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A Review
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Abstract Presently, worldwide research is focused on energy efficiency to meet
the requirement of greenhouse gas emission and economic reasons. The substan-
tial amount of energy is consumed mainly in industrial, transportation and power
generation sectors. The leading source of energy consumption is friction. Friction
causes wear of the machine components and their replacement. Therefore, to min-
imize energy consumption the friction reduction is a foremost objective. Potential
mechanisms for the reduction of friction are modified lubricants, coatings, and sur-
face texture. In comparison with other mechanisms, surface texturing is a feasible,
promising and well-established technique to improve the tribological performance
of machine components for more than two decades. Surface texture decreases an
area of contact, act as a reservoir and improves hydrodynamic effect in dry, mixed
and hydrodynamic lubrication regime respectively. All of this contributes to reduc-
ing the friction coefficient. In addition to this, the surface texture improves the load
capacity, dynamic stability and noise intensity of the bearings. It develops additional
hydrodynamic effect and minimizing fluid leakage in oil and gas seals. Also, in auto-
mobile components such as piston rings, cylinder liner and wet clutch, the texture
geometry is considered to be micro-pocket. Lubricant retained in the micro-pocket
can be released to surrounding areas of texture to improve the tribological perfor-
mance. This article outlines the recent advancement in texture design for different
automotive components, their mechanisms, key findings and future roadmap. Also,
the challenges in the fabrication of surface texture for automotive components are
discussed in detail.
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15.1 Introduction

The growing global population, societal needs, and enlargement in automotive
(industrial and transportation) sectors are increasing the energy demand rapidly.
In addition, limited oil resource, and environmental pollution are nowadays seri-
ous issues. At present, about one-third of the global energy resource is consuming
to overcome the friction (Holmberg and Erdemir 2017). Especially in automotive
engines, approximately 50–60% frictional loss comes from piston ring-cylinder sys-
tem (Zhan and Yang 2014). This causes millions of tons of CO2 emission per year
(Braun et al. 2014). Additionally, friction causes wear and tear which leads to fail-
ure of the automotive components. Reducing friction in the automotive system can
therefore improve the life of components, energy consumption, fuel efficiency, and
hence gas emission.

In general, two surfaces in relative motion cause friction. It is desirable in gener-
alized applications such as holding an object, walking on the floor, applying brakes,
etc. However, in automotive components such as bearings, piston-cylinder arrange-
ment, etc. friction is undesirable. As friction is associated with wear and lubrication,
tribology plays an important role. Tribology is basically a science evolving friction,
wear, and lubrication. To improve the tribological performance of automotive com-
ponents the majority of research consisting of modification in (1) lubrication, and
(2) surface engineering as follows (Blau and Qu 2004):

1. Lubrication

• Lubricants
• Lubricant filtration and supply

2. Surface engineering

• Surface treatment: Coating
• Surface topography: Surface texturing.

However, the modification in surface engineering specifically surface topography is
found to be themost effective and reasonable technique. Surface topography includes
surface texturing on the surface. The intentional creation of well defined identical
features on the surface is called surface texturing. Surface texture on the surface
is not a new concept to improve the tribological characteristics. In 1966, Hamilton
et al. (1966) have proposed that surface micro-irregularities can reduce the friction
between parallel surfaces. But in the following three decades the little attention was
paid by the researchers on the textured surface. The new momentum was gained
by Etsion’s group in 1996. Since then extensive research on surface texturing is
going on. At present, it is a well-established and promising technique to improve the
tribological performance of automotive components such as bearings, seals, piston
ring, wet clutch, cylinder liner, etc. Adopting surface texture on these components
can improve the load carrying capacity, fluid film stiffness, friction, wear, leakage,
and noise intensity.
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In recent times few review articles on the advancement of surface texture in bear-
ings (Gropper et al. 2016;Wang 2014), piston-cylinder systems andmechanical seals
(Ahmed et al. 2016) have been published. The theoretical modeling of these com-
ponents has been summarized by Etsion (2013). Etsion (2005) reviewed the effect
of surface texture on bearing sliders under different lubrication condition. Whereas
Shamsul Baharin et al. (2016) have presented the mechanism of surface texture to
improve the tribological characteristics at different lubrication regimes. In addition
to this, advancement in the fabrication of surface texture is nowadays a hot topic
of research (Ibatan et al. 2015; Gachot et al. 2017; Coblas et al. 2015). While spe-
cial attention is paid on laser surface texturing technique (Arslan et al. 2016; Patel
et al. 2018). However, the influence of texture design parameters on the tribological
performance of automotive components has not been discussed in detail so far. It is
therefore essential to summarize the texture behavior in automotive components that
affects energy consumption and environmental pollution. With this consideration, in
the present review article, the influence of texture design parameters on the tribologi-
cal performance of automotive components is presented. The recent advancement in
texture design is mainly discussed. Moreover, modern texture fabrication techniques
(both conventional and non-conventional), and their pros and cons are discussed.
Also, key findings and future roadmap to improve the tribological performance of
automotive components is presented.

15.2 Texture Design

Designing of surface texture is an essential part of surface topography. Extensive
research work on texture design characteristics is carried out. Still, there is no fixed
rule for the selection of texture shape under the given operating condition for a
particular application. Though surface texturing has the potential to improve the
tribological characteristics, it may show an adverse effect if designed wrong. There-
fore, a clear understanding of texture design is necessary. Here, the texture design
is majorly classified based on geometrical characteristics and positional features as
shown in Fig. 15.1.

15.2.1 Texture Geometry

Texture geometrical characteristics such as shape (top profile and bottom profile),
and parameters are discussed in detailed as follows:
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Fig. 15.1 Texture design features

15.2.1.1 Texture Shape

Both negative (recessed) and positive (protruded) texture shapes can be generated
as shown in Fig. 15.2. While negative texture is majorly accepted due to advantages
in terms of lubrication and ease of manufacturing. Under hydrodynamic lubrication,
the negative texture shape is better for friction reduction. But from a leakage point
of view, the positive texture showed good results (Siripuram and Stephens 2004).
Texture shape is characterized by its top and bottom profile.

Fig. 15.2 Textured parallel
slider a negative texture
b positive texture
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Top Profile

An extensive research work has been conducted on standard texture profiles. Siripu-
ram and Stephens (2004) considered the standard texture profiles viz. circle, square,
diamond (square-oriented), hexagonal, and triangular for studying the effect of geom-
etry on the hydrodynamic lubrication. They found that the friction coefficient is
insensitive to these texture profiles.

However, Yu et al. (2010, 2011) investigated that elliptical texture profile gives
better performance than square and circular profile for friction reduction. The com-
monly used texture top profiles are shown in Fig. 15.3.

Motivated by triangular profile, Uddin and Liu (2016) have observed that star
like (series of triangular spikes around the center) texture profile performs better
than standard top profiles both in terms of film pressure and friction coefficient.
Under mixed lubrication condition, Ren et al. (2007) developed a numerical model
for non-standard texture profiles: triangular grooves, sinusoidal waves, fishbone with
grooves, fishbone with dimples, and honeycombs. The short grooves and sinusoidal
waves showed the strongest load carrying capacity. Galda et al. (2009) have inves-
tigated the tribological performance of newly developed texture profiles viz. short
drop, and a long drop. They found that spherical and long drop shapes are supe-
rior to short drop profile. For the maximization of load capacity and minimization
of friction coefficient in grease lubricated textured bearing, Yu et al. (2016) have

Fig. 15.3 Standard textured profiles a square b diamond c rectangle d triangle e cylinder f sphere
g elliptical h ellipsoidal
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found that triangular profile performs better than the sphere, spheroid, and T shaped
grooved profile. In micro-turbine bearings, Bompos et al. (2012) adopted the egg-
shaped texture profile. In comparison with smooth bearing a substantial improve-
ment in hydrodynamic characteristics was observed for textured bearing. For the
gas lubricated parallel slider, Qiu et al. (2012, 2013) have found that texture shape
with a round edge (sphere, ellipsoidal and circle) performs better than straight-edged
profiles (triangle and chevron) to improve the hydrodynamic pressure, friction coef-
ficient, and bearing stiffness. From the above discussion, it is observed that modified
(non-standard) texture profiles have better tribological characteristics than predefined
simple geometries.

To further improve the results, the texture profile needs to be optimum. Rah-
mani et al. (2010a), Rahmani and Rahnejat (2018) have optimized the standard
texture profiles: square, rectangle and isosceles triangle using an analytical approach
for maximization of load capacity and minimization of friction coefficient. For the
maximization of load capacity, Fesanghary and Khonsari (2012) have optimized
the hydrodynamic film in sectorial-shape thrust bearing using sequential quadratic
programming technique. The optimally designed bearing showed more than 100%
increase in load capacity than the conventional bearing. Fesanghary and Khonsari
(2013) developed the optimization model for grooved texture. The obtained “heart-
like” texture profile was validated experimentally. Shen and Khonsari (2015) have
presented the numerical optimization of texture top profile using sequential quadratic
programming (SQP) for maximization of load capacity. Under unidirectional and
bidirectional sliding, the optimum texture profiles were obtained as chevron-type
and trapezoid-like respectively. Also, Zhang et al. (2017) have optimized the irregu-
lar texture shape for minimum friction coefficient and maximum load capacity using
a genetic algorithm (GA) optimization technique. The optimized fusiform texture
profile showed a better result than elliptical and circular profiles. Wang et al. (2018a)
presented the numerical optimization of chevron-shaped grooved texture to maxi-
mize the load capacity of thrust bearing using hybrid (GA-SQP) technique. Experi-
mentally they confirmed that optimum chevron-shaped grooved texture reduces the
friction coefficient and temperature rise of the specimen. For gas mechanical seals,
Wang et al. (2018b) have modified the spiral grooved texture using multi-objective
optimization. The optimized grooved profile showed better result than conventional
spiral grooved texture. From the above literature, it is confirmed that the optimized
non-standard texture profiles performs better than simple profiles.

Bottom Profile

Texture bottom profile also significantly influences the tribological characteristics.
The commonly used texture bottom profiles are flat, curved, and asymmetric wedge
(see Fig. 15.4).With the cavitation effect, Nanbu et al. (2008) have analyzed the influ-
ence of wedge-shaped texture bottom profiles on the hydrodynamic characteristics.
They found that texture bottom profile strongly influences the pressure distribution
and film thickness. Shen and Khonsari (2013) have observed that cavitation occurs
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Fig. 15.4 Commonly used texture bottom profiles a flat b curved c convergent wedge d divergent
wedge

in the divergent region of the texture, this leads to an asymmetric distribution of
pressure. For this mechanism, the load capacity generated by the rectangular bottom
profile is larger than the triangular (oblique and isosceles) bottom profiles. Wang
et al. (2018c) compared the four different bottom profiles of grooved texture. They
observed that the location of cavitation region, the volume fraction of vapor phase
and the shape of vortex are influenced by the bottom shape of the groove texture in
thrust bearing.

Meng et al. (2015) have observed that the flat (rectangle) and curved (spherical)
bottom profile are the most commonly used texture bottom profile to improve the
tribological characteristics. For taking the advantages of both rectangle and spherical
profiles, they combined these profiles to form the structure characterized by two-layer
pores defined as compound texture. Inwhich, first and second layers are rectangle and
spherical, respectively. Compound texture showed improved load carrying capacity
and friction coefficient than smooth and simple (rectangle) textured hydrodynamic
journal bearing due to its twice hydrodynamic effect. Further, they developed the
compound groove textures that reduce the acoustic power level of the journal bearing
than that of smooth and simple grooved bearings (Meng and Zhang 2018).

Without a cavitation effect, Han et al. (2011) have found that divergence and con-
vergence clearance in the symmetrical texture bottom profile is balanced. However,
an asymmetrical bottom profile showed more potential to enhance hydrodynamic
characteristics. Similarly, Schuh and Ewoldt (2016) investigated that asymmetric
bottom profile generates the normal force, and reduces the shear stress and friction
coefficient. Further, Lee et al. (2017) have obtained the significant improvement in
hydrodynamic performance with arbitrarily shaped texture bottom profile. Adopt-
ing an optimization approach, Lin et al. (2017) have optimized the arbitrary texture
bottom profile using sequential linear programming (SQL) for increasing normal
force and decreasing friction force. Wang et al. (2017) used the hybrid (GA-SQP)
optimization technique for the grooved bottom profile. The optimized profile showed
better load capacity than common profiles such as micro wedge and step.

From the above discussion, it is observed that asymmetrical bottom profiles per-
form better than symmetrical bottom profiles. For top profile also it is confirmed
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that the modified profile is preferable over simple profiles. However, the simulta-
neous modification of both top and bottom profile using the optimization technique
can appreciably improve the result is still lagging. This approach can be adopted in
different machine components including automotive components.

15.2.1.2 Texture Parameter

The surface texture has a certain size along the length, width, and depth. But it
is essential to form parameters that include all geometrical aspect of the texture.
For this, the non-dimensional parameters: texture density and the aspect ratio are
widely used in the literature. These texture parameters are sensitive to tribological
characteristics in most automotive components (Gropper et al. 2016).

Aspect Ratio

Aspect ratio is defined as the ratio of texture depth (hb) and the characteristics length
(l) (see Fig. 15.5).

Aspect ratio, Ar = hb
l

(15.1)

Aspect ratio is described by (i) varying the texture depth and keeping length
constant and (ii) varying texture length and keeping depth constant. The former way
to define the aspect ratio is directly related to depth, and hence more popular. In some
literatures, the aspect ratio is also named as depth ratio.

Fig. 15.5 a Textured parallel slider and b square textured unit cell
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Texture Density

Texture density is defined as the ratio of texture area (l2) and the cell area (L2) as
shown in Fig. 15.5.

Texture density, Td = l2

L2
(15.2)

For entire surface, the texture density is expressed as the N times texture area to
the total surface area (see Fig. 15.5a). In some literature texture density is also known
to be area ratio.

15.2.2 Texture Position

Although texture shape and its geometrical characteristics influence the tribological
characteristics, the texture distribution pattern influences the result. This is because
the volume and position of lubricating oil accumulate generates the hydrodynamic
effect.

15.2.2.1 Texture Orientation

Texture shape can be oriented at different angles along the direction of motion. Yu
et al. (2010) have investigated that elliptical texture perpendicular to the direction
of sliding gives a better result for friction reduction than oriented along the direc-
tion of sliding. However, Ismail and Sarangi (2013) considered both positive and
negative textures for elliptical and triangular profiles. They found that the angular
orientation of negative texture is uncertain on hydrodynamic performance. But the
positive textures: 60° triangular orientation, and 90° elliptical orientation showed bet-
ter performance parameters than other orientations. In textured gas seals, Bai et al.
(2010) have investigated the influence of elliptical texture orientation on hydrody-
namic characteristics such as load capacity and slide leakage. They investigated that
texture oriented at 0° and 90° in the direction of flow has less leakage, but the hydro-
dynamic effect is not significant. However, at 40°–70°, the significant improvement
in load capacity is obtained. But leakage is also found to be high.

15.2.2.2 Texture Arrangement

In most of the surface texture analysis as discussed above, the linear texture arrange-
ment has been adopted. In journal bearing, Lu et al. (2014) havemodified the conven-
tional texture arrangement to the phyllotactic patterned. Experimentally they found
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20–30% less frictional coefficient than the conventional linear textured arrange-
ment. Braun et al. (2014) have investigated the tribological behavior of sliding pairs
with spherical textures arranged in a hexagonal pattern in the mixed lubrication
regime of the pin-on-disk experiment resulted in decreasing friction coefficient. Also,
Schneider et al. (2017) examined the different texture arrangements viz. hexagonal,
cubical and random for friction reduction. In comparison with plane surface, 82%
friction reduction occurred in a hexagonal arrangement. For cubical and random
arrangement, respectively 50 and 48% reduction in friction coefficient than plane
surface was achieved.

15.2.2.3 Texture Zone

Surface texturing on the entire bearing surface does not necessarily improve the
hydrodynamic characteristics. Surface texture may show adverse results if designed
wrong. Kango et al. (2012) have observed that surface texture at different loca-
tions of the bearing surface helps in enhancing bearing the bearing performance.
Brizmer and Kligerman (2012) have investigated that texturing on the entire surface
is meaningless for both short and infinite long oil lubricated bearings. Kango et al.
(2014) have found that surface texture (both dimple and groove) in the converging
zone of the bearing is a preferable arrangement. At variable process parameters such
as eccentricity ratio, clearance, journal speed and oil viscosity, Shinde and Pawar
(2017a) found that grooved texture in 90°–180° zone gives maximum load capacity.
However, the minimum frictional torque is achieved at 90°–360° texture zone. But
for multi-objective optimization, textured zone 90°–175° showed appropriate result
(Shinde and Pawar 2017b). Similarly, Zhang et al. (2018a) have done optimization
of texture position in the convergent zone of the journal bearing. The optimized
semi-elliptical shaped texture arrangement showed better bearing load and friction
coefficient than half-textured and plane surfaces. They also optimized the texture
position numerically in bearing sliders for maximization of load capacity and mini-
mization of friction coefficient. Experimentally they verified that optimized texture
position shows best performance than plane, fully textured, and conventionally par-
tial textured surfaces (Zhang et al. 2018b). Contrarily, Tala-Ighil et al. (2011) have
investigated that surface texturing in the divergent zone (185°–230°) improves the
bearing performance. Further, they observed found that texture arrangement is sensi-
tive to journal speed (Tala-Ighil and Fillon 2015). At lower operating speed, 0°-180°
textured position showed best result. Upon further increasing the speed, 185°–230°
texture zone obtained best performance. Also in piston ring, partial texturing shows
better results than full texturing Kligerman et al. (2005). Etison and Sher (2009) have
found that partial laser texture (symmetrical type) has obtained about 4% reductions
in fuel consumption. However, it is found to be insignificant for the effect of exhaust
gas. Also, noticeable difference in engine oil temperature and crank case pressure is
observed than plane surface.

From the above discussion, it is clear that texture shape, geometrical parameters,
position, zone, etc. have significant influence on tribological characteristics. But the
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detailed analysis by considering every parameter is time-consuming. Also, it is dif-
ficult to predict the exact behavior of texture design parameters on output responses.
However, response surface methodology has the potential to address this issue. A
large number of parameters can be considered in a single design model for differ-
ent output responses. This approach can significantly reduce the computation time
and experimental cost. Fu and Untaroiu (2017) have investigated the tribological
performance of surface textured thrust bearing using a design of experiment fol-
lowed by multi-objective optimization for optimal partially texture geometry with
an elliptical dimple. The output responses aimed to maximize the load capacity
and minimize the friction torque. The geometrical characteristics such as length of
major and minor axes, dimple depth, radial and circumferential space between two
dimples, and the radial and circumferential extent were parameterized and analyzed
using response surface methodology based central composite design of experiment
technique. Using this, the proper combinations of parameter were obtained. Further,
they (Fu and Untaroiu 2018) compare the rectangle and elliptical texture using a
design of experiment. Using the parametric study, a model was developed. Based on
this, they found that elliptical textures have more potential to improve tribological
characteristics than rectangular texture.

15.3 Surface Texturing in Automotive Components

Surface texture has significant influence on tribological performance of automotive
components. In fluid film bearings, surface texture increases the film thickness. The
increase in film thickness at the convergent zone generates additional hydrodynamic
pressure to further separate the surfaces. This resulted in increasing load capacity
and decreasing local shear stress and hence friction (Gropper et al. 2016). Surface
texture on one of the mating faces in circumferential gas seal generates considerable
hydrodynamic effect which maintains the small clearance between shaft and seal
ring. This prevents the rubbing and hence decreases in friction and wear (Kligerman
and Etsion 2008). To improve the lubricant quantity in automobile components such
as piston rings and wet clutch, the texture geometry is act as micro-pocket. Lubri-
cant retained in the micro-pocket can be released to surrounding areas of texture
to improve the tribological performance (Kligerman et al. 2005; Yagi et al. 2015).
Adopting surface texture on the rake face of the cutting tool decreases the tool–chip
contact area. Also, the debris trapped in the texture and reduction of stiction at the
tool-chip interface takes place. This result in a decrease in friction, wear and hence
lesser heat generated in the cutting tool (Jesudass Thomas and Kalaichelvan 2018).
In case of an artificial implant, adopting surface texture decrease surface contact
under boundary lubrication and acts as a lubricant reservoir in elastohydrodynamic
lubrication (Ghosh and Abanteriba 2016). Surface texture has widespread applica-
tions in automotive components such as piston ring, cylinder liner, clutches etc. as
discussed in detail as follows.
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15.3.1 Cylinder Liner

A cylinder liner is serves as the inner wall of cylinder to be fitted into an engine
block. It forms sliding surface for the piston ring while retaining lubricant within.
The main function of cylinder liner is to control the friction loss between piston ring
and cylinder liner, wear of piston ring and cylinder liner, consumption of lubricant,
emission of gases and fuel efficiency. To improve this, one of the feasible and possible
techniques is to modify topography of cylinder liner by honing scratches/grooves.
Dimkovski et al. (2012) have optimized the cylinder liner surface finish for base
honingpressure andplateauhoning time.But, axial scratches occurred due to abrasive
wear are undesirable. Also, they studied on undesirable scratches on the liner which
increases the oil consumption and gas emission (Dimkovski et al. 2011). However,
Guo et al. (2013) have investigated that the lubrication performance of the cylinder
liner is sensitive to surface texture. Grabon et al. (2017) have considered different
surface textures were of cylinder liner. They found that increasing honing angle of
cylinder liner causes higher frictional resistance. However, at lower honing angle the
reduction of liner height was significant. Kim et al. (2018) have found that valley
generatedbyhoning functions is undesirable for the formationof dynamicpressure on
interacting surfaces. The different mark of plateau honing was compared for friction
and wear with those of randomly ground surfaces. They found that deep-grooved
honing marks produce larger amounts of wear than shallow-grooved honing. From
the testswith the deep-grooved honingmarks, it was found that the severe interactions
due to asperity contacts and the formation of relatively thin films produced larger
amounts of wear volumes than the test with the shallow-grooved ones.

15.3.2 Wet Clutch

In automatic transmission of automobile wet clutches are used. In wet clutch, paper-
based friction materials are used as sliding member. It requires high and stable fric-
tion at variable speed, wear resistant and heat resistant. To achieve this, researchers
have worked on material characteristics or modifications of paper-based wet clutch
such as optimization of material composition, different additives in the automatic
transmission of fluid and pore characteristics of the paper (Kitahara and Matsumoto
1994; Matsumoto 1996; Kugimiya 2000). However, limited work has been done on
surface modification of paper to improve the tribological characteristics. Yagi et al.
(2015) formed microscale texture in the form of microgrooves at variable depth and
pitch on the paper-based friction material using laser surface texturing. At low tem-
perature and low surface pressure conditions, the dynamic friction coefficient was
improved due to microgroove. Also, they found that the dynamic friction coefficient
is depends upon depth and pitch of themicrogrooves. It can be controlled by properly
designing of microgroove pattern. However, adopting microgrooves was found to be
insignificant to improve static friction coefficient.
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15.3.3 Piston Ring

Piston ring is the major source of engine friction. Reducing friction occurred by
piston ring is an effective way to decreases fuel consumption and hence exhaust gas
emission. To improve the tribological characteristics of the piston ring by adopting
surface texture is largely studied by Etison and co-authors (Arslan et al. 2016; Ronen
et al. 2001; Ryk et al. 2002). They found that laser surface texturing is feasible and
most promising technique to improve the tribological characteristics of the piston
ring. Kligerman et al. (2005) developed the analytical model for partial laser surface
textured piston ring for friction reduction. This is verified experimentally by Ryk
et al. (2005). For symmetrical type partial laser texture, Etsion and Sher (2009) have
found that approximately 4% reduction in fuel consumption is obtained than smooth
surface. However, the effect on exhaust gas is found to be insignificant. Ahmed et al.
(2016) reviews the effect of texture geometrical parameters on piston ring. They
found that (i) aspect ratio is themost significant parameter to improve the tribological
characteristics of piston ring (ii) for better performance maximum possible texture
density should be selected. (iii) Under starved lubrication condition higher texture
depth shows detrimental results. Also, optimum texture depth is depends on the
operating conditions. (iv) Partial texturing shows better result for friction reduction
than full texturing. Recently, Bifeng et al. (2018) have proposed a novel texturing
scheme on piston ring bymodifying barrel-shaped ring scheme in the formof variable
texture depth. They found that average friction power for novel texture pattern is
10.04% lesser than normal texturing. While, in comparison with barrel shape, it has
obtained 16.85% lesser average friction power.

15.3.4 Engine Bearings

The plane and textured hydrodynamic journal bearing as shown in Fig. 15.6 is well
established. Although, limited research is carried out on engine bearings with texture
effect. Surface texture adopted in engine bearings can decrease the friction coeffi-
cient, noise intensity, fuel consumption and increase in load carrying capacity. This
ultimately reduces energy consumption to cause a decrease in fuel consumption and
engine emissions (Ligier and Noel 2015).

In modern times, surface texture analysis of tires in automobiles can be studied to
control the friction for safe driving at various road conditions. Furthermore, surface
texture can also be adopted in automotive components such as piston pin, cam and
follower, brake to improve the performance.
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Fig. 15.6 Hydrodynamic lubricated a plane bearing and b textured bearing

15.4 Texture Fabrication Techniques

Texture quality is largely affected by fabricating technique (Ibatan et al. 2015).
Surface textures can be fabricated by several conventional and non-conventional
machining processes (Ahmed et al. 2016). It is therefore essential to have a detailed
discussion on each fabricating technique along with pros and cons.

The conventional machining processes such as vibro-rolling and abrasivemachin-
ing can be used to create grooves (Rahmani et al. 2010b). While embossing tech-
nique is capable of generating surface texture on plastically deformable materials
(Pettersson and Jacobson 2006). But this technique is not suitable for hard and brittle
materials. Jesudass Thomas and Kalaichelvan (2018) fabricated the surface texture
on the rake face of a single point cutting tool using surface indentation techniques viz.
Rockwell hardness tester, Vickers hardness tester, and diamond dresser. They found
that surface texturing using Vickers hardness tester has obtained better tribological
performance than other techniques. Also, standard texture profiles can be generated
using micro-grinding process. It is a simple, productive and inexpensive technique
to create surface texture on the surface (Stepien 2008). Moreover, Cannon and King
(2009) fabricated the surface-texture using micro-casting which is a relatively new
technique. This technique can create holes of about 10–100 µm diameter and aspect
ratio of 2:1. A vibromechanical texturing technique which is based on single point
turning process can produce surface texture. In the conventional turning process, the
controlled motion of cutting tool along the X-axis (rotation about spindle axis) and Y-
axis (across the length of theworkpiece) can generate continuous spiral grooves along
the circumference of the workpiece. Adopting controlled motion (tunable oscillation
of the tool path) along the Z-axis, a variety of texture sizes can be machined. This
method is cost-effective, produces less surface damage, and is very precise (Greco
et al. 2009). To investigate the influence of texture bottom profile in thrust bearing,
Schuh and Ewoldt (2016) developed the asymmetric-depth-profile angled along the
normal surface. The asymmetric depth was achieved by tilting the workpiece with
respect to the endmill axis of rotation. Overall it is observed that surface texture using
conventional/traditional machining techniques are easier to fabricate. However, its
accuracy is affected.
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Presently, non-conventional machining processes are most widely used to fabri-
cate surface texture. Wakuda et al. (2003) have considered abrasive jet machining to
fabricate the micro-texture. The textured surface showed an improved friction coef-
ficient. However, the bottom profile was affected. Different forms of etching can also
generate texture on the surface. Lu and Khonsari (2007) generated cylindrical and
elliptical texture shapes on the surface of the journal bearing using chemical etching.
The process includes imprinting of the pattern followed by etching. The texture depth
was controlled by etching time. Although etching is flexible to generate complex tex-
ture geometries, it is a time-consuming process. Moreover, the profile features of the
texture such as round shape cannot be controlled. The other etching techniques such
as reactive ion etching, UV lithography, photo-etching, physical vapour deposition
and UV photo-lithography can also produce a variety of texture shapes (Rahmani
et al. 2010b). In electrochemical machining (ECM) process, the material removal is
taking place by electrolysis process. ECM generates a very smooth surface without
heat affected layerwith higher efficiency and at low cost. These advantages attract the
researchers to fabricate surface texture using this technique. Lu et al. (2014) devel-
oped the phyllotactic patterned surface texture on hydrodynamic lubricated bearing
surface using ECM. In comparisonwith conventional linear textured arrangement the
significant improvement in friction reduction (about 20–30%) was obtained. Using
ultrasonic machining (USM), different texture shapes such as circle, rectangle, and
spherical texture shapes can be produced with high accuracy. Shin et al. (2015) have
created the surface texture on bearing steel surface using USM. They found that
the reduction in friction coefficient is taken place at appropriate density and depth.
But this technique is limited to brittle material and it is not cost effective. Electric
discharge machining (EDM) is based on the mechanism: melting and vaporization
of the material. Using this technique the complex texture geometry with smooth
surface finish can be achieved with no mechanical stress on the workpiece (Pal
and Choudhury 2016). However, the material removal rate is low and heat affected
zone influences the tribological performance. Yamaguchi et al. (2016) developed the
whirling electrical discharge texturing (WEDT) to create microtextures on the inner
surface of a cylinder using single-pulse discharge. They confirmed that it is an effec-
tive technique to reduce the friction coefficient. Moreover, they found that based on
lubrication condition, the optimal texture-area ratio exists. These techniques can be
employed for surface texturing but laser surface texturing (LST) is the most efficient
technique (Ahmed et al. 2016). LST is a promising technique based on its flexibility
and speed (Arslan et al. 2016). It is clean to the environment and provides excellent
control of texture size. Earlier, LSTwas unable to produce complex texture geometry.
To achieve this goal, the direct laser interference patterning technique is employed
which use multiple laser beam interference. However, burrs or bulges are created
after machining is a limitation of this process.
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15.5 Concluding Remarks

In the present research review first the texture design is presented in details for
automotive components. Then fabrication techniques for automotive components
are discussed in details. It is concluded that,

• Texture design parameters have a significant influence on the tribological perfor-
mance of automotive components.

• To improve the tribological performance, the parametric analysis of texture design
parameter should be carried out for qualitative analysis. This significantly reduces
the computation time and cost of the experiment without sacrificing the accuracy.

• Optimized texture parameters perform better than simple/standard texture shapes
to improve the tribological characteristics of automotive components. However,
the optimumprocess parameters dependonoperating conditions and specific appli-
cation.

• In the automotive system, majority of the research is focused on adopting surface
texture on piston-ring cylinder. It is essential to investigate the tribological per-
formance of surface textured crank case bearings, wet clutch, piston pin, cam and
follower and tires,

• The conventional machining processes are cheaper and easier to generate the tex-
ture. But they are less accurate and it is very difficult to produce complex texture.
While a variety of non-conventional texturing techniques can easily generate com-
plex texture geometries with accuracy. Especially laser surface texturing is most
famous, widely used and it provides excellent control on texture size.
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