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Chapter 19

Gene-Environment Interactions to Detect
Adverse Health Effects on the Next
Generation

Fumihiro Sata, Sumitaka Kobayashi, and Reiko Kishi

Abstract We reviewed epidemiological studies of gene—environment interactions
to detect adverse health effects of environmental chemicals on the next generation
in 2008, more than 10 years ago. Since then, researches on gene—environment inter-
actions have continued via small-scale epidemiological studies seeking to elucidate
associations between tobacco and environmental chemicals and candidate genes
such as those encoding metabolic enzymes. In the last 10 years, extensive innova-
tion in research designs and methods, accompanied by recent rapid advances in
analytical technologies, has occurred. Specifically, genome-wide association stud-
ies (GWASs) and epigenome-wide association studies (EWASs) have become
mainstream in genome cohort studies using advanced genomics and epigenomics.
These have made it possible to better understand the genetic basis of diseases.
Furthermore, in addition to GWASs and meta-analyses, Mendelian randomization
has emerged as a GWAS-based theoretical method for environmental risk assess-
ment that uses genetic factors associated with environmental factors. Although the
concept of exposome was initially proposed as an improved tool to quantify total
environmental contributions, linking it with genomics is expected to additionally
enable the elucidation of the origins of multiple complex diseases. We have reviewed
researches on gene—environment interactions and discussed recently developed
approaches, such as GWAS, Mendelian randomization, and exposome linked with
genomics, for evaluating genetic susceptibility.

Keywords Susceptibility - Genome-wide association study (GWAS) - Meta-
analysis - Non-communicable disease (NCD) - Developmental origins of health
and disease (DOHaD)

F. Sata ()
Health Center, Chuo University, Tokyo, Japan

Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
e-mail: fsata.16h@g.chuo-u.ac.jp

S. Kobayashi - R. Kishi
Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan

© Springer Nature Singapore Pte Ltd. 2020 485
R. Kishi, P. Grandjean (eds.), Health Impacts of Developmental Exposure to

Environmental Chemicals, Current Topics in Environmental Health and

Preventive Medicine, https://doi.org/10.1007/978-981-15-0520-1_19


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0520-1_19&domain=pdf
https://doi.org/10.1007/978-981-15-0520-1_19
mailto:fsata.16h@g.chuo-u.ac.jp

486 F. Sata et al.

Abbreviations

ADAL Adenosine deaminase 1

AHR Aromatic hydrocarbon receptor

CBS Cystathionine beta-synthase

CHEAR Child Health Environmental Analysis Resource
CYP Cytochrome P450

DOHaD Developmental origins of health and disease
EGG Early growth genetics

GST Glutathione S-transferase

GSTTP1  GST theta pseudogene 1

EPHX1 Epoxide hydrolase 1

EWAS Epigenome-wide association study

GWAS Genome-wide association study

LHCGR Luteinizing hormone/chorionic gonadotropin receptor
INHA Inhibina

IUGR Intrauterine growth restriction

LBW Low birth weight

MTHFD1 Methylenetetrahydrofolate dehydrogenase 1

MTHFR  5,10-Methylenetetrahydrofolate reductase

MTR 5-Methyltetrahydrofolate-homocysteine methyltransferase

MTRR 5-Methyltetrahydrofolate-homocysteine methyltransferase reductase
NAT2 N-acetyltransferase 2

NCD Non-communicable disease

NQO1 NAD(P)H dehydrogenase
0OGG1 8-Oxoguanine glycosylase

PB Preterm birth

SGA Small-for-gestational-age

SHMT1 Serine hydroxymethyltransferase 1

SNP Single-nucleotide polymorphism

TGFBR1  Transforming growth factor-f receptor type 1
XRCCl1 X-ray repair cross-complementing gene 1

XRCC3 X-ray repair cross-complementing gene 3

19.1 Introduction

In 2008, more than 10 years ago, we reviewed epidemiological studies of gene—
environment interactions to detect the adverse health effects of environmental
chemicals on the next generation [1]. As is well documented, numerous chemical
compounds such as polycyclic aromatic hydrocarbons (PHA) in tobacco smoke are
activated and detoxified by xenobiotic-metabolizing enzymes [1]. Xenobiotic-
metabolizing genes appear to be influenced functionally by maternal smoking dur-
ing pregnancy, which may be a significant risk factor for low birth weight (LBW)
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and/or intrauterine growth restriction (IUGR) [1-4]. The Hokkaido Study, a pio-
neering work in this field, examined the effects of environmental factors together
with a genetic predisposition on the health and development of about 20,000 chil-
dren across the Hokkaido prefecture, the northern part of Japan, from the prenatal
period onward [5, 6].

The last decade has witnessed major innovations in research design and methods,
accompanied by recent advances in technologies for statistical and biological analy-
ses and measurement [7-10]. In particular, genome-wide association studies
(GWASS), including epigenome-wide association studies (EWASs), have become
mainstream in genome cohort studies using advanced genomics and epigenomics
techniques, which has made it possible to better understand the genetic basis of
diseases [7]. Furthermore, Mendelian randomization is a fast-growing area that
involves the analysis of genetic variants to assess the causal relationships between
exposure and outcome [8]. The field of exposure science, termed exposome has
emerged, which involves the study of mechanisms by which “non-genetic” exoge-
nous and endogenous exposure influence the risk of disease [9, 10]; linking this field
with genomics is expected to enable elucidation of the origins of multiple complex
diseases [9]. The methods for evaluating gene—environment interactions have
advanced rapidly because of the accumulation of large-scale data, termed big data.
Using GWASs, we have obtained data for hundreds of complex traits across a wide
range of domains, including common diseases and quantitative traits that are risk
factors for diseases, enabling us to better define the relative role of genes and the
environment in disease risk [7]. Examination of the impact of early life exposure and
maternal physical and mental conditions during pregnancy is a topic of interest for
investigation by exposomics, using environmental factors and biological samples
from cohorts [9, 10]. Thus, it is recognized that numerous human diseases arise from
the complex interplay between environmental exposure and host susceptibilities.

In the present work, we introduce recent progress in evaluating gene—environ-
ment interactions in large-scale genome epidemiological studies as well as in small-
scale single studies targeting candidate genes.

19.2 Infant Birth Size, Including Low Birth Weight (LBW),
Preterm Birth (PB), Small-for-Gestational-Age (SGA),
Gestational Age, and Intrauterine Growth Restriction
(IUGR) in Relation to Maternal Smoking

It is known that maternal smoking during pregnancy may lead to a reduction in infant
birth size including LBW, PB, SGA, gestational age, and ITUGR. In recent years, it
has been found that this association is modified by genetic factors. In research studies
published up to 2018, this association is reported to be modified by maternal geno-
types of genes encoding the xenobiotic receptor (aromatic hydrocarbon receptor
[AHRY]), enzymes (cytochrome P450 [CYP] 1Al, CYP2A6, CYP2EI, glutathione
S-transferase [GST] mu 1 [GSTM1], GST theta 1 [GSTTI], GST theta 2 [GSTT2],
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epoxide hydrolase 1 [EPHX1], 5,10-methylenetetrahydrofolate reductase [MTHFR],
and NAD(P)H dehydrogenase [NQO!]), DNA repair proteins (X-ray repair cross-
complementing gene 1 [XRCCI], XRCC3, 8-oxoguanine glycosylase [OGGI]),
oncogenes (MDM4), and tumor suppressor genes (7P53) [11-33] (Table 19.1).
Moreover, this association has been observed to be modified by fetal genotypes of
genes encoding xenobiotic-metabolizing enzymes (GSTT1 and NQO]T) and cell-divi-
sion-related genes (adenosine deaminase 1 [ADAT]) [14, 16, 29]. Most of these stud-
ies assessed the smoking status of pregnant women using a questionnaire. A few
studies still evaluate the smoking status of pregnant women using objective indicators.

Although studies that have evaluated pregnant women by smoking status using
objective indicators are limited, three previous reports have examined the effects of
gene—environment interactions of maternal smoking on infant birth size using bio-
markers [21, 24, 27]. Only one publication has examined the dose-dependent associa-
tion of gene—environment interactions and maternal smoking with infant birth size
among 3263 Japanese pregnant women enrolled in the prospective birth cohort of the
Hokkaido Study on Environment and Children’s Health. Without consideration of
genotype, maternal passive smoker levels (plasma cotinine levels: 0.22—11.48 ng/mL)
were associated with a mean reduction of 55-57 g in birth weight, and maternal active
smoker levels (plasma cotinine levels: >11.49 ng/mL) were associated with a mean
reduction of 93-171 g in birth weight, compared with that elicited by non-passive
smoker levels (plasma cotinine levels: <0.21 ng/mL). When maternal AHR (1rs2066853)
genotypes were considered, active smoker levels were associated with a mean reduc-
tion in birth weight of up to 102 g compared with that caused by non-passive smoker
levels among maternal AA genotypes. However, active smoker levels were associated
with a mean reduction of 182-217 g compared with that associated with non-passive
smoker levels among maternal GG genotypes. Differences have also been observed in
maternal XRCC1 (rs1799782) genotypes when examining the dose-dependent asso-
ciation between plasma cotinine levels and birth weight reduction (Fig. 19.1) [24].
Further, it has been shown that this association is not modified by maternal or fetal
genotypes of genes encoding xenobiotic enzymes (CYPIA2, CYPIBI, cystathionine
beta-synthase [CBS], GST theta pseudogene 1 [GSTTPI], methylenetetrahydrofolate
dehydrogenase 1 [MTHFDI], 5-methyltetrahydrofolate-homocysteine methyltrans-
ferase [MTR], 5-methyltetrahydrofolate-homocysteine methyltransferase reductase
[MTRR], N-acetyltransferase 2 [NAT2], and serine hydroxymethyltransferase 1
[SHMT1]), hormone-related factors and receptors (inhibina [/[NHA], luteinizing hor-
mone/chorionic gonadotropin receptor [LHCGR], and transforming growth factor-f3
receptor type 1 [TGFBRI]), or by none of these factors [21, 24, 29, 30, 32].

The following points of the problems should be recognized when evaluating
gene—environment interactions of an association between maternal smoking and
infant birth size. Some of these problems include: (1) differences in time of evalua-
tion (e.g., first trimester of pregnancy or the 8th month of pregnancy), (2) differ-
ences in the questions used for assessment (e.g., cigarettes/day or a choice between
yes and no), (3) differences in evaluation methods (e.g., the use of objective bio-
markers or subjective questionnaires), (4) differences in study design (e.g., case—
control study or prospective birth cohort study), and (5) differences in the location
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of gene polymorphisms (e.g., rs4646903 or rs1048943 polymorphism of the
CYPIAI gene). Furthermore, maternal exposure levels such as through active smok-
ing or passive smoking (second-hand smoke; SHS) must be considered.

Finally, it is necessary to focus on the components of tobacco smoke, which
contains about 4000 substances. Receptors bind the chemical substances contained
in tobacco smoke and initiate intracellular reactions. Based on findings from animal
studies and cell experiments, it is important to examine gene—environment interac-
tions focusing on single-nucleotide polymorphisms (SNPs) of genes involved in
biological mechanisms, e.g., tobacco smoke induces toxicity. Therefore, studies
should aim to elucidate the molecular epidemiology underlying the association
between maternal smoking and birth outcome to identify the receptors in either the
mother or infant (or both) that modify the association between components of
tobacco smoke and adverse health effects on infants and children.

19.3 Effects of Exposure to Other Chemicals
on Infant Birth Size

In studies performed up to 2018, many substances that pregnant women are exposed
to have been found to modulate gene—environment interactions in fetal growth.
These include environmental pollutants (benzo(a)pyrene), disinfection by-products
of drinking water (trihalomethanes, chloroforms, and haloacetic acids), fatty acids
(cholesterols, triglyceride, and docosahexaenoic acid [DHA]), vitamins (carotenes,
vitamin C, vitamin D, and vitamin E), beverage-derived substances (alcohol and caf-
feine), types of particle matters (PMs) (PMs of aerodynamic diameter <10 pm
[PM,o], <2.5 pm [PM,;], and nitrogen oxides [NO,]), metals (lead, mercury, and
iron), short half-life chemicals (alkyl phosphates and phthalates), pesticides includ-
ing those used in floriculture (organochlorines), and persistent organic pollutants
(POPs; perfluoroalkyl substances (PFASs), and dioxins) [34-56] (Table 19.2).
Reduced birth weight is caused by the association between PM |, levels and maternal
CYPIAI genotype [34], caffeine levels and maternal CYPIA2 genotype [37],
benzo(a)pyrene levels and maternal GSTPI genotype [36], vitamin D levels and
maternal genotypes of the gene encoding group-specific component (vitamin D
binding protein) locus (GC) [38], cholesterol levels and maternal apolipoprotein E

<
<

Fig. 19.1 Association of maternal AHR (G>A, Arg554Lys; db SNP ID: rs2066853) and XRCCI
(C>T, Arg194Trp; db SNP ID: 1s1799782 and G>A, Arg399GIn; db SNP ID: rs25487) genotype with
maternal cotinine levels in relation to infant birth weight (n = 3263) [24]. Ninety-five percent confi-
dence intervals (CI). Maternal plasma cotinine levels: level 1, 0.12-0.21 ng/mL; level 2, 0.22-0.55 ng/
mL;level 3,0.56-11.48 ng/mL; level 4, 11.49-101.66 ng/mL; level 5, 101.67-635.25 ng/mL. Multiple
linear regression models are adjusted for maternal age, height, weight before pregnancy, parity, alco-
hol intake during the first trimester of pregnancy, education level, annual household income, infant
gender, and gestational age. P represents the change in infant birth weight (g) in comparison with
level 1 as the reference. Dot represents f3 values (95% CI); *P < 0.05; *P < 0.01; **P < 0.001
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(APOE) and apolipoprotein C3 (APOC3) genotype [39], DHA levels and maternal
fatty acid desaturase (FADS) genotype [40], lead levels and maternal HFE genotype
related to human hemochromatosis and transferrin (TF) genotypes [41], mercury
levels and maternal GSTMI and GSTT! genotypes [42], iron levels and maternal
GSTM1 genotypes [43], organochlorine pesticide levels and maternal GSTM I and
CYPI17A1 genotypes [44, 45], perfluoroalkyl substance levels and maternal GSTM 1
genotypes [46], dioxin levels and maternal AHR and GSTM1 genotypes [47, 57],
PM, 5 levels and fetal CYP2D6 and GSTPI genotypes [35], benzo(a)pyrene levels
and fetal GSTPI genotypes [36], and the association between alcohol consumption
and fetal ADH2 genotype [50]. Increased risk of LBW is affected by the association
between floriculture chemicals and maternal paraoxonase 1 (PONI) genotype [52],
disinfection by-product levels in drinking water and maternal GSTM1 genotype
[54], and between phthalate levels and fetal paraoxonase 2 (PON2) genotypes [52].
Increased risk of SGA is affected by the association between disinfection by-product
levels in drinking water and maternal CYP2E] and GSTT1 genotypes [55], and that
between disinfection by-product levels in drinking water and fetal CYPI7A1 geno-
types [58]. No risk of SGA is affected by the association between caffeine levels and
maternal and infant CYPIA2 genotypes, and the association between caffeine levels
and maternal and infant CYP2E] genotypes [59]. Reduced gestational age is affected
by the association between NO, levels and maternal interleukin (/L)-17A genotype
[48], and the association between alkyl phosphate levels and maternal PONI geno-
types [49]. Increased risk of IUGR is affected by the association between alcohol
consumption and maternal CYPI17 genotypes [55], and that between disinfection
by-product levels of drinking water and fetal CYP2E] genotype [56].

Many maternal and infant genes related to chemical substances have never been
examined in relation to those involved in xenobiotic metabolism and hormone bio-
synthesis. However, at present, epidemiological evidence of disease susceptibility
genes is limited with regard to gene—environment interactions for maternal chemi-
cal exposure and infant growth.

Additional studies are required to examine not only the genotypes of exposure
susceptibility genes encoding metabolizing enzymes and receptors related to extra-
neous substances, but also genetic polymorphisms of disease susceptibility genes
such as growth- and obesity-related genes. The results from epidemiological studies
on the effects of gene—environment interactions on infant growth may also be of
value for planning environmental policies involving genetically high-risk groups
and public health programs, as well as for preventive medicine.

19.4 Recent Advances in Genome Birth Cohort Studies
and Evaluation of Genetic Associations
with Birth Weight

In large-scale epidemiological studies such as genome birth cohort studies, evalua-
tion of gene—environment interactions is different from that in small-scale epide-
miological studies (described in Sects. 19.2 and 19.3). The main reason for this
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difference is that, unlike hundreds of thousands of genome and epigenome data, it
is difficult to obtain environmental data for each subject, except for their cigarette
smoking or alcohol intake status. The development of strategies to address this dif-
ference in data availability is one of the most important challenges in large-scale
epidemiological studies. Therefore, various methods for analyzing genetic suscep-
tibility, such as GWAS, Mendelian randomization, and exposome linked with
genomics, have been implemented.

19.4.1 GWAS and Meta-Analyses

A GWAS implements a population-based experimental design to detect associations
between genetic variants and diseases or traits in biological samples from various
human genome cohorts [7]. Meta-analyses of GWAS have identified numerous
genetic variants associated with birth weight [60-72] (Table 19.3). Two SNPs,
rs900400 near CCNLI and 1s9883204 in ADCYS5, were identified to be robustly
associated with birth weight [60]. Another related SNP in ADCY?5 is considered to be
implicated in the regulation of glucose levels and susceptibility to type 2 diabetes
based on findings of an adult GWAS [73]. This may be the first evidence that asso-
ciations between lower birth weight and subsequent non-communicable diseases
(NCDs) such as type 2 diabetes have a genetic component; this is known as the
developmental origins of health and disease (DOHaD) concept. Furthermore, an
expanded GWAS meta-analysis and follow-up study involving 69,308 individuals of
European descent from 43 studies revealed seven loci (CCNLI, ADCYS5, HMGA2,
CDKALI, LCORL, ADRBI, and 5q11.2) associated with birth weight with genome-
wide significance [66]. Among them, five loci are known to be associated with other
adult phenotypes: ADCY5 and CDKALI with type 2 diabetes, ADRBI with blood
pressure, and HMGA2 and LCORL with height. These findings highlight multiple
genetic links between birth weight and postnatal growth and metabolism, especially
later in life, which are important in accordance with the DOHaD concept from a
genetic point of view. Moreover, a multi-ancestry GWAS meta-analysis of birth
weight in 153,781 individuals from the EGG Consortium and the UK Biobank iden-
tified 60 loci where fetal genotype was associated with birth weight with genome-
wide significance [70]. This study revealed strong inverse genetic correlations
between birth weight and adult cardiometabolic diseases and traits such as type 2
diabetes and coronary artery disease, blood pressure, cholesterol levels, and triglyc-
eride levels (Fig. 19.2). Thus, a series of GWAS meta-analyses have confirmed
genetic involvement in life-course associations between early growth phenotypes
and adult cardiometabolic diseases and traits. GWASs of birth weight have thus far
focused on fetal genetics, whereas relatively little is known about the role of mater-
nal genetic variation. Recently, similar GWAS meta-analyses in up to 86,577 women
of European descent from the same population revealed maternal loci associated
with offspring’s birth weight, such as MTNRIB, HMGA2, SH2B3, KCNABI,
L3MBTL3, GCK, EBFI, TCF7L2, ACTL9, and CYP3A7, at GWAS significance
[71]. Interestingly, maternal genetic factors associated with glucose metabolism,
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blood pressure, immune function, cytochrome P450 activity, and gestational dura-
tion affect the offspring’s birth weight. In a recent study, expanded GWASs of the
same population examining maternal (n = 321,223) and offspring birth weight
(n=230,069 mothers) revealed 190 independent loci associated with both the mother
and offspring’s birth weight [72]. In this study, structural equation modeling was
used to evaluate the contribution of direct fetal and indirect maternal genetic effects,
and Mendelian randomization was applied to reveal causal pathways. Surprisingly,
maternal birth weight-lowering genotypes as proxy for an adverse intrauterine envi-
ronment were found not to affect offspring blood pressure at all [72]. This finding
indicates that some exceptions cannot be explained by the DOHaD concept.

There are few GWAS meta-analyses that have examined the influence of smok-
ing on birth weight; therefore, it is necessary to systematically evaluate gene—envi-
ronment interactions in relation to smoking, especially genome-wide gene-smoking
interactions. Notably, genome-wide gene-smoking interaction studies have become
more common in adult GWAS meta-analyses to identify new loci associated with
adult traits such as obesity, blood pressure, and serum lipids [74-76].

19.4.2 Mendelian Randomization

An alternative method, Mendelian randomization, entails the use of genetic variants
as proxies for the environmental exposure under investigation [77]. Mendelian ran-
domization is a GWAS-based theoretical method for environmental risk assessment
that uses genetic factors associated with environmental factors to assess the causal
effect on internal biomarkers such as body mass index (BMI), systolic blood pressure,
and fasting glucose levels [8, 78]. Birth weight was used as both the outcome of
maternal internal biomarkers and the internal marker of fetal intrauterine environment
[78-86] (Table 19.4). Until recently, genetic risk scores were preferred over SNPs in
Mendelian randomization studies [68, 78, 82, 83]. Novel approaches to obtaining
genetic risk scores include assessments of the genetic contribution of certain interme-
diate traits or risk factors to cardiometabolic disease, risk prediction in high-risk pop-
ulations, studies of gene—environment interactions, and Mendelian randomization [87].

Mendelian randomization is a recent developing field that involves the use of
genetic variation to assess the causal relationship between exposure and outcome,
where genetic variants within or near coding loci related to protein concentrations
enable assessment of their causal role in disease. However, the more complex rela-
tionship between genetic variation and exposure makes the findings from Mendelian
randomization more difficult to interpret [§7]. Recently, the use of maternal birth
weight-lowering genotypes to proxy for an adverse intrauterine environment in
Mendelian randomization analyses yielded no evidence that such genotype causally
raises offspring blood pressure [72]. Mendelian randomization is considered an
established method for strengthening causal inference and estimating causal effects;
however, the use of genetic instruments, which lack direct links to measurement in
most cases, may be one of the limitations of Mendelian randomization.
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19.4.3 Exposome Linked with Genomics

Although GWASs have revealed genetic associations and networks that improve the
understanding of diseases, these findings only elucidate a small part of overall dis-
ease risk [88]. As disease causation is largely non-genetic, the need for improved
tools to quantify environmental contributions seems obvious [89]. The “exposome”
was originally defined as representing all kinds of environmental exposure, includ-
ing those from diet, lifestyle, and endogenous sources, during the entire lifespan
from the prenatal period onward, as a quantity of critical interest to disease etiology
[90]. Three overlapping domains within the exposome have been described as fol-
lows: (1) a general external environment to include factors such as the urban envi-
ronment, climate factors, social capital, and stress; (2) a specific external environment
with specific contaminants, diet, physical activity, tobacco, and infections; and (3)
an internal environment to include internal biological factors such as metabolic fac-
tors, gut microflora, inflammation, and oxidative stress [91]. Although it is difficult
to elucidate the exposome entirely at present, the inherent value of exposomic data
in cohort studies is that they can provide a greater understanding of relationships
between a wide range of exposure and health conditions, and ultimately lead to
more effective and efficient disease prevention and control [92]. For example, the
NIH Child Health Environmental Analysis Resource (CHEAR) is a major step
toward providing the infrastructure needed to study the exposome in relation to
child health [9]. Furthermore, an EU-funded project, EXPOsOMICS, aims to
develop a novel approach for assessing exposure to high-priority environmental pol-
lutants, such as air and water contaminants, during critical periods of life, by char-
acterizing the external and internal components of the exposome [93, 94]. Exposome
research in the context of developing interventions is targeted at the population level
to improve public health, whereas the application of genomics lies in preventive and
therapeutic interventions targeted at individuals [94].

19.4.4 Perspectives

Analysis of genetic factors and environmental exposure offers evidence-based
explanations for the associations between LBW, early growth, and increased pro-
pensity to develop NCDs in later life [60, 66, 70-72, 95]. Among epidemiological
studies, GWASs have revealed the relative role of genes and the environment in
disease risk, assisting in risk prediction such as in preemptive and precision medi-
cine [96, 97]. Although Mendelian randomization is a powerful tool that utilizes
genetic information to explain the likely causal relevance of an exposure to an out-
come and increasingly complex gene-to-exposure and exposure-to-outcome rela-
tionships; thus, it is more difficult to perform reliable conduct and interpretation [8].
Tremendous strides are being achieved toward developing an exposomics approach
together with infrastructural progress toward the identification of new methods and
consortia that can address big-picture questions of how environment impacts health
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and development [9, 93]. Future studies should aim to develop new methods and
analytical approaches for exposure assessment and data harmonization [9].

In Japan, the concept of preemptive medicine, which is a novel medical para-
digm that advocates for pre-symptomatic diagnosis or prevention intervention at an
early stage to prevent disease onset, has been proposed, and policy strategic propos-
als based on this approach have been made [97, 98]. Recently, collaborations of
birth cohort studies are being supported by the project for babies and infants in
research of health and development to adolescent and young adult (BIRTHDAY) of
the Japan Agency for Medical Research and Development (AMED) on the basis of
the current health policy “Overcoming health issues according to life stage” [99].
The rapid progress of large-scale epidemiological studies for elucidating gene—
environment interactions is expected to occur in Japan in the near future.

19.5 Conclusions

Analysis of gene—environment interactions between tobacco and environmental
chemicals and candidate genes, such as those encoding metabolic enzymes includ-
ing CYPs and GSTs, has been performed via small-scale epidemiological studies.
In the last 10 years, major innovations in research designs and methods, accompa-
nied by recent rapid advances of analytical and measurement technologies, have
occurred. In particular, GWASs and EWASs have become mainstream in genome
cohort studies using advanced genomics and epigenomics, which has made it pos-
sible to better understand the genetic basis of diseases. As disease causation is
largely non-genetic, the concept of the exposome was proposed as an improved tool
to quantify total environmental contributions. Linking the exposome with genom-
ics, in combination with preemptive and precision medicine, is expected to reveal
novel insights into the origins of multiple complex diseases.
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