pr∇2ω3 + [(ω·∇)v3 − (v·∇)ω3] . (17.45)

Then we substitute the expressions of v1, v2, v3, ω1, ω2, ω3 and θ in Eqs. (17.42),
(17.43) and (17.19) for low Prandtl-number fluids, while for high Prandtl number
fluids we substitute the same in Eqs. (17.44), (17.45) and (17.22) and use the orthog-
onality property of the functions {ei(lkxx+mkyy) sin (nπz) : l,m, n = 0, 1, 2, . . .} and
{ei(lkxx+mkyy) cos (nπz) : l,m, n = 0, 1, 2, . . .} over the intervals [0, 2π

kx
], [0, 2π

ky
] and

[0, 1] along x-, y- and z- axis respectively to obtain a set of coupled nonlinear ordinary
differential equations of the large-scale amplitudes of the large scale modes of v3, ω3

and θ which is our low-dimensional model. These low dimensional models are then
analyzed using the theory of nonlinear dynamics (Strogatz 2001) and continuation
software like MATCONT (Dhooge et al. 2003).

17.9.1 The Lorenz Model

AS mentioned above, to study the onset of convection in high Prandtl number fluids
using low dimensional modeling we identify the large scale modes from the DNS
data by calculating the contribution of a mode to the total energy. We find from the
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DNS data that near the onset of convection for Pr = 10, the modeW101 cos kcx sin πz
in v3 contributes most to the energy and vertical vorticity is not developed. Therefore,
we choose

v3 = W101(t) cos kcx sin πz and ω3 = 0.

The horizontal components of the velocity computed using Eqs. (17.40) and (17.41)
are given by

v1 = − π

kc
W101(t) sin kcx cosπz and v2 = 0. (17.46)

Now from Eq. (17.22) we observe that θ linearly couples with v3. Therefore, we take

θ = T101(t) cos kcx sin πz. (17.47)

As the linear growth rate of the modeW101 is positive above the onset of convection,
for saturation, Lorenz (1963) considered least nonlinear correction in θ in terms of
the mode T002(t) sin 2πz and the expression for θ becomes

θ = T101(t) cos kcx sin πz + T002(t) sin 2πz. (17.48)

Horizontal components of vorticity then become

ω1 = 0 (17.49)

and ω2 = π2

kc
W101(t) sin kcx sin πz. (17.50)

Substituting the expressions of v1, v2, v3,ω1,ω2,ω3 and θ in Eqs. (17.44) and (17.22)
and using the orthogonality property of the basis functions we get,

˙W101 = Prk2c
k2c + π2

T101 − Pr(k2c + π2)W101, (17.51)

˙T101 = −(k2c + π2)T101 + RaW101 + πT002W101, (17.52)

˙T002 = −4π2T002 − π

2
W101T101. (17.53)

The method described above for deriving this model is called Galerkin projec-
tion (1915). Now using the transformation τ = (k2c + π2)t, X = kc

k2c +π2 W101,

Y = k3c
(k2c +π2)3

T101 and Z = − πk2c
(k2c +π2)3

T002, the above set of ordinary differential equa-
tions transforms to the following Lorenz model (1963)

Ẋ = Pr(Y − X ), (17.54)

Ẏ = X (r − Z) − Y , (17.55)

Ż = XY − βZ, (17.56)
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where β = 4π2

k2c +π2 .
Wenowconstruct a bifurcationdiagramof theLorenzmodel using theMATCONT

software (Dhooge et al. 2003) for Pr = 10 and r is varied in the range 0 < r ≤ 10 (see
Fig. 17.5). The conduction state is stable for r < 1 and at r = 1 it becomes unstable
via a supercritical pitchfork bifurcation. Two stable 2D rolls branches (solid blue
and black curves) are originated from there. The stream lines corresponding to these
solution branches are shown inside Fig. 17.5 and are found to be counter rotating.
Flow pattern for these solutions and time series of X are also shown in the figure.
In spite of drastic simplification, these results of Lorenz model are found to match
closely with the DNS results. However, the results of Lorenz model starts deviating
for large values of r and in that case one has to go for higher nonlinear corrections
to get the satisfactory results.

17.9.2 A Four Dimensional Model for Zero-Prandtl Number
Convection

In this subsection, we discuss the derivation of another low dimensional model to
investigate instabilities and bifurcation structure near the onset of convection of low

Fig. 17.5 Bifurcation diagram constructed from the Lorenz model for Pr = 10 and 0 < r ≤ 10.
Values of X corresponding to different stationary solutions are shown with different colors. Solid
and dashed orange curves represent the stable and unstable conduction state respectively. Blue and
black curves represent two 2D rolls branches connected by the symmetry of the Lorenz model
(X → −X , Y → −Y and Z → Z). Streamlines, flow patterns and time series associated with these
branches are also shown
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Prandtl-number fluids in the vanishing Prandtl number limit (Pr → 0). Here also
we select the large scale modes from DNS data by calculating contributions of each
selected mode to the total energy. In this process, we select the following expressions
of v3 and ω3:

v3 = W101(t) cos kcx sin πz + W011(t) cos kcy sin πz

+ W112(t) cos kcx cos kcy sin 2πz + W121(t) cos kcx cos 2kcy sin πz

+ W211(t) cos 2kcx cos kcy sin πz, (17.57)

ω3 = Z110(t) sin kcx sin kcy + Z112(t) sin kcx sin kcy cos 2πz. (17.58)

The expression for θ in this case (Pr → 0) is determined from Eq. (17.39) and is
given by

θ = 1

k2c + π2
W101(t) cos kcx sin πz + 1

k2c + π2
W011(t) cos kcy sin πz

+ 1

2k2c + π2
W112(t) cos kcx cos kcy sin 2πz

+ 1

5k2c + π2
W121(t) cos kcx cos 2kcy sin πz

+ 1

5k2c + π2
W211(t) cos 2kcx cos kcy sin πz. (17.59)

Using Eqs. (17.40) and (17.41) we then find

v1 = − π

kc
W101(t) sin kcx cosπz − π

kc
W112(t) sin kcx cos kcy cos 2πz

− 2π

5kc
W211(t) sin 2kcx cos kcy cosπz − π

5kc
W121(t) sin kcx cos 2kcy cosπz

+ 1

2kc
Z110(t) sin kcx cos kcy + 1

2kc
Z112(t) sin kcx cos kcy cos 2πz, (17.60)

v2 = − π

kc
W011(t) sin kcy cosπz − π

kc
W112(t) cos kcx sin kcy cos 2πz

− π

5kc
W211(t) cos 2kcx sin kcy cosπz − 2π

5kc
W121(t) cos kcx sin 2kcy cosπz

− 1

2kc
Z110(t) cos kcx sin kcy − 1

2kc
Z112(t) cos kcx sin kcy cos 2πz. (17.61)

After calculating all the velocity components, horizontal components of vorticity
are determined by taking curl of the velocity vector. The expression for horizontal
components of vorticity are given by

ω1 = −
(
kc + π2

kc

)
W011(t) sin kcy sin πz −

(
kc + 2π2

kc

)
W112(t) cos kcx sin kcy sin 2πz
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−
(
kc + π2

5kc

)
W211(t) cos 2kcx sin kcy sin πz − π

kc
Z112(t) cos kcx sin kcy sin 2πz

− 2

(
kc + π2

5kc

)
W121(t) cos kcx sin 2kcy sin πz, (17.62)

ω2 =
(
kc + π2

kc

)
W101(t) sin kcx sin πz +

(
kc + 2π2

kc

)
W112(t) sin kcx cos kcy sin 2πz

− π

kc
Z112(t) sin kcx cos kcy sin 2πz +

(
kc + π2

5kc

)
W121(t) sin kcx cos 2kcy sin πz

+ 2

(
kc + π2

5kc

)
W211(t) sin 2kcx cos kcy sin πz. (17.63)

Substituting the expressions of v1, v2, v3,ω1,ω2,ω3 and θ in Eqs. (17.42) and (17.43)
and using the orthogonality of the basis functions we get a set of seven equations for
the Fourier amplitudes. This 7-mode model and the MAPLE code for deriving it are
given in the Appendix.

Now from the equations of W112, Z110 and Z112, we observe that near the onset
of convection, linear decay rate of these modes are quite high. Therefore, we adia-
batically eliminate (Manneville 1990) these modes to get the following set of four
coupled nonlinear ordinary differential equations (Pal et al. 2013):

˙W101 = 3π2

2
(r − 1)W101 + a1W101W

2
011 + a2W101W011W211 + a3W011W121W211

+ a4W121W
2
211 + a5W

2
011W121 + a6W101W

2
211, (17.64)

˙W011 = 3π2

2
(r − 1)W011 + a1W

2
101W011 + a2W101W011W121 + a3W101W121W211

+ a4W
2
121W211 + a5W

2
101W211 + a6W011W

2
121, (17.65)

˙W121 = π2

98
(135r − 343)W121 + b1W101W

2
011 + b2W101W011W211 + b3W011W121W211

+ b4W121W
2
211 + b5W

2
011W121 + b6W101W

2
211, (17.66)

˙W211 = π2

98
(135r − 343)W211 + b1W

2
101W011 + b2W101W011W121 + b3W101W121W211

+ b4W
2
121W211 + b5W

2
101W211 + b6W011W

2
121. (17.67)

The coefficients present in the above equations are a1 = 3
100 , a2 = 31

3000 , a3 =
− 209

30000 , a4 = 63
60000 , a5 = − 47

1500 , a6 = 1
200 , b1 = − 93

700 , b2 = − 67
7000 , b3 = − 7407

70000 ,
b4 = 3969

700000 , b5 = − 928
7000 and b6 = 3816

70000 with r as the reduced Rayleigh number.
Now introducing the notationsX = [X1,X2]T ≡ [W101,W011]T ,Y = [Y1,Y2]T ≡

[W121,W211]T , A = [0 1; 1 0], μ1 = 3π2

2 (r − 1) and μ2 = π2

98 (135r − 343) we can
write the above set of four equations as

Ẋ = μ1X + X1X2A(a1X + a2Y) + Y1Y2A(a3X + a4Y)
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+ a5[X 2
2 Y1,X

2
1 Y2]T + a6[X1Y

2
2 ,X2Y

2
1 ]T , (17.68)

Ẏ = μ2Y + X1X2A(b1X + b2Y) + Y1Y2A(b3X + b4Y)

+ b5[X 2
2 Y1,X

2
1 Y2]T + b6[X1Y

2
2 ,X2Y

2
1 ]T . (17.69)

(Equations (17.68) and (17.69) are reused from Pal et al. (2013) with the permission
from American Physical Society.)

This minimal set of equations are found to capture the bifurcation structure near
the onset of convection of zero-Prandtl number (Pal et al. 2009, 2013) fluids quite
satisfactorily. Figure17.6 shows the bifurcation diagram constructed from the above
4-modemodel using theMATLABbased continuation softwareMATCONT(Dhooge
et al. 2003). The bifurcation diagram unfolds a very rich bifurcation structure near
the onset of convection. This is found to be consistent with the DNS results (Pal
et al. 2013). In fact the 4-mode model tracked six different solutions namely OCR-I,
OCR-II, OCR-II′, CR, CR′ and SQ out of which only OCR-I and SQwere reported in
DNS (Thual 1992). Later the existence of other solutions are also verified inDNS (Pal
et al. 2013). The pattern dynamics corresponding to theOCR-I and SQ solutions have
already been discussed in Sect. 17.8.2. Oscillatory cross rolls patterns of type-II are
either oriented along y-axis (OCR-II) or along x-axis (OCR-II′). These are periodic
patterns with varying wavyness. CR and CR′ are stationary flow patterns oriented
along y-axis and x-axis respectively. All these flow patterns are shown inside the
bifurcation diagram.

'

Fig. 17.6 Bifurcation diagram constructed from the 4-modemodel. Horizontal axis shows the vari-
ation of the parameter r in the region 1.01 ≤ r ≤ 1.3. Along vertical axis the extrema corresponding
to different solutions are shown with different colors. The solid and dashed curves represent the
stable and unstable solutions respectively. The orange, green, red, pink, blue, black and cyan respec-
tively represent conduction state, OCR-I, OCR-II, OCR-II′, CR, CR′ and SQ solutions respectively.
Stationary and time periodic flow patterns corresponding to different solutions are also shown. PB
and HB respectively represent pitchfork and Hopf bifurcation points
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17.10 Conclusions

In this chapter, we have discussed low dimensional modeling technique for inves-
tigating instabilities near the onset of Rayleigh-Bénard convection. The technique
is illustrated using two examples. In these examples, convective instabilities near
the onset of convection of high Prandtl number and zero Prandtl number fluids are
investigated by simultaneous performance of DNS and low dimensional modeling. It
is found that low dimensional models derived by themethod described in this chapter
can produce faithful results close to the onset of convective instability. Based on the
discussions in this chapter, we emphasize that simultaneous performance of DNS
and low dimensional modeling is a powerful technique for the investigation of dif-
ferent instabilities in dissipative systemswhere boundary conditions of the associated
boundary value problem allow expansion of the independent fields in terms of suit-
able set of orthogonal basis functions. Moreover, this technique is expected to work
for investigating instabilities in systems with spherical and cylindrical geometries.

Acknowledgements P.P. and A.B. acknowledge the support from the SERB, India funded project
(Grant No.: EMR/2015/001680). M.G. is supported by INSPIRE programme of DST, India (Code:
IF150261).

Appendix

MAPLE code for derivation of the 7-mode model

> # MAPLE Code to create Low-dimensional model for

Zero-Prandtl number convection

> fd:=fopen("mode7_model.m",APPEND):

> v3_basis:=[cos(k*x)*sin(Pi*z),cos(q*y)*sin(Pi*z),

cos(k*x)*cos(q*y)*sin(2*Pi*z),cos(2*k*x)*cos(q*y)*sin(Pi*z),

cos(k*x)*cos(2*q*y)*sin(Pi*z)]:

> omega3_basis:=[sin(k*x)*sin(q*y),

sin(k*x)*sin(q*y)*cos(2*Pi*z)]:

> v3_amplitudes:=[w101(t),w011(t),w112(t),w211(t),w121(t)]:

> omega3_amplitudes:=[z110(t),z112(t)]:

> q:=k:

> with(linalg):v3:=innerprod(v3_amplitudes,v3_basis):

> with(linalg):omega3:=innerprod(omega3_amplitudes,

omega3_basis):

> v3_del:=diff(v3_basis,x,x)+diff(v3_basis,y,y)

+diff(v3_basis,z,z):

> for i from 1 to vectdim(v3_basis) do div_factor[i]:=

-v3_del[i]/v3_basis[i]: end do:

> theta:=0:

> for i from 1 to vectdim(v3_basis) do theta:=theta
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+v3_amplitudes[i]*v3_basis[i]/div_factor[i]: end do:

> simplify(theta):

> test1:=simplify(diff(theta,x,x)+diff(theta,y,y)

+diff(theta,z,z)+v3);

> for i from 1 to vectdim(v3_basis) do with(student):

v3_basis_coeff[i]:=value(Tripleint(v3_basis[i]ˆ2,

x=0..2*Pi/k,y=0..2*Pi/q,z=0..1)) end do:

> for i from 1 to vectdim(omega3_basis) do with(student):

omega3_basis_coeff[i]:=value(Tripleint(omega3_basis[i]ˆ2,

x=0..2*Pi/k,y=0..2*Pi/q,z=0..1)) end do:

> # v1 calculation

> v1_part1:=-diff(v3_basis,x,z):

> v1_part1_delH:=diff(v1_part1,x,x)+diff(v1_part1,y,y):

> for i from 1 to vectdim(v1_part1) do divider[i]:=

‘if‘(v1_part1[i]=0,1,v1_part1_delH[i]/v1_part1[i]) end do:

> v1_v3_cont:=0:

> for i from 1 to vectdim(v1_part1) do v1_v3_cont:=

v1_v3_cont+v3_amplitudes[i]*v1_part1[i]/divider[i] end do:

> v1_v3_cont:

> v1_part2:=-diff(omega3_basis,y):

> v1_part2_delH:=diff(v1_part2,x,x)+diff(v1_part2,y,y):

> for i from 1 to vectdim(v1_part2) do divider[i]:=

‘if‘(v1_part2[i]=0,1,v1_part2_delH[i]/v1_part2[i]) end do:

> v1_omega3_cont:=0:

> for i from 1 to vectdim(v1_part2) do v1_omega3_cont:=

v1_omega3_cont+omega3_amplitudes[i]*v1_part2[i]/divider[i]

end do:

> v1:=v1_v3_cont+v1_omega3_cont:

> # v2 calculation

> v2_part1:=-diff(v3_basis,y,z):

> v2_part1_delH:=diff(v2_part1,x,x)+diff(v2_part1,y,y):

> for i from 1 to vectdim(v2_part1) do divider[i]:=

‘if‘(v2_part1[i]=0,1,v2_part1_delH[i]/v2_part1[i]) end do:

> v2_v3_cont:=0:

> for i from 1 to vectdim(v2_part1) do v2_v3_cont:=

v2_v3_cont+v3_amplitudes[i]*v2_part1[i]/divider[i] end do:

> v2_v3_cont:

> v2_part2:=diff(omega3_basis,x):

> v2_part2_delH:=diff(v2_part2,x,x)+diff(v2_part2,y,y):

> for i from 1 to vectdim(v2_part2) do divider[i]:=

‘if‘(v2_part2[i]=0,1,v2_part2_delH[i]/v2_part2[i]) end do:

> v2_omega3_cont:=0:

> for i from 1 to vectdim(v2_part2) do v2_omega3_cont:=

v2_omega3_cont+omega3_amplitudes[i]*v2_part2[i]/divider[i]

end do:

> v2:=v2_v3_cont+v2_omega3_cont:

> # div v =0 test

> test2:=simplify(diff(v1,x)+diff(v2,y)+diff(v3,z));

> f:=[v1,v2,v3]:
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> v:=[x,y,z]:

> with(linalg):omega:=curl(f,v):

> # div omega=0 test

> test3:=simplify(diff(omega[1],x)+diff(omega[2],y)

+diff(omega[3],z));

> # test omega3=omega[3]

> test4:=simplify(omega3-omega[3]);

> for i from 1 to vectdim(v3_basis) do

> with(student):nlin1:=value(Tripleint(diff(omega[1]*diff(v1,x),y)

*v3_basis[i],x=0..2*Pi/k,y=0..2*Pi/q,z=0..1)):

> with(student):nlin2:=value(Tripleint(diff(omega[2]*diff(v1,y),y)

*v3_basis[i],x=0..2*Pi/k,y=0..2*Pi/q,z=0..1)):

> with(student):nlin3:=value(Tripleint(diff(omega[3]*diff(v1,z),y)

*v3_basis[i],x=0..2*Pi/k,y=0..2*Pi/q,z=0..1)):

> with(student):nlin4:=value(Tripleint(-diff(v1*diff(omega[1],x),y)

*v3_basis[i],x=0..2*Pi/k,y=0..2*Pi/q,z=0..1)):

> with(student):nlin5:=value(Tripleint(-diff(v2*diff(omega[1],y),y)

*v3_basis[i],x=0..2*Pi/k,y=0..2*Pi/q,z=0..1)):

> with(student):nlin6:=value(Tripleint(-diff(v3*diff(omega[1],z),y)

*v3_basis[i],x=0..2*Pi/k,y=0..2*Pi/q,z=0..1)):

> with(student):nlin7:=value(Tripleint(-diff(omega[1]*diff(v2,x),x)

*v3_basis[i],x=0..2*Pi/k,y=0..2*Pi/q,z=0..1)):

> with(student):nlin8:=value(Tripleint(-diff(omega[2]*diff(v2,y),x)

*v3_basis[i],x=0..2*Pi/k,y=0..2*Pi/q,z=0..1)):

> with(student):nlin9:=value(Tripleint(-diff(omega[3]*diff(v2,z),x)

*v3_basis[i],x=0..2*Pi/k,y=0..2*Pi/q,z=0..1)):

> with(student):nlin10:=value(Tripleint(diff(v1*diff(omega[2],x),x)

*v3_basis[i],x=0..2*Pi/k,y=0..2*Pi/q,z=0..1)):

> with(student):nlin11:=value(Tripleint(diff(v2*diff(omega[2],y),x)

*v3_basis[i],x=0..2*Pi/k,y=0..2*Pi/q,z=0..1)):

> with(student):nlin12:=value(Tripleint(diff(v3*diff(omega[2],z),x)

*v3_basis[i],x=0..2*Pi/k,y=0..2*Pi/q,z=0..1)):

> v3_nlin:=nlin1+nlin2+nlin3+nlin4+nlin5+nlin6+nlin7+nlin8+nlin9

+nlin10+nlin11+nlin12:

> with(student):left_v3:=value(Tripleint(diff((diff(v3,x,x)

+diff(v3,y,y)+diff(v3,z,z)),t)*v3_basis[i],x=0..2*Pi/k,y=0..

2*Pi/q,z=0..1)):

> right_v3_half:=diff(v3,x,x)+diff(v3,y,y)+diff(v3,z,z):

> with(student):right_v3:=value(Tripleint((diff(right_v3_half,x,x)

+diff(right_v3_half,y,y)+diff(right_v3_half,z,z))*v3_basis[i],

x=0..2*Pi/k,y=0..2*Pi/q,z=0..1))+R*value(Tripleint((diff(theta,x,x)

+diff(theta,y,y))*v3_basis[i],x=0..2*Pi/k,y=0..2*Pi/q,z=0..1))

+v3_nlin:

> with(student):mul1:=value(Tripleint((diff(v3_basis[i],x,x)

+diff(v3_basis[i],y,y)+diff(v3_basis[i],z,z))*v3_basis[i],

x=0..2*Pi/k,y=0..2*Pi/q,z=0..1)):

> equn:=left_v3=right_v3:

> fprintf(fd,"%a\n",simplify(equn/mul1)) end do:

>
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> for i from 1 to vectdim(omega3_basis) do

> with(student):nlin1:=value(Tripleint(omega[1]*diff(v3,x)*

omega3_basis[i],x=0..2*Pi/k,y=0..2*Pi/q,z=0..1)):

> with(student):nlin2:=value(Tripleint(omega[2]*diff(v3,y)*

omega3_basis[i],x=0..2*Pi/k,y=0..2*Pi/q,z=0..1)):

> with(student):nlin3:=value(Tripleint(omega[3]*diff(v3,z)*

omega3_basis[i],x=0..2*Pi/k,y=0..2*Pi/q,z=0..1)):

> with(student):nlin4:=value(Tripleint(-v1*diff(omega[3],x)*

omega3_basis[i],x=0..2*Pi/k,y=0..2*Pi/q,z=0..1)):

> with(student):nlin5:=value(Tripleint(-v2*diff(omega[3],y)*

omega3_basis[i],x=0..2*Pi/k,y=0..2*Pi/q,z=0..1)):

> with(student):nlin6:=value(Tripleint(-v3*diff(omega[3],z)*

omega3_basis[i],x=0..2*Pi/k,y=0..2*Pi/q,z=0..1)):

> omega3_nlin:=nlin1+nlin2+nlin3+nlin4+nlin5+nlin6:

> with(student):left_omega3:=value(Tripleint(diff(omega[3],t)*

omega3_basis[i],x=0..2*Pi/k,y=0..2*Pi/q,z=0..1)):

> with(student):right_omega3:=value(Tripleint((diff(omega[3],x,x)

+diff(omega[3],y,y)+diff(omega[3],z,z))*omega3_basis[i],x=0..2*Pi/k,

y=0..2*Pi/q,z=0..1))+omega3_nlin:

> equn:=left_omega3=right_omega3:

> fprintf(fd,"%a\n",simplify(equn/omega3_basis_coeff[i]))

end do:

> fclose(fd):

The 7-mode model

˙W101 = − 1

80(π2 + k2c )2

(
22π5W112W211 + 240W101π

2k4c + 240W101π
4k2c

− 8W211π
2Z110k

2
c − 20W011k

4
c W112π − 40W011π

3W112k
2
c − 34W211k

4
c W112π

− 80RaW101k
2
c − 12W112π

3W211k
2
c − 4Z112π

2W211k
2
c + 80W101π

6 + 80k6c W101

− 9π4Z112W211 + 10π4W011Z112 − 20π4W011Z110 − 10W011k
4
c Z112

+ 2π4W211Z110 + 5W211k
4
c Z112 + 20W011k

4
c Z110 − 10W211k

4
c Z110

− 20π5W011W112

)
, (17.70)

˙W011 = − 1

80(π2 + k2c )2

(
80W011k

6
c + 80W011π

6 − 20W101k
4
c Z110 + 10W101k

4
c Z112

+ 240W011π
4k2c + 240W011π

2k4c + 10W121k
4
c Z110 − 5W121k

4
c Z112 + 22π5W112W121

− 2π4W121Z110 − 10π4Z112W101 − 20π5W112W101 + 20π4W101Z110 + 9π4Z112W121

+ 8W121π
2Z110k

2
c − 12W112π

3W121k
2
c − 34W112k

4
c W121π − 40π3W112k

2
c W101

− 20W112k
4
c W101π + 4Z112π

2W121k
2
c − 80RaW011k

2
c

)
, (17.71)
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˙W112 = − 1

100(2π2 + k2c )2

(
1200π2W112k

4
c + 2400W112k

2
c π4 + 200W112k

6
c + 1600W112π

6

− 50RaW112k
2
c + 300W011W101k

2
c π3 + 100πW011W101k

4
c + 230W211W101k

2
c π3

+ 99W211W121k
2
c π3 + 230W011W121k

2
c π3 + 110πW211W101k

4
c + 110πW011W121k

4
c

+ 45πW211W121k
4
c + 200π5W011W101 + 20π5W211W101 + 18π5W211W121

+ 20π5W011W121

)
, (17.72)

˙W121 = − 1

80(π2 + 5k2c )2

(
− 400RaW211k

2
c − 180W112π

3W121k
2
c + 400W101π

2Z110k
2
c

+ 120Z112π
2W121k

2
c + 240W121π

2Z110k
2
c + 200Z112π

2W101k
2
c − 500W112k

4
c W101π

− 1400π3W112k
2
c W101 − 450W112k

4
c W121π + 1200W211π

4k2c − 18π5W112W121

+ 60π4W101Z110 + 6000W211π
2k4c − 375W121k

4
c Z112 + 39π4Z112W121 + 18π4W121Z110

− 250W101k
4
c Z112 + 500W101k

4
c Z110 − 260π5W112W101 + 750W121k

4
c Z110

+ 50π4Z112W101 + 10000W211k
6
c + 80W211π

6
)
, (17.73)

˙W211 = 1

80(π2 + 5k2c )2

(
− 10000W121k

6
c − 80π6W121 + 400RaW121k

2
c + 180W112π

3W211k
2
c

+ 120Z112π
2W211k

2
c + 200W011π

2Z112k
2
c + 400W011π

2Z110k
2
c + 240W211π

2Z110k
2
c

+ 500W011k
4
c W112π + 1400W011π

3W112k
2
c + 450W211k

4
c W112π + 18π5W112W211

+ 39π4Z112W211 + 50π4W011Z112 + 60π4W011Z110 − 250W011k
4
c Z112 + 18π4W211Z110

− 375W211k
4
c Z112 + 500W011k

4
c Z110 + 750W211k

4
c Z110 + 260π5W011W112

− 6000W121k
4
c π2 − 1200W121π

4k2c
)
, (17.74)

˙Z110 = −2k2c Z110 − 1

5
W011π

2W121 + 1

5
W211π

2W101, (17.75)

˙Z112 = −2Z112k
2
c − 4Z112π

2 + 1

5
W011π

2W121 − 1

5
W211π

2W101. (17.76)
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