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Preface

The structural health monitoring (SHM) field is concerned with increasing demand
for improved and more continuous condition assessment of infrastructures to better
face the challenges presented by modern societies. Thus, the applicability of
computer science techniques for SHM applications has attracted the attention of
researchers and practitioners in the last two decades.

This book aims to define and summarize the application of data mining for SHM
of infrastructures, including bridges, railway transport systems, wind turbines,
buildings, and so on. Data mining comprises selecting the appropriate models and
applying those for searching patterns in the features extracted from monitoring data.
Herein, the machine learning algorithms play an important role to unveil hidden
patterns. The output of the trained algorithms is used to infer knowledge and to
support the decision-making process.

Data mining has been a research hotspot in computer science, in the past dec-
ades, and it demonstrates a bright future in other fields like civil and mechanical
engineering, as it focuses on finding useful information in the data, explaining the
theories hidden behind engineering phenomena, which can be used to generate
knowledge about the structural state condition.

Various engineers from different fields, who are specialized in the data mining,
were invited to write all the chapters. Therefore, this book is expected to provide a
common ground for beginners in the fields of structural health monitoring and
structural dynamic analysis.

Singapore, Singapore Yun Lai Zhou
Ghent, Belgium Magd Abdel Wahab
Lisbon, Portugal Nuno M. M. Maia
Nanchang, China Linya Liu
Lisbon, Portugal Elói Figueiredo
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Damage Detection for Structural Health
Monitoring of Bridges as a Knowledge
Discovery in Databases Process

Moisés Silva, Adam Santos and Elói Figueiredo

Abstract The structural health monitoring (SHM) field is concerned with the
increasing demand for improved and more continuous condition assessment of engi-
neering infrastructures to better face the challenges presented by modern societies.
Thus, the applicability of computer science techniques for SHM applications has
attracted the attention of researchers and practitioners in the last few years, especially
to detect damage in structures under operational and environmental conditions. In
the SHM for bridges, the damage detection can be seen as the end of a process to
extract knowledge regarding the structural state condition from vibration response
measurements. In that sense, the damage detection has some similarities with the
Knowledge Discovery in Databases (KDD) process. Therefore, this chapter intends
to pose damage detection in bridges in the context of the KDD process, where data
transformation and data mining play major roles. The applicability of the KDD for
damage detection is evaluated on the well-knownmonitoring data sets from the Z-24
Bridge, where several damage scenarios were carried out under severe operational
and environmental effects.

Keywords Knowledge discovery in databases process · Data mining · Damage
identification · Bridge monitoring · Vibration measurements · Structural health
monitoring

M. Silva
Applied Electromagnetism Laboratory, Universidade Federal do Pará, R. Augusto Corrêa,
Guamá 01, Belém, Pará 66075-110, Brazil

A. Santos
Faculty of Computing and Electrical Engineering, Universidade Federal do Sul e Sudeste
do Pará, F. 17, Q. 4, L. E., Marabá, Pará 68505-080, Brazil

E. Figueiredo (B)
Faculty of Engineering, Universidade Lusófona de Humanidades e Tecnologias,
Campo Grande 376, 1749-024 Lisbon, Portugal
e-mail: eloi.figueiredo@ulusofona.pt

CONSTRUCT—Institute of R&D in Structures and Construction, R. Dr. Roberto Frias s/n,
4200-465 Porto, Portugal

© Springer Nature Singapore Pte Ltd. 2019
Y. L. Zhou et al. (eds.), Data Mining in Structural Dynamic Analysis,
https://doi.org/10.1007/978-981-15-0501-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0501-0_1&domain=pdf
mailto:eloi.figueiredo@ulusofona.pt
https://doi.org/10.1007/978-981-15-0501-0_1


2 M. Silva et al.

1 Introduction

The bridges play a crucial role in modern societies, regardless of culture, geograph-
ical location, or economic development. The safest, economical, and most durable
bridges are those that are well managed and maintained. Health monitoring repre-
sents an important tool in management activities as it permits one to identify early
and progressive structural damage [15]. Overall, the massive data obtained from
monitoring systems must be transformed to meaningful information to support plan-
ning and designing of maintenance activities, increase the safety, verify hypotheses,
reduce uncertainty, and widen the knowledge and insight concerning the monitored
structure.

Therefore, the process of implementing an autonomous damage identification
strategy for civil, mechanical, and aerospace engineering infrastructure is tradi-
tionally referred to as structural health monitoring (SHM) [17]. The SHM pro-
cess involves the observation of a structure over time using periodically sampled
response measurements from an array of sensors, the extraction of damage-sensitive
features from these measurements, and the statistical analysis of these features to
infer the actual structural condition. The structural condition evaluation concept gen-
erally follows the damage identification hierarchy composed of five levels (Sect. 2.1).
Acknowledging the existence of other levels and their importance for amore compre-
hensive information on the presence of damage, this chapter poses the SHM process
mostly in the context of the first level—damage detection. It is important to note
that, nowadays, the SHM is certainly one of the most powerful tools for infrastruc-
ture asset management, as it can provide information from the structural condition
in real time, which improves the decision making regarding maintenance activities.

The damage detection can also be seen as the end of a process to extract knowl-
edge regarding the structural state condition from vibration response measurements
(e.g., displacements and accelerations). Therefore, the entire process for damage
detection has some similarities with the Knowledge Discovery in Databases (KDD)
process (Sect. 2.2). Basically, KDD is the overall process of extracting and reveal-
ing useful information from massive raw data measurements and transforms it into
knowledge for decision making. This process is broadly applied in many fields, such
as healthcare industry, financial market, advertising, bioinformatics, astronomy, and
others [2, 3, 12, 27–29, 35]. The KDD process can be broken down into five steps
[18]: data selection, data preprocessing, data transformation, data mining, and data
interpretation and evaluation for knowledge discovery. Even though all those steps
are important for knowledge generation, this chapter gives more attention to the data
transformation (Sect. 3) and data mining (Sect. 4) steps, as those are more directly
related to the damage detection.

In most recent years, some concepts of KDD have already been posed in the
context of statistical pattern recognition (SPR) paradigm for SHM [17]. The SPR
paradigm is composed of four stages: operational evaluation, data acquisition, feature
extraction, and statistical modeling for feature classification [21]. As a comparison,
the data transformation step is related to the feature extraction stage, where several
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techniques are used to unveil signatures from the raw data in a lower dimensional
space; data mining and data interpretation and evaluation steps are related to the
statistical modeling for feature classification stage, where machine learning algo-
rithms and statistical models are used to uncover hidden patterns (e.g., clusters) and
to transform information into knowledge.

Therefore, this chapter intends to pose damage detection for SHM in the context of
the KDD process, by presenting, discussing, and applying several feature extraction
techniques for data transformation as well as machine learning algorithms for data
mining and data interpretation. The applicability of the KDD process for damage
detection is evaluated on the well-known monitoring data sets from the Z-24 Bridge,
where several damage scenarios were carried out under severe environmental effects
(Sect. 5).

2 Knowledge Discovery in Databases for Damage Detection

This section defines the meaning of knowledge in the context of SHM and presents
the general concept of the KDD process for damage detection in bridges.

2.1 Knowledge in SHM and the Hierarchical Structure of
Damage Identification

In SHM, knowledge is all the relevant information about the structural condition,
which can be used to support the decision-making process regarding maintenance
and repair of bridges. The structural condition evaluation can be in the form of a
damage identification hierarchy, i.e., it can be regarded as a sequence of different
levels of knowledge about damage and how it affects the structure.

The damage identification should be as detailed as possible to describe the damage
impact on the structural system.Therefore, in a broad sense, developments on damage
identification can be divided into three areas: damage detection, damage diagnosis,
and damage prognosis. Nonetheless, damage diagnosis can be subdivided to better
characterize the damage in terms of location, type, and severity. Thus, as depicted in
Fig. 1, the hierarchical structure of damage identification can be decomposed in five
levels which answer the following questions [19]:

1. Is the damage present in the system (detection)?
2. Where is the damage (localization)?
3. What kind of damage is present (type)?
4. What is the extent of damage (severity)?
5. How much useful lifetime remains (prognosis)?

The answers to the questions above can only be made in a sequential manner.
For example, the answer to the severity of damage can only be made with a priori
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Fig. 1 Hierarchical structure of damage identification

knowledge of the type of damage. When applied in an unsupervised mode, machine
learning algorithms are typically used to answer questions regarding the detection
and localization of damage [24]. When applied in a supervised mode and coupled
with physics-based models, the statistical algorithms can be used to better determine
the type of damage, severity, and the remaining useful lifetime [26]. At level five, the
damage prognosis cannot be accomplished without an understanding of the damage
accumulation process. For further discussion on the concept of damage prognosis,
one should read the reference [14]. Herein, only the first level is addressed.

2.2 Knowledge Discovery in Databases

As highlighted in Fig. 2, the KDD process can be described as a five-step approach:
data selection, data preprocessing, data transformation, data mining, and data inter-
pretation and evaluation.

Data selection comprises the creation of a target data set from raw data by con-
sidering important variables, which can influence the application domain in distinct
aspects. For this step, it is crucial significant prior knowledge related to the purpose
of the application.

Data preprocessing involves data preparation or cleaning procedures, such as
removing noise and outliers when necessary, handling missing and unknown data
values, and accounting for time sequence information and known seasonality.

Data transformation includes extracting or estimating informative and useful fea-
tures to represent the data and applying dimensionality reduction and/or transforma-
tion methods to reduce the effective number of variables under consideration or to
achieve better representations for the data in new projected dimensions.



Damage Detection for Structural Health Monitoring … 5

Database

Knowledge

Cluster-based
model

Regression
model

Selec on

Preprocessing

Transforma

Data
Mining

Interpreta on

Target Data Preprocessed Data Transformed Data Pa erns

Fig. 2 Traditional five-step KDD process

Data mining comprises selecting the appropriate models (e.g., classification,
regression, sequence analysis, or clustering) and applying those for searching pat-
terns in the features extracted from the data. Herein, the machine learning algorithms
play an important role to unveil hidden patterns [21]. The output of the fitted models
plays an important role in the inferred knowledge, which should be judged by human
as useful or not.

Data interpretation and evaluation encompass interpreting and visualizing the
extracted patterns, removing irrelevant ones, and converting comprehensive infor-
mation into knowledge. This step also includes incorporating the knowledge into the
decision-making process.

In the context of SHMand damage detection, as highlighted in Fig. 3, after the data
be selected and preprocessed, the data transformation step fits a model to the data
in order to extract features, forming a new data set. Afterward, statistical models
(e.g., machine learning algorithms) perform the mining of patterns related to the
undamaged and damaged structural conditions, bymeans of a training phase inwhich
only the features related to the normal structural condition are learned. The test phase
is where the algorithms classify a new condition as undamaged or damaged, whether
it deviates from the learned pattern or not, according to a threshold and following an
outlier detection perspective. The decision making is then based on the interpretation
and evaluation of the classification results in the form of damage indicators (DIs),
derived from the mining step. The DIs can then be translated into knowledge, i.e.,
structural condition evaluation and the need for visual inspections, maintenance, or
demolition activities.
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Fig. 3 Relation between the KDD process and SPR paradigm for damage detection (adapted from
[46])

3 Data Transformation for Feature Extraction

3.1 Definition of Damage-Sensitive Feature

The data transformation is often described as a key step to ensure the reliability of
SHM systems, as it directly affects the effectiveness and accuracy of the damage
detection. Basically, with a set of features obtained from the data transformation,
carrying information from the structural condition, the data mining step can be per-
formed with less uncertainty and with minimal computational efforts.

During the condition monitoring of a structure, there is often multiple sensors
mounted at different locations, acquiring varied types of physical parameters. From
the collected raw data, features sensible to damage are extracted to support the struc-
tural condition evaluation. Therefore, a damage-sensitive feature is some quantity
extracted from the structural response data that is correlated with the presence of
damage in a structure (e.g., modal parameters, maximum displacements, regression
model parameters, and residual errors). An adequate damage-sensitive feature varies
consistently in accordance with the level of damage in the structure. However, in
most real-world applications, the features directly extracted from the raw data are
often correlated with multiple sources of operational and environmental variability
(e.g., traffic, temperature, moisture, and wind speed), which increase uncertainty in
the damage detection as it can mask damage-related changes in the features as well
as alter the correlation between their magnitude and the damage level [24]. Besides,
there is no universal kind of feature or physical variable appropriate for all damage



Damage Detection for Structural Health Monitoring … 7

scenarios. Thus, the type of feature varies with the kind of structure to be monitored
and the type of damage to be found. These facts suggest the usage of several tech-
niques to extract alternative features in order to reduce uncertainty and increase the
likelihood of damage detection.

3.2 Domains for Data Transformation and Feature
Extraction

Many different techniques from alternative domains have been used for data trans-
formation and feature extraction for SHM applications [22]. There is a wide range
of features used in current SHM applications from very diverse fields of study (e.g.,
from econometrics to physical parameters). The most common ones fall into the
following domains [58]:

1. Time-domain features: mostly regarded to time-series processing. Common tech-
niques use the coefficients of auto-regressive (AR) models and auto-regressive
moving average (ARMA) models as input features [23]. Although providing sta-
ble results, theywork for slightly damped systems and require a significant number
of time-domain samples;

2. Frequency-domain features: conventionally related to the Fourier transform. Fre-
quency components are estimated from raw data in order to decompose and ana-
lyze their spectral content [60]. In this domain, the modal properties [1, 8, 10, 13,
20, 36] are vibration parameters (e.g., natural frequencies, mode shapes, modal
curvature, and flexibility matrix) as features for damage detection, as they provide
global on-site automated continuous monitoring due to their inherent physical
properties (stiffness and mass);

3. Time–frequency-domain features: often represented by approaches based on the
short-time Fourier transform (STFT), providing an effective characterization of
time–frequency patterns of non-stationary signals;

4. Wavelet-based features: used to achieve a reasonable trade-off between frequency
and time resolution with multiple choices of basis functions available. Conven-
tionally performed using discrete wavelet transform (DWT) and wavelet packet
transform (WPT). They can be very effective features when modeled to match
specific characteristics of the structure being monitored;

5. Empirical mode decomposition (EMD) features: performed by advanced signal
processing algorithms, they are built to adaptively model time–frequency char-
acteristics of non-stationary and/or nonlinear structural systems. Their end result
is usually the decomposition of the input raw data into intrinsic mode functions
(IMF).



8 M. Silva et al.

3.3 Statistical-Based Techniques: Information Theory

The field of information theory also provides numerous approaches to examine and
create more general features through analyzing fundamental relationships among
data.More recently, these statistical-based techniques have been exploited for system
identification applications [39]. These features commonly express uncertainties in
random variables in terms of how much significance or representativeness the input
data offers to the system. The most important information measures of this category
are as follows:

1. Information entropy: also known as Shannon entropy, it is a measure of the uncer-
tainty associated with random variables. In SHM, its most common use is for
model updating or model order selection. However, its use as input features has
started to attract global attention;

2. Kullback–Leibler divergence: used to measure the difference between probability
density functions of random processes. It has also been used to evaluate the
relationships of collected raw data;

3. Mutual information: quantifies common dependencies between processes, and
similarly to theLeiblerDivergence can be extended to evaluate shared information
between random variables;

4. Transfer entropy: explores the concept of generalized synchronization and infor-
mation transfer. Traditionally, it has been used for synchronized mechanical sys-
tems.Whenmechanical components desynchronize, this information can bemea-
sured in terms of the amount of transferred information.

3.4 Levels of Feature Extraction

Feature extraction techniques can also be categorized in terms of depth of the
extracted features [6, 49, 53]. As feature extraction can be described as a process
of feature fusion, it is possible to follow the conventional fusion operation level to
divide the techniques into three levels:

1. Data-level fusion: performed on the collected raw data by integrating multisensor
signals, comprising a first-level set of extracted features. Most features fall into
this category;

2. Feature-level fusion: the process is performed on the first-level features by com-
pressing them into a reduced set of derived variables; these second-level features
retain the essential information of the original subset of features with less data;

3. Decision-level fusion: intrinsically related to the feature classification stage, the
results of multiple classifiers are combined through majority voting approaches
and used to perform further analysis. The output is not a new set of features, but
some useful pattern.
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The majority of the SHM studies for damage detection have been focused on the
first-level feature extraction by identifying the dynamic properties of a monitored
structure to relate the changes in the vibration characteristics to the damage occur-
rence [7, 9, 16, 45, 61]. Although each level can be applied for specific scenarios and
different goals, the feature-level fusion is often more effective than the alternative
ones, because the first-level features contain richer information about the structural
condition and present physical interpretation.

Even though the first-level features work well for intelligent fault diagnosis, they
still have deficiencies: (i) the extracted features are handcrafted built from time-
domain signals and heavily depend on much prior knowledge and diagnostic exper-
tise; (ii) those features compose very complex information under high influence
of normal variability effects, which becomes difficult for the proper discrimination
of damaged and undamaged conditions by machine learning algorithms; (iii) as the
amount of data increases, more complex informationmust be learned, which enlarges
the number of learned parameters to correctly perform feature classification and to
identify the damage occurrence [8].

For these reasons, the second-level feature extraction techniques have been applied
for monitoring scenarios where data from damaged conditions is available [31, 55].
However, technical and organizational issues have limited their application by struc-
ture managers in practice. Some reasons can be pointed out to the lack of a frame-
work or guideline to perform damage identification, which results in no universally
accepted feature extraction approach.

In the case of second-level features, it is possible to infer that their main repre-
sentative techniques are the ones based on machine intelligence. More specifically
using generative models, which model how the data was generated to perform cate-
gorization. Therefore, the ones based on principal component analysis (PCA) have
been the most widely employed for SHM applications [52].

The traditional linear PCA has been adapted to act as a feature extraction and
data normalization technique used to model, mainly, the effects of linear variations
[57]. Very often, PCA-based approaches are used to model linear environmental
and operational influences from undamaged first-level features. However, a major
difficulty with this technique is the limited applicability in real-world SHM systems;
if nonlinearities are present in the monitoring data, the linear PCA-based approach
might fail to model the normal condition of a structure.

The auto-associative neural network (AANN) is a nonlinear version of the PCA
intended to perform feature extraction, dimensionality reduction, and damage iden-
tification of multivariate data [56]. As demonstrated by Kramer [34], the AANN is
capable of intrinsically performing a nonlinear mapping of the input variables, as it
characterizes the underlying dependency of the identified features in terms of unob-
served factors, i.e., a nonlinear PCA (NLPCA). The main issue of this approach is to
determine the number of normal factors changing the actual behavior of the structure,
as the number of factors retained by the model must be handcrafted discovered.

An alternativemanner to performNLPCA is to employkernel functions alongwith
the traditional linear PCA. The kernel trick allows the mapping of features to high-
dimensional spaces, which can provide nonlinear strengths to the traditional PCA,
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leading to a kernel PCA (KPCA) [38, 43, 59]. Although this technique achieved
satisfactory results for data normalization and can be easily adapted for damage
detection, it also revealed some loss of information as the principal components are
retained based on 99% of the data variability.

Considered the current breakthrough in artificial intelligence, deep learning-based
techniques have the potential to overcome the aforementioned problems of current
feature extraction methods [5, 52]. In particular, auto-encoders (AEs) are equipped
with extremely powerful mapping operators, yielding an adaptive representation of
the input data into its bottleneck layer [30, 47]. These networks can be stacked to
form a deep architecture and to perform reliable mapping operations.

Finally, Fig. 4 briefly shows a taxonomy of feature extraction techniques conven-
tionally used for SHM applications. In some cases, techniques used to derive first-
level features can be used in a second-level feature extraction fashion. However, most
applications fit in one of the stated categories. Additionally, the second-level feature
extraction framework for SHM can be summarized as shown in Fig. 5. Although this
framework is specifically designed with deep auto-encoders, in fact, it summarizes
the steps for any other application using different techniques to extract second-level
features. Here, the auto-encoder is specified to illustrate the workflow used by the
experimental tests carried out in Sect. 5.
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4 Data Mining for Feature Classification

Data mining is especially related to the discovery of patterns in the features which
comprise normal structural conditions, for posterior feature classification based on
an outlier detection perspective. In this section, for illustration purposes, the work-
ing principles of two state-of-the-art machine learning algorithms are presented [21],
where patterns are highlighted as the formation of clusters associated with structural
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state conditions. In the end, this section tries to link data mining and data interpreta-
tion and evaluation, for the generation of knowledge about the structural condition.

4.1 An Outlier Detection Perspective: Goals and Challenges

In an outlier detection perspective for feature classification, one possible approach
for data mining is a clustering procedure combined with a (dis)similarity metric and
a threshold. Thus, the goals of data mining for damage detection are (1) learning
clusters that correspond to the normal structural conditions in the training phase;
(2) estimating a threshold from training data to classify new feature vectors; (3)
computing a DI for each new observation considering the (dis)similarity between
this observation and the centers of the clusters; (4) classifying each DI according to
a defined threshold.

As shown in [50], the discovered clusters play a crucial role for mining patterns
and extracting knowledge from the training data, as they can be correlated with
the physical states of the structure under operational and environmental influences.
Often, the better the clusters can represent the normal structural conditions, the better
is the classification performance.

Some of the challenges in the data mining for feature classification are discussed
as follows:

• Updating statistical models as new data becomes available;
• The choice of the machine learning algorithm, for a specific data mining task,
must be done as a function of the damage-sensitive features used as well as the
distribution of them in the feature space;

• The feature classification is currently posed in the context of a binary classification,
with a trade-off between false-positive and false-negative indications of outliers. It
recognizes that false-positive classificationsmay have different consequences than
false-negative ones. Therefore, analytical approaches to defining threshold levels
must balance trade-offs between false-positive and false-negative indications,min-
imize false-positives when economic concerns drive the SHM applications, and
minimize false-negatives when life safety issues drive the SHM systems.

4.2 Machine Learning Algorithms

In SHM, machine learning is the science of getting computers and algorithms to
model the reality without knowing the physical laws of structures [21]. Twomachine
learning algorithms for data mining are described in the context of SHM. These algo-
rithms are especially relevant in cases where damage-sensitive features are affected
by changes caused by operational and environmental variability and changes caused
by damage.
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For generalization purposes, one should assume a training data matrix,X ∈ R
n×d ,

with d-dimensional feature vectors from n different operational and environmental
conditions when the structure is undamaged and a test data matrix, Z ∈ R

l×d , where
l is the number of feature vectors from the undamaged and/or damaged conditions.

4.2.1 Mahalanobis Squared Distance

TheMahalanobis squared distance (MSD) is ametric formultivariate statistics outlier
detection [57]. Considering the training matrix, X, with multivariate mean vector,
μ, and covariance matrix, �, the MSD (in the context of SHM, also called as DI)
between feature vectors from X and any new feature vector (or observation) from
the test matrix, Z, is computed as

DI (z) = (z − μ) �−1 (z − μ)� . (1)

The assumption is that if a new observation is obtained from the data collected on
the damaged condition, which might include sources of operational and environmen-
tal variability, the observation is further from the mean of the normal condition and
might be considered an outlier. On the other hand, if an observation is obtained from
a system within its undamaged condition, even with operational and environmental
variability, this feature vector is closer to the mean of the normal condition.

4.2.2 Gaussian Mixture Model

The Gaussian mixture model (GMM) carries out a cluster-based model, using mul-
tivariate finite mixture models that aim to capture the main clusters/components of
features, which correspond to the normal and stable state conditions of a bridge, even
when it is affected by extreme operational and environmental conditions. Afterward,
an outlier detection strategy is implemented in relation to the chosen main compo-
nents of states [20]. Basically, the damage detection is carried out based on multiples
MSD-based algorithms, where the covariance matrices and mean vectors are func-
tions of the main components.

Suppose that a training matrix X is available, arising from a mixture of Q distri-
butions [37],

fmix (x) =
Q∑

q=1

ηq fq
(
x|θq

)
, (2)

with fq
(
x|θq

)
being the density of a distribution from a known parametric distribu-

tion family τ (θ). In this setting, one is concerned with the estimation of the com-
ponent parameters θ = (

θ1, . . . , θQ
)
and the mixture weights η = (

η1, . . . , ηQ
)
of
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the underlying mixture distributions, based on the data X. In this case, one assumes
underlying multivariate Gaussian mixture distributions, and therefore, each compo-
nent density is a d-variate Gaussian function in form of [37]

f
(
x|μq ,�q

) =
exp

{
− 1

2

(
x − μq

)�
�−1

q

(
x − μq

)}

(2π)d/2
√
det

(
�q

) , (3)

with unknown parameters θq = {μq ,�q}, namely mean vectors μq and covariance

matrices�q . The mixture weights are constrained to be
∑Q

q=1 ηq = 1. The complete
GMM is parameterized by themean vectors, the covariancematrices, and themixture
weights from all component densities, {μq ,�q , ηq}q=1,...,Q .

The parameters are estimated from the training data using the classical maximum
likelihood (ML) estimation based on the expectation–maximization (EM) algorithm
[11]. Other methods can be used to estimate the parameters of a GMM, as proposed
in [25]. The Bayesian information criterion (BIC) [4] is used to determine the appro-
priate number of components, which introduces a penalty term for the number of
parameters in the model.

For the outlier detection strategy, and for each observation z, one needs to estimate
Q DIs. Basically, for each main component q of the data,

DIq (z) = (
z − μq

)
�−1

q

(
z − μq

)�
, (4)

where μq and �q represent all the observations from the q component of the data,
when the structure is undamaged even though under varying operational and envi-
ronmental conditions. Finally, for each observation, the DI is given by the smallest
DI estimated on each component,

DI (z) = min
[
DIq (z)

]
. (5)

4.2.3 Final Considerations: Data Interpretation and Evaluation

The performance of damage detection is a fundamental aspect to generate knowledge,
in the context of the KDD process for bridges. Therefore, interpreting and evaluating
the DIs, by inferring whether the structure is undamaged or damaged, is fundamental
to support the bridge owners to make decisions.

Thus, for the two-class problem in SHM (binary classification), in which the two
sets of cases are labeled as damaged (or positive, P) or undamaged (or negative,
N), assuming a given threshold, there are four possible outcomes as summarized in
Fig. 6. For a positive outcome, the case can be either true-positive (TP) if the observed
is positive or false-positive (FP) if the observed is negative. On the other hand, for
a negative outcome, the case can be either false-negative (FN) if the observed is
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positive or true negative (TN) if the observed is negative. The misclassifications of
FP and FN are also known as Type I error and Type II error, respectively.

Therefore, false indications of damage fall into two categories: (i) false-positive
damage indication (indication of damage when none is present, Type I error) and (ii)
false-negative damage indication (no indication of damage when damage is present,
Type II error). Errors of the first type are undesirable, as they will cause unnecessary
downtime and consequent loss of revenue as well as loss of confidence in the moni-
toring system. More importantly, there are clearly safety issues if misclassifications
of the second type occur [15].

5 Applicability and Discussion

This section intends to show the applicability of the KDD process, namely data
transformation, data mining, and data interpretation and evaluation on data sets from
the Z-24 Bridge. The goal is to compare the performance of a traditional GMM-
based machine learning algorithm for data mining and feature classification when
fed with first- and second-level features. The second-level feature extraction is per-
formed using a stacked auto-encoder (SAE) recently proposed by [52]. This pro-
cedure intends to evaluate the impact of data transformation and data mining for
damage detection and knowledge generation.

5.1 The Z-24 Bridge and Monitoring Scenario Description

TheZ-24Bridgewas a post-tensioned concrete box girder bridge composed of amain
span of 30m and two side-spans of 14m, as depicted in Fig. 7. The bridge, before
complete demolition, was extensively instrumented and tested with the purpose of
providing a reliable benchmark for vibration-based SHM in civil engineering [44]. A
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Fig. 7 Longitudinal section (a), and the location and orientation of accelerometers (b) on the Z-24
Bridge. Marked sensors failed during the monitoring campaign [41]

long-termmonitoring test was carried out, fromNovember 11, 1997, until September
10, 1998, to quantify the operational and environmental variability present on the
bridge and to detect damage artificially introduced, in a controlled manner, in the
last month of operation. Every hour, eight accelerometers captured the vibrations
of the bridge as sequences of 65,536 samples (sampling frequency of 100Hz) and
other sensors measured environmental parameters, such as temperature at several
locations [32, 33, 41].

Progressive damage tests were carried out in one-month time period (fromAugust
4 to September 10, 1998) before the demolition of the bridge to prove that realistic
damage has a measurable influence on the bridge dynamics [42], as summarized in
Table1 (the dates refer to the day that additional vibration tests were performed to
fully characterize the structural condition of the bridge). Three examples of damage
test scenarios are illustrated in Fig. 8. Note that the monitoring system was still
running during the progressive damage tests, which permits one to validate the SHM
system to detect cumulative damage on long-term monitoring.

5.2 First-Level Features: Natural Frequencies

The natural frequencies of the Z-24 Bridge are used as first-level features. They
were estimated using a reference-based stochastic subspace identification method
on vibration measurements from the accelerometers [40]. The first four natural fre-
quencies estimated hourly from November 11, 1997, to September 11, 1998, with
a total of 3932 observations, are highlighted in Fig. 9. The first 3470 observations
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Table 1 Progressive damage test scenarios (the dates refer to the additional vibration measure-
ments)

Date Scenario description

04-08-98 Reference measur. I (undamaged condition)

09-08-98 After installation of the settlement system

10-08-98 Pier settlement = 2cm

12-08-98 Pier settlement = 4cm

17-08-98 Pier settlement = 8cm

18-08-98 Pier settlement = 9.5cm

19-08-98 Foundation tilt

20-08-98 Reference measur. II (removal of the settlement system)

25-08-98 Spalling of concrete (12m2)

26-08-98 Spalling of concrete (24m2)

27-08-98 Landslide at abutment

31-08-98 Concrete hinge failure

02-09-98 Failure of 2 anchor heads

03-09-98 Failure of 4 anchor heads

07-09-98 Rupture of 2 out of 16 tendons

08-09-98 Rupture of 4 out of 16 tendons

09-09-98 Rupture of 6 out of 16 tendons

Fig. 8 Damage scenarios carried out in the Z-24 Bridge: pier settlement (a), failure of anchor heads
(b), and tendon rupture (c)

correspond to the undamaged structural condition under effects caused by the oper-
ational and environmental variability. The last 462 observations correspond to the
damage progressive testing period, which is highlighted, especially in the second
frequency, by a clear decay in the magnitude of this frequency.

The damage scenarios were performed in a sequential manner, which caused a
cumulative degradation of the bridge. Therefore, this study assumes that the bridge
operates within its undamaged condition (baseline or normal condition), under oper-
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Fig. 9 First four natural frequencies of the Z-24 Bridge: 1–3470 baseline/undamaged condition
(BC), 3471–3932 damaged condition (DC)

ational and environmental variability, from November 11, 1997, to August 4, 1998
(1–3470 observations). On the other hand, the bridge is considered damaged from
August 5 to September 10, 1998 (3471–3932 observations). For the baseline con-
dition period, the observed jumps in the natural frequencies are associated with the
asphalt layer, in cold periods, which contributes, significantly, to the stiffness of the
bridge, as evidenced in Fig. 9, indicating the need for a data normalization procedure
to attenuate this variability. Besides, the significant influence of the temperature on
the natural frequencies, and consequently on the structure dynamics, may be consid-
ered as nonlinear with distinguished behaviors below and above 0 ◦C [41, 42].

5.3 Second-Level Features: Hidden Normal Factors

The proposed SAE model is composed of eight mapping/demapping layers along
with the input layer. As the number of nodes in the bottleneck layer implicitly rep-
resents the number of main normal factors, the bilinear structural behavior caused
by the ambient temperature is represented by two nodes in this layer. The number
of nodes in the remaining layers is selected through the procedure described in [54].
Therefore, the network has ten, seven, and three nodes in each one of the remaining
mapping and demapping layers, along with four nodes in the input/output layers.
The parameters of the network were adjusted based on the four natural frequencies
(1–3123) shown in Fig. 9. Figure10 shows the second-level features extracted at the
bottleneck layer of the network as well as their dependency on the temperature.
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Fig. 10 Extracted second-level features of the SAE-based approach (a). Two-dimensional view
(b)

For comparison purposes, the reliability of the information derived from the
extracted features is attested in terms of information entropy. The Shannon’s infor-
mation entropy is themost commonmetric to verify the average uncertainty provided
by a set of random variables [48]. The principle of maximum entropy is based on
which probability distribution leaves the largest enduring uncertainty, revealing the
maximum amount of information about the data (the maximum entropy). Therefore,
Table2 summarizes the values of entropy for the second-level feature extraction
approach along with the first-level set of features composed of natural frequencies.
Basically, the SAE-based approach attains the most informative set of features. The
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Table 2 Shannon’s information entropy for each set of extracted features [48] along with the
corresponding number of extracted features

Features Shannon’s entropy Number of features

First level: natural frequencies 2.3502 4

Second-level: normal factors 7.3084 2

robustness of this approach can be pointed out to the somewhat tedious mapping
operations, which result in the ability to compose stronger features. These techniques
are capable of learning slight nonlinear variations. Furthermore, the non-orthogonal
projections performed by the SAE sustain the mapping of most part of the vari-
ance comprised in the natural frequencies, which is the main reason to the superior
performance reached by the SAE.

5.4 Data Mining and Damage Detection

The data mining step is performed based on the EM-GMM algorithm implemented
in accordance with [50]. For generalization purposes, the damage-sensitive features
are split into training and test matrices. As shown in Figs. 10 and 11, the training
matrix,X3123×4, is composed of 90% of the undamaged observations. The remaining
10% is used during the test phase to make sure that the DIs do not fire off before the
damage starts. The test matrix, Z3932×4, is composed of all the data sets, even the
ones used during the training phase. The number of normal components (or clusters)
discovered for each set of features is summarized in Table3.

In order to transform information into knowledge, i.e., to detect damage in the
bridge and to evaluate the impact of the second-level feature extraction on the damage
detection performance, the number of Type I and Type II errors and the DIs for the
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Fig. 11 Outlier detection based on the EM-GMM algorithm using the four natural frequencies (a)
and two-dimensional extracted features of the second-level approach SAE (b)
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Table 3 Number and percentage of Type I/II errors for each set of extracted features along with
the number of components (Q) learned by the EM-GMM algorithm

Feature Type I Type II Total Q

First level: natural frequencies 190 (5.48%) 7 (1.52%) 197 (5.01%) 8

Second-level: normal factors 165 (4.76%) 5 (1.08%) 170 (4.32%) 7

test matrix are presented in Table3 and Fig. 10, respectively. In particular, the GMM-
based approach has the best performance in terms of undamaged data classification
(4.76% of Type I errors) and total number of errors (4.32%), when the normal factors
are used as features. Compared to the natural frequencies, the normal factors have
demonstrated to slightly increase the sensitivity of the EM-GMM for the damage
occurrence, as indicated by the reduced number of Type II errors, and confirming the
information provided by Table2. In conclusion, it turns out that when one attempts to
model the normal condition of the structures, an error trade-off between minimizing
Type I and Type II errors is required, which makes the second-level features (normal
factors) more robust for damage assessment. Moreover, one can verify a significant
decrease in the number of total errors, which means that in this case the second-level
features increase the reliability of the entire monitoring system.
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Structural Health Monitoring of Periodic
Infrastructure: A Review and Discussion

Junfang Wang and Jian-Fu Lin

Abstract Periodic structure has obtained wide applications in various infrastruc-
tures. The structural health monitoring of periodic infrastructures is motivated by the
facts that in-service infrastructures are damage-prone, while traditional inspection
and nondestructive evolution hardly meet the requirements in continuous surveil-
lance, timely warning and assessment of anomalies, and cost-effective maintenance.
In this chapter, the fundamental principles and applications of the periodic structure
are first introduced. Then, the recent research activities on the health monitoring of
periodic infrastructures using data mining are summarized. It is followed by a review
of instantaneous baseline structural health monitoring that was originally presented
for diminishing the vulnerability of anomaly detection performance to environmen-
tal and operational conditions. Investigations on structural health monitoring using
the inherent property of periodic structure are subsequently reviewed, and none of
them incorporates both instantaneous baseline and advanced data mining techniques
for the anomaly identification oriented classification, prediction, and optimization.
Based on the state-of-the-art review, discussions about current investigations and
suggestions for future studies are provided in the final section.

Keywords Structural health monitoring · Damage detection · Periodic structure ·
Instantaneous baseline · Data mining

1 Fundamentals of Periodic Structure

A periodic or repetitive structure is an assembly of identical elements typically cou-
pled in an identical manner. Each element is connected to another in a regular pattern
to build up the so-called spatially periodic structure. This type of structures has
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obtained wide applications in infrastructures and these infrastructures can be called
periodic infrastructures. Examples in engineering applications are building frame-
works, multi-span bridges, rail tracks, aircraft fuselages, long-distance pipelines,
wind turbines (bladed discs), and ship structures (see Fig. 1). The transmission and
reflection of structure-borne waves in periodic structures, say, from layer to layer
in a building framework or from span to span along a rail, and the coupling of
these waves form a distinctive dispersion phenomenon characterized by so-called
passband and stopband. For slight structural damping, passbands are frequencies
at which the coupled waves travel in the periodic structure with little transmission
loss, while stopbands are frequency zones where the coupled waves drastically decay
when propagating. The passbands and stopbands are known as “propagation zones”
or “attenuation zones.”

A full three-dimensional analysis of the periodic infrastructures is intricate due to
the vibrational interactions between structural components. However, a fundamen-
tal understanding of the wave propagation and vibration characteristics of periodic
infrastructuresmay be acquired by studying less complicatedmodels such as a beam-
type periodic waveguide with a single transmission path and a series of plate ele-
ments periodically assembled with the assumption of plane-wave transmission [5].
Conventionally, the wave propagation and vibration characteristics of the periodic
structure are obtained by solving each element of the periodic structure successively.
The most commonly used methods are the propagation wave approach [5–7] and

Fig. 1 Spatially periodic structures in engineering applications (building, bridge, rail track, and
aircraft fuselage) [1–4]
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Fig. 2 Block diagram of a multi-coupled periodic structure

the transfer matrix method [8–10]. Other approaches, inclusive of the Z-transform
method, energy method, and Fourier transform method, have been also employed
[11]. The propagation wave approach is developed based on the Bloch theorem in
solid-state physics [12], which is very suitable for analyzing infinite or semi-infinite
periodic structures. In addition to infinite or semi-infinite periodic structures, the
transfer matrix approach can be conveniently applied to the analysis of finite peri-
odic structures because of the easy incorporation of their boundary conditions into
the transfer matrix [11]. Based on Ref. [9], an example using the transfer matrix
method to solve the wave propagation characteristics of a one-dimensional or semi-
two dimensional waveguide (see Fig. 2) is provided as follows. The derivation of
wave propagation characteristics by transfer matrix method, i.e., Eqs. (1)–(6), is
performed in the frequency domain.

In the waveguide shown in Fig. 2, the structural-borne wave w at the ith junc-
tion/cross section in the ith element is related to the velocity V and force F at this
junction in the manner described in Eqs. (1) or (2).

[
V
F

]
i

= [Sw][w]i (1)

[w]i = [Sw]−1

[
V
F

]
i

(2)

The transfer matrix of waves at the ith junction [w]i and the waves at the (i +1)th
junction between the ith and (i +1)th elements [w]i+1 is [Pw]. It governs the wave
propagation between two adjacent junctions.

[w]i+1 = [Pw][w]i (3)

Combining Eqs. (1)–(3), the vibration transmission between two adjacent junctions
of the periodic structure is obtained as

[
V
F

]
i+1

= [
Uµ

] ×
[
V
F

]
i

(4)
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where
[
Uµ

]
is the entire transfer matrix and has the expression as Eq. (5).

[
Uµ

] = [Sw][Pw][Sw]
−1 (5)

According to the Bloch theory [13], the wave motions in a linear semi-infinite
one-dimensional periodic structure can be described as the superposition of charac-
teristic wave-types of Bloch waves. After the eigendecomposition of

[
Uµ

]
, Eq. (4)

takes the form as Eq. (6), where [v] and [ f ] are a so-called normalized vector for
velocity and force. The normalized vector specifies the relative amounts of Bloch
wave contribution from different wave-types.

[
V
f

]
i+1

= eµ
[
v
f

]
i+1

(6)

A periodic structure with nmotion coordinates at each junction is known to carry
n characteristic-free harmonic independent wave-types. Each wave-type is corre-
spondent to one pair of negative- and positive-going waves and governed by a pair of
complex “propagation constants”µk = ±(µRk + jµI k), k ∈ [1, n]; µRk and µI k are
non-negative herein. The real part µRk is the attenuation constant representing the
exponential decay inwave amplitude per element for the kth characteristicwave-type.
The imaginary part µI k is the phase constant, of which the cosine value describes
the phase change of the kth characteristic wave-type when propagating through each
element. The so-called propagation zones or attenuation zones are associated with
the values of µ at certain frequency bands. With negligible damping, the frequency
bands in which µk = ±µRk are called “attenuation zones” or “stop bands,” whereas
the frequency bands where µk = ± jµI k are “propagation zones” or “passbands.”

Analytical models are widely used for obtaining the fundamental understanding
of wave propagation and vibration behavior of periodical structures. However, such
models can be developed generally when they are ideal simplified representatives of
periodic infrastructures. For periodic waveguides with complicated structural pattern
and joint connection, their wave behavior can be investigated by finite element and
hybrid finite element/wave approaches [14–21]. Finite element methods may be
impractical at higher frequencies, while the hybrid approaches show superiority in
terms of less computational burden, higher accuracy, and easier acquisition of wave
properties for analysis of statistical energy and structural-borne waves. The hybrid
approaches post-process the standard finite element model of a small segment in a
waveguide by using periodic structure theory. The practical significance of exploring
wave and vibration properties lies in structure design [22–24], vibration/noise level
assessment and control [25–29], and anomaly identification, etc.
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2 Health Monitoring of Periodic Infrastructure Using Data
Mining

Subject to degrading, aging, fatigue, and natural disasters and affected by adverse or
uncontrolled operational environments, infrastructures are damage-prone, although
they are designed for long service life. For examining the integrity of infrastruc-
tures and guaranteeing their serviceability and safe operation, various inspection
and damage detection techniques were developed. Nondestructive evaluation (NDE)
techniques, such as visual inspection, laser interferometry, radioscopy, ultrasonics,
eddy-current, electromagnetic, and thermographic inspection [30–32], have made
a significant contribution in discovering infrastructure defeats. However, most of
the NDE techniques in infrastructure are performed at a regular inspection inter-
val, disregarding the operational condition variations and progressive degradation of
infrastructures. Tremendous efforts and budgets have been spent every year on the
inspection and maintenance of infrastructures, but damage and failures on infras-
tructures have been occasionally reported. In an endeavor to enhance the safety and
decrease the maintenance costs of infrastructures, the concept of structural health
monitoring (SHM) emerges and has gained extensive application over the past three
decades. Recognizing the inefficiency of NDE, SHM incorporates condition-based
philosophy to offer continuous and automated scrutiny on structural health by taking
into account the condition changes and structural degradation [33]. It is indicated
that an effective SHM scheme cuts down the total maintenance cost of a transporta-
tion system by over 30% [33], along with the considerable enhancement in safety.
Through the timely awareness of damage occurrence, location, and severity, SHM
is conducive to reducing the costs associated with scheduled inspections and main-
tenances and enhancing the overall safety of in-service infrastructures.

A great number of infrastructures have been instrumented SHM systems for struc-
tural health surveillance [34–36]. Underpinned by advanced data acquisition and
transmission technology, a large amount of monitoring data can be collected and
accumulated. The monitoring data of infrastructures are characterized by large data
size, multiple categories of signals (e.g., acceleration, strain, wind/water speed), and
involvement of uncertainties due to environmental and operational conditions. Data
mining (DM), explained as “the nontrivial process of identifying valid, novel, poten-
tially useful, and ultimately understandable patterns in data” [37], maybe a promising
solution to this problem.Datamining is also known as a knowledge discovery process
in the database.

Structural health monitoring using data mining techniques is generally imple-
mented by the following procedures [38, 39]: (1) Sensor placement and data collec-
tion; (2) Data preprocessing such as cleansing, construction, and transformation of
data; (3) Modeling or pattern discovery for classification, prediction, and optimiza-
tion by employing one or several data mining techniques; (4) Anomaly detection and
structural health assessmentwith the use of validatedmodel; (5)Visualization for sug-
gesting intervention/maintenance activities (e.g., strengthening, retrofitting, repair,
or replacement). Various data mining techniques have been applied to the structural
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health assessment of infrastructures or their models and specimens. Artificial neural
network (ANN) is utilized for the damage detection of many infrastructures such as
bridge, building, and steel frame [40–42]. Fuzzy logic is introduced into the SHM
framework of infrastructural systems [43, 44]. Principal component analysis (PCA)
is implemented for the damage detection of pipe, aircraft wing, aircraft turbine blade,
building, and bridge [45–47]. Support vector machine (SVM)-based infrastructural
health monitoringmethodology is proposed [48, 49]. Bayesian approaches are devel-
oped for meeting the challenges in system identification and damage assessment of
infrastructures [50, 51]. Optimization techniques, including genetic algorithm (GA)
[52, 53], particle swarm optimization (PSO) [54], and ant colony optimization (ACO)
[55], are also employed for damage identification of infrastructures.

Among the aforementioned data mining techniques, ANN has remarkably broad
applications in structural health monitoring because of its nonlinear mapping ability
and high flexibility. Bayesian neural network [56, 57], fuzzy wavelet neural networks
[58, 59], and auto-associative neural network [60] are some of its significant appli-
cations in SHM of infrastructures. PCA, well known for its dimension-reduction
capability, are commonly seen in structural damage detection of various infrastruc-
tures. Featured by its capability of addressing data uncertainty and modeling errors,
Bayesian inference is preferred in the probabilistic assessment of structural health.
Extensive literature has exhibited the characteristics of datamining tools for practical
application [38, 39, 61, 62]. Considering the differences in specific applications and
based on the merits and drawbacks of data mining algorithms, one or a combination
of some data mining techniques can be utilized to extract effective information from
monitoring data.

3 Instantaneous Baseline Anomaly Detection

Although the evolution of information discovery techniques greatly fosters newSHM
methodology development, anomaly identification in the context of conventional
SHM is based on the comparison of current feature to a pre-stored baseline built
when the structure is in a pristine state. This comparison between current data and
past pristine baseline data (i.e., baseline subtraction) can bring complications in data
management and inability to accommodate effects of varying environmental and
operational conditions, followed by false alarm or undetected damage. Therefore,
anomaly identification approaches taking into consideration the effects of varying
environmental and operational conditions have been developed [60, 63–67]. Hsu
and Loh [66] classify these approaches into two categories. Some methods need
to measure the varying variables and build the correlation between environmental
variables and structural features [60, 63, 64], while others do not [65–67]. They all
rely on substantial baseline data recorded over a range of varying conditions.

The recent one or two decades witness the conceiving and development of
baseline-free structural health monitoring methods. Instead of using prior baseline
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data, these baseline-free methods capitalize on: (1) time-reversal acoustics [68];
(2) polarization of collocating piezoelectric transducers attached on both sides of
a thin structure [69] or dual-PZT technique with pairs of specially designed dual-
PZT transducers placed only on a single surface when the access to both surfaces
is not allowed [70]; (3) instantaneous baseline [71, 72] which is a series of geo-
metrically identical wave-transmission paths designed for crosschecking the path
health conditions. The methodology using currently acquired monitoring datasets
from the identical paths for cross-validation and anomalous path identification is
known as “instantaneous baseline” SHM. The concept of instantaneous baseline has
also been applied to fault diagnosis of piezoelectric transducers and validation of the
sensor functionality during the monitoring operation [73]. Common features of most
paths/sensors differentiate a few damaged ones from the majority. Changes in global
or local properties of a structure under surveillance can be associated with defects.
In these investigations, local properties rather than global properties (e.g., natural
frequency and mode shape) are obtained for baseline-free damage detection, since
global properties are less sensitive to defects without noticeable severity. It is largely
because most of conventional SHM approaches are vulnerable to environmental and
operational variations and burdened by baseline data management that instantaneous
baseline SHM is being investigated by many researchers.

Composed of spatially repetitive elements, periodic structures are inherently suit-
able for the implementation of instantaneous baseline SHM.A prominent application
is the damage localization of a periodically stiffened fuselage panel [74, 75], in which
all instantaneous baselines are calibrated for removing the discrepancy in the paths
due to geometrical imperfection and manufacturing tolerances. A glass-reinforced
plastic (GRP) underground water pipeline in Hong Kong’s Dongjiang water mains
(DJWM) has been instrumented a fiber Bragg grating (FBG) SHMsystem (see Fig. 3)
[76, 77].

Fig. 3 A 200-m-long GRP underground pipeline with a fiber optic SHM system
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The structural integrity of this 200-m-long GRP pipeline comprising 100 repeti-
tive 2-m-long pipes is monitored by FBG sensors in terms of strain, temperature, and
flow pressure (see Fig. 4). Three groups of strain, temperature, and pressure sensors
are placed at the cross sections of pipes #1 and #50, and three pairs of temperature
and pressure sensors are evenly distributed at the cross sections of the other pipes.
Although insulated piezoelectric transducers are famous for their capability of wave
activation andwave reception, fiber optic sensors aremore popular for themonitoring
of large structures or large-rangemonitoring. It is because they have the advantages of
small size, lightweight, excellent multi-functionality and multiplexing capabilities,
and exempting electric power supply to individual transducers. The instantaneous
baseline method is applied for anomaly identification through pattern comparison
among different pipe segments of the pipeline. In Figs. 5 and 6, A, B, and C denote
the three locations at a cross-section and S and T represent strain and temperature.
As shown in Figs. 5 and 6 the patterns for most pipes are consistent, except the one
for the 80th pipe. This indicates a defect, sensor malfunction/debonding, or other
anomaly have been incurred to the 80th pipe. Advanced data mining techniques
will be involved in the authors’ ongoing investigations on instantaneous baseline
anomaly detection of the GRP pipeline. Without pre-stored baseline data obtained
from the pristine structural condition and free from the influence of environmental
and operational conditions, instantaneous baseline SHM has great potential to real-
ize in situ damage identification of in-service periodic infrastructures under natural
environment.

Fig. 4 Sensor placement in the GRP pipe
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Fig. 5 Patterns at different cross-sections of the GRP pipeline—normalized auto-correlation of the
measured temperature and strain

Fig. 6 Patterns at different cross-sections of the GRP pipeline—normalized cross-correlation of
the measured temperature and strain
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4 Health Monitoring Using Inherent Property of Periodic
Structure

In civil and mechanical engineering, most investigations related to periodic struc-
ture focus on the unique wave propagation and vibration characteristics of peri-
odic structures [5–24] and the vibration/noise control with periodic structures acting
as mechanical bandpass filters [25–29]. Albeit designed and produced with high
quality, periodic structures are subject to geometrical uncertainties and manufactur-
ing/assembling tolerances to some extent, and the in-service periodic structures are
particularly damage-prone under natural environment. These structural irregularities
or disorder can result in the phenomena of vibration localization (e.g., change in
mode shape and vibration energy confined to a few elements), threatening the func-
tionality of in-service periodic structures. Therefore, particular attention has been
paid to structural health monitoring or damage detection of periodic structures by
utilizing the inherent property [74–86], although the literature to date is still limited.

Different from the studies concentrating on instantaneous baseline anomaly detec-
tion of periodic structures [74–77], other investigations on structural health moni-
toring of periodic structures [78–85] involve the development of diverse damage-
identification methods, such as nonlinear component detection, anomaly amplifi-
cation for damage detection of periodic structures via piezoelectric transducer net-
working, sensitivity index-based damage identification, and probabilistic approach
for structural health assessment. Specifically, Peng andCheng et al. develop amethod
to identify the position of the nonlinear components in 1D and 2D periodic struc-
tures [78, 79]. As the nonlinearity is associatedwith certain defects of structures (e.g.,
crack), this study can be included in the framework of structural healthmonitoring for
damage localization. Zhao et al. propose the use of a piezoelectric circuitry network
for accentuating the damage effects and intensifying the damage-induced anomaly in
the responses of mistuned periodic structures [80, 81]. Its performance is examined
by carrying out Monte Carlo simulation on a bladed disc model, and the PCA tech-
nique is adopted for de-noising. Zhu et al. investigate the damage identification of
mono-coupled periodic structures based on sensitivity analysis of natural frequency
[82] and sensitivity analysis of multiple modal parameters [83], and they apply the
proposedmethodology to the damage detection of amulti-storymono-coupled build-
ing model. To accommodate uncertainties associated with measurement noise and
modeling error, Yin et al. explore the possibility of utilizing probabilistic approaches
for the anomaly detection of periodically supported structures [84, 85]. The sen-
sitivity matrix of the nondimensional frequencies is developed and then solved by
the Bayesian method and the Markov chain Monte Carlo (MCMC) simulation [84].
This methodology is validated by numerical simulations for a periodically supported
flanged pipeline model and experiments performed for a multi-span aluminum beam
specimen with bolted connections in the laboratory. A companion study on a prob-
abilistic methodology for detecting bolt loosening in periodical structure endowed
with bolted flange joints is conducted based on measured modal parameters [85]. In
this study, Bayesian inference is adopted for determining the most suitable model
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class, and particle filter-based approach is introduced for identifying the posterior
probability density function of the interested parameters. Besides feature extraction
and pattern recognition for damage identification, instrumentation of the interested
structures is another significant part of structural health monitoring. In most applica-
tions, the sensor locations are determined by experiences and practical constraints.
Yin et al. address the optimal sensor placement problem particularly for large-scale
periodic structures by utilizing the inherent periodic properties [86]. Recently, Lin
and Xu et al. propose a new multi-objective multi-type sensor optimal placement
method [87–91] for the damage detection of a large lattice structure. The optimal
sensor placement procedure is very time consuming when the number of candidate
sensor locations is large. By introducing periodicity conditions for retrofitting the
multi-type sensor placement scheme implemented on the large lattice structure, a
multi-type sensor placement and damage identification scheme tailor-made for peri-
odic structure may be developed and the calculation complexity may be reduced
because of the repetitiveness of periodic elements.

5 Discussion and Future Prospect

This chapter presented a state-of-the-art reviewon the periodic structure and the struc-
tural health monitoring of periodic infrastructures. Based on the literature review,
there is no doubt that the combination of data mining techniques and instanta-
neous baseline potentially has strong applicability to the SHM of periodic structures.
Nonetheless, the studies utilizing datamining and pattern identification relied on pre-
stored baseline data for damage detection, and the investigations on instantaneous
baseline SHM did not incorporate advanced data mining techniques. The bottleneck
limiting development and implementation of an instantaneous baseline SHM system
taking advantages of the spatial periodicity and data mining techniques may be the
imperfection of periodic structure in reality.

To promote the development of instantaneous baseline SHMmethodology incor-
porating data mining techniques for periodic structures, the following suggestions
for future research are provided:

(1) As there exists no ideally periodic structure with perfectly identical periodic
elements in engineering applications, the calibration of periodic elements or the
normalization of periodic elements in terms of their structural health conditions
is the first significant step.

(2) A structural health metric (e.g., index/feature/pattern) characterizing and cali-
brating/normalizing the health condition of an individual or grouped periodic
elements is preferable when it can be conveniently combined with data mining
techniques for damage detection.

(3) Methods for building such type of metrics are desired if they are applicable
regardless of structural complexity, multiple types of sensory signals, and data
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heterogeneity. Relevant data fusion approaches and index establishment proce-
dures in time and frequency domains can be found in Refs. [87, 92–94].

(4) After characterizing and calibrating the health conditions of periodic elements,
common feature extraction from these current metrics or abnormal metric iden-
tification using appropriate data mining techniques is the subsequent crucial
task.

(5) A large structure can be divided into substructures for instantaneous baseline
anomaly detection according to the similarities in structural geometry, material,
and coupling.

With the assistance of advanced data mining techniques and taking advantages of
the inherent property of periodic structures, new SHM methods are potentially able
to bring substantial efficacy and rationality improvements in the health assessment
and management of periodic infrastructures.
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Railway Wheel Out-of-Roundness
and Its Effects on Vehicle–Track
Dynamics: A Review

Xiao-Zhou Liu

Abstract Wheel out-of-roundness (OOR), as the excitation of railway vehicle-track
system, can cause intense vibration and has the potential to impose damage to both
track and vehicle components. It may further increase the likelihood of derailment
and deteriorate ride comfort. It is therefore necessary to study the effects of wheel
OOR on the dynamic performance of these components and structures in operation.
This chapter reviews the efforts on numerical simulation to analyse the properties
of wheel roughness-induced vibration. The overview of wheel OOR is stated first
including the initiation mechanism and consequences of wheel local defects and
polygonisation. Several important issues in vehicle–track dynamic simulation for
effect analysis of wheel OOR are then reviewed, including wheel defect simulation,
wheel–rail contact model, the time-domain and frequency-domain approaches and
different vehicle and track models.

Keywords Wheel out-of-roughness (OOR) · Local defect · Polygonal wear ·
Vehicle–track dynamics · Time- and frequency-domain model

1 Overview of Wheel Out-of-Roundness (OOR)

1.1 Initiation and Development

Main Types of Wheel OOR. Various types of wheel out-of-roundness
(OOR)/defects occur on railway wheel tread in service, which influences opera-
tional safety and gives rise to high maintenance cost. These defects take on many
patterns, such as flats, eccentricities, polygons, corrugations on block-braked wheel
treads, missing pieces of tread material owing contact to fatigue cracking and other
random irregularities [1, 2]. Generally, they can be categorised into two major types:
local defects and periodic OOR all around the wheel, as shown in Fig. 1. The former
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Fig. 1 a Wheel local defect and b wheel polygonisation

can cause severe repeated wheel–rail impacts, while the latter one leads to abnormal
vibrations of vehicle–track system at certain frequencies [3].

Initiation of Wheel Local Defects. Wheel treads are subject to different types of
damages such as wear, rolling contact fatigue (RCF), thermal cracks, plastic defor-
mation and flats caused by wheel sliding [4]. These types of damage result in a
change in the tread profile, which aggravates wheel–rail contact forces vertically by
the wheel OOR and laterally by the impaired vehicle dynamics.

It is generally believed that wheel local defects are caused by poorly adjusted
or defective brakes, or incorrect braking procedures. Once the wheels of a vehicle
become locked during braking, they slide along the track. The friction initiated during
the process adhesively wears a flat spot on the wheel [5]. The high temperatures
reached during sliding, followed by a rapid cooling into the adjacent material when
the wheel starts rolling again, leading to the formation of brittle martensite within the
steel beneath thewheel flat [6]. The thermal impact and the phase transformationswill
generate large residual stresses which will interact with the rolling contact stresses
and will promote crack formation and growth [7]. As a result, damage to the wheel
tread can occur, involving cracking and spalling, which is the loss of relatively large
pieces of metal [7].

Studies on Mechanism and Prediction of Wheel Wear Development. Three
important issues related to development mechanism ofwheel wear are thermal crack-
ing, prediction of wheel RCF and wheel tread damage.

Thermal Cracking.A large number of studies have been carried out to understand
the correlation between hot spot on wheel tread and the resulting roughness and to
identify conditions under which thermal cracks are initiated. Included are numerical
simulation to calculate residual stresses distribution along and below the wheel tread
and to study the crack propagation on wheel tread [7–15], as well as full-scale tread
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Fig. 2 Set-up of RTRI brake
test rig (taken from [8, 15])

braking experiments with thorough metallographic examination to get knowledge
about such correlation [6, 8, 9, 15–18]. Figure 2 shows a typical test rig in Railway
Technical Research Institute (RTRI), Japan.

Prediction of Wheel RCF and Wheel Tread Damage. The wear of railway wheels
is strictly related to RCF damage phenomena, so the prediction of wheel RCF and
tread damage can allow operators to effectively define maintenance schedules for
wheel re-profiling and can also facilitate the design of vehicles and wheelsets [19].
A fast and reliable wear prediction model was presented by Braghin et al. [19]
in which the Derby wear index approach developed by Pearce and Sherratt [20]
was used. It was validated by wear tests performed on a full-scale roller rig for
mounted wheelsets. The mathematical models to predict wheel RCF mainly include
those based on Shakedown theory and frictional energy and use wheel–rail contact
forces generated from the vehicle dynamic simulations as input [21, 22]. For modern
predictive models, the main focus is computational efficiency, so that they can be
integratedwithmulti-body dynamic simulations of train–track interaction. Examples
of integrating railway vehicle and track coupling dynamics with wear prediction
models (e.g. Archard wear model) can be found in [23–27]. Some typical predictive
models are developed using elasto-plastic finite element method and submodelling
technique [28–30]. The stochastic loading in real operation was considered in some
of previous research [29, 31].

Effects of Some Factors on Wheel Defect Development. Several factors such as
speed, axle load, wheel–rail adhesion, wheel material and braking conditions affect
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the wheel defect development [21]. By field experiments in which wheel flats can be
formed under controlled conditions, Jergeus et al. [32] studied the relation between
the development of wheel flat and the operation conditions, including wheel loads,
train speeds, sliding durations and coefficients of friction. For high-speed rail (HSR),
wheel wear rate can increase quickly due to the high operation speed, the high-
stiffness track, the wide wheel–rail impact frequency, intense vibrations and high-
speed airflow [33, 34]. The high wheel velocities can cause the reduction of fatigue
life in both mechanical and thermo-mechanical cases [14]. Increasing track stiffness
can lead to higher force at certain frequencies due to the track irregularities [3]. It is
noteworthy that the ballastless track structure, which offers high stiffness, accounts
for up to 70% HSR worldwide. The effect of other related factors, such as curving
speed, the curved track super-elevation, the rail cant, short-pitch rail corrugation and
stiffness and damping of fasteners on wheel wear, was studied by [35, 36], whereas
the role of material imperfections and anisotropy in development of wheel local
defects was investigated by [37–39].

Investigations and Studies on Generation of Wheel Polygonal Wear. The
polygonal phenomenon of railway vehicle wheels can also be called wheel har-
monic wear, wheel periodic OOR, or wheel polygonisation [40]. This problem can
be found onmetro trains, freight wagons, locomotives and high-speed trains. Polygo-
nal wheels take on the shapes indicated in Fig. 3, mainly including eccentric, elliptic,
the nth order polygonisation and so forth [2].

The studies of wheel polygonisation started some three decades ago when some
of polygonal wheels were detected on metro trains (Netherland and Sweden) and
high-speed trains (ICE, Germany) in Europe. Wheel polygonisation with one, three
and four harmonics around circumference has been found on disc-braked wheels in
ICE, in which the third harmonic dominated for solid steel wheels, while the second
harmonic was common for rubber-sprung wheels [3]. An early survey in Netherland
Railway (NS) was carried out by Kaper [41], who revealed that polygonal wheel
can excite unpleasant noise at frequencies between 60 and 2000 Hz. A thorough
investigation into this phenomenon was carried out by Johansson and Andersson
[23] who analysed a set of measurement data of peaks and troughs on wheel tread of

Fig. 3 Definition of wheel polygons described in polar coordinates: a the 1st order (eccentricity);
b the 6th order; c the 23rd order [2]
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Stockholm subway trains. The investigation found that the maximum peak-to-peak
deviation in wheel radius was 1.2 mm, and the dominating wavelength was 0.8 m,
which is close to three wavelengths around the circumference of the wheel. Tao et al.
[26] investigated the polygonisation phenomenon on electric locomotive in China
and revealed that the main centre wavelength in the 1/3 octave bands is 200 mm
and/or 160 mm which has the considerable effect on vehicle vibration as suggested
by axle box vertical vibration.

Similar to thewheel local defect problem, the reason behindwheel polygonisation
has been studied by a number of researchers. They pointed out that the potential
factors for polygonisation development are effects of tread braking, stiffness of axle,
wheel material, etc. By establishing wheel–rail coupling model [23, 42–45] and
conducting extensive investigations and tests [2, 40, 46–48], it is revealed that:

• Nonuniform force on the contact surface, arising from radial vibration from the
shaft, led to uneven plastic deformation of the outermost layer, and wave crests
and troughs then formed on the wheel tread [47].

• The root cause of low-order polygonisation is dynamic imbalance of the high-
speed wheelset [42], while the root cause of high-order polygonal wear is the
nonuniform material hardening on the wheel circumference, generated by the
wheel–rail impact at high frequencies [46].

• The additional stiffness of the traction bar in braking condition or running on curve
track can also cause polygonisation [43].

• The third order polygonisation arises from thefixation procedure duringmachining
of the wheelsets, where the wheelsets were clamped at three equidistant positions
on the inside of the wheel rim [23].

• The interaction of wheel out of roundness excitation and moment of inertia wheel
increases the development of the wear [48]. The greater was the polygon phase
difference of the left and right wheels, the faster was the development of polygonal
wear [45]. The first and second bending modes of the wheelset play an important
role in the initiation and development of the polygonisation [40, 45].

• The generation of polygonal wheel of metro trains is found to be related to the
dominant frequency of wheel–rail dynamics and running speed [44].

• The high-order polygonisation phenomena on high-speed trains are easy to be
associated with rail corrugation because both have a dominant wavelength and
are assumed to be the counterpart to each other [49]. However, a recent study [2]
stated that although the irregularities of the track can increase the growth rate of
the wheel high-order polygonal wear, they are not the root causes of polygonal
wear initiation.

1.2 Unfavourable Effects of Wheel OOR

Wheel OOR can cause intense vibration and has the potential to impose damage
to both track structure (e.g. rails, fasteners, sleepers) and vehicle components (e.g.
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wheels, axles, bearings, suspension systems). It can also increase the likelihood of
derailment and deteriorate operational safety and ride comfort [1, 50, 51]. Table 1
lists some typical consequences of wheel OOR, as summarised in [52].

Vehicle Vibration. The dynamic force from wheel OOR can be detrimental to
wheel/axle/bearing assemblies, and the service lives of these components can be
reduced. First of all, wheel defect intuitively shortens the service life of wheel itself
as it can result in cracks at surface or brittle martensitic layer at tread. Leaving the
defective wheel in service or not adequately re-profiling the defective wheel may
lead to further damage to the wheel, as the stresses caused by abnormal wheel–rail
interaction may be sufficient to initiate fatigue cracks. In this case, the existing crack
may propagate, and new cracks may develop by the action of the rolling contact
stresses [5, 32]. For high-speed trains, the high magnitude impact loads generated by
a defective wheel can excite various vibration modes for the wheelsets and thereby
contribute to abnormal increases in the stress states of wheel axle in high-speed
conditions [53]. Moreover, the ride comfort can be compromised by changes of the
tread profile [43, 54].

Track and Ground Vibration. Out-of-roundwheels generate impact forces at the
wheel–rail interface, which can be transferred to track components including rail and
rail joints, concrete sleepers, ballast or track slab andfinally to subgrade/bridge/tunnel
structures. It is also important to include ground vibrations affected by vehicle sim-
ulations as part of the problem since the low-frequency vibrations are considered
by international standards (e.g. ISO 2631 [55]) as having the most critical effect on
buildings and human exposure [33]. A detailed analysis for the influence of wheel
OOR on ground vibration was conducted by [56], and results show that differences
of up to 20 dB in vibration level are found between good and bad wheels.

Noise Problem. Wheel OOR also results in an increase in the noise generated
by the interaction between wheel and rail [57, 58]. It can cause abnormal noise
both inside and outside the train which can be annoying for both passengers on the
train and residents along the rail line. It is found that the increased roughness level
on 50–70 mm wavelength leads to up to 10 dB higher noise level [3]. Dings and
Dittrich [59] measured the surface roughness on 150 railway wheels and on the rails
of 30 sites in the Netherlands, as an attempt to survey the range of typical roughness
appearing on in-service wheels and provide an insight into the absolute roughness
levels and their contribution to radiated rolling noise. Furthermore, it is suggested

Table 1 Main consequences of wheel OOR [52]

Category Description

Rail infrastructure Rail fatigue, rail joint deterioration, sleeper degradation and failure,
ballast and subgrade failure

Vehicle components Service life reduction of wheel and bearing, degradation of passenger
ride comfort

Others Noise generation both inside and outside the train, fuel consumption
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that the most efficient way to decrease the rolling noise levels should be eliminating
or minimising the wheel and rail corrugation [17].

Effects of Polygonal Wear. Polygonal wheels can cause intense vibrations of the
vehicle–track system in operation [40]. Thewheel–rail impact normal force increases
with the deepening of the wheel polygonal wear, and the amplitude of the normal
force fluctuation depends mainly on the wavelength and depth of the polygonal wear
on wheel tread [60]. The local geometry defects with long wavelengths on a wheel
tread often lead to the large impact loads and acceleration and friction power of the
wheel. It is noteworthy that for HSR, the problems arising from wheel high-order
polygonal wear become the main challenges to maintain safety operation [34]. Even
small wheel radius deviations within themanufacturing/maintenance tolerance cause
considerable variations of the normal forces between wheel and rail [61]. Numerical
simulation [53] shows that the stress load cycles induced by wheel polygonisation
can considerably increase the propagation of the initial crack in the wheel axle. The
noise problems also exist in the presence of wheel polygonisation. Zhang et al. [50,
51] presented a detailed investigation by field tests into the relationships between
wheel polygonal wear andwheel/rail noise and the interior noise of high-speed trains.
It is found that before and after re-profiling with polygonal wear, the acceleration
level differences of the axle box, the bogie frame and the car body reach almost
16–19 dB.

2 Simulation of Vehicle–Track Dynamics Due to Wheel
OOR

Numerical simulation evolves as a fast and inexpensive tool for investigating and
predicting structural dynamics due to wheel OOR. A variety of methods have been
proposed over the past decades to calculate the dynamic response of railway vehicle
and rail track structure in the presence of OOR. Based on numerical simulation, a
full understanding of the effect of wheel roughness can be gained, and a method to
assesswheel condition can be developed. This section reviews the previous studies on
characterising the dynamic behaviour of wheel OOR and its effects on vehicle–track
system based on numerical simulation.

2.1 Wheel–Rail Interaction Modelling Considering Wheel
OOR

The Geometric Models of Wheel Flat and Polygonisation. The widely usedmodel
of fresh (newly formed) wheel flat can be expressed by a piecewise function [62]:
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zF (ξ) =
{
R − √

R2 − ξ 2, |ξ | ≥ L0
/
2

d, |ξ | < L0
/
2

(1)

where R is the radius of wheel, d is the depth of fresh flat, L0 is the initial flat length,
and ξ is the coordinate according to the direction of the rail that defines the position
of the point of the wheel under consideration. The vertex of the fresh flat is a single
point at which the contact traction present is so high that it causes thematerial to yield
so that the initial geometry rapidly becomes rounded, and the function of rounded
flat is [62]:

zR(ξ) =
{

R − √
R2 − ξ 2, |ξ | ≥ L

/
2

R − √
R2 − ξ 2 + L2

4Rπ2

(
1 + cos 2πξ

L

)
, |ξ | < L

/
2

(2)

where L is the length of the rounded flat. The geometry of both types of flat with
the same depth can be seen in Fig. 4a. On this basis, Pieringer et al. [63] plotted 3D
geometry of both wheel flat shapes on a section of the cylindrical wheel surface, as
shown in Fig. 4b, c.

For wheel polygonisation, it is a special case of wheel OOR with few dominant
wavelengths. Compared to wheel flats, it is always discussed in frequency domain
through Fourier analysis of the measured radius deviation data. The polygon order
θ is defined by

θ = 2πR

λ
(3)

Fig. 4 Geometry of fresh and rounded flats: a 2Dwheel flat [62]; b 3D fresh flat [63]; c 3D rounded
flat [63]
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where λ is the dominant wavelength corresponding to θ th-order polygonisation. To
investigate the effects of wheel polygonisation with different orders on wheel–rail
contact and vehicle–track system dynamics, the expression prescribing wheel radius
deviation is required, and it is defined as [3]:

zirr =
∑
i

Ai sin

(
i

R
x + φi

)
(4)

where i is the ith order of wheel polygonisation, Ai is the amplitude taken from the
roughness spectrum, φi is the phase angle, and x is the coordinate on circumferential
direction.

Wheel–Rail Contact Problems: Hertzian Theory. The reliability of the
dynamic railway simulations is completely conditional upon the precisionwithwhich
thewheel–rail contact problem is solved [64]. This chapter focuses on normal contact
problems which are more important in discussing dynamic behaviour and detection
methods of wheel OOR. Among the existing algorithms for solving the normal prob-
lems, the Hertz method is the most widely used in railway dynamic simulations as
it combines very low computational costs with an acceptable accuracy in a wide
range of conditions [65]. The Hertzian nonlinear elastic contact model provides the
solution of the normal contact problem in the case of a cylinder rolling over a flat
surface. The model considers only normal elastic force and inertia force by wheel
deformation geometry. Hertzian spring is proportional to the elastic contact deflec-
tion to the power 3/2, assuming loss of contact does not occur [57]. The nonlinear
relationship between the imposed load N and the material deformation d is [33]

N = KHd
3/2 (5)

where the coefficient KH depends on the radii of arch between the wheel and the
rail and the elasticity of material for both bodies. The nonlinear contact stiffness is
determined by assuming 3D contact mechanics according to Hertz. For example, if
taking the curve radii 0.45 m and ∞ for the wheel and ∞ and 0.30 m for the rail, the
Hertzian contact stiffness coefficient will be equal to 9.17 × 1010 N/m3/2 [66].

One of the advantages of Hertzian method is that the solution can be expressed by
means of elliptical integrals, whereby the computational cost in solving the normal
problem is very low [64]. A linearisedmodel is often necessary for frequency-domain
analysis, by considering small variations �d around the nominal value d0 (Fig. 5).

Limitations of Hertzian Theory and Improvements. The initial fundamental
hypotheses of the Hertzian contact model are the geometric requirement: the non-
deformed surfaces of the bodies in contact should be elliptic paraboloids. Some
assumptions using Hertzian method include [65]: (i) consideration that the bodies in
contact have perfectly smooth surfaces; (ii) size of the contact area is significantly
small with respect to surface curvature radii; (iii) contact between the surfaces must
be frictionless so that only normal forces are transmitted, or the normal and tangential
problems must be independent of each other; (iv) The undeformed distance between
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Fig. 5 Wheel/rail contact: Hertz’s theory and linearisation [33]

the bodies in the proximity of the contact area can be represented by a quadratic
function.

Discussions on whether and how these requirements can be satisfied in wheel
OOR simulation have never ceased. It is generally believed that Hertzian theory
cannot be used to characterise wheel–rail interaction in presence of wheel flat [3,
67, 68]. Nielsen [3] pointed out that the theory of Hertz is based on a second-order
Taylor expansion of the bodies, and the second-order approximation is too primitive
to describe a corrugated surface where the size of the characteristic wavelength is
small compared to the length of the contact patch. Enblom and Berg [67] stated the
geometric conditions of constant curvature and infinite half-space based on Hertz’s
assumptionmay be violated at certain locations, includingwheel local defects. Baeza
et al. [68] revealed that the peakvalue of the force transmitted as calculated by the non-
Hertzian model is significantly lower in most of the cases studied. In the simulations
performed, a deviation can be observed from the results of the Hertzian model that
can exceed 30% of the real peak value.

To overcome the limitations of the Hertzian contact model, some improvements
have been proposed by [65, 69–72], mainly including the semi-Hertzian models
and finite element method (FEM). However, a major challenge for adopting non-
Hertzian contact in vehicle–track couplingmodels is that the computational efficiency
is likely to be limited by the process to determine the contact area. In contrast to their
good precision, non-Hertzian contact models can be much more time consuming and
demand high computational resources, whereby it cannot be applied to vehicle–track
system dynamic simulations [64, 71].
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2.2 Vehicle–Track System Dynamics: Modelling Approaches

Time- and Frequency-Domain Simulation. The dynamic simulation to study the
effects of wheel OOR can be conducted either in time domain or frequency domain.
Each of the two modelling approaches offers both advantages and drawbacks when
compared to the other [3]. The frequency-domain models are linear, generally with
higher computational efficiency, whereas the time-domain approach has some inclu-
sion of nonlinear behaviour, particularly the wheel–rail contact [73] and some non-
linear suspension features such as bumpstop impacts and friction damping [74].

Time-DomainModels.Time-domain solution of the equation system allows spring
and damping elements to remain nonlinear. This is important in some cases, includ-
ing most contact conditions with corrugations which are highly nonlinear [75], and
the deterioration analysis of the track which depends on the local situation and on
a correct treatment of the nonlinear contact mechanics [76]. The drawback is the
computation cost, especially in the cases that require the size of the time step must
be small enough to capture the frequencies of interest [52].

Frequency-DomainModels.Acomprehensive analysis ofwheel out-of-roundness
should account for the resulting vibration of whole vehicle–track system. However,
a coupling model of vehicle, track and bridge, involves a high computational cost
if it is simulated and solved in time domain. If the system can be assumed lin-
ear, frequency-domain simulations are suitable due to their reduced computational
demand [33]. Frequency-domain models offer shorter computing times compared
to the time-domain models, especially when the frequencies of excitation are high
[57]. In frequency-domain modelling, all the excitations and responses are expressed
in frequency domain. The nonlinear characteristics of the actual suspension system
are treated as linear springs and viscous dampers. More importantly, the wheel–rail
contact is treated as linearised Hertzian contact using the contact stiffness near the
static axle load, as described in Sect. 2.1.

Examples of computer programs for vehicle–track system dynamic simulation
in frequency domain in combination with the moving roughness model are TWINS
and TRACK, whereas DIFF, VIA and VICT are computer programs of time-domain
models [3].

Selection of Modelling Approaches. Model selection requires a trade-off
between computational accuracy and efficiency. For effect analysis of wheel OOR on
vehicle-track system, therefore, the feature of specific defects should be considered
carefully. Wheel local defect and polygonal wear have a lot in common, and in many
cases, the initiation and development mechanism of them is similar. However, they
are so different when serving as excitation source. To achieve both computational
accuracy and efficiency, different modelling approaches should be chosen.

Forwheel local defectswhich generate transient high-frequency vibration for both
wheel and rail, time-domain model is suitable. In numerical modelling to analyse
the effects of wheel local defect, the following aspects should be considered:
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(1) the effect of wheel rotation: rotation effect of wheel is discussed later in the
same subsection.

(2) simplification inmodelling: the time-domainmodel for high-frequency analysis
need to be simplified to achieve a satisfactory computational efficiency, and
simplification should meet the requirement of intended use. For most types of
wheel local defects, since the primary suspension and fasteners filter the high-
frequency vibration originated in the wheel–rail contact, only the gravity loads
of car body and bogies should be taken into consideration in dynamic simulation.
It is normal to only consider the unsprung masses of the vehicle and rail with
discrete supports.

Unlike wheel local defect, wheel polygonal wear mainly leads to an increased
low- or mid-frequency dynamic wheel–rail contact force. These may cause further
abnormal vibrations on bogie, car body, track slab and bridge (or tunnel, subgrade)
as the low-frequency vibration is difficult to be filtered by suspension systems and
rail pad. A comprehensive analysis of the effects of polygonal wear therefore should
account for the resulting vibration of whole vehicle–track system. However, a cou-
pling model of vehicle, track and bridge, involves a high computational cost if it
is simulated and solved in time domain. In view of this, frequency-domain model
which has the advantage in computational efficiency can be a good option. Besides,
the difference between the nonlinear and linear interactions is found to be small if the
roughness level is not extremely high, and a typical static contact preload exists [77].
The radius deviation of the polygonal wheels is normally very small (<0.1 mm for
high-speed trains), so it is reasonable to use a linear model to describe the wheel–rail
contact.

In summary, if nonlinear behaviour needs to be included in the model, then
time-domain simulations are preferable; if the system can be assumed linear,
then frequency-domain simulations are suitable due to their reduced computational
demand. Therefore, local defect analysis should be conducted in time domain, while
the wheel polygonisation can be modelled in frequency domain to achieve both
computation accuracy and efficiency.

Simplified Wheel–Rail Coupling Model. Simplified wheel–rail coupling model
is always employed in time-domain approach in which the computation cost needs to
be reduced. The simplest wheel–rail coupling model is known as mass–spring–beam
approach, in which rails are represented by different beam elements, while wheels
are approximated as rigid masses [78]. However, when there is a need to describe
the dynamics of bogie, car body, sleeper or track slab and subgrade/bridge/tunnel
due to wheel OOR, the mass–spring–beam model is no longer appropriate. Yet, it is
found that in some cases, the track flexibility influences the frequency content of the
wheel–rail forces significantly [79].

In recognition of this, there are some improvements based on mass–spring–beam
approach. Whether it is necessary to consider more on vehicle components or more
on track structure depends on different research demands. A basic improvement in
vehicle modelling is to take the effects of primary suspension into consideration. It
is regarded as the ‘a quarter vehicle’ model [80, 81]. The back half of the vehicle is
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assumed to be sufficiently distant from the front that it does not need to be included,
based on the extent of motion of the vehicle body [52]. For track modelling, multi-
layer mass or beam model can be used to characterise the rail and sleeper, or further
to the ballast or track slab and elastic foundation.

Track and Vehicle Modelling. It is reasonable to divide the entire system into
two subsystems: vehicle and track because the gross motion of a train and a track is
dominated by motion in different frequency ranges: low frequencies for the vehicle,
0–100 Hz, while frequencies up to 1500 Hz can be interesting for the track structure
dynamics [82]. Track structure should bemodelled carefully based on the desired fre-
quency range of the analysis. For vehicle modelling, to analyse the vehicle dynamic
responses at mid- and high-frequencies, the vehicle flexibility should be considered.
The vehicle modelling approaches mainly depend on the rigid multi-body system
dynamics theory, where the components of the vehicle are treated to be rigid bod-
ies, and they are connected with springs and damping elements [34]. Some typical
lumped vehicle models contain 5 DOFs, 6 DOFs, 10 DOFs, 27 DOFs, 35 DOFs, etc.,
determined by the need of dynamic analysis.

Another important issue to be discussed is the rotation effect of wheel. Baeza et al.
[62] revealed that under certain conditions, the rotation of the wheel may also play an
important role in the high-frequency vehicle–track dynamics. The calculations allow
us to compare rigid, non-rotating flexible and rotating flexiblewheelset approaches. It
is revealed by the wheel flat calculations that the rigid wheelset model overestimates
the peak wheel–rail contact force. A more general method, which considers the
rotation about the two end points of the wheel flat and calculates the vertical impact
force derived from the corresponding momentum in line with gravity centre height
change, has been proposed by Steenbergen [83, 84].

Wheel–Rail Interaction and Wheel Defect Modelling by FEM. One of the
advantages of FEM in wheel OOR analysis is that it can simulate flexibility of
wheel and rail more realistically than multi-body-system (MBS)-programs which
neglect the elasticity of the wheel and are valid only for low-frequency analysis
[76]. Furthermore, the FEM can represent the actual geometrical and kinematic
characteristics of the wheel–rail system when characterising the contact problems
[85].

Wu and Thompson [86] studied the wheel–rail impacts using a nonlinear track
model in which the rail is represented by an FE model and supported by a nonlinear
track foundation and interacts with the wheel through a nonlinear Hertzian contact
spring. A relative displacement excitation model is used to calculate wheel–track
impact. Relying on current computing technique, it is convenient to use commer-
cial codes to simulate wheelset and rail track where the actual geometrical sizes of
the wheel, the rail and the vehicle’s unsprung mass. The wheelset modes and cor-
responding natural frequencies can be obtained through the modal analysis of the
finite element (FE) model, and they can be input into the simulation by means of the
commercial codes (ADAMS, SIMPACK, NEWEUL, etc.). Besides, the parameters
of the track characteristics can also be considered. Liu et al. [28] established a FE
model to describe wheel–rail contact in which the wheel and rail were simulated
using SOLID45 element, and area contact elements (CONTACT 174 and TARGET
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Fig. 6 Wheel–rail contact
modelling by FE [28]

Fig. 7 Wheel flat modelling
by surface-to-surface contact
[88]

170 in ANSYS) are used corresponding to the geometry mesh of the wheel, as shown
in Fig. 6. However, since the aim of that study is to obtain thewheel–rail contact force
for the prediction of RCF, the wheel wear was not considered in contact behaviour.
Zhao et al. [78] evaluated the wheel–rail interaction at singular rail surface defects
using a validated three-dimensional (3D) transient finite element model. The 3D FE
model has been validated in the normal and the tangential contact solutions against
Hertz theory and Kalker’s CONTACT. In this model, the wheelset, rail and sleepers
are all meshed using 3D solid elements to include all the important eigen characteris-
tics of the vehicle–track system, as shown in Fig. 8. The transient wheel–rail rolling
contact is solved using a surface-to-surface contact algorithm in time domain. The
surface-to-surface contact is also used by [87, 88] (Fig. 7).

2.3 Summary

A lot of research efforts have been made to characterise the effects of wheel OOR on
different components in vehicle–track system and to facilitate the prediction of wheel
wear and RCF. There are various combinations of contact models, vehicle models
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Fig. 8 The representation of the 3D vehicle–track FE model [78]

and track models in these proposed modelling approaches. This chapter would not
discuss every study in detail, and here, a summary of these studies is given, including
the models of wheel–rail contact, vehicle and track they used, as listed in Table 2.

3 Conclusions and Future Work

3.1 Conclusions

This chapter reviews the previous research relevant to wheel OOR, including causes
and consequences of wheel defects and numerical simulations to study the effects of
wheel OOR on vehicle–track system dynamics. Based on this review, some conclu-
sions are summarised as follows:

(i) Wheel OOR has considerable dynamic effects on vehicle-track system in oper-
ation, especially for HSR. Research on effect assessment of wheel OOR is
necessary in terms of enhancing safety and ride comfort and reducing mainte-
nance cost.

(ii) The initiation of wheel local defects can be attributed to defective brakes or
incorrect braking procedures, while polygonal wear is caused by the excited
resonance of the train–track coupling system in operation. Effects that influence
the development ofwheelOOR include train speed, track stiffness, wheelmain-
tenance, rail roughness, track normal irregularities and initial defects caused
by wheel processing.

(iii) Regarding the selection of contact model, it is concluded that the Hertzian
contact model is acceptable in most wheel–rail contact positions. Therefore,
the solution based on non-Hertzian contact theory shall not differ too much
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Table 2 A summary of research on numerical simulations to study the effects of wheel OOR

References OOR type1 Aim/remarks Contact
model2

Vehicle
model

Track model

[1] (a) and (c) Quantify the vertical
wheel–rail contact
force and track
response for
different types of
OOR

(a) Two wheels Rail
(undamped
Timoshenko
beam) and
sleeper
(mass)

[23] (c) Develop a tool for
investigation of 1–20
order wheel
polygonalization

(b) A bogie with
two wheels
(6 DOFs,
FEM)

Rail and
sleepers (3D
FEM)

[53] (a) and (c) Evaluate the stress
states of wheelset
axle due to wheel
defects

(a) Vehicle with
flexible
wheelsets
(SIMPACK
and FE)

Rail and
track slab
(3D FEM)

[57] (a) Predict the
consequent noise
radiation due to
wheel flat

(a) Wheel Rail and
sleeper

[62] (a) Model the
kinematics
associated with the
elastic wheelset for
high-frequency
analysis

– Wheelset
(FE–3D solid
to obtain the
mode shape)

Rail and
sleeper

[63] (a) Study the influence
of contact modelling
on simulated impact
forces due to wheel
flats to determine the
errors introduced by
simplified
approaches

(c) 2 DOFs
considering
the wheelset
and the
primary
suspension
stiffness and
damping

Rail
(Timoshenko
beam),
sleepers
(discrete
mass)

[68] (a) Compare Hertzian
and non-Hertzian
contact

(a) and
(d)

– Rail and
sleeper

[76] (a) Outline the
numerical algorithm
of the used
time-domain model
and to demonstrate
its capabilities for
nonlinear contact
mechanics,
high-frequency
vehicle–track
interaction, etc.

(a) A rigid
carbody with
two rigid
bogies and
four elastic
wheelsets

Rail, sleeper
and ballast

(continued)
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Table 2 (continued)

References OOR type1 Aim/remarks Contact
model2

Vehicle
model

Track model

[85] (a) Study the wheel–rail
impact response
induced by a single
wheel flat
considering strain
rate and thermal
stress

(e) Wheel (FE,
LS-Dyna and
ANSYS)

Rail
(modelling
by FE
LS-Dyna and
ANSYS)

[86] (a) Explore the effects
on wheel/track
impact of the
nonlinearity of the
railway track
supports

(a) Wheel Rail
(Timoshenko
beam),
sleepers, rail
pad (with
nonlinear
stiffness) and
ballast

[87] (a) Thoroughly
investigate the effect
of wheel flats on
impact forces

(e) Wheel (FE
code:
ANSYS)

Rail, sleeper
and ballast
(FE code:
ANSYS)

[88] (a) Parametric studies
(train speed, flat
length and axle load)

(e) Wheelset
(Hypermesh,
LS-DYNA
3D/explicit
code)

Rail
(Hypermesh,
LS-DYNA
3D/explicit
code)

[89] (a) Investigate the
vertical interactions
between railway
vehicles and tracks

(a) A multi-body
system with
10 DOFs

Infinite Euler
beam
supported on
a discrete
continuous
foundation

[90] (c) Analyse the
high-frequency
oscillation and
dynamic stress of
wheel set axle
induced by the
polygonal wear

(a) Vehicle with
flexible
wheelsets
(SIMPACK
and FE)

Rail and
track slab
(3D FEM)

[91] (a) Parametric studies
(train speed, the
wheel flat depth and
the type of wheel
flat)

(f) Wheel and
primary
suspension

Rail and
sleeper

(continued)
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Table 2 (continued)

References OOR type1 Aim/remarks Contact
model2

Vehicle
model

Track model

[92] (b) Study impact forces
at the wheel–rail
interface in the
presence of wheel
flats

(a) 5-DOF pitch
plane model:
car body, one
bogie, two
wheelsets

Three-layer
track system:
rail, sleeper,
ballast

[93] (c) Investigate vertical
dynamic wheel/rail
interaction resulting
from a polygonal
wheel at high speed

(a) A multi-body
system with
10 DOFs

Euler beam
flexibly
supported by
a discrete-
elastic
foundation
of three
layers

[94] (a) Present 3-D
vehicle–track system
model considering
the effects of wheel
flat and track
structure nonlinear

(a) 17-degrees
of freedom
lumped mass
vehicle

Rail
(Timoshenko
beam),
sleeper,
nonlinear rail
pad and
ballast
considered

[95] (a) Propose a hybrid
model for the
prediction of
ground-borne
vibration due to
discrete wheel and
rail irregularities

(a) 3-DOF
wheelset

Rail and
sleeper

Note 1Defect types: (a) wheel flat/local defect; (b) multiple flats and distributed flats; (c) wheel
polygonisation
2Contact models: (a) Hertzian nonlinear elastic contact; (b) modified FASTSIM to allow for general
profiles; (c) 3D non-Hertzian contact model based onKalker’s variational method; (d) Kalker’s non-
conformal normal contact; (e) surface-to-surface contact algorithm; (f) nonlinear contact springs
allowing for loss of contact

from the Hertzian solution. But for wheel flat with big size, this model may
not be suitable, and novel contact models are needed.

(iv) Models developed for vehicle–track dynamic simulation should be made as
simple as possible and should be accurate enough regarding the task they serve
for. As for simulations to study the effects of wheel OOR, the prediction of
impact forces caused by wheel local defects requires the application of time-
domain models, whereas the investigation of wheel roughness at certain fre-
quency ranges (e.g. wheel polygonisation with few dominant wavelengths) can
be done by a frequency-domain model.
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3.2 Limitations of Current Research and Future Work

Limitations of Studies/Investigations on Wheel OOR and Future Work. To
reduce the negative effects of wheel OOR, the investigations on this phenomenon
are necessary. As reviewed in this chapter, quite a few experiments and simulations
have been conducted. However, the mechanism of occurrence and development of
wheel OOR has not yet been explained perfectly, especially for wheel polygonisa-
tion. Besides, there is a need to predict the effects of actual wheel defects on both the
vehicle components and track infrastructure. However, most of the previous studies
only use the standard wear models (e.g. Eqs. 1–4), and simulations conducted to
investigate the influence of measured wheel wear on vehicle–track–bridge system
have rarely been reported before. In view of these two points, one future work can be
investigations on wheel actual roughness of in-service trains based on wheel radius
deviation measurement records.

Regarding the polygonisation problem, the phenomena presented by most of pre-
vious studies are those with one to five wavelengths around the wheel circumference.
However, a new and big challenges inmodernHSR are the high-order polygonisation
(15–25 orders) with very small radius deviation (<0.05 mm, or <20 dB re 1 µm), as
it has caused failures to the bogie components. There is an increasing demand for
relative studies on this problem in future.

Limitations of Numerical Simulation for Wheel OOR Effect Analysis and
Future Work. Relying on current computing technique, the simulation can be eas-
ily conducted based on several commercial codes available for the low-frequency
domain, such as GENSYS, NUCARS, ADAMS SIMPACK and VAMPIRE. How-
ever, these commercial codes are generally used to analyse railway vehicle dynamics
responses at frequencies below 20 Hz, where the influence of rigid motions of the
vehicle on wheel–rail contact forces is dominant [81]. They are not suitable for effect
analysis of wheel local defects and high-order polygonisation, or any types of OOR
in case of high-speed operation. On the other hand, for current models which take full
consideration of wheel-rail interaction in the presence of wheel OOR, the calculation
speed is very slow and cannot meet the requirements raised by parametric studies of
OOR effects. Therefore, a comprehensive modelling strategy needs to be developed,
which can combine different modelling techniques to consider the different realistic
engineering problems of wheel OOR.

Future Work: Online Detection for Minor Defects. Although numerical sim-
ulations evolve as a fast and inexpensive tool for investigating and predicting the
development of wheel tread defects and effect analysis of OOR, online wheel con-
dition monitoring and defect detection is still the best way to provide support for
maintenance and health management for wheelsets. Through numerical simulation,
the defect-sensitive features can be revealed. On this basis, a further research can
be carried out to develop wayside or on-board sensing system for different types of
wheel OOR. Due to the fact that the existing detectors are mainly designed for detec-
tion of large size wheel local defects, future work may focus on proposing a better
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design of online wheel condition monitoring system that can detect local defects and
polygonisation with small radius deviation.

Following the development of online detector, the next task is to make a rational
decision about whether a wheel is healthy or not in light of data collected by online
monitoring system. A well-developed data processing procedure is thus required.
However, research efforts on development of signal processing method for wheel
defect detection are rarely reported. This is partly because the existing codes or rules
only stipulate the limits on maximum wheel–rail force, and only a basic amplitude
analysis is enough. For modern railway, especially for HSR, as aforementioned,
the defect detection should focus on minor defects but the variation of wheel load
cannot reveal this kind of minor defects. Therefore, future research on wheel defect
detection should consider using data-driven methods and advance signal processing
techniques to extract defect-sensitive feature from online monitoring data.
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Dynamic Response Analysis of Wind
Turbines Under Long-Period Ground
Motions

Wanrun Li, Jie Huang and Yongfeng Du

Abstract Due to the lack of reliable long-period ground motion records, the influ-
ence of long-period ground motion on seismic performance of wind turbines is not
studied sufficiently. Therefore, we have selected three sets of ground motion records
with significant long-period components from 1999 Taiwan Chi-Chi earthquake and
2010 New Zealand Darfield earthquake in order to discuss the characteristics of their
absolute acceleration amplification coefficient spectra and the relative displacement
response spectrum. In addition, the paper took a typical 80-meter-high wind turbine
structure inNorthwest China as an example and investigated the seismic performance
of the wind turbine via an integrated finite element model of the blade–cabin–tower.
Three sets of groundmotion records were taken as inputs to carry out the time-history
analysis under the rare earthquake of the seismic fortification intensity zone 8. The
results show that the displacement, acceleration, stress, and internal force of the wind
turbine structure under long-period ground motions are relatively significant, which
indicates that enough attention should be paid to the influence of long-period ground
motions on the seismic performance of the flexible structure with large period.

Keywords Wind turbines · Long-period seismic wave · Spectrum analysis ·
Seismic response analysis

1 Introduction

In recent years, long-period ground motion has attracted extensive interest from
scholars because of the rapid increase in the number of highly flexible structures,
such as high-rise buildings and wind turbines. In 1983, a magnitude 7.7 earthquake
occurred in the central Japan, located in Niigata City, 270 km from the epicenter. The
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storage tank overflowed and was damaged in 10 s. An earthquake of magnitude 8.1
occurred in Mexico in 1985, causing serious damage to high-rise buildings within
400 km of the epicenter. In the 2003 Tokachi-oki earthquake in Japan, the oil storage
tank with a natural vibration period of 5–12 s was similar to the seismic characteristic
period (7–8 s), and the fire occurred, there are different degrees of damage. With the
rapid development of the economy, more and more high-rise buildings have emerged
in the Midwest development of China, and some have been established in the high-
intensity regions of earthquakes. In addition, some large cities and infrastructure are
often built in sedimentary basins, and loose sedimentary layers will further amplify
the long-period components of seismic waves, thereby increasing the risk of long-
period ground motions.

Long-period ground motions are distinct from ordinary periodic earthquakes,
and there are large differences in ground motion parameters. When considering
the effects of long-period ground motions, the design seismic response spectrum
given by the specification is obviously insufficient from the current specification
both morphologically and numerically. Therefore, when determining the design
response spectrum and selecting seismic waves, the influence of the long-period
part on the structure should be fully considered [1]. Early analog strong earthquake
recorders only recorded high-frequency-based short-period components and could
not obtain long-period components with accuracy. With the large-scale use of digital
strong earthquake recorders in recent years, some long-period seismic waves have
been recorded, but the number is not enough to form a reliable long-period seismic
response spectrum [2–4]. Therefore, there are relatively few studies on the char-
acteristics of long-period ground motion and its influence on structures. Xie et al.
[5] and Wang et al. [6] discussed the effects of site conditions, distances, and mag-
nitudes on long-period ground motion characteristics. Wang et al. [7] investigated
the seismic response spectrum of long-period ground motion. Shoji and Shibui [8]
studied the seismic response of PC cable-stayed bridges under long-period ground
motions. Hu et al. [9] proposed a three-segment curve model (in log–log space) to
model the Q-F relationship and then manifested the impact of long-period ground
motions on the seismic response of high-rise buildings through a numerical study.
Yan et al. [10] and Zhenxuan [11] analyzed the long-period seismic response of the
high-rise frame structure and obtained that the displacement response of the frame
structure under long-period ground motion is significantly larger than that under
ordinary earthquakes, and the seismic response characteristics of high-rise struc-
tures under long-period earthquakes are studied. Jialiang [12] studied the response
of the base-isolated structure under long-period ground motions and explored its dis-
placement, velocity, and acceleration response spectra. Shuqing et al. [13] applied
time-history method to analyze the elastoplastic response of structures under long-
period ground motions and obtained the preliminary results of the response under
long-period ground motions greater than ordinary ground motions.

In the context of the energy crisis, wind energy has been valued and exploited
by countries around the world as a green energy source. The wind turbine is mainly
composed of a rotatingwindwheel that captureswind energy, a cabinwith a relatively
heavyweight similar to a steel body, a tall and flexible tower structure, and foundation
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Fig. 1 Wind turbine tower

group that support the above part of the generator (see Fig. 1). In order to obtain
greater power production capacity, the size and weight of wind turbines continue
to increase substantially, requiring higher support towers to lift components such
as the nacelle and impellers higher, and this requirement makes the wind turbine
structure a highly flexible structure with a large basic natural period of vibration. At
present, there are some analysis results of seismic response ofwind turbine structures.
Due to the limited performance of wind turbines icy under cold conditions, Zanon
et al. [14] proposed a numerical method that can simulate the phenomenon of ice
accretion and its impact on wind turbine performance. Zhi et al. [15] studied the
failuremode ofwind turbine structures under groundmotionwith different frequency
spectral characteristics. Ke et al. [16] proposed an effective method for predicting
wind-induced fatigue caused by aeroelastic and yaw effects of large horizontal axis
wind turbine coupling tower structures. Rahimi et al. [17] used three-dimensional
computational fluid dynamics (CFD) data to study different methods for calculating
the angle of attack and potential induced velocity of wind turbine blades. It can be
seen from the literature that the current seismic response analysis of wind turbine
structures is not comprehensive enough, especially the response under long-period
ground motion is necessary.

In the light of the above, a detailed finite element model is established and dis-
cussed in this study, and three long-period ground motions are selected as input. This
study investigated the model analysis of the wind turbine and the response spectrum
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of long-period ground motions and then conducted the time history analysis of wind
turbines under long-period earthquakes. Based on the numerical results, some pre-
liminary analysis recommendations are finally made.

2 Long-Period Ground Motion Record and Spectral
Characteristics Analysis

Three long-period ground motions were selected from Taiwan Chi-Chi earthquake
andNewZealandDarfield earthquake, namely TCU141 seismicwave, CHY002 seis-
micwave, andChristchurchHospital seismicwave. These three groundmotions have
characteristics of the low acceleration peak and long vibration time. However, long-
period waves have more long-components than these three waves. Table 1 shows the
basic information of long-period ground motions. The acceleration time history is
shown in Fig. 2.

The Fourier amplitude spectrum reflects the distribution of ground motion energy
in the frequency domain, which indicates the energy is carried by sine waves of
different frequencies. As the distance from the epicenter increases, the attenuation
of the high-frequency part is more significant than that of the low-frequency part,
and its excellent frequency gradually shifts toward the low-frequency direction [18].

Figure 3 is the seismic wave Fourier amplitude spectrum. It can be seen from
Fig. 3 that the long-period seismic wave has a large energy in the low frequency
band, and the excellent frequency is mainly distributed in a lower frequency range.
For example, the Christchurch Hospital seismic wave in New Zealand is mainly
distributed between 0.1 and 1 Hz.

The seismic response spectrum is the response of a series of single-degree-of-
freedom systems to reflect the frequency spectral characteristics of the earthquake. It
can characterize the relationship between the structural groundmotion response peak
and its dynamic characteristics and then understand the influence of seismic wave
spectral characteristics on structural seismic response. In order to further understand
the spectral characteristics of long-period ground motions, the acceleration response
spectrum and displacement response spectrum of three long-period ground motions

Table 1 Selected ground motion records

Seismic wave Station name Peak
acceleration/g

Duration/s Magnitude Time

Chi-Chi,
Taiwan-04

TCU141 0.05282 132.485 6.2 1999

Chi-Chi
Taiwan-04

CHY002 0.04994 110.988 6.2 1999

Darfield New
Zealand

Christchurch
hospital

0.20939 110.79 7 2010
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(a) TCU141 wave

(b) CHY002 wave

(c) Christchurch hospital wave 
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Fig. 2 Acceleration time-history curves of seismic waves
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(a) TCU141 wave

(b) CHY002 wave

(c) Christchurch hospital wave
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Fig. 3 Ground motion Fourier amplitude spectrums
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are calculated. Considering the far-field properties of long-period seismic waves and
the particularity of the recorded soil layer, the peak acceleration is not adjusted, and
the original seismic record values are directly used.

It can be seen from the acceleration response spectrum in Fig. 4a that the predom-
inant period of the TCU wave is 1.32 s, the predominant period of the CHY wave
is 1.42 s, and the predominant period of the Christchurch Hospital wave is 0.7 s.
The three seismic waves are not significantly attenuated in the long period of the
response spectrum (4–8 s) and present obvious long-period vibration characteristics.
Figure 4b is the displacement response spectrum, and after the period exceeds 2 s,
the displacement response of the long-period ground motion increases sharply and
reaches the peak at about 6 s and then begins to slowly decline. It also can be seen
that the long-period ground motion has a great influence on the acceleration and
displacement response of the flexible structure.

(a) Acceleration response spectrum (ξ=0.5%)

(b) Displacement response spectrum
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3 Finite Element Modeling and Modal Analysis

3.1 Modeling

The most typical 2 MW three-blade horizontal axis wind turbine in a wind farm in
Northwest China was selected as the original model. The diameter of the rotor is
49 m, and the angle between the blades is 120°, and the rated speed is 18 r/min. The
weight of wheel hub, each blade, and nacelle are 12 t, 14 t, and 60 t, respectively.
During the analysis, the internal members of the nacelle were omitted to simplify
it into a rectangle with a length of 5.4 m, a width of 3.6 m, and a height of 3.2 m.
The height of the steel tower is 85 m, the bottom of the tower is 5.6 m in diameter,
and the bottom of the tower is 30 mm thick. The top of the tower has a diameter of
3.87 m and the top wall has a wall thickness of 20 mm. Steel tower wall thickness
varies linearly along height. The wind turbine tower is made of Q345 steel with the
modulus of elasticity of 2.1× 1011 Pa and density of 7850 kg/m3. The properties of
the wind turbine are expressed in Table 2.

The finite elementmodel is established by using the commercial softwareANSYS
(see Fig. 5). The wind turbine tower is simulated by the shell element (shell181),
and the nacelle and the hub at the top of the tower are regarded as a whole, the
beam 189 element is utilized for simulation, and the three blades are simulated by
the finite element strain beam element (beam189). A multi-point constraint equation
is applied between the different component units to realize the coupling interaction.
The bottom of the tower and the ground are consolidated.

Table 2 2-MW wind turbine
properties

Wind turbine property Value

Rated power 2 MW

Rated wind speed 18 r/min

Tower height 80 m

Lower section diameter 5.6 m

Lower section thickness 30 mm

Top section diameter 3.87 m

Top section thickness 20 mm

Nacelle mass 60 t

Blade mass 14 t

Rotor mass (with hub) 12 t
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Fig. 5 Finite element model of wind turbine

3.2 Modal Analysis

The structural dynamic characteristics of wind turbines are distinct, and the seismic
response will be very different. Especially if the basic natural period of vibration of
the wind turbine is consistent with the excellent period of the input seismic wave, the
reaction valuewill increase due to resonance. Therefore, it is very important tomaster
the dynamic characteristics of the wind turbine beforehand in the seismic design of
the wind turbine. In order to determine the basic vibration characteristics of the wind
turbine structure, Lanczos Block is used for modal analysis. The natural frequencies
of the first eight orders of the wind turbine structure are shown in Table 3. Figure 6
shows the eighth-order vibration pattern of the wind turbine tower, the first-order

Table 3 Natural frequency
of wind turbine

Mode Frequency describe Frequency (Hz)

1 1st support side-to-side 0.2821

2 1st support fore-aft 0.2850

3 1st blade flapwise yaw 0.8467

4 1st blade flapwise pitch 1.0769

5 1st blade edgewise yaw 1.3206

6 1st blade edgewise pitch 1.3251

7 2nd support fore-aft 2.4865

8 2nd support side-to-side 3.3101
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Mode1 Mode2 Mode3 Mode4

Mode5 Mode6 Mode7 Mode8

Fig. 6 The first eight flexural modes of the wind turbine tower

mode is mainly dominated by the lateral bending vibration of the tower, the second-
order mode is mainly dominant by the front and rear bending deformation of the
tower, the third- to sixth-order vibration mode mainly related to the local vibration
vane, the seventh- and eighth-order vibration modes are mainly dominant by the
second-order bending of the tower. In the reaction characteristics of wind turbines,
even if the first-order mode occupies a main role, high-order mode reactions may
occur under different types of ground motion.
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4 Dynamic Response of Wind Turbine Structure Under
Long-Period Ground Motion

In accordance with the provisions of the Code for Seismic Design of Buildings
(GB 50011-2010), the acceleration peaks of each long-period ground motion are
uniformly adjusted to 400 cm/s2 in the light of the eight-degree rare earthquake. In
order to simulate the dynamic response of thewind turbine structure under earthquake
action, the three components of each seismic wave were considered in the elastic
time-history analysis and referred to the relevant specified the accelerations along
the horizontal principal direction (X-direction), the lateral direction (Y-direction), and
the vertical direction (Z-direction) were proportioned with the scaling coefficients of
1.0:0.85:0.65, respectively. The dynamic response analysis of the structure is carried
out, and the displacement, acceleration, stress, and base internal force of the wind
turbine structure are obtained.

4.1 Displacement Response

The displacement response of the wind turbine structure along the tower height under
long-period ground motion is presented in Fig. 7.

Figure 7a–c is the displacement responses of thewind turbine tower in the horizon-
tal X-direction, the horizontal Y-direction, and the vertical Z-direction, respectively,
under long-period ground motions. Figure 7d is the time-history curve of the dis-
placement in the horizontal X-direction of the top of the wind turbine tower. It can be
seen from the figure that the maximum nodal displacement of the wind turbine tower
in the horizontal X-direction gradually increases along the height of the tower, and
the displacement at the top of the tower reaches the maximum. The maximum top
displacements of the wind turbine tower under the action of TCU141 wave, CHY002
wave and Christchurch Hospital wave can reach 1.15 m, 2.01 m, and 1.35 m, respec-
tively (see Fig. 7d). The influence of wind turbine generators with low redundancy
and high flexibility structure is not negligible and should be highly valued in the
seismic design of wind turbine structures. The maximum nodal displacement of the
wind turbine tower in the horizontal Y-direction has the same trend along the height
of the tower, which is the same as the horizontal X-direction, that is, increases with
the height of the tower (see Fig. 7b). It is worth noting that the maximum nodal
displacement at the top of the tower in the horizontal Y-direction is still greater than
1 m. The maximum nodal displacement of the wind turbine tower in the vertical
Z-direction shows a slight increase with the increase of the tower height, and the
nodal displacement reaches a maximum at the top of the tower from the top 10 m
(see Fig. 7c). The maximum nodal displacement of the wind turbine tower in the
vertical Z-direction is nearly 60 mm, which will cause the tower to have dynamic
pulling force. Because of the high strain rate, the steel becomes brittle. The tower
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Fig. 7 Displacement along
the wind turbine height

(a) X-direction horizontal displacement
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(d) Displacement time-history curve at the top of the tower
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Fig. 7 (continued)

is mainly affected by the bending moment and the shearing force, which causes the
shearing ability to decrease and the horizontal fracture.

4.2 Acceleration Response

The acceleration response of the wind turbine structure along the tower height under
long-period ground motion is externalized in Fig. 8. The acceleration response of a
wind turbine is expressed by the acceleration amplification coefficient, which is the
ratio of the maximum acceleration response of the wind turbine structure over the
peak long-period ground acceleration (PGA).

Figure 8a–c is the acceleration response of the wind turbine structure under
long-period ground motions in the horizontal X-direction, the horizontal Y-direction,
and the vertical Z-direction, respectively. Figure 8d is the acceleration time-history
response curve of the wind turbine tower in the horizontal X-direction under long-
term ground motion. The acceleration amplification coefficient of the wind turbine
tower increases with the height of the tower in the horizontal X-direction, and the
acceleration amplification factor at the top of the tower reaches the maximum value,
which has the same trend as the displacement response of the wind turbine (see
Fig. 8a). The displacement and acceleration response of the wind turbine under three
long-period ground motions are controlled by its first-order vibration mode. The
dynamic amplification coefficient of the wind turbine structure under the action of
TCU141wave andCHY002wave can reach 13–16 times, and the amplification effect
on the structure is obvious. The acceleration amplification coefficient of the wind
turbine tower increases with the height of the tower in the horizontal Y-direction,
and the maximum power amplification coefficient can reach 13 times (see Fig. 8b).
The acceleration amplification coefficient of the wind turbine tower in the vertical
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Fig. 8 Acceleration along
the wind turbine height

(a) X-direction acceleration amplitude coefficient

(b) Y-direction acceleration amplitude coefficient

(c) Z-direction acceleration amplitude coefficient
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(d) Acceleration time-history curve at the top of the tower
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Z-direction generally increases, and its maximum value is about two times, which
may have a significant impact on the connection between the tower and the nacelle
and the performance of the wind turbine after the earthquake.

4.3 Stress Response

The stress response of the wind turbine structure under long-period ground motion
uses Von Mises stress to represent the stress of the shape of the wind power tower in
Fig. 9.

Figure 9a shows the Von Mises stress response of the wind turbine structure
along the tower height under long-period ground motion. Overall, as the height of
the tower increases, the maximumVonMises stress shows a decreasing trend despite
some fluctuations. These fluctuations appear corresponding to the change of the wall
thickness of the tower tube and the bending stiffness, indicating the economical and
rationality of the tapered design of the wind turbine tower. Figure 9b is the stress
time-history curve at the maximum Von Mises stress along the height of the tower.
Taking the stress response maximum Christchurch Hospital wave as an example, the
maximum Von Mises stress is 237 MPa, and the tower steel is Q345 steel, which is
within the range of steel. Figure 10 expresses the stress contour of the wind turbine
tower under the action ofChristchurchHospitalwave. Themaximumvalue of theVon
Mises stress appears at the bottom of the tower or 2/3 along the height of the tower.
Sufficient attention should be paid to the seismic design of wind turbine structures.
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(a) Stress level of tubular tower

(b) Stress time-history curve at the 12m height of the tower
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Fig. 9 Stress along the wind turbine height

4.4 Internal Force Analysis

The internal force of the wind turbine structure under long-term ground motion is
presented in Table 4.

The base shear, axial force, bending moment, and torque of the wind turbine
structure under long-period groundmotions are shown in Table 4. The shear response
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Fig. 10 Stress contour of the wind turbine tower

of the base of the tower base in the horizontal X-direction and the horizontal Y-
direction is obvious, and the bending moment response about the X-axis and the Y-
axis is much larger than the torque along the Z-axis, reflecting that the wind turbine
belongs to the bending-shear structure. Under the long-period ground motion, the
axial force of the wind turbine tower along the Z-direction is greater than 600 kN,
and the wind turbine is a typical top-heavy structure with a large top mass. In the case
of large displacement of the tower, the seismic capacity of the wind turbine structure
will be reduced, and the geometric nonlinear influence in the wind turbine structure
will be evaluated as the P-� effect. Figure 11a, b is time-history curves of the base
shear force and bending moment of the wind turbine structure along the horizontal
X-direction under long-period ground motion, respectively.

5 Conclusion

This paper focuses on the seismic dynamic response of the 2 MW wind turbine in
Northwest China under long-term ground motions. The analysis results reveal that
the response of the displacement, acceleration, stress, and internal force of the wind
turbine tower are very significant. The horizontal displacement gradually increases
along the height of the tower, and the maximum value appears at the top of the tower.
The maximum nodal displacement can reach 2 m, which can cause the geometric
nonlinear influence of the wind power tower, thereby reducing the seismic perfor-
mance of the structure. At the same time, the vertical seismic acceleration at the
tower of the wind turbine is twice as large as the ground acceleration, which may
have a significant impact on the normal use of the wind turbine after the earthquake.
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(a) Base shear force time history in X-direction

(b) Base bending moment time history (about Y-axis)
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Fig. 11 Base internal force time-history curves
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Intelligent Image Analysis Technology
and Application for Rail Track Inspection

Peng Dai, Shengchun Wang and Zichen Gu

Abstract Based on the deep learning technology, the track image intelligent recog-
nition algorithm has been developed, which has made significant progress in the
analysis of rail track infrastructure inspection. The main work includes as follows:
(1) research on intelligent recognition method of fastener defect based on convolu-
tional neural network—bymodeling the deep network from the fasteners image of the
nationwide rail line, the detection rate of abnormal fasteners has been significantly
improved and the false alarm rate has been greatly reduced. The research achieve-
ment has been applied in China’s railway inspection. (2) Research on foreign object
recognition algorithm in ballastless track based on heuristic deep learning—aiming
at the problem of foreign objects falling in the roadbed of the ballastless track, the
system has a single type of foreign object recognition capability by labeling and iter-
ative training of the limited samples. Then, by adding the new foreign objects found
in the model to the training set for iterative training, a heuristic learning framework
is constructed, which makes the system recognize a variety of foreign objects and
has been put on probation in China’s high-speed rail to verify the outstanding perfor-
mance of the recognition algorithm. The research work shows that the development
of artificial intelligence technology and industry integration will collide with a fierce
spark, and the continuous absorption of new technologies and new methods is the
way to promote technological innovation in the industry.

Keywords Deep learning · Intelligent recognition · Fastener defect · Foreign
object recognition

P. Dai · S. Wang (B)
Infrastructure Inspection Research Institute, China Academy of Railway Sciences Co., Ltd,
Beijing 100081, China
e-mail: wangshengchun@rails.cn

P. Dai
e-mail: daipeng@rails.cn

Z. Gu
Beijing IMAP Technology Co., Ltd, Beijing 100081, China

© Springer Nature Singapore Pte Ltd. 2019
Y. L. Zhou et al. (eds.), Data Mining in Structural Dynamic Analysis,
https://doi.org/10.1007/978-981-15-0501-0_5

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0501-0_5&domain=pdf
mailto:wangshengchun@rails.cn
mailto:daipeng@rails.cn
https://doi.org/10.1007/978-981-15-0501-0_5


86 P. Dai et al.

1 Introduction

High-speed railways have high requirements for safety risk control for the fast driving
speeds. Therefore, the status inspection of the track structural components could
be implemented by automated ways. The noncontact dynamic detection method is
used to patrol the track component condition and find defects rapidly. The detection
method based on laser ranging scanning [1] and the detection method based on
visible light imaging [2] have become mainstream. The detection method of visible
light imaging is widely used to detect the condition of the rail [3, 4] or the contact
network components [5], etc., due to the good visibility and traceability of the data
obtained and the automation and intelligence of the data analysis. On the basis of this
development, the track patrol system and the integrated patrol train or other automatic
detection equipment have become more popular in China’s railway transportation
system after years of development.

As the keymodule of the inspection system, the intelligent recognition technology
of the track image represents the technical level of the inspection equipment. In recent
years, many researchers have developed identification algorithms for rail surface
scratches, fastener abnormalities, fishplate cracking, and sleeper cracking. Because
the image data of the inspection vehicle is captured in the running state, the space span
is large and the environmental conditions are varied along the rail line. Therefore, the
accuracy of the machine recognition algorithm is far from the cooperative artificial
visual inspection. Especially in the traditional pattern recognition framework, based
on the “artificial design features” to analyze the changes in the edge and corner
features formed by the component structure in the image, the robustness of the
recognition is poor, which brings trouble to the system engineering application.

With the development of artificial intelligence technology represented by deep
learning, the pattern recognition system that designs a deep network to automatically
learn features from data sets shows the advantages against the traditional “artificial
design features.” The concept of deep learning stems from artificial neural networks,
by combining low-level features to form more abstract high-level representation
attribute categories or features, to discover distributed feature representations of
data and to achieve performance superior to human visual recognition accuracy in
multiple tasks in the machine vision field. In this paper, the important progress made
in the work of fastener defect recognition based on deep learning and the intelligent
identification technology of foreign objects in ballastless trackbed is expounded.

2 Fastener Defect Identification Technology

The ballastless track fastener is the basic component that links the seamless rail and
concrete trackbed, and its defects may cause the rail to shift and cause the train to
derail. The high-speed rail line is long, and the total number of fasteners is large
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in China. It is urgent to use automated and intelligent detection technology to find
fastener defects accurately and efficiently.

Themachine identificationmethod for fastener defects usually takes the track as an
input image, extracts the fastener sub-picture by image segmentation operation, and
identifies the defect sub-picture state to detect the defect. The early method identifies
the edge and corner feature changes formed by the fastener bolts, clips, and other
components in the image [6–8]. This method belongs to the primary machine vision
level, and the detection accuracy and noise resistance are poor. After the technique
development, by the reference of “face recognition,” “pedestrian detection,” and other
machine vision problem solutions, many “artificial design features” are developed
with statistical pattern recognition classifier for identification, such as Haar feature
with latent Dirichlet allocation ( LDA) classifier [9], AdaBoost classifier [10], HOG
feature with K-nearest neighbor classifier [11, 12], support vector machine (SVM)
[13, 14] classifiers. This kind of method is based on the “expert design” operator to
describe the fastener model and establishes the classifier through statistical learning,
which improves the recognition accuracy and robustness to a certain extent, but the
generalization isweakwhen dealingwith non-homologous data, and there is a trouble
in engineering practice due to the high false positive and false negative of defective
fasteners.

The fastener defect recognition technology consists of two steps. The first is the
precise positioning algorithm of the fastener subregion. The calculation process of
the fastener subregion positioning is shown in Fig. 1. First, a large area containing the
fastener is divided from the track image, and then, the fastener subregion is obtained
by the image matching algorithm.

Fig. 1 Schematic diagram of the fastener positioning process
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The second part is based on the deep learning-based intelligent recognition mod-
eling, which is divided into three steps.

2.1 Fastener Data Set Construction

The fastener subregion is extracted in batches by using the fastener positioning
algorithm from a large number of track images collected from different lines in the
previous stage. The image includes as many different types of fasteners as possible.
Figure 2 shows an example of the extracted fastener subregions. It can be seen from
the figure that the fastener is covered by the ballast and the illumination is abnormally
complicated. For the complexity of the fastener image, all fastener subregions are
divided into four subcategories. Each category contains about 100,000 samples. The
fastener subregions are sorted to form a data set for conducting defect identification
studies. Among them, the normal fastener type can include different kinds of fastener
subregions.

To further enhance the diversity of training data, data imbalance and equalization
sampling are used to adjust the unbalanced basic data set to obtain a data set more
suitable for deep learning network modeling. The data enhancement methods mainly
include: (1) after mirroring the image of the abnormal fastener sample, gamma cor-
rection, etc., adding to the data set to expand the sample size; (2) occluding the
normal fastener, the ballast, uneven illumination, etc. Types of fastener sample data
sets are screened to maintain a reasonable range of ratios between different types of
fasteners.

Fig. 2 Typical defect patterns in several fastener subgraphs: a normal fasteners, b ballast cover,
c uneven lighting, d damaged fasteners
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2.2 Deep Learning Modeling

Image convolutional neural network recognition of typical deep learning first extracts
the features of the input image through the convolutional neural network and then
calculates the training error using the softmax loss function according to the features
of the extracted image and the label corresponding to the input image. After learning,
a network and classifier are finally available for the image pattern recognition. In the
field of computer vision recognition, open public research data sets such as the
ImageNet project (a large visual database for visual object recognition research and
the total size of the database is over 14 million images) present many available
network structures such as the famous AlexNet and ResNet. During the research
process, the recognition accuracy and efficiency of these networks on the fastener
data set were verified. It was found that the existing network is not suitable for the
deep learningmodeling of fastener defect recognition, due to the deep network layers,
large model parameters, and easy over-fitting on the fastener data set. In addition, the
model layer is too deep; the saved model parameter file will take up a lot of storage
space and make the detection run at a slower speed, so they cannot be used directly.

We build a 10-layer convolutional neural network based on the convolutional
neural network design principle. It contains basic structures such as a convolutional
layer, batchnorm layer, and pooling layer. In the design of the convolution layer,
considering the small size of the fastener image, aminimum 3× 3 convolution kernel
is used. The input image of the network is the subregion of the fastener extracted
from the track image. The nonlinear feature is extracted from the input image through
the convolutional layer. After the main feature is retained by the pooling layer, the
spatial dimension is reduced and finally passed. The full connection layer outputs
four feature values representing the recognition result of the input image.

2.3 Model Verification and Fine-Tuning

On the basis of completing the deep network design, the network is trained on the
constructed data set. The training parameters are set as follows. The initial learning
rate is 0.01, and the learning rate decreases with the convergence degree of the
network. After training 50 epochs, the network basically converges (see Fig. 3).

Then, the network is further trained by combined with the online track image
acquired from the real railway, which is a benefit with the generalization to the new
railway line. In addition, the false detection and the missing detection are supple-
mented and the training is performed again for improving the detection performance
ceaselessly (see Fig. 4).

At present, this technology has been promoted and applied in local railway com-
panies including the Guangzhou Railway Group’s rail defect detection train, the
inspection system carried on the Wuhan Railway Bureau’s detection train, the rail
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Fig. 3 Training learning curve

Fig. 4 Iterative training results

track inspection train of the Jinan West high-speed railway section, and the high-
speed railway comprehensive inspection train. The effective detection rate of fastener
abnormalities has reachedmore than 95% on average, the accuracy has reachedmore
than 90% in the ballastless line, and the accuracy of detection has reached more than
70%.

3 Intelligent Identification Technology for Foreign Objects
in the Trackbed

The foreign matter in the trackbed is a foreign object appearing on the railway
trackbed, usually including broken fasteners, broken stones, animal carcasses, and
the others (see Fig. 5). In the ballastless track, foreign objects on the trackbed will
bring great hidden dangers to the driving safety of the train. Therefore, it is necessary
to develop a visual detection algorithm to detect foreign matter on the bed in time.
Because of the variety of foreign objects in the ballastless trackbed and the image
acquisition equipment has been in high-speed motion, the visual inspection of the
foreign object in the trackless track has always been a difficult problem in the track
intelligent inspection.
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Fig. 5 Typical roadbed foreign body sample: a fracture clip and b bed gravel

3.1 Background of Foreign Object Identification
in the Trackbed

Foreign object intrusion detection is a classic problem in computer vision. This type
of problem usually involves foreign object intrusion detection of video captured by
a fixed position camera. Since the camera is fixed in position, the problem of foreign
matter is often detected by background modeling.

For the railway image, in the two sets of railway inspection vision systems GX-02
and GX-03 that we currently use (see Fig. 6), the camera is mounted on the bottom
of the inspection vehicle for high-speed movement, and there is almost no overlap

Fig. 6 Track image acquired by the existing system: a GX-02 inspection system collects data and
b GX-03 inspection system collects data
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between each image. Background modeling cannot be used to solve foreign object
detection problems very well.

In addition to background modeling, foreign objects can be detected by means of
target detection for foreign objects of known categories. In the traditional method,
the foreign matter detection needs to extract the traditional visual features from the
known foreign object images and then find the foreign objects matching the template
in the image by sliding the window and the template matching. The adoption of such
a conventional method not only has an extremely low accuracy rate, but also has poor
generalization, and it is impossible to recognize a foreign object having a slightly
larger gap from the template of foreign matter image (Fig. 7).

In recent years, with the deepening of relevant research, deep learning and big
data-related algorithms have greatly improved the accuracy and generalization of
target detection [15–19]. The deep learning target detection algorithm is mainly
based on the deep convolutional neural network (CNN, see Fig. 8). It collects a
large number of foreign object samples and organizes them according to different
foreign object types as the training data of the deep learning algorithm. By training
the deep neural network model, the foreign objects are classified by category. At
present, the mainstream deep learning target detection algorithms are divided into

Fig. 7 Target detection algorithm based on the traditional method

Fig. 8 Target detection based on deep learning
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region proposal based algorithms: faster RCNN, R-FCN, etc., and direct regression
method: YOLO, SSD, etc.

The above-mentioned deep learning method can classify the foreign matter of a
known kind, but for the foreign matter in the trackbed, the type of the foreign matter
is “singularly strange,” and it is impossible to exhaust all the foreign matter types
and find the corresponding sample. For unknown types of foreign objects, a heuristic
algorithm is needed to estimate unknown foreign objects based on known foreign
object types.

3.2 Trackbed Foreign Object Detection Algorithm Based
on Heuristic Learning

Foreign matter samples dropped on the high-speed railroad are very rare. Therefore,
it is necessary to establish a heuristic learning framework to gradually realize the
identification of many types of foreign objects.

(a) Classical Deep Network Sample Evaluation and Screening:
In the beginning of the study, a model study of approximately 200 foreign beds
collected from the bedwas conducted. Taking into account the easy accessibility
of the sample, we chose 99.5% of the fasteners left in the trackbed as a foreign
object target, and another animal carcass image. First, the known foreign objects
in the image are labeled, and then, the depth learning target detection algorithm
framework is evaluated on this data set (Fig. 9).
In the railway inspection system, each kilometer of the railway will take about
500 images at equal intervals, so the processing speed of the target detection
algorithm is also an important consideration. As shown in Table 1, we tested the
framework of target detection algorithms such as faster RCNN (ZF, VGG16,
ResNet50), R-FCN (ResNet101), SSD (Inception v2), and YOLO v3. By mod-
eling 130 samples, the remaining images were used as test samples. After test-
ing, it was found that the four methods of faster RCNN (ResNet50), R-FCN
(ResNet101), SDD, and YOLO v3 can achieve a high detection rate in the test
data, but YOLO v3 has an absolute advantage in the processing speed and can

Fig. 9 Example of a training set foreign object
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Table 1 Algorithm speed
comparison per frame

Method Time cost (ms) Detection speed
(km/h)

Faster RCNN
ResNet50

170 42

Faster RCNN
ResNet50 low
proposal

100 72

R-FCN ResNet101 150 48

R-FCN ResNet101
low proposal

100 72

SSD Inception v2 50 144

Yolo v3 45 160

support the real-time processing of the inspection train at a speed of 160 km/h.
In additional, the YOLO v3 framework also has a good negative sample sup-
pression capability, which can be suppressed by adding images that are easily
misdetected in the training set.

(b) A single category foreign object recognition model.
Based on the above research, the YOLO v3 framework was selected as the basic
framework for foreign object detection. YOLOv3 is a target detection algorithm
based on direct regression (see Fig. 10). After three generations of evolution,
it combines the advantages of multiple target detection algorithms and is the
master of the current target detection algorithm framework. The framework
consists of a 53-layer deep convolutional neural network that uses multi-scale
connections to accurately position targets of different sizes.
In the training data collection, among the 200 foreign object image data collected
by us in the previous period, 199 images contain the broken fastener clips. The
broken fastener clips account for a considerable proportion of the foreignmatter

Fig. 10 YOLO v3 network
framework
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Fig. 11 Sample of broken elastic bars detected: a newly detected broken clip by GX 3 and b newly
detected broken clip by GX 2

in the ballastless bed, and this type of foreign matter will have a greater impact
on driving safety. Therefore, first training a foreign object detection model for
the broken clips has high practical value. Then, using 199 pieces of real broken
clip images and some artificial data made by image editor software as training
samples, a foreign objects detectionmodel of broken clipswas trained.As shown
in Fig. 11, the model can accurately detect the foreign matter of the broken clips
on the ballastless line.
Using this model, foreign objects were detected in millions of innocent track
test images, and hundreds of broken fastener clips were detected. This part of
the newly discovered data is re-added to the training data set for model training
and then re-tested in the test image. By repeating this process through iterations,
the ability of the model to detect a single foreign object such as a broken clip is
continuously improved.

(c) Identification of multiple foreign bodies and unknown foreign objects under the
heuristic learning framework.
In the process of actual line detection, in addition to detecting many foreign
bodies of broken clips, the model also detects some non-clip foreign objects
similar to the clips, including crushed stones, broken rubber, etc. (see Fig. 12).
These different patterns of foreign objects can be constructed into a variety of
foreign data sets.

Fig. 12 Broken rubber detected by the detected stone fragments
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Using the data of the foreign body accumulated in the previous period, a small
amount of non-ballistic foreign body data, and a previously collected animal
carcass data (see Fig. 13), we train a new deep neural network foreign body
recognition model and wish the network can heuristically obtain the ability
to recognize foreign bodies of trackbed from these different kinds of foreign
objects.
Throughmultiple rounds of training detection iterations, amulti-class ballastless
foreign object detection model was successfully constructed. In addition to
detecting known kinds of foreign bodies such as broken clips and gravel, the
model can also detect different types of animal carcasses and some other types
of foreign objects (see Fig. 14).

(d) Misdetection of the model and ways to overcome it.

Fig. 13 Collected animal carcasses

Fig. 14 Other types of foreign objects: a small animal, b large animal, c bottle, d fork
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Fig. 15 Misdetection caused by areas similar to the texture and shape of foreign objects in the
image: a cable, b stain, c, and d bolt

Due to the technical level of the computer vision development, targets with
similar features may be identified as targets of interest during the recognition
process. In the process of constructing the trackbed foreign body detection
model, in addition to the correct detection of foreign objects in the trackbed,
there is also a certain amount of false detection. Some misdetected samples are
shown in Fig. 15.
The target objects of false detection can be divided into two categories. First,
because the pattern features are very similar to foreign objects, the problem is
limited by the intelligence of computer vision, so it is difficult to avoid it for
guaranteeing the effective detection rate, which would be a direction for contin-
uous improvement of research work. Another type of misdetection belongs to
the shortcoming of deep neural networks; it can be suppressed by adjusting the
training data, i.e., to update the training by adding some images that are prone
to false detection as new training samples to the training set.

4 Conclusion

Based on the deep learning technology, the detection rate of the fastener defect-
recognition function module in the track inspection system is significantly improved,



98 P. Dai et al.

and the recognition function of the foreign object falling in the high-speed rail
trackbed is developed. Deep learning technology is a representative technology of
AI development, combining it with the specific problems in the field of railway
infrastructure detection, significantly improving the intelligence of data analysis
and processing algorithms, and achieving good application results. In the further
research, the application of unsupervised learning, reinforcement learning, and gen-
erative adversarial networks in the field of visual inspection of railway infrastructure
will be explored, and it will be used to solve the defect detection of the contact wire
and trackside electronic equipment.
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Investigation on the Effect
of High-Frequency Torsional Impacts
on the Torsional Vibration of an Oilwell
Drill String in Slip Phase

Liping Tang, Xiaohua Zhu and Yunlai Zhou

Abstract The drilling system usually encounters detrimental stick-slip vibration to
the drilling process. One of the approaches for controlling the stick-slip vibration is
using high-frequency torsional impact (HFTI). However, how the HTFI will affect
the vibration of the drill string is still unknown. This study proposed a mechanical
model of the drill string by using continuous system to investigate the effect of HFTI
on the vibration of a drill string in slip phase, wherein the HFTI is considered in
the model. The mechanical model is investigated through using mode superposition
method and conducting case studies. Results show that the HFTI is more sensitive to
the drill string close to the drill bit and that the HFTI has little effect on the vibration
of drill string. During the drilling process, the HFTI aggravates the rock damage
and rock failure, which actually improves the drilling efficiency and mitigates the
stick-slip vibration.

Keywords High-frequency torsional impact · Drill string · Stick-slip vibration ·
Drill bit · Mode shape

1 Introduction

Oil and gas are two types of fossil energy generated by natural processes taking
millions of years to form. Although oil and gas are continually being generated
through natural processes, they are usually regarded as non-renewable resources [1,
2]. With the rapid development of economy, consumption of oil and gas in the world
increases and the oil and gas are being consumed much faster than new ones are
being made [3]. After the exploration and development of oil and gas in the past
several decades, the drilling works are toward deep wells (≥3000 m) and ultra-deep
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wells (≥6000 m) [4]. The drilling cost occupies more than half of the fees used in
the exploration and development of oil and gas. As a result, drilling companies all
over the world try to reduce the drilling cost and improve the drilling efficiency.

In the drilling industry, one of themost popular drillingmethods is the rotary steer-
ing drilling. Rotary steering equipment used to compose a drill string that is rotated
to deepen the wellbore [5]. During the drilling process, the drill string encounters
serious dynamic problems which may lead to drilling accident, such as buckling,
vibration, and fracture. Due to the hostile environment of the drilling process, the
dynamic behavior of the drill string is very complex [6]. Field observations show
difference in vibration surveillance in downhole and on surface which indicates BHA
undergoes severe vibrations. Drill string vibration is regarded as the primary reason
for the premature failure of drilling tools, and the subject of vibration in the drilling
system is an ongoing challenge for the engineers [7, 8].

Among the common vibration modes (including single modes and coupled
modes), stick-slip vibration is considered as one of the primary reasons of drilling
performance deterioration as it wastes drilling energy, leads to tool failure, reduces
the penetration rate, and increases the drilling cost [9, 10]. Due to the large length-
to-diameter (LTD) of a drill string, for example, the LTD of a 3,000 m drill string is
bigger than 23,000, stick-slip vibration is very common [11]. It is reported that stick-
slip vibration is more likely to appear in deep drilling systems [12–14]. Two reasons
may be used to explain this (1) LTD of the drill string increases with an increase
in the well depth and (2) rock hardness and rock strength increase with increasing
the well depth. In field application, a large weight on bit is used to maintain the rate
of penetration because of high rock strength, but this leads to a high possibility of
generating or aggravating the stick-slip vibration.

Belokobyl’skii and Prokopov [15] studied the friction-induced vibration of drill
string, which is thought to be the earliest publication related to stick-slip vibration
of drill string. Their work was furthered by many other researchers. Richard et al.
[16] investigated the root cause of stick-slip phenomenon of stick-slip in oilwell
drill string using a simplified model that considered the interaction between the
drill bit and rock formation. Patil and Teodoriu [17] studied the effects of system
factors on the stick-slip vibration of drill string. Tang et al. [18–20] revealed the
mechanism of stick-slip vibration and effects of drilling parameters on this type of
phenomenon. Mihajlovic et al. [21] used an experimental drill string apparatus to
study the causes of friction-induced stick-slip phenomenon.Lai et al. [22] reported the
field measurement of stick-slip vibration using surface-based torque and presented
the correlation between downhole and surface data. Puebla and Alvarez-Ramirez
[23] developed a control method based on modeling error compensation to mitigate
stick-slip motion in drill string. It is found that many literatures have focused on the
stick-slip phenomenon, but there are still many challenges.

Many methods have been used to control the stick-slip vibration, including active
ones and passive ones [10], and one of them is the high-frequency torsional impact
(HFTI) drilling [24]. For this drilling technique, HFTI is supplemented to the drill
bit through an impactor installed directly above the drill bit. Results of our previous
studies showed that the HFTI can reduce the stick-slip vibration of the drill bit [18].
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Since an additional impact is added onto the drill string, it is easy to believe that the
HFTI may aggravate or be a source of drill string vibration.

For a drilling system with stick-slip vibration, the drill bit moves alternately
between stick phase and slip phase. In the stick phase, the drill bit keeps still (referred
to as being constrained). While in the slip phase, the drill bit is not constrained. In
this paper, the investigation is conducted to know the effects of HFTI on the vibration
of a drill string in slip phase.

2 Drill String Vibration Model

The drill string is regarded as vertical, elastic, homogeneous, and isotropic, and the
flowof the drilling fluid and flow-induced vibration is neglected. The vibrationmodel
of the drill string is shown in Fig. 1, where x-axis is the longitudinal direction of the
drill string, x = 0 means the rotary table, and x = l means the drill bit. θ (x, t) denotes
the angular displacement of the cross section of the drill string at x and time t, and
the gradient of the angular displacement can be expressed as

(a) (b)

Borehole wall

Drill string

Drill bit

Rotary table

dx

x

T

x

Fig. 1 Vibration model of the drill string: a general view of the drill string system; b vibration
model of the continuous drill string
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∂θ

∂x
= T

GIp(x)
(1)

where T indicates the torque acted on the cross section of drill string, G means the
shear modulus of the drill string, and Ip(x) represents the polar moment of inertia at
x. For a drill string element dx shown in Fig. 1b, the motion differential equation of
the torsional vibration can be expressed as

GIp(x)
∂2θ

∂x2
(x, t) − J (x)

∂2θ

∂t2
(x, t) − β

∂θ

∂t
(x, t) = M(x, t), x ∈ (0, l), t > 0 (2)

where J(x) denotes the rotational inertia,β represents the viscous damping coefficient
of the drilling fluid, andM(x, t) refers to the external torque acted on the drill string.

For a dynamic mode that is feasible in physics, it can be realized by superposition
of the basicmodes of the system. Themode superpositionmethod (MSM) transforms
the geometric displacement coordinate into modal amplitudes and characterizes the
system vibration as a linear combination of the mode shapes. Mode shape is an
intrinsic parameter of the system like the density. To solve Eq. (2), its homogeneous
form is firstly studied.

GIp(x)
∂2θ

∂x2
(x, t) − J (x)

∂2θ

∂t2
(x, t) − β

∂θ

∂t
(x, t) = 0, x ∈ (0, l), t > 0 (3)

One method of solving partial differential equations is the variable separation
method. The solution is assumed in the form

θ(x, t) = φ(x)Q(t) (4)

where φ(x) means a function representing the mode shape and is independent with
t, and Q(t) indicates the generalized coordinate representing the amplitude and is
dependent with t.

By substituting Eq. (4) into Eq. (3)

ρ Ip Q̈(t) + β Q̇(t)

Q(t)
= GIpφ′′(x)

φ(x)
(5)

where (.) denotes the derivation with respect to time t, (′) indicates the derivation
with respect to x, and ρ represents the density of the drill string. By introducing a
term C = −ω2, two equations are satisfied.

ρ Ip Q̈(t) + β(x)Q̇(t) + ω2Q(t) = 0 (6)

GIpφ
′′(x) + ω2φ(x) = 0 (7)
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The solution of Eq. (7) is then given as

φ(x) = C1 × sin

(
ω

√
ρ

G
x

)
+ C2 × cos

(
ω

√
ρ

G
x

)
(8)

where C1 and C2 mean integration constant determined by the boundary condition
and ω indicates the natural frequency of the drill string system.

3 Drill String Dynamics Under Torsional Impacts

3.1 Natural Frequency and Mode Shape

At the beginning of the slip phase, the driving torque acted on the drill string balances
with the frictional torque acted on the drill bit. The drill string is twisty. After the slip
phase is initiated, the bottom hole assembly vibrates violently and the rotary table
moves steadily. For a drill string in slip phase, the relativemovement between the drill
bit and the rotary table can be regarded as the movement of a vertical beamwith fixed
boundary condition at the upper end and free boundary condition at the lower end.
For the torsional vibration of a drill string, it can be obtained by superimposing the
relative movement with effect of rotation of the rotary table on each mode shape. In
the slip phase, kinetic frictional torque is acted on the drill bit. The kinetic frictional
torque is regarded as external load. The boundary conditions can be given as

T (l, t) = GIp
∂θ

∂x
= 0 (9)

θ(0, t) = 0 (10)

Upon substituting into Eq. (4), two equations can be obtained

φ′(l) = 0 (11)

φ(0) = 0 (12)

Substituting Eqs. (11) and (12) into Eq. (8) gives

C2 = 0 (13)

cos
ωl√
G

/
ρ

= 0 (14)
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The natural frequencies of the system can be found from Eq. (14) to be

ωi =
(2i − 1)π

√
G

/
ρ

2l
, i = 1, 2, 3, . . . (15)

Hence, the expression for mode shape i can be of the form

φi (x) = C1 × sin
(2i − 1)πx

2l
, i = 1, 2, 3, . . . (16)

3.2 Generalized Moment of Inertia and Generalized Load

The generalized modes of the drill string, by determining C1 = 1, is

φi (x) = sin
(2i − 1)πx

2l
, i = 1, 2, 3, . . . (17)

And the generalized moment of inertia (generalized mass) is

J i =
l∫
0

Jφ2
i (x)dx =

l∫
0

J

(
sin

(2i − 1)πx

2l

)2

dx = 1

2
Jl (18)

where J indicates the moment of inertia of each unit length of drill string. The
generalized load is

Mi (t) =
l∫

0

φi (x)M(x, t)dx (19)

The HFTI generator is placed on a certain position of the drill string. The
coordinate of this position is regarded as y in the x-axis. For the HFTI torque,
it can be regarded as a distributed load which acts on a small segment (y −
	, y + 	), with its section length is 2	. The load intensity of the HFTI is(
A
2 + A

π
sin(ω0t) + A

2π sin(2ω0t)
)/

2	 (the HFTI load is discussed in Appendix A).
Based on Eq. (19), the generalized load of the HFTI can be given as

Mi1(t) =
l∫

0

φi (x)M(x, t)dx
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=
y−	∫
0

φi (x)M(x, t)dx +
y+	∫

y−	

φi(x)M(x, t)dx +
l∫

y+	

φi(x)M(x, t)dx

=
y+	∫

y−	

sin
(2i − 1)πy

2l
×

(
A

2
+ A

π
sin(ω0t) + A

2π
sin(2ω0t)

)/
2	dx

= sin
(2i − 1)πy

2l
×

(
A

2
+ A

π
sin(ω0t) + A

2π
sin(2ω0t)

)
(20)

Apart from the HFTI, kinetic frictional torque acts on the drill bit (y = l). The
frictional torque is treated as external load, and its generalized form is expressed as

Mi2(t) = sin
(2i − 1)πy

2l
× μKWB RB = sin

(2i − 1)πl

2l
× μKWB RB = μKWB RB

(21)

where μK indicates the kinetic frictional coefficient, WB means the weight on bit,
and RB represents the equivalent diameter of the drill bit.

3.3 Generalized Coordinate

In complex systems, coordinates used to describe the systemmay not be independent;
some of the coordinates may be related to each other by constraint equations. Gener-
alized coordinate is a type of independent coordinate used to resolve the constraint
equations. The MSM is to be used. Theoretically, there are infinitely many mode
shapes should be superposed for a continuous system. Practically, however, only the
mode shapes that provide the main contribution are included. For a drill string, using
the MSM means the transformation of a continuous system into a discrete system.
The solution of the equation of motion of the drill string is expressed as

θ(x, t)=
∞∑
i=1

φi (x)Qi (t) (22)

where φi(x) represents the regularized modal function and Qi(t) indicates the gener-
alized coordinate that denotes the amplitude of the ith mode shape at time t.

By combining Eqs. (2) and (22), a differential equation of the generalized coor-
dinate can be obtained (refers to Appendix C)

Q̈i (t) + 2ξiωi Q̇i (t) + ω2
i Qi (t) = Mi

J i
(23)
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The problem of obtaining the system response is obtaining the generalized coor-
dinates that are composed of a series of single degree of freedom (SDOF). The initial
conditions of Eq. (23) are expressed by Eqs. (C.5) and (C.6). Once the generalized
coordinates are obtained, the dynamics of the drill string can be obtained in terms of
Eq. (22). The solution of Eq. (23) has two parts: a general solution related to the asso-
ciated homogeneous equation and a particular solution. The associated homogeneous
equation of Eq. (23) is

Q̈i (t) + 2ξiωi Q̇i (t) + ω2
i Qi (t) = 0, i = 1, 2, 3 . . . (24)

Combining with Eqs. (C.5) and (C.6), the initial conditions of a drill string in the
slip phase can be obtained

Q1(0) = 1

J 1

l∫
0

Jθ0(x) sin
(πx

2l

)
dx = 1

J 1

l∫
0

Jθ0(l)
[
sin

(πx

2l

)
dx

]2 = θ0(l) (25)

Q2(0) = 1

J 2

l∫
0

Jθ0(x) sin

(
3πx

2l

)
dx = 1

J 2

l∫
0

Jθ0(l)

[
sin

(
3πx

2l

)
dx

]2

= θ0(l)

(26)

Q3(0) = 1

J 3

l∫
0

Jθ0(x) sin

(
5πx

2l

)
dx = 1

J 3

l∫
0

Jθ0(l)

[
sin

(
5πx

2l

)
dx

]2

= θ0(l)

(27)

Q̇1(0) = Q̇2(0) = Q̇3(0) = 0 (28)

The generalized coordinate response determined by the initial conditions is then
equals

Qi1(t) = ηi e
−ξiωi t sin(ωid t + v) (29)

where

ηi =
√
Q2

i (0) +
(
Q̇i (0) + ξiωi Qi (0)

ωid

)2

=

√√√√√√(θ0(l))
2 +

⎛
⎝ ξiθ0(l)√

1 − ξ 2
i

⎞
⎠

2

(30)

vi = arctan
ωid Qi (0)

Q̇i (0) + ξiωi Q̇i (0)
= arctan

√
1 − ξ 2

i

ξi
(31)
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For the drill string dynamics induced by initial conditions, the proportion of each
generalized coordinate is inversely proportional to the square of frequency. Consid-
ering the first three orders of mode shape, their proportions are 225/259, 25/259, and
9/259, respectively.

For the drill string in slip phase, a kinetic frictional torque acts on the drill bit (y=
l). The proportion of each generalized coordinate determined by the frictional torque
is also inversely proportional to the square of the frequency, which can be described
as

Qi2(t) = MF

J iω2
i

sin
(2i − 1)πy

2l
(32)

where MF can be determined by Eq. (21).
The constant term of the generalized impact torque is A

2 sin (2i−1)πy
2l , the corre-

sponding generalized coordinate determined by it can be written as

Qi3(t) = A

2J iω2
i

sin
(2i − 1)πy

2l
(33)

According to Eq. (19), the generalized impact torque of the second term (the term
with ω0) of Eq. (A.10) is A

π
sin(ω0t) sin

(2i−1)πy
2l , and the corresponding generalized

coordinate equals

Qi4(t) = Mi1

J iω2
i

× 1√
(1 − γ 2

i1)
2 + (2ξiγi1)2

× sin(ω0t − βi1) (34)

where Mi1 = A
π
sin (2 j−1)πy

2l indicates the coefficient of the jth generalized impact
torque whose natural frequency is ω0, γi1 means the ratio of the excitation frequency
ω0 and the ith natural frequency, βi1 is the initial phase of the ith generalized coordi-
nate when the harmonic term of natural frequency equals to ω0, and γi1 and βi1 can
be written as

γi1 = ω0
/

ωi (35)

βi1 = arctan
2ξiγi1
1 − γ 2

i1

(36)

According to Eq. (19), the generalized impact torque of the third term (the term
with 2ω0) of Eq. (A.10) is A

2π sin(2ω0t) sin
(2i−1)πy

2l , and the corresponding general-
ized coordinate equals

Qi5(t) = Mi2

J iω2
i

× 1√
(1 − γ 2

i2)
2 + (2ξiγi2)2

× sin(2ω0t − βi2) (37)
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where Mi2 = A
2π sin (2 j−1)πy

2l indicates the coefficient of the jth generalized impact
torque whose natural frequency is 2ω0, γi2 represents the ratio of the excitation
frequency 2ω0 and the ith natural frequency, βi2 means the initial phase of the ith
principal coordinate when the harmonic term of natural frequency equal 2ω0, and
γi2 and βi2 can be written as

γi2 = 2ω0
/

ωi (38)

βi2 = arctan
2ξiγi2
1 − γ 2

i2

(39)

For a drill stringwith initial angular displacement and under the action of frictional
torque and impact torque, the generalized coordinate [Eq. (23)] of using MSM can
be expressed as

Qi (t) = Qi1(t) + Qi2(t) + Qi3(t) + Qi4(t) + Qi5(t) (40)

4 Case Study

To obtain a quantitative understanding of the drill string dynamics, a case study is to
be conducted with a specific drill string shown in Table 1 to be analyzed. The rotary
table velocity is assumed to be 100 rpm (ϕ = 10.5 rad/s); the impact frequency is
600 times per minute (10 Hz); the first order of damping ratio is ξ 1 = 0.05; and
the position of the impact torque is 1 m above the drill bit (y = 2999 m). For the
impact generator, the impact torque is 366 N m when the impact frequency is 600
times per minute. The system parameters are J 1 = J 2 = J 3 = 46.64 Kg m2, ω1

= 1.672 rad/s, ω2 = 5.015 rad/s, ω3 = 8.358 rad/s, ξ 1 = 0.05, ξ 2 = 0.0167, ξ 3 =
0.01, l = 3000 m, A = 366 N m, y = 2999 m, ω0 = 62.83 rad/s. Regarding the
static frictional coefficient μS = 0.8, μK = 0.5, WB= 160 kN, and RB = 72 mm,
then Mi2(t) = 5760 N m. Part of the parameters can be obtained from the works by
Navarro-López and Cortés [25], Tang et al. [20], and Tang [26].

For the drill string analyzed, the first three mode shapes are shown in Fig. 2
For the 3000-m-drill string, its torsional stiffness is 317 N m/rad. When the drill

bit steps into the slip phase, the initial angular displacement of the drill bit is 29.07 rad
(the drill bit lags behind the rotary table, and the value is determined by the static
frictional torque). When there is no impact torque, the motion of the drill string is a

Table 1 Physical parameters of the drill string

Length l External diameter Dp Internal diameter dp Shear modulus G Density ρ

(m) (mm) (mm) (Pa) (kg/m3)

3000 127.0 108.6 8.0 × 1010 7850
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Fig. 2 First three mode shapes of the drill string

type of damped vibration determined by the initial angular displacement and static
frictional torque, the first three orders of generalized coordinate can be given as

Q1(t) = 225 ×
(−10.925 × e−0.05×1.67t × sin(1.66t + 1.521)

−(10.5t/φ1(x) + 18.17)

)/
259 (41)

Q2(t) = 25 ×
(−10.908 × e−0.0167×5.015t × sin(5t + 1.554)

−(10.5t/φ2(x) + 18.17)

)/
259 (42)

Q3(t) = 9 ×
(

−10.905e−0.01×8.358t × sin(8.32t + 1.561)
−(10.5t/φ3(x) + 18.17)

)/
259 (43)

For a drill string in slip phase and with the action of torsional impact, part of
the frictional torque acted on the drill bit can be offset by the impact torque. The
initial angular displacement of the drill bit is herein less than that of the conventional
drilling (without impact torque). Under this condition, dynamics of the drill string
are related to the initial condition, frictional torque, viscous damping, and impact
torque (including constant term and the harmonic terms), the first three orders of
generalized coordinate can be given as

Q1(t) = 225 ×
[
−10.925e−0.05×1.67t × sin(1.66t + 1.521) − (10.5t/φ1(x) + 17.59)

]/
259

+ 6.33 × 10−4 × sin(62.83t + 0.0027) + 7.91 × 10−5 × sin(125.66t + 0.0013) (44)
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Q2(t) = 25 ×
[
−10.908e−0.0167×5.015t × sin(5t + 1.554) − (10.5t/φ2(x) + 17.59)

]/
259

+ 6.37 × 10−4 × sin(62.83t + 0.0009) + 7.92 × 10−5 × sin(125.66t + 0.0004) (45)

Q3(t) = 9 ×
[
−10.905e−0.01×8.358t × sin(8.32t + 1.561) − (10.5t/φ3(x) + 17.59)

]/
259

+ 6.44 × 10−4 × sin(62.83t + 0.0005) + 7.94 × 10−5 × sin(125.66t + 0.0003) (46)

Substituting the above equations into Eq. (22), the following equation can be
obtained by using MSM

θ(x, t) = φ1(x)Q1(t) + φ2(x)Q2(t) + φ3(x)Q3(t) (47)

where φ1(x), φ2(x), and φ3(x) are given by Eq. (16).
Figures 3 and 4 show the torsional dynamics of the drill stringwith andwithout the

action of impact torque. From the figures, the torsional impact torque will aggravate
slightly the drill string vibration. In general, the HFTI seems more significant to the
vibration of the bottom hole assembly. The effect of HFTI on the rock breaking is
not considered in this section.

Figure 5 shows the time response of the relative angular displacement between
the drill bit and the rotary table when the drill string is in slip phase. In this section,
the drill bit is regarded to overcome a same frictional torque, though the HTFI can
balance part of the frictional torque. From the figure, even in the drill bit, the effect
of HFTI on vibration of the drill bit is very small.

In the actual drilling process, the HFTI aggravates the rock damage and rock
failure. As a result, the required torque developed to shear the rock reduces, which
means the relative angular displacement between the drill bit and the rotary table is
less than that of the drilling without HFTI. In our previous work [18], it is shown
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Fig. 3 Angular displacement of the drill string during the slip phase in the case no HFTI acts on
the drill string (assuming that the initial relative angular displacement between the drill bit and the
rotary table is determined by the static frictional torque)
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Fig. 4 Angular displacement of the drill string during the slip phase in the case HFTI acts on the
drill string (assuming that the initial relative angular displacement between the drill bit and the
rotary table is determined by the static frictional torque as well as the HTFI)
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Fig. 5 Relative angular displacement of the drill bit for the cases with and without HFTI

that the frictional torque becomes 8150 N m when the HFTI is 600 times per minute
and the corresponding relative angular displacement is 25.71 rad/s (the drill bit lags
behind the rotary table). When the effect of HFTI on rock breaking is considered,
the first three orders of mode shape shall be given as

Q1(t) = 225 ×
[
−8.145e−0.05×1.67t × sin(1.66t + 1.521) − (10.5t/φ1(x) + 17.59)

]/
259

+ 6.33 × 10−4 × sin(62.83t + 0.0027) + 7.91 × 10−5 × sin(125.66t + 0.0013) (48)

Q2(t) = 25 ×
[
−8.128e−0.0167×5.015t × sin(5t + 1.554) − (10.5t/φ2(x) + 17.59)

]/
259

+ 6.37 × 10−4 × sin(62.83t + 0.0009) + 7.92 × 10−5 × sin(125.66t + 0.0004) (49)
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Q3(t) = 9 ×
[
−8.125e−0.01×8.358t × sin(8.32t + 1.561) − (10.5t/φ3(x) + 17.59)

]/
259

+ 6.44 × 10−4 × sin(62.83t + 0.0005) + 7.94 × 10−5 × sin(125.66t + 0.0003) (50)

Figure 6 presents the actual dynamics of the drill string by considering the effect
of HFTI on rock breaking. Figure 7 shows the relative angular displacement between
the drill bit and the rotary table with considering the effect of HFTI on rock breaking.
From the figure, for the actual drilling, the HTFI will mitigate the torsional vibration
of the drill string. In addition, the HFTI is more sensitive to the drill string close to
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Fig. 6 Drill string dynamics with considering the effect of HFTI (600 times per minute) on the
rock breaking
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Fig. 7 Relative angular displacement of the drill bit for the cases with and without HFTI (for the
case with HFTI, the effect of HFTI on rock breaking is considered)
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the drill bit. The HFTI is beneficial to the drilling process as well as the mitigation
of stick-slip vibration.

5 Conclusions

This study addresses the problem of stick-slip vibration that usually occurs in the
drilling of hard formation. In recent years, the HFTI is used to improve the drilling
efficiency. Field applications show that theHFTI is beneficial to the rock breaking and
mitigation of stick-slip vibration. Since the high-frequency torsional impact drilling
is realized by adding HFTI onto the drill string, the HFTI may aggravate or be a
source of drill string vibration. In this study, the effect of HFTI on the torsional
vibration of a drill string in slip phase is investigated. Firstly, a mechanical model
of the continuous drill string is developed, with the HFTI is treated as external load.
Secondly, the motion equation of the drill string is resolved through using MSM,
with the HFTI is regarded as Fourier series. Finally, case studies are conducted to
reveal the effects of HFTI on drill string vibration, wherein a 3000-m-drill string is
analyzed, and the impact parameters are obtained from the laboratory experiments.
Results show that the HFTI has little influence on the vibration of a drill string in
slip phase, which also means that the HFTI will not give rise to or aggravate the drill
string vibration. In fact, the HFTI aggravates the rock damage and rock failure. In
this way, the HFTI changes the response of angular displacement and finally leads
to the mitigation of stick-slip vibration.
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Appendix A

In this appendix, the approach of processing the impact torque is presented. For
the HFTI, it acts on a certain cross section of the drill string. The impact torque is
assumed to be periodical pulses shown in Fig. A.1, wherein τ is the load period and
A is the load amplitude.

According to the figure, the expression of the impact torque can be given as

p(t) = A ×
(
1 − t

τ

)
, 0 ≤ t ≤ τ (A.1)
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Fig. A.1 Impact torque

From the figure, the impact torque is piecewise, which leads to difficulties in
solving the equations. The Fourier series is used to solve this matter. The p(t) can be
given as

p(t) = a0
2

+ a1 cos(ωt) + a2 cos(2ωt) + · · · + b1 sin(ωt) + b2 sin(2ωt) + · · ·

= a0
2

+
∞∑
n=1

(an cos(nωt) + · · · + bn sin(nωt)) (A.2)

where ω = 2π /τ is the fundamental frequency, and a1, a2, …, b1, b2, … are given as

a0 = ω

π

2π/ω∫
0

p(t)dt = 2

τ

τ∫
0

p(t)dt (A.3)

an = ω

π

2π/ω∫
0

p(t) cos(nωt)dt = 2

τ

τ∫
0

p(t) cos(nωt)dt (A.4)

bn = ω

π

2π/ω∫
0

p(t) sin(nωt)dt = 2

τ

τ∫
0

p(t) sin(nωt)dt (A.5)

By substituting Eq. (A.1) into Eqs. (A.1)–(A.5), the results become

a0 = ω

π

2π/ω∫
0

p(t)dt = A (A.6)

an = ω

π

2π/ω∫
0

p(t) cos(nωt)dt = 0, n = 1, 2, 3 . . . (A.7)

bn = ω

π

2π/ω∫
0

p(t) sin(nωt)dt = − A

nπ
, n = 1, 2, 3 . . . (A.8)
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The expression of impact torque can be given as

p(t) = A

2
+ A

nπ

∞∑
n=1

sin(nω0t) (A.9)

where ω0 is the impact frequency. By using the first three orders, Eq. (A.9) can be
rewritten as

p(t) = A

2
+ A

π
sin(ω0t) + A

2π
sin(2ω0t) (A.10)

Appendix B

The orthogonal character is presented. Equation (7) can be rewritten as

GIpφ
′′
i (x) = −ω2

i φi (x) (B.1)

Multiplying the first term of Eq. (B.1) by φj(x) and integrating it can obtain

l∫
0

GIpφ j (x)φ
′′
i (x)dx = GIpφj(x)φ

′
i(x)|l0 −

l∫
0

GIpφ
′
j(x)φ

′
i(x)dx (B.2)

Eq. (B.2) can be rewritten as

l∫
0

GIpφ j (x)φ
′′
i (x)dx=

l∫
0

GIpφ
′′
j (x)φi(x)dx (B.3)

If fixed boundary condition or free boundary condition is applied on the drill string
end, the second term of Eq. (B.2) equals 0. Equation (B.2) can then be written as

l∫
0

GIpφ j (x)φ
′′
i (x)dx= −

l∫
0

GIpφ
′
j(x)φ

′
i(x)dx (B.4)

Multiplying Eq. (B.1) by φj(x) and integrating it shall have

l∫
0

GIpφ
′
j (x)φ

′
i (x)dx =

l∫
0

ω2
i φi(x)φj(x)dx (B.5)
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Exchanging the corner marks i and j, Eq. (B.4) becomes

l∫
0

GIpφ
′
i (x)φ

′
j (x)dx =

l∫
0

ω2
j φj(x)φi(x)dx (B.6)

Eqs. (B.5) and (B.6) lead to

(
ω2
i − ω2

j

) l∫
0

φi (x)φ j (x)dx = 0 (B.7)

If i �= j, then ωi �= ωj; we therefore have

l∫
0

φi (x)φ j (x)dx = 0 (B.8)

Equation (B.8) indicates that the mode shapes are orthogonal with respect to the
mass and stiffness.

Appendix C

The derivation process of Eq. (23) is to be discussed. As the mode shapes are orthog-
onal with respect to the inertia (or mass) and stiffness, then we obtain

l∫
0

Jφi (x)φ j (x)dx = 0, i �= j (C.1)

l∫
0

Jφi (x)φ j (x)dx = 1, i = j (C.2)

l∫
0

GIp
d2φi (x)

dx2
φ j (x)dx = 1, i = j (C.3)

Substituting Eq. (22) into Eq. (2), we have

∞∑
i=1

GIp
d2φi (x)

dx2
Qi (t)−

∞∑
i=1

Jφi (x)Q̈i (t)−
∞∑
i=1

β(x)φi (x)Q̇(t) = M(x, t) (C.4)
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The corresponding initial conditions are

θ(x, 0) = θ0(x) =
∞∑
i=1

φi (x)Qi (0) (C.5)

∂θ(x, 0)

∂t
= θ̇0(x) =

∞∑
i=1

φi (x)Q̇i (0) (C.6)

MultiplyingEq. (C.4) byφj(x) and integrating it, combiningwithEqs. (C.1)–(C.3),
and (B.3), we have

l∫
0

GIp
d2φ j (x)

dx2
φ j (x)dxQj(t) −

l∫
0

Jφ2
j (x)dxRQj(t)

−
∞∑
i=1

l∫
0

β(x)φi (x)φ j (x)dxQ̇i (t) =
l∫

0

φ j (x)M(x, t)dx (C.7)

By conducting similar operations to Eqs. (C.5) and (C.6), we have

Q j (0) = 1

J j

l∫
0

Jθ0(x)φ j (x)dx (C.8)

Q̇ j (0) = 1

J j

l∫
0

J θ̇0(x)φ j (x)dx (C.9)

Combining with Eqs. (18), (19), and (B.1), the first term of Eq. (C.7) can be
written as

l∫
0

GIp
d2φ j (x)

dx2
φ j (x)dxQj(t) = −ω2

j J j Q j (t) (C.10)

and Eq. (C.7) becomes

J j Q̈ j (t) + ω2
j J j Q j (t) +

∞∑
i=1

l∫
0

β(x)φi (x)φ j (x)dxQ̇ j (t) = M j (C.11)

For the third term of Eq. (C.11), the non-diagonal matrix will lead to difficulties
in equation decoupling. In order to decouple the third term of Eq. (C.11), the viscous
damping is assumed to be



120 L. Tang et al.

β(x) = aJ (C.12)

Defining the jth damping ratio ξ j is

ξ j = a

2ω j
(C.13)

where a is constant. By combiningEqs. (C.11)–(C.13), Eq. (23), which is a decoupled
differential equation of the generalized coordinate, can be obtained.
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Carriage–Rail–Viaduct Coupling
Analysis Using Dynamic Flexibility
Method

Linya Liu, Zhiyuan Zuo, Yun Lai Zhou and Jialiang Qin

Abstract This study compares the two-layer model and three-layer model in the
coupling analysis of the vehicle–rail–viaduct systems, especially for the vertical
vibration investigation. This study applies dynamic flexibility in establishing the
dynamic model of vehicle–rail–viaduct in frequency domain through the wheel–rail
interaction and interaction model between rails and viaducts. By simplifying the
subsystems of vehicles, rails, and viaducts in order to obtain two-layer model and
three-layer model, the dynamic responses are hereinafter analyzed for the influences
of subsystems to the final vibration responses. The results shall suggest the prediction
of dynamic responses for the vehicles, rails, and viaducts.

Keywords Dynamic flexibility method · Coupling analysis · Viaduct ·
Multiple-layer model

1 Introduction

Structural coupling problem has been a critical affair in both engineering fields
and theoretical fields. Previous investigations have undergone various developments
for the coupling analysis in various structures like bridges, large-scale structures
like high-rise buildings. In terms of vehicle–rail–viaduct coupling system, a lot of
researchers have done in unveiling the hidden interrelation between subsystems, and
the interrelation between them as well [1–4].

Researchers developed various layer models for different occasions in engineer-
ing, such as two-layer model, three-layer model, and four-layer model. These models
have been applied in specific problems, and theyhave seldombeen compared between
each other.
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For the dynamic analysis of the coupling system, the dynamic flexibility method
has been widely applied [5–10]. For instance, in [5], a new slab track plate design
is analyzed with dynamic flexibility method for studying the vibration mitigation
effect; in [6], the damping pad under CRTS-III ballastless track in high-speed rail
viaduct is analyzed for the noise and vibrationmitigation performance using dynamic
flexibility method; similarly, in [7], the noise mitigation performance for box girder
viaduct is analyzed. In addition, the vehicle-line-bridge coupled vibration is analyzed
using dynamic flexibility method in [8, 9], and the characteristics of temperature and
frequency change dynamics of elastic pad in high-speed rail-free track fastener is
studied in [10].

This study aims to illustrate the coupling analysis of simplifiedmultiple composite
beam models in viaducts which has several forms: two layers (rail is mounted to the
viaduct), three layers (rail is mounted to the slabs, and CA mortar is filled between
the slab and viaduct) and so on, and remaining sections shall give detailed discussion.

2 Theory Deviation

2.1 Multiple-Layer Model for Vehicle–Rail–Viaduct Dynamic
Analysis

This study takes CRH380A high-speed train and high-speed railway box girder
viaduct as an example; a dynamic flexibility method is applied to study the dynamic
responses of the vehicle–rail–viaduct coupling system. The two-layer and three-layer
vehicle–rail–viaduct coupling systems are shown in Figs. 1 and 2, respectively.

Carriage

Rail

Viaduct

Fig. 1 Two-layer model
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Carriage

Rail

Track

Viaduct

Fig. 2 Three-layer model

2.2 Dynamic Flexibility Method

By considering the single rail, the vehicle subsystem will be taken only in half, the
carriage body and bogie are considered with vertical displacements only, and then
single carriage model has 10 degrees of freedom, the vibration equation as follows:

[MV ]{Z̈V (t)} + [CV ]{ŻV (t)} + [KV ]{ZV (t)} = {p(t)} (1)

where [MV ] means the mass matrix of vehicle system, [CV ] indicates the damping
matrix for the vehicle system, [KV ] means the stiffness matrix of the vehicle system;
{ZV (t)}, {ŻV (t)

}
, and

{
Z̈V (t)

}
mean the displacement, velocity, and acceleration of

the carriage system; {p(t)} means the wheel–rail interaction force resulted from the
track irregularity.

As to dynamic compliance, the dynamic flexibility βv
i, j indicates displacement

of ith wheel–rail contacting point when harmonic unit load acting at jth wheel–rail
contacting point. Such wheel dynamic flexibility can be expressed as

βV = [βV
i j ] i, j = 1, 2, 3, 4 (2)

Details for this theory can refer to [6–10].
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Table 1 Parameters of the
CRH380A vehicle

Parameter/Symbol/Unit Value

Rated carriage weight/Mc/kg 42934

Weight of bogie/Mb/kg 3300

Weight of wheel pair/Mw/kg 1780

Rotating inertia of body nodding/Jc/(kg m2) 1.712 × 106

Bogie nodding moment of inertia/Jb/(kg m2) 1807

Vertical stiffness of primary suspension/k1/(N
m−1)

1.176 × 106

Vertical damping of primary suspension/c1 (N
s/m)

1.0 × 104

Vertical stiffness of second suspension/k2/(N
m−1)

2.4 × 105

Vertical damping of second suspension/c2/(N
s/m)

2.0 × 104

Length of carriage/lc/m 25

Length between truck centers/lb/m 17.5

Length between axles/lw/m 2.5

3 Model Parameters

3.1 Parameters for the Train

The high-speed train uses CRH380A as an example, and related parameters are listed
in Table 1.

The viaduct uses high-speed single-line box girder viaduct, and the parameters
for the viaduct are listed in Table 2.

3.2 Irregularity Spectrum of the Rail

In terms of the carriage, the velocity for the carriage is taken as 300 km/h, and
the irregularity spectrum is taken with the rail roughness amplitude limit from ISO
3095:2005 [11]

20 lg

(
R

r0

)
=

{
18.435 lg λ + 27.194, 0.01 ≤ λ

−9.7, 0.00315 ≤ λ < 0.01
(3)

λ=2πV

ω
(4)
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Table 2 Parameters of track
bridge

Components Description/Symbol/Unit Value

Rail Young’s modulus/Er/(N/m2) 2.059e11

Moment of Inertia/I r/(m4) 3.217e−5

Density/ρr/(kg/m3) 7850

Section area/Ar/(m2) 7.745e−3

Shear modulus/Gr/(N/m2) 7.7e10

Section coefficient/κ 0.45

Loss factor/ηr 0.01

Fasteners Distance between fasteners/(m) 0.625

Slab track Young’s modulus/(N/m2) 3.6e10

Moment of Inertia/(m4) 1.7e–3

Density/(kg/m3) 2750

Section area/(m2) 0.51

Loss factor 0.1

Viaduct Length/(m) 32

Young’s modulus/(N/m2) 3.45e10

Moment of Inertia/(m4) 5.757

Density/(kg/m3) 2650

Section area/(m2) 4.416

Loss factor 0.1

Bearing Stiffness/(MN/m) 6e9

Distance between bearings/(m) 32

Loss factor 0.25

where r0 is reference roughness value. r0 = 10−6 m; λ is wavelength in m; V is the
velocity of the carriage; and ω is the circular frequency of the excitation.

3.3 Scenarios in Computation

In order to analyze the influence of the multiple-layer beam model in a vibration of
the carriage–rail–viaduct vertical coupling vibration, two scenarios are considered
with two-layer and three-layer beam model, respectively, as illustrated in Table 3.

4 Results Analysis

Figure 3 shows the results of accelerations of carriage body calculated by aforemen-
tioned two models, and these they agree well with each other. The main frequency
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Table 3 Operating scenarios in computation

Scenarios Parameters considered

Scenario 1: two-layer beam model Carriage, rail, fasteners, viaduct, bearing

Scenario 2: three-layer beam model Carriage, rail, fasteners, slab track, CA mortar, viaduct,
bearing
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Fig. 3 Acceleration of the carriage body

peak occurs around 1 Hz. This implies that these twomodels do not have a noticeable
difference in analyzing the accelerations for the carriage body during investigating
the rail–viaduct coupling.

As demonstrated in Fig. 4, the acceleration of the bogie mainly occurs below
80 Hz. In the frequency range below 30 Hz, these two models, two-layer and three-
layer beam models, obtain the almost same results; in the frequency range [30, 54]
Hz, the two-layer beammodel leads to more conservative acceleration estimation for
the bogie comparedwith the three-layer beammodel; in the frequency range [54, 120]
Hz, the three-layer model obtains the more conservative acceleration estimation for
the bogie. At the frequency 58 Hz, the two-layer model obtains 0.3694 m/s2 and the
three-layer model gives 0.3216 m/s2. Such difference comes from the effect of slab
track and CA mortar, which can mitigate the vibration effectively in the frequency
range [54, 120] Hz.

Figures 5, 6, and 7 display the spectrums for wheel pair acceleration, wheel–rail
force, and rail acceleration, respectively. As can be seen in Figs. 5, 6, 7, these afore-
mentioned two modes generally agree with each other in assessing the vibration
responses for the wheel pair, wheel–rail force, and the rail as well. In the frequency
range below 30 Hz, the responses agree with each other; in the frequency range
[30, 52] Hz, the predicted responses from the two-layer model are less than those
assessed by the three-layer model; in the frequency range [52, 120] Hz, the predicted
responses from the two-layer model are higher than those assessed by the three-layer
model for wheel pair, wheel–rail force, and rail as well.
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Fig. 4 Acceleration of the bogie

Fig. 5 Acceleration of the wheel pair
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Fig. 6 Wheel rail force

Fig. 7 Acceleration of the rail



Carriage–Rail–Viaduct Coupling Analysis … 131

Fig. 8 Acceleration of the viaduct

In summary, as increasing the layers, the slab, CAmortar, and so on shall mitigate
the high-frequency vibration effectively.

Figure 8 illustrates the acceleration responses of the viaduct assessed by the two
models. In Fig. 8, the frequency range is lower than 20 Hz, and the results from the
two models agree well with each other; the peaks of the accelerations for two-layer
model and three-layer model are 0.6095 (m/s2) and 0.4403 (m/s2), respectively, both
at 58 Hz. It is also obvious that as increasing the layer in the model, the acceleration
peak of the acceleration has been clearly decreased. This suggests that the slab track,
CA mortar, and so on can mitigate the vibration of the system effectively.

5 Conclusions

This study applies the dynamic flexibility method in constructing the frequency
domain dynamic model for the vehicle–slab–viaduct coupling system and studies
the vibration responses considering the influences of the subsystem. Conclusions
can be summarized as follows:

Two-layer and three-layer vehicle–rail–viaduct dynamic models agree well in
the vertical accelerations evaluation, and in the high-frequency range, they have
influences in the accelerations of the bogie and wheel pair.

When using more layers in the dynamic model, the slab track, CA mortar, and so
on shall mitigate the high-frequency vibration.

When using more layers, for instance, using three layers for the dynamic model,
the damping shall be increased and further affect the corresponding vibration
responses.
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Dynamic Response Reconstruction
to Supplement the Data Insufficiency

Chaodong Zhang, Jia He and Xiaohua Zhang

Abstract Due to sensor cost and installment accessibility, it is not practical to
instrument sensors on every point of a structure and the measured set of dynamic
responses is thus usually incomplete, thus the need to perform dynamic response
reconstruction always arises, especially for a large civil structure. This study presents
the novel Kalman filter (KF) based response reconstruction methods under known
and unknown excitations. The underlying state estimation theories under known
and unknown excitation are first introduced. Then dynamic response reconstruction
methods are developed based on the state estimation in the framework of KF. For
easy explanation and demonstration, a simple 4-story shear-type frame is employed
in numerical study. The performances of the proposed KF based response recon-
struction are examined. The effect of process and measurement noises covariance
and spatial location of the measurement sensors to the reconstruction accuracy is
investigated and discussed.

Keywords Dynamic response reconstruction · Kalman filter · Joint response ·
Excitation reconstruction

1 Introduction

Acquiring the dynamic response is vital for the vibration-based structural control and
condition monitoring. The measurement insufficiency always arises due to the fact
that the deployed sensors are always limited considering the fact that it is not rational
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to install sensors on all components of a large-size civil structure. And the point-wise
nature of current conventional sensors does not enable sensing the entire structural
safety, especially the locations that are not accessible under in-service condition. This
demand may be fulfilled through implementation of response reconstruction, which
is to reconstruct the desired response of locations where no sensors are installed
using the limited sensor measurement.

The dynamic response reconstruction methods can be generally classified into
three types: the transmissibility concept based method, the empirical mode decom-
position (EMD) based method, and the state estimation based method. For the trans-
missibility concept based methods, the responses of a structure at the inaccessible
locations during its operation are reconstructed by transforming the response at other
locations. Kammer [1] presented a transmissibility based response reconstruction
method, in which the transmission matrix is formatted using the Markov param-
eter matrix. Basing on the generalized transmissibility concept in the frequency
domain proposed by Ribeiro and Maia [2], Law and Ding [3] adopted this concept
for dynamic response reconstruction in a substructure and also extended it to the
wavelet domain function [4, 5]. However, for all applications using transmissibil-
ity concept, it requires to know the locations where forces or moments are applied.
Since the pseudo-inverse operation is used, it is generally required that the number of
reconstructed sensor channels should be no larger than the number of measurement
sensor. Zhang et al. [6] utilized the truncated mode shape matrix in the forming of
transmissibility matrix for response reconstruction.

In the EMD based method, the measurement data available at limited locations
are decoupled into several intrinsic mode functions (IMFs) using the EMD method.
Those IMFs are applied to extrapolate the dynamic response for the critical locations
where the direct response measurements are unavailable. He et al. [7] presented a
new method for structural response reconstruction at critical locations using mea-
surements from remote sensors basing on the empirical mode decomposition with
intermittency criteria and transformation equations derived from finite element mod-
eling. Wan and Li [8] developed this method by combining transmissibility concept
and made it applicable to the situation where closely spaced modes were presented
andperiodic excitationwere applied.Maet al. [9] reconstructed the transient response
using Karhuen–Loeve mode decomposition. In general, this type of methods tremen-
dously depends on the EMD techniques, and thus, the reconstruction accuracy is hard
to be guaranteed.

In the state estimation based method, various estimators can be employed in kind
of method. The Kalman filter is the most renowned estimator with a broad range of
applicability. Zhang et al. [10] andXu et al. [11] presented aKalman filter (KF) based
dynamic response reconstruction method, in which the state vector of generalized
coordinates was obtained using the real-time responses measured by limited sen-
sors; then the response at the locations of interest can then be reconstructed by
multiplying their mode shapes with the estimated state vector. Kalman filter under
unknown input was also used by Lourens et al. [12] for response reconstruction
under unknown excitation using acceleration measurement. Liu et al. [13] derived
an extended Kalman filter under unknown (EKF-UI) similar to the procedures of
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KF-UI and applied the filter to estimate structural displacement and unknown inputs
by fusing of displacement and acceleration. The optimal multi-type sensors place-
ment for response reconstruction under unknown excitation has been investigated by
Zhang and Xu [14], and in this following-up study, the reconstructed response and
excitations are used for damage identification [15, 16].

This paper presents the Kalman filter based response reconstruction method. The
feasibility and the performance of these methods are also investigated. The remain-
ing section of this paper is outlined as follows. Some theoretical foundations for
the Kalman filter based response reconstruction under known and unknown excita-
tion will be introduced in Sect. 2. In Sect. 3, a 4-floor shear frame is employed to
demonstrate the procedure as well as to examine the effectiveness of the proposed
Kalman filter based response reconstruction. The effect of process and measurement
noises covariance and spatial location of the multi-type sensors to the reconstruction
accuracy is also investigated. Finally, some concluding remarks are given in Sect. 4.

2 Kalman Filter Based Response Reconstruction

2.1 State Space Equations of a Structure in Modal
Coordinate

The vibration of a structure discretized into n degrees of freedom (DOFs) can be
expressed as the superposition of the first several mode responses, i.e. d(t) =
�sqs(t), where �s ∈ �n×s is the collection of the selected smass-normalized mode
shapes and q(t) ∈ �s is the modal displacement vector. The dynamics can be repre-
sented in state space representation as

ẋ(t) = Acx(t) + Bcu(t) (1)

with

Ac =
[

0 I
−�s2 −2�s�s

]
, Bc =

[
0

�sT L

]
(2)

where x(t) = {qs(t) q̇s(t)}T ∈ �2s denotes the state vector; Ac ∈ �2s×2s and Bc ∈
�2s×r represent the continuous state matrix and input matrix; �s ∈ �s and � ∈ �s

are the diagonal matrices containing the eigenfrequenciesωi , and themodal damping
ratio ξi , respectively. The vector u(t) ∈ �r contains r inputs and thematrix L ∈ �n×r

is the mapping matrix relating the external excitation with the corresponding DOFs
of the structure. If the observation vector includes displacement d(t) and acceleration
d̈(t), the associated observation equation writes

ym(t) = Cm
c x(t) + Dm

c u(t) (3)



136 C. Zhang et al.

with

ym(t) =
{
d(t)
d̈(t)

}
,Cm

c =
[

Sd�s 0
−Sd̈��s2 −2Sd̈�

s�s�s

]
, Dm

c =
[

0
Sd̈�

sT�s L

]
(4)

in which ym(t) is the observation vector. Sd and Sd̈ are the displacement and accel-
eration output distribution matrices, of which the jth row has one in the column
corresponding to the number of the degree of freedom being measured in the jth row
of the output vector ym(t) and zeros everywhere else.

Integrating over the sampling interval �t and including the modeling error
and measurement noise corruption, the continuous-time state space formulation in
Eqs. (1) and (3) can be transferred into a discrete-time state space formulation as

xk+1 = Adxk + Bduk + wk (5)

ymk = Cm
d xk + Dm

d uk + vk (6)

where xk = x(k�t) is the discrete-time state vector with k = 0, 1, 2, . . .; �t is
the sampling interval; wk ∈ �2s ∼ N (0, Q) and vk ∈ �m ∼ N (0, R) represent
the independent, white, and normally distributed processing and measurement noise
vectors with covariance matrices Q and R, respectively. The relationship between
continuous system and discrete system depends on the assumption made for the
inter-sample behavior of the excitation uk .

2.2 Dynamic Response Reconstruction Under Known
Excitation

By combing the system Eq. (5) with the measurement Eq. (6), an unbiased and
minimal variance estimator of state vector x̂+

k can be derived by virtue of Kalman
filter as

x̂k = (
I − KkC

m
d

)(
Ad x̂k + Bduk−1

) + Kk
(
ymk − Dm

d uk
)

(7)

in which the Kalman gain is

Kk = PkC
mT
d

(
Cm
d Px

k C
mT
d + R

)−1
(8)

Then the reconstructed responses are expressed

yek = Ce
d x̂k + De

duk (9)
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in which Ce
d and De

d represent the output matrix and transmission matrix, respec-
tively, corresponding to the DOFs of the key location, whose responses are to be
reconstructed.

2.3 Dynamic Response Reconstruction Under Unknown
Excitation

Assuming the filter with the initial unbiased estimate x−
0 and the error variance Px−

0 ,
the excitation and state estimates can be estimated recursively by the three steps in
the following form:

x̂−
k+1 = Ad x̂

+
k + Bdûk (10)

ûk = Mk
(
ymk − Cm

d x̂
−
k

)
(11)

x̂+
k = x̂−

k + Kk
(
yk − Cm

d x̂
−
k − Dm

d ûk
)

(12)

where x̂−
k and x̂+

k denote the priori and posteriori state estimates at time instant k,
respectively. The minimum-variance unbiased estimate of excitation ûk is obtained
by Eq. (11) with the gain matrix Mk given by

Mk =
(
DmT

d R̃−1
k Dm

d

)−1
DmT

d R̃−1
k (13)

R̃k = Cm
d Px−

k CmT
d + Rm (14)

The minimum-variance unbiased estimate of the state vector x̂+
k is obtained by

Eq. (12) with the filter gain expressed as

Kk = Px−
k CmT

k R̃k (15)

The corresponding state estimation error covariance is now updated to the poste-
rior state estimation error covariance as

Px+
k = Px−

k − Kk

(
R̃k − Dm

d Pu
k D

mT
d

)
KT

k (16)

in which Pu
k =

(
DmT

d R̃−1
k Dm

d

)−1
denotes the excitation estimate error covariance.

Then the optimal state estimate x̂+
k at time instant k is propagated to the next time

instant priori estimate x̂−
k+1 using Eq. (12) and its error covariance matrix is
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Px−
k+1 = [

Ad Bd

][ Px+
k Pxu

k

Pux
k Pu

k

][
AT
d

BT
d

]
+ Q (17)

in which Pxu
k = (

Pux
k

)T = E
[(
xk − x̂+

k

)(
uk − ûk

)T ]
= −KkDm

d Pu
k is the cross

covariance of the estimate errors of both state and excitation. Consequently, unbiased
minimum-variance estimates of state and excitation are simultaneously derived using
the above three-step recursive filter. After the minimum-variance unbiased estimates
x̂+
k and ûk are obtained, the reconstructed responses yek are expressed as

yek = Ce
d x̂

+
k + De

d ûk (18)

We can see that the excitation sequences can be recursively estimated, provided
that three-step filter is well structured by choosing the proper measurement locations
and the number. It is worth highlighting that the sensor configuration should be
optimally designed since improper sensor placement could cause divergence in state
and input estimation, and thus, degrade the response reconstruction accuracy.

3 Numerical Study

3.1 The Shear Frame

A4-story shear-type frame structure fabricated in steel as shown in Fig. 1 is employed
as a numerical study. The column section and floor section are 10 mm× 30 mm and
60 mm× 30 mm, respectively. The corresponding story mass is 8.424 kg and lateral
floor stiffness is 10.08 kN/m. The natural frequencies of the frame can be obtained
through modal analysis as 6.05, 17.41, 26.67, and 32.72 Hz. Rayleigh damping
model is adopted to include to damping effect, and the mass and stiffness damping
coefficients are 0.53 and 1.44 × 10.4, respectively, corresponding to the first two
modal damping ratios as 0.01.

The shear-type frame is horizontally excited by a base excitation. The force
sequence is stochastic with the standard deviation of 10.0 N. The displacement and
acceleration on each floor are calculated using Eqs. (6) and (7), in which the sampling
interval is �t = 0.002 s, and the sample duration is 20 s. Measurement noises are
modeled as the Gaussian white noise with the standard deviation (STD) as 0.05 times
the STD of noise-free responses, i.e., R0 = diag{2.74 × 10−8, 9.30 × 10−8, 1.66 ×
10−7, 2.16 × 10−7, 0.560, 0.646, 0.649, 0.925}. The process noise is set as Q0 = 1
× 10−11 I, where I is the unit matrix with the dimension of the system model order
4. The standard deviation ratio between noise and noise-free response as shown in
Eq. (19) lies between 5.01 and 6.66% as Tabulated in Table 1.

RDP = std(yn − yr )

std(yr )
× 100 (19)
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Fig. 1 Geometric
configuration of a shear-type
frame

3.2 Dynamic Response Reconstruction

The noise-corrupted displacement and acceleration on the fourth floor are utilized as
the measurements to reconstruct the displacement and acceleration on other floors
as well as the fourth floor. The performance of KF based response reconstruction is
examined under the circumstances of known and unknown excitation, respectively.
The four modes are all used in formatting Eqs. (1)–(2). Table 1 lists the RDP between
the reconstructed responses and the real ones under known and unknown excitation.
For comparison, the RDPs of the noise-corrupted responses are also tabulated in
Table 1, in whichyr , yn , yke , and yue denotes the real, noise-corrupted, estimated under
known and unknown excitation, respectively. It is noted thatwhen the excitations time
histories are available, the displacement and acceleration RDP on the fourth floor is
remarkably reduced from 5.06 and 5.44 to 0.07 and 0.18, respectively. It evidences
that the KF based response reconstruction could partly remove the noises on the
measurement sensors. The overall RDP average of the displacement and acceleration
of these four floors is reduced from 5.03 and 6.20 to 0.04, and 0.23, respectively,
indicating the KF based response reconstruction works well under known excitation.
The time histories and the spectrum of the reconstructed displacement on the first
floor (D1) and acceleration on the fourth floor (A4) are depicted in Figs. 2 and 3,
respectively. It can be seen that the reconstructed responses match pretty well with
the real ones in both time domain and frequency domain.

When the excitation time histories are unknown (excitation location are pre-
defined), the performance of the proposedKFbased response reconstruction degrades
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Fig. 2 Reconstructed displacement on the first floor: a time history and b the spectrum

slightly. The displacement RDP average decreases from 5.03 to 2.43, while the dis-
placement RDP average increases from 6.20 to 11.16. The possible reason is that
acceleration contains more vibrations of high modes. Figure 4 depicts the compari-
son between the reconstructed and the real excitation. The reconstructed excitation
coincides with the real one. Figures 2 and 3 also show the time history and spectrum
of the reconstructed responses (D1 andA4). The reconstructed responsesmatch quite
well with the real ones even under unknown excitation.

We can see that the proposed KF based response reconstruction works well for
the circumstance of both known and unknown excitations. It should be pointed out
that in this simulation study, the process noise and measurement noise (presented by
the covariance matrices) are assumed known accurately, which probably contribute
to the excellent response reconstruction results.

3.3 Discussion

The effect of Q and R. It is evident that the reconstruction accuracy is related
to the process and measurement noise covariance. Although several methods have
been proposed to estimate the values [17], the estimated values may be not accurate
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Fig. 3 Reconstructed acceleration on the fourth floor: a time history and b the spectrum

Fig. 4 Reconstructed excitation under unknown excitation

enough. To investigate the effect of Q and R to the response reconstruction results,
the performances of proposed method are examined whenQ and R are 100 times the
accurate ones, i.e.,Q = 100 Q0 and R = 100 R0. The results are tabulated in Table 2.
The displacement and acceleration average RDPs are a bit larger than that in Table 1,
but still keep a small value. These results demonstrate the robustness of the proposed
method, especially the response reconstruction under unknown excitation.

The effect of sensor placement. The measurement sensors may be deployed in
different locations. To investigate the effect of sensor placement, the accelerations on
the first and fourth floor (A1 and A4) are assumed to be the measurement channels
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in this case study. The reconstructed displacement on the first floor is shown in Fig. 5
when the excitation is known and inFig. 6when the excitation is unknown.Wecan see
that the proposed method still produces quite excellent results when the excitations
are known. However, when the excitations are unknown, the reconstructed response
diverges. The reconstructed excitation as shown inFig. 7 also testifies this point. Thus,
for response reconstruction, the sensor types, location, andnumber shouldbeproperly
selected, especially for the response reconstruction under unknown excitation.

Fig. 5 Reconstructed D1 under known excitation when A1 and A4 are used as the measurement
channels

Fig. 6 Reconstructed D1 under unknown excitation when A1 and A4 are used as the measurement
channels

Fig. 7 Reconstructed excitation on under unknown excitation
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4 Concluding Remarks

TheKalman filter based dynamic response reconstruction under known and unknown
excitation has been introduced in this study. The feasibility and the effectiveness of
the proposed methods have been examined through a simple 4-floor shear frame.
Some concluding remarks can be given as:

(1) The proposed KF based method shows excellent capacity in reconstructing
dynamic responses under known and unknown excitation. For the case of
unknown excitation, the reconstruction accuracy is a bit degraded compared
with that of known excitation.

(2) Multi-type responses (for instance, displacement and acceleration in the simu-
lation study) could be fused to improve the reconstruction accuracy. Dynamic
response of different types to the measurement could be reconstructed (for
instance, measured acceleration could be used to reconstruct displacement).

(3) The performance of the proposed method is robust to the assignment of process
and measurement noise covariance.

(4) The measurement sensors should be deployed selectively to ensure the pro-
posed method function properly, especially for the response reconstruction
under unknown excitation.
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A Proposed Method for the Use
of the IBIS-FS in Experimental Modal
Analysis of Buildings

Massoud Sofi, Elisa Lumantarna, Priyan Mendis and Lihai Zhang

Abstract This chapter attempts to simplify experimental modal analysis for use
in structural health monitoring through remote sensing of vibrations using the
microwave interferometry technology. The commercially available Image By Inter-
ferometric Survey-Frequency for Structures (IBIS-FS) radar has been used in bridge
and historical building monitoring with comparable results to accelerometers. In this
chapter, a repeatable method for experimental modal analysis of a high-rise building
with an irregular plan using the IBIS-FS is presented.

Keywords IBIS-FS · High-rise building · Experimental modal analysis

1 Introduction

The structural health of a building is typically monitored through changes in its
dynamic properties. Significant deviations in natural frequencies or mode shapes can
indicate a potential loss of stiffness in the structure. Experimental Modal Analysis
(EMA) is a commonly usedmethod to determine the dynamic properties of buildings.
Vibration data for the EMA is conventionally captured by accelerometers placed
strategically in a building to capture an envelope of the building’s response to dynamic
excitations. Thismethod is often time-consuming, costly, impractical, intrusive to the
building’s operations and risky in buildings close to collapse [1, 2]. This research aims
to develop a method that utilises the Image By Interferometric Survey-Frequency
of Structures (IBIS-FS) radar to collect vibration data on medium- and high-rise
buildings remotely for experimental modal analysis.

The following chapter documents the relevant literature that was reviewed in this
research project. The literature is divided into Structural Health Monitoring (SHM),
Experimental Modal Analysis (EMA) and the Image by Interferometric Survey-
Frequency of Structures (IBIS-FS) radar. The first section explains the relevance
of EMA to SHM, whilst the second covers the various methods of EMA detailing
their advantages and disadvantages with respect to the objectives of the research.
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The final section presents the available information on the IBIS-FS radar, including
the method and reliability in which it captures data, the advantages over other data
capturing options and the various applications that the IBIS-FS has successfully been
applied for EMA.

2 Review

2.1 Structural Health Monitoring

Structural health monitoring is the regular observation of a structure’s performance
through various sensing techniques to identify any damage to prevent failure [3].
Damage, in a more general term, is any variation of the system that has an adverse
effect on the structural performance. The identification of dynamic characteristics
of structures in high seismic risk area is extremely important, as well as structures
that have been exposed to severe events such as fires, explosions and tornadoes.
Since damage can only be identified by a comparison of current and initial states,
continuous monitoring of the structure is required.

There is increasing research in vibration-based damage identification methods
in order to detect and prevent the likelihood of severe infrastructure failures that
cause loss of life and tremendous economic loss. Vibration-based damage detection
utilises the fact that the modal properties of a building are functions of its physical
properties, where the physical properties such as the mass, damping and stiffness
are proportional to the natural frequency, mode shapes and critical damping of a
building.

Therefore, any changes in stiffness of a structure and hence any damage can be
detected through analysis of a building’s modal parameters [4]. When a structural
model is used in conjunctionwith vibration-based damage identificationmethods, the
achievable damage identification levels can be increased from levels 1 and 2 to level
3 [5]. Level 4 requires greater analysis of the fatigue life analysis of the structural
members to provide a prediction on the remaining service life of the structure.

The shift in natural frequencies is commonly used in damage detection of struc-
tures. Farrer and Doebling’s study on damage detection of Alamosa Canyon Bridge
found that either very precise measurements or large levels of damages are required
due to the low sensitivity of frequency shifts [5]. They also reported that using the
shift in natural frequency as a measure of damage had less statistical variation from
random error sources than other modal parameters, such as mode shapes or critical
damping. When natural frequencies are found to be noticeably lower than expected,
it can be concluded that there is an abnormal loss of stiffness [6]. Begg et al. [7]
identified limitations of the method in that higher modes are more sensitive to dam-
age identification, but higher modes are typically harder to identify due to their
lower energy content in comparison with the dominant primary natural frequencies.
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The other large limitation in the method is that because natural frequencies are a
global characteristic of the structure, it cannot provide spatial localised information
of damage.

2.2 Experimental Modal Analysis

ExperimentalModalAnalysis (EMA) is amethod that seeks to determine thedynamic
properties of a system, sometimes referred to as the modal properties. In the context
of a structural system, the dynamic properties include the critical damping ratio,
natural frequencies and vibration mode shapes [8], where the natural frequencies
are the inverse of the natural periods, which is the time taken for a mode shape to
complete a cycle. This research was focused on capturing the natural frequencies of
buildings through EMA.

Data Collection Methods
EMA involves the collection of data from a structural system’s excitation and its
conversion into a power spectral density (PSD) for analysis to determine the dynamic
properties. A structural system’s response data can be in the form of displacements,
velocities or accelerations due to a dynamic force. These quantities can be recorded
in several ways and can be captured as a result of ambient, free or forced vibrations
of a structure. Ambient vibrations in a structure are typically caused by traffic, wind
or earthquake loadings, forced vibration is instigated by artificial means such as
mechanical shakers, and free vibrations are caused by dropping large weights upon
the structure [9].

Ambient loading is often preferred over artificial excitation in EMA as it is freely
available, accurately represents the expected dynamic loading of the building, does
not require building access and does not affect neighbouring structures and the people
using the building [10]. However, earthquake response of a building is better captured
due to the unpredictability of earthquakes [11].

Data Analysis
The PSD can be obtained by applying a discrete Fourier transform to the dynamic
displacement data of a building, negating the need for knowing the forcing function
[12]. When applying a Fourier transform to a typical displacement quantity, a PSD is
produced as in Fig. 1 [9]. The natural frequencies of a structure are the frequencies at
which an applied oscillating force causes an amplified response in the system [13].
Several methods of identifying natural frequencies of a system from the FRF have
been developed, each has advantages and a typical approach for researchers is to use
a combination of methods to compare the results from each method [14, 15].

Methods of Modal Identification
Two main methods of output modal identification are used, nonparametric and para-
metric, where the former is developed in the frequency domain and the latter in the
time domain [16].
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Fig. 1 Power spectral density of an SDOF system [9]

The simplest form of nonparametric modal identification is the basic frequency
domain or Peak Picking (PP) technique [17]. Through visual inspection of the PSD
of a system, the natural frequencies can be detected as the corresponding frequencies
of abnormally sharp peaks in the amplitude. Figure 1 shows a PSD produced from
experimental data.

This technique is desirable as it is simple and quick to adopt, making it ideal for
repeatability by other engineers with a grasp of basic structural dynamics. However,
because the frequency selection is subjective it is not always an accurate assessment
of the natural frequencies. This is a problem if the natural frequencies are closely
spaced on the frequency spectrum or if no peaks are prominent in a PSD.

The Frequency Domain Decomposition (FDD) method is an attempt to remove
the uncertainty of the PP method by decomposing every frequency line in the PSD
into a set of Auto-Spectral Density Functions (ASDFs) that correspond to a specific
Single Degree of Freedom (SDOF) using the Singular Value Decomposition (SVD)
technique. Figure 2 shows graphically how two frequencies can be separated into
two SDOF systems using the SVD technique. The natural frequency is identified
where a strong correlation between the dominant singular vector (eigenvector) and
the singular values (eigenvalue) of the SVD for a particular SDOF is found [18].

The FFD and EFDDmethods overcome the limited applicability of the PPmethod
to structures with closely spaced modes indistinguishable by eye [18]. The disadvan-
tage of using the FFD and EFDD methods is their additional effort in computational
time.

Parametric Modal Identification
Parametric modal identification seeks to attain a system model instead of a physical
model for a dynamic system, where a physical model is produced based on the
fundamental laws of physics and a system model uses calibration of experimental
data to model input and output behaviour through system identification [20].

Parametric models are created by the assumption that a mathematical model for-
mulated froma set of parameters estimated during the system identification can repre-
sent what occurs and is usually in the form of a differential equation [21]. Parametric
modal identification of output-only systems focuses on system identification with
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Fig. 2 Graphical representation of the decomposition of an FRF into singular values [19]

an assumption that the unknown input to the system is replaced by white Gaussian
noise [10, 22]. There are many system identification methods that exist for output-
only systems; however, their complexity often makes them impractical for quick
assessment of modal parameters and methods such as the Autoregressive Moving
Average Vector (ARMAV) have never achieved an acceptable level of robustness and
efficiency for civil engineering applications due to issues with convergence, sensi-
tivity to initial values and large computational burdens for multivariate systems such
as buildings [10]. The Stochastic Subspace Identification in its covariance-driven
(SSI-Cov) and data-driven forms (SSI Data) are both commonly applied parametric
techniques for EMA. The SSI Data method functions solely on the measured output
response, whereas the SSI-Covmethod requires estimated covariance functions from
the output time histories to estimate the modal parameters [23].
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3 Microwave Interferometric Radars

Microwave interferometry has emerged as a new technology to remotely measure
the vibration response of a range of structures. The Image by Interferometric Survey-
Frequency for Structures (IBIS-FS) is a commercial radar instrument with interfero-
metric capacity that was designed and constructed by the Italian company Ingegneria
Dei Sistemi (IDS, Pisa, Italy). It has been commonly used as a remote sensing tool
to measure the dynamic response of bridges, historical and modern buildings, stay
cables and guyed masts. The IBIS-FS radar utilises the Stepped-Frequency Contin-
uous Wave (SF-CW) [24] and differential interferometry techniques [25] to accu-
rately measure both static and dynamic displacements of several points of a structure
simultaneously on a radial plane (Fig. 3 ). Each discontinuity of a surface represents
a potential source of reflection of electromagnetic waves sent out by the radar, acting
as a series of virtual sensors [26]. These points are defined in the IBIS-FS software as
range bins (Rbins), and any number of them can be used in combination as a source
of displacement data. The red line in Fig. 3 shows the span fromwhich an Rbin could
be selected based on the set-up of the IBIS-FS.

The IBIS-FS has a dual purpose, to identify the position of a target and to detect
the differential displacements over time through changes in phase information of
reflected microwave signals [1]. Figure 4 shows how the displacement of an object
alters the phase information received from a reflected microwave. It then follows
that the change in phase is proportional to the displacement of the target from the
original measurement. The software provided with the IBIS-FS allows the user to
obtain the Signal-to-Noise Ratio (SNR) of a particular Rbin as well as a polar plot of
the phasor data for an Rbin’s time history, where the phasor is the complex number
that describes the amplitude and phase values of the received signal for each Rbin.

Fig. 3 Illustration of radial
and projected displacement
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Fig. 4 Relationship between differential displacement and reflected phase information

IBIS-FS User Considerations
The instrument’s highest sampling rate of 200 Hz occurs up to a distance of approx-
imately 200 m (Fig. 5), with respect to range resolution, where the range resolution
is the minimum distance between two targets in the same line of sight of the IBIS-FS
radar [27]. As this research is only concerned with capturing one target along a line
of sight on a building, the green line of Fig. 5 will be most relevant, and hence only
buildings that are taller than 250 m will cause a drop-in sampling rate. Obstructions
such as trees and light poles will cause microwaves to be reflected and giving the
observer a false sense of the deflections of the intended target, and this can be avoided
by tilting the angle of the IBIS-FS to ensure that any objects obstructing the view of

Fig. 5 Relationship of sampling rate to distance from the target, for three range resolutions
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Fig. 6 Relationship between displacement accuracy and SNR of the IBIS radar

the target are not within range or by planning in advance a suitable location for the
set-up of the equipment.

Accuracy of the displacement data captured by the IBIS-FS reduces proportionally
with the SNR, which is an indication of the reflectivity of the target n. Figure 6
shows the relationship between the SNR in dB and displacement accuracy. The SNR
can be improved by installing artificial reflectors at the specific points where the
displacement is being monitored [28].

However, this process would remove the appeal of the IBIS-FS being a remote
sensing system that does not require installation of devices to the target building.
Even with considerably low SNR, the IBIS is still able to produce accuracy within
1.4 mm.

3.1 Applications of IBIS-FS

As IBIS-FS is able to simultaneously detect the displacements of different targets
located at different distances from the sensor, it can be utilised to identify dynamic
responses andmodal parameters of a cable-stayed bridge from a singlemeasurement.
By considering the cables as a taut string, the tension force can be obtained from
natural frequencies measured. Benedettini and Gentile [29] and Luzi, Crosetto and
Cuevas-González [2] conducted dynamic tests using IBIS-FS on stay cables and a
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guy, respectively; tension forces of the members were successfully computed from
the natural frequencies measured.

IBIS-FS interferometric radar only provides a displacement plot in a radial line
of sight. Therefore, it is most suitable for structures with a dominant dimension, for
instance, bridges that span longer in horizontal direction and towers as they span
in vertical direction. IBIS-FS can be used for ambient vibration tests for structural
healthmonitoring of bridges, as well as measurement of vertical deflections of bridge
under live load as part of reception tests of new bridges [26]. Conservation of ancient
towers and minarets, which are part of World Heritage, is extremely important, and
hence continuous surveillance on structural health is needed. The IBIS-FS radar has
been used for structural health monitoring of numerous famous ancient towers in
Italy, such as the bell tower of the Cathedral of Florence [30] and the Leaning Tower
of Pisa [31].

The IBIS-FS radar cannot provide a bidirectional displacementmeasurement [32].
Therefore, IBIS-FS is not as widely used on buildings. There is less literature on
applications of IBIS-FS on high-, medium- and low-rise buildings. One of them is
measurements of ambient vibrations of a reinforced concrete wall building which
includes a double basement, a ground floor and 10 storeys and is also irregular in
geometry and rigidity [33].

3.2 Alternative Vibration Sensing Devices

Accelerometers
Accelerometers are commonly used in vibration testing of large structures, but have
many drawbacks. The limitation of accelerometers is that they need to be installed
at the point where the vibration is occurring and connected to a computer for data
transmission. When needing to analyse a structure quickly from several points, the
set-up time involved with accelerometers can be tedious and intrusive to building
occupants. Complex wiring is required to connect all the accelerometers in their
desired locations to a central computer. Additional time is needed to process the
acceleration data through double integration into the displacement quantities for
modal analysis [34].

Alternative Remote Sensing Devices
Remote sensing devices that use lasers are less suited for global structural monitoring
as they only capture a single point of data, where several points along a building’s
plane of motion are required to construct the mode shapes and determine the natural
frequencies [1]. Terrestrial Laser Scanning (TLS) has been reported as insufficient
for SHM as displacement errors up to 10 mm were recorded [35]. However, whilst
scanning laser vibrometry using lamb waves has been found to be enough in iden-
tifying local damage in metallic structures [35], they are not useful for identifying
global natural frequencies and mode shapes of a building.
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Global Positioning System (GPS) technology has been used in SHMbut has failed
to be successful due to a low sampling rate of approximately 10Hz [34]. GPSs require
remote sensors to be installed atop the target building for data collection, and this
means that this data collectionmethod is not entirely remote from the building, unlike
the IBIS-FS which is entirely remote [36]. One study found that an error of 7 mm
± (baseline length in km) occurred with the use of GPS technology and described
its main limitations are its inability to capture oscillatory movements and the 20 min
time delay between observation and availability of measurement [36].

Advantages of Using IBIS-FS
Using IBIS-FS for capturing dynamic displacement data is advantageous as:

1. It takes approximately 20 min to set up and begin recording from arriving at the
site. Compared with the lengthy process of setting up an array of accelerometers
throughout a building, the IBIS-FS is relatively simple to set-up.

2. Its high sensitivity results allow acquisition of signals and identification of the
characteristics of key vibration modes from up to 1 km away [28, 31].

3. Dynamic testing can be accomplished without accessing the structure, and there
is no effect on daily operation of the structure.

4. It is not affected by adverse weather conditions and can operate at day and night
times.

5. The simplicity of the radar technology is particularly useful when applied to
the measurement of dynamic characteristics of structural elements such as tall
buildings, damaged structures, ancient towers and stay cables that are costly or
very difficult to access by conventional techniques such as contact sensors.

6. It captures displacements in the time domain making it compatible with both
parametric and nonparametric EMA method categories.

7. The provided software (IBISDV) processes the raw data in real time, where each
measurement set undergoes removal of linear and mean trends and has a 0.5 Hz
high-pass filter and a cosine tapering with a damping of 20% applied before a
Fourier transform is performed to reduce the data processing time for the user
and to allow for immediate feedback of the data quality [4].

Few papers detail amethod for passively excited EMAof building structures using
the IBIS-FS despite its potential for improving the process of EMA of buildings by
superseding traditional accelerometers for data capture. The IBIS-FS is limited in
the fact that it can only take measurements of one building face at a time, where a
set of 4 or more accelerometers could be used to construct an envelope of a build-
ing’s dynamic response. For torsional responses of a building, at least three IBIS-FS
machines will be required to capture a 3D envelope of the building’s displacement.

The aim of this research was to determine the situations in which the IBIS-FS
provides reliable results and when should the user exercise caution in interpretation
of the results from the radar.
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3.3 Case Study

The field measurement methodology is one aspect that is important when using
remote sensing system towards data collection. It was chosen because the system of
methods within field measurement allows the researchers to conduct testing in real-
world conditions, unlike in theoretical or laboratory testing. Similarly, a survey or
literature reviewmethodology would be inefficient in achieving the objectives of this
research as there are few engineers that could be questioned on the topic and there are
few papers describing the use of IBIS-FS in EMA of buildings. By conducting field
measurements, the researchers are able to identify through first-hand experience, the
optimal conditions and limitations associated with the application of the IBIS-FS
radar in EMA of buildings. The results obtained using this methodology will have
higher prestige but will require extremely detailed accounts of testing methods in
order to validate results and withstand scrutiny.

3.4 Methodology

The aim of the pilot study was to produce an easily repeatable and reliable method
for the identification of the first few modes of a building’s structure using the IBIS-
FS equipment in conjunction with EMA. As shown above in the literature review,
the IBIS-FS captures comparable results to accelerometers, which are currently a
popular instrument in EMA but are limited to capturing data of a single point [1, 4].
The method undertaken in this research to develop a repeatable method for the use
of IBIS-FS in EMA on buildings was to conduct field experiments and parametric
studies on the collected data. Twonoticeably different buildingswith varying ambient
conditions were the subjects of the field experiments.

Parameters of Interest
Parametric studies were performed on two different buildings located in Melbourne,
Australia. The buildings had significantly different physical and dynamic character-
istics.

1. The Redmond Barry Building (RBB) at the University of Melbourne’s Parkville
Campus and

2. A residential High-rise Building in Docklands (HBD), Melbourne CBD. This
building’s anonymity will be preserved for legal reasons.

The parameters were demarcated into three sections: the IBIS-FS set-up, building
layout and ambient conditions. The parameters collected for each test are summarised
in Table 1.

Data Collection and Analysis
The displacement data of both buildings was captured under ambient conditions
with strong winds being the chosen method of building excitation. In both cases, the
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Table 1 Parameters of IBIS-FS field test on buildings

RBB HBD

1. IBIS-FS set-up

Tilt of IBIS-FS (°) 45 60

Height of IBIS-FS (m) 1.2 1.2

Distance from building (m) 24 50

Eccentricity to building’s centre of
rigidity

Unknown 0 m

2. Building layout

Height (m) 39 100

Primary structural stability system Shear walls Core and podiuma

Weak axis direction North North

Primary façade material Brick Glassb

3. Ambient conditions

Wind speed (km/h) 35 37.8

Wind direction North North

Presence of vibrations from machinery
or construction

No Alimak on side of building, not in
operation

aPodium from ground floor to fourth floor
bAt the time of testing, the HBD was in the final stages of façade construction, and as such, some
of the façades were not complete. The researchers used this to their advantage as the exposed slabs
and columns were potentially strong virtual reflective surfaces

wind speeds were equal to or greater than 35 km/h at the time of displacement data
collection and acted in the direction parallel with the buildings’ weaker axis. The two
days for testing were selected in advance based on wind speed forecasting provided
from WillyWeather who supplies information based on data from the Bureau of
Meteorology for the Olympic Park gauging station [37]. The wind speed was also
checked during the time of testing to get an estimate of the actual wind speed at the
time of data collection.

Floor layouts indicating the centre of rigidity of the HBD were obtained prior
to testing of that building. This was used to plan the location of the IBIS-FS radar
in relation to the building so as to align the radar with minimal eccentricities from
the building’s theoretical line of motion. The height of the HBD building was taken
from the construction drawings, but the buildings’ actual height was not measured
to confirm this. The theoretical natural modes of the structure were obtained from a
finite element model constructed in ETABS by the building’s designers.

Information on the RBB was less readily available, and researchers deemed the
creation of a finite element model of the building out of the scope of the research. The
height of the RBB was estimated by counting the floors, and assuming an average
floor height, this value was not confirmed on site.
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Similarly, the distances from the IBIS-FS set-up to the buildings’ faces were not
measured accurately. The distance was paced out for the RBB test and estimated
from trigonometry in the HBD test.

For the HBD and RBB, at least 4 Rbins with relatively high SNRs were selected
up to the height of the building for analysis of their displacement–time histories.
The displacement–time histories obtained from the IBIS-FS had a moving average
of four points applied to it before being converted into the frequency domain using
the fast Fourier transform capabilities of an Excel spreadsheet. The resulting PSDs
were then put into a logarithmic scale, and 10 and 0.1 Hz low- and high-pass filters
were applied to allow for clearer viewing of the peaks in amplitude. The peak picking
method was employed to estimate the first three natural frequencies of the building
where it was applicable.

Alternate frequency domain PSD plots of the same Rbins were also obtained
from the IBISDV software to compare the quality of the PSD plots created by the
researchers using a basic data formatting method and the method employed by the
IBISDV software.

The resulting natural frequencies obtained from the PSD plots for the HBD were
then compared with the theoretical natural frequency output of the ETABS finite
elementmodelling as done in the researchof [38, 39]. In the absenceof afinite element
model of the RBB, the PSD plots were compared with two empirical equations for
determining the natural frequency of buildings [40, 41]:

f = b · 0.09 · H (1)

f = 46/H (2)

where

H Height of building.
b Dimension of building parallel to loading.

4 Results and Discussion

4.1 Method for Use of IBIS-FS in Building EMA

The natural frequencies recorded of the HBD test were obtained by using the fol-
lowing method:

1. Prior to testing:

a. Obtain or create a finite element model of the building with a sufficiently
high level of detail of the structural system to determine its centre of rigidity
and the first few modes of vibration.
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b. Obtain a building floor plan to plot the centre of rigidity and potential points
of IBIS-FS set-up points with consideration for surrounding obstructions.

c. Visit the site to confirm possible locations where the line of sight of the IBIS-
FS would have an uninterrupted view in line with the building’s weakest axis
and centre of rigidity.

d. Monitor thewind forecast speed and direction from appropriate local weather
gauging station.

e. Select a day for testing from the forecast where wind speed is equal to or
greater than 35 km/h.

2. Collect data (as per IBIS-FS manual)
3. Data processing

a. Elect appropriate Rbins along the length of the building based on largest
SNR.

b. View polar chart of a Rbin’s data reliability to determine if a suitable Rbin
has been selected.

c. Repeat (a) and (b) until 4 or more Rbins are selected.
d. Obtain PSD from the IBISDV software for PP analysis.
e. For a closer examination of data, download displacement data from IBIS-

FS to perform an FFT so that the user can apply high- and low-pass filters,
moving averages and data exclusion techniques to clean up data making
natural frequencies more apparent.

The method followed for the test at RBBwas essentially the same as shown above
with the only points of difference being the building itself, the lack of a finite element
model, the unknown eccentricity of the measurement and the accessibility of the land
surrounding the building. The HBD had a greater choice of positions to set up the
IBIS-FS, whilst RBB was limited to a single place governed by surrounding trees
and other buildings.

4.2 Range bin Selection

Figures 7 and 8 show the variance of the SNRs of the Rbins spread up the height of
the target building. The X-axis shows the Rbin number in ascending order relative
to the height of the building, and the Y-axis shows the SNR of that particular Rbin.

4.3 Frequency Plots

Raw data collected from the measurements taken for the HBD and RBB was pro-
cessed, and the PSDobtained fromdisplacement–time histories is presented in Figs. 9
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Fig. 7 Graph showing SNR of each Rbin up to a height of HBD

Fig. 8 Graph showing SNR of each Rbin up to a height of RBB

and 11, respectively. PSD plots obtained from the IBISDV software for the HBD and
RBB are shown in Figs. 10 and 12. Rbin analysed is shown in Fig. 7.

High-Rise Building in Docklands
The first three obvious peaks of the PSD graphs from both methods were identical,
and they gave the first three natural frequencies of the building’s structure to be
0.324 Hz, 0.416 Hz and 0.72 Hz, respectively.

There were no identifiable peaks in the PSD obtained from the FFT in the Excel
spreadsheet for the RBB, and as such, no frequencies could be identified. However,
the PSD obtained from the IBISDV software did have one significant peak, indicating
that the first natural frequency was at 0.88 Hz.
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Fig. 9 PSD of HBD selected
Rbins obtained from FFT
analysis performed in Excel

Fig. 10 PSD of HBD
selected Rbins obtained from
IBISDV software

Fig. 11 PSD for RBB
selected Rbins obtained from
FFT analysis (Excel)
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Fig. 12 PSD of RBB selected Rbins obtained from (IBISDV software)

Table 2 Comparison of theoretical and experimental natural frequencies

Building Mode Frequency (Hz)

Theoretical Experimental Error (%)

HBD First 0.362 0.324 10.4

Second 0.543 0.416 23.3

Third 0.841 0.722 14.1

RBB First 0.99 1.18 0.88 11.1 25.4

Redmond Barry Building
Comparison of theoretical and experimental natural frequencies.

Table 2 shows a comparison of the theoretical and experimental natural fre-
quencies. The theoretical frequencies of the HBD were obtained from a detailed
ETABS finite element model. The theoretical first natural frequencies of the RBB
were obtained from the two empirical Eqs. (1) and (2), respectively.

4.4 Phasor Polar Charts

The following phasor charts were obtained from random Rbins in the HBD and RBB
tests as shown in Figs. 13 and 14, respectively. The radial coordinate represents the
amplitude, and the angular coordinate represents the phase angle of the received
signal, where the phase represents a position on the wave signal that relates to an
oscillatory movement.
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Fig. 13 Phasor plot of HBD
Rbin 124

Fig. 14 Phasor plot of RBB
Rbin 62
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4.5 The Effects of External Factors

Wind Speed and Direction
Theuse ofwind as a source of passive building excitation appeared to be very effective
as it was enough in both tests to excite the buildings to a reasonable extent. In both
tests, the wind speed was equal to or greater than 35 km/h and acted in the direction
parallel to the buildings’ weaker axis allowing formaximumpotential displacements.
This approach whilst effective was time-consuming as the researchers’ testing days
were dictated by the almost random fluctuations in weather conditions.

This is a disadvantage in using this approach as the researchers were not free to
collect data at their own leisure and had to constantly monitor the weather reports for
a suitable testing day and time. If thismethodwere to be implemented by a consultant,
a generous amount of time would need to be allowed for data to be captured to wait
for the ideal wind conditions.

Building Location and Surroundings
The location of the buildings and their surrounding obstructions heavily influenced
the ability of the researcher to capture data with the IBIS-FS. The RBB only allowed
for testing on side of its face as surrounding buildings were obstructing the view.
The side from which the data collection took place was also restricted in that another
building’s footprint impeded the placement of the IBIS-FS any further than 24 m
from the target. For this reason, the HBD was selected as a suitable test subject, and
it was in a sparsely populated area of Melbourne allowing for multiple choices of
placement of the IBIS-FS. This became very important because the HBD building
was more than double the height of the RBB and required the IBIS-FS to be placed
further away from the target source. Placing the IBIS-FS, a suitable distance from the
target is critical because as the IBIS-FS is tilted further back to observe the building
face the number of Rbins within the building’s face decreases. For this reason, it was
better to place the IBIS-FS an appropriate distance from the building. These issues
are more likely to become a problem when collecting data from tall buildings in
densely populated areas. The number of obstructions to the line of sight increases,
and there is likely to be less space to move the IBIS-FS a suitable distance from the
building.

4.6 Data Analysis and Interpretation

Range bin Selection
The Rbins for analysis were selected based on the graph shown in Figs. 7 and 8 for
HBD and RBB, respectively, where the Rbins with the higher SNR favoured. The
SNR for all the Rbins in both tests was at least above 50, and this corresponds with a
high level of accuracy in the measurement of displacements in millimetres as shown
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in Fig. 6. Additionally, only Rbins that were higher up the buildingwere selected. The
first reason is that higher levels of a building have larger displacements under wind
load compared to lower levels, which give more accurate measurements and larger
responses in the PSD plots allowing for ease of employing the PP method. Higher
Rbins were selected as some trees, street lights and power poles were surrounding the
building. These lower Rbins often gave dynamic displacement data of these obstacles
rather than the building.

The PSD plots obtained for the HBD via the Excel FFT method and the IBISDV
software yielded the exact same results for the value of the experimental first three
natural frequencies. The PP method was simple to apply to the HBD PSD plots, as
the first three frequency peaks were relatively prominent.

These values compared favourably with the ETABS finite element modelling
with errors of 10.4%, 23.3% and 14.1% for the first three modes, respectively. This
difference in the frequencies between the theoretical and the experimental is likely
due to discrepancies between the decisions made in the finite element modelling
and the actual construction of the building on site. Given that the model is not a
true representation of the as-built building, it is reasonable to say that the results
validate each other to some extent. The values obtained from the EMA could be used
to calibrate the finite element model, and the building can be retested in future to
observe any changes in the first three frequencies.

The PSD plots of the RBB conversely were not as easily analysed with the PP
method.No clear peakswere identified in theExcel FFT spreadsheet, but the PSDplot
from the IBISDV software contained a solitary prominent peak. This sole value was
used to compare with the empirical Eqs. (1) and (2). Reasonable errors of 11.1% and
25.4%were recorded given the nature of the empirical equations used for comparison.

Overall, the IBISDV software PSD plots were found to be superior to the FFT
method in the Excel spreadsheet. The software can produce a peak in the RBB
experiment but also displayed the PSD with an overall higher amplitude making it
easier to observe any peaks.

Phasor Plots
The polar plots shown in Figs. 13 and 14 give an indication of the signal’s phasor over
time for the duration of data collection. The HBD phasor tended to have very little
deviations in terms of amplitude and a large change in phase angle. The phase angle
relates to a proportional change in position of the target Rbin. The RBB phasor plot
showed relatively large deviations in the signals’ amplitude and smaller changes in
phase angle. This correlates with the fact that the RBB is shorter than theHBD, and as
such, smaller deflections due to a similar loading pattern are possible. The difference
between the variations in amplitude of the signal between the RBB and HBD plots
indicates that some façade types could affect the reflection of the microwaves. The
RBB had a mostly brick façade with minimal discontinuities up to the height of
the building, whereas the HBD had an unfinished glass façade, but had obvious
discontinuities in the form of exposed slabs and balconies.
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5 Concluding Remarks

The method developed by the researchers required the following key components
for obtaining reliable results in using the IBIS-FS for EMA of high-rise irregular
buildings:

• The approximate centre of rigidity and theoretical frequencies of the building
obtained from a detailed finite element model.

• A floor plan of the building documenting its approximate centre of stiffness.
• Sufficient space at the base of the building to set up the IBIS-FS in a position that
allows unobstructed views in line with the building’s weaker axis and centre of
rigidity.

• A wind speed above 35 km/h acting in the direction of the building’s weaker axis.
• A building with sufficient surface discontinuities to allow for reliable data collec-
tion.

• Selection of Rbins closer to the top of the building to avoid capturing the dynamic
response of objects other than the intended target.

In terms of data analysis, the peak picking method was found to be adequate and
easy to apply for the role of determining the natural frequencies.

Recommendation for Further Study
Areas for extension on this research are numerous, and the researchers recommend
either a combination or one of the following topics:

• Retrieving data for buildings in densely populated cities using the long-range
capabilities of the IBIS-FS.

• Using several Rbins up to the entire length of a building to construct the mode
shapes.

• Analysing in depth the effects of different façade materials on the quality of the
raw data.

• Utilising alternativemethods of modal identification to extract the natural frequen-
cies.
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