
Springer Proceedings in Mathematics & Statistics

Priti Kumar Roy · Xianbing Cao · 
Xue-Zhi Li · Pratulananda Das · 
Satya Deo   Editors

Mathematical 
Analysis and 
Applications 
in Modeling
ICMAAM 2018, Kolkata, India, 
January 9–12



Springer Proceedings in Mathematics &
Statistics

Volume 302



Springer Proceedings in Mathematics & Statistics

This book series features volumes composed of selected contributions from
workshops and conferences in all areas of current research in mathematics and
statistics, including operation research and optimization. In addition to an overall
evaluation of the interest, scientific quality, and timeliness of each proposal at the
hands of the publisher, individual contributions are all refereed to the high quality
standards of leading journals in the field. Thus, this series provides the research
community with well-edited, authoritative reports on developments in the most
exciting areas of mathematical and statistical research today.

More information about this series at http://www.springer.com/series/10533

http://www.springer.com/series/10533


Priti Kumar Roy • Xianbing Cao • Xue-Zhi Li •

Pratulananda Das • Satya Deo
Editors

Mathematical Analysis
and Applications in Modeling
ICMAAM 2018, Kolkata, India, January 9–12

123



Editors
Priti Kumar Roy
Department of Mathematics
Jadavpur University
Kolkata, West Bengal, India

Xianbing Cao
College of Science
Beijing Technology and Business University
Beijing, China

Xue-Zhi Li
College of Mathematics
and Information Science
Henan Normal University
Xinxiang, Xinjiang, China

Pratulananda Das
Department of Mathematics
Jadavpur University
Kolkata, West Bengal, India

Satya Deo
Harish-Chandra Research Institute
Allahabad, Uttar Pradesh, India

ISSN 2194-1009 ISSN 2194-1017 (electronic)
Springer Proceedings in Mathematics & Statistics
ISBN 978-981-15-0421-1 ISBN 978-981-15-0422-8 (eBook)
https://doi.org/10.1007/978-981-15-0422-8

Mathematics Subject Classification (2010): 35A24, 34D23, 92B05, 37N25, 03E75, 34A08, 03F20,
03G27, 11K06, 34D20

© Springer Nature Singapore Pte Ltd. 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-15-0422-8


Preface

International Conference on “Mathematical Analysis and Applications in
Modeling” was held on January 9–12, 2018 at the Department of Mathematics,
Jadavpur University, Kolkata, India. The talks, both invited and contributory,
during the conference period covered various branches of Pure and Applied
Mathematics. The present volume of this book series, entitled Mathematical
Analysis and Applications in Modeling, is based on the selected invited and con-
tributory talks during the abovementioned international conference. The conference
was inaugurated by Pro-Vice-Chancellor of Jadavpur University. World-renowned
scientist Dr. Gaston N’Guerekata, currently holding the chair of Associate Dean for
Undergraduate Studies and University Distinguished Professor of School of
Computer, Mathematical and Natural Sciences at the Morgan State University,
Baltimore, USA, chaired the inaugural session. Dr. Igor Schreiber, the renowned
Professor at the Department of Chemical Engineering (UCHI) of the University of
Chemistry and Technology, Prague, Czech Republic, was the honorable guest who
delivered the keynote address. There were 15 plenary lectures, 17 invited lectures,
and 168 eight contributory lectures given by the participants. There were more than
300 participants from different parts of India and abroad. NBHM, ISI Kolkata and
DST-PURSE provided us financial support to organize this conference without any
hurdle.

Both the invited and contributory talks touch various areas of pure and applied
mathematics and illustrate the latest advances in the field of mathematics, medical
sciences, oil exploration from environmentally friendly, renewable resources and
production, dynamical systems, biological sciences, algebra, analysis, etc.

This book contains 37 chapters from different mathematical fields. These
chapters include reaction network theory, periodic evolution equations, optimiza-
tion models, topology, compositional square root functions, atherosclerotic plaque
formation, effects of unequal diffusion coefficients, cellular neural network model,
coordinate search method, two-echelon supply chain, quasi-isometric invariants,
statistical outlook, gravitational waves, Banach spaces, large-scale production of
biodiesel, bifurcation control, and many other branches of mathematics. Thus this
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book is useful to gain knowledge about the streams of mathematics covered by the
chapters.

We expect this book will draw an immense impact on theoretical and application
fields of Mathematics and hence on the whole world of Science. Our endeavor is to
enlighten each and every unknown or less known branch of Mathematics, which
was the one-point goal of our international conference.

It is not easy to sum up all the topics based on different fields of Mathematics
and its application in 37 chapters. But we and our team tried our level best to cover
all the branches to make the unknown known. We can call our initiative successful
if this book will help the students in their research and contribute to societal
benefits.

We thank the Almighty, our friends, scholars, well-wishers, and our family for
their cordial support and assistance in finishing this job and publishing this book
series for a better knowledge of different fields of Mathematics. With all our
willpower, energy, constructive mind, and time, we have tried to be the editor of
such a scientifically useful book series of various research articles with supreme
concern. If there is any inaccuracy or drawbacks in this book, we are ready to take
all the responsibilities and we wish to receive fruitful suggestions for improvement
of our future work as editors.

Kolkata, India Prof. Dr. Priti Kumar Roy
Beijing, China Prof. Dr. Xianbing Cao
Xinxiang, China Prof. Dr. Xue-Zhi Li
Kolkata, India Prof. Dr. Pratulananda Das
Allahabad, India Prof. Dr. Satya Deo
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Optimal Strategies of the Psoriasis
Treatment by Suppressing the
Interaction Between T-Lymphocytes
and Dendritic Cells

Ellina V. Grigorieva and Evgenii N. Khailov

Abstract This report contains the results devoted to the study of a mathematical
model of psoriasis, proposed by P. K. Roy. This model is formulated as a Cauchy
problem for the system of three nonlinear differential equations that describe the
relationships between the concentrations of T-lymphocytes, keratinocytes and den-
dritic cells, the interactions of which cause the occurrence of psoriasis. Moreover,
in this model we include a bounded scalar control responsible for a dose of a med-
ication that suppresses the interaction of T-lymphocytes and dendritic cells. On the
given time interval, for the control mathematical model, a problem of minimizing the
concentration of keratinocytes at the end of time interval is considered. To analyze
this problem, the Pontryagin maximum principle is applied. The adjoint system and
the maximum condition for the optimal control are written. Using the corresponding
system of differential equations, the switching function describing the behavior of
the optimal control is studied. Such a system of equations allows us to determine
the type of the optimal control: whether this control is only of a bang-bang type,
or, in addition to the portions of a bang-bang type, it also contains a singular arc.
When a singular arc occurs, the report discusses its order, the fulfillment of the nec-
essary optimality condition for it, and its concatenation with portions of a bang-bang
type. The obtained analytical results are illustrated by numerical calculations. The
corresponding conclusions are made.

Keywords Psoriasis · Nonlinear system · Optimal control · Pontryagin maximum
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2 E. V. Grigorieva and E. N. Khailov

1 Introduction

Psoriasis is an autoimmune disease with symptoms of chronic inflammation of the
skin [6, 8]. In psoriasis, skin cells grow very rapidly, which leads to the appearance
of red, dry and flake rashes. The main organ which is damaged is the skin, although
other organs and systems of a person, in particular nails and joints, can be affected
besides this. Psoriasis starts from the processes taking place in the epidermis. In the
deep layer of the epidermis, immature skin cells called keratinocytes are formed.
They produce keratin, a hard protein that is a building material for hair, nails and
skin. Normally, keratinocytes grow and move from the lower layer to the surface
of the skin almost imperceptibly. This process takes about a month. In people with
psoriasis, keratinocytes proliferate very rapidly and move from the deep layer to the
surface in about four days. The skin cannot get rid of these cells quickly enough, so
that in a short time their amount increases dramatically, which leads to the formation
of densified, dry patches on the skin or plaques. The lower layer of the dermis with
blood, lymphatic vessels and nerves becomes inflamed and swollen.

Skin is an important immune organ. Specific skin cells, such as keratinocytes,
promote thematuration of T-lymphocytes, which are themain element of the immune
system of the skin. T-lymphocytes make up 90% of all lymphocytes of the skin and
are located mainly in the upper and middle layers of the skin. The main function of
dendritic cells is the presentation of antigens to T-lymphocytes. This means that they
absorb antigens from the environment. Then they “process” them to the form that
T-lymphocytes are able to recognize and develop an immune response. They also
perform important immune-regulatory functions. Dendritic cells and activated T-
lymphocytes play an important role in the development of psoriasis. The interactions
between these two groups of cells trigger mechanisms leading ultimately to the
development of the inflammatory process and the formation of psoriatic skin lesions.

Adequate treatment of psoriasis is challenging and drugs, leading to a complete
cure, do not yet exist. Significant progress has been made, both in understanding the
mechanisms of the disease and in finding newways of treatment, and in standardizing
the assessment of the severity of the disease. Mathematical models are effectively
used to predict the behavior of skin cells, both in normal and in pathological states.

2 Optimal Control Problem

On a given time interval [0, T ] we consider the nonlinear control system of differ-
ential equations:

⎧
⎪⎪⎨

⎪⎪⎩

l ′(t) = σ − δv(t)l(t)m(t) − γ1l(t)k(t) − μl(t),
k ′(t) = (β + δ)v(t)l(t)m(t) + γ2l(t)k(t) − λk(t),
m ′(t) = ρ − βv(t)l(t)m(t) − νm(t),
l(0) = l0, k(0) = k0, m(0) = m0; l0, k0,m0 > 0.

(1)
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It describes the interactions of various types of cells in a human body with drug
therapy of psoriasis [3, 10, 11]. In system (1), l(t), k(t), and m(t) are the concentra-
tions of T-lymphocytes, keratinocytes and dendritic cells; l0, k0, m0 are their initial
conditions, respectively. The values σ , ρ, μ, λ, ν, γ1, γ2, δ, β are the given positive
parameters of this system, which have the following meaning. The values σ and ρ

are the appropriate inflow rates of T-lymphocytes and dendritic cells, μ and ν are
the removal rates of these cells, respectively; λ is the decay rate of keratinocytes. In
addition, the rate of activation of keratinocytes due to T-lymphocytes is indicated by
γ1 and the rate of keratinocytes growth is denoted by γ2. The value δ is the activa-
tion rate of T-lymphocytes by dendritic cells, β is conversely the activation rate of
dendritic cells due to T-lymphocytes. The interactions between T-lymphocytes and
dendritic cells help to form keratinocytes through some cell biological procedures
and thus the concentrations of both T-lymphocytes and dendritic cells are reduced
by the terms δvlm and βvlm, respectively. On the other hand, under mixing homo-
geneity, the combined interaction of T-lymphocytes and dendritic cells contributes
to the growth of concentration of epidermal keratinocytes by the term (β + δ)vlm.
Model (1) was kindly provided for analysis by Professor P. K. Roy (Centre for Math-
ematical Biology and Ecology, Department of Mathematics, Jadavpur University,
Kolkata, India).

In system (1), v(t) is a control function that satisfies the constraints:

0 < vmin ≤ v(t) ≤ 1. (2)

We note that the control v(t) is an auxiliary. It is introduced into system (1) to
simplify analytical analysis. The corresponding physical control ṽ(t) in the same
system is related to the control v(t) by the formula ṽ(t) = 1 − v(t). Therefore,
where the auxiliary control v(t) has a maximum value of 1, the appropriate physical
control ṽ(t) takes a minimum value of 0, and vice versa. The physical control ṽ(t) is
responsible for the dose of drug, which suppresses the interaction of T-lymphocytes
and dendritic cells. Despite its importance, in the following arguments we focus on
the analysis of auxiliary control v(t). The set of admissible controls Ω(T ) consists
of all possible Lebesgue measurable functions v(t) that satisfy constraints (2) for
almost all t ∈ [0, T ].

Now, let us define the following positive constants:

η = min {μ; λ; ν} , K = ρ
(
1 + β−1δ

)
γ1 + σγ2,

M = γ2l0 + γ1k0 + (
1 + β−1δ

)
γ1m0 + η−1K ,

and introduce the set:

Θ =
{
(l,m, k) : l > 0, m > 0, k > 0, γ2l + γ1k + γ1

(
1 + β−1δ

)
m < M

}
.

Then, the boundedness, positivity, and extendability of solution of this system is
established by the following lemma.
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Lemma 1 Let the inclusion (l0,m0, k0) ∈ Θ be valid. For an arbitrary admissible
control v(t), the corresponding absolutely continuous solution (l(t), k(t),m(t)) to
system (1) are defined on the entire interval [0, T ] and satisfy the inclusion:

(l(t),m(t), k(t)) ∈ Θ, t ∈ (0, T ]. (3)

The proof of Lemma 1 is fairly straightforward and we omit it. Proofs of such
statements are given, for examples, in [2, 4, 10].

For system (1) on the set of admissible controls Ω(T ), we consider the problem
of minimizing the functional

J (v) = k(T ), (4)

whichmeans the concentration of keratinocytes at the finalmoment T of the psoriasis
treatment. Justification for using such a functional for system (1) was previously
discussed in [5].

In the minimization problem (1), (4) the restrictions (3) provide the existence of
the optimal control v∗(t) and the corresponding optimal solution (l∗(t), k∗(t),m∗(t))
(see [7]).

Finally, based on the results from [3, 11], we assume that the inequalities:

γ1 �= γ2, (β + δ)γ1 > δγ2, λ > μ, λ > ν

are valid.

3 Pontryagin Maximum Principle

In order to analyze the optimal control v∗(t) and the corresponding optimal solution
(l∗(t), k∗(t),m∗(t)), we apply the Pontryagin maximum principle [9]. Firstly, we
write down the Hamiltonian

H(l, k,m, v, ψ1, ψ2, ψ3) = (σ − δvlm − γ1lk − μl)ψ1
+((β + δ)vlm + γ2lk − λk)ψ2 + (ρ − βvlm − νm)ψ3,

where ψ1, ψ2, ψ3 are adjoint variables.
Secondly, we calculate the required partial derivatives:

H ′
l (l, k,m, v, ψ1, ψ2, ψ3) = vm(−δψ1 + (β + δ)ψ2 − βψ3)

+k(γ2ψ2 − γ1ψ1) − μψ1,

H ′
k(l, k,m, v, ψ1, ψ2, ψ3) = l(γ2ψ2 − γ1ψ1) − λψ2,

H ′
m(l, k,m, v, ψ1, ψ2, ψ3) = vl(−δψ1 + (β + δ)ψ2 − βψ3) − νψ3,

H ′
v(l, k,m, v, ψ1, ψ2, ψ3) = lm(−δψ1 + (β + δ)ψ2 − βψ3).
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Then, in accordance with the Pontryagin maximum principle, for the optimal con-
trol v∗(t) and the optimal solution (l∗(t), k∗(t),m∗(t)) there exists a vector-function
ψ∗(t) = (ψ∗

1 (t), ψ∗
2 (t), ψ∗

3 (t)) such that:

• ψ∗(t) is a nontrivial solution of the adjoint system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψ∗
1

′(t) = −v∗(t)m∗(t)(−δψ∗
1 (t) + (β + δ)ψ∗

2 (t) − βψ∗
3 (t))

−k∗(t)(γ2ψ∗
2 (t) − γ1ψ

∗
1 (t)) + μψ∗

1 (t),
ψ∗

2
′(t) = −l∗(t)(γ2ψ∗

2 (t) − γ1ψ
∗
1 (t)) + λψ∗

2 (t),
ψ∗

3
′(t) = −v∗(t)l∗(t)(−δψ∗

1 (t) + (β + δ)ψ∗
2 (t) − βψ∗

3 (t)) + νψ∗
3 (t),

ψ∗
1 (T ) = 0, ψ∗

2 (T ) = −1, ψ∗
3 (T ) = 0;

(5)

• the control v∗(t) maximizes the Hamiltonian

H(l∗(t), k∗(t),m∗(t), v, ψ∗
1 (t), ψ∗

2 (t), ψ∗
3 (t))

with respect to the variable v ∈ [vmin, 1] for almost all t ∈ [0, T ], and therefore it
satisfies the relationship:

v∗(t) =
⎧
⎨

⎩

1 , if L(t) > 0,
any v ∈ [vmin, 1] , if L(t) = 0,
vmin , if L(t) < 0

(6)

in which, by Lemma 1, the function

L(t) = −δψ∗
1 (t) + (β + δ)ψ∗

2 (t) − βψ∗
3 (t) (7)

is the switching function describing the behavior of the control v∗(t) according to
formula (6).

4 Properties of the Switching Function

An analysis of the function L(t) leads to the validity of the following lemma.

Lemma 2 There is such a value t0 ∈ [0, T ) that on the interval (t0, T ] the switching
function L(t) is negative.

Proof The functions ψ∗
1 (t), ψ∗

2 (t), ψ∗
3 (t), as the components of the absolutely con-

tinuous solution ψ∗(t) to system (5), are absolutely continuous as well. Hence, by
formula (7), the switching function L(t) is also absolutely continuous, and therefore
a continuous function. Due to formula (7) and the initial conditions of system (5), it
takes the negative value at t = T :

L(T ) = −(β + δ) < 0.
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Then, the stability of the sign of the continuous function L(t) yields the required
fact. This completes the proof.

Corollary 1 From Lemma 2 and formula (6), it follows the relationship:

v∗(t) = vmin, t ∈ (t0, T ].

Now, we introduce positive constants:

α = γ −1
2 ((β + δ)γ1 − δγ2), ε = α(λ − ν) + δ(λ − μ),

and then also the following functions:

g11(t) = v∗(t)(δm∗(t) + βl∗(t)) + ν,

g21(t) = v∗(t)m∗(t)(γ1(δk∗(t) − (β + δ)l∗(t)) + δ(μ − ν)),

g22(t) = (λ − μ)ε−1γ1(δk∗(t) − (β + δ)l∗(t))
+ε−1(α(λ − ν)λ + δ(λ − μ)(λ − ν + μ)),

g31(t) = γ1v∗(t)m∗(t), g32(t) = (λ − μ)γ1ε
−1,

g33(t) = (γ1k∗(t) − γ2l∗(t)) − (λ − μ)ε−1γ1(δk∗(t) − (β + δ)l∗(t))
+ε−1(α(λ − ν)μ + δ(λ − μ)ν).

In addition, let us define the auxiliary functions:

Q(t) = γ2ψ
∗
2 (t) − γ1ψ

∗
1 (t),

G(t) = (δk∗(t) − (β + δ)l∗(t) + γ −1
2 (β + δ)(λ − ν))Q(t) + εψ∗

1 (t),

and introduce the following function of two variables:

Φ(l, k) = −αδγ1(λ − ν)k2 − α(β + δ)γ2(μ − ν)l2 − 2δ(β + δ)γ1(λ − μ)lk
−(β + δ)(α(λ − ν)ν + δ(λ − μ)(2(μ − ν) + ν))l
+δ(α(λ − ν)(2(λ − μ) + ν) + δ(λ − μ)(2(λ − ν) + ν))k
+(β + δ)(σε + γ −1

2 δ(λ − μ)(λ − ν)(μ − ν)).

Then, using the equations of systems (1) and (5), we obtain the system of differential
equations for the functions L(t), G(t) and Q(t):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L ′(t) = g11(t)L(t) + G(t), t ∈ [0, T ],
G ′(t) = g21(t)L(t) + g22(t)G(t)

+ (
2δ(β + δ)v∗(t)l∗(t)m∗(t) − ε−1Φ(l∗(t), k∗(t))

)
Q(t),

Q′(t) = g31(t)L(t) + g32(t)G(t) + g33(t)Q(t),
L(T ) = −(β + δ), Q(T ) = −γ2,

G(T ) = − (γ2(δk∗(T ) − (β + δ)l∗(T )) + (β + δ)(λ − ν)) .

(8)

Now, let us analyze formula (6). We have the following conclusions.
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• If for some value t(+) ∈ [0, T ] the switching function L(t) is positive, then it is
also positive in some neighborhood of this value. Then the corresponding optimal
control v∗(t) takes the value 1 in this neighborhood.

• Similarly, if for some value t(−) ∈ [0, T ] the switching function L(t) is negative,
then it is also negative in some neighborhood of this value. Then the corresponding
optimal control v∗(t) takes the value vmin in this neighborhood.

• Since the function L(t) is absolutely continuous, it can vanish either at separate
points or on certain intervals. In the first case, the optimal control v∗(t) is bang-
bang, it takes only values vmin and 1. In this case, the value t0 ∈ (0, T ), at which
L(t0) = 0 and such that passing this point the function L(t) changes its sign, is a
switching of this control. Then, naturally, the question of estimating the number of
zeros of the switching function L(t) arises. Such a question relates to the estimate
of the number of switchings of the control v∗(t), and here system (8) plays a
significant role. In the second case, at such intervals the optimal control v∗(t) has
singular arcs [12, 13]. This phenomenon requires additional studies also using this
system.

Now, let us study the existence of a singular arc of the optimal control v∗(t),
whichmeans that the switching function L(t) can vanish identically on some interval
Δ ⊂ [0, T ]. We use the first two equations of system (8) to find on this interval the
first two derivatives of the function L(t):

L ′(t)
∣
∣
∣
L(t)=0

= 0, L ′′(t)
∣
∣
∣
L(t)=0, L ′(t)=0

= 0.

As a result, the equality can be obtained:

(
2δ(β + δ)v∗(t)l∗(t)m∗(t) − ε−1Φ(l∗(t), k∗(t))

)
Q(t) = 0, t ∈ Δ. (9)

From the analysis of formula (9) the following conclusions are made.

• The second derivative of the function L(t) contains the control v∗(t). This means
that the order q of the singular arc is equal to one.

• On the intervalΔ the optimal control v∗(t) is singular and is given by the formula:

v∗
sing(t) = Φ(l∗sing(t), k∗

sing(t))

2εδ(β + δ)l∗sing(t)m∗
sing(t)

. (10)

From this formula it follows that such a control has the form of feedback, that is, it
depends only on the functions l∗sing(t), k∗

sing(t), m
∗
sing(t), which are the correspond-

ing components of the optimal solution (l∗(t), k∗(t),m∗(t)) on this interval. We
assume that such a control is admissible, that is, the inclusion v∗

sing(t) ∈ [vmin, 1]
is valid everywhere on the interval Δ.
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• The necessary optimality condition of a singular arc (the Kelly condition [12, 13])
has the form:

2δ(β + δ)l∗sing(t)m
∗
sing(t)Q(t) ≥ 0, t ∈ Δ. (11)

The non-triviality of the vector-function ψ∗(t) = (ψ∗
1 (t), ψ∗

2 (t), ψ∗
3 (t)) implies

the validity of the following lemma.

Lemma 3 On the interval Δ the function Q(t) is sign-definite, that is, it only takes
either positive or negative values.

Corollary 2 From Lemma 3 and inequality (11) it follows that the Kelly condition
either holds in the strengthened form:

2δ(β + δ)l∗sing(t)m
∗
sing(t)Q(t) > 0, t ∈ Δ,

or is not satisfied at all, that is:

2δ(β + δ)l∗sing(t)m
∗
sing(t)Q(t) < 0, t ∈ Δ.

Finally, when the inclusion v∗
sing(t) ∈ (vmin, 1) is true for all t ∈ Δ, Lemma 2,

Corollary 2 and formula (10) provide the concatenation of the singular arc with the
other bang-bang portions of the control v∗(t).

5 Numerical Results

Further, only numerical investigation of optimal control v∗(t) is possible. For the
corresponding numerical calculations, the following values of the parameters and
initial conditions of system (1)were used [3, 11], aswell as the control constraints (2):

σ = 15.0 ρ = 3.6 β = 0.4 δ = 0.005
μ = 0.01 ν = 0.02 γ1 = 0.8 γ2 = 0.05
l0 = 100.0 k0 = 40.0 m0 = 50.0
vmin = 0.3 T = 100.0

The numerical calculations were carried out using the software “BOCOP 2.0.5”
(see [1]), and are shown in Figs. 1 and 2.

In Fig. 3 the surface Φ(l, k) is presented. It can be seen that positive values of the
function Φ(l, k) in formula (10) in the region of variation of the variables l and k
provide the admissibility of singular control v∗

sing(t).
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Fig. 1 Graphs of optimal solutions and optimal control for λ = 0.9: upper row: l∗(t), k∗(t); lower
row: m∗(t), u∗(t)

6 Conclusions

Physical optimal control ṽ∗(t) according to Figs. 1 and 2 describes the situationwhen,
first there is the period of the psoriasis treatment with greatest intensity. Next, it is
followed by the period of the treatment with a smooth decrease in the dose of the used
medication from the greatest intensity to the lower intensity. Then, there is a period
of the psoriasis treatment with lower intensity, and finally the switching occurs to
the period of the treatment with greatest intensity. Also, we emphasize that in all
performed numerical calculations, the optimal concentration of keratinocytes k∗(t)
decreases to the end T to the level that is the minimal for the entire period [0, T ] of
the psoriasis treatment (see Figs. 1 and 2).
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Fig. 2 Graphs of optimal solutions and optimal control for λ = 1.5: upper row: l∗(t), k∗(t); lower
row: m∗(t), u∗(t)

Fig. 3 Surface Φ(l, k) for λ = 0.9 and λ = 1.5
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The Use of Reaction Network Theory
for Finding Network Motifs in
Oscillatory Mechanisms and Kinetic
Parameter Estimation

Igor Schreiber, Vuk Radojković, František Muzika, Radovan Jurašek
and Lenka Schreiberová

Abstract Stoichiometric network analysis (SNA) is a method of studying stability
of steady states of reaction systems obeying mass action kinetics. Reaction rates
are expressed as a linear combination of elementary subnetworks with nonnega-
tive coefficients (convex parameters) as opposed to standard formulation using rate
coefficients and input parameters (kinetic parameters). We present examples of core
reaction subnetworks that provide for oscillatory instability. Frequently there is an
autocatalytic cycle in the core subnetwork, but in biochemical reactions such cycle
is often replaced by a pathway called competitive autocatalysis. Rate coefficients
in complex networks are often only partly known. We present a method of estimat-
ing the unknown rate coefficients, in which known/measured kinetic parameters and
steady state concentrations are used to determine convex parameters, which in turn
allows for determination of unknown rate coefficients by solving a set of constraint
equations.

Keywords Stoichiometric networks · Oscillating (bio) chemical reactions ·
Dynamical instabilities · Parameter estimation

1 Introduction

Reaction networks corresponding to biochemical processes occurring in living organ-
isms, such as genome-scale metabolic networks [13] are typically large. To under-
stand various operatingmodes embeddedwithin such systems, the networks at steady
states are decomposed into elementary subnetworks (elementary fluxes, extreme
currents) by taking advantage of a pseudolinear form of the corresponding model
equations. In terms of linear algebra, these modes are represented by vectors includ-
ing a collection of reaction rates at steady state. The elementary fluxes describe
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simplest chemical processes/functions that are available in the network with only
a limited number of reaction rates turned on. Subsequently, they can be linearly
combined using arbitrarily chosen non-negative coupling coefficients, producing the
full network with contributions from all reactions. Such decomposition relies on
stoichiometry only and does not require specification of reaction kinetics. However,
leaving out kinetics precludes determination of stability of the steady state and one
must assume it to be stable. In many systems, dynamical instabilities are essential for
performing appropriate function, such as periodic oscillations or bistable switches. In
those cases, the framework for analysis is provided by stoichiometric network anal-
ysis [3], which assumes that power law kinetics are provided and examines stability
of the network’s steady states.

The elementary subnetworks, or small subnetworks that are formed by combining
suitable elementary subnetworks, can be tested for potential instability. Such a test
does not require knowledge of rate coefficients and steady state concentrations of
participating species. When an unstable subnetwork is coupled with other subnet-
works, its (potential) instability will dominate the entire network provided that the
coupling of the unstable subnetwork is strong enough.

This estimate of stability allows for identification of a core subnetwork that gives
rise to an oscillatory instability and thereby provides a natural explanation for observ-
ing chemical oscillations [3–6, 16, 18]. Moreover, the oscillatory core subnetworks
may be arranged into groups sharing certain topological features, which allows for
a categorization of chemical oscillators [5, 16], each category being represented by
a prototype network or a motif. At the same time, species within each prototype can
be classified based on the role they play in generating the oscillations.

As mentioned above, such a classification is still based on analysis that does not
involve knowledge of rate coefficients and steady state concentrations.When describ-
ing a specific experimental system, some of these parameters are known while others
are not. Below we outline a procedure, that uses the notion of potential instability as
introduced by the SNA and attempts to estimate the set of unknown rate coefficients
and/or steady state cocentrations. To that goal, we utilize the idea that the coupling
coefficients of the elementary subnetworks and steady state concentrations (con-
vex parameters) must be consistent with known rate coefficients and inflow/initial
constraints (kinetic parameters).

In our previous work [11, 15] we initiated the outlined approach and applied it
to an oscillatory enzyme reaction and the classical inorganic Belousov-Zhabotinsky
reaction. In this work we extend the list of subnetworks having a distinct motif
and provide a mathematical framework for employing these motifs as reference
subnetworks in models with extensive and complex mechanisms.

2 Theoretical Part

All spatially homogeneous isothermal chemical oscillators are based on stoichiom-
etry and kinetics and fall within the formal mathematical description given below.
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Let us assume a system involving m reactions and a total number of species ntot ,

νL
1 j A1 + · · · + νL

ntot j Antot→νR
1 j A1 + · · · + νR

ntot j Antot , j = 1, . . . ,m, (1)

where Ai are the reacting species and νL
i j , νR

i j are left and right stoichiometric
coefficients. Any reversible reaction is treated as a pair of forward and backward
steps. In a spatially homogeneous system, such as a flow-through reactor, dynamics
of n ≤ ntot species that are not inert products or in a pool condition are governed
by a set of coupled mass balance equations which have the following pseudolinear
form:

dx
dt

= N v(x) , (2)

where x = (x1, . . . , xn) is the vector of concentrations of the interacting dynam-
ical species, N = {Δνi j } = {νR

i j − νL
i j } is the (n × m) stoichiometric matrix and

v = (v1, . . . , vm) is the non-negative vector of reaction rates (fluxes) (All vectors
are assumed being column vectors). The reaction rates are assumed to follow mass
action kinetics,

v j = k j

n∏

i=1

x
κi j
i = k j v̄ j , (3)

where κi j = ∂lnv j/∂lnxi ≥ 0 is the reaction order of species i in reaction j and k j

is the corresponding rate coefficient, which may include fixed concentration(s) of
pooled species and v̄ j is the reduced reaction rate. In vector notation we have k =
(k1, . . . , km) and v̄(x) = (v̄1, . . . , v̄m). For elementary reactions, κi j = νL

i j . However,
in general case power law terms may also be used for quasi-elementary steps with
κi j �= νL

i j . The kinetic matrix {κi j } is denoted as K. In flow systems, the inflows and
outflows are included as pseudoreactions of zeroth and first order, respectively; the
rate coefficient corresponding to an inflow term is k j = k0xi0 and that for an outflow
is k j = k0, where k0 is the flow rate and xi0 is the feed concentration of any inflowing
species i .

At steady state Eq. (2) reduces to

Nv = 0 . (4)

Since the reaction rates are non-negative, the set of all vs satisfying the steady state
condition is a non-negative subset of the null space of N represented by an (m − d)-
dimensional convex polyhedral cone delimited by faces of dimension 1, . . . , (m −
d) − 1, where d is the rank of N. One-dimensional faces (or edges) represent a set
of minimal, irreducible, connected subnetworks called elementary subnetworks or
extreme currents or elementary fluxes. There are f edges of the cone satisfying
f ≥ m − d. The edges should be properly normalized, a convenient way is to let
the components of the rate vector corresponding an edge sum up to 1. Endpoints of
the normalized edges are apexes of a convex polytope of dimension (m − d − 1).
If f = m − d, the edges form a basis of the cone which is then called simplicial
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and the corresponding polytope is a simplex. Extreme currents can be obtained by
algorithms of linear programming [9] or other efficient algorithms [17].

Let Ek denote a normalized rate vector corresponding to an elementary subnet-
work. The set of all such subnetworks can be put into a matrix

E = [E1, . . . , E f ] . (5)

Any feasible rate vector vs satisfying the steady state condition can be conveniently
expressed as a non-negative linear combination of the elementary subnetworks,

vs = E α, α = (α1, . . . , α f ) . (6)

The rate vector vs is determined by choosing linear combination vector α. Upon
substituting for the rate vector from (3) and by choosing xs the rate coefficients are

k = (diag v̄(xs))
−1

(E α) . (7)

Thus, for a given set of convex parameters (α, xs), kinetic parameters are obtained
via (7). However, unless the cone is a simplex, the convex parameters are redundant,
whichmust be taken into account when constructing the network from its elementary
subnetworks.

Using the convex parameters, the mass balances given by Eq. (2) are expressed
as

dx
dt

= N diag (E α) (diag v̄(xs))
−1

v̄(x) . (8)

Upon linearizing the r.h.s. at the steady state xs , the Jacobian matrix is obtained,

J = N diag (Eα) KT diag h = −V diag h , (9)

where h = (1/xs1, . . . , 1/x
s
n) includes reciprocal values of the steady state concen-

trations and KT = {κ j i } is the transpose of kinetic matrix. Because of convenience
suggested by the form of Eq. (9), the convex parameters are usually taken as (α, h)

rather than (α, xs).
An instability of a steady state xs can be determined by analyzing principal minors

of the (n × n) matrix V. If a principal minor of order � involving a subset of indexes
i1, . . . , i� of certain species is negative, then at least one eigenvalue of J is unstable,
provided that the steady state concentrations of corresponding species xsi1 , . . . , x

s
i�

are sufficiently small [3]. It is sufficient to consider a leading negative minor with a
minimal order � since any higher order instability is derived from the minimal con-
figuration. Edge is the simplest possible unstable subnetwork. Next in the hierarchy
of unstable subnetworks is 2-face such that both edges constituting the 2-face are
stable when analyzed separately. Such an instability is possible due to nonlinear-
ity of kinetics. We call such a face primary unstable. Any primary unstable k-face,
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k = 1, 2 . . .may be a suitable candidate for the core of oscillatory subnetwork.When
there are multiple choices, the dominant subnetwork is selected as described below.

3 Identification of Dominant Subnetworks

Asmentioned above, the instability induced by a negative principal minor reflects the
susceptibility of the subnetwork to possessing an unstable steady state provided that
the corresponding steady state concentrations are sufficiently small. Although there
are special cases when more subtle criteria have to be applied to indicate oscillatory
instability, [4, 6], generally the outlined features provide excellent guidelines in
evaluating the potential of a reaction network to undergo a dynamical instability. A
Hopf bifurcation represents the emergence of oscillations [10], which is of primary
importance in this work.

When applying the SNA to oscillatory mechanisms of inorganic reactions that
were discovered since the pioneering work of Belousov and Zhabotinsky [19], is has
been found [5] that dominant subnetworks forming the core oscillator have only a few
topological arrangements of their networks, which are called prototypes or motifs.
They all possess an autocatalytic cycle, i.e. a cycle connecting species (denoted as
type X) of which at least one has a stoichiometric overproduction. In addition, there
is a negative feedback loop involving a noncyclic species (denoted as type Z) and a
removal of a typeX species either by decomposition or via reactionwith an inhibitory
species (denoted as type Y).

However, many biochemical oscillators do not possess an autocatalytic cycle.
Instead, their core oscillator possesses two type X-like species competing for a type
Y-like species. In addition, there is a negative feedback loop involving type Z species,
but all cycles present in the network are “ordinary” or nonautocatalytic cycles that do
not provide for stoichiometric overproduction. Yet the network admits an instability
leading to oscillations. Such a feature is called competitive autocatalysis. As with
the cyclic autocatalysis, only a few basic motifs are expected to constitute dominant
subnetworks of many biochemical networks.

As yet the categorization of networks with noncyclic autocatalysis is unavail-
able, here we provide examples of four prototypes, see Fig. 1. Cases (a) and (b) are
prevalent in inorganic chemical oscillators [5] and possess autocatalytic cycle. They
differ in coupling of the type Z species into the network. In the case (a) Z is supplied
with feed and consumed by the cycle thereby creating negative feedback, whereas
in the case (b) Z is produced by the cycle and induces negative feedback by pro-
ducing type Y species, which inhibits the autocatalytic growth. Cases (c) and (d)
represent examples of competitive autocatalysis. In the case (c) there are two type
X species connected in a nonautocatalytic cycle, with X1 being supplied externally,
which allows for an autocatalytic-like accumulation if the type Y species is low. On
the other hand, if Y is high, the autocatalysis is inhibited. The type Z species controls
occurrence of the phase of accumulation (when Z is low) and depletion of X1 (when Z
is high). Availability of Z is inflow-controlled as in the case (a). Case (d) is an exam-
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Fig. 1 Basic motifs of
oscillatory reaction
networks, a inflow-limited
cyclic autocatalysis with
external supply of Z, b
inflow-unlimited (batch)
cyclic autocatalysis with
internal production of Z, c
competitive autocatalysis
with external supply of Z, d
competitive autocatalysis
with internal production of Z

XZ Y
(a)

X

Z

Y
(b)

X2

Y

Z

X1

(c) (d)

X2

YZ

X1

ple od topological arrangement where there is no cycle connecting type X species
(not even a nonautocatalytic cycle). Instead, type Y species is self-regenerating. The
negative feedback may be arranged in several ways, either by external supply of Z
as in the case (c) or by internal production of Z feeding back to X2 as shown in the
Figure or feeding back to X1 (not shown). The internal production of Z is resembling
the case (b), both X1 and Y are either provided externally as shown in the Figure, or
internally by embedding the motif into a larger network. The motif in case (a) repre-
sents numerous flow-limited inorganic oscillating reactions [5], case (b) represents
a batch oscillator, in particular the Belousov-Zhabotinsky reaction [12]. Case c) is
a generalization of an enzyme reaction with substrate inhibition, where X1 and X2

are two enzyme forms, Y is the inhibitory substrate and Z is another substrate that
controls the oscillations. Case (d) represents a transcriptional network with X1 and
X2 being the activator and inhibitor, respectively, Y is the protomer and Z represents
the mRNA coding for the inhibitor [2]. Alternatively, case (d) with feedback to X1 is
found in phosphorylation cascades [8]. Essentially, all known inorganic oscillators
possess either case (a) or case (b) motif [5]. Additional motifs with autocatalytic loop
possess higher order autocatalysis as found in the glycolytic oscillator [5]. Although
additional motifs involving competitive autocatalysis are quite likely, they are yet to
be discovered.

4 Determination of Parameters Based on Stoichiometric
Constraints

Our major goal is to use the SNA approach to networks to estimate unknown param-
eters in a system, for which we have or assume a detailed mechanism implying
power law kinetics, and are able to perform experiments leading the emergence of
oscillations via Hopf bifurcation. Typically, some of the rate coefficients are known
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from previous research, thus our aim is to determine a subset of rate coefficients.
Parameter determination can be based on choosing an appropriate subset of Eq. (6)
with vs = v(xs) consistent with our experiments and already known parameters.
These equations can be used for finding various unknown quantities including rate
coefficients and steady state concentrations, given that other quantities are available,
such as rate coefficients known from independent experiments or taken from liter-
ature, experimentally measured steady state concentrations, known inflow rate and
inflow concentrations at a distinct dynamical instability. The major instabilities are:
(i) emergence of oscillations at a Hopf bifurcation or (ii) switch to another steady
state at a saddle-node bifurcation. To preserve linearity, we choose a subset of rate
equations such that, upon substituting the known quantities, the rate expressions are
either linear in a particular unknown or fully determined. We call such equations
constraint equations.

In order to have a compact form of the constraint equations, let us arrange the
order of elementary subnetworks in E, the order of species in xs and the order of
reactions in vs and k as follows (below we drop the subscript s so that x and v now
denote steady state quantities):

α = (α f v,αuv) , x = (x f v, xuv, xiv) , k = (k f v, kuv, kiv) , v = (v f v, vuv, viv) .

(10)

Each vector consists of subvectors, where the superscript f v means a fixed or given
value of the relevant quantity, uv means an unknown value to be determined from the
constraint equations and iv means an implied value determined from those equations
in Eq. (6) that are not used as the constraint equations and can be obtained only after
the unknown values are determined. Moreover, the reaction rates possessing some
unknowns fall within two distinct subsets, vuv = (vuvx , vuvk); in vuvx only the con-
centrations xuv occur as (linear) unknowns, while in vuvk the rate coefficients kuv are
the only unknowns. To maintain linearity of the constraint equations, concentration
of a species i is an admissible unknown if i is of first order in any reaction j included
in the constraint equations. By contrast, any αk or k j satisfy linearity by definition.
Choice of ααα f v . The fixed values of αk’s can be split into two parts, α f v =
(αuds,αnds). The choice of αuds is based on the preceding stability analysis (Sect. 2)
that identifies an unstable subnetwork having a dominant contribution in Eq. (6). The
other subvector αnds specifies contributions from nondominant subnetworks that are
not involved in the constraint equations due a limited set of known data.
Choice of x f v . Certain xi ’s in x f v are known from experimental measurements (such
as by measuring pH). Others may be set according to requirements of the stability
analysis as outlined above. In particular, the leading principal minor of order � for
the unstable dominant subnetwork indicates species with indexes i1, . . . , i� that must
have small values relative to others if the instability is to be manifested.
Choice of k f v . Some of the rate coefficients can be often found in literature, pre-
sumably evaluated by standard experimental procedures while others can be assumed
based on a number of clues, such as the upper bound for diffusion-limited rate pro-
cesses, forward/backward rate coefficients related via equilibrium constants, etc.
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Choice of unknown and implied variables. All values in α that are not fixed are
taken as unknowns. The choice is less straightforward for steady state concentra-
tions. Those xi ’s that are not fixed and appear with first order in the reaction rates
where all other quantities are fixed, may be selected as unknowns. The remaining
concentrations correspond either to species with order other than one in some rate
expressions or the rates where they appear include other unknown quantities and thus
fall within xiv . The set of unknown rate coefficients has two parts,kuv = (kirr , k f wr ),
where kirr includes unknown rate coefficients of irreversible steps, which requires
the corresponding subset of reduced reaction rates v̄irr to be given by fixed values of
the relevant concentrations. In the case of reversible reactions, there are pairs of for-
ward/backward reaction steps and k f wr denotes the set of forward rate coefficients.
The reduced rates in both directions, v̄ f wr , v̄bwr , are again assumed to be deter-
mined by the fixed values of relevant concentrations. Provided that the values of the
equilibrium constants are known, the corresponding backward rate coefficients are
expressed in terms of the forward rate coefficients, kbwr = (diag Keq)

−1
k f wr where

Keq is the corresponding vector of equilibrium constants.

4.1 Formulation of the Constraint Equations

After identifying fixed, unknown and implied quantities we can finally set up the con-
straint equations by selecting certain equations from Eq. (6) and rearranging them
to obtain linear equations in a standard matrix form. First, we express E in terms of
three blocks containing edge(s) involved in the unstable dominant subnetwork, non-
dominant subnetworks not to be used in the constraint equations and the remaining
edges that will be part of the constraints, respectively:

E = [Euds, Ends, Euv]. (11)

Equation (6) can be then rewritten as

Eudsαuds + Endsαnds + Euvαuv = v . (12)

Depending on the available input data, we choose constraint equations based on those
rates v j which are either known entirely or expressed as a linear function of either
kuv
j or xuv

i . As a result, the remaining equations are all included in the term Endsαnds

representing edges that have no contribution to the selected v j ’s and are removed.
The constraint equations then read

Êuvαuv = v̂ − Êudsαuds , (13)

where v̂ = (v f v, vuvk, vuvx ) is the set of rates used as constraints and Êuv, Êuds retain
only rows corresponding to v̂. Since vuvk depends linearly on kuv and vuvx on xuv ,
these terms can bemoved to the l.h.s. of Eq. (13) to yield a system of linear constraint
equations in a simple block form,
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⎡

⎣
0 0

Êuv A 0
0 B

⎤

⎦

⎡

⎣
αuv

kuv

xuv

⎤

⎦ =
⎡

⎣
v f v

0
0

⎤

⎦ − Êudsαuds . (14)

The matrix A possesses a banded structure,

A =
⎡

⎣
−diag v̄irr 0

0 −diag v̄ f wr

0 −diag v̄bwr

⎤

⎦ , (15)

whereas the structure of B is given by how many constrained reactions involve a
given species as a linear unknown and does not possess any specific structure of
nonzero elements, except that each row contains only one nonzero value which is
negative.

4.2 Solving the Constraint Equations

The constraint equations Eq. (14), may be concisely written as

U a = b . (16)

As a rule, the system is underdetermined due to a large number of elementary sub-
networks and limited data on reaction rates known from experiments or literature
that can be used in formulating constraint equations. Consequently, Eq. (16) is not
expected to provide a unique solution and a suitable solution needs to be selected
by utilizing an optimization procedure with an appropriate objective function. A
clue to defining an objective function is readily provided by employing the stabil-
ity analysis of stoichiometric networks as outlined in Sect. 2. More specifically, for
chemical oscillators the emergence of oscillations via Hopf bifurcation is implied by
dominance of the chosen (leading) unstable subnetwork. Therefore we can postulate
that the contributions of the elementary subnetworks other than the leading unstable
subnetwork should be as small as possible at the oscillatory instability. Thus the
objective function to be minimized may be taken as the sum of the contributions of
all subnetworks involved in the constraint equations other than the unstable domi-
nant one, whose contribution is used as a free bifurcation parameter, which is varied
until a Hopf bifurcation is found. Since the constraint equations are constructed to be
linear, a linear programming solver [14] was used for solving the constrained system
Eq. (16) by minimizing

f (a) =
p∑

k=1

αuv
k . (17)

In general, the set of all admissible solutions of Eq. (16) with non-negative compo-
nents of a is restricted to a set which may be a convex bounded polytope or a convex
unbounded polytope, which arises by shifting the non-negative cone (if it exists) of
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the homogeneous subsystem of Eq. (16) in the space of a due to b and has a set
of apexes in some directions but extends without bounds in other directions. The
minimal solution sits in one of the apexes.

5 Discussion and Conclusions

The approach outlined above has been applied to the glucose oxidase–catalase reac-
tion [11] and the Belousov-Zhabotinsky reaction [15]. However, main applications
are expected in identifying kinetic parameters in models of biological oscillating sys-
tems, such as circadian clocks [7]. Also, when temperature dependence of the rate
coefficients is of interest, the input experimental information at two (or more) differ-
ent temperatures needs to be provided and results subsequently fitted to Arrhenius
law.

There are certain caveats that must be taken care of to obtain the solution of
Eq. (16). Some of the parameters x f v and k f v that are not available from measure-
ments must be assigned fixed values chosen heuristically. It may happen that such
a choice violates solvability of the system Eq. (16). In this case, an effective way
of resolving the problem is to find incompatible constraint equations and remove
them. Likewise, some constraint equations may be linear combinations of others,
which causes the linear programming solver to fail. Both incompatible and linearly
dependent equations can be removed by applying singular value decomposition [14].
Another limitation is the linearity of constraint equations. In future work a nonlinear
constrained optimization [1] should be considered.
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An Existence Result for Some Fractional
Evolution Equation with Nonlocal
Conditions and Compact Resolvent
Operator

G. M. N’Guérékata

Abstract We are concerned with the existence of mild solutions to the fractional
differential equation Dα

t u(t) = Au(t) + J 1−α
t f (t, u(t)), 0 < t ≤ T, with nonlo-

cal conditions u0 = u(0) + g(u), where 0 < α < 1, Dα
t is the Caputo derivative,

J 1−α
t h(t) := 1

�(1−α)

∫ t
0

h(s)
(t−s)α ds is the fractional integral of order α of the function

h, and A : D(A) ⊂ X → X is a linear operator which generates a compact analytic
resolvent family (Rα(t))t≥0, X being a Banach space. We obtain our results using
the Krasnoleskii’s fixed point theorem.

Keywords S-asymptotically ω-periodic functions · Bloc-periodic functionc ·
Fractional differential equations

1 Introduction

Fractional differential equations are one of themost usefulmathematical tools in both
pure and applied analysis.Wecanfindnumerous applications of fractional differential
and integral equations of fractional order in viscoelasticity, electrochemistry, control,
porous media, electromagnetism, etc., There has been a significant development in
ordinary and partial fractional integral equations in recent years; see the monographs
of Abbas et al. [1, 2], Miller [10], Podlubny [13] and the references therein.

The problem of finding solutions of phenomenamodeled by fractional differential
equations has been extensively studied over the last decades (cf. instance [3, 4, 7,
11, 12, 14]). We are concerned with the following fractional differential equation
with nonlocal initial conditions.

⎧
⎪⎨

⎪⎩

Dα
t u(t) = Au(t) + J 1−α

t f (t, u(t)), 0 < t ≤ T

u0 = u(0) + g(u)

(1)
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Our aim is to study the existence of mild solutions under appropriate conditions on
the functions f and g assuming that the (generally unbounded) linear operator A
generates an (α, 1) resolvent family. The following articles motivated our work.
In [12], we studied the existence (and uniqueness) of mild solution to the following
problem in a finite dimensional space X

⎧
⎪⎨

⎪⎩

Dα
t u(t) = f (t, u(t)), 0 < t ≤ T

u0 = u(0) + g(u)

(2)

using the Banach’s fixed point theorem and the Krasnoleskii’s fixed point theorem.
This paper has inspired several works in infinite dimensional spaces including the
paper [5]. In [8], the authors studied the existence of mild solution to the problem

⎧
⎪⎨

⎪⎩

Dα
t u(t) = Au(t) + J 1−α

t f (t, u(t)), 0 < t ≤ T

u0 = u(0) + g(u)

(3)

where Dα
t is the Caputo derivative and the operator A generates an (α, 1)-resolvent

family. They used the Leray-Schauder theorem to achieve their results.
In the present work, we consider the same problem with different (say weaker)
assumptions on the functions f and g and use the Krasnoselskii theorem to obtain
our result.

2 Preliminaries

Throughout this paper, X will be a Banach space, C will be the space of all continuous
functions [0, T ] → X equipped with the supnorm, B(X) the Banach space of all
bounded linear operators X → X . Let’s recall some definitions and facts (cf. for
instance [8]).

Definition 2.1 Let α > 0. A closed linear operator A : D(A) ⊂ X → X is said to
be the generator of an (α, 1)-resolvent family if there exists ω ≥ 0 and a strongly
continuous function Rα : R+ → B(X) such that {λα : Reλ > ω} ⊂ ρ(A) and

λα−1(λα − A)−1x =
∫ ∞

0
e−λt Rα(t)xdt, Reλ > ω, x ∈ X.

In this case, the family (Rα(t))t≥0 is called an (α, 1)-resolvent family generated
by A.

Remark 2.2 If A is the generator of an (α, 1)-resolvent family (Rα(t))t≥0, then we
have the following properties:
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(i) Rα(t) is strongly continuous for t ≥ 0 and Rα(0) = I , the identity operator on X
(ii) Rα(t)A ⊂ ARα(t) for t ≥ 0
(iii) For x ∈ D(A), the resolvent equation

Rα(t)x = x +
∫ t

0
gα(t − s)Rα(t)Axds

holds for all t ≥ 0.

Definition 2.3 We say that a strongly continuous family (T (t))t≥0 is exponentially
bounded, or of type (M,ω) if there exists M > 0 and ω ∈ R such that

‖T (t)‖ ≤ Meωt , ∀t ≥ 0.

Theorem 2.4 ([8]) Let 0 < α ≤ 1 and (Rα(t))t≥0 be an (α, 1)-resolvent family of
type (M,ω) generated by the operator A. Suppose that Rα(t) is continuous in the
uniform operator topology for all t > 0. Then the following assertions are equivalent
(i) Rα(t)) is a compact operator for all t > 0
(ii) (μ − A)−1 is a compact operator for all μ > ω

1
α .

Theorem 2.5 (Ascoli-Arzela) Let � := (γ(t)) be a family of continuous maps
I → X where I is a bounded interval of R and X a Banach space. If � is uni-
formly bounded and equicontinuous and for any t ∈ I , the set (γn(t)), n = 1, 2, . . .
is relatively compact, then there exists a uniformly convergent function sequence
(γn(t)), n = 1, 2, . . . , t ∈ I in �.

Lemma 2.6 (Mazur) If K is a compact subset of X, then its convex closure co(K )

is compact.

Theorem 2.7 (Krasnoselskii) Let M be a convex closed nonempty subset of a
Banach space X. Suppose that A, B are operators mapping M into X such that
(i) Au + Bv ∈ M whenever u, v ∈ M;
(ii) A is a contraction mapping;
(iii) B is a continuous compact mapping.
Then there exists z ∈ M such that z = Az + Bz

3 Main Results

Let J 1−α
t h(t) := 1

�(1−α)

∫ t
0

h(s)
(t−s)α ds be the fractional integral of order α > 0 of the

function h with values in a Banach space X . The integrals here and in this paper are
considered in the sense ofBochner that is thosemeasurable functions f : [0, T ] → X
such that ‖ f ‖ is Lebesgue integrable.
For a function f ∈ Cm(R+, X), where m ∈ N, its Caputo fractional derivative of
order α ∈ (m − 1,m) is defined by
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Dα
t f (t) := 1

�(m − α)

∫ t

0
(t − s)m−α−1 f (m)(s)ds.

It is easy to prove the following for α > 0:

(i) The Caputo derivative of a constant is zero.
(ii) If Dα

t h(t) = 0, then

h(t) = c0 + c1t + c2t
2 + · · · + cnt

n−1

where ci are reals and n = [α] + 1. For more details on fractional calculus, we refer
for instance to [2, 10, 13].

Now we consider the following problem

{
Dα

t u(t) = Au(t) + J 1−α
t f (t, u(t)), 0 < t ≤ T

u0 = u(0) + g(u)
(4)

where 0 < α < 1, Dα
t is the Caputo derivative. The linear operator A : D(A) ⊂

X → X generates an (α, 1)-resolvent family Rα(t) of type (M,ω). f : [0, T ] ×
X → X and g : C := C([0, T ], X) → X with someassumptions to be definedbelow.
As indicated in his pioneering paper [4], Deng proves that the nonlocal condition
u(0) = u0 − g(u) can be applied in physics with better effect than the classical
Cauchy Problem initial condition u(0) = u0. We refer also the reader to [9] for more
information about this concept.

Definition 3.1 [6] A function u ∈ C := C([0, T ]; X) is said to be a mild solution to
Eq. (4) if it satisfies the integral equation

u(t) = Rα(t)[u0 − g(u)] +
∫ t

0
Rα(t − s) f (s, u(s))ds, t ∈ [0, T ].

We make the following assumptions

A1. The function f is of Carathéodory, i.e. f (·, u) is strongly measurable for each
u ∈ X and f (t, ·) is continuous for each t ∈ X .

A2. There exist constant c f > 0, cg > 0 such that

‖ f (t, u)‖ ≤ c f (1 + ‖u‖C),∀(t, u) ∈ [0, T ] × X,

‖g(u)‖ ≤ cg(1 + ‖u‖C), ∀u ∈ C.

A3. There exists a constant Lg > 0 such that

‖g(u) − g(v)‖ ≤ Lg‖u − v‖C, ∀u, v ∈ C.
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Theorem 3.2 Assume that the operator A generates an (α, 1)-resolvent family
(Rα(y))t≥0 of type (M,ω) where ω < 0 and (λα − A)−1 is compact and Rα(t) is
continuous in the usual operator topology for all t > 0. Under the above assumptions
A1 − A3, Eq. (4) possesses a mild solution provided max {Lg, (1 + cg + c f

ω
)} < 1

M .

Proof Let r such that r >
M(c f +cg)

1−M(1+cg+ c f
|ω| )

and consider the closed convex subset�r :=
{u ∈ C : ‖u‖C ≤ r}.
Define the operators P, Q : �r → �r by

(Pu)(t) := Rα(t)[u0 − g(u)]

and

(Qu)(t) :
∫ t

0
Rα(t − s) f (s, u(s))ds.

We will use several steps.

Step 1.
Let u, v ∈ �r . We will show that Pu + Qv ∈ �r . Indeed we have

‖Pu + Qu‖ ≤ M[eωt (‖u0‖ + ‖g(u)‖ +
∫ t

0
eω(t−s)c f (1 + ‖v(s)‖)ds]

≤ M[eωt (‖uo‖ + cg(1 + ‖u‖C) + c f (1 + ‖v‖C)

∫ t

0
eω(t−s)ds]

≤ M[eωt (‖uo‖ + cg(1 + ‖u‖C) + c f

ω
(1 + ‖v‖C)]

≤ M[‖u0‖ + cg(1 + r) + c f

ω
(1 + r)]

≤ r.

This completes the proofs of Step 1.

Step 2. Let u, v ∈ C. Then we have

‖(Pu)(t) − (Qu)(t)‖ = ‖Rα(t)[u0 − g(u)] − Rα(t)[u0 − g(v)]‖
≤ ‖Rα(t)[g(u) − g(v)]‖
≤ Meωt‖g(u) − g(v)‖
≤ MLge

ωt‖g(u) − g(v)‖C
≤ MLg‖g(u) − g(v)‖C,

which shows that P is a contraction since MLg < 1.

Step 3. Q is a continuous operator. Indeed let (u)n ⊂ Br such that un → u in Br . Then
for each s ∈ [0, T ], f (s, un(s)) → f (s, u(s)) in view of A1. Now fix t ∈ [0, T ]. We
have
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(Qun)(t) − (Qu)(t)‖ =
∫ t

0
Rα(t − s)[ f (s, un(s)) − f (s, u(s))]ds‖

≤ M
∫ t

0
eω(t−s)‖ f (s, un(s)) − f (s, u(s))‖

≤ M
∫ t

0
eω(t−s)(‖ f (s, un(s))‖ + ‖ f (s, u(s))‖)ds

≤ Mc f

∫ t

0
eω(t−s)(2 + ‖un(s)‖ + ‖u(s)‖)ds

≤ 2Mc f (1 + r)
∫ t

0
eω(t−s)ds

< ∞.

Therefore, by the Lebesgue Dominated Convergence Theorem, Qun → Qu.
Step 4. Q is a compact operator. First, consider an arbitrary sequence in Br . Then
we have

‖(Qun)(t)‖ ≤ M
∫ t

0
eω(t−s)‖ f (s, un(s))‖ds

≤ Mc f

∫ t

0
eω(t−s)(1 + ‖un(s)‖)ds

≤ Mc f (1 + r)
∫ t

0
eω(t−s)ds

≤ Mc f
(1 + r)

|ω| ,

for every n = 1, 2, . . .. This shows that (Qun) is uniformly bounded.

Now we will show that (Qun) is equicontinuous. Let’s take t1, t2 such that 0 ≤
t1 < t2 ≤ T . Then we get

‖(Qun)(t1) − (Qun)(t2)‖ = ‖
∫ t1

0
Rα(t1 − s) f (s, un(s))ds −

∫ t2

0
Rα(t2 − s) f (s, un(s))ds‖

= ‖
∫ t1

0
Rα(t1 − s) f (s, un(s))ds

−
∫ t1

0
Rα(t2 − s) f (s, un(s))ds

−
∫ t2

t1
Rα(t2 − s) f (s, un(s))ds‖

≤ I1 + I2

where

I1 = ‖
∫ t1

0
[Rα(t1 − s) − Rα(t2 − s)] f (s, un(s))ds‖, I2 = ‖

∫ t2

t1
Rα(t2 − s) f (s, un(s))ds‖.
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Now we note that

I2 ≤ M
∫ t2

t1

eω(t2−s)‖ f (s, un(s))‖ds

≤ Mc f

∫ t2

t1

eω(t2−s)(1 + ‖un(s)‖)ds

≤ Mc f (1 + r)
∫ t2

t1

eω(t2−s)ds

≤ Mc f (1 + r)(t2 − t1),

which shows that limt1→t2 I2 = 0. Also we have

I1 ≤ ‖
∫ t1

0
‖Rα(t1 − s) − Rα(t2 − s)‖‖ f (s, un(s))‖ds

≤ c f ‖
∫ t1

0
‖Rα(t1 − s) − Rα(t2 − s)‖(1 + ‖un(s)‖)ds

≤ c f ‖
∫ t1

0
‖Rα(t1 − s) − Rα(t2 − s)‖(1 + ‖un(s)‖)ds

≤ c f (1 + r)‖
∫ t1

0
‖Rα(t1 − s) − Rα(t2 − s)‖ds.

Let’s note that
‖Rα(t1 − ·) − Rα(t2 − ·)‖ ≤ 2Meω(t−·)

and that 2Meω(t−·) ∈ L1([0, T ],R). Also limt1→t2 [Rα(t1 − s)Rα(t2 − s)] = 0 in
BC(X).
Thus by the Lebesgue Dominated Convergence Theorem, limt1→t2 I1 = 0, which
proves the equicontinuity of (Qun).
Step 5. In view of Theorem 2.4, Rα(t) is compact for all t > 0. Therefor the set

K := {Rα(t − s) f (s, u(s)) : u ∈ C, s ∈ [0, T ]}

is relatively compact for each t ∈ [0, T ]. It follows that co(K ) is compact, using the
Mazur Theorem. Now let u ∈ Br . It is clear that for all t ∈ [0, T ] we have

(Qu)(t) ∈ co(K ).

Consequently, the set {(Qu)(t) : u ∈ Br } is relatively compact in X . Finally we
conclude that Q is compact by the Arzela-Ascoli’s theorem. �
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Impact of Tobacco Smoking
on the Prevalence of Tuberculosis
Infection: A Mathematical Study

Mini Ghosh

Abstract Tobacco smoking is a social problem. It is a well-established fact that the
smoking of tobacco products can cause severe health problems. It is also observed
that the smokers are having higher risk of getting tuberculosis infection than the non-
smokers. In this article a non-linear mathematical model is proposed and analyzed
to demonstrate the impact of tobacco smoking on transmission dynamics of the
tuberculosis. The basic reproduction number R0 of the model is computed and the
stabilities of different equilibria of the model are studied in-detail. The model system
exhibits backward bifurcation for some specific set of parameters which suggests that
mere reducing the basic reproduction number corresponding to TB below one is not
enough to establish the stability of TB-free equilibrium point. So efforts are needed to
reduce this basic reproduction number much below one to have TB-free equilibrium
to be stable. It is also observed that the smoking habits can influence the stability of
co-existence equilibrium and it can lead to persistence of TB in the population even
though the basic reproduction number corresponding to TB is much less than one.
Furthermore, this model is extended to the optimal control problem and the optimal
control model is analyzed using the Pontryagin’s Maximum Principle and is solved
numerically using MATLAB∗TM . Finally, numerical simulations are performed to
analyze the effect of optimal control on the infected population. We observe that the
optimal control model gives better result as compared to the model without optimal
control as it reduces the number of infectives significantly within desired interval of
time.
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1 Introduction

Tuberculosis (TB) is an infectious disease which is caused by bacterium Mycobac-
terium tuberculosis (MTB). TB mostly affects the lungs but it is not limited to it. TB
bacteria can also attack to other parts of the body e.g. kidney, spine, brain etc. It is an
established fact that individuals who smoke have increased risk of getting infected
with TB. So in order to reduce the infection prevalence of TB in the population, it
is desirable to control smoking habits of the individuals. Although, there are several
research papers to study the transmission dynamics of TB, and smoking dynamics
separately, there are very few mathematical models which incorporate the impact
of smoking habits in the transmission dynamics of TB. In [1], authors formulated
and analyzed a mathematical model to see the effect of smoking on transmission
dynamics of TB by considering standard incidence type incidence. Later Choi et al.
[2] extended this model to optimal control problem and compared the results by
applying different types of optimal control strategies. In [3], authors have tried to
model social, environmental and biological determinants of TB. Here too, authors
have shown that TB incidence declines under a range of smoking reduction strategies.
In this article, a mathematical model is formulated to study the transmission dynam-
ics of TB in presence of smokers by considering simple mass-action type incidence
which is more suitable for study of TB. Additionally, it is assumed that smokers
infected with TB need to quit smoking to recover fully from TB. So individuals from
the class of smokers infected with TB mainly move to the class of TB-infected or to
the class of recovered individuals depending upon their immunity level when they
quit smoking. This fact was not incorporated in the existing mathematical models.
Further the proposed model is extended to optimal control problem by incorporating
two types of optimal controls. Here the recovery rate constant for TB and the rate at
which smokers infected with TB quit smoking are considered as the optimal control
parameters. These parameters one can manipulate with suitable control efforts.

The remaining of this article is organized as follows: Section 2 describes the
basic model and Sect. 3 exhibits the basic reproduction numbers and the existence of
equilibria. Section 4 shows the stability analysis of different equilibria. Numerical
simulation of the proposed model is demonstrated in Sect. 5. Section 6 deals with
the optimal control problem and simulation results of optimal control problem is
discussed in Sect. 7. Section 8 presents the results and discussion. Finally, Sect. 9
concludes the article and identifies some of the important future scope of the research.

2 Model Formulation

Here the whole population is divided into the following classes: susceptibles (S),
latently infected (TB) individuals (ET ), TB-infected individuals (IT ), smokers (IS),
smokers latently infected with TB (ETS ), smokers infected with TB (ITS), and recov-
ered individuals (RT ). Hence the total human population N (t) at time t is given
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by
N (t) = ET + IT + IS + ETS + ITS + RT .

Assuming simple mass-action type incidence, the force of infection for TB is
denoted as λT and is given by

λT = βT (IT + ηITS),

where βT is the rate of transmission of TB to susceptible individuals and η > 1 is
the modification parameter which reflects that the rate of transmission of TB will be
more due to individuals who are smokers infected with TB compared to individuals
infected with TB alone. Similarly, the strength of peer influence on smoking habits
is denoted as λS and is given by

λS = βS(IS + εITS),

where βS denotes the rate of transmission of smoking habits to susceptible individ-
uals. Here the parameter ε < 1 is the modification parameter which reflects the fact
that the rate of transmission of smoking habits due to smokers infected with TB will
be less compared to smokers without TB as they will be less socialized and will be
under treatment.

As the risk of TB increases in smokers so the force of infection for TB in the class
of smokers is denoted by λTS and is given by

λTS = βTS(IT + ηITS) = λTβTS

βT
,

where βTS denotes the rate of transmission of TB in the class of smokers. It is
assumed that the susceptibles are getting infected with TB at a rate λT and are
becoming smokers at a rate λS . A fraction p of TB infected susceptibles moves to
latently infected compartment and the remaining (1 − p) fraction moves to class of
individuals infectedwithTB.Thismechanismdescribes the slowand fast progression
of TB disease. Individuals in latently infected compartment may move to class of
TB-infected compartment due to exogenous reinfection at the rateωλT . Additionally,
individuals in latently infected compartment move to TB-infected compartment at
the disease progression rate ρ. Here it is assumed that smokers infected with TB
may recover from TB when they quit smoking and depending upon their immunity
level they may directly move to recover class at the rate νS or they may join TB-
only class at rate σS . The individuals in latently infected compartment and recovered
compartment may move to the class of smokers latently infected with TB at a rate λS

if they come into contact with smokers with or without TB. With these assumption
the mathematical model is formulated as follows:
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dS

dt
= � − μS − λSS − λT S + σIS,

dET

dt
= pλT S − (μ + ρ)ET + αETS + ζRT − λSET − ωλTET ,

dIT
dt

= (1 − p)λT S − (μ + δ + ν)IT + ωλTET + ρET + σSITS ,

dIs
dt

= λSS − (μ + σ)IS − λTSIS ,

dETS

dt
= λS(ET + RT ) + pλTSIS − ωλTETS − (α + μ + ρS)ETS ,

dITS
dt

= (1 − p)λTSIS + ωλTETS + ρSETS − (μ + δS + νS + σS)ITS ,

dRT

dt
= νIT + νSITS − (μ + ζ)RT − λSRT . (1)

The schematic flow diagram of our model is shown in Fig. 1 and description of
parameters is given in Table1.
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Fig. 1 Schematic diagram of transmission dynamics of TB in presence of smokers
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Table 1 Description of parameters

� Rate of recruitment

βS Rate of transmission of smoking habits

βT Rate of transmission of TB

βTS Rate of transmission of TB in the class of smokers

ε < 1 Modification parameter

η > 1 Modification parameter

p, (1 − p) Rate of slow and fast progression of TB

σ Rate at which smokers quit smoking

μ Natural death rate

ρ Disease progression rate

ζ Rate of movement of recovered individuals to class of latent TB

α Rate at which smokers with latent TB quit smoking

ω Parameter corresponding to exogenous re-infection

δ TB related death rate

ν Rate of recovery from TB in the class of TB infectives

σS Rate at which smokers infected with TB quit smoking

ρS Disease progression rate in the class of smokers with latent TB

δS TB related death rate in the class of smokers infected with TB

νS Rate of recovery from TB in the class of smokers infected with TB

Here all the parameters of the mathematical model (1) are assumed to be non-
negative for all t ≥ 0 and the region of attraction for all feasible solution is given by

� =
{
(S,ET , IT , IS ,ETS , ITS ,RT ) ∈ R7+ : S + ET + IT + IS + ETS + ITS + RT ≤ �

μ

}
.

It is easy to verify that the region � is positively invariant.

3 The Basic Reproduction Number and Existence of
Equilibria

The model system (1) has four different types of equilibria, namely, (i) TB-free
non-smokers equilibrium point E0(

�
μ
, 0, 0, 0, 0, 0, 0), (ii) TB-free smokers only

equilibrium point E1

(
μ+σ
βS

, 0, 0, βS�−μ(μ+σ)

βSμ
, 0, 0, 0

)
, (iii) Smoking-free TB-only

equilibrium point E2(S∗,E∗
T , I∗

T , 0, 0, 0,R∗
T ) and (iv) Co-existence equilibrium point

E3(S∗∗,E∗∗
T , I∗∗

T , I∗∗
S ,E∗∗

TS , I
∗∗
TS ,R

∗∗
T ). Here it is noted that the equilibrium E0 always

exists, the equilibrium E1 exists only when βS�

μ(μ+σ)
= RS

0 (say) > 1. There are
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possibility of no, one or two smoking-free equilibrium E2 depending upon existence
of no, one or two positive root/roots S∗ of the following quadratic:

(μ + ζ)βT {(1 − p)μ + ρ − ωμ}S2 + [ρζν − (μ + ζ)(μ + ρ)(μ + δ + ν)

+ (μ + ζ)ω{βT� + μ(μ + δ + ν)} − ωμνζ]S
− ω�{(μ + ζ)(μ + δ) + μν} = 0,

and I∗
T = �−μS∗

βT S∗ ,R∗
T = νI∗

T
μ+ζ

,E∗
T = pβT S∗I∗

T+ζR∗
T

(μ+ρ+ωβT I∗
T )

. The explicit expressions for the vari-
ables in the equilibrium pointE3 are not easy to obtain but one can show the existence
of this equilibrium by graphical method. In the present work it is left and existence
and stability of this equilibrium are discussed only in numerical simulation section.

The basic reproduction number R0 = RST
0 (say) is computed as follows using the

next generation matrix method discussed in Driessche and Watmough (2002) [4].

RST
0 = max

{
βS�

μ(μ + σ)
,
ρ(μ + ζ)pβT

�
μ + (μ + ρ)(μ + ζ)(1 − p)βT

�
μ

(μ + ρ)(μ + ν + δ)(μ + ζ) − ζρν

}
= max{RS

0 ,R
T
0 },

where RS
0 = βS�

μ(μ+σ)
and RT

0 = ρ(μ+ζ)pβT
�
μ +(μ+ρ)(μ+ζ)(1−p)βT

�
μ

(μ+ρ)(μ+ν+δ)(μ+ζ)−ζρν
denote the basic repro-

duction numbers corresponding to transmission of smoking-only and TB-only.

4 Stability Analysis

This sectiondealswith the stability of different equilibria of themodel.Here it is noted

that the TB-free smoker-only equilibrium point E1

(
μ+σ
βS

, 0, 0, βS�−μ(μ+σ)

βSμ
, 0, 0, 0

)
is unrealistic and further analysis of this equilibrium is ignored. However numerical
simulation shows that this equilibrium is unstable whenever RS

0 is greater than one.

Theorem 4.1 The equilibrium point E0 = (�
μ
, 0, 0, 0, 0, 0, 0) is locally asymptoti-

cally stable whenever RST
0 < 1 and unstable otherwise.

Proof The Jacobian matrix of the system (1) evaluated at E0 = (�
μ
, 0, 0, 0, 0, 0, 0)

is given by the following matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μ 0 − βT�
μ − βS�

μ + σ 0 −(βSε + βT η)�
μ 0

0 −(μ + ρ)
pβT�

μ 0 α pηβT�
μ ζ

0 ρ j33 0 0 (1−p)ηβT�
μ + σS 0

0 0 0 βS�
μ − (μ + σ) 0 βS ε�

μ 0
0 0 0 0 −(α + ρS + μ) 0 0
0 0 0 0 ρS −(μ + δS + νS + σS ) 0
0 0 ν 0 0 νS −(μ + ζ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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where j33 = (1−p)βT�

μ
− (μ + δ + ν). Clearly, four eigenvalues are −μ,

βS�

μ
− (μ +

σ),−(α + ρS + μ) and−(μ + δS + νS + σS) and other eigenvalues are given by the
roots of the following qubic equation:

ψ3 + a1ψ
2 + a2ψ + a3 = 0,

where

a1 = 2μ + ρ + ζ −
{
(1 − p)βT

�

μ
− (μ + δ + ν)

}
,

a2 = (μ + ρ)(μ + ζ) + (2μ + ρ + ζ)(μ + δ + ν) − (1 − p)βT
�

μ
(2μ + ρ + ζ) − ρpβT

�

μ
,

a3 = −
[
(μ + ρ)(μ + ζ)

{
(1 − p)βT

�

μ
− (μ + δ + ν)

}
+ ρpβT

�

μ
(μ + ζ) + νζ

]
.

It is easy to verify thata1, a2, a3 are positive anda1a2 − a3 > 0under the condition
RST
0 < 1. Hence from Routh-Hurwitch criteria the equilibrium point E0 is locally

asymptotically stable whenever the basic reproduction number RST
0 is less than one.

Theorem 4.2 The equilibrium point E0 = (�
μ
, 0, 0, 0, 0, 0, 0) may not be globally

asymptotically stable in presence of smokers.

Proof This theorem is proved by following the method in Castillo-Chavez et al.
(2002) [5]. The system (1) can be written as follows:

dX

dt
= F(X ,Z),

dZ

dt
= G(X ,Y ), G(X , 0) = 0,

where X = (S,RT ) and Y = (ET , IT , IS ,ETS , ITS)with X ∈ R2+ denoting the classes
of uninfected individuals and Y ∈ R5+ denoting the infectious ( i.e. smoking or TB
or both) compartments. The disease-free equilibrium is now denoted by

E0 = (X ∗, 0), where X ∗ =
(

�

μ
, 0

)
.

The global stability of the equilibrium point E0 is guaranteed provided the fol-
lowing two conditions are met.
H1: For dX

dt = F(X , 0), X ∗ is globally asymptotically stable (g.a.s),
H2: G(X ,Y ) = AY − G(X̂ ,Y ), Ĝ(X ,Y ) ≥ 0 for (X ,Y ) ∈ �,
where A = DYG(X ∗, 0) is an M-matrix (i.e., all off-diagonal elements of A are non-
negative) and � is the region where the model system is biologically feasible.
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The model system (1) can be represented as follows:

F(X , 0) =
(

� − μS
−(μ + ζ)RT

)

G(X ,Y ) = AY − G(X̂ ,Y ), where

A =

⎛
⎜⎜⎜⎜⎜⎝

−(μ + ρ)
pβT�

μ
0 α pηβT�

μ

ρ a22 0 0 (1−p)ηβT�

μ
+ σS

0 0 βS�

μ
− (μ + σ) 0 βS ε�

μ

0 0 0 −(α + ρS + μ) 0
0 0 0 ρS −(μ + δS + νS + σS)

⎞
⎟⎟⎟⎟⎟⎠

,

where a22 = (1−p)βT�

μ
− (μ + δ + ν) and

G(X̂ ,Y ) =

⎛
⎜⎜⎜⎜⎝

G1(X̂ ,Y )

G2(X̂ ,Y )

G3(X̂ ,Y )

G4(X̂ ,Y )

G5(X̂ ,Y )

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

pλT

(
�
μ

− S
)

+ (λS + ωλT )ET − ζRT

λT

{
(1 − p)

(
�
μ

− S
)

− ωET

}
λS

(
�
μ

− S
)

+ λTSIS
−λS(RT + ET ) − pλTSIS + ωλTETS

−(1 − p)λT IS − ωλTETS

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

It is easy to notice that the matrix A is an M-matrix as all its off-diagonal ele-
ments are non-negative. To establish the global stability of E0 one needs to show
G(X̂ ,Y ) ≥ 0 but G5(X̂ ,Y ) < 0. Hence the global stability of the equilibrium point
E0 is not guaranteed. Here it can be noted that in the absence of smoking and exoge-
nous re-infection the equilibrium point E0 can be globally stable provided the param-
eter ζ which corresponds to latent TB in recovered individuals too is zero.

Theorem 4.3 If ω μ
ρ2

{{
(μ + δ + ν) − (1 − p)β∗ �

μ

}
− β∗2�

μ2

{
1 + μ

ρ
(1 − p)

}}

> 0, i.e. a > 0, then model system (1) undergoes a backward bifurcation at
RT
0 = 1, otherwise a < 0 and a unique non-smoking TB-only equilibrium point

E2(S∗,E∗, I∗, 0, 0, 0,R∗
T ) is locally asymptotically stable for RT

0 > 1, but close to 1.

Proof The stability of E2 is proved using the Centre Manifold theory by Carr
[6]. Using the Theorem4.1 of [7], the local stability of the non-smoking TB-only
equilibrium point is established. The original system (1) is rewritten by chang-
ing the variables as follows: S = x1,ET = x2, IT = x3,RT = x4 and noting that
IS = 0,ETS = 0, ITS = 0. Let us consider the vector X = (x1, x2, x3, x4)T and write

the model (1) in the form of
dX

dt
= (f1, f2, f3, f4)T , where
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x′
1 = f1 = � − μx1 − βT x1x3
x′
2 = f2 = pβT x3x1 − (μ + ρ)x2 + ζx4 − ωβT x3x2
x′
3 = f3 = (1 − p)βT x3x1 − (μ + δ + ν)x3 + ωβT x3x2 + ρx2
x′
4 = f4 = νx3 − (μ + ζ)x4 (2)

The reproduction number of this model is same as RT
0 of the original model (1).

Therefore βT is chosen as bifurcation parameter. By solving RT
0 = 1 for βT one can

get βT = β∗ as follows:

β∗ = (μ + ρ)(μ + ν + δ)(μ + ζ) − ζρν

�

μ
(μ + ζ){μ(1 − p) + ρ}

.

The Jacobian matrix J ∗
β of the system (2) evaluated at TB-free equilibrium point

is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−μ 0 −β∗ �

μ
0

0 −(μ + ρ) pβ∗ �

μ
ζ

0 ρ (1 − p)β∗ �

μ
− (μ + δ + ν) 0

0 0 ν −(μ + ζ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The above matrix has one simple eigenvalue as 0 and all other eigenvalues have
negative real part. The right eigenvector associated with zero eigenvalue is given by
w = [w1, w2, w3, w4]T , where

w3 = μ + ζ

ν
w4, w1 = − (μ + ζ)β∗�

νμ2
w4,

w2 = −
(μ + ζ){(1 − p)β∗ �

μ
− (μ + δ + ν)}

ρν
w4, w4 > 0.

The left eigenvector associated with zero eigenvalue is given by z = [z1, z2, z3, z4]T ,
where

z1 = 0, z2 = (μ + ζ)

ζ
z4, z3 = (μ + ρ)(μ + ζ)

ρζ
z4, z4 > 0.

Following the same notation as discussed in [7], the bifurcation coefficients a and
b are computed as follows:

a = (μ + ζ)3

ν2ζ

[
β∗ω μ

ρ2
{(μ + δ + ν) − (1 − p)β∗ �

μ
} − β∗2�

μ2 {1 + μ + ρ

(1 − p)
}
]
z4w

2
4,
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b = (μ + ζ)2

ζν

�

μ
{1 + μ

ρ
(1 − p)}z4w4 > 0.

Here b > 0 and a can be positive or negative. So using the results discussed in [7]
it is concluded that the model system (1) exhibits backward bifurcation when a > 0
at RT

0 = 1.

The existence and stability of non-trivial equilibrium point is not easy to prove
analytically. However from the above discussion one can say that local stability of
non-trivial equilibrium point E3 should be guaranteed under some restriction on
parameters. Also when RT

0 is less than one, one can have backward bifurcation for
the original model. This fact is demonstrated in numerical simulation.

5 Numerical Simulation

Here first the model system (1) is simulated for the following set of parameters:

� = 500,μ = 0.0166,βT = 0.00001,βS = 0.000014,βTS = 0.000015,σ = 0.06,

p = 0.45, ρ = 0.000013,α = 0.03, ζ = 0.0945,ω = 1.05, δ = 0.04,

ν = 0.08, ρS = 0.00002,σS = 0.12, δS = 0.06, νS = 0.05, η = 1.04, ε = 0.8.

For this set of parameters both RT
0 and RS

0 are greater than one. Here R
T
0 = 1.214

and RS
0 = 5.505. The equilibria (30120, 0, 0, 0, 0, 0, 0) where both disease and

smokers are not there. This equilibrium point is unstable. The smoking-free equi-
librium point (11033, 7227.4, 2872, 0, 0, 0, 2068) and TB-free equilibrium point
(5471.4, 0, 0, 24649, 0, 0, 0) are also unstable. The non-trivial equilibrium point
(7175.6, 3949.5, 2557.9, 2206.9, 3251.3, 697.13, 1598.7) is stable. Here Fig. 2 is
demonstrating the stability of non-trivial equilibrium point. Next the parame-
ter p is changed from 0.45 to 0.75 and all other parameters are kept as men-
tioned above. For this set of parameters, RT

0 = 0.5527 < 1 and RS
0 = 5.505 > 1.

Hence RST
0 = 5.505 > 1. In this case also a stable non-trivial equilibrium point

as (6996.8, 3420.8, 1525.8, 4422.7, 5869.1, 722.79, 873.5) exists. This suggest that
backward bifurcation occurs. The stability of this equilibriumpoint is shown in Fig. 3.

Next, the model is simulated for different values of βS to see the impact of this
parameter on the equilibrium level of different population. The parameter p is taken
as 0.65 and all other parameters are as mentioned above. Here it is observed that
with the increase in this parameter the number of smokers and smokers infected with
TB and TB-infectives increase (Figs. 4, 5 and 6). Here for all values of βS , RT

0 is less
than 1 and RS

0 is greater than one. But similar results appear for the set of parameters
where both RS

0 and RT
0 are greater than one.
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Fig. 6 Variation of smokers population infected with TB for different values of βS

6 Optimal Control Problem

Here the mathematical model (1) is extended to optimal control problem. Optimal
control is amethod to determine time dependent control and state variables for a given
dynamical system over a period of time to design suitable cost-effective strategies.
Here the parameters ν (the recovery rate constant for TB-infectives) and σS (the rate
at which smokers infected with TB leave smoking) are made time dependent. These
two parameters are identified keeping in mind the fact that it is possible to regulate
these parameters by increasing the number of TB-detection centres and counseling
centres for smokers. If these are zero then there is no effort being placed in these
controls at time t and if they are equal to one thenmaximum effort is applied. Keeping
in viewof the above assumptions, the optimal controlmodel is formulated as follows:

dS

dt
= � − μS − λSS − λT S + σIS,

dET

dt
= pλT S − (μ + ρ)ET + αETS + ζRT − λSET − ωλTET ,

dIT
dt

= (1 − p)λT S − (μ + δ + ν(t))IT + ωλTET + ρET + σS(t)ITS ,

dIs
dt

= λSS − (μ + σ)IS − λTSIS ,

dETS

dt
= λS(ET + RT ) + pλTSIS − ωλTETS − (α + μ + ρS)ETS ,
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dITS
dt

= (1 − p)λTSIS + ωλTETS + ρSETS − (μ + δS + νS + σS(t))ITS ,

dRT

dt
= ν(t)IT + νSITS − (μ + ζ)RT − λSRT , (3)

The objective functional for fixed time tf is given below:

J =
∫ tf

0
(C1IT + C2IS + C3ITS + 1

2
C4ν

2 + 1

2
C5σS

2). (4)

Here the parameter C1 ≥ 0, C2 ≥ 0, C3 ≥ 0, C4 ≥ 0, C5 ≥ 0 and they represent
the weight constants. Our objective is to find the control parameters ν∗ and σS

∗, such
that

J (ν∗,σS
∗) = min

ν,σS∈�
J (ν,σS), (5)

where � is the control set and is defined as
� = {ν,σS : measurable and 0 ≤ ν,σS ≤ 1} and t ∈ [0, tf ]. The Lagrangian of this
problem is defined as:

L(IT , IS , ITS , ν,σS) = C1IT + C2IS + C3ITS + 1

2
C4ν

2 + 1

2
C5σS

2.

The Hamiltonian H is given by

H = L(IT , IS , ITS , ν,σS) + λ1
dS

dt
+ λ2

dET

dt
+ λ3

dIT
dt

+ λ4
dIS
dt

+ λ5
dETS

dt
+ λ6

dITS
dt

+ λ7
dERT

dt
,

where λi are the adjoint variables and i = 1 to 7. Now adjoint variables in the form
of differential equation can be written as follows:

dλ1

dt
= −∂H

∂S
= λ1(μ + λS + λT ) − λ2pλT − λ3(1 − p)λT − λ4λS

dλ2

dt
= − ∂H

∂ET
= λ2(μ + ρ + �S + ωλT ) − λ3(ωλT + ρ) − λ5λS

dλ3

dt
= − ∂H

∂IT
= −C1 + λ1SβT − λ2(pβT S − ωβTET )

−λ3{(1 − p)βT S − (μ + δ + ν) + ωβTET }
+λ4βTS IS − λ5(pβTS IS − ωβTETS ) − λ6{(1 − p)βT IS + ωβTETS } + λ7ν(t)

dλ4

dt
= −∂H

∂IS
= −C2 + λ1(σ − βSS) + λ2βSET − λ4{βSS − (μ + σ) − βTS (IT + ηITS )}
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−λ5{βS (ET + RT ) + pλTS } − λ6(1 − p)λT

dλ5

dt
= − ∂H

∂ETS
= −λ2α + λ5(ωλT + α + μ + ρS − λ6(ωλT + ρS )

dλ6

dt
= − ∂H

∂ITS
= −C3 + λ1S(βT η + εβS ) − λ2(pηβT S − εβSET )

−λ3 {(1 − p)SβT η + ωETβT η

+σS (t)} − λ4(εβSS − βTSηIS ) − λ5{(ET + RT )βSε + pηISβTS − ωηβTETS }
−λ6{(1 − p)ISηβT + ωηβTETS − (μ + δS + νS + σS (t))} − λ7νS

dλ7

dt
= − ∂H

∂RT
= −λ2ζ − λ5λS + λ7(μ + ζ) (6)

Let S̃, ẼT , ĨT , ĨS , ẼTS , ĨTS , R̃T be the optimum values of S, ET , IT , IS , ETS , ITS , RT

respectively, and λ̃1, λ̃2, λ̃3, λ̃4, λ̃5, λ̃6, λ̃7 be the solution of the system (3).

By using [8, 9], the following theorem is stated below without proof:

Theorem 6.1 There exist optimal controls ν∗,σS
∗ ∈ � such that J (ν∗,σS

∗) =
min J (ν,σS) subject to system (3).

With the help of Pontryagin’s maximum principle [9] and Theorem (6.1), one can
prove the following theorem:

Theorem 6.2 The optimal controls (ν∗,σS
∗) which minimizes J over the region �

given by

ν∗ = min{1,max(0, ν̃)}, σS
∗ = min{1,max(0, σ̃S)}, where

ν̃ = (λ3 − λ7)IT
c4

, σ̃S = (λ6 − λ3)ITS
c5

.

7 Simulation of Optimal Control Model

The optimal control model is simulated using MATLAB by considering the set of
parameters which corresponds to the stability of endemic equilibrium point of the
model (1). The weight constants are taken as follows:

C1 = 1,C2 = 1,C3 = 22,C4 = 10,C5 = 20.

The time interval is considered as [0, 20]. The system (3) is solved by iterative
methodwith the help of forward andbackward difference approximation.HereFigs. 7
and 8 are showing the control profiles of the controls ν(t) and σS(t) respectively.
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Fig. 7 Control profile of
ν(t)
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Fig. 8 Control profile of
σS (t)
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Finally, to see the effects of optimal controls, the TB-infected population and smokers
infected with TB are plotted against time with and without optimal control in Figs. 9
and 10. It is easy to observe that optimal control is very much effective in reducing
the number of infectives in the desired interval of time.

8 Discussion

From the simulation results discussed in Sect. 5, it is clear that even if the reproduc-
tion number corresponding to TB is less than one and if the reproduction number
corresponding to smoking habits is greater than one, then the system tends to achieve
a stable non-trivial equilibrium point, i.e. TB persists in the population under con-
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Fig. 9 Variation of
TB-infected population
against time with and
without optimal control
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Fig. 10 Variation of
smokers infected with TB
population against time with
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sideration. The increase in the rate of transmission βS corresponding to the smoking
habits causes an increase not only in the equilibrium level of smokers but also in
the class of TB-infected population. The proposed model can help in quantifying the
required decrease in the parameter βS and βT which can lead to the stability of TB-
free non-smokers equilibrium point. Although there are several parameters which
can be treated as optimal control parameters, in the present article the recovery rate
constants corresponding to TB and the rate at which smokers infected with TB quit
smoking are considered as optimal control parameters as these are easy to implement
and also are easy to quantify.

From the simulation of optimal control model, it is observed that one needs to
maintain maximum control up to 9 years for ν(t) and up to 6 years for σS(t). Then,
these controls can be decreased slowly to get the optimal cost effective results in the
overall duration of 20 years. From Figs. 9 and 10, it is clear that both the TB-infected



50 M. Ghosh

population and the population of smokers infected with TB decrease to zero within
5 years of time and remains at this level throughout the further period of 15 years.
This suggests that to keep the population TB-free, continuous efforts are required
and one should not abandon the control strategies by seeing the prevalence of TB to
its minimum, otherwise the disease may reappear.

9 Conclusion

In this article a non-linearmathematicalmodel for the transmission dynamics ofTB in
presence of smokers has been formulated and analyzed. The analysis of the proposed
model emphasizes the need of reduction in smoking habits to have reduction in the
prevalence of TB. This model exhibits backward bifurcation and there exists stable
co-existence equilibrium point even when RT

0 < 1 and RS
0 > 1. Here, it can be noted

that backward bifurcation occurs due to re-infection and slow to fast progressions
of TB. So, for the stable co-existence equilibrium, RS

0 must be greater than one.
Furthermore, this model has been extended to the optimal control problem. The
numerical simulation of optimal control problem reflects the control profiles of the
optimal control parameters which cause the significant decrease in the TB-infected
individuals and the smokers infected with TB. Thus, by adjusting the recovery rate
of TB and the rate at which smokers infected with TB quit the smoking, one can
control both the TB and smoking within a given interval of time.

However, the present model does not incorporate the control in the transmission of
TB through the social distancing programs whereas it is possible to have this strategy
once individual is identified as infected with TB. We all know that smoking is not
good for health and passive smoking also increases the risk of respiratory disease. So,
the advertisement through media and other sources can increase the social distancing
from the smokers or group of smokers. And this can reduce the smoking habits of
smokers and can impact greatly in the infection prevalence of TB. So far, these facts
have not been analyzed through mathematical model and this can be considered
as one of the future endeavors in this area. Additionally, it is observed that heavy
alcohol consumption adds to the risk of active TB. It would be interesting to study
the synergistic effects of smoking and alcohol drinking on the infection prevalence
of TB. Some of the planned future works will go in these directions and currently
they are under investigation.
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Modelling the Effects of Stigma on
Leprosy

Stephen G. Mosher, Christian Costris-Vas and Robert Smith?

Abstract The World Health Organization’s leprosy-elimination campaign has sig-
nificantly reduced global leprosy prevalence, but approximately 214,000 new cases
of leprosy are reported each year. An ancient and neglected affliction, leprosy is also
one of the most heavily stigmatised diseases of all time. We developed a mathe-
matical model to examine the effects of stigma on sustaining disease transmission,
using low and high degrees of stigma, as well as in its absence. Our results show
that stigma does indeed play a central role in the long-term sustainability of leprosy.
We also examined sensitivity of the outcome to all parameters and showed that the
effects of stigma could increase the number of infected individuals by a factor of
80. Therefore both targeted education and shifts in cultural attitudes towards leprosy
will be necessary for the eventual eradication of the disease.
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1 Introduction

Leprosy is a disease that has affected human beings for millennia; however, its
causative agent, the bacteriaMycobacterium Leprae, was not identified until 1872 by
ArmauerHansen. In the 1940s, a curewas developedwith the drug dapsone; however,
dapsone requires treatment for life. In the 1960s, drug resistance evolved due to
widespreaduseof dapsoneuntil the 1970s and80s,when, upon recommendation from
the World Health Organization (WHO), multi-drug therapy (MDT) was developed.
Combining dapsone with the drugs clofazimine and rifampicin [17] resulted in a cure
rate of 98% [4]. In addition to solving the drug-resistance problem, theMDT cocktail
for leprosy also lessened the drug treatment timescale from life to a maximum of
24 months, depending on the type and severity of infection [18]. Thus, following
the success of MDT for leprosy, the WHO launched a leprosy-elimination campaign
in 1991 [10]. The target date of the 1991 WHO elimination campaign was the year
2000, for which elimination was defined in terms of a global prevalence threshold
of less than 1 case in 10,000. In 1995, it was resolved that the MDT cocktail for
leprosy would be provided to all patients worldwide for free [18]; in 2000, the WHO
claimed to have achieved their elimination goal, citing a global prevalence of less
than 600,000 cases. Yet, while all but six countries reported leprosy prevalences
of less than 1 case in 10,000 in 2005 [17], approximately 214,000 new cases of
leprosy are currently reported each year, with a global case-detection rate of 3.78 per
100,000 [4]. About 80% of all new cases come from India, Brazil and Indonesia [1,
4]. The WHO’s original use of the term “elimination” has been criticised [10, 17] as
an inhibiter to the progress of further leprosy reduction after 2000. The WHO later
rebranded its leprosy efforts as an “Enhanced global strategy for further reducing the
disease burden due to leprosy 2011–2015” [1].

Leprosy is a bacterial infection of the skin and is a leading infectious cause of
disability [13, 18]. Yet, even among the neglected tropical diseases, it is one of the
most overlooked [1]. This is in part because an effective treatment exists for the
disease and in part because it is hard to quantify the cumulative socio-economic
impact of the disease, as the disease is not fatal. Rather, leprosy infections lead to a
plethora of secondary problems, such as infection of untreated wounds, debilitating
ulcers on palms and soles, nerve-function impairment and damage, chronic disability,
blindness and severe disfigurement [20].

The only known reservoirs of theM. Leprae bacteria are humans and South Amer-
ican armadillos [18]. However, M. Leprae can also survive outside the body for up
to 45 days [10]. While the exact transmission mechanism is still unknown, most
scholars agree that it involves direct contact with nasal fluids from the infected. Fur-
thermore, it is thought thatmost people infectedwithMleprae do not develop clinical
infections [18]. Two types of clinical infections may develop, either paucibacillary
(PB) or multibacillary (MB) leprosy, with MB leprosy being the more severe. Of
the two types of infections, MB leprosy is thought to be the only infectious type or
at least the main source of M. Leprae [1, 18]. The type of infection that develops
in an individual is thought to be largely mediated by the response of their immune
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system [1]. In the case of MB leprosy, the bacteria spread systematically, and lesions
tend to contain higher levels of bacilli. To simplify the diagnosis process in the field,
an operational classification of leprosy has been developed by the WHO, in which
patients are diagnosed simply by the number of skin lesions they have [4]. In cases
where an infectee has five or more skin lesions, they are classified as having MB
leprosy; otherwise, the classification is PB leprosy [18]. The incubation period from
sub-clinical to clinical infections is extremely slow for leprosy, ranging from 2–12
years [18], and there is currently a lack of diagnostic tools for detecting early levels
of M. Leprae [4]. While a vaccine specifically geared toward leprosy immunisation
does not exist, the bacillus Calmette–Guérin (BCG) vaccine, originally developed
for tuberculosis (TB), is known to provide variable protection against leprosy [13].
However, given that a new TB vaccine will likely supersede BCG in the future, the
eventual consequences for leprosy control efforts remain unclear [13].

Stigma confers itself in several forms: exterior social forces, sometimes denoted
“community stigma”, and the emotional harm contained by an individual within
themselves [23]. A further understanding has been reached concerning the layers of
cognitive categories and the ways that they complement the predisposed beliefs of
a particular disease. These include labelling, stereotyping, cognitive separation and
emotional reactions [9]. Perception of stigma and experiences of discrimination cause
people to feel ashamed and may cause them to isolate themselves from society [19],
thus perpetuating the stereotype that leprosy is something shameful to be hidden away
[23]. Alongside the emotional trauma is the added effect of prolonging individual
instances of infection and increasing the chanceof spread to others [7, 26]. The impact
of knowing that one carries the disease and the anticipated stigma is in some instances
as great or an even greater source of suffering than symptoms of the disease itself
[22, 24], These factors play into the propensity to hide the ailment, which prolongs
its affliction on the individuals involved and society as a whole [26]. Recently, there
has been a substantial interest in understanding and diluting the overarching trend
of stigma in many of today’s diseases [24]. Several initiatives are being explored
to address the prominence of stigma in sustaining the disease and the impact it has
from the perspective of the individual [14]. These include alleviating health problems
with improved social policies, unhinging the inclination to stigmatise on the part
of perpetrators and better supporting those already affected by social neglect [24].
These all aspire to the same end goal, which is the transformation of stigma into
social support rather than an increased burden [3].

The effects of leprosy stigma are widespread, negatively affecting employment,
marriages and social activities of those infected, recovering or recovered [16]. Such
aspects of disease-related stigma further deteriorate both the psychological and phys-
iological states of individuals, promoting a feedback loop of negative overall health
[24]. Furthermore, there is much ignorance regarding leprosy in countries where
it persists. For example, stigmatisation of infected individuals is promoted through
local legislation in some countries, while many believe the disease to be hereditary
when it is not [21]. The reason for this misconception is that family members of
those infected are disproportionately at higher risk of infection due to frequent close
contact with infected individuals [1]. Leprosy also disproportionately affects poorer
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citizens who lack access to care, which further promotes unfounded stigma against
the poor [11]. Hence recovered infectees face substantial risks to their overall health
and well-being even after being released fromMDT [23]. It is also known that stigma
can lead to significant delays with respect to case detection and self-diagnosis [24].
However, it is when individuals first develop symptoms that they derive themost ben-
efit from MDT. This is because, while MDT is an effective treatment at all stages,
severe nerve damage or further complications arising from the disease grow with
time and remain permanent after infections are cleared [21].

To date, only a handful of mathematical models have addressed leprosy [6]. Mod-
els have used compartments [8], been simulation based [12] or individual based [5]
and have considered treatment and relapse [15]. However, to the best of our knowl-
edge, there have been no attempts to model the effects of stigma in the transmission
dynamics of leprosy. Therefore, we propose a simple model for the transmission
dynamics of leprosy that can account for the effects of stigma. We address the fol-
lowing research questions: 1. What role does stigma play in the transmission dynam-
ics of leprosy? 2. How sensitive is the outcome to variation in disease parameters,
including stigma? 3. Can leprosy be eradicated if stigma is removed?

2 The Model

Our model consists of susceptible, exposed, infected and recovered individuals, with
the productively infected compartment split in two. The model allows for otherwise
healthy individuals to contract leprosy, clear asymptomatic infections, progress from
asymptomatic to symptomatic infection states, recover through MDT or relapse to
symptomatic infection. Specifically, the five classes under consideration are as fol-
lows: the susceptible class ‘S’, those with sub-clinical or asymptomatic infections
‘A’, those with symptomatic infections that they choose to disclose ‘X’, those with
symptomatic infections that they choose to conceal ‘Y’, and those who have recov-
ered from the disease ‘R’. By splitting the non-asymptomatic infection compartment
into two discrete groups, the model mimics the choice, available to members of the
populationwho develop symptomatic leprosy infections, to either conceal or disclose
their infection. Likewise, the same choice is available to members of the population
who relapse into symptomatic infections. Two further possibilities are accounted
for by the model, in which members who originally concealed their symptomatic
infection may later change their minds, disclosing their infection or are discovered.
This is manifested as a path from ‘Y’ to ‘X’. Incorporating this split in the infection
compartment is a simple way to explicitly account for the effects of stigma on the
transmission of leprosy.
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Fig. 1 Model flow diagram
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The differential equations governing our model are as follows:

S′ = π + ΩA − (μ + λ)S

A′ = λS − (μ + γ + Ω)A

X ′ = f γ A + σY + f δR − (νX + α)X

Y ′ = (1 − f )γ A + (1 − f )δR − (νY + σ + ζ )Y

R′ = αX + ζY − (μ + δ)R,

(1)

with the force of infection given by λ = β1(1 − η)A + β1Y + (β1 − β2X
m+X )X .

A schematic of the model is shown in Fig. 1, and the model parameters are
described in Table1.

In deriving this model of leprosy, we make the following assumptions:

1. The chance of infection depends upon interactions between S and classes A,
X and Y , although the most prominent course of infection remains the interac-
tion between S and Y (the stigma class); the β1 term is thus the largest of the
transmission terms.

2. Because it remains difficult to detect asymptomatic infections, members of the
A class act as usual, interact with susceptibles as usual and die at the natural
death rate.

3. The asymptomatic class, which carries the M. Leprae bacteria, has a naturally
reduced transmission compared to the stigma class.

4. The effect of transmission from the X class is modified by a dampening term
that reduces infectivity. This dampening term takes the form of a Holling Type
II function with the property that the effect saturates at a level β2 when there are
large numbers of individuals in the disclosing class. This reflects the fact that
susceptible individuals will likely attempt to reduce contact with individuals
who openly display symptoms, but the effect of such avoidance is limited when
numbers are large. As such, β1 > β2.

5. A large fraction Ω of members with asymptomatic leprosy infections clear such
infections [18], after which they return to the susceptible class.
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Table 1 Variables and parameters

Symbol Description Range Units Reference

S Susceptible individuals – people –

A Asymptomatically infected
individuals

– people –

X Infected individuals with
disclosed, symptomatic infections

– people –

Y Infected individuals with
undisclosed, symptomatic
infections

– people –

R Recovered individuals – people –

π Birth rate 10–30 people
year [25]

λ Force of infection – 1
year –

β1 Transmissibility between
susceptibles and non-disclosing
infectees

0.001–
0.01

1
people · year [4]

β2 Dampened transmissibility
between susceptibles and
disclosing infectees

β1
2

1
people · year Estimate

η Coefficient of reduced infection
between for asymptomatic
infectees

0–1 – –

m Half-saturation constant 0–5 people Estimate

Ω Clearance rate of asymptomatic
infection

0.5–1 – [18]

μ Natural death rate 0.01–0.03 1
year (Lifespan of 33–100

years)

γ Rate of developing symptoms 0–0.2 1
year [18]

f Fraction who disclose infection 0–1 – –

σ Rate of eventual disclosure of
infection

0.5–1 1
year [18]

νX Disease death rate (unstigmatised) 0.03–0.09 1
year Estimate

νY Disease death rate (stigmatised) 0.09–1 1
year Estimate

α Recovery rate without stigma 0.1–1 1
year [18]

ζ Recovery rate with stigma 0–0.1 1
year Estimate

δ Relapse rate 0–0.1 1
year [4, 18]

6. A fraction f of individuals who develop symptomatic infections will disclose
their infection and seek MDT; we assume this fraction is the same at the onset
of initial infection as it is when immunity lapses.

7. Those who initially conceal their symptomatic infection are identified at rate σ ,
either by changing their minds or due to discovery.

8. Individuals who do not disclose their symptoms consequently do not seek MDT
and do not recover.
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9. In the absence of stigma, all members who progress to symptomatic infection
have the opportunity to seek MDT, which is highly successful and freely avail-
able.

10. There is a small chance for symptomatic infection relapse (approximately 2–3%)
[18].

11. Some stigmatised individuals may disclose only to their doctors and receive
MDT; we assume this factor will be much smaller than stigmatised individuals
who seek treatment.

In addition to these primary assumptions, we further assume constant birth and
death rates and ignore vaccination.

RemarkWenote that, when f = 1, thenY = 0,σ is not relevant,λ = β1(1 − η)A +
(β1 − β2X

m+X )X , and our model collapses to the special case of leprosy without stigma,
corresponding to assumption (9).

3 Analysis

3.1 Equilibria

The disease-free equilibrium (DFE) is given by (S, A, X , R) = (π/μ, 0, 0, 0).
To find the endemic equilibrium, we start by setting the governing equations of

our model to zero:

0 = π + ΩA − μS − β1(1 − η)SA − β1SY −
(

β1 − β2X

m + X

)
SX (2)

0 = β1(1 − η)SA + β1SY +
(

β1 − β2X

m + X

)
SX − (μ + γ + Ω)A (3)

0 = f γ A + σY + f δR − (νX + α)X (4)

0 = (1 − f )γ A + (1 − f )δR − (νY + σ + ζ )Y (5)

0 = αX + ζY − (μ + δ)R. (6)

We rearrange Eq. (6) to obtain

R(X,Y ) = α

μ + δ
X + ζ

μ + δ
Y. (7)

Next, we substitute Eq. (7) into Eq. (5), giving

0 = (1 − f )γ A + (1 − f )
αδ

μ + δ
X + (1 − f )

ζ δ

μ + δ
Y − (νY + σ + ζ )Y, (8)
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which we then rearrange to get

A(X,Y ) =
(

(νY + σ + ζ )Y − (1 − f )
ζ δ

μ + δ
Y − (1 − f )αδ

μ + δ
X

)
1

(1 − f )γ
. (9)

Next, substituting our expressions for A(X,Y ) and R(X) into Eq. (4), we get

Y (X) = (νX + α)(1 − f )

f (νY + σ + ζ ) + σ(1 − f )
X ≡ qX. (10)

We re-express (9) as

A(X) =
[
(νY + σ + ζ )q − (1 − f )ζ δ

μ + δ
q − (1 − f )αδ

μ + δ

]
1

(1 − f )γ
X ≡ nX, (11)

and it is easy to show that n > 0. We now substitute A(X) and Y (X) into Eq. (3) and
use the fact that X �= 0 to get

S(X) = n(μ + γ + Ω)

n(1 − η)β1 + β1q +
(

β1 − β2X
m+X

) . (12)

Note that

β1 − β2X

m + X
> β1 − β2 > 0,

and hence S(X) > 0.
Finally, we substitute Eq. (12) into Eq. (2) along with the condensed forms of

Eqs. (10) and (11) to find that

0 = X2
[
β1(1 − η)n2(μ + γ ) + β1qn(μ + γ ) + β1n(μ + γ ) − β2n(μ + γ )

]

+ X

[
μn(μ + γ + Ω) + β1(1 − η)n2(μ + γ )m + β1qn(μ + γ )m + β1mn(μ + γ )

+ πβ2 − πn(1 − η)β1 − πβ1q − πβ1

]

+ μn(μ + γ + Ω)m − πn(1 − η)β1m − πβ1qm − πβ1m

= a1X
2 + b1X + c1.

Sinceβ1 > β2, it follows that a1 > 0, and hence this is an upward-facing parabola.
Furthermore, since S ≤ π

μ
(the upper bound of the population), then, using Eq. (12),

the constant term satisfies
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c1 = μn(μ + γ + Ω)m − (πn(1 − η)β1 + πβ1q + πβ1)m

≤ πn(1 − η)β1m + πβ1qm + πβ1m − πβ2Xm

m + X
− (πn(1 − η)β1 + πβ1q + πβ1)m

= −πβ2Xm

m + X
< 0

if X > 0. It follows that the parabola has a negative y-intercept. An upward-facing
parabola with a negative y-intercept can only have a single positive x-intercept,
regardless of the sign of b1. It follows that there is a unique positive endemic equi-
librium given by

X̄ =
−b1 +

√
b21 − 4a1c1

2a1
. (13)

If X = 0, we have c1 = 0. Hence the endemic equilibrium collides with the DFE
at this point.

3.2 Basic Reproduction Number

Using the next-generation method, R0 is defined to be the largest eigenvalue of the
matrix FV−1, with F representing newly arising infections in the system and V the
balance of transfers of existing infections between the classes. Thus

F =
⎡
⎣β1(1 − η)π

μ
β1

π
μ

β1
π
μ

0 0 0
0 0 0

⎤
⎦ and V =

⎡
⎣(μ + γ + Ω) 0 0

− f γ (νX + α) −σ

−(1 − f )γ 0 (νY + σ + ζ )

⎤
⎦ .

We find the reproduction number for leprosy with stigma to be:

R0 = β1
π

μ

(1 − η)

(μ + γ + Ω)
+ β1

π

μ

σ(1 − f )γ + f γ (νY + σ + ζ )

(μ + γ + Ω)(νX + α)(νY + σ + ζ )

+ β1
π

μ

(1 − f )γ

(μ + γ + Ω)(νY + σ + ζ )
.

These three terms represent the contributions from asymptomatic, unstigmatised
and stigmatised individuals, respectively.
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4 Numerical Simulations

To assess the effects of stigma, we considered three regimes: (a) moderate stigma,
(b) high stigma, and (c) no stigma. We used sample values chosen within the ranges
from the table and varied the effect of stigma using the disclosure rate σ to assess
moderate versus high stigma regimes and turned off the proportion of individuals
entering the stigma compartment for the no-stigma case.

Using recent leprosy-prevalence statistics [4], we conduct approximate order-of-
magnitude estimates of our infection coefficients. Roughly 214,000 cases of leprosy
were reported in 2014, with approximately 81% of those cases coming from Brazil,
India and Indonesia. Approximating the populations of these nations by 200 million,
1.25 billion and 250 million, respectively, we estimate the coefficient of infection to
be

β1 = 0.81 × 214000

1700000000
= 0.000101965 ≈ 0.0001. (14)

We considered a small village of 1000 individuals. Initial conditions were chosen
so that there were 1000 susceptibles and a single infected non-stigmatised individual.
Figure2 illustrates the case of moderate stigma, showing an infection wave and a
substantial number of uninfected individuals (S + R = 636 at the end of this simu-
lation).

Next, we used the same parameters and initial conditions as in Fig. 2 except
that we changed the rate of disclosure from σ = 1 to σ = 0.1. This reflects the
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Fig. 2 Leprosy modelled in a moderate stigma regime. There is an infection wave, with
an endemic disease outcome but a substantial number of recovered individuals. Parameters
used were α = 1; ζ = 0.1; β1 = 0.01; β2 = β1/2; γ = 0.2; δ = 0.1; μ = 0.03; ν = 0.09; π =
30; σ = 1; Ω = 1; f = 0.5;m = 0.5; η = 0.8. Note in particular that stigmatised individuals
remain so for 1

σ
= 1 year
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Fig. 3 Leprosy modelled in a high stigma regime. Parameters were as in Fig. 2 except that σ = 0.1
(i.e., stigmatised individuals remain so for an average of ten years). The number of recovered
individuals is low, while stigmatised individuals persist. Note the re-ordering of the final outcome,
compared to Fig. 2

case where individuals remain stigmatised for ten years (since the length of time
remaining in a compartment is inversely proportional to the rate of leaving it). In this
case, the number of stigmatised individuals exceeds the number of non-stigmatised or
asymptomatic individuals, sustaining a high level of infected individuals. The number
of uninfected individuals was significantly lower than in Fig. 2 (S + R = 376 in this
simulation).

Finally,wemodelled the case of no stigma. Parameterswere as in Fig. 2 except that
f = 1 to ensure that no individuals entered the stigma compartment. The outcome is
similar to Fig. 2 except that there are slightly more uninfected individuals (S + R =
729 at the end of this simulation).

Additionally,we numerically explored the dependency of the results on the param-
eters β2 and m. However, although these had an effect on the shape of the curves,
they did not produce outcomes significantly different to Figs. 2, 3 and 4. (Results not
shown.)

We also performed a sensitivity analysis on the reproduction number using Latin
Hypercube Sampling (LHS) and Partial Rank Correlation Coefficients (PRCCs).
Latin Hypercube Sampling is a statistical sampling method that evaluates sensitivity
of an outcome variable to all input variables. PRCCs measure the relative degree of
sensitivity to each parameter, regardless of whether the parameter has a positive or
negative influence on the outcome variable [2].

PRCCs were calculated for the model and are displayed in Fig. 5 using the ranges
from the table but with the range for β1 extended to 0 ≤ β1 ≤ 0.005 to illustrate a
wider outcome. This analysis provides a way to measure the sensitivity of a model
to each parameter it contains. Figure5 shows that β1 and η are the most sensitive
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Fig. 4 Leprosy modelled in a stigma-free regime. Parameters were as in Fig. 2 except that f = 1
so that there were no stigmatised individuals. The number of infected cases is low, and the number
of recovered individuals is high
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Fig. 5 Partial rank correlation coefficients for the model

parameters in the model. Note that the stigma parameters β2 and m do not affect R0,
which is a measure of initial disease invasion.

In Fig. 6, we plot the individualMonte Carlo simulations of the twomost sensitive
model parameters. For 0 ≤ β1 ≤ 0.5 × 10−3, eradication will result, regardless of
the values of the other parameters (i.e., if the disease transmission is extremely
low). However, there is no value of η that can guarantee eradication; even if η = 1,
fluctuations in the other parameters could still maintain the epidemic. Note that the
threshold value of β1 is larger than the value found in the literature using (14). This
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Fig. 6 Monte Carlo simulations for the twomost sensitive model parameters, β1 and η. The R0 = 1
threshold is indicated by the horizontal line. Eradication can be achieved if β1 is reduced below
0.0005. However, no value of η can guarantee eradication
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Fig. 7 Box plot of the range of R0 values from Monte Carlo simulations

suggests that eradication is theoretically possible, but fluctuations in the parameters
could have a significant effect on the outcome.

Figure7 shows the complete range of R0 values for all simulations. While the
interquartile range crosses the R0 = 1 threshold, suggesting that eradication is the-
oretically possible, the outlier values are quite extreme, suggesting that fluctuations
in the parameter values could lead to significant epidemics. Note that this figure uses
the extended range 0 ≤ β1 ≤ 0.005.

Since the endemic equilibrium can be uniquely determined from (13), we used the
LHS method to determine the effects of stigma on the outcome. We ran Monte Carlo
simulations on the endemic equilibrium X̄ and then applied the ratio of stigma to
non-stigma cases using (10). The outcome is illustrated in the ordered scatterplot in
Fig. 8. The blue dots (lower half of graph) illustrate the number of simulations where
there were fewer stigma cases, while the red circles (upper half of graph) illustrate
the number of simulations where there were more stigma cases. In this example,
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Fig. 8 Ordered scatterplot of the ratio of more-stigma versus less-stigma cases using LHS on the
endemic equilibrium values on a log-log scale using ranges from the table. The red circles (upper
right) are the Monte Carlo simulations where there are more stigma cases at equilibrium. The blue
dots (lower left) are the simulations where there is less stigma at equilibrium. The inset graphs
illustrate the two cases in a linear scale. Note that, at the extreme, there are 78 times as many stigma
cases as non-stigma cases

there were 796/1000 cases where less stigma occurred and 204/1000 cases where
more stigma occurred. However, although there were more cases where stigma was
reduced, the degree of stigma expansion in the more-stigma case was extensive. At
the extremes, the ratio of less-stigma to more-stigma cases ranged from a factor of
0.000545 to a factor of 78.

5 Discussion

We examined the effects of stigma on leprosy, both in the short term of initial disease
outbreak (Figs. 5 and 6) and in the long term (Figs. 2, 3 and 4). Although stigma had
no effect on initial disease invasion or eradication, differences in stigma levels had
the potential to substantially alter the overall prognosis of leprosy in the population.
To the best of our knowledge, this is the first mathematical model of leprosy to
incorporate stigma.

Additionally, we used an ordered scatterplot to examine the ratio of increased
stigma to decreased stigma across a range of parameter values. Although there were
more cases where the amount of stigma was reduced, in the cases where it was
increased, the result could be as much as an 80-fold increase in the number of
stigmatised individuals. It follows that stigma is an important factor in the spread of
leprosy.
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Our model has some limitations, which should be acknowledged. We conflated
“disclosure” and “stigma”, whereas in practice the social phenomenon of leprosy-
related stigma is more complex. We represent stigma by way of parameter choices,
which is a simplification. Leprosy is an extremely heterogeneous disease in at least
two major senses: it is heterogeneous with respect to those at risk of exposure to
the M. Leprae bacteria and with respect to the spatial distribution of the disease.
Therefore, given this heterogeneity, mass-action disease transmission may not be
suitable for modelling this disease. We have also assumed constant birth and death
rates, but, for any long-term disease, modelling time-varying birth and death rates
may be more appropriate. Likewise, a further refinement would be to model the
stigma parameters as randomly time-varying functions. Future work will examine
the effect of TB vaccines against leprosy, which have been shown to be efficacious
[18].

We thus see that stigma, whether moderate or high, plays a significant role in
sustaining leprosy. Our sensitivity analysis showed that R0 tends to range from 1 to
18 for typical model parameter ranges (Fig. 7). In practice, we may never have direct
control over the transmission rate β1, yet we may be able to influence σ , the rate at
which non-disclosing symptomatic infectees either change their minds and disclose
their infection or are discovered. Figure3 shows that reducing this rate is critical.

In practice, leprosy-eradication strategies should focus on the reduction of
leprosy-related stigma through a combination of targeted education about the dis-
ease and shifts in cultural attitudes towards leprosy. However, since the measure of
stigma estimated in this model may conflate actual disease-related stigma with other
important factors, such as knowledge or access to care, this model also highlights
the importance of continuing to make leprosy MDT accessible while simultaneously
educating at-risk populations about the possibility of such care. Finally, depending on
how likely it is that asymptomatic infections can in turn generate new infections, such
strategies may need to be supplemented by continued efforts to detect sub-clinical
infections, which has been emphasised in the literature [17]. The persistence of lep-
rosy is a complex problem; therefore a simple solution for its eradication is likely
not possible; however, any approach incorporating the reduction of leprosy-related
stigma will likely go a long way towards true leprosy eradication.
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One Simple Model—Various Complex
Systems

Urszula Foryś

Abstract In this chapter we consider a simple system of two ODEs that could be
used to describe various phenomena. Examples of these phenomena are presented.
In general, we focus on two interacting agents, like two animal populations, two
people or groups of people, two neuronal populations and so on. The system have
the following structure: the first part of an equation describes the inner dynamics,
while the second part is responsible for interactions. We consider two actors/agents
having similar inner dynamics, as well as interaction function is similar for both of
them. In the simplest case, when the inner dynamics is linear, the behavior of the
system depends on the interaction functions. We discuss similarities and differences
between the models with different interaction terms.

Keywords Ordinary differential equations ·Mathematical modeling of interacting
agents · Stability analysis

1 Introduction

Mathematical modeling of interacting species has a long history, starting from classic
Lotka-Volterra model. Almost 100 years ago Lotka [3] proposed a system of two
differential equations to show that oscillatory dynamics is possible for chemical
reactions. The same model was considered by Volterra [9, 10] in the context of
prey-predator interactions. Since that time many mathematical models of interacting
species have been proposed and many text-books on that topic have been published;
cf. e.g. [4, 7].

In this paper we would like to consider a model of two interacting agents having
the same inner dynamics and the same interaction function which describes impacts
of one of the agents into the other one. Let xi (t) describes the state of the i th agent at
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time t . In terms of interacting animal species, xi denotes density of the i th species,
and therefore, xi ≥ 0; in terms of two interacting persons, xi reflects the intensity of
emotions of the i th person and xi ∈ R in such a case; in terms of interacting neurons,
it reflects an intensity of signals. Hence, it is obvious that building a model one needs
to be careful about the range of applicability.

The general form of the model we consider reads

ẋ1 = f1(x1) + c1g1(x1, x2) =: F1(x1, x2),
ẋ2 = f2(x2) + c2g2(x1, x2) =: F2(x1, x2),

(1)

where:

– fi (·) describes the inner dynamics of the i th agent;
– c1g1(·, ·) describes the impact of the first agent into the second one;
– c2g2(·, ·) describes the impact of the second agent into the first one.

Parameters ci are introduced in order to keep as similar as possible forms of inter-
action functions gi . These parameters reflect the strength and direction of interactions
between agents. Positive values of c1 mean positive influence of the second agent
into the first one and vice versa.

For the inner dynamics we assume that:

A fi : R → R (or we restrict the domain and values of fi to the non-negative values
R+, depending on the model);

B fi is of class C1;
C the equation ẋ = fi (x) has exactly one globally stable steady state.

Notice that B is a technical assumption guaranteeing existence and uniqueness
of solutions, while C says that in the absence of interactions (that is when an agent
is in solitude) the agent remains in its steady state and came back to this state after
any disturbance. Assumption C does not mean that f has a unique steady state, as it
could also have zero steady state being unstable, and then the positive steady state is
globally stable in positive quadrant. However, this is related to positive values of the
variables xi , so if the variables could have different signs, the globally stable steady
state is unique.

The simplest function f fulfilling Assumptions A-C is just a linear function

f (ζ ) = a − bζ, b > 0, (2)

which has the steady state ζ̄ = a
b and ζ̄ > 0 for a > 0. The parameter b is a time

scale and this time scale reflects the time needed to came back to the inner steady
state after a disturbance. The linear function could be used both when we need to
restrict xi to non-negative values and when it is not the case. Another commonly
used function f is logistic one:

f (ζ ) = rζ (1 − bζ ) , r, b > 0. (3)
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Fig. 1 Graphs of several
possible functions fi
describing the inner
dynamics of agents for which
ẋ = fi (x) have the same
globally stable steady state
(here it is equal to 5): linear
(blue curve), logistic (red
curve), generalized logistic
with α = 2/3 (green curve),
Gompertz (brown curve)

However, this function can be applied only for xi ≥ 0. Here, r is the growth rate,
which again could be interpreted as a time scale, b is the competition rate, while
K = 1

b is the steady state from Assumption C.
In this paperwemainly focus on the inner dynamics described byEq. (2) or Eq. (3),

but many other functions fulfilling A-C could be used, e.g. generalized logistic:
f (ζ ) = rζ (1 − (bζ )α); Gompertz: f (ζ ) = −rζ ln (bζ ) and others; cf. Fig. 1.
As regards the interaction functions gi we also assume that they are of class C1,

while more specific properties will be discussed in the context of specific mod-
els we would like to present here. However, in completely symmetric case we
assume g1(x1, x2) = g2(x2, x1), while in general these functions could have different
coefficients.

2 Lotka-Volterra Models of Interacting Species

In this section we recall classic models describing interacting species apart the orig-
inal Lotka-Volterra predator-prey model, that is we focus on the case with logistic
fi and bilinear gi (x1, x2), namely gi (x1, x2) = x1x2. Notice that we can distinguish
two types of interactions:

1. competing species, when both ci < 0;
2. mutualizm, when both ci > 0.

It is also possible to consider different signs of ci , that is c1c2 < 0. However, this
would rather correspond to predator-prey interactions, and it is worth to notice that
for this type of interactions the inner dynamics of two agents could be different.
Hence, this model is out of our scope.
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2.1 Analysis of the Models of Interacting Species

First notice, that in both cases solutions are positive for positive initial data, while in
the cases listed above:

1. for each of the species we have ẋi ≤ ri xi (1 − bi xi ), meaning that the set {(x1, x2)
∈ R

2 : 0 ≤ xi ≤ Ki
}
(Ki = 1/bi is the carrying capacity for the i th species) is

positively invariant, implying existence of solutions for all t ≥ 0;
2. solutions can tend to ∞, depending on the parameters.

Notice also that we are able to scale both variables by bi obtaining exactly the
same model but with bi = Ki = 1 and ci scaled accordingly. Hence, we assume
bi = 1 for i = 1, 2.

Next, we focus on the existence and stability of steady states. There can be up
to 4 steady states. Clearly, (0, 0), (0, 1) and (1, 0) always exist, while existence of
a positive steady state depends on the values of the model parameters. This state
satisfies the following system of equations:

ri (1 − xi ) + ci x j = 0 for i, j = 1, 2, i �= j.

Clearly, linear function x2 = r1
c1

(x1 − 1) is the null-cline for the first variable and
x2 = 1 + c2

r2
x1 is the null-cline for the second one and they have a cross section in

R
2+:

1. if |ci | > ri or |ci | < ri for both i = 1, 2;
2. if r1r2 > c1c2.

Using the Dulac-Bendixson Criterion it is easy to check that the models have no
periodic orbits in positive quadrant. Clearly, let define B(x1, x2) = 1

x1x2
and calculate

the divergence of the vector field (BF1, BF2). We obtain

∂

∂x1

(
r1(1 − x1)

x2
+ c1

)
+ ∂

∂x2

(
r2(1 − x2)

x1
+ c2

)
= − r1

x2
− r2

x1
< 0 for x1, x2 > 0.

Thus, we can conclude that if solutions remain in the bounded region, then any
solution tend to one of the steady states. This implies the following dynamics:

1. either there is exactly one stable steady state and it is globally stable, or there are
two stable steady states and we observe bi-stability;

2. either there exists a positive steady state and it is globally stable, or there is no
such state and solutions are unbounded.
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2.2 Illustration of the Interacting Species Models Dynamics

In this subsection we present phase space portraits illustrating possible dynamics of
the models of interacting species.

Let us first consider competing species. Figure2 presents four exemplary portraits.

(I) In this case the inequality r2/|c2| > 1 > r1/|c1| is satisfied. There is no positive
steady state and the only stable steady state (1, 0) attracts all solutions in the
positive quadrant. Competition leads to the extinction of the second species,
while the first species tends to its carrying capacity.

(II) This case is symmetric to the previous one: r2/|c2| < 1 < r1/|c1| and all solu-
tions are attracted by (0, 1).

(III) In this case the inequalities ri/|ci | < 1, i = 1, 2, are satisfied. Competition is
not so harmful for both species and they coexist in the environment.

(IV) This case is reverse to the previous one: ri/|ci | > 1, i = 1, 2, and competition
is harmful for both species. The species with better initial condition wins
the competition and tends to its carrying capacity, while the other goes to

(b)

(d)

(a)

(c)

Fig. 2 Phase space portraits for competing species and various possibilities of the model dynamics:
a r2/|c2| > 1 > r1/|c1|; b r2/|c2| < 1 < r1/|c1|; c ri/|ci | < 1, i = 1, 2; (III) ri/|ci | > 1, i = 1, 2
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(b)(a)

Fig. 3 Phase space portraits formutualistic species and various possibilities of themodel dynamics:
a r1r2 > c1c2; b r1r2 < c1c2

extinction. The phase space is divided into the basins of attraction of the states
(1, 0) and (0, 1), and the separatrix is formed from the stable manifold of the
positive steady state which is a sadle.

Next, we turn to the case when the species interact in a mutualistic way. There
are two possible phase space portraits presented in Fig. 3.

(I) In this case the inequality r1r2 > c1c2 is satisfied. There exists the positive steady
state which attracts all solutions.

(II) In this case the inequality r1r2 < c1c2 is satisfied. There is no positive steady
state and all solutions for positive initial data tend to infinity.

Notice that in all considered cases the semi-trivial steady states—(1, 0) and
(0, 1)—are either saddles or stable nodes. This is a simple consequence of the inner
dynamics for which these states are stable. Moreover, both states are always saddles
for mutualistic species, while for competing species all combinations (both saddles,
both stable, one stable and one unstable) are possible. Moreover, dynamics of these
two different systems is similar when there exists stable positive steady state. How-
ever, for all other cases competition leads to extinction of one of the species, which
corresponds to the ecological rule of competitive exclusion.

3 Influence Function Depending on One Variable Only

In this section we would like to discuss System (1) of the following specific form:

ẋ1 = f1(x1) + c1g1(x2),
ẋ2 = f2(x2) + c2g2(x1),

(4)
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which is related to the modeling of dyadic interactions. Modeling dyadic interactions
using ODEs started with a short note by Strogatz [8] who noticed that fluctuations of
emotions in the relationship of Romeo and Juliet could be described using a simple
linear mathematical oscillator. However, it is obvious that humans’ emotions are
non-linear, and this was a reason to propose a model of the form (4) by Rinaldi and
his coauthors; cf. [6] for details and the history of this model. Similar approach but
in a little different context was used by Liebovitch et al. [2]. They used the notion of
actors instead of partners to mark that they do not describe love relationships. Here
we focus on the interpretation presented in our paper [5], which is similar to those
by Liebovitch et al.

In System (4), the inner dynamics is described by linear functions fi (ζ ) = ai −
biζ . In our interpretation (cf. [5]) coefficients ai of the inner dynamics correspond to
the natural optimism/pessimism of the i th actor. More precisely, when ai > 0, then
the i th actor is an optimist with the natural level of optimism equal to ai

bi
which is

called uninfluenced steady state, while for ai < 0 this steady state reflects the natural
level of pessimism for the i th actor. The coefficient bi > 0 is called a forgetting
coefficient in this context.

Both functions gi are the same, that is g1(ζ ) = g2(ζ ) = g(ζ ) and g have the
following properties:

(a) g(0) = 0;
(b) g′(0) = 1;
(c) g is increasing;
(d) ζg′′(ζ ) < 0 for ζ �= 0.

Assumption (a) says that there is no influence if the second actor is absent.
Assumption (b) is a normalization assumption for the derivative of g and together
with (d) means that 1 is a maximal value. Assumption (c) reflects the fact that more
intensive impact is related to greater values of the variable (that is greater intensity of
emotions, greater density of the species, and so on). However each additional unit of
the variable gives less profit, which is associated with natural saturation of emotions
or other processes. Coefficients ci reflect direction and strength of the impact of the
other actor to the i th one. Clearly, if c1 > 0, then the first actor likes the second one,
and therefore the second actor has a positive impact to the first one and vice versa.
In [5] we focused on the analysis who want to establish closer relationships with
whom. We present some discussion on that topic below.

3.1 Analysis of System (4)

First notice that System (4) has at least one steady state. Clearly, steady states satisfy
the following system of equations:

a1 − b1x1 + c1g(x2) = 0, a2 − b2x2 + c2g(x1) = 0,
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and the curve x2 = a2+c2g(x1)
b2

is the null-cline for the second variable, which is mono-

tonic and defined for every x1 ∈ R, while the curve x1 = a1+c1g(x2)
b1

is the null-cline
for the first variable which takes all values from R. Due to Assumption (d) the
curves x1 = g(x2) and x2 = g(x1) have a cross-section at zero, while the curves
x1 = c1g(x2) and x2 = c2g(x1) could have two others, depending on the parameters
ci . This property is inherited by the null-clines, and this implies that System (4) has
from one to three steady states.

It is worth to notice that there is no periodic orbits within solutions of System (4).
Clearly, calculating the divergence of the right-hand side F we obtain

∂

∂x1
(a1 − b1x1 + c1g(x2)) + ∂

∂x2
(a2 − b2x2 + c2g(x1)) = − (b1 + b2) < 0 in R2.

Hence, the Dulac Criterion implies that periodic orbits do not exist, and therefore
any solution remaining in a bounded region tends to a steady state. This implies that:

– if there is only one steady state then this state is globally stable in R
2;

– if there are three steady states then we observe bi-stability, that is two of the three
steady states are stable with a saddle between them and the stable manifold of the
saddle divides the whole space into the basins of attraction of stable states;

– if there are two steady states then the saddle-node bifurcation is observed.

Notice that this behavior is similar to those observed for competitive species.
However, there are situations in which we observe damping oscillations. It occurs
that the more similar the agents are, the more probable the oscillatory dynamics is.

3.2 Illustration of the Dynamics of System (4)

Now, we turn to numerical examples of the model dynamics for various signs of
coefficients ai and ci , i = 1, 2. Interpreting the results we follow the ideas of our
paper [5] and focus on the relations between two actors depending on their attitude
to life, that is their level of optimism/pessimism. In the numerical examples of the
phase portraits presented in this subsection the interaction function g was chosen
as arctan. Both forgetting coefficients were fixed, bi = 1 and |ai | = 1. Hence, the
uninfluenced steady state is either 1 for an optimist or−1 for a pessimist. We want to
check how these uninfluenced steady states change due to the interactions between
actors. We say that the i th actor gains due to the interactions when the i th coordinate
of the steady state of System (4) is greater than the uninfluenced steady state of this
actor, while the i th actor loses in the opposite case.

We start our analysis from two actors being pessimists—three exemplary phase
portraits are presented in Fig. 4.
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(a) (b)

(c)

Fig. 4 Phase space portraits for System (4) and two pessimists. Various possibilities of the model
dynamics: a ci < 0, i = 1, 2; b ci > 0, i = 1, 2; c c1 < 0, c2 > 0

(I) In this case the actors do not like each other (ci < 0, i = 1, 2) and the null-
clines cross three times yielding the existence of three steady states. We see
that only in the stable manifold of a saddle both actors can gain due to the
interactions, while for all other cases one of the actors loses and the other gains.
If at the beginning the first actor is in a better mood than the second one, then
this situation will be extended for all t > 0 and vice versa.

(II) In this case the actors like each other (ci > 0, i = 1, 2) and there is one steady
state. We see that both actors lose due to the interactions.

(III) In this case the first actor does not like the second one (c1 < 0), while the
second actor likes the first one (c2 > 0). We observe oscillations resulting in
the gaining of the first actor.

As we can see for a pessimist, it is difficult to be a friend of another pessimist, as
being his friend we take over his emotions and get worse in his company.
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(a) (b)

(c) (d)

Fig. 5 Phase space portraits for System (4) and one pessimists and one optimist. Various possi-
bilities of the model dynamics: a ci < 0, i = 1, 2; b ci > 0, i = 1, 2; c c1 < 0, c2 > 0; d c1 > 0,
c2 < 0

Next, we consider relationships between a pessimist and an optimist. For the first
actor we assume a1 = −1, while for the second one ai = 1. Various possibilities are
presented in Fig. 5.

(I) In this case the first actor being a pessimist does not like (c1 < 0) the second
one who is an optimist and also does not like (c2 < 0) the first one as well. We
see that the first actor loses, while the second one gains.

(II) In this case both actors like each other (ci > 0, i = 1, 2). If they are both in
relatively goodmoods then theyboth gain.However, if theirmoods are relatively
bad then both actors lose.

(III) In this case the first actor does not like (c1 < 0) the second one, while the second
actor likes (c2 > 0) the first one. We see that the second actor loses.

(IV) In this case the first actor likes (c1 > 0) the second one, while the second actor
does not like (c2 < 0) the first one. We see that the first actor gains.
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(a) (b)

(c)

Fig. 6 Phase space portraits for System (4) and two optimist. Various possibilities of the model
dynamics: a ci < 0, i = 1, 2; b ci > 0, i = 1, 2; c c1 < 0, c2 > 0

For relationships between a pessimist and an optimist it is not so obvious how the
interactions will avoid the steady state. It is worth to notice that the above mentioned
possibilities are only examples of themodel dynamics, and the situation could change
with changing parameter values; cf. [5] for details.

Lastly, we consider the relationships between two optimists. The exemplary phase
space portraits illustrating the model dynamics are drawn in Fig. 6.

(I) In this case both actors do not like each other (ci < 0, i = 1, 2). For the used
parameters there are three steady states and depending on initial data one of the
actors gains while the other loses. Only within stable curve for a saddle both of
them lose.

(II) In this case both actors like each other (ci > 0, i = 1, 2). This is the best case
as both actors gain due to the interactions.

(III) In this case the first actor does not like (c1 > 0) the second one, while the second
actor likes (C2 > 0) the first one. We see that the first actor lose.
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Notice that for the cases when there are three steady states for System (4) other
types of the model dynamics are also possible. Clearly, the number of steady states
depends on the parameter values, so there can be also two or one steady state and
except bi-stability (sadle-node bifurcation with two steady states can be also inter-
preted as bi-stability) global stability is also possible. Many interesting conclusions
could be drawn on the basis of this simple model. For example, basing on changes
of strategy (that is changing sign of the coefficient ci ) one can explain so called
Stockholm syndrom; cf. [5] for details.

4 Influence Function of the Form xig(xi x j )

In this section we consider the model proposed in the context of perceptual decision
making in [1]. In that paper we focused on modeling the most basic perceptual
decision-making in neuronal networks in which the network needs to disambiguate
between two sensory stimuli. We described changes in firing rates x1, x2 of two
neuronal populations. In the simplest version without time delay this model reads

ẋ1 = α1

(
a1 − b1x1 + cx2g(x1x2)

)
,

ẋ2 = α2

(
a2 − b2x2 + cx1g(x1x2)

)
,

(5)

where 1
αi

are time scales for these neuronal populations, the i th population receives
an external input ai , our populations are self-inhibited with inhibition coefficients bi ,
c is a coefficient describing the maximal capacity of a synapse, while g characterizes
interactions between neuronal populations related to so-called synaptic plasticity for
which we assumed a sigmoid shape. In this model we are interested in positive values
of the variables xi and this is the reasonwe define the function g only for non-negative
values. However, in general the model could be extended for all real values of xi and
then the function g should be considered as a function on R.

We assume that g : R+ → R+ of class C1 satisfies the following assumptions:

– g(0) = 0;
– g′(ζ ) > 0 for ζ > 0;
– there exists ζ1 > 0 such that in (0, ζ1) the function g is convex and for ζ > ζ1 it is
concave;

– g is bounded.
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4.1 Analysis and Illustration of the Model Dynamics for the
Case Considered by Foryś et al. [1]

In [1] we assumed g in the form of Hill function with Hill coefficient equal to 2, that
is g(ζ ) = ζ 2

1+ζ 2 . Moreover, without additional input we considered the model being
fully symmetric, meaning that all coefficients are the same with reference values
αi = 3, ai = 0.4, b1 = 1, c = 1. The main aim of the analysis presented in [1] was
to check if the model is able to correctly predict to which neuronal population an
additional input was applied.

Looking at the model dynamics for the basic symmetric case it is easy to see
that the phase space portrait is symmetric, as exchanging the variables x1 ↔ x2 does
not change the model. Moreover, the straight line x2 = x1 is a specific trajectory on
which the following equation is satisfied:

ζ̇ = α
(
a − ζ + ζg

(
ζ 2

) )
= 3

(
0.4 − ζ

1 + ζ 2

)
. (6)

Due to the properties of the function ζ

1+ζ 2 (which is unimodal with one maximum
equal to 0.5 at ζ = 1 we see that there are two steady states of Eq. (6), 0 < ζ1 < 1 <

ζ2 and ζ1 is stable while ζ2 is unstable. Within the straight line x2 = x1 all solutions
with initial value below ζ2 tends to ζ1, while those above ζ2 tends to ∞ as t → ∞.
These corresponds to the dynamics in the whole phase space where (ζ1, ζ1) is a stable
node while (ζ2, ζ2) is a saddle. The stable curve of a saddle divides the phase space
into two regions: below this curve solutions are attracted by the first steady state,
while above this curve solutions tend to∞. It should be noticed that we are interested
in the model dynamics for the values of variables near the first steady state, as large
values are not biologically plausible. Hence, in Fig. 7 we present only a part of the
phase space corresponding to such values.

In Fig. 7a we see our reference symmetric case with all solutions attracted by the
steady state with coordinates near 0.4. Giving additional input to the first variable
results in moving this state to the right (cf. Fig. 7b), while when the additional input
is given to the second variable, then the steady state moves up. This shows that the
system correctly recognizes to which population this additional input is applied.

In [1] we presented an extended analysis of System (5) also for parameter values
different than reference values, especially focusing on the role of parameters a and
c (denoted by I and ε in the original paper) for the number of steady states. It occurs
that there can be from one to three steady states, similarly to other models considered
in this chapter. The stability of these states is also similar to the cases studied above
in previous sections.



82 U. Foryś

(a)

(c)(b)

Fig. 7 Phase space portraits for System (5): a symmetric case; b for additional input given to the
first population; c for additional input given to the second population

5 Conclusions

The main aim of the chapter was to show that simple systems of ODEs are capable to
describe complex processes appearing in nature. We have discussed three examples
of general System (1) reflecting interactions between two animal species, between
two persons during a meeting and two neuronal populations acting in perceptual
decision making. For all the examples from one to three steady states appear. If there
is only one steady state, then it is typically globally stable, while for three steady
states we observe bi-stability. These two type of the behavior are separated by saddle-
node bifurcation. In the case of mutualistic species solutions can be unbounded when
there is no positive steady state. Although the model is able to reflect some types of
the dynamics observed in nature, but it should be noticed that periodic dynamics does
not appear for all ODEs presented in this paper. Hence, to reflect such type of the
behavior somemodifications are necessary. One of the possibilities is to include time
delay into the model. Clearly, in [1] we introduced time delay in self-inhibition and
obtained periodic dynamics which is able to reflect ambiguity in perceptual decision
making.
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Two-Dimensional System by Universal
Generating Function
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Abstract In this paper, two dimensional multi-state non-repairable systems having
m rows and n columns have been studied.Markov stochastic process has been applied
for obtaining probabilities of the components. Reliability metrics such as reliability,
mean time to failure and sensitivity analysis of the target system with the applica-
tion of universal generating function are evaluated. Finally, the developed model is
demonstrated with the help of a numerical example.
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1 Introduction

A system is a set of mutually connected and dependent components which works
together [16]. The systems are basically classified in two different categories accord-
ing to their states viz. binary state systems (BSS) and multi-state systems (MSS). In
BSS the system and its components can have two possible states: working and failed
whereas in MSS, a system and its components can be in finite number of states. MSS
reliability models allow both the system and its components to assume more than
two or finite number of levels of performance. Further, if we inquire the engineering
systems we see that they are represented more realistically and precisely through
multi-state reliability models. Modern engineering systems are much more com-
plex and present difficulties in system performance evaluation. Especially in today’s
real world problems with the development of science and technology and increasing
amount of design of complex and interrelated system, the more number of system
states needs to be considered. Moreover, increasing high demands for the accurate
reliability evaluation, it is difficult to use traditional binary reliability techniques as
it can’t always insure the realistic requirements of the complex engineering systems.
Therefore, the reliability evaluation of multi-state system is high in demand [13].

Now a days high definition engineering systems are emerging. The two dimen-
sional (two-dim) systems are also increasingly significant complex systems used in
engineering systems like temperaturemonitoring systems for chemical reactor, video
monitoring systems etc. Before development of two-dim system, one dim consecu-
tive k-out-of-n: F system is introduced [4] due to motivation of theory development
and engineering application in reliability theory. Later, the consecutive k -out-of-n:
F system firstly extended to two-dim situation in 1990s by Salvia and Lasher. The
said, first two-dim system was k2/n2: F system which fails if k2 (2 ≤ k ≤ n − 1)
elements in sub-square of square containing n2 elements are failed [19]. Similarly
[2], propound linear connected (r, s)-out-of-(m, n): F system, which consists of com-
ponents in rows and columns. This type of system experiences failure if at least r
rows and s columns components are failed in the system.

There are many methods to analysis reliability of the multi-state systems, viz.
stochastic process, Monte Carlo approach, Markov chain approach, universal gen-
erating function (UGF) etc. UGF approach is one of the best methods ever seen to
analysis reliability of any system. Universal generating function was first emerged
in 1986 [18], after that considerable research efforts have been presented by many
authors [3, 8, 9, 11, 12, 15] not only in applying but also in extending this approach in
their researchworks.As far as computation of two-dim system reliability is concerned
various methods like Monte Carlo method, Markov chain embedding approach, YM
algorithm etc. are proposed by different researchers. Although UGF approach is
efficient, systematic and well defined for reliability analysis of any system but reli-
ability analysis of two-dim system with help of Markov stochastic process [10, 14],
and UGF is not yet done. Further, in their article, authors [6, 7, 15] investigated
methods for analyzing sensitivity of the system corresponding to the component’s
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states probabilities or failure rates. These investigated methods are based on Birn-
baum importance measure [1], and also for measuring expected time to failure of
the system which is known as mean time to failure (MTTF). It is worth mentioning
here that although, it is a critical factor of system design but the said study is also
not earlier conducted for two-dim repairable and non-repairable multi-state system
with the application of UGF.

Keeping aforementioned facts in view, in the present study a two-dim non-
repairable multi-state (k, l)/(m, n): G system has been taken. Markov stochastic
process is applied for finding probabilities of multi-state components of the system
corresponding to their performances. Then universal generating function approach
has been applied to evaluate reliability indices such as reliability,MTTFof the system
and sensitivity analysis of the system’s components. Finally, a numerical example
has been taken to demonstrate the proposed approach for the considered system.

2 Preliminaries

2.1 Definition

2.1.1 Multi-state Two-Dim (k, l)/(m, n): G System

A non-repairable multi-state two-dim (k, l)/(m, n): G system consists m, n compo-
nents, which are arranged in matrix form (m × n) wherem and n are row and column
respectively. The system works if sum of the performances of consecutive kl com-
ponents of sub matrix (k × l), where row k (2 < k < m) and column l(1 < l < n) is
greater than equal to demand performance D.

2.2 Universal Generating Function

UGF is a form of ordinary moment generating function which represents the prob-
ability mass function of discrete random variables. Let a discrete random variable
X has M possible values (x1, x2, . . . , xM) and (p1, p2, . . . , pM) be the correspond-
ing probabilities. Then UGF of discrete random variable X = (x1, x2, . . . , xM) is
represented by a polynomial

U (z) =
M∑

j=1

p j z
(X=x j ), j = 1, 2, 3, . . . , M (1)

Consider a system having Xi (i = 1, 2, . . . , n) components and every component
has v(v = 1, 2, . . . , Mj ) possible state denoted by x jv. Let probability distribution
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of each variable x jv (jth variable at vth state) is represented by p jv. Then the UGF
of random variable X j is defined as

uX j (z) =
Mj∑

v=1

p jvz
x jv (2)

Combination ofm universal generating functions ofm variables is defined by com-
position operator ⊗ f , where the properties of the composition operator ⊗ f totally
depend on properties of the function f (X1, X2, . . . , Xm). Therefore, the composition
is given by

U (z) = ⊗ f (uX1(z), uX2(z), . . . , uXm (z))

= ⊗ f (

M1∑

v1=1

M2∑

v2=1

M3∑

v3=1

. . .

Mm∑

vm=1

(

m∏

i=1

pivi z
f (xiv1 ,...,xivm )) (3)

2.3 Probability Measure

Consider a system having Ei (i = 1, 2, . . . , l∗) component with corresponding prob-
abilities pie(e = 1, 2, . . . , ω). Every component ith has λi

s∗ω transition rate from
state s∗ to another lower state ω. If system’s components are non-repairable then the
probabilities corresponding to the system’s components are evaluated as

dpi1(t)
dt = −pi1(t)λi

12
dpil∗ (t)

dt = λi
l∗−1 l∗ pi l∗−1(t) − pil∗(t)λi

l∗l∗+1
...
dpiω(t)

dt = λi
ω−1ω pi s∗(t)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(4)

2.4 Mean Time to Failure

Mean Time to Failure (MTTF) is an expected time to failure of a non-repairable
system. If R(t) is the reliability function of the random variable Y at time t, then
MTTF is defined as

MTTF =
∞∫

0

R(t)dt (5)
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2.5 Sensitivity Analysis

Sensitivity analysis is a method used to identify most sensitive
components of a system corresponding to overall system reliabil-
ity. Let piω(i = 1, 2, . . . ,m is number of components and ω =
1, 2, . . . , n is possible state of the component) probability corresponding to
the component’s states of the system and R(t) be reliability of the system. Then the
sensitivity of the system component corresponding to its state is defined as

Siω = ∂R(t)/∂piω (6)

If the system reliability depends upon component’s failure rate then the sensitivity
of system reliability is given by

Sis∗ω = ∂R(t)/∂λi
s∗ω (7)

where λi
s∗ω be failure rate of component i from state s*to ω.

3 Reliability, MTTF and Component’s Sensitivity Analysis
of Two Dimensional System by UGF

Preposition 3.1 The reliability of the two-dim multi-state (k, l)/(m, n): G system
having m × n components is given by Rstm((k, l)/(m, n): G) = ϕ(Ustm(z), D) =

βmn∑
Kmn=1

. . .
β2∑

K2=1

β1∑
K1=1

(
mn∏
j=1

p jK j )η(z)

where, η(z) = z

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

g1K1 g2K2 · · · gnKn

gn+1Kn+1 gn+2Kn+2 · · · g2nK2n

...
...

...

g((m−1)n)+1K(m−1)n+2 g((m−1)n)+2K((m−1)n)+2 · · · gmnKmn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

m×n

=
⎧
⎨

⎩
1, if

kl∑
I=1

(gI
αKα

) ≥ D

0, otherwise

gI
αKα

= element of any k × l submatrix ofm × nmatrix,

α = 1, 2, . . .mn, Kα = 1, 2, . . . , N (8)

Proof Consider a two-dim multi-state (k, l)/(m, n): G system with m × n compo-
nents. Let every component has more than two performance states (gαKα

where α =
1, 2, . . .mn, Kα = 1, 2, . . . , N ) and PαKα

be the probability corresponding to the
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state and D be the performance demand of the working components then the UGF
of the considered system is obtained with the help of Eq. (3) as

Ustm (z) =
βmn∑

Kmn=1

. . .

β2∑

K2=1

β1∑

K1=1

(

mn∏

j=1

p jK j )z

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1K1 g2K2 · · · gnKn

gn+1Kn+1 gn+2Kn+2 · · · g2nK2n

.

.

.

.

.

.

.

.

.

g((m−1)n)+1K(m−1)n+2 g((m−1)n)+2K((m−1)n)+2 · · · gmnKmn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

m×n

Let sum of all probabilities of the system component’s states for which sum of the

elements

(
kl∑
I=1

(gI
αKα

)

)
of any sub matrix k × l is greater than demand performance

D be

=
βmn∑

Kmn=1

. . .

β2∑

K2=1

β1∑

K1=1

(

mn∏

j=1

p jK j )η(z)

Then the reliability of (k, l)/(m, n): G system is given by

Rstm((k, l)/(m, n): G) = ϕ(Ustm(z), D) =
βmn∑

Kmn=1

. . .

β2∑

K2=1

β1∑

K1=1

(

mn∏

j=1

p jK j )η(z)

where, η(z) = z

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

g1K1 g2K2 · · · gnKn

gn+1Kn+1 gn+2Kn+2 · · · g2nK2n

...
...

...

g((m−1)n)+1K(m−1)n+2 g((m−1)n)+2K((m−1)n)+2 · · · gmnKmn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

m×n

=
⎧
⎨

⎩
1, if

kl∑
I=1

(gI
αKα

) ≥ D

0, otherwise

Corollary 1 If l = k and m = n in (k, l)/(m, n): G, then

Rstm((k, k)/(n, n): G) = ϕ(Ustm(z), D) =
βn2∑

Kn2=1

. . .

β2∑

K2=1

β1∑

K1=1

(

n2∏

j=1

p jK j )η(z)

where, η(z) = z

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

g1K1 g2K2 · · · gnKn

gn+1Kn+1 gn+2Kn+2 · · · g2nK2n

...
... · · · ...

g((n−1)n)+1K(n−1)n+2 g((n−1)n)+2K((n−1)n)+2 · · · gn2Kn2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

n×n
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=
⎧
⎨

⎩
1, if

k2∑
I=1

(gI
αKα

) ≥ D

0, otherwise

Preposition 3.2 If Rstm((k, l)/(m, n)): G) be the reliability of (k, l)/(m, n)): G sys-
temandMTstm((k, l)/(m, n): GisMTTFof the system, thenMTTFof the considered
system is obtained as

MTstm((k, l)/(m, n): G =
∞∫

0

(

βmn∑

Kmn=1

. . .

β2∑

K2=1

β1∑

K1=1

(

mn∏

j=1

p jK j )η(z))(t)dt (9)

Proof If system reliability of a two dim multi-state (k, l)/(m, n): G system
is Rstm((k, l)/(m, n)): G)(t) then the mean time to failure of the system is

MTstm((k, l)/(m, n): G =
∞∫

0
Rstm((k, l)/(m, n)): G)(t)dt

Now putting value of the system reliability from Eq. (8), we get MTTF of
considered system as

MTstm((k, l)/(m, n): G =
∞∫

0

(

βmn∑

Kmn=1

. . .

β2∑

K2=1

β1∑

K1=1

(

mn∏

j=1

p jK j )η(z))(t)dt

Preposition 3.3 If Rstm((k, l)/(m, n)): G) and Siω((k, l)/(m, n)): G) are reliability
and components sensitivity of (k, l)/(m, n): G system respectively, then the system
components sensitivity is evaluated as

Siω((k, l)/(m, n): G) = ∂

∂piω
(

βmn∑

Kmn=1

. . .

β2∑

K2=1

β1∑

K1=1

(

mn∏

j=1

p jK j )η(z)) (10)

Proof Sensitivity of ((k, l)/(m, n)): G) system is expressed as
Siω((k, l)/(m, n)): G) which can be evaluated with the application of Eq. (5)
as

Siω((k, l)/(m, n): G) = ∂

∂piω
(Rstm((k, l)/(m, n): G)

By substituting the value of the system reliability from Eq. (7), we have
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Siω((k, l)/(m, n): G) = ∂

∂piω
(

βmn∑

Kmn=1

· · ·
β2∑

K2=1

β1∑

K1=1

(

mn∏

j=1

p jK j )η(z))

Case 1: Assume that λi
s∗ω be failure rate of system’s component i from state s* to

ω. If failure rates are parameter of system reliability then sensitivity is evaluated as

Sis∗ω((k, l)/(m, n): G) = ∂

∂λi
s∗ω

(

βmn∑

Kmn=1

. . .

β2∑

K2=1

β1∑

K1=1

(

mn∏

j=1

p jK j )η(z)) (11)

4 Illustration

Consider a two-dim (2, 2)/(3, 3) system with components Ei , i = 1, 2, . . . , 9 and let
the components have piω probabilities corresponding to the states ω = 1, 2, . . . n.
Let the system component Ei∗ , i∗ = 1, 2, . . . , 6 and E j∗ , j∗ = 7, 8, 9 have three and
two states of performance respectively and demand performance beD = 21 (Fig. 1).

Universal generating functions (uEn , n = 1, 2, . . . , 9) of the system’s every
component Ei , i = 1, 2, . . . , 9 can be obtained with the help of Eq. (1) as

uE1(z) = p11z
5 + p12z

3 + p13z
0,

uE2(z) = p21z
6 + p22z

4 + p23z
0,

uE3(z) = p31z
4 + p32z

2 + p33z
0

uE4(z) = p41z
7 + p42z

5 + p43z
0,

uE5(z) = p51z
3 + p52z

2 + p53z
0,

uE6(z) = p61z
2 + p62z

1 + p63z
0

uE7(z) = p71z
6 + p72z

0,

uE8(z) = p81z
7 + p81z

0,

uE9(z) = p91z
8 + p92z

0

1E

9E8E
7E

6E5E4E

3E2E

Fig. 1 Two dimension system structure
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After composition (from Eq. (3)) of all of the component’s UGFs we have UGF
of the system.

Ustm(z) =
2∑

K9=1

2∑

K8=1

2∑

K7=1

3∑

K6=1

3∑

K5=1

3∑

K4=1

3∑

K3=1

3∑

K2=1

3∑

K1=1

(

9∏

i=1

piKi )z

⎡

⎢⎢⎢⎣

g1K1 g2K2 g3K3

g4K4 g5K5 g6K6

g7K7 g8K8 g9K9

⎤

⎥⎥⎥⎦

(12)

where piKi be the probability, giKi be performance corresponding to the

component i = 1, 2, 3, . . . , 9 and component’s state Ki . Values of component’s

state performances g11 = 5, g12 = 3, g13 = 0, g21 = 6, g22 = 4, g23 = 0, g31 = 4,

g32 = 2, g33 = 0, g41 = 7, g42 = 5, g43 = 0, g51 = 3, g52 = 2, g53 = 0, g61 = 2,

g62 = 1, g63 = 0, g71 = 6, g72 = 0, g81 = 7, g82 = 0, g91 = 8, g92 = 0.

Then the reliability of the two dim multi-state (2, 2)/(3, 3): G system is evaluated
from Eq. (12) with the application of Eq. (8) as

R(t) =
2∑

K9=1

3∑

K6=1

2∑

K4=1

3∑

K3=1

3∑

K2=1

3∑

K1=1

(p1K1 p2K2 p3K3 p4K4 p51 p6K6 p71 p81 p9K9)

+
2∑

K9=1

3∑

K6=1

3∑

K3=1

3∑

K2=1

3∑

K1=1

(p1K1 p2K2 p3K3 p41 p52 p6K6 p71 p81 p9K9)

+
2∑

K9=1

3∑

K6=1

3∑

K3=1

(p11 p21 p3K3 p41 p51 p6K6 p72 p81 p9K9)

+
2∑

K9=1

2∑

K7=1

3∑

K6=1

3∑

K3=1

(p11 p21 p3K3 p41 p51 p6K6 p7K7 p82 p9K9) (13)

Probabilities piKi , i = 1, 2, . . . , 6, Ki = 1, 2, 3, and prKr , r =
7, 8, 9, Kr = 1, 2 of the considered system components can be evaluated with
the application of Eq. (4) as listed in Table 1.

4.1 Reliability

Reliability of the two-dim multi-state (2, 2)/(3, 3) system with respect to time are
shown in Fig. 2 with the help of Eq. (13) and probabilities listed in Table 1.
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Fig. 2 Reliability of the (2,
2)/(3, 3): G and 4-within-(3,
2)-out-of-(3, 3): G system
w.r.t. time
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4.2 MTTF

Mean time to failure of the two-dimmulti-state (2, 2)/(3, 3): G system can be obtained
with help of Eqs. (9), (12). The effect over the MTTF with respect to failure rates is
shown in Table 2 for the aforementioned target system.

Where λ1
12 = 0.06, λ2

12 = 0.04, λ3
12 = 0.02, λ4

12 = 0.015, λ5
12 = 0.037, λ6

12 =
0.05, λ7

12 = 0.07, λ8
12 = 0.08, λ9

12 = 0.02, λ1
23 = 0.01, λ2

23 = 0.08, λ3
23 = 0.06,

λ4
23 = 0.055, λ5

23 = 0.077, λ6
12 = 0.09.

4.3 Sensitivity Analysis

Sensitivity analysis of the (2, 2)/(3, 3): G system can measure when reliability
depends on probability only is evaluated with the help of Eq. (10). Similarly, if
failure rates are parameter of the reliability then it can be calculated with the help of
Eq. (11) is presented by Fig. 3.

5 Conclusion

In this work, two-dim non-repairable multistate (k, l)/(m, n) : G system is taken
for the study. Our main target in the study is to analysis reliability, MTTF and com-
ponents sensitivity measure of the system with application of universal generating
function and Markov process. Finally, numerical example has been taken to show
the effectiveness and flexibility of the presented method. It is observed that UGF is a
systematic and a good approach to calculate reliability, MTTF and importance of the
target system. It is seen from the considered examples that the reliability of two-dim
non-repairablemultistate (2, 2)/(3, 3): G system is decreasingwith increment of time.
Further, observation reveals that the MTTF decreases with respect to the failure rates
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Fig. 3 Variation in sensitivity corresponding to every state failure rate of the (2, 2)/(3, 3): G system
w.r.t. time
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7
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12) whereas it is unchanged w.r.t. failure rates
λ1
23, λ

2
23, λ

3
12, λ3

23, λ6
12, λ

6
23 and λ9

12. Sensitivity analysis of the considered systems
have also been done with respect probability and failure rate. Sensitivity of the sys-
tem reliability corresponding to the parameter probability is found to be decreasing
and tending to zero as time passes away. However sensitivity corresponding to those
probability parameters which are not part of the reliability expression is found to be
zero as expected. Further, study reveals that sensitivity of the proposed system cor-
responding to failure rates λ4

12, λ
4
23, λ

5
12, λ

5
23 and λ7

12 increasing first, then decreasing
and finally its value tending to zero whereas for λ1

12, λ
2
12 and λ8

12 its value decreasing
first, then increasing after some time values tend to zero with respect to time. For
remaining failure rates its value is zero because their reliability is independent of the
said failure rates.
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Quantum Symmetry of Classical Spaces

Debashish Goswami

Abstract We give a brief overview of generalized symmetry of classical spaces
(manifolds/metric spaces/varieties etc.) in terms of (co)actions of Hopf algebras,
both in the algebraic and the analytic set-up.

Keywords Compact quantum group · Quantum isometry group · Riemannian
manifold · Smooth action

Subject classification: 81R50 · 81R60 · 20G42 · 58B34

1 Introduction

It is hard to over-emphasize the importance of groups in mathematics, physics and
even in other physical and social sciences. They are used to describe symmetry of
mathematical and physical systems. Quantum groups are generalization of groups
and have their origin in different problems in mathematical physics as well as the
theory of classical locally compact groups. The pioneering work by Drinfeld and
Jimbo [9, 10, 17, 18] and others (e.g. [24, 25]) gave the formulation of quantum
groups in the algebraic setting as Hopf algebras typically obtained by deformations
of the universal enveloping algebras of semisimple Lie algebras. This led to a deep
and successful theory having connections with physics, knot theory, number theory,
representation theory etc. On the other hand, Woronowicz [28, 29] approached it
from a point of view of harmonic analysis on locally compact groups and came up
with a set of axioms for defining compact quantum groups (CQG for short) as the
generalization of compact topological groups. A similar theory of locally compact
quantum groups remained elusive for quite some time. Finally, a satisfactory theory
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of locally compact quantum groups was proposed in [19, 20, 23]. However, in this
article we mostly confine ourselves in the framework of compact quantum groups.

Quantum groups correspond to some kind of ‘generalized symmetry’ of physical
systems andmathematical structures. Indeed, the idea of a group acting on a spacewas
extended to the idea of a quantum group ‘co-acting’ on a noncommutative space (that
is, a possibly noncommutative C∗ algebra). The question of defining and finding ‘all
quantum symmetries’ arises naturally in this context. Such an approach was taken
in the pioneering work by Manin [22], though in a purely algebraic framework.
Indeed, Manin’s quantum semigroups such as Mq(2) [21, 22] were constructed as
universal symmetry objects of suitable mathematical entities. It was Shuzhou Wang
who began the study of the formulation of such universal symmetry objects in the
analytic framework of CQG. In [27] he defined and proved the existence of quantum
automorphism groups of finite dimensionalC∗ algebras. Since then,many interesting
examples of such quantum groups, particularly the quantum permutation groups of
finite sets and finite graphs, were extensively studied by a number of mathematicians
(see for example [1–7] and references therein).

The underlying basic principle of defining a quantum automorphism group cor-
responding to some given mathematical structure (for example a finite set, a graph, a
C∗ or von Neumann algebra) consists of two steps: first, to identify (if possible) the
group of automorphism of the structure as a universal object in a suitable category,
and then, try to look for the universal object in a similar but bigger category, replacing
groups by quantum groups of appropriate type.

We will briefly review the basics in the next section covering only those aspects
of the quantum group theory which concern us. For a comprehensive idea about the
vast and rich theory of quantum groups, the reader should consult any of the several
standard textbooks on the subject, some of which are listed in the bibliography.

2 Basic Definitions and Terminologies

We denote by ⊗alg the algebraic tensor product, whereas ⊗ will denote some kind of
topological tensor product to be explained later. In particular, for two Hilbert spaces
H and K, we denote by H ⊗ K the (unique) Hilbert space obtained by completing
their algebraic tensor product.

Definition 2.1 A Hopf algebra Q over a filed F is a vector space over F equipped
with linear mapsm : Q ⊗alg Q → Q,� : Q → Q ⊗alg Q, κ : Q → Q and ε : Q →
F and an element 1 of Q such that
(i) (Q,m) is an associative F-algebra with the unit element 1;
(ii)� is a unital homomorphism satisfying the co-associativity condition (� ⊗ id) ◦
� = (id ⊗ �) ◦ �;
(iii) κ is an anti-homomorphism, ε is a unital homomorphism;
(iv) m ◦ (κ ⊗ id) ◦ � = m ◦ (id ⊗ κ) ◦ � = ε(·)1;
(v) (ε ⊗ id) ◦ � = (id ⊗ ε) ◦ � = id.
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The maps m,�, κ, ε are called the multiplication, co-multiplication (or co-
product), antipode and co-unit respectively. If F = C and the algebra has an involu-
tion ∗ such that� and κ are ∗-homomorphism and κ is invertible with (∗ ◦ κ)2 = id,
we say that Q is a Hopf ∗-algebra.

For a finite groupG, the algebraF(G) of all complex valued functions onG forms
a Hopf ∗ algebra, by taking the point-wise operations as the algebra operations,
involution given by the complex conjugation of functions and taking �, ε, κ as
follows:

�( f )(g, h) = f (gh), κ( f )(g) = f (g−1), ε( f ) = f (e),

where e is the identity of G. Another Hopf algebra, dual to the above in a suitable
sense, is given by the convolution algebraCG. It is same asF(G) as a vector space but
the algebra structure is given by χg · χh = χgh, where χg denotes the characteristic
function of the point g. The co-product sends χg to χg ⊗ χg for every g ∈ G. The
counit ε̂ and the antipode κ̂ are given by, ε̂(χg) = 1, κ̂(χg) = χg−1 for all g.

Definition 2.2 A unital homomorphism α : C → C ⊗alg Q, where C is a unital alge-
bra over F and Q is a Hopf algebra over F , is called a co-action if (id ⊗ �) ◦ α =
(α ⊗ id) ◦ α and (id ⊗ ε) ◦ α = idC . The co-action is called inner faithful if it does
not factor through a proper Hopf subalgebra of Q.

Now, we come to the analytic counterparts of the above concepts.

Definition 2.3 A C∗ algebra is a complex algebraA which is complete (i.e.Banach
space) with respect to some norm ‖ · ‖ defined on it and also has an involution ∗
satisfying ‖xy‖ ≤ ‖x‖‖y‖, ‖x∗‖ = ‖x‖ and ‖x∗x‖ = ‖x‖2.

The celebrated Gelfand’s Theorem states that any commutative C∗ algebra is iso-
morphic withC0(X), i.e. the algebra of continuous functions which vanish at infinity,
for some locally compact Hausdorff space X . This justifies the viewpoint that a gen-
eral (possibly noncommutative)C∗ algebra may be thought of as a ‘noncommutative
space’. Moreover, unital C∗ algebras are the analogues of compact spaces, because a
commutative unital C∗ algebra is (isomorphic with) C(X) for some compact Haus-
dorff space X .

A general (possibly noncommutative)C∗ algebra can be embedded as a closed, ∗-
subalgebra of B(H) for some Hilbert spaceH. GivenAi ⊆ B(Hi ), i = 1, 2, we can
consider their algebraic tensor product as a subalgebra of B(H ⊗ K) and the closure
of this algebraic tensor product w.r.t. the norm inherited from that of B(H ⊗ K) is
called the minimal tensor product and will be denoted by A1 ⊗ A2. It actually does
not depend on the embedding Ai ⊆ B(Hi ). If A1 = C(X), one has A1 ⊗ A2

∼=
C(X,A2), i.e. the algebra of continuous functions from X to A2.

Definition 2.4 A compact quantum group (CQG for short) a la Woronowicz is
a pair (A,�) where A is a unital C∗-algebra, � is a coassociative comultipli-
cation, i.e. a unital C∗-homomorphism from A to A ⊗ A (minimal tensor prod-
uct) satisfying (� ⊗ id) ◦ � = (id ⊗ �) ◦ �, and linear span of each of the sets
{(b ⊗ 1)�(c) : b, c ∈ A} and {(1 ⊗ b)�(c) : b, c ∈ A} is dense in A ⊗ A.
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A CQG which is commutative as a C∗ algebra is isomorphic with C(G) for a com-
pact group G, with �( f )(g, h) = f (gh). Every CQG A contains a unital dense ∗-
subalgebraA0 and maps κ : A0 → A0, ε : A0 → C such thatA0 becomes a Hopf-∗
algebra. This Hopf algebra will be called the Hopf algebra associated to the CQGA.

There is an analogue of the Haar measure, namely a (unique) positive linear func-
tional h, called the Haar state, onA such that h(1) = 1 and (h ⊗ id)(�(a)) = (id ⊗
h)(�(a)) = h(a)1 for all a ∈ A. Moreover, there is an exact analogue of unitary
co-representation and Peter-Weyl theory. A unital ∗-homomorphism π : Q1 → Q2

(where Q1,Q2 are CQG’s with the coproduct �i , i = 1, 2 respectively) is called a
CQG morphism if �2 ◦ π = (π ⊗ π) ◦ �1.

We next define a generalization of group action on spaces.

Definition 2.5 Wesay that aCQG (A,�) (co)-acts on a (unital)C∗-algebraC if there
is a unital ∗-homomorphism α : C → C ⊗ A such that (α ⊗ id) ◦ α = (id ⊗ �) ◦ α,
and the linear span of α(C)(1 ⊗ A) is norm-dense in C ⊗ A.

In Woronowicz theory, it is customary to drop ‘co’, and call the above co-action
simply ‘action’ of the CQG on the C∗ algebra. However, to avoid confusion, let’s
say that A acts on a space X , or, α is an action on X to mean α is a co-action on
C(X) in the sense of the above definition. A co-action α on C is called faithful if the
∗-subalgebra generated by {(ω ⊗ id)(α(b))}, where b ∈ C and ω varying over the set
of bounded linear functionals on C, is dense in A.

3 Quantum Symmetries of Classical Spaces

3.1 Examples of Genuine Quantum Symmetries of Classical
Non-smooth Spaces

It is a natural question to ask: are there genuine symmetries (i.e. not given by a
group action) of a classical space? Mathematically, this can be phrased either purely
algebraically or analytically. For example, one may ask whether there are Hopf
algebras which are not commutative as algebras having inner faithful co-actions
on the coordinate ring of some variety? In the analytical framework, an analogous
question will be: is there a CQGwhich is noncommutative as aC∗ algebra and which
co-acts on C(X) where X is a topological space? In fact, if there are such ‘genuine’
quantum symmetries of classical spaces, onemay hope to understand the space better
in terms of them.

Let us first consider the simplest classical space, namely afinite setwith cardinality
n, say X = {1, 2, ..., n}. Let G = Sn be the group of permutations of X . It can be
identified as the universal object in the category of groups acting on X . For a similar
(bigger) category of compact quantum groups co-acting on C(X), Wang proved in
[27] that this category has a universal (initial) objectS+

n which is the unitalC∗ algebra
generated by n2 elements qi j satisfying
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qi j = q∗
i j = q2

i j ,
∑

i

qi j = 1 =
∑

j

qi j .

The coproduct is given by �(qi j ) = ∑
k qik ⊗ qkj , and the co-action on C(X) is

given by α(χi ) = ∑
j χ j ⊗ q ji .

This CQG is naturally called ‘quantum permutation group’ of n objects. It is gen-
uine quantum group (i.e. noncommutative as C∗ algebra) for n ≥ 4. In other words,
given any CQG Q with co-action β : C(X) → C(X) ⊗ Q, there is a unique CQG
morphism π : S+

n → Q such that β = (id ⊗ π) ◦ α.
One may interpret the above as an abundance of genuine quantum symmetries

for a finite set of cardinality 4 or more, in fact, infinite dimensional spaces of such
symmetries in contrast to the finitelymany classical (permutation) symmetries.Using
this, one can construct a genuine quantum symmetry of any disconnected space with
4 or more homoemorphic components. However, it is not so clear how to construct
genuine quantum symmetries for compact connected spaces and the author of the
present review made a conjecture that a compact connected metric space does not
admit any genuine quantum symmetry. Adapting the above quantum permutation,
Huichi Huang disproved this conjecture by constructing in [16] a faithful co-action
of S+

n on a compact connected topological space obtained by gluing n copies of a
given space (e.g. the circle) at a common point.

On the other hand, there are quite a few interesting examples of inner faithful
co-actions of genuine Hopf algebras on polynomial algebras as well as coordinate
algebras of certain varieties. In [11], Etingof and Walton gave an example of inner
faithful co-action of the finite dimensional genuine Hopf algebra CS3 (the convo-
lution algebra of the group S3) on the coordinate ring of the (non-smooth) variety
{xy = 0}. The co-action (say α) is very easy to describe: on the generators x, y of the
coordinate ring, we define α(x) = x ⊗ χ(12), α(y) = y ⊗ χ(13), where χ(12), χ(13)

denote the elements of the group algebra given corresponding to the transpositions
(12), (13) respectively. Let us also mention that in [26], the authors constructed an
inner faithful co-action of a genuine infinite dimensional (but not associated to any
CQG) Hopf algebra on the polynomial ring of n variables, which is the coordinate
ring of the n-plane.

4 The No-go Results and Open Questions for Quantum
Symmetries on Smooth Spaces

It is certainly very interesting to construct genuine quantum symmeries of smooth,
connected manifolds and varieties. If we look carefully at the examples of connected
spaces with genuine quantum symmetry given in the previous subsection, we see
that in all the examples, either the space is non-smooth in some sense, or the Hopf
algebra is not coming from a CQG. It thus makes sense to ask whether it is possible
to get an example of faithful co-action of a genuine compact quantum group on a
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compact, smooth, connected manifold. An answer to this question turned out to be
much more challenging than it would appear at a first glance.

If a compact group acts smoothly on a compact smooth manifold, one can use an
averaging trick to get a Riemannian structure on the manifold for which the group
action becomes isometric. Thus, the study of smooth action by compact groups on
compact smooth manifolds is equivalent to the study of isometric actions. This moti-
vated the present author and his collaborators to formulate and investigate a notion of
quantum isometry in the context of classical as well asmore general noncommutative
manifolds a la Connes (see [8]). We do not go into the precise formulation of this
theory but refer the reader to [14] and the references therein, some of which are listed
in the bibliography as well. Let us just mention that given a compact Riemannian
manifoldM there is a universal compact quantum group in the category of all CQGQ
with faithful co-action α ofQ on C(M) which commutes with the Hodge Laplacian
on functions in a natural sense. This universal or largest CQG is called the quantum
isometry group for M , denoted by QISO(M). After the initial formulation in [12],
there has been a flurry of computations of the quantum isometry groups of classical
and noncommutative manifolds by several authors. It was rather interesting to notice
that for the connected compact manifolds like the spheres and the tori, the quantum
isometry groups turn out to be C(ISO(M)). That is, there is no genuine quantum
isometry. It led the present author to conjecture that QISO(M) = C(ISO(M)) for
an arbitrary compact connected Riemannian manifolds. In fact, he made an even
stronger conjecture there is no faithful, smooth co-action of a CQG on a compact
smooth connected manifold. Let us explain here that by a smooth co- action, we
mean the following:

Definition 4.1 A co-action α : C(M) → C(M) ⊗ Q, where Q is a CQG and M
is a compact smooth manifold, is called smooth if α(C∞(M)) ⊆ C∞(M,Q) and
the linear span of α(C∞(M))(1 ⊗ Q) is dense in C∞(M,Q) in its natural Frechet
topology coming from the smooth structure of M .

Now, we can precisely state the conjecture:Conjecture I Let a CQGQ have a faithful
smooth co-action on C(M), where M is a compact, smooth, connected manifold.
Then Q must be a commutative as a C∗ algebra, i.e. Q ∼= C(G) for some compact
group G acting smoothly on M .

After a long effort, the isometric case of the above conjecture, i.e.QISO = ISO for
compact connected Riemannian manifolds, was verified in [15] by the present author
and Soumalya Joardar. This involved an intricate mixture of analytic, algebraic and
geometric ideas. There had been a parallel, independent development in a somewhat
similar direction by Etingof and Walton who proved the following:

Theorem 4.2 LetC bea commutative domainandQbeafinite dimensional semisim-
ple (equivalently, co-semisimple) Hopf algebra with an inner faithful co-action on
C. Then Q must be commutative as an algebra.

These results gave a strong indication in favour of an affirmative resolution of
the conjecture. However, Etingof-Walton’s techniques could not be applied to prove
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Conjecture I as their arguments crucially used the semi-simplicity and finite dimen-
sionality of the Hopf algebra. Indeed, a resolution of Conjecture I seemed quite
elusive and an initial announcement of a proof by the present author and two other
collaborators posted on the archive had to be withdrawn due to a flaw. Finally, the
present author could achieve a complete proof of the truth of Conjecture I using
probabilistic tools in a very recent article [13] posted in the archive.

We end with the interesting and important open questions:
Question 1: Can the result of Etingof and Walton be extended to more general class
of possibly infinite dimensional Hopf algebras, e.g. Hopf algebras associated to
compact quantum groups?Question 2: Can one get many more interesting examples
of genuine quantum symmetries by Hopf algebras of non-compact type on smooth
manifolds and algebraic varieties?
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Quasi-isometry and Rigidity

Parameswaran Sankaran

Abstract This is a brief exposition on the quasi-isometric rigidity of irreducible
lattices in Lie groups. The basic notions in coarse geometry are recalled and illus-
trated. It is beyond the scope of these notes to go into the proofs of most of the results
stated here. We shall be content with pointing the reader to standard references for
detailed proofs. These notes are based on my talk in the International Conference
on Mathematics and its Analysis and Applications in Mathematical Modelling held
at Jadavpur University, Kolkata, in December 2017.
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1 Introduction

Let (X, dX ), (Y, dY )bemetric spaces and letλ ≥ 1, ε ≥ 0 be real numbers.A set-map
f : X → Y is called a (λ, ε)-quasi-isometric embedding if the following condition
holds: −ε + λ−1dX (x0, x1) ≤ dY ( f (x0), f (x1)) ≤ λdX (x0, x1) + ε for all x0, x1 ∈
X . If there exists aC ≥ 0 such that each y ∈ Y is at a distance at mostC from the im-
age f (X), we say that f isC-dense. A quasi-isometric embedding which isC-dense
for some C ≥ 0, is called a (λ, ε,C)-quasi-isometric equivalence or, more briefly, a
quasi-isometry.When f : X → Y is a (λ, ε)-quasi-isometric embeddingwith ε = 0,
then f is necessarily continuous. In general, however, f need not be so. When f is
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a (λ, ε,C) quasi-isometry, there exist μ ≥ 1, δ ≥ 0, D and a g : Y → X which is a
(μ, δ, D)-quasi-isometry such that g ◦ f and f ◦ g are a bounded distance away from
idX and idY respectively, that is, ||g ◦ f − idX || := supx∈X dX (g( f (x)), x) < ∞
and || f ◦ g − idY || = supy∈Y dY ( f (g(y)), y) < ∞. We say that f, g are quasi-
inverses of each other and that X,Y are of the same quasi-isometry type; we write
X ∼qi Y . Being of the same quasi-isometry type is an ‘equivalence relation’ on the
class of all metric spaces. A (λ, 0, 0)-quasi-isometry f : (X, dX ) → (Y, dY ) is noth-
ing but a bi-Lipschitz homeomorphism. Quite often, the specific values of λ, ε,C
are not so important and so we usually omit explicit mention of them. As a first
example, Z ↪→ R is a (1, 0, 1/2)-isometry equivalence with (1, 1, 0)-quasi-inverse
R → Z defined as x 	→ 
x�.

On the set of all quasi-isometry self-equivalences of (X, dX ), one has an equiva-
lence relation where f ∼ g if || f − g|| = supx∈X dX ( f (x), g(x)) < ∞ for quasi-
isometries f, g : X → X. The set of equivalence classes form a group QI(X),
called the group of quasi-isometries of (X, dX ), where [ f ] · [g] = [ f ◦ g]. The
group of isometries will be denoted Isom(X). One has a natural homomorphism
Isom(X) → QI(X) defined as f 	→ [ f ]. In general, Isom(X) and QI(X) are not
closely related. For example, QI(Sn) is trivial whereas Isom(Sn) is the orthogonal
group O(n + 1). On the other hand, when X = Z ∪ {3/4} ⊂ R the group Isom(X) is
trivial whereas it can be seenQI(X) ∼= QI(R) contains the group GL(1,R); indeed
QI(R) is a rather large group. See [15].

The notion of quasi-isometry captures the essential features of the large scale
geometry of a metric space, that is, those features which are remain when “viewed
from far away." For example, any two (non-empty) bounded metric spaces are quasi-
isometrically equivalent to each other. Also if B ⊂ X is a bounded subset of X ,
then X is quasi-isometrically equivalent to X \ B. More generally, if Y ⊂ X is a
C-dense subset of X , (i.e., if any x ∈ X is at a distance at most C from a y ∈ Y ) then
X and Y are quasi-isometrically equivalent. Conversely, if the inclusion Y ↪→ X
is a quasi-isometry, then Y is C-dense for some C > 0. Coarse geometry is the
study of properties of metric spaces which remain invariant under quasi-isometric
equivalence. An important problem in coarse geometry is the classification problem,
which asks to classify metric spaces according to their quasi-isometry type. A part of
this problem is to study invariants of quasi-isometry,whichmaybe used to distinguish
quasi-isometry types. Our aim here will be to give a brief exposition of the concept
of quasi-isometric rigidity and to state the results concerning rigidity properties of
lattices in semisimple Lie groups. I omit all the proofs and point the reader to relevant
sources.

1.1 Groups as Geometric Objects

One of main objectives of coarse geometry is the study of (finitely generated) groups
viewed as geometric objects via the word metric—a point of view that resulted in
explosive growthof the subject since the seminalworkofGromov [8].More precisely,
suppose that � is finitely generated group and S ⊂ � a finite generating set. One has
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the word metric defined as d(γ0, γ1) = lS(γ
−1
0 γ1) ∀γ0, γ1 ∈ S; here lS(γ ) denotes

the length of γ as a word in S ∪ S−1, that is, lS(γ ) = k where k ≥ 0 is the smallest
integer for which γ has an expression γ = a1 · · · ak , a j ∈ S ∪ S−1, 1 ≤ j ≤ k, with
lS(1) := 0. It turns out that, changing the generating set S to another finite generating
set S′ leads to another metric dS′ but does not change the quasi-isometry type of
(�, dS). In fact, it is easily seen that dS and dS′ are bi-Lipschitz equivalent, i.e, the
identity map (�, dS) → (�, dS′) is bi-Lipschitz.

Recall that the Cayley graph C = C(�, S) of (�, S) is a graphwhose set of vertices
is � and (γ, γ ′) ∈ � × � is an (oriented) edge whenever γ −1.γ ′ is in S. There is a
natural metric on C in which each edge has length 1 and d(γ, γ ′) = lS(γ −1γ ′). This
metric is invariant under the natural �-action on the left of C. The inclusion � ↪→ C
is 1-dense and hence is a quasi-isometry.

Ametric space (X, dX ) is proper if closed all balls in X of finite radii are compact.
(X, dX ) is a length space if dX (x0, x1) = inf l(σ ) where the infimum is taken over
all (rectifiable) paths σ from x0 to x1 and l(σ ) denotes the length of σ . It is said to be
a geodesic metric space if, for any x0, x1 ∈ X , there is a path σ : [0, l] → X from
x0, to x1 such that dX (σ (t), σ (t ′)) = |t − t ′|,∀t, t ′ ∈ [0, l]. Such a path is called a
geodesic.

Suppose that � acts on a metric space (X, dX ). The action is properly discon-
tinuous if, given any x ∈ X , there exists an open neighbourhood U of x such that
U ∩ γU �= ∅ for at most finitely many elements γ ∈ �. The action is said to be
cocompact if �\X is compact; equivalently, there is a compact set K ⊂ X such that
X = ∪γ∈�γ K .

The following theorem is often referred to as the fundamental theorem of coarse
geometry. It was first proved by V.A. Efremovich in 1953 and by A. Švarc in 1955. It
was later rediscovered by J. Milnor in 1968. It generalizes the above observation that
a finitely generated group � (with word metric dS) is quasi-isometric to its Cayley
graph C(�, S). We refer the reader to [1, Chapter I.8, Prop. 8.19] for a proof.

Theorem 1.1 (Švarc-Milnor Lemma) Suppose that a group� acts properly discon-
tinuously and cocompactly by isometries on a proper length metric space (X, dX ).
Then � is a finitely generated group. If S ⊂ � is any finite generating set and
if x0 ∈ X is arbitrary, then the map γ 	→ γ.x0 is a quasi-isometry (�, dS) →
(X, dX ). �
Example 1.2 (i) Let � be a group generated by a finite set S ⊂ �. If 	 ⊂ � is a
finite index subgroup, then � ∼qi 	. This follows from Theorem 1.1 by restricting
the action of � on C(�, S) to 	. Also if N is a finite subgroup of �, then � ∼qi

�/N =: �̄. To see this, we assume, as we may, that N \ {1} ⊂ S and that no two
distinct elements of S \ N are in the same coset γ N . Then it is readily seen that
lS̄(γ̄ ) ≤ lS(γ ) ≤ lS̄(γ̄ ) + 1where γ̄ denotes γ N ∈ �̄ and S̄ := {s̄ | s ∈ S \ N } ⊂ �̄.
It follows that the canonical quotient map η : (�, dS) → (�̄, dS̄) is a (λ, ε,C)-quasi-
isometry where λ = 1, ε = 1,C = 0. Alternatively one may apply Švarc-Milnor
lemma (Theorem 1.1) to the action of � (via the quotient map � → �̄) on the Cayley
graph C(�̄, S̄) where S̄ is any finite generating set of �̄. Note that the �-action is
proper since N is finite.
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(ii) Two groups �0 and �1 are said to be commensurable if there exists a group
� such that � is isomorphic to a finite index subgroup of �i for i = 0, 1. Since
intersection of two finite index subgroups is again of finite index, commensurability
is an equivalence relation. For example, any free group Fn of rank n ≥ 2 may be
realised as a finite index subgroup of F2. Thus any two non-abelian free groups of
finite rank are commensurable. As another example, let G0 and G1 be finite groups
with o(G0) ≥ 2, o(G1) ≥ 3, then their free product G := G0 ∗ G1 contains a non-
abelian free group F of finite rank such that F has finite index in G. Thus G is
commensurable with F2.

We say that �0 and �1 are weakly commensurable if there exist finite normal sub-
groups Ni ⊂ �i , i = 0, 1, such that �0/N0 and �1/N1 are commensurable. Weak
commensurability is an equivalence relation. This follows from two observations:
(a) the normal subgroup NN ′ ⊂ � is finite whenever N , N ′ are finite normal sub-
groups a group �, and, (b) commensurability is an equivalence relation. From (i), we
see that weakly commensurable groups are quasi-isometrically equivalent (with re-
spect to any word metrics). As an application, recall that PSL(2,Z) = SL(2,Z)/±I
is isomorphic to a free product Z/2Z ∗ Z/3Z. It follows that SL(2) is weakly com-
mensurable with F2 and so SL(2,Z) ∼qi Fn for any n ≥ 2.

(iii) Suppose that Sg is a closed connected oriented surface of genus g. If g ≥ 2,
then one has a finite covering projection Sg → S2. It follows that the fundamental
group �g := π1(Sg) is a finite index subgroup of π1(S2). So �g ∼qi �2 for g ≥ 2. On
the other hand, Sg = H/�g when g ≥ 2 where H is the Poincaré upper half space
and�g acts freely and properly discontinuously via isometries onH. Applying Švarc-
Milnor lemma, we see that�g ∼qi H for≥ 2. In the case of the torus S1 = S

1 × S
1 =

R
2/Z2, and, again by the Švarc-Milnor lemma, �1 ∼qi Z

2 ∼qi R
2.

The group �g, g > 1, is not quasi-isometric to Z
n for any n. The fact that �g

contains a non-abelian free group F implies that the number bk(�g) of elements in
a ball of radius k (with respect to a word metric) grows exponentially in k, whereas
it grows at a polynomial rate in the case of Zn . It is known that the growth rate of
the function k → bk(�) of a finitely generated group (�, dS) is a quasi-isometric
invariant. This proves our assertion. See [1, Chapter I.8] for details.

It has been shown that if� is a finitely generated groupwhich is virtually nilpotent,
then� has polynomial growth. Amajor landmark result, whose proof due to Gromov
[8] greatly influenced the development of geometric group theory, is the converse: A
finitely generated group � is virtually nilpotent if it has polynomial growth.

2 Quasi-isometric Rigidity

When two finitely generated groups are quasi-isometrically equivalent, one would
like to know how closely they are related as algebraic objects. Since weakly com-
mensurable groups are quasi-isometric, one may ask whether it is possible to recover
the group, up toweak commensurability, from its quasi-isomorphism type. This leads
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to the notions of quasi-isometric rigidity. We refer the reader to [1, Chapter I.8] and
[7, §8.6] for detailed discussions on this topic.

There are several variants of rigidity, we consider only two: one version captures
the idea that a rigid group is one with the property that any group quasi-isometric to
it should be weakly commensurable to it. Another version is based on the idea that
a rigid group is one which has a relatively ‘small’ quasi-isometry group.

Definition 2.1 (i) We say that a finitely generated group � with a word metric is
quasi-isometrically rigid. if any finitely generated group quasi-isometric to � is
weakly commensurable to �. (ii) Let G be a class of finitely generated groups which
is closed under weak commensurability. We say that G is quasi-isometrically rigid
if a finitely generated group 	 is quasi-isometric to a � ∈ G, then 	 ∈ G.

Obviously, the trivial group is quasi-isometrically rigid. For a non-trivial example,
Bridson and Gersten [2] have shown that if a group is quasi-isometrically equivalent
Z
n , then it is virtuallyZn; see [13] for amore general result. ThusZn, n ∈ N, is quasi-

isometrically rigid. By applying a theorem of Stallings on the structure of groups
with infinitely many ends, it can be shown that any group quasi-isometric to a finitely
generated (non-abelian) free group is virtually free.

Example 2.2 (i) The class of all finitely presented groups is quasi-isometrically rigid;
see [1, Chapter I.8, Prop. 8.24]. (ii) The class of all finitely generated virtually
nilpotent groups is quasi-isometrically rigid, since, by Gromov’s polynomial growth
theorem, any such group is virtually nilpotent. (iii) If � is rigid, then the class G(�)

of all groups which are weakly commensurable with � is quasi-isometrically rigid.

Let � be a finitely generated group and let A(�) be the set of all isomorphisms
φ : H0 → H1 where H0, H1 are arbitrary finite index subgroups of �. One has an
equivalence relation on A(�) defined as φ ∼ ψ where ψ : H ′

0 → H ′
1 if φ|K = ψ |K

for some finite index subgroup K ⊂ H0 ∩ H1. The equivalence classes are called
virtual automorphisms of � and the set A(�)/∼ is denoted Vaut(�). If � has no
finite index subgroup, then Vaut(�) = Aut(�). When � is residually finite, the
group Vaut(�) is particularly interesting. For example, it is not difficult to show
that Vaut(Zn) ∼= GL(n;Q). Note that any isomorphism φ : H0 → H1 defines an
element of QI(�) leading to a well-defined homomorphism Vaut(�) → QI(�).
In general this homomorphism is not surjective. For example, the linear action of
GL(n,R) onRn yields an embedding of GL(n,R) intoQI(Rn) ∼= QI(Zn)whereas
Vaut(Zn) = GL(n,Q).

Definition 2.3 (i) A finitely generated group � is said to be strongly quasi-
isometrically rigid if the natural homomorphism Vaut(�) → QI(�) is a surjec-
tion. (ii) A metric space X is quasi-isometrically rigid if Isom(X) → QI(X) is an
isomorphism of groups (Sec §3.4 [9]).

The infinite cyclic group is quasi-isometrically rigid but not strongly.
Before proceeding further, we recall some standard notions concerning lattices in

semisimple Lie groups. The reader is referred to [14, 19] for detailed expositions.
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2.1 Lattices in Semisimple Lie Group

Let G be a connected Lie group. One says that G is simple if it has no connected
normal subgroup. G is called semisimple if G is an almost direct product G1 · · ·Gk

where Gi are simple normal subgroups of G. Here almost direct product means
that Gi ∩ G j is a finite normal subgroup of G. When G is semisimple, Gi ∩ G j

is in fact contained in the centre of G. We will assume that G is a connected non-
compact semisimple Lie group and that it has finite centre, denoted Z(G). Let K
be a maximal compact subgroup of G and then X := G/K is connected and admits
a G-invariant Riemannian metric. It is a globally symmetric space of non-compact
type. Our assumption thatG is non-compact implies that X has non-positive sectional
curvature.

The real rank of a linear semisimple Lie group G ⊂ GL(N ) may be defined as
the maximum number d such that G has a diagonalizable subgroup isomorphic to
(R×)d . When G is not linear, (example a non-trivial cover of SL(2,R)) one defines
its real rank to be that ofG/Z(G) (which is always linear). For example, the real rank
of SL(n,R) equals n − 1 whereas the real rank of SO0(p, q) is min p, q . (Recall
that SO0(p, q) is the identity component of all linear transformations ofRp+q which
preserve the quadratic form β(x) = x21 + · · · + x2p − x2p+1 − · · · − x2p+q .)

A discrete subgroup � of G is called a lattice if the homogeneous space �\G
carries aG-invariant measure with respect to which its volume is finite. For example,
it is known that SL(n,Z) ⊂ SL(n,R) is a lattice. A lattice � ⊂ G is uniform if �\G
is compact; otherwise it is nonuniform. One says that a lattice � ⊂ G is reducible
if it contains infinite subgroups �0, �1 which generate a subgroup 	 isomorphic to
an almost direct product �0 · �1 such that 	 has finite index in �. We say that � is
irreducible if it is not reducible. It can be shown that if� is a lattice in a non-compact
semisimple Lie group G with finite centre and finitely many components, then it is
weakly commensurable with a lattice in a connected Lie group with trivial centre.

Let � be an irreducible nonuniform lattice in a connected semisimple Lie group
G. Then the centre Z(�) of � is finite and �/Z(�) is a lattice in G/Z(G). Define the
commensurator of�, Comm(�), to be the group {g ∈ G | � is commensurable with
g�g−1}. It is clear that � ⊂ Comm(�).

If G has trivial centre and no compact factors and if � is an irreducible lattice,
then: either � is non-arithmetic and the group Comm(�) is also a lattice in G, or, �
is an ‘arithmetic lattice’ and Comm(�) is dense in G. This result due to Margulis.
In the latter case, under a further hypothesis (namely that G equals the R-points of a
Q-algebraic group), Comm(�) is the rational points G(Q) of G. Thus, in this case,
the group Comm(�) is a countable dense subgroup of G. See [19] for these results
and for the definition of arithmetic lattices.

Restriction of the conjugation by an element g ∈ Comm(�) to � ∩ g�g−1 yields
a well-defined element of QI(�) since � ∩ g�g−1 ↪→ � is a quasi-isometry. This
leads to a homomorphism Comm(�) → QI(�).

We are ready state the result concerning quasi-isometry group of lattices in
semisimple Lie groups. The final result is the outcome work of several mathemati-
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cians. The beautiful survey article by Farb [5] outlines not only the proofs, but also
the history of the problem including description of the contributions to this problem
of the mathematicians whose work we have merely cited.

Theorem 2.4 (Schwartz [16, 17], Eskin [3], Farb and Schwartz [6]) Suppose that
� is an irreducible nonuniform lattice in a semisimple Lie group G with trivial centre
and without compact factors. If G is not locally isomorphic to SL(2,R), thenQI(�)

is isomorphic to Comm(�).

When G is locally isomorphic to SL(2,R), then any nonuniform lattice � is
virtually free. Thus QI(�) ∼= QI(F2) and the conclusion of the above theorem
fails. Denote by ∂F2 the end space of the Cayley graph C(F2). It is homeomorphic
to the Cantor space. It is known thatQI(F2) is a certain group of homeomorphisms
of the Cantor space known as the group of quasisymmetric homeomorphisms.

When � is uniform, it is quasi-isometric to X = G/K by Švarc-Milnor lemma.
It follows that QI(�) ∼= QI(X). It turns out that when G has real rank at least 2,
Isom(X) → QI(X) is an isomorphism. This is also true when X is a quaternionic
hyperbolic space Sp(n, 1)/K or the Cayley hyperbolic plane F4/K .

Theorem 2.5 (Mostow [12], Tukia [18], Koryani and Reimann [11], Kleiner and
Leeb [10], Eskin and Farb [4], Pansu [13]) Suppose that � is a uniform lattice in
a non-compact simple Lie group G such that either the real rank of G is at least 2
or X = G/K is either a quaternionic hyperbolic the Cayley hyperbolic plane. Then
QI(�) ∼= Isom(X).

We have left out irreducible uniform lattices in the rank 1 groups locally isomor-
phic to SO0(n, 1), n ≥ 3, or to SU(n, 1), n ≥ 2. In these cases, the corresponding
symmetric spaces X are real and complex hyperbolic spaces, denoted Hn and CHn

respectively. Note that if � is any such lattice, then � ∼qi X by the Švarc-Milnor
lemma. Associated to X is its ‘boundary’ ∂X , which is homeomorphic to the sphere
S
n−1 or S2n−1 according as X is the real or complex hyperbolic n-space. It turns out

that any quasi-isometry of X induces a homeomorphismof ∂X leading to a homomor-
phism QI(�) ∼= QI(X) → Homeo(∂X). It is known that this is a monomorphism
and the image is a certain group known as the group of quasi-conformal group of
homeomorphisms of ∂X .

Finally we end this note with the following theorem:

Theorem 2.6 (Quasi-isometric rigidity for irreducible lattices)Let G be a connected
semisimple Lie group with trivial centre and without compact factors and let � be an
irreducible lattice in G. If 	 is any finitely generated group that is quasi-isometric
to �, then there exists a finite normal subgroup F ⊂ 	 such that 	/F is isomorphic
to a lattice �′ in G.
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Existence of Compositional Square-Roots
of Functions

V. Kannan

Abstract If f and g are two functions such that g ◦ g = f , we say that g is a
compositional square root of f . Here we discuss the question as to which maps
admit a square root in this sense.

Keywords Compositional square root · Cycles · Piecewise monotonic maps ·
Piecewise linear maps · Critical point
Summary of Results

For interval maps and real maps, we have the following theorems:

(1) Every increasing map admits a square root.
(2) No decreasing map admits a square root.
(3) A bijection on any set admits a (possibly discontinuous) square root iff, for every

even integer n or infinity, the number of cycles of that length is even or infinity.
(4) A quadratic polynomial ax2 + bx + c admits a square root iff b2 − 4ac ≤ 2b.
(5) A cubic polynomial ax3 + bx2 + cx + d admits a square root iff it is strictly

increasing, which is the case iff b2 ≤ 3ac.
(6) There is a surjective polynomial with exactly n critical points admitting a square

root iff n is an even integer greater than or equal to 4.
(7) Every interval map f can be extended to another map g on a bigger interval such

that g ◦ g = f on the smaller interval.
(8) Every interval map f can be extended to another map g on a bigger interval such

that the extended map does not admit a square root.
(9) Every piecewise linear map from [0, 1] to [0, 1] that interchanges 0 and 1 and

keeps the interior interval invariant, fails to admit a square root.

Of these nine results, (1), (2), (3) and (4) have been proved in [3]. While (3) is a folk
result found easily on online sources, we provide a clearer proof here. The result (4)
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itself is not new as it follows as a special case of the results in [4]. Results (6), (8)
and (9) are new and are proved in Sect. 3 here. While (7) is new, we state it without
proof for the time being.

1 Preliminaries

A compositional square root of a map f : X → X is a map g : X → X such that
g ◦ g = f . In what follows, we sometimes omit the word compositional and call g
simply a square root of f .

An interval map is a continuous self map of I = [0, 1]. Similarly, a real map is a
continuous self map of the real line R. The set of all fixed points of a function f is
denoted by Fix( f ). For interval maps and real maps, this is always a closed subset
of the domain.

If n is a positive integer, f n always denotes the n-fold composite of f with itself
(and not the pointwise product).
An element x ∈ X is called a periodic point of f if there is a positive integer n such
that f n(x) = x .

For a map on I or R, a critical point is a point c in every neighbourhood of which
f fails to be one one.
A piecewisemonotonicmap, abbreviated henceforth as p.m.map, is one forwhich

the domain can be divided into a finite number of subintervals on each of which it is
monotonic. Equivalently, a map is piecewise monotonic iff it has only finitely many
critical points.

Similarly, a piecewise linear map, abbreviated henceforth as p.l. map, is one for
which the domain can be divided into a finite number of subintervals on each of
which it is linear. Obviously all p.l. maps are p.m.

A subset E of the domain is said to be invariant with respect to f if f (E) ⊂ E .
If f is a bijection, the full orbit of x is { f n(x)|n ∈ Z}.

2 Square Roots of Bijections

We first show that this question of the existence of square roots (or for that matter,
of any nth roots) can be completely answered, at least for bijections, if we know the
complete orbit structure of the function.

Theorem 1 Let X be any set and f : X → X any bijection. Then f admits a square
root on X iff the number of full orbits of any given non-odd size is non-odd (i.e., either
even or infinity).

The necessity part remains valid for any function f : X → X:
If the map f admits a square root, then the following numbers cannot be odd, i.e.
are either even or infinity:
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1. for every even integer n, the number of cyclic orbits of that size
2. the number of full orbits that are infinite.

Proof
Necessity: Suppose f admits a compositional square root, that is, say there is a
g : X → X such that g ◦ g = f .

Consider the orbit of a point x ∈ X .

Case I: Suppose the orbit of x is finite, that is, there is n ∈ N such that
x, g(x), g(g(x)), ..., gn(x) = x is an n-cycle.

(i). When n is odd, say 2k + 1, the f -orbit of x becomes

x, f (x) = g2(x), f 2(x) = g4(x), . . . , f k(x) = g2k(x),

f k+1(x) = g2k+2(x) = g(x), f k+2(x) = g3(x), . . . , f n(x) = x

Thus, the f -orbit of x , as a set, is the same as the g-orbit of x .
(ii). If n is even, say 2k, the f -orbit of x is

x, f (x) = g2(x), f 2(x) = g4(x), . . . , f k(x) = g2k(x) = x

and the f -orbit of g(x) is

f k+1(x) = g2k+2(x) = g(x), f k+2(x) = g3(x), . . . , f 2k+1(x) = g(x).

Thus, the g-orbit of x splits into two disjoint f -orbits, namely that of x and g(x).
Coupled with the fact that every f -cycle has to be part of a g-cycle, this proves

that the number of f -cycles of length 2k has to be equal to twice the number of
g-cycles of length k.

Case II: Suppose the orbit of x is infinite.
The f -orbit of x is infinite iff the g-orbit of x is infinite as well.
Also, every infinite g-orbit {gn(x)|n ∈ Z} splits into two f -orbits, namely

{ f n(x)|n ∈ Z} and { f n( f (x))|n ∈ Z}.
This shows that the number of infinite orbits of f has to be even or infinity.
Note that this part of the proof is valid for all functions and do not use the bijectivity

of f .

Sufficiency: Suppose it is true that, for every even integer n or infinity, the number
of cyclic orbits of that size is either even or infinity.

We prove the theorem by constructing a g : X → X such that g ◦ g = f .
Since f is bijective, the full orbits of x , defined by { f n(x)|n ∈ Z}, form a partition

of X . To define g on the whole of X , it suffices to define g on each orbit constituting
this partition. Our construction now proceeds in three steps:

Step I: Whenever there are two full orbits of the same size, say the orbits of x and
y, we can define g such that g takes the orbit of x to the orbit of y and vice versa in
the following manner:
g( f n(x)) = f n(y) and g( f n(y)) = f n+1(x) for all n ∈ Z.
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By thus shuttling between the orbits of x and y, we are able to produce a g, on
the union of these two orbits, such that g ◦ g = f , whenever we have two orbits of
the same size.

The following figure illustrates this for two infinite cycles: (the dotted arrows are
for g)

... f −1(x) x f (x) f 2(x) f 3(x) ...

... f −1(y) y f (y) f 2(y) f 3(y) ...

The following figure illustrates this for two finite cycles: (the dotted arrows are
for g)

x f (x) f 2(x) f 3(x) ..... f q−1(x) f p(x) = x

y f (y) f 2(y) f 3(y) ..... f p−1(y) f p(y) = y

Step II: Let x have a cyclic f -orbit of odd size, say 2n + 1. Then define g by
g2k(x) = f k(x) and g2k+1(x) = f n+k+1(x) for all k ≤ n.

Then, as can be easily verified, g ◦ g = f .
Note that here we crucially make use of the oddness of the size of the orbit to

construct g; had n been even, the two parts of the formula above would have been
inconsistent and g could not have been defined.

The following figure illustrates this when n = 2: (the dotted arrows are for g)

x

f(x)

f 2(x)

f 3(x)f 4(x)
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Step III: If f : X → X is any bijection satisfying the hypothesis of our theorem,
on each odd cycle of f , define g as in Step II. For every even n, the set of all orbits
of size n divides into two equal parts, enabling us to produce a pairing of them. For
each pair of such n-cycles, define g as in Step I.

Thus g has been defined on the whole of X satisfying g ◦ g = f .
Put in another way, let X̃ be the quotient space of X consisting of the f -orbit

decompositions. Our hypothesis ensures that there is a map σ : X̃ → X̃ such that

(1) σ preserves the orbit size.
(2) σ fixes all odd orbits and no even or infinite orbits, i.e., σ(x̃) = x̃ iff x̃ is an orbit

of an x ∈ X of odd size.
(3) σ ◦ σ = Identity on X̃ .

Then σ gives the pairing (x̃, σ (x̃)) among f -orbits of even size. �

A similar result can be proved more generally for injective maps along similar
lines.However, no such characterisation seems to be easily available for non-injective
maps.

3 Its All About the Domain

In this section, we prove the results listed (6), (8) and (9) in the opening section.
We quote an interesting result from a recent Ph.D. thesis [1], also published as

[2]:

Theorem 2 ([1], [2]) Let f be an interval map. Let J be any interval containing
Fix( f ◦ f ). Then all periodic points of f lie in the interval f ( f (J )).

This result has an immediate consequence regarding the matter we have at hand:

Theorem 3 Let f be an interval map such that it has a periodic point outside f (J )

where J is the smallest interval containing Fix( f ). Then f does not admit a square
root.

Proof Let, if possible, g be an interval map such that g ◦ g = f . Then J contains
Fix(g ◦ g), and therefore, by the above theorem, all periodic points of g should lie
in g(g(J )). But f and g have the same set of periodic points as g ◦ g = f . It follows
that all periodic points of f should lie within J , contrary to the hypothesis.

The above theorem can be used to give a lot of examples of interval maps that do
not admit a square root. Here is one:

Example 1 Let f be the piecewise linear map defined by f (0) = 1, f
(
1
3

) = 1
6 ,

f
(
2
3

) = 5
6 and f (1) = 0. (i.e., f is linear on the intervals

[
0, 1

3

]
,
[
1
3 ,

2
3

]
,
[
2
3 , 1

]
).

In fact we actually have
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f (x) =

⎧
⎪⎨

⎪⎩

1 − 5x
2 , 0 ≤ x < 1

3

2x − 1
2 ,

1
3 ≤ x ≤ 2

3
5−5x
2 , 2

3 ≤ x ≤ 1

(1)

The fixed points of this function are 2
7 ,

1
2 ,

5
7 , while it is easily observed that 0 and 1

are periodic points (they form what is called a 2-cycle). Here, the smallest interval
containing all the fixed points is J = [

2
7 ,

5
7

]
, and f (J ) = [

1
6 ,

5
6

]
. The periodic points

0 and 1 are outside f (J ). Therefore, by the above theorem, f does not admit a square
root.

Graph of f

The idea we used can be crystallised in the following more general form:

Corollary 1 No interval map f such that f −1(0) = {1} and f −1(1) = {0} admits
a square root.

A polynomial example can be obtained by translating and scaling x − x3 on
[−√

2,
√
2].

Our next theorem exploits this idea to establish that every interval map can be
extended to a map on a bigger interval such that it does not admit a square root.

Theorem 4 Let c < a < b < d. Then any map from [a, b] to itself can be extended
to a map from [c, d] to itself such that this extension does not admit a square root.

Proof Let f : [a, b] → [a, b] be the given map. Define its extension g on [c, d] as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g(x) = f (x) for all x ∈ [a, b]
g(c) = d

g(d) = c

g is linear on [c, a] and [b, d].
(2)

On the one hand, c and d, being mapped to each other, are periodic points (what is
called a 2-cycle). On the other, because the diagonal line does not meet this graph
outside the inner square [a, b] × [a, b], it is clear that g has no fixed points outside
[a, b]. Also the smallest interval containing Fix(g) is contained in [a, b]. It follows
that g(g(J )) = f (J ) ⊂ [a, b], whereas the periodic points c and d are outside this
interval. Therefore, by our previous theorem, g does not admit a square root. �
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Hence the adage that there are plenty of maps without a square root.
We now present a result in the opposite direction: roughly speaking, every interval

map admits a square root, provided some minimal margin of space for manipulation.

Theorem 5 Let c ≤ a < b < d. Let f : [a, b] → [a, b] be continuous. Then there
is a continuous extension g : [c, d] → [c, d] such that g ◦ g = f on [a, b].
Proof First choose an element r such that b < r < d. Next, choose p and q such that
the map px + q takes [a, b] onto [r, d] (taking a to r and b to d). More specifically,
p = d−r

b−a and q = br−ad
b−a .

Take g to be any map from [c, d] to [c, d] satisfying the following:
g(t) = p f (t) + q, if a ≤ t ≤ b, and
g(t) = t−q

p , if r ≤ t ≤ d.
To be more specific, we can take g to be linear on [b, r ] and constant on [c, a].

We particularly note that

g(r) = r − q

p
= r − br−ad

b−a
d−r
b−a

= a and

g(d) = d − q

p
= d − br−ad

b−a
d−r
b−a

= b

and that the linear map t−q
p is the inverse of the map pt + q. This observation is

crucial to complete the proof as follows:
Here g takes [a, b] to [r, d] and brings back [r, d] to [a, b], and while doing so,

g(t) = p f (t) + q and

g(g(t)) = p f (t) + q − q

p
= f (t)

holds for all t ∈ [a, b]. This g satisfies g ◦ g = f on [a, b] as promised. �
Note that f may not admit a square root without enlarging the domain; think of

any of the examples in the negative results above.
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1 Definition and Preliminaries

Spaces of strongly summable sequences were discussed by Kuttner [12], Maddox
[13] and others. The definitions of statistical convergence and strong p-Cesàro con-
vergence of a sequence of real numbers were introduced in the literature indepen-
dently of one another and followed different lines of development since their first
appearance. It turns out, however, that the two definitions can be simply related to one
another in general and are equivalent for bounded sequences. The idea of statistical
convergence depends on the density of subsets of the set N of natural numbers. The
density of a subset E of N is defined by

δ(E) = lim
n→∞

1

n

n∑

k=1

χE (k) provided the limit exists,

where χE is the characteristic function of E . It is clear that any finite subset ofN has
zero natural density and δ(Ec) = 1 − δ(E).

A sequence x = (xk) is said to be statistically convergent to L if for every ε > 0,

δ({k ∈ N : |xk − L| ≥ ε}) = 0. In this casewewrite xk
stat→ L or S − lim xk = L . The

set of all statistically convergent sequences will be denoted by S. The more general
idea of λ-statistical convergence was introduced byMursaleen in [14]. Subsequently
a lot of interesting investigations have been done by various authors on several related
notions of statistical convergence(see for example [15–20].

The order of statistical convergence of a sequence of numbers was given by Gad-
jiev andOrhan in [21]. Later, in [15] and [16], the notions of statistical convergence of
orderα and λ-statistical convergence of orderαwere introduced and studied, respec-
tively. The notions of λ-statistical convergence and strongly λ-summable function
of order α were introduced and studied by Et et al. ([22]).

Letλ = (λm)be anon-decreasing sequenceof positive numbers tending to∞ such
that λm+1 ≤ λm + 1, λ1 = 1. The collection of such a sequence λ will be denoted
by �.

The generalized de Valée-Pousin mean is defined by

tm (x) = 1

λm

∑

k∈Im
xk,

where Im = [m − λm + 1,m] , for m = 1, 2, . . ..
A sequence x = (xk) is said to be (V,λ)-summable to a number L if tm(x) → L

as m → ∞. If λm = m, then (V,λ)-summability is reduced to Cesàro summability.
Mursaleen defined λ-statistical convergence as follows:
A sequence x = (xk) is said to be λ-statistically convergent or Sλ-convergent to

L if for every ε > 0

limm
1

λm
|{k ∈ Im : |xk − L| ≥ ε}| = 0,
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In this case we write Sλ − limx = L or xk → L(Sλ).
Strongly summable functions are introduced and studied by Borwein [23] . A

nonnegative real-valued Lebesque measurable function x(t) in the interval (1,∞) is
said to be strongly summable to L if

lim
m→∞

1

m

∫ m

1
|x(t) − L|pdt = 0, 1 ≤ p < ∞.

[Wp]will denote the space of real-valued Lebesque measurable function in the inter-
val (1,∞). The space [Wp] is a normed space with the norm

‖x‖ = sup
m≥1

(
1

m

∫ m

1
|x(t)|pdt

) 1
p

.

In this paper, using the notion of (V,λ)-summability and λ -statistical conver-
gence, we introduce and study the concepts of strong (V,λ, p)-summability and
λ-statistical convergence of weight g of real-valued Lebesque measurable functions
x(t) in the interval (1,∞).

Throughout by function x(t) we shall mean a nonnegative real-valued Lebesque
measurable function in the interval (1,∞) and we will consider functions g :
[0,∞) → [0,∞) such that g(xn) → ∞ if xn → ∞. The class of all such functions
will be denoted by G.

2 Main Results

In this section, we give the main results of this paper. Before establishing the main
theorems we have some definitions.

Definition 2.1 Let λ = (λm) ∈ � and g ∈ G. A function x(t) is said to be strongly
(V,λ, p)-summable of weight g (or [Wg

λp]-summable) if there is a number L such
that

lim
m→∞

1

g(λm)

∫ m

m−λm+1
| x(t) − L|pdt = 0, 1 ≤ p < ∞,

where Im = [m − λm + 1,m]. In this case we write [Wg
λp] − lim x(t) = L . The set

of all strongly (V,λ, p)-summable functions of weight g will be denoted by [Wg
λp].

For λm = m for all m ∈ N, we shall write [Wg
p ] instead of [Wg

λp].
Definition 2.2 Let λ = (λm) ∈ � and g ∈ G. A function x(t) is said to be λ-
statistically convergent of weight g(or [Sgλ] -statistical convergence) to a number
L for every ε > 0,

lim
m

1

g(λm)
|{t ∈ Im : |x(t) − L| ≥ ε}| = 0.
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The set of all λ-statistically convergent functions of weight g will be denoted by
[Sgλ]. In this case we write [Sgλ] − lim x(t) = L . For λm = m, for all m ∈ N, we
shall write [Sg] instead of [Sgλ].

The following theorem gives the algebraic characterization of nonnegative real-
valued Lebesque measurable functions.

Theorem 2.3 Let g ∈ G and x(t) and y(t) be nonnegative real-valued Lebesque
measurable functions in the interval (1,∞), then

(1) If [Sgλ] − lim x(t) = L and c ∈ R, then [Sgλ] − lim(cx(t)) = cL
(2) If [Sgλ] − lim x(t) = L1 and [Sgλ] − lim y(t) = L2, then [Sgλ] − lim(x(t) + y)t))

= L1 + L2

Proof (i) For c = 0, the result holds easily. Let c �= 0. Now we write that

1

g(λm)
|{k ∈ Im : |cx(t) − cL| ≥ ε}| = 1

g(λm)

∣∣∣∣

{
k ∈ Im : |x(t) − L| ≥ ε

|c|
}∣∣∣∣

and the result follows.
(ii) The result follows from the fact that

1

g(λm)
|{k ∈ Im : |x(t) + y(t) − (L1 + L2)| ≥ ε}|

≤ 1

g(λm)

∣∣∣{k ∈ Im : |x(t) − L1| ≥ ε

2
}
∣∣∣ + 1

g(λm)

∣∣∣{k ∈ Im : |y(t) − L2| ≥ ε

2
}
∣∣∣ .

�

Theorem 2.4 Let λ = (λm) ∈ � and g1, g2 ∈ G be such that there exist M > 0 and
r ∈ N such that g1(λm )

g2(λm )
≤ M for all m ≥ r . Then [Sg1λ ] ⊂ [Sg2λ ].

Proof Observe that,

1

g2(λm)
|{k ∈ Im : |x(t) − L| ≥ ε}| = g1(λm)

g2(λm)
· 1

g1(λm)
|{k ∈ Im : |x(t) − L| ≥ ε}|

≤ M · 1

g1(λm)
|{k ∈ Im : |x(t) − L| ≥ ε}|

for all m ≥ r. If x(t)) ∈ [
Sg1λ

]
then the right hand side tends to zero for every ε > 0

and consequently
1

g2(λm)
|{k ∈ Im : |x(t) − L| ≥ ε}| = 0

and so x(t) ∈ [
Sg2λ

]
. Therefore

[
Sg1λ

] ⊆ [
Sg2λ

]
. �

We have the following result from theorem 3.4
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Corollary 2.5 Let λ = (λm) ∈ � and x(t) be a nonnegative real-valued Lebesque
measurable function in the interval (1,∞). In particular if g ∈ G be such that there
exist M > 0 and a r ∈ N such that m/g(λm) ≤ M for all m ≥ r then [Sgλ] ⊆ [Sλ].

Theorem 2.6 Let λ = (λm) ∈ � and g ∈ G. [S] ⊆ [Sgλ] if lim inf
m→∞

g(λm)

m
> 0.

Proof For any ε > 0, we have

{k ≤ m : |x(t) − L| ≥ ε} ⊇ {k ∈ Im : |x(t) − L| ≥ ε} .

Hence it follows that for m ∈ N

1

m
|{k ≤ m : |x(t) − L| ≥ ε}| ≥ 1

m
|{k ∈ Im : |x(t) − L| ≥ ε}|

≥ g(λm)

m
· 1

g(λm)
|{k ∈ Im : |x(t) − L| ≥ ε}| .

If x → L(S), then 1
m |{k ≤ m : |x(t) − L| ≥ ε}| → 0 as m → ∞, and so

1

g(λm)
|{k ∈ Im : |x(t) − L| ≥ ε}| → 0

as m → ∞. This gives that x(t) → L
[
Sgλ

]
. �

In view of Theorem 3.4, we state the following result without proof

Theorem 2.7 Let λ = (λm) ∈ �. If g1, g2 ∈ G be such that there exist M > 0 and

a r ∈ N such that g1(λm)/g2(λm) ≤ M for all m ≥ r then
[
V g1

λp

]
⊆

[
V g2

λp

]
.

We have the following result from theorem 3.7.

Corollary 2.8 Let λ = (λm) ∈ � and p be a positive real number, then [Wg1
λp] ⊆

[Wg2
λp].

Theorem 2.9 Let λ = (λm) ∈ � and p be a positive real number. Let g1, g2 ∈ G be
such that there exist M > 0 and a r ∈ N such that g1(λm)/g2(λm) ≤ M for all m ≥ r
and let 0 < p < ∞. If a function x(t) is strongly (V,λ, p) − summable of weight

g1 to L then it is λ− statistically convergent of weight g2 to L i.e
[
V g1

λp

]
⊂ Sg2λ .

Proof Let function (x(t)) ∈
[
V g1

λp

]
and let ε > 0 be given. We observe that

http://dx.doi.org/10.1007/978-981-15-0422-8_3
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∫

k∈Im

|x(t) − L|p dt =
∫

k∈Im
|x(t)−L|≥ε

|x(t) − L|p dt +
∫

k∈Im
|x(t)−L|<ε

|x(t) − L|p dt

≥
∫

k∈Im
|x(t)−L|≥ε

|x(t) − L|p dt

≥ |{k ∈ Im : |x(t) − L| ≥ ε| .εp.

Now, it follows that

1

g1(λm)

∫

k∈Im

|x(t) − L|p ≥ 1

g1(λm)
|{k ∈ Im : |x(t) − L| ≥ ε| .εp

= g2(λm)

g1(λm)
· 1

g2(λm)
|{k ∈ Im : |x(t) − L| ≥ ε| .εp

≥ 1

M
· 1

g2(λm)
|{k ∈ Im : |x(t) − L| ≥ ε| .εp

for all m ≥ r. If x(t) → L(
[
V g1

λp

]
), then the left hand side tends to zero and conse-

quently the right hand side also tends to zero . Hence x(t) → L
[
Sg2λ

]
. �

Corollary 2.10 If g ∈ G be such that there exist M > 0 and a r ∈ N such that
m

g(λm)
≤ M for all m ≥ r and 0 < p < ∞, then

[
V g

λp

]
⊆ Sλ.

Theorem 2.11 Let λ = (λm) and μ = (μm) be two sequences in � such that λm ≤
μm for all m ∈ N, and g1, g2 ∈ G. If

lim
m→∞ inf

g1(λn)

g2(μm)
> 0, (2.1)

then [Sg2μ ] ⊆ [Sg1λ ].
Proof Suppose that λm ≤ μm for all m ∈ N and let (3.1) be satisfied. Then Im ⊂ Jn
and so that ε > 0 we may write

{t ∈ Jm : |x(t) − L| ≥ ε} ⊃ {t ∈ Im : |x(t) − L| ≥ ε}

and so

1

g2(μm)
|{t ∈ Jm : |x(t) − L| ≥ ε}| ≥ g1(λm)

g2(μm)

1

g1(λm)
|{t ∈ Im : |x(t) − L| ≥ ε}|

for allm ∈ N, where Jm = [m − μm + 1,m]. Now, taking the limit as n → ∞ in the
last inequality and using (3.1), we get [Sg2μ ] ⊆ [Sg1λ ]. �
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From Theorem 3.11, we have the following results.

Corollary 2.12 Let λ = (λm) and μ = (μm) be two sequences in � such that λm ≤
μm for all n ∈ N. If (2.1) holds, then

(1) [Sg1μ ] ⊆ [Sg1λ ],
(2) [Sμ] ⊆ [Sg1λ ],
(3) [Sμ] ⊆ [Sλ].
Theorem 2.13 Let λ = (λm) and μ = (μm) be two sequences in � such that λm ≤
μm for all m ∈ N and g1, g2 ∈ G. If (2.1) holds, then [Wg2

μp] ⊆ [Wg1
λp]

Proof The proof of the theorem is straightforward, thus omitted. �

Theorem 2.14 Let λ = (λm) and μ = (μm) be two sequences in � such that λm ≤
μm for all m ∈ N. Let g1, g2 ∈ G and (2.1) holds. If a real-valued function x(t) is
strongly (V,μ, p)-summable of weight g2 to L, then it is λ-statistically convergent
of of weight g1 to L.

Proof Let x(t) be a real-valued function such that x(t) is strongly (V,μ, p)-
summable of weight g2to L and ε > 0. Then we have

∫

t∈Jm

|x(t) − L|pdt =
∫

t∈Jm
|x(t)−L|≥ε

|x(t) − L|pdt +
∫

t∈Jm
|x(t)−L|<ε

|x(t) − L|pdt

≥
∫

t∈Im
|x(t)−L|<ε

|x(t) − L|pdt

≥ |{t ∈ Im : |x(t) − L| ≥ ε}| · εp

and so that

1

g2(μn)

∫

t∈Jm

|x(t) − L|pdt ≥ g1(λm)

g2(μm)

1

g1(λm
|{t ∈ Im : |x(t) − L| ≥ ε}| · εp.

Since (2.1) holds, it follows that if x(t) is strongly (V,μ, p)-summable of weight g2
to L , then it is λ-statistically convergent of weight g1 to L . �

We have the following corollary.

Corollary 2.15 Let λ = (λm) and μ = (μm) be two sequences in � such that λm ≤
μm for all n ∈ N. Let g1, g2 ∈ G. If (2.1) holds, then

(1) A real-valued function x(t) is strongly (V,μ, p)-summable of weight g1 to L,
then it is λ-statistically convergent of weight g1 to L.

(2) A real-valued function x(t) is strongly (V,μ, p)-summable to L, then it is λ-
statistically convergent of weight g1 to L.

(3) A real-valued function x(t) is strongly (V,μ, p)-summable to L , then it is λ-
statistically convergent to L.
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On I-Statistically Order Pre Cauchy
Sequences in Riesz Spaces

Pratulananda Das and Ekrem Savas

Abstract In this paper. we continue to investigate in line of the recent work of
Sencimen and Pehlivan, Das and Savas and consider the notion of I-statistical order
pre Cauchy condition related to a new type of order convergence, namely I-statistical
order convergence in Riesz spaces and establish some of its basic properties. We
mainly investigate their inter-relationship.
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1 Introduction

The concept of Riesz spaces or vector lattices was first introduced by Riesz in [1].
After the significant advancements by Freudenthal [2] and Kantorovich [3] in this
field, several mathematicians have over the years developed the subject. Riesz spaces
occur very naturally during many studies in analysis as also they play important role
in other branches of Mathematics like optimization, problems of Banach spaces,
measure theory and operator theory as also have applications in economics (see [4]).

One of the fundamental concepts in the study of Riesz spaces is “order conver-
gence” from which the idea of order continuity comes. The significance of order
convergence is that it is not generally a “topological concept” per say i.e. it does not
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necessarily correspond to the notion of convergence with respect to a topology. One
can consult the book by Zaanen [5] where a detailed investigation of this matter is
given. Very recently the notion of order convergence has been extended to statistical
order convergence by Sencimen and Pehlivan [6].

Fast [7] and Schoenberg [8] independently introduced the notion of statistical con-
vergence, which is an extension of the idea of usual convergence and consequently
its topological implications were studied first by Fridy [9] and Šalát [10] (also later
by Maddox [11]). Connor [12] established some interesting properties of this con-
vergence. Di Maio and Kočinac [13] investigated the same concept in topological
spaces and statistical Cauchy condition in uniform spaces. Pehlivan and Albayrak
[14, 15] studied statistical convergence of sequences in locally solid Riesz spaces
and more importantly the idea of order statistical convergence was studied in Riesz
spaces by Sencimen and Pehlivan [6] in which we are interested here. One can see
[16, 17] for more recent developments in this direction. Also more investigations
on generalized convergences have been done using filters in related structures like
(l)-groups in [18–21].

In [22] Connor et al. introduced a very interesting Cauchy condition called pre-
statistical Cauchy condition associated with the notion of statistical convergence and
it was observed that statistically convergent sequences of real numbers are always
statistically pre-Cauchy. On the other hand, under certain general conditions, the
converse is also true whose importance lies in the fact that one do not has to guess
the limit of the statistically convergent sequence beforehand.

In [23] the notion of ideals was used to extend the idea of statistical convergence to
I-convergence with many interesting consequences and most importantly it turned
out to be one of the most general type of convergence. More investigations in this
direction and more applications of ideals can be found in [16, 17, 24–31] where
many important references can be found.

Very recently in [27] we used ideals to unify the above two approaches and
introduced the concepts of I-statistical convergence and I-lacunary statistical con-
vergence for sequences of real numbers and investigated their basic properties. Sub-
sequently the notion of I-statistically pre-Cauchy sequences of real numbers have
been investigated in [28].

Finally it should be mentioned that over the years a lot of work has been done to
study these general summability methods in different structures in order to enhance
their applicability. In a step forward in this direction we extended the ideas of order
and monotone convergence in Riesz spaces and introduced the ideas of I-lacunary
statistical order and monotone convergence in a Riesz space and established some
of its properties by using the mathematical tools of the theory of Riesz spaces and
basic properties of order sequences in [17]. As a natural consequence in this paper
we study the notions of I-statistical order convergence and I-statistically order pre-
Cauchy sequences and establish some properties. It should be noted that the methods
of proofs are not exactly analogous to those of [27] or [28] and are more complicated.
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2 Preliminaries

We first recall some basic notions of Riesz spaces from [4] (see also [6]).

Definition 2.1 A real vector space E (with elements x, y, . . .) with a partial order
≤ is called an ordered vector space if E is partially ordered in such a way that the
vector space structure and the order structure are compatible, i.e.

(i) x ≤ y implies x + z ≤ y + z ∀z ∈ E,

(ii) x ≥ θ implies αx ≥ θ ∀α ≥ 0 in R, where θ is the null element with respect to
addition.

If, in addition, E is a lattice with respect to partial ordering, then E is called a
Riesz space or also a vector lattice.

Let E be a Riesz space. For any x ∈ E,wewrite x+ = x ∨ θ, x− = (−x) ∨ θ and
|x | = x ∨ (−x) . If |x | ∧ |y| = θ, then we write x ⊥ y and x, y are called disjoint.

A sequence (xn) in E is said to be increasing if x1 ≤ x2 ≤ . . . and decreasing
if x1 ≥ x2 ≥ . . .. We denote this by xn ↑ and xn ↓ respectively. An increasing or
decreasing sequence is just called monotonic. If xn ↑ and sup xn = x exists in E
then we write xn ↑ x . If xn ↓ and inf xn = x exists in E then we write xn ↓ x .

A sequence (xn) in E is said to converge in order to x if there exists a sequence

pn ↓ θ such that |xn − x | ≤ pn holds ∀n. In this case we write xn
ord→ x . Note that

if xn ↑ x or xn ↓ x then xn
ord→ x . A monotonically decreasing sequence which is

convergent to θ is called an (O)-sequence.
A sequence (xn) in E is said to be order bounded if there exists an order interval

[y, z] such that y ≤ xn ≤ z ∀n ∈ N.

We now recall the following basic facts from [28].
A family I of subsets of a non-empty set X is said to be an ideal if (i) A, B ∈ I

imply A ∪ B ∈ I, (i i) A ∈ I , B ⊂ A imply B ∈ I. I is called nontrivial if I �= {∅}
and X /∈ I. I is admissible if it contains all singletons. If I is a proper nontrivial
ideal then the family of sets F (I) = {M ⊂ X : Mc ∈ I} is a filter on X (where c
stands for the complement). It is called the filter associated with the ideal I.

Throughout the paper I will stand for a proper nontrivial admissible ideal of N.

Definition 2.2 ([23], see also [29]) A sequence (xn) of elements of R is said to be
I-convergent to x ∈ R if for each ε > 0 the set A (ε) = {n ∈ N : |xn − x | ≥ ε} ∈ I.

In this case we write I − lim xn = x .

3 Main Definitions and Results

We first introduce the following definition.

Definition 3.1 A sequence (xn) is said to be I − statistically order convergent to
x0 if there exists an (O)-sequence (σl) such that for any δ > 0
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{n ∈ N : 1
n

∣
∣
{

k ≤ n : |xk − x0| � σl
}∣
∣ ≥ δ} ∈ I

for every l ∈ N. In this case we will write xn
I−stat−ord−→ x0.

Theorem 3.1 In a Riesz space R we have the following,

(i) The I-statistical order limit is unique.
(ii) The I-statistical order limit is linear.
(iii) The Lattice operations ∨ and ∧ are I-statistically order continuous.
(iv) Themappings definedon R by x → x+, x → x− and x → |x |areI-statistically

order continuous.
(v) If (xn) is a sequence in R such that xn → z , I-statistically orderly convergent

and xn ≥ y for a.a.n then x ≥ y.

Proof (i) Let (xn) be a sequence in R such that xn
I−stat−ord−→ x and yn

I−stat−ord−→ y.
Then there are two (O)−sequences (σl) and (ηl) such that for a given δ, 3

4 < δ < 1

{n ∈ N : 1
n

∣
∣
{

k ≤ n : |xk − x | � σl
}∣
∣ ≥ δ} ∈ I

and

{n ∈ N : 1
n

∣
∣
{

k ≤ n : |yk − y| � ηl
}∣
∣ ≥ δ} ∈ I

for any l ∈ N. Fix l ∈ N. Now

{n ∈ N : 1
n

∣
∣
{

k ≤ n : |xk − x | � σl
}∣
∣ < 1 − δ} ∈ F(I)

and

{n ∈ N : 1
n

∣
∣
{

k ≤ n : |yk − y| � ηl
}∣
∣ < 1 − δ} ∈ F(I).

Since F(I) is closed under finite intersection and φ /∈ F(I) so we can choose a
n0 ∈ N for which

1

n0

∣
∣
{

k ≤ n0 : |xk − x | � σl
}∣
∣ < 1 − δ

as well as
1

n0

∣
∣
{

k ≤ n0 : |yk − y| � ηl
}∣
∣ < 1 − δ.

Writing B = {

k ≤ n0 : |xk − x | � σl
}

and C = {

k ≤ n0 : |yk − y| � ηl
}

we
observe that |B ∪ C |

n0
<

1

4
+ 1

4
= 1

2
.
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Hence B ∪ C �= [1, n0] and so we can choose a k ≤ n0 such that k /∈ (B ∪ C).
Consequently,

|xk − x | ≤ σl and |xk − y| ≤ ηl .

Therefore |x − y| ≤ |xk − x | + |yk − y| ≤ σl + ηl . Since this is true for any l ∈ N

and (σl + ηl) is also an (O)-sequence so we must have x = y.

(ii) Let (xn) and (yn) be two sequences in a Riesz space R such that xn
I−stat−ord−→ x

and yn
I−stat−ord−→ y. Then there are two (O)-sequences (σl) and (ηl) such that for

any δ > 0,

{n ∈ N : 1
n

∣
∣
{

k ≤ n : |xk − x | � σl
}∣
∣ ≥ δ} ∈ I

and

{n ∈ N : 1
n

∣
∣
{

k ≤ n : |yk − y| � ηl
}∣
∣ ≥ δ} ∈ I

for any l ∈ N. Since

|(xk + yk) − (x + y)| ≤ |xk − x | + |yk − y|

so
{k ≤ n : |(xk + yk) − (x + y)| � σl + ηl}

⊂ {

k ≤ n : |xk − x | � σl
} ∪ {k ≤ n : |yk − y| � ηl}

which implies that

1

n

∣
∣{k ≤ n : |(xk + yk) − (x + y)| � σl + ηl}

∣
∣

≤ 1

n
| {k ≤ n : |xk − x | � σl

} | + 1

n

∣
∣{k ≤ n : |yk − y| � ηl}

∣
∣ .

Thus for δ1 > 0,

{n ∈ N : 1
n

∣
∣{k ≤ n : |(xk + yk) − (x + y)| � σl + ηl}

∣
∣ ≥ δ1}

⊂ {n ∈ N : 1

n

∣
∣
{

k ≤ n : |xk − x | � σl
}∣
∣ ≥ δ1

2
} ∪ {n ∈ N : 1

n

∣
∣
{

k ≤ n : |yk − y| � ηl
}∣
∣ ≥ δ1

2
} ∈ I.

Since (σl + ηl) is also an (O)−sequence this shows that xn + yn
I−stat−ord−→ x + y.
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(iii) Let xn
I−stat−ord−→ x and yn

I−stat−ord−→ y. we will have to show that xn ∨ yn
(xn ∧ yn)

I−stat−ord−→ x ∨ y (x ∧ y) . The first assertion follows from the same argu-
ments as presented in the proof of (ii) and the relation that for any n ∈ N

{

k ≤ n : |(xk ∨ yk) − (x ∨ y)| � σl + ηl
} ⊂ {

k ≤ n : |xk − x | � σl
} ∪ {

k ≤ n : |yk − y| � ηl
}

.

Similarly we can prove that xn ∧ yn
I−stat−ord−→ (x ∧ y) are omitted. �

Theorem 3.2 Let R be a Riesz space and (xn) , (yn) , (zn) are three sequences in

R such that xn ≤ zn ≤ yn, ∀n ∈ K where K ⊂ N and K ∈ F(I) , xn
I−stat−ord−→ x0

and yn
I−stat−ord−→ x0 then zn

I−stat−ord−→ x0.

Proof From our hypothesis there exist two (O)-sequences (σl) and (ηl) such that
for any δ > 0

{n ∈ N : 1
n

∣
∣
{

k ≤ n : |xk − x0| � σl
}∣
∣ ≥ δ} ∈ I

and

{n ∈ N : 1
n

∣
∣
{

k ≤ n : |yk − y0| � ηl
}∣
∣ ≥ δ} ∈ I.

Since for any k ∈ K , |zk − x0| ≤ |xk − x0| + |yk − x0|, so we get

{k ≤ n : |zk − x0| � σl + ηl } ∩ K ⊂ (
{

k ≤ n : |xk − x0| � σl
} ∪ {k ≤ n : |yk − x0| � ηl }) ∩ K .

Note that for n ∈ N, if we consider only those k which belong to K then we have

1

n

∣
∣{k ≤ n : |zk − x0| � σl + ηl }

∣
∣ ≤ 1

n

∣
∣{k ≤ n : |xk − x0| � σl }

∣
∣ + 1

n

∣
∣{k ≤ n : |yk − x0| � ηl }

∣
∣ .

Therefore

{n ∈ N : 1
n

∣
∣
{

k ≤ n : |zk − x0| � σl + ηl
}∣
∣ ≥ δ}

⊂ {n ∈ N : 1

n

{

k ≤ n : |xk − x0| � σl
} ≥ δ

2
} ∪ {n ∈ N : 1

n

{

k ≤ n : |yk − x0| � ηl
} ≥ δ

2
} ∪ Kc.

Since all the the three sets on the right hand side belong to the ideal I so the set on
the left hand side also belong to I. Finally in view of the fact that (σl + ηl) is also
an (O)-sequence we get the desired result. �

Finally we end the discussion on I-statistical order convergence with the obser-
vation that every I-statistically order convergent sequence must have an order con-
vergent subsequence in the usual sense. As the observation is not at all trivial as in
the statistical case, we present its proof below.

Let (xn) be I-statistically order convergent to x0. Then there is an (O)-sequence
(σl) satisfying the property that for any δ > 0,
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{n ∈ N : 1
n

∣
∣
{

k ≤ n : |xk − x0| � σl
}∣
∣ ≥ δ} ∈ I

for every l ∈ N. Without any loss of generality assume that (σl) is strictly decreasing.
Now

C = {n ∈ N : 1
n

∣
∣
{

k ≤ n : |xk − x0| � σ1
}∣
∣ ≥ 1} ∈ I.

Clearly C �= N (as I is non-trivial). Choose n1 ∈ N\C. Then

1

n1

∣
∣
{

k ≤ n1 : |xk − x0| � σ1
}∣
∣ < 1

i.e.
1

n1
|{k ≤ n1 : |xk − x0| ≤ σ1}| > 0.

Thus there exists a k1 ≤ n1 for which
∣
∣xk1 − x0

∣
∣ ≤ σ1. Again taking δ = 1

2 we have

D = {n ∈ N : 1
n

∣
∣
{

k ≤ n : |xk − x0| � σ2
}∣
∣ ≥ 1

2
} ∈ I.

Since I is admissible so D ∪ {1, 2, . . . , 3n1} ∈ I.Hence we can choose n2 ∈ N such
that n2 /∈ D, n2 > 3n1 and

1

n2

∣
∣
{

k ≤ n2 : |xk − x0| � σ2
}∣
∣ <

1

2

1.e.
1

n2
|{k ≤ n2 : |xk − x0| < σ2}| >

1

2
.

Note that if |xk − x0| ≥ σ2 ∀k, n1 < k ≤ n2 then

1

n2
|{k ≤ n2 : |xk − x0| < σ2}| ≤ n1

n2
<

1

3
.

Consequently there must exist a k2, n1 < k2 < n2 such that
∣
∣xk2 − x0

∣
∣ < σ2. Pro-

ceeding in this way we obtain an increasing sequence of indices {k1 < k2 < k3 < ...}
satisfying

∣
∣xk j − x0

∣
∣ < σ j . Evidently

(

xk j

)

is order convergent to x0.

Definition 3.2 A sequence (xn) is said to be I-statistically order pre-Cauchy if
there exists an (O)-sequence (σl) such that

{n ∈ N : 1

n2
∣
∣
{

( j, k) : ∣
∣xk − x j

∣
∣ � σL , j, k ≤ n

}∣
∣ ≥ δ} ∈ I

for every l ∈ N.



140 P. Das and E. Savas

Theorem 3.3 An I-statistically order convergent sequence is I-statistically order
pre-Cauchy.

Proof Let x = (xk) be I-statistically order convergent to x0. Let δ > 0 be given.
Now there is an (O)-sequence (σl) such that

Cl = {n ∈ N : 1
n

∣
∣
{

k ≤ n : |xk − x0| � σl
}∣
∣ ≥ δ} ∈ I

for every l ∈ N. Note that for any n ∈ Cc
l where c stands for the complement,

1

n

∣
∣
{

k ≤ n : |xk − x0| � σl
}∣
∣ < δ

i.e.
1

n
|{k ≤ n : |xk − x0| ≤ σl}| > 1 − δ.

Now writing Bn = {k ≤ n : |xk − x0| ≤ σl} we see that for j, k ∈ Bn

∣
∣xk − x j

∣
∣ ≤ |xk − x0| + ∣

∣x j − x0
∣
∣ ≤ 2σl .

Therefore
Bn × Bn ⊂ {

( j, k) : ∣
∣x j − xi

∣
∣ ≤ 2σl, j, k ≤ n

}

which implies

[ |Bn|
n

]2

≤ 1

n2
∣
∣
{

( j, k) : ∣
∣xk − x j

∣
∣ ≤ 2σl, j, k ≤ n

}∣
∣ .

Note that (2σl) is also an (O)-sequence and for all n ∈ Cc
l ,

1

n2
∣
∣{( j, k) : ∣

∣xk − x j

∣
∣ ≤ 2σl , j, k ≤ n}∣∣ ≥

[ |Bn|
n

]2

> (1 − δ)2

i.e.
1

n2
∣
∣{( j, k) : ∣

∣xk − x j

∣
∣ � 2σl , j, k ≤ n}∣∣ < 1 − (1 − δ)2.

Let δ1 > 0 be given. Choosing δ > 0 so that 1 − (1 − δ)2 < δ1 we see that ∀n ∈ Cc

1

n2
∣
∣{( j, k) : ∣

∣xk − x j

∣
∣ � 2σl, j, k ≤ n}∣∣ < δ1

and hence

{n ∈ N : 1

n2
∣
∣{( j, k) : ∣

∣xk − x j

∣
∣ � 2σl , j, k ≤ n}∣∣ ≥ δ1} ⊂ Cl .
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Since Cl ∈ I, hence

{n ∈ N : 1

n2
∣
∣{( j, k) : ∣

∣xk − x j

∣
∣ � 2σl , j, k ≤ n}∣∣ ≥ δ1} ∈ I

which shows that (xk) is I-statistically order pre-Cauchy. �

We now present a necessary and sufficient condition for a sequence (xk) to be
I-statistically order pre-Cauchy. We recall the following definition from [28] where
the original references can be seen.

Definition 3.3 LetI be an admissible ideal ofN andLet x = (xn) be a real sequence.
Let

Ax = {a ∈ R : {k : xk < a} /∈ I}

Then the I-Limit inferior of x is given by

I − lim inf x =
{

inf Ax if Ax �= φ

∞, if Ax = φ

It is known (see [28]) that I − lim inf x = α (finite) if and only if for arbitrary ε > 0,

{k : xk < α + ε} /∈ I and {k : xk < α − ε} ∈ I.

Theorem 3.4 Suppose x = (xk) is I-statistically order pre-Cauchy. If x has a sub-
sequence

(

xpk
)

which converges to x0 and

0 < I − lim inf
n

1

n
|{pk ≤ n : k ∈ N}| < ∞

then x is I-statistically order convergent to x0.

Proof Since lim
k
xpk = L , there is an (O)-sequences (σl) such that for every l ∈ N

there is a M ∈ N such that
∣
∣x j − x0

∣
∣ < σl

whenever j > M and j = pk for some k.Let A = {pk : pk > M, k ∈ N} and A(ε) =
{

k : |xk − x0| � σl
}

. Now observe that

1

n2

∣
∣
∣{( j, k) : ∣

∣xk − x j

∣
∣ �

σl

2
, j, k ≤ n}

∣
∣
∣ ≥

1

n2
∑

j,k≤n

χA(ε)×A( j, k) = 1

n
|{pk ≤ n : pk ∈ A}| .1

n

∣
∣{k ≤ n : |xk − x0| � σl}

∣
∣ .
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Since x is I-statistically order pre-Cauchy, for δ > 0,

Cl = {n ∈ N : 1

n2

∣
∣
∣{( j, k) : ∣

∣xk − x j

∣
∣ �

σl

2
, j, k ≤ n}

∣
∣
∣ ≥ δ} ∈ I.

Then for all n ∈ Cc
l ,

1

n2

∣
∣
∣{( j, k) : ∣

∣xk − x j

∣
∣ �

σl

2
, j, k ≤ n}

∣
∣
∣ < δ..........(1)

Again as I − lim inf 1
n

n

|{pk ≤ n : k ∈ N}| = b (say) > 0, hence

{

n ∈ N : 1
n

|{pk ≤ n : k ∈ N}| <
b

2

}

= D(say) ∈ I.

Consequently for n ∈ Dc,

1

n
|{pk ≤ n : k ∈ N}| ≥ b

2
..........(2)

Now from (1) and (2) we have for all n ∈ Cc
l ∩ Dc = (Cl ∪ D)c,

1

n

∣
∣{k ≤ n : |xk − x0| � σl

∣
∣ <

2δ

b
.

Let δ1 > 0 be given. Then choosing δ > 0 such that 2δ
b < δ1 we see that ∀n ∈

(Cl ∪ D)c ,
1

n

∣
∣{k ≤ n : |xk − x0| � σl

∣
∣ < δ1

i.e.

{

n ∈ N : 1
n

∣
∣
{

k ≤ n : |xk − x0| � σl
}∣
∣ ≥ δ1

}

⊂ (Cl ∪ D) .

Since Cl, D ∈ I, so (Cl ∪ D) ∈ I and therefore the set on the left hand side also
belongs to I. This shows that x is I-statistically order convergent to x0. �

Next we observe an interesting property of I − statistically order pre-Cauchy
sequences in a Riesz space under certain conditions, in Line of Lemma 2.4 [28].

Theorem 3.5 Let R be a Riesz space which is totally ordered with respect to the
partial order “≤” Let x = (xk) be a sequence and let y1, y2 ∈ R be such that y1 <

y2 and xk /∈ (y1, y2) ∀k ∈ N. Write A = {k : xk ≤ y1} and B = {k : xk ≤ y2} and
further assume that

lim sup Dn(A) − lim inf Dn(A) < v

for same 0 ≤ v ≤ 1. Then if x is I-statistically order pre-Cauchy then either
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I − lim
n
Dn(A) = 0 or I − lim

n
Dn(B) = 0

where as usual Dn(A) = 1
n |{k ≤ n : k ∈ A}| .

Proof Clearly B = N\A and hence Dn(B) = 1 − Dn(A) ∀n ∈ N. We will have to
show that I − lim

n
Dn(A) = 0 or 1. Note that

A × B ⊂ {( j, k) : ∣
∣xk − x j

∣
∣ � y2 − y1}.

Since x is I-statistically order pre-Cauchy so there is an (O)−sequence (σl) such
that

I − lim
n

1

n2
∣
∣{( j, k) : ∣

∣xk − x j

∣
∣ � σl, j, k ≤ n}∣∣ = 0

for every l ∈ N. Since σl ↓ θ, y2 − y1 > θ , so choose l ∈ N such that σl < y2 − y1.
Then

1

n2
∣
∣{( j, k) : ∣

∣xk − x j
∣
∣ � y2 − y1, j, k ≤ n}∣∣ ≤ 1

n2
∣
∣{( j, k) : ∣

∣xk − x j
∣
∣ � σl , j, k ≤ n}∣∣

∀n ∈ N and so we get

0 = I − lim
n

1

n2
∣
∣{( j, k) : ∣

∣xk − x j

∣
∣ � y2 − y1, j, k ≤ n}∣∣

= I − lim
n
Dn(A) [Dn(N\A)]

= I − Lim
n

Dn(A) [1 − Dn(A) ] .

Now proceeding as in Theorem 2.4 [28] we can obtain the desired result. �
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13. Di Maio, G., Kočinac, L.D.R.: Statistical convergence in topology. Topology Appl. 156, 28–45

(2008)
14. Albayrak, H., Pehlivan, S.: Statistical convergence and statistical continuity on locally solid

Riesz spaces. Topology Appl. 159, 1887–1893 (2012)
15. Albayrak, H., Pehlivan, S.: Erratum to “Statistical convergence and statistical continuity on

locally solid Riesz spaces”. Topology Appl. 160(3), 443–444 (2013)
16. Das, P., Savas, E.: On Iλ-statistical convergence in locally solid Riesz spaces. Math. Slovaca
17. Das, P., Savas, E.: On I-lacunary statistical order convergence in Riesz spaces. An. Stiint. Univ.

Al. I. Cuza Iasi Math
18. Boccuto, A., Dimitriou, X., Papanastassiou, N.: Brooks-Jewett-type theorems for the pointwise

ideal convergence ofmeasureswith values in (l)-groups. TatraMt.Math. Publ.49, 17–26 (2011)
19. Boccuto, A., Dimitriou, X., Papanastassiou, N.: Some versions of limit and Dieudonne-type

theorems with respect to filter convergence for (l)-group-valued measures. Cent. Eur. J. Math.
9(6), 1298–1311 (2011)

20. Boccuto, A., Dimitriou, X., Papanastassiou, N.: Basic matrix theorems for I-convergence in
(l)-groups. Math. Slovaca. 62(5), 885–908 (2012)

21. Boccuto, A., Dimitriou, X., Papanastassiou, N.: Schur lemma and limit theorems in lattice
groups with respect to filters. Math. Slovaca. 62(6), 1145–1166 (2012)

22. Connor, J., Fridy, J.A., Kline, J.: Statistically pre-Cauchy sequences. Analysis. 14, 311–317
(1994)
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On Ball Dentable Property in Banach
Spaces

Sudeshna Basu

Abstract In this work, we introduce the notion of Ball dentable property in Banach
spaces. We study certain stability results for the w∗-Ball dentable property leading
to a discussion on Ball rentability in the context of ideals of Banach spaces. We
prove that the w∗-Ball-dentable property can be lifted from an M-ideal to the whole
Banach Space. We also prove similar results for strict ideals of a Banach space. We
note that the space C(K , X)∗ has w∗-Ball dentable property when K is dispersed
and X∗ has the w∗-Ball dentable property.

Keywords Slices · M-Ideals · Strict ideals
Classifications 46B20 · 46B28

1 Introduction

Let X be a realBanach space and X∗ its dual.Wewill denote by BX , SX and BX (x, r)
the closed unit ball, the unit sphere and the closed ball of radius r > 0 and center x .
We refer to the monograph [3] for notions of convexity theory that we will be using
here.

Definition 1 (i) We say A ⊆ BX∗ is a norming set for X if ‖x‖ = sup{|x∗(x)| :
x∗ ∈ A}, for all x ∈ X . A closed subspace F ⊆ X∗ is a norming subspace if
BF is a norming set for X .

(ii) Let f ∈ X∗, α > 0 and C ⊆ X . Then the set S(C, f, α) = {x ∈ C : f (x) >

sup f (C) − α} is called the open slice determined by f and α. We assume
without loss of generality that ‖ f ‖ = 1. One can analogously define w∗ slices
in X∗.
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(iii) A point x �= 0 in a convex set K ⊆ X is called a denting point point of K , if
for every ε > 0, there exist slices S of K , such that x ∈ S and diam(S) < ε.

One can analogously define w∗-denting point in X∗.

The following result will be useful in our discussion.

Proposition 1.1 [7] Suppose x ∈ BX . Then x is denting point if and only if x is a
PC (point of continuity, i.e. points for which the identity mapping on the unit ball,
from weak topology to norm topology is continuous.) and an extreme point of BX .

Remark 2 The above result is also true for w∗-denting points.

Definition 3 A Banach Space is said to have Ball-Dentable property (BDP) if the
unit ball has slices of arbitrarily small diameter. Analogously we can define w∗-Ball
dentability in a dual space.

Remark 4 Clearly Radon Nikodym Property (RNP) implies BDP. (see [3].)

In this short note, we study certain stability results for w∗−BDP leading to a
discussion on BDP in the context of ideals of Banach spaces, see [4, 10]. We use
various techniques from the geometric theory of Banach spaces to achieve this. The
spaces that we will be considering have been well studied in the literature. A large
class of function spaces like the Bloch spaces, Lorentz and Orlicz spaces, spaces
of vector-valued functions and spaces of compact operators are examples of the
spaces we will be considering, for details, see [5]. We provide some descriptions
of w∗-denting points in Banach spaces in different contexts. We need the following
definition.

Definition 5 Let X be a Banach space.

(i) A linear projection P on X is called an M-projection if
‖x‖ = max{‖Px‖, ‖x − Px‖}, for all x ∈ X .
A linear projection P on X is called an L-projection if
‖x‖ = ‖Px‖ + ‖x − Px‖ for all x ∈ X . A linear projection P on X is called
an L p-projection(1 < p < ∞) if
‖x‖p = ‖Px‖p + ‖x − Px‖p for all x ∈ X .

(ii) A subspace M ⊆ X is called an M-summand if it is the range of an M-
projection. A subspace M ⊆ X is called an L-summand if it is the range of an
L-projection. A subspace M ⊆ X is called an L p-summand if it is the range
of an L p-projection.

(iii) A closed subspace M ⊆ X is called an M-ideal if M⊥ is the kernel of an
L-projection in X∗.

We recall from Chap. I of [5] that when M ⊂ X is an M-ideal, elements of M∗
have unique norm-preserving extension to X∗ and one has the identification, X∗ =
M∗ ⊕1 M⊥. Several examples from among function spaces and spaces of operators
that satisfy these geometric properties can be found in the monograph [5], see also
[8]. First, we prove for an M- ideal M ⊂ X , any w∗-denting point of BM∗ , is also a
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w∗-denting point of BX∗ . We prove similar results for a strict ideal Y ⊂ X (see Sect. 2
for the definition) i.e., we prove that a w∗-denting point of a strict ideal continues to
be so in the bigger space. We also prove corresponding results for the Ball dentable
property. The techniques used in the proofs are adapted from [2].

2 Stability Results

We will use the standard notation of ⊕1,⊕p, and ⊕∞ to denote the �1�p, and �∞-
direct sum of two or more Banach spaces. Let M ⊆ X be an M-ideal. It follows from
the results in Chap. I in [5] that any x∗ ∈ X∗, if ‖m∗‖ = ‖x∗|M‖ = ‖x∗‖, then x∗ is
the unique norm preserving extension of m∗. For notational convenience we denote
both the functionals by m∗. Clearly any M-ideal is also an ideal.

Proposition 2.1 Let Z = X ⊕1 Y. Let x0 be a denting point of BX . Then x0 is a
denting point of BZ .

Proof Let {zn} be a sequence in BZ such that zn −→ x0, weakly. If P denotes the
projection mapping to X , it follows that P(zn) −→ x0. Since x0 is a denting poing
of BX , it follows from Proposition 1.1, that x0 is a PC. So P(zn) −→ x0 in norm.
Since x0 is denting, it is an extreme point as well, so ‖x0‖ = 1, and it follows
that limP(xn) = 1 and lim(xn) = 1.This implies limn ‖zn − P(zn)‖ = 0.Therefore
‖zn − x0‖ ≤ ‖zn − P(zn)‖ + ‖zn − x0‖ −→ 0. Thus x0 is a point of continuity of
BZ Also, since x0 is an extreme point of BX , it is a an extreme point of BZ . Again
using Proposition1.1 we have, x0 is a denting point of BZ . �

Remark 6 Similar conclusion follow for w∗-denting points also.

The following corollary is immediate.

Corollary 2.2 Suppose M ⊆ X is an M-ideal. If m∗ ∈ BM∗ is a w∗-denting point
of BM∗ , then m∗ ∈ BX∗ is a w∗-denting point of BX∗ .

In the case of an M-ideal M ⊂ X , the following is true.

Proposition 7 Let M ⊆ X be an M-ideal, then if M∗ has the w∗-BDP then X∗ has
the w∗-BDP.

Proof Suppose M∗ has the w∗-BDP, then for any for any ε > 0 there exists slices
SM and SM = {m∗ ∈ BM∗/m∗(m0) > 1 − α} and (diaSM) < ε. Since M is an M-
ideal, for any x∗ ∈ X∗ we have the unique decomposition, x∗ = m∗ + m⊥, where
m∗ ∈ M∗ and m⊥ ∈ M⊥. Suppose we have 0 < μ < α. Then

SX = {x∗ ∈ BX∗/x∗(m0) > 1 − μ}
= {x∗ ∈ BX∗/m∗(m0) + m⊥(m0) > 1 − μ}
⊆ SM × μBM⊥
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Choose β = min(μ, ε). Then

S′
X = {x∗ ∈ BX∗/x∗(m0) > 1 − β} ⊆ SX × βBM⊥

Thus dia(S′
X ) ≤ dia(SM) + 2ε < ε + 2ε = 3ε.

Also, since ‖m0‖ = 1, there exists m∗
0 ∈ BM∗ such that m∗

0(m0) > 1 − β. Hence
m∗

0 ∈ S′
X . �

Arguing similarly it follows that

Corollary 8 Suppose X = ⊕p Xi , 1 ≤ p ≤ ∞. If X∗
i has the w∗-BDP for some i,

then X∗ has the w∗-BDP.

The above arguments extend easily to vector-valued continuous functions. We
recall that for a compactHausdorff space K ,C(K , X)denotes the space of continuous
X -valued functions on K , equipped with the supremum norm. We recall from [6]
that dispersed compact Hausdorff spaces have isolated points.

Corollary 9 Suppose K is a compact Hausdorff space with an isolated point. If X∗
has the w∗-BDP, then C(K , X)∗ has the w∗-BDP.

Proof Suppose X∗ has the w∗-BDP. For an isolated point k0 ∈ K , the map F →
χk0F is a M-projection in C(K , X) whose range is isometric to X . Hence we see
that C(K , X)∗ has the w∗-BDP. �

Definition 10 We recall that an ideal Y is said to be a strict ideal if for a projection
P : X∗ → X∗ with ‖P‖ = 1, ker(P) = Y⊥, one also has BP(X∗) isw∗-dense in BX∗

or in other words BP(X∗) is a norming set for X.

In the case of an ideal also one has that Y ∗ embeds (though there may not be
uniqueness of norm-preserving extensions) as P(X∗). Thus we continue to write
X∗ = Y ∗ ⊕ Y⊥. In what follows we use a result from [9], that identifies strict ideals
as those for which Y ⊂ X ⊂ Y ∗∗ under the canonical embedding of Y in Y ∗∗.

Proposition 11 Suppose Y is a strict ideal of X. If y∗ ∈ BY ∗ is a w∗-denting point
of BY ∗ , then y∗ is a w∗-denting point of BX∗ .

Proof Since y∗ ∈ BY ∗ is a w∗-denting point of BY ∗, for any ε > 0 there exists w∗
slices S and S = {y∗ ∈ BY ∗/y∗(y0) > 1 − α} and dia(S) < ε. Since Y is a strict

ideal in X , we have BX∗ = BY ∗
w∗
, hence we have the following

S′ = {x∗ ∈ BX∗/x∗(x0) > 1 − α}
= {x∗ ∈ BY ∗

w∗
/x∗(x0) > 1 − α}

=⇒ dia(S′) = dia(S) < ε

Hence y∗ is a w∗-denting point of BX∗ . �
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Arguing similarly it follows that:

Proposition 12 Suppose Y is a strict ideal of X. If Y ∗ has w∗-BDP then X∗ has
w∗-BDP.

Remark 13 Aprime example of a strict ideal is a Banach space X under its canonical
embedding in X∗∗. It is known that any w∗-denting point of BX∗∗ is a point of X .
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Some Observations Concerning
Polynomial Convexity

Sushil Gorai

Abstract In this paper we discuss a couple of observations related to polynomial
convexity. More precisely,

(i) We observe that the union of finitely many disjoint closed balls with centres in⋃
θ∈[0,π/2] eiθV is polynomially convex, where V is a Lagrangian subspace of

C
n .

(ii) We show that any compact subset K of {(z, w) ∈ C
2 : q(w) = p(z)}, where p

and q are two non-constant holomorphic polynomials in one variable, is poly-
nomially convex and P(K ) = C(K ).

Keywords Polynomial convexity · Closed ball · Totally real · Lagrangians
2010 Mathematics Subject Classification Primary: 32E20

1 Introduction

For a compact set K ⊂ C
n the polynomially convex hull is defined by

K̂ :=
{

z ∈ C
n : |p(z)| ≤ sup

K
|p|, p ∈ C[z1, . . . , zn]

}

.

K is said to be polynomially convex if K̂ = K . Similarly, we define rationally convex
hull of a compact set K ⊂ C

n as
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K̂R :=
{

z ∈ C
n : | f (z)| ≤ sup

K
| f |, f is a rational function

}

.

K is said to be rationally convex if K̂R = K . We note that K ⊂ K̂R ⊂ K̂ . Any
compact convex subset of C

n , n ≥ 1, is polynomially convex. Thanks to Runge’s
approximation theorem, any compact subset of C is rationally convex. A compact
subset K ⊂ C is polynomially convex if and only if C\K is connected. Hence, in
C, polynomial convexity becomes a purely topological property on the compact
set; of course, the reason is the very deep interconnections between topology and
complex analysis in one variable. InC

n , n ≥ 2, it is not a topological property. In fact,
there exist two compact subsets in C

2, which are homeomorphic, but one of them
is polynomially convex and the other is not. For instance, consider the unit circle
placed in R

2 ⊂ C
2 and in C × {0} ⊂ C

2. The first circle is polynomially convex
while the later is not. Polynomial convexity is very closely related with polynomial
approximation. Below we mention a theorem that exhibit such a connection (see
Stout’s book [13] for more on these).

Theorem 1.1 (Oka-Weil) Let K ⊂ C
n be a compact polynomially convex. Then any

function that is holomorphic in a neighborhood of K can be approximated uniformly
on K by polynomials in z1, . . . , zn.

Although the questions of polynomial convexity appear naturally in connections with
questions in function theory, it is, however, very difficult to determinewhether a given
compact in C

n , n ≥ 2, is polynomially convex. For instance, no characterization of a
finite union of pairwise disjoint polynomially convex sets is known. Characterization
is not known even for convex compact sets. The union of two disjoint compact
convex sets is polynomially convex, thanks to Hahn-Banach separation theorem. The
union of three disjoint compact convex set is not necessarily polynomially convex
(see Kallin [7]). This leads researchers to focus on certain families of compacts
having with some geometrical properties in C

n to study the question of polynomial
convexity. In these paperwepresent two families of compactswhich are polynomially
convex. The first one is finite union of disjoint closed balls with centres lying in
some particular region in C

n . Let us now make brief survey about works done about
polynomial and rational convexity for finite union of pairwise disjoint closed balls.
In the same paper Kallin [7] showed that the union of three disjoint closed balls is
polynomially convex. It is an open problem whether the union of four disjoint closed
balls in C

n , n ≥ 2, is polynomially convex. The most general result in this direction
is given by Khudaiberganov [8].

Result 1.2 (Khudaiberganov) The union of any finite number of disjoint balls in C
n

with centres lying in R
n ⊂ C

n is polynomially convex.

The question of rational convexity of the union of finitely many disjoint closed
balls inC

n is studied by Nemirovskiı̆ [10]. He proved that any finite union of disjoint
closed balls is rationally convex using a result of Duval-Sibony [2].



Some Observations Concerning Polynomial Convexity 153

In this note we report an interesting (at least to the author) observation proceeding
along the similar argument as Khudaiberganov [8] (see also the observation we
need to recall few basic notions in symplectic geometry. We consider (Cn,ω0) as a
symplectic manifold with the standard symplectic form

ω0 =
n∑

j=1

dx j ∧ dy j .

A linear subspace V of C
n is said to be a Lagrangian subspace of C

n if V = {u ∈
C

n : ω0(u, v) = 0 ∀v ∈ V }. For a Lagrangian subspace V , it follows that for every
θ ∈ R, eiθV := {eiθv ∈ C

n : v ∈ V } is also a Lagrangian subspace.

Remark 1.3 We note that if a subspace V of C
n is Lagrangian, then the image under

a unitary transformation is also a Lagrangian subspace. Also there exists a unitary
T : C

n → C
n such that

T (V ) = R
n ⊂ C

n.

By Result 1.2 we know that the union of finitely many disjoint closed balls are
polynomially convex if the centres lie in a Lagrangian subspace of C

n .

Our first observation is:

Theorem 1.4 Let V be a Lagrangian subspace of C
n. The union of finitely many

disjoint closed balls is polynomially convex if their centres lie in
⋃

θ∈[0,π/2] eiθV .

We now fix some notations: B(a; r) denotes the open ball in C
n centred at

a = (a1, . . . , an) and with radius r , i.e., B(a; r) = {z ∈ C
n : |z1 − a1|2 + · · · +

|zn − an|2 < r2} and B denotes the open unit ball. Open unit disc in C is denoted
by D. For a compact K ⊂ C

n , let C(K ) denotes the algebra of all continuous func-
tion and P(K ) denotes the closed subalgebra of C(K ) generated by polynomials in
z1, . . . , zn .

The other class of compact subsets that we consider in this note are subsets lying

in certain real analytic variety inC
2 of the form

{
(z, w) ∈ C

2 : q(w) = p(z)
}
, where

p and q are two non-constant holomorphic polynomials in one variable. Our next
observation is:

Theorem 1.5 Any compact subset K of S := {(z, w) ∈ C
2 : q(w) = p(z)}, where p

and q are two non-constant holomorphic polynomial in one variable, is polynomially
convex and P(K ) = C(K ).

If one of p and q is constant a compact patch K =
{
(z, w) ∈ C

2 : q(w) = p(z)
}

∩
B(a; r) is polynomially convex but P(K ) 
= C(K ).
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2 Technical Preliminaries

In this section we mention some results from the literature that will be useful in the
proof. The first one is a lemma due to Kallin [6] (see [1] for a survey on the use of
Kallin’s lemma)

Lemma 2.1 (Kallin) Let K1 and K2 be two compact polynomially convex subsets
in C

n. Suppose further that there exists a holomorphic polynomial P satisfying the
following conditions:

(i) P̂(K1) ∩ P̂(K2) ⊂ {0}; and
(i i) P−1{0} ∩ (K1 ∪ K2) is polynomially convex.

Then K1 ∪ K2 is polynomially convex.

Next, we mention a basic but nontrivial result from Hörmander’s book [5].

Result 2.2 ([5], Theorem 4.3.4) Let K be a compact subset of a pseudoconvex
domain � in C

n . Then K̂� = K̂ P
� , where K̂� = {

z ∈ � : | f (z)| ≤ supw∈K | f (w)|
∀ f ∈ O(�)} and K̂ P

� = {
z ∈ � : u(z) ≤ supw∈K u(w) ∀u ∈ psh(�)

}
.

We note that, when � = C
n , Result 2.2 gives us that the polynomially convex

hull K̂ is equal to the plurisubharmonically convex hull K̂ P . It plays a vital role
in our proof of Theorem 1.5. The main idea behind our proof of approximation
part of Theorem 1.5 is to look at the points where the set S is totally real. A real
submanifold M of C

n is said to be totally real at p ∈ M if TpM ∩ iTpM = {0},
where TpM denotes the tangent space of M at p viewed as a subspace in C

n . A real
submanifold M is said to be totally real if it is totally real at every point p ∈ M .
Following result from [3] gives a characterization of a level set of certain map from
C

n to R
n to be totally real.

Result 2.3 ([3], Lemma 2.5) Let ρ1, . . . , ρn be real valued functions so that ρ :=
(ρ1, . . . , ρn) : C

n → R
n is a submersion. The level set S := {z ∈ C

n : ρ(z) = 0} is
totally real at a point p ∈ S if and only if det Ap 
= 0, where

Ap =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂ρ1

∂z1
(p) . . .

∂ρ1

∂zn
(p)

∂ρ2

∂z1
(p) . . .

∂ρ2

∂zn
(p)

...
∂ρn

∂z1
(p) . . .

∂ρn

∂zn
(p)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

It is well-known that any totally-real submanifold in C
n is locally polynomially con-

vex at every point (see [4, 14]) i.e., for each p ∈ M there exists a ball B(p; r) such
that M ∩ B(p; r) is polynomially convex. We now mention the following approxi-
mation result due to O’Farrell, Preskenis and Walsh [11] for compact sets that are
locally contained in totally-real submanifolds of C

n .
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Result 2.4 (O’Farrell-Preskenis-Walsh) Let K ⊂ C
n be a compact polynomially

convex subset ofCn and E ⊂ K be such that K \ E is locally contained in totally-real
submanifolds of C

n . Then

P(K ) = { f ∈ C(K ) : f |E ∈ P(E)} .

Next, we mention another approximation result that will be useful in our proof of
Theorem 1.5.

Result 2.5 ([3], Lemma 2.3) Let K be a compact subset of C
n such that P(K ) =

C(K ). Then any closed subset L of K is polynomially convex and P(L) = C(L).

3 Union of Balls

Our aim in this section is to prove Theorem 1.4. Before going into the proof we
state and prove a lemma about the image of a ball centred at R

n ⊂ C
n under the

polynomial p(z1, . . . , zn) = ∑n
j=1 z

2
j . This will play a very crucial role in our proof

of Theorem 1.4.

Lemma 3.1 Let a ∈ R
n and 0 ≤ r ≤ 1 be such that |a| − r > 1. Then the image

of the closed ball B(a, r) under the polynomial p(z1, . . . , zn) = ∑n
j=1 z

2
j lies in the

affine half-space {w ∈ C : �ew > 1}.
Proof Let z ∈ B(a, r), where a ∈ R

n . Writing z = x + iy, x, y ∈ R
n , we get that

|x − a|2 + |y|2 ≤ r2. (3.1)

For all z ∈ B(a, r) we obtain that

�ep(z) = |x |2 − |y|2
≥ |x |2 − r2 + |x − a|2 (using Eq. (3.1))

= |x |2 − r2 + |x |2 − 2〈x, a〉 + |a|2
≥ 2|x |2 − 2|x ||a| + |a|2 − r2.

We now consider the function ϕ(t) = 2t2 − 2t |a| + |a|2 − r2. The function ϕ(t)

has a minimum at t = |a|
2

and is increasing for t >
|a|
2
. Since, by assumption,

|a| − r > 1 and 0 ≤ r ≤ 1, we get that r < |a|/2. This implies that
|a|
2

< |a| − r .

Therefore, for all t ≥ |a| − r ,
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ϕ(t) ≥ ϕ(|a| − r)

= 2(|a| − r)2 − 2(|a| − r)|a| + |a|2 − r2

= |a|2 − 2r |a| + r2

= (|a| − r)2. (3.2)

For z ∈ B(a, r), z = x + iy, we have |x | ≥ |a| − r . Hence, in view of Eq. (3.2),
we obtain that

�ep(z) = ϕ(|x |)
≥ ϕ(|a| − r) > 1 ∀z ∈ B(a, r).

Hence,
p(B(a; r)) ⊂ {w ∈ C : �ew > 1}.

�

In this section we provide a proof of Theorem 1.4. The main idea behind the proof
is due to Khudaiberganov [8] (see also [12]).

Proof of Theorem 1.4 Since V is a Lagrangian subspace of C
n , there exists a uni-

tary transformation T : C
n → C

n such that T (V ) = R
n . C-linearity of T gives us

T (λV ) = λR
n for all λ ∈ C; in particular,

T (eiθV ) = eiθRn.

Since unitary transformations of C
2 maps balls to balls, it is enough to consider the

disjoint closed balls with centres lying in
⋃

θ∈[0,π/2] eiθRn . Without loss of generality

we assume that the closed disjoint balls are as follows: B, the closed unit ball, and
B(a j ; r j ) such that a j ∈ ⋃

θ∈[0,π/2] eiθRn and 0 ≤ r j ≤ 1, j = 1, . . . , N . Since the
closed balls are pairwise disjoint, we note that

|a j | − r j > 1 ∀ j = 1, . . . , N . (3.3)

We show that B ∪
(⋃N

j=1 B(a j ; r j )
)
is polynomially convex. We will use the

induction on N for that. For N = 1, clearly, B ∪ B(a1; r1) is polynomially convex
for any ball B(a1; r1) with a1 ∈ ⋃

θ∈[0,π/2] eiθRn and B ∩ B(a1; r1) = ∅. As the

induction hypothesis we assume that the unionB ∪
(⋃N−1

j=1 B(α j ; r j )
)
of N pairwise

disjoint closed balls, one of them being the closed unit ball and the others being any
(N − 1) pairwise disjoint balls with centres α j ∈ ⋃

θ∈[0,π/2] eiθRn and radii r j ≤ 1,
is polynomially convex.

Assume the compact sets K1 := B and K2 := ⋃N
j=1 B(a j ; r j ). Since K2 is a union

of N − 1 disjoint balls with centres in
⋃

θ∈[0,π/2] eiθRn . Without loss of generality
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assume that rN ≥ r j , j = 1, . . . , (N − 1). There exists an invertible C-affine trans-
formation S on C

n of the form

S(z) = μ(z + b),

where μ, b ∈ C, such that

S(B(aN ; rN )) = B and S(B(a j ; r j )) = B(c j ; s j ),

where c j ∈ ⋃
θ∈[0,π/2] eiθRn and0 ≤ s j ≤ 1 for all j = 1, . . . , (N − 1).We also have

|c j | − s j > 1 for all j = 1, . . . , N − 1. By induction hypothesis, B ∪(⋃N−1
j=1 B(c j ; s j )

)
is polynomially convex. Hence, K2 is polynomially convex.

We now use Kallin’s lemma (Lemma 2.1) with the polynomial

p(z1, . . . , zn) = z21 + · · · + z2n.

to show K1 ∪ K2 is polynomially convex. Clearly,

|p(z)| ≤ 1 ∀z ∈ K1. (3.4)

Since a j ∈ ⋃
θ∈[0,π/2] eiθRn , we assume that a j = eiθ j b j , where b j ∈ R

n and θ j ∈
[0,π/2] for all j = 1, . . . , N . We first fix a j0 : 1 ≤ j0 ≤ N . Corresponding to j0
we consider a unitary map Tj0 : C

n → C
n defined by

Tj0(z) = eiθ j0 z.

Clearly, Tj0(b j0) = a j0 and Tj0(B(b j0; r j0)) = B(a j0; r j0). In view of Lemma 3.1, we
obtain that

�ep(z) > 1 ∀z ∈ B(b j0; r j0).

Since p is a homogeneous holomorphic polynomial of degree two, we get

p(Tj0(z)) = e2iθ j0 p(z) ∀z ∈ B(b j0; r j0).

Hence, we get that

�e
(
e−2iθ j0 p(z)

)
> 1 ∀z ∈ B(a j0; r j0).

Therefore, the image of B(a j0 , r j0) under the polynomial p lies in the half plane

{
w ∈ C : �e

(
e−2iθ j0 w

)
> 1

}
.

Since we have chosen j0 arbitrarily, hence, for each j = 1, . . . , N , we obtain that
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p(B(a j , r j )) ⊂ {
w ∈ C : �e

(
e−2iθ j w

)
> 1

} =: Hθ j .

Writing w = u + iv in C, we get the half space as

Hθ j = {
u + iv ∈ C : u cos 2θ j + v sin 2θ j > 1

}
.

Since the boundary line of Hθ j is tangent to the unit circle, Hθ j ∩ D = ∅.
We get the image of K2 under the polynomial p

p(K2) ⊂
N⋃

j=1

Hθ j .

We also obtain that ⎛

⎝
N⋃

j=1

Hθ j

⎞

⎠ ∩ D = ∅. (3.5)

We note that

H0 = {u + iv ∈ C : u > 1} and Hπ/2 = {u + iv ∈ C : u < −1},

and Hθ j ⊂ {u + ivC : v > 0, u2 + v2 > 1} ∪ H0 ∪ Hπ/2 for all j = 1, . . . , N .
Hence, the strip {u + iv ∈ C : −1 ≤ u ≤ 1, v ≤ 0} does not intersect the union of

half spaces
(⋃N

j=1 Hθ j

)
. Hence, we get that C \

(⋃N
j=1 Hθ j

)
is connected. There-

fore, in view of Eqs. (3.4) and (3.5), we conclude

p̂(K1) ∩ p̂(K2) = ∅.

All the conditions of Kallin’s lemma are satisfied with the above polynomial p.
Hence, K1 ∪ K2 = ⋃N

j=0 Bj is polynomially convex. �

4 Compact Subsets of Certain Real Analytic Variety

In this section we provide a proof of Theorem 1.5. The idea is to construct a non-
negative plurisubharmonic function on C

n such that the set S lies on the zero set of
that function.

Proof of Theorem 1.5 Let B be a closed ball inC
2. If S ∩ B = ∅, then there is nothing

to prove. Therefore, assume S ∩ B 
= ∅. We divide the proof into two steps. First
we show that S ∩ B is polynomially convex. In the second step we show that any
compact subset K of S is polynomially convex and P(K ) = C(K ).
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Step I: To show S ∩ B is polynomially convex.
Consider the function � : C

2 → R defined by

�(z, w) = |p(z) − q(w)|2.

Clearly, S = �−1{0}.
A simple computation gives us

∂2�

∂z∂z
(z, w) =

∣
∣
∣
∣
∂ p

∂z
(z)

∣
∣
∣
∣

2

∂2�

∂z∂w
(z, w) = 0 = ∂2�

∂w∂z
(z, w)

∂2�

∂w∂w
(z, w) =

∣
∣
∣
∣
∂q

∂w
(w)

∣
∣
∣
∣

2

.

The Levi-form of �:

L�((z, w); (u, v)) =
∣
∣
∣
∣
∂P

∂z
(z)

∣
∣
∣
∣

2

|u|2 +
∣
∣
∣
∣
∂q

∂w
(w)

∣
∣
∣
∣

2

|v|2

≥ 0 ∀(u, v) ∈ C
2.

Therefore, � is plurisubharmonic in C
2. Hence, S ∩ B is plurisubharmonically con-

vex. In view of Result 2.2, S ∩ B is polynomially convex.

Step II: To show any compact subset K ⊂ S is polynomially convex and P(K ) =
C(K ). The main insight here is to show that off a very small set S is totally real. In
this case we show that there is a finite set E ⊂ S such that S \ E is locally contained
in totally real submanifold of C

2. We will use Result 2.3 for that. In this case the
defining function ρ is

ρ(z, w) = (ρ1(z, w), ρ2(z, w)),

where

ρ1(z, w) := �e(p(z) − q(w)) and ρ2(z, w) := �m(−p(z) − q(w))

Let (z0, w0) ∈ S. The matrix

A(z0,w0) =

⎛

⎜
⎜
⎜
⎝

∂ρ1

∂z
(z0, w0)

∂ρ1

∂w
(z0, w0)

∂ρ2

∂z
(z0, w0)

∂ρ1

∂w
(z0, w0).

⎞

⎟
⎟
⎟
⎠
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=

⎛

⎜
⎜
⎜
⎜
⎝

1

2

∂ p

∂z
(z0) − 1

2

∂q

∂w
(w0)

− i

2

∂ p

∂z
(z0) − i

2

∂q

∂w
(w0)

⎞

⎟
⎟
⎟
⎟
⎠

We obtain that det A(z0,w0) = 0 if and only if
∂ p

∂z
(z0)

∂q

∂w
(w0) = 0. Consider the set

Z =
{

(z0, w0) ∈ C
2 : q(w0) = p(z0),

∂ p

∂z
(z0)

∂q

∂w
(w0) = 0

}

=: Z1 ∪ Z2,

where

Z1 :=
{

(z0, w0) ∈ C
2 : q(w0) = p(z0),

∂ p

∂z
(z0) = 0

}

Z2 :=
{

(z0, w0) ∈ C
2 : q(w0) = p(z0),

∂q

∂w
(w0) = 0

}

.

Since p and q are non-constant holomorphic polynomials, the holomorphic polyno-

mials
∂ p

∂z
and

∂q

∂w
are not identically zero. det A(z0,w0) 
= 0 gives us that ρ is locally

a submersion at (z0, w0). Hence, both the sets Z1 and Z2 are finite sets. Hence, by
Result 2.3, S\Z is locally contained in totally-real submanifold.

Let K be any compact subset of S. There exists a closed ball B in C
n such that

K ⊂ S ∩ B.

Since S is totally-real except finitely many points, in view of Result 2.4, we obtain
that

P(S ∩ B) = C(S ∩ B).

Hence, by Result 2.5, we get that K is polynomially convex and P(K ) = C(K ). �

Corollary 4.1 If K = {(zm, zn) ∈ C
2 : z ∈ D} then P(K ) = C(K ).

Proof Consider the set

S := {(z, w) ∈ C
2 : wm = zn}.

Clearly, K is a compact subset of S. By using Theorem 1.5, we get that K is
polynomially convex and P(K ) = C(K ). �

Remark 4.2 Aspecial case,whengcd(m, n) = 1, ofCorollary 4.1 gives usMinsker’s
theorem [9].
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Solution of Large-Scale Multi-objective
Optimization Models for Saltwater
Intrusion Control in Coastal Aquifers
Utilizing ANFIS Based Linked
Meta-Models for Computational
Feasibility and Efficiency

Dilip Kumar Roy and Bithin Datta

Abstract Saltwater intrusion in coastal aquifers poses significant challenges in the
management of vulnerable coastal groundwater resources around the world. To
develop a strategy for regional scale sustainable management of coastal aquifers,
solution of large-scale multi-objective decision models is essential. The flow and
solute transport equations are also density dependent, where the flow parameters
are dependent on salt concentration; hence, the flow and solute transport equations
need to be solved as coupled equations. In a linked optimization simulation model,
the numerical simulation model as a predictor of the physical processes need to be
solved enormous number of times to be able to identify an optimum solution as per
the specified objectives and constraints. This problem becomes even more compli-
cated when multiple objectives are included and the Pareto optimal solutions need
to be determined. Therefore, to ensure the computational efficiency and feasibility
of determining a regional scale strategy for control and sustainable use of a coastal
aquifer,meta-models that are trained, tested andvalidatedusing randomized solutions
of the numerical simulation models can be utilized. These meta-models once trained
and tested serves the purpose of an approximate emulator of the complex numerical
models rendering the solution of a complex and large scale linked optimizationmodel
computationally efficient and feasible. The optimal groundwater extraction patterns
can be obtained through linked simulation-optimization (S/O) technique in which the
simulation part is usually replaced by computationally efficient meta-models. This
study proposes a computationally efficient meta-model to emulate density reliant
integrated flow and solute transport scenarios of coastal aquifers. A meta-model,
Adaptive Neuro Fuzzy Inference System (ANFIS) is trained and developed for an
illustrative coastal aquifer study area. Prediction accuracy of the developed ANFIS
basedmeta-model is evaluated for suitability. Themeta-model is then integrated with
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a multiple objective coastal aquifer management model to demonstrate the potential
application of this methodology. The optimization algorithm utilized for solution is
the Controlled Elitist Multi-objective Genetic Algorithm. Performance evaluation
results show acceptable accuracy in the obtained optimized management strategies.
Therefore, use of trained and tested meta-models linked to an optimization model
results in significant computational efficacy. It also ensures computational practica-
bility of solving such large-scale integrated S/O approach for regional scale coastal
groundwater management.

Keywords Saltwater intrusion · Coastal aquifer · Parallel processing · Fuzzy
c-mean clustering · Fuzzy inference system · Genetic algorithm

1 Introduction

Coastal areas are vulnerable to saltwater intrusion due to unplanned exploitation of
groundwater resources. One of the most important approaches to minimize saltwater
intrusion in these areas is to adopt optimal use of groundwater resources in different
sectors to prevent degradation of water quality as well as to warrant sufficient supply
of potable water. Coupled simulation-optimization (S/O) approach can be utilized
to derive optimum groundwater management schemes that provide different alter-
nate extraction strategies while maintaining the saltwater concentration at specified
monitoring locations to maximum allowable limits [3, 8]. This approach requires
two important constituents: a numerical simulation model, which simulates density
reliant integrated flow and solute transport processes, and an optimization algorithm
that is utilized to obtain global Pareto optimal solution in terms of different alternative
groundwater extraction strategies. As part of the regional scale management strat-
egy, different management measures can be utilized. These may include creation of
hydraulic barriers near the shoreline for controlling saltwater intrusion. This research
adopts barrier extraction wells [5, 6, 18] in combination with beneficial production
wells to developmultiple-objective groundwater extraction strategies by utilizing the
coupled S/O approach. Water extracted from barrier wells are generally very saline
and cannot be used for beneficial purposes; therefore, the aim is to reduce groundwa-
ter abstraction from these wells while minimizing saltwater intrusion. Another aim
of the management problem is to make best use of advantageous withdrawal from
the production bores.

However, a major challenge in implementing such a coupled S/O approach is
to decrease the computational burden. In an integrated S/O approach, simulation
models are called by the optimization algorithm numerous number of times in order
to achieve global optimal solution. These repeated calls are associated with huge
computational burden. For instance, if the numerical simulation model for a study
needs only 10 min to converge, and the numerical simulation model is evaluated
1000 times by the optimization routine, then approximately 7 days of CPU time will
be required to obtain an optimal solution for this problem. One way to get rid of
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the computational infeasibility issue is to use computationally efficient approximate
meta-models to replace time consuming and memory intensive numerical models
[4]. Previous studies of saltwater intrusion management modelling have utilized dif-
ferent meta-models as computationally efficient substitutes of complex simulation
models in the optimization formulation. The most commonly used meta-models are
based on Artificial Neural Network (ANN) [1, 2, 9], Multivariate Adaptive Regres-
sion Spline (MARS) [13, 16] and Genetic Programming (GP) [17, 19]. However,
these meta-models have certain disadvantages. For example, the ANN has associ-
ated computational burden and model overfitting issues [21], GP tends to converge
to local optima [12] etc. To get rid of few drawbacks of the commonly used meta-
models for saltwater intrusion processes prediction, Roy, Datta [14] proposed a fuzzy
logic based meta-model, which is more accurate, stable, and computationally effi-
cient compared to existing meta-models in saltwater intrusion problems in coastal
aquifers.

This study extends the use of fuzzy logic based meta-modelling approach by
externally linking Adaptive Neuro Fuzzy Inference System (ANFIS) models within
an integrated S/Omethodology to obtain multiple-objective groundwater abstraction
policies for controlling salinity intrusion. The applicability of the proposed approach
is verified for a demonstrative multiple layered coastal aquifer study area. Each layer
of the stratified aquifer represents different aquifer materials. However, the values of
hydraulic conductivity within each soil layer are assumed constant.

2 Methodology

The proposed methodology includes a numerical model for simulating aquifer pro-
cesses; the ANFIS meta-models trained and tested using the solution result of the
numerical simulationmodel to emulate the physical processes of the stratified aquifer
system; and an optimization algorithm to prescribe optimal groundwater extraction
strategies as solutions. The optimization algorithm utilized in the present study is a
Controlled Elitist Multiple Objective Genetic Algorithm (CEMOGA) [7].

2.1 Numerical Model

A three-dimensional (3D) density reliant coupled flow and salt transport numerical
model, FEMWATER [10] is used to simulate the integrated flow and transport pro-
cesses, and to produce input-output training pairs for the ANFIS based meta-models.
The governing 3D density dependent integrated flow and transport equations are
described in Lin et al. [10] and is not repeated here.
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2.2 ANFIS

Physical processes of coastal aquifers are approximated by usingANFIS basedmeta-
models to achieve computational efficiency, and to ensure computational achievabil-
ity of the proposed integrated S/Omethodology. Input-output datasets acquired from
the solution results of the simulationmodel are used to train and test themeta-models.

The Sugeno FIS, also referred to as Takagi-Sugeno-Kang FIS [20] is perfect for
developing a preliminary FIS structure for training of the desired ANFIS model. The
computational framework of a Sugeno FIS follows the theory of fuzzy logic. FISs
can be applied to nonlinear mapping of input and output spaces by utilizing a number
of fuzzy rules.

Fuzzy if-then rule set for a first-order Sugeno type FIS can be written as:

Rule 1 : If ∝ is P1 andβ is Q1 then f1 = p1α + q1β + r1 (1)

Rule 1 : If ∝ is P2 andβ is Q2 then f2 = p2α + q2β + r2 (2)

This can be graphically represented in Fig. 1 that illustrates anANFIS architecture
based on a Sugeno type FIS.

2.3 Management Model

A regional scale coastal aquifer management model is developed through ANFIS
meta-model based integrated S/O approach. Two contradictory aims of groundwa-
ter abstraction strategy are implemented. The first objective ensures the maximum
withdrawal of groundwater for beneficial purposes. The second objective minimizes
groundwater abstraction from barrier extraction wells to reduce the extent of salt-
water intrusion by establishing a hydraulic head barrier near the coastal boundary.
The proposed coastal aquifer management model is represented by the following

Fig. 1 ANFISmodel structure derived from a Sugeno type FIS that has two inputs (after Roy, Datta
[15])
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equations

Maximize : f1(QPW ) =
R∑

r=1

T∑

t=1

QPWt
r

(3)

Minimize : f2(QBW ) =
K∑

k=1

T∑

t=1

QBWt
k

(4)

Subject to

Ci = ξ(QPW , QBW ) (5)

Ci ≤ Cmax∀i (6)

QPW min ≤ QPWt
r
≤ QPW max (7)

QBW min ≤ QBWt
k
≤ QBW max (8)

where, PW = production wells, BW = barrier extraction wells, QPWt
r
= groundwa-

ter abstraction from the r th production well at t th time step, QBWt
k
= groundwater

abstraction from the kth barrier extraction well at t th time step, Ci = salinity con-
centrations at i th monitoring locations at the termination of the management phase,
ξ () = density reliant integrated flow and solute transport meta-model.

3 Application of the Developed Methodology

The applicability of the meta-model and integrated S/O based coastal aquifer man-
agement model is illustrated for an demonstrative coastal aquifer site as shown in
Fig. 3 (after Roy, Datta [14]). The 4.35 km2 coastal aquifer study area has a thickness
of 80 m, which is divided into four different soil layers. Each soil layer is 20 m thick.
The simulation of the aquifer processes is carried out for a period of 5 years, the
groundwater extraction is assumed constant during each 1-year period. The transient
simulation is accomplished using a period of 5 days.

A 5-yearmanagement phase is considered. The pumping variables are symbolized
byX1–X80 inwhich variablesX1–X55denoteswater abstraction from11production
wells for 5 years of management period, and variables X56–X80 indicates extraction
of water from 5 barrier wells during the period of 5 years. The range of pumping
values of the eighty decision variables is 0–1300 m3/day. Salinity concentrations at
the completion of the management phase are observed at five designated monitoring
locations. Themonitoring locations are symbolized by OP1–OP5 (Fig. 2). Individual
ANFIS meta-models are developed for each of these monitoring locations.
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Fig. 2 Illustrative study area

4 Results and Discussion

4.1 Performance of ANFIS Meta-Models

The prediction capability of the developed ANFISmeta-models is evaluated by com-
paring the actual and ANFIS predicted salinity concentrations using different per-
formance evaluation indices. In this context, actual concentration denotes saltwater
concentrations obtained from numerical simulation model solution as a response to
spatiotemporal groundwater extraction values from the aquifer, and predicted con-
centration values indicate the values predicted by the developed ANFISmeta-models
at different locations. In general, at allmonitoring locations, ANFIS predictions are in
good covenant with the numericalmodel simulation results. Therefore, the prediction
accuracy of all developed ANFIS meta-models is satisfactory.

Prediction precision of the developed ANFIS meta-models are assessed based on
RMSE, MARE, R, NS, and TS criteria as depicted in Table 1. It is showed from
Table 1 that results of all performance evaluation indices are satisfactory for all
ANFIS meta-models predicting salinity concentrations at five monitoring locations.
The proposed ANFIS meta-models result in higher values of R and NS, and lower
values of RMSE and MARE showing good prediction capability.
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Table 1 ANFIS performance for testing dataset

Monitoring locations Evaluation indices

RMSE MARE R NS TS (RE threshold)

<1% <2% <5%

OP1 0.2940 0.5451 0.9981 0.9960 81.33 99.33 100

OP2 6.3862 0.3602 0.9993 0.9985 96 100 –

OP3 3.7025 0.2507 0.9997 0.9994 99 100 –

OP4 6.5414 0.0736 0.9998 0.9996 100 – –

OP5 3.5376 0.0443 0.9999 0.9997 100 – –

OPs = Monitoring locations, RMSE = Root mean square error, MARE = Mean absolute relative
error, R = Correlation coefficient, NS = Nash-Sutcliffe efficiency coefficient

4.2 Management Model Performance

The optimization model provides optimal solution represented by a Pareto optimal
front that shows the non-dominated tradeoff between the two contradictory objectives
of the management problem. The Pareto front shown in Fig. 3 provides several
sets of non-dominated groundwater abstraction values obtained while ensuring that
the maximum permissible salinity levels at designated monitoring locations are not
exceeded.

It is perceived from Fig. 3 that increasing the rate of extraction from production
wells requires an additional amount ofwaterwithdrawal from thebarrierwells tomeet
specified salinity standards. Abstracted groundwater from the barrier wells generally
cannot be utilized for beneficial purposes due to high salinity. Therefore, managers
can choose the rate of barrier well pumping based on the demand for beneficial water
use, while keeping the pre-setmaximumallowable saltwater concentrations at certain
monitoring locations in mind. These Pareto optimal solutions show the contradictory

Fig. 3 Pareto front acquired as solution of the management policy
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feature of the two objectives, a necessary condition for a multiple objective optimal
management.

The optimization routine for this multiple objective coastal aquifer management
model is performed in parallel by utilizing multiple MATLAB workers in a parallel
pool [11]. The parallel computation is performed by allocating the objective function
and the constraints to four workers (4 cores) using a seven core PC [Intel (R) Core
(TM) i7-4790 CPU@3.60 GHz]. The optimization model with parallel processing
facility takes around 5.674 h to obtain global optimal solution compared to 17.012 h
of CPU time without the parallel processing platform.

5 Summary and Conclusions

This study presents and evaluates the utilization of a trained ANFIS meta-model
as an effective soft computing tool to emulate salt transport scenarios of a coastal
aquifer study area. Moreover, the feasibility of incorporating the proposed ANFIS
meta-models with CEMOGA optimization algorithm in an integrated S/O approach
to obtain the Pareto optimal solution of groundwater abstraction policies is also
illustrated. Individual ANFIS meta-models are developed at five designated moni-
toring locations. Properly trained and validated ANFIS meta-models are then inte-
grated externally with a CEMOGA based optimization algorithm. The proposed
ANFIS-CEMOGA approach is implemented for solving the large-scale multiple
objective optimization problem. Additional computational efficiency is achieved
by implementing the management model in a parallel computation approach. An
example problem consisting of a multiple layered coastal aquifer study area is uti-
lized to assess the applicability of the proposed approach. Results demonstrated
the suitability of ANFIS meta-models in developing an integrated S/O based large-
scale coastal aquifer management policy. Therefore, ANFIS meta-models have the
potential to make development of such management policies in a large-scale coastal
aquifer system computationally efficient and feasible. Future study may attempt to
extend the application of this methodology to heterogeneous coastal aquifer systems
incorporating random fields of different aquifer parameters.
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Cost Driven Optimization of Microgrid
Under Environmental Uncertainties
Using Different Improved PSO Models

Meenakshi De, G. Das and K. K. Mandal

Abstract This paper presents a micro grid generation scheduling model using
Non-linear Decreasing Inertia Weight Particle Swarm Optimization (NDIW-PSO)
and Time Varying Acceleration Co-efficient Particle Swarm Optimization (TVAC-
PSO) techniques. Here energy management in micro grid is done in presence of
renewable energy sources such as wind and solar power. In this research work,
implementation of Demand Response (DR) schedules are carried out as incentive
based payment i.e., on offered price packages. In the typical microgrid, different
power components including Wind Turbine (WT), Photovoltaic (PV) cell, Micro-
Turbine (MT), Fuel Cell (FC), battery hybrid power source and responsive loads are
used. Analytical approaches and case studies are conducted for obtaining minimum
operating costs and comparative studies are carried outwithout demand response par-
ticipation and with demand response participation respectively. The results obtained
represent the superiority of the proposed approach for effective generation scheduling
in micro grids.

Keywords Non-linear decreasing inertia weight particle swarm optimization ·
Generation scheduling · Demand response · Micro grids

1 Introduction

The micro grid concept of power production is relatively new aimed at reducing
harmful emissions from fossil-fueled power plants at the same time enhancing the
utilization of new technologies and concepts in the form of inclusion of renewable
energy resources in the existing power networks. But, the disadvantage of renew-
able energy resources lies in their intermittent nature of power production. Thus, in
order tomaintain stable system operation, the power system operators provide certain
system reserve to overcome uncertainties of power production. Some research stud-
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ies conducted previously investigated the inclusion of distributed generations such
as wind and solar energy [1–3]. But these solutions suffer from drawbacks such as
increase in costs and problems in commitment of power units etc. Another solution to
this problem includes increasing the total energy reserve [4] to maintain system secu-
rity. So a demand side reserve or demand response (DR) can be included by network
operators by way of decreasing energy consumption during energy shortage period
[5]. So, demand response (DR) is the change in consumption pattern of electricity in
customer’s side in response to changing electricity prices over a specified duration
of time. Thus it increases incentive based payment modes with respect to utilization
of electricity. These incentive based payments encourage lower use of electricity in
times of high market price and higher use when prices are within threshold value.
The incentive based demand response management in micro grids provide diverse
advantages such as it covers the uncertainty associated with solar and wind power
production. At the same time the customers will have a wide variety of choices from
the offered packages to suit their needs and their budget. Some studies focused on
micro grid (MG) operation and management involving a stochastic model in order
to achieve optimized set points of operation [6, 7] while others stressed on investi-
gating MG operation by heuristic algorithm [8]. In this paper optimal operating cost
of a micro grid system is found using two meta-heuristic techniques viz. Non-linear
Decreasing Inertia Weight Particle Swarm Optimization (NDIW-PSO) and Time
Varying Acceleration Co-efficient Particle Swarm Optimization (TVAC-PSO). The
results obtained in this research are compared with those of results obtained in other
published literature. The results prove the effectiveness of the proposed approach.

Thus, the main contribution of this research paper is as follows:

(1) Utilization of incentive based demand response program to cover the uncertain-
ties resulted from power production by solar PV array and wind turbine.

(2) Novelty of this work lies in the development of microgrid generation scheduling
model using Non-linear Decreasing InertiaWeight Particle SwarmOptimization
algorithm (NDIW-PSO) and Time Varying Acceleration Co-efficient Particle
Swarm Optimization algorithm (TVAC-PSO).

(3) Analytical approaches and case studies are conducted for obtaining minimum
operating cost in microgrid. Comparative studies are also carried out without
demand response participation and with demand response participation respec-
tively to obtain the results which establish the superiority of this research work.

2 Problem Formulation

2.1 Specifications of Demand Response Participants

Various types of electricity consumers with varying consumption behaviors can be
considered for case study. In this paper, consumers are of three types i.e., residen-
tial, commercial and industrial. The micro grid structure followed in this work has
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renewable energy resources such as wind and solar photovoltaic array where the
incentive based demand response programs are utilized to cover up the environmen-
tal uncertainties associated with these types of sources. Energy is given to consumers
within 24h period consisting of resources such as solar PV, wind turbine and battery.

RP(r, t) = RC(r, t) ∗ πr,t ;RC(r, t) <= RCmax
t (1)

CP(c, t) = CC(c, t) ∗ πc,t ;CC(c, t) <= CCmax
t (2)

IP(i, t) = IC(i, t) ∗ πi,t ; IC(i, t) <= ICmax
t (3)

In above equations r, c and i present the number of residential, commercial and indus-
trial consumers;RC(r, t),CC(c, t) and IC(i, t) indicate the amount of load reduction
planned by each residential, commercial and industrial consumer in period t; RCmax

t ,
CCmax

t and ICmax
t represents maximum load reduction proposed by each consumer

respectively in time period t;πr,t ,πc,t andπi,t indicates amount of incentive payments
towards each customer in time period t and RP(r, t), CP(c, t) and IP(i, t) presents
cost due to load reduction by residential, commercial and industrial customers in
period t for proposed load reduction respectively.

2.2 Objective Function

The objective function consists of several components such as storage costs, start-
up and shutdown costs of the generating units, costs for exchange with the utility
and costs of demand response program participation which can be mathematically
formulated as follows:

minf1(X ) =
T∑

t=1

Cost =
T∑

t=1

Ng∑

i=1

[ui(t)PGi(t)BGi(t) + SGi|ui(t) − ui(t − 1)|]

+
Ns∑

j=1

[uj(t)Psj(t)Bsj(t) + Ssj|uj(t) − uj(t − 1)|]

+ PGrid (t)BGrid (t) + PDR(t)BDR(t) (4)

PDR(t) =
∑

r

RC(r, t) +
∑

c

CC(c, t) +
∑

i

IC(i, t) (5)

where PGi(t) and PSj(t) are the real power output of ith generator and jth storage
in period t respectively, BGi(t) and BSj(t) are bids of DG and storage unit at hour t
respectively. SGi(t) and SSj(t) represent the start up and shut down costs for ith and
jth storage respectively, PGrid (t) is the active power which is bought/sold from/to
the utility at time t and BGrid (t) is the bid of utility at time t, u represents the state
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vector which indicates the ON/OFF states of all units in period t. PDR(t) and BDR(t)
is the active power and bid price to participate in the Demand Response Programs
in period t.

2.3 Problem Constraints

Power balance boundaries: The total power generated from the distributed units
should be equal to the total demand of power in the microgrid for maintaining a
steady supply of power. It can be mathematically described as follows:

Ng∑

i=1

PGi(t) +
Ns∑

j=1

Psj(t) + PGrid (t) =
Nk∑

k=1

Plk(t) (6)

Real power generation capacity: For efficient and reliable operation of the micro-
grid system, the active power output of each DG unit is bounded by lower and upper
limits:

PGi,min(t) <= PGi(t) <= PGi,max(t)

Psj,min(t) <= Psj(t) <= Psj,max(t)

PGrid ,min(t) <= PGrid (t) <= PGrid ,max(t) (7)

where PG,min(t), Ps,min(t) and PGrid ,min(t) are the minimum active powers of ith DG,
jth storage and grid at period t respectively. In similar way, PG,max(t), Ps,max(t) and
PGrid ,max(t) are the maximum power generations of corresponding units at hour t.

Battery charge and discharge boundaries: During each time period, there are
limitations on charge and discharge of battery, the equations and constraints can be
expressed as in the following equation:

φj(t) = φj(t − 1) − 1/λDjuDj(t)PDsj(t) + λCj(t)uCj(t)PCsj(t)

φmin <= φj(t) <= φmax (8)

where φj(t) and φj(t − 1) represent the reserved energy at present time and at the
previous time count. PDsj(t) and PCsj(t) is the allowed rate of discharge and charge
during a definite time interval.λDj(t) andλCj(t) present the battery efficiency at times
of discharge and charge respectively.

3 Particle Swarm Optimization

Particle swarmoptimization is one of themeta-heuristic techniqueswhichhavedrawn
much attention in recent times. Its main concept is based on ideas of bird flocking
and fish schooling in nature. Eberhart and Kennedy developed the particle swarm
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optimization algorithm in 1995. Since then, it has gained immense acceptance in its
efficiency for solving complexoptimizationproblems invariousfields of engineering.
In this work, two improved particle swarm optimization techniques are utilized to
solve generation scheduling in micro grids. Here, the algorithm is initialized using
a random number of particles. Each particle corresponds to the candidate solution
to the problem to be considered. The implemented algorithm can be carried out
using the following steps. Firstly, the input data are defined such as micro grid
structure, operation characteristics of micro sources and grid, PV array and wind
turbine predicted power output for each study period, real time price offer package
for micro sources and grid, and the daily demand. Secondly, an initial population is
considered based on following equation.

X o = [X1,X2, . . .XN ]T (9)

where X is the decision variable vector.

(i) Non-linear Decreasing InertiaWeight Particle SwarmOptimization (NDIW-
PSO) Inertia weight, w(t): It is a parameter that is used to control the influence of
previous velocities on the current obtained velocity. It reflects the balance between
the global exploration and local exploration capabilities of particles in search space.
Huang Chongpeng [9, 10] provided a newmethod of PSOwith non-linearly decreas-
ing inertia weight.

wo = wend + (wend − wstart) ∗ (1 − (t/tmax)(k1))(k2) (10)

where k1, k2 are two natural numbers, wstart is the initial inertia weight, wend is the
final value of weighting co-efficient, tmax is the maximum number of iteration and t
is current iteration. The specified values of k1, k2 used are k1 > 1 and k2 = 1.

(ii) Time Varying Acceleration Co-efficients incorporated Particle SwarmOpti-
mization Algorithm (TVAC PSO) The acceleration co-efficients are c1 and c2, kept
constant for classical PSO. For PSO considering time varying acceleration coeffi-
cients (TVAC-PSO) the acceleration co-efficients c1, c2 are modified as follows:

c1 = c1f − c1i ∗ (iter/itermax) + c1i (11)

c2 = c2f − c2i ∗ (iter/itermax) + c2i (12)

where c1i, c1f , c2i, c2f are constants, iter is the current number of iteration, itermax
is the maximum number of iterations [11]. Here, c1i and c2i represent initial values
whereas c1f and c2f represent the final values of cognitive and social acceleration
factors respectively. The range of values of c1i and c1f is chosen as 2.5 and 0.5, and
the range of values of c2i and c2f is chosen as 0.5 and 2.5 respectively for the present
work. Fitness is calculated using Eq.4. The position vector and velocity vector in
the above mentioned search space can be represented as Xi = (xi1, xi2, xi3, . . . , xid )
and Vi = (vi1, vi2, vi3, . . . , vid ) respectively. The best fitness value obtained by
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each particle at any given iteration is given by Pi = (pi1, pi2, pi3, . . . , pid ) which
is termed pbest and the fittest particle found so far is termed as gbest given by
Pg = (pg1, pg2, pg3, . . . , pgd ). Next, updated velocity and position of each particle
is calculated using the following equations:

v(id ,iter) = witerv(id ,iter−1) + c1r1[p(id ,iter−1) − x(id ,iter−1)] + c2r2[p(gd ,iter−1) − x(id ,iter−1)]
(13)

x(id ,iter) = x(id ,iter−1) + vid ,iter (14)

Individual best and global best: As the particle navigates through the search space,
it compares its fitness value at present position to best fitness value it has attained
at any time up to the present time. The best position which is associated with best
fitness value encountered so far is termed individual best. Global best is the best
position among total individual best positions achieved so far.

Stopping criteria: These are the conditions or criteria under which the search pro-
cess will terminate. In this work the search process will terminate if the number of
iterations reaches the maximum allowable limit of iterations.

Analytical approach for Proposed Algorithm Decision Variables: During imple-
mentation of the objective function, X is considered as decision variable vector. This
comprises of generating units output power, quantity of power exchangedwith utility,
power in microgrid during demand response programs and on/off mode in a vision
planned for day ahead, which are expressed as follows:

X = [Pg,Ug]
Pg = [PDG1,PDG2, . . . ,PDGNDg,Ps1,Ps2, . . . ,PsNs,PGrid ,PDR]
Ug = [UDG1,UDG2, . . . ,UDGNDg,Us1,Us2, . . . .,UsNs,UGrid ,UDR] (15)

In the above equation, NDg and Ns are total number of generation and storage units
respectively, Pg is the active power vector including all distributed generation and
storage units, utility power and active powerwhich participate in the demand response
programs. Ug represent the on or off states of all utility during each hour of day.

Case Study Analysis and constraint handling There are two different methods
for constraint handling in optimization problems. One method is to take the total
penalty violations into consideration with the objective function and create a fitness
function. Here, the objective is to optimize the fitness function. Another technique
for constraint handling is to start the optimization with a pre-specified feasible set of
solutions and carry out the studywith feasible set of solutions within the optimization
process. The first approach is used in this paper for handling the constraints.
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4 Results and Discussions

The proposed algorithm is implemented using MATLAB. It is applied on micro grid
system comprising of micro turbine, fuel cell, battery, solar PV cell, wind turbine [5].
For the present problem effects of demand response has been analyzed. The number
of iterations and population are chosen as 300 and 24 respectively.

Figure1 shows the cost with NDIW PSO and TVAC PSO without demand
response programs. Figure2 shows the cost with NDIW PSO and TVAC PSO with
demand response programs included in problem formulation. Table5 compares the
result obtained by PSO.

Fig. 1 Convergence characteristics for case 1A and case 1B (without DR)

Fig. 2 Convergence characteristics for case 2A and case 2B (with DR)
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Table 1 Economic power dispatch for case 1A

Hour MT (kW) FC (kW) PV (kW) WT (kW) Battery
(kW)

Utility (kW)

1 12.1 3.3595 0 7.2974 6.1026 24.486

2 11.3 4.0048 0 1.6640 −0.007 23.71

3 15.5 2.7146 0 4.6620 1.4944 8.0384

4 28.1 28.178 0 10.703 −26.60 14.877

5 11.5 5.9347 0 3.7475 −9.198 −28.72

6 27.0 20.735 0 8.3353 −25.26 −7.186

7 27.8 20.433 0 12.535 −24.84 −24.80

8 6.78 2.0636 1.0476 8.1519 8.4023 −8.155

9 5.90 22.643 20.036 9.9712 −13.75 −2.745

10 7.00 12.782 0.0782 7.8931 9.0488 9.4169

11 25.2 24.199 1.3504 7.0764 −14.33 −8.012

12 5.52 1.4050 10.596 4.7227 −30.0 10.697

13 22.2 10.528 10.358 13.712 −1.313 −30.0

14 9.40 27.436 7.4307 1.5970 14.085 −22.71

15 22.4 14.613 17.164 9.8536 −30.0 −29.78

16 9.80 9.6326 9.075 0.3533 9.8974 14.165

17 10.2 4.7275 6.206 4.4553 18.543 9.5755

18 18.1 24.066 0 3.3274 −28.81 27.306

19 8.10 18.333 0 4.4776 −4.799 −15.94

20 29.2 21.359 0 14.250 19.434 23.331

21 16.2 3.1121 0 7.3193 −28.76 −10.39

22 5.90 14.077 0 0.3442 −11.68 −11.32

23 19.9 28.451 0 7.5080 −14.67 −5.651

24 13.3 8.3979 0 7.0646 −16.60 −24.33

The micro grid considered for the present work has three different feeders namely
residential, commercial and industrial consumers; the maximum electricity demand
of residential load is 576.3 KWh, the maximum electricity demand of commercial
load is 271.2 KWh, and the maximum electricity demand of industrial load is 847.5
KWh. It is considered here that the reactive power required by loads is compen-
sated locally by means of capacitor placement in the relevant buses. The total load
demand in 24 h without DR participation of responsive loads is 1703.0671 kW and
with DR participation of responsive loads it is found 1702.0789 kW. Two case sce-
narios are considered where operating costs of all units are considered along with
problem constraints in such manner that case 1 aims to obtain the optimum value
of operating cost using Non-linear Decreasing Inertia Weight Particle Swarm Opti-
mization (NDIW-PSO) and Time-Varying Acceleration Co-efficients incorporated
Particle Swarm Optimization (TVAC-PSO) without demand response whereas case
2minimizes operation costs using NDIW-PSO and TVAC-PSO via demand response
participation.



Cost Driven Optimization of Microgrid Under Environmental … 181

Table 2 Economic power dispatch for case 1B

Hour MT (kW) FC (kW) PV (kW) WT (kW) Battery
(kW)

Utility (kW)

1 2.0017 21.437 0 7.549 13.9 20.27

2 27.894 15.763 0 10.16 −20.6 −2.73

3 3.8525 5.8831 0 6.436 −3.19 16.45

4 5.2013 21.722 0 9.667 −30.0 −18.03

5 18.823 20.357 0 2.219 −21.9 −8.94

6 9.8381 6.8176 0 13.30 −30.0 −24.59

7 18.145 28.571 0 8.346 19.2 −19.36

8 10.806 22.392 19.967 10.23 −12.2 17.493

9 8.5472 6.9221 7.0792 1.120 −18.6 6.2586

10 11.037 0.4209 14.340 4.202 2.47 11.714

11 24.213 4.6427 14.985 10.84 −30.0 −30.0

12 13.856 19.522 21.353 5.569 −24.3 13.551

13 4.5503 24.634 3.3261 3.121 −15.5 26.026

14 12.712 11.064 12.762 11.17 −12.8 −27.77

15 0.9197 15.490 17.624 1.513 −30.0 −30.0

16 20.732 18.127 8.2171 3.514 −1.08 −30.0

17 4.6522 6.8800 3.5641 8.490 −6.31 −18.72

18 8.3975 2.9198 0 11.23 −12.5 3.1837

19 23.164 10.351 0 11.30 −26.3 1.4144

20 16.153 15.925 0 10.20 4.19 9.2543

21 15.462 13.634 0 8.848 −7.08 −15.77

22 13.203 23.524 0 1.244 −1.29 −23.02

23 13.576 25.300 0 8.949 −8.46 0.6586

24 12.891 4.3340 0 12.32 −30.0 −5.371

4.1 Case 1A

For this case optimal operating cost without demand response is obtained using Non-
linear Decreasing InertiaWeight Particle SwarmOptimization (NDIW-PSO). Table1
shows the optimal result for this case. In this case the total operating cost using Non
linearDecreasing InertiaWeight Particle SwarmOptimization (NDIW-PSO) is found
out to be 233.0964 Ect when demand response program is not considered.

4.2 Case 1B

To obtain the optimum value of operating cost using Time Varying Acceleration
Co-efficients Particle Swarm Optimization (TVAC PSO) without demand response.
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Table 3 Economic power dispatch for case 2A

Hour MT (kW) FC (kW) PV (kW) WT (kW) Battery
(kW)

Utility (kW)

1 24.1 27.779 0 1.7597 −0.100 −3.878

2 27.4 9.7459 0 12.466 12.451 19.407

3 28.1 3.3481 0 4.9371 3.9188 11.381

4 13.2 23.258 0 4.5196 9.3773 8.4341

5 13.0 25.412 0 9.6896 7.1226 −12.23

6 17.4 10.810 0 4.3200 8.3878 7.2181

7 24.4 21.189 0 9.7934 −0.144 −13.80

8 13.9 13.117 16.727 6.1376 −20.48 1.3509

9 18.6 18.172 9.4123 8.4919 23.274 −6.727

10 25.1 21.215 17.316 8.7513 5.2368 5.6983

11 22.2 2.8005 16.994 8.8651 1.7595 6.2197

12 28.8 25.909 2.9280 7.7693 −11.67 −30.0

13 9.10 4.2104 17.721 2.8031 −23.08 −30.0

14 14.5 11.582 1.9442 9.3002 −5.245 −18.61

15 24.3 2.8778 9.3524 8.2713 −4.126 −9.691

16 24.0 10.029 0.5615 3.2429 −17.20 −30.0

17 12.0 20.687 20.517 3.4287 −30.0 14.088

18 21.3 24.734 0 3.0930 −23.35 4.2453

19 6.66 19.833 0 10.257 −8.062 10.522

20 6.25 17.881 0 0.6772 −1.045 −5.994

21 17.8 17.036 0 11.113 28.470 −0.200

22 7.54 15.119 0 12.696 −30.0 22.990

23 16.3 24.040 0 3.2087 13.465 16.604

24 12.0 2.7116 0 6.1302 13.317 −8.674

Table2 shows the optimal result for this case. In this case the total operating cost using
Time Varying Acceleration Coefficients Particle Swarm Optimization (TVAC PSO)
is found out to be 202.5812 Ect when demand response program is not considered.

4.3 Case 2A

To obtain the optimum value of operating cost using Non-linear Decreasing Inertia
Weight Particle Swarm Optimization (NDIW-PSO) with demand response. Table3
shows the optimal result for this case. In this case the total operating cost using
Non linear Decreasing Inertia Weight Particle Swarm Optimization (NDIW-PSO) is
found out to be 219.6025 Ect when demand response program is considered.
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Table 4 Economic power dispatch for case 2B

Hour MT (kW) FC (kW) PV (kW) WT (kW) Battery
(kW)

Utility (kW)

1 7.7844 2.72 0 1.3545 28.9 20.43

2 9.6211 13.0 0 9.3101 27.4 18.06

3 13.861 6.11 0 1.4234 −5.62 −4.259

4 25.461 9.27 0 13.783 25.5 −7.201

5 26.829 25.3 0 0.8054 −23.9 18.942

6 8.7090 8.85 0 7.1667 −12.3 25.80

7 23.905 6.90 0 11.601 −27.6 −6.323

8 7.0480 15.7 5.3255 4.4398 14.73 −13.66

9 26.149 17.7 15.670 7.7713 −4.56 −30.0

10 28.526 8.45 2.4843 4.8186 −4.45 −7.671

11 22.310 20.5 1.5043 7.0173 −19.1 −18.42

12 18.160 4.61 6.8131 0.6172 9.813 −8.311

13 18.606 15.1 17.614 7.5087 −7.12 6.9401

14 20.835 13.2 12.945 7.8937 8.566 −29.15

15 21.033 7.34 8.5031 3.5817 21.98 −5.541

16 4.0334 24.7 24.162 3.3025 7.816 1.6828

17 12.106 14.5 14.945 9.4633 −30.0 −30.0

18 8.9138 23.1 0 6.0980 22.44 15.926

19 27.444 16.9 0 10.008 17.78 −25.98

20 26.992 24.4 0 12.983 −26.5 −0.963

21 28.319 20.4 0 6.0517 −21.5 11.613

22 24.353 13.0 0 0.5559 −22.4 5.0096

23 11.562 5.23 0 10.165 12.27 −30.0

24 9.8282 10.2 0 8.2742 17.86 −5.980

Table 5 Comparative analysis of results

Method Parameter NDIW-PSO TVAC-PSO PSO [5]

Without DR Cost (Ect) 233.0964 202.5812 241.3

With DR Cost (Ect) 219.6025 200.9721 231.3

4.4 Case 2B

To obtain the optimum value of operating cost using Time varying Acceleration
Co-efficients incorporated Particle Swarm Optimization (TVAC PSO) with demand
response. Table4 shows the optimal result for this case. In case the total operating cost
using Time Varying Acceleration Co efficients particle swarm optimization (TVAC
PSO) is found out to be 200.9721 Ect when demand response program is considered
(Table5).
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5 Conclusion

In this research work, uncertainties associated with fluctuating nature of wind and
PV resources was considered, the objective functionwas analyzed for different cases.
Today, with the emergence of renewable energies such as wind and solar and due
to the uncertainties associated with their power production, there is a need to pro-
vide the necessary reserve and find precise solution for the further cover of these
uncertainties. Recently, significant studies have been conducted on MG operation
management. Since the main objective in operating a MG is to achieve operation
at the minimum possible cost, therefore, most of the previous studies have investi-
gated this area from different points of view. Some of the previous studies have been
focused on the uncertainties caused by renewable resources of energy resulted from
the prediction error of wind speed and solar radiation in a system. In this research
work, the investigation on microgrid operation management is done to achieve min-
imum cost by using two different intelligent optimization algorithms which can be
considered as a novel contribution to this area.

The results obtained show that operating costs were reduced by adaptive demand
response programs which prove the superiority of proposed approach. A comparison
of results for both NDIW-PSO and TVAC-PSO is carried out, also it is found that
TVAC-PSO performs better than NDIW-PSO and PSO.
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Global Exponential Stability of
Non-autonomous Cellular Neural
Network Model with Time Varying
Delays

M. Chowdhury and P. Das

Abstract We have considered a general form of non-autonomous cellular neural
network with time varying delays in this paper. We have estimated the upper bound
of solutions of the system by introducing different parameters and considered some
conditions on it. We have derived the conditions of boundedness and global expo-
nential stability of the model which is initially unstable for some parameter values
using Young Inequality technique and Dini derivative. Several examples and their
computer simulations are given to illustrate the effectiveness of obtained results.

Keywords Non-autonomous system · Time-varying delay · Boundedness ·
Global exponential stability

1 Introduction

In recent times, delayed cellular neural networks have attracted substantial atten-
tion due to their ability for functions of pattern recognition, image processing, opti-
mization signal processing and associative memories. An Artificial Neural Network
(ANN) is a conceptual model based on the structure and functions of biological
neural networks which consist of numerous cells called neurons and their intercon-
nections. The mathematical models in the light of neural dynamics represent the
complex behavior of the human brain. Cellular Neural Network or CNN is a com-
puting model of locally connected circuits (called cells) similar to neural networks,
but communication occurs in neighboring units only.

In brain, neurons are connected to each other by axons. The phenomenon of polar-
ization and depolarization or change in cell potential occurs during neural transmis-
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sions. Initially the neurons are negatively charged. Influx of sodium ions make the
interior of the cell positive. Efflux of potassium ions begins towards the end of this
stage, the interior of the cell tends to become electrically negative. This prevents
further progress of depolarization beyond +35 mV which demands boundedness of
the state of the neuron.

Previously, the dynamics of autonomous neural networks have been vastly studied
and are applied in many fields such as control system, pattern identification, signal
processing, associative memory [1–4]. It is seen that due to evolutionary processes
of physical systems as well as internal and external disturbances, the strength of the
neuron vary with time. So it is important to study the non-autonomous mathematical
model of the neural system [3, 5–7].

Synaptic delay is the time taken by the nerve impulse to cross one synapse.
Changes in the delay parameter causes inconvenient shifts in the phases of the neu-
ral signals leading to consequences explained as tremor in the fingers, Parkinson’s
disease, motion disorders in the case of burst of epilepsy, etc. [8–10]. Time delay
leads to oscillation, divergence, instability and chaos in neural networks [11–13]. In
this case, the stability of the system is particularly important to manufacture micro-
electronic neural networks. So it is important to consider time varying delay in the
model to analyse different dynamical behavior.

Instability of the dynamical system initiates the phenomenon of neuro-
degeneration, which leads to the gradual loss of structure or function of neu-
rons resulting in neurodegenerative diseases like amyotrophic lateral sclerosis,
Parkinson’s, Alzheimer’s and Huntington’s diseases [4, 7, 14]. So it is essential to
attain global exponential stability to intensify the convergence rate of neural network
approaching to equilibrium.

In this paper the main motivation is to investigate the boundedness and global
exponential stability of solutions for the non-autonomous system of the cellular neu-
ral networkmodel. In thismodelwehave considered delay only in the interconnecting
neurons.

The paper is organized in the following manner. In Sect. 2, we have described
the model and have considered few conditions on the parameters. In Sect. 3 we have
shown that the solutions of themodel are bounded. In Sect. 4we have found a criterion
for the global exponential stability of system. In Sect. 5 computer simulations of
various examples are discussed showing variety of dynamical scenario for different
parameter values.

2 Model Description

Here, we have considered the following artificial non-autonomous n-neural network
model with time varying delays:
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dyi (t)

dt
= −si (t)yi (t) +

m∑

l=1

n∑

j=1, j �=l

di jl (t)gi jl (y j (t − τi jl (t)))

+ diii (t)giii (yi (t)) + Ji (t), i = 1, 2, . . . , n

(2.1)

Here yi (t) corresponds to the state variable associated with the i th neuron at time t;
n is the number of state variables and m is the number of axons emitting signal from
i th unit in m number of pathways to the j th unit; gi jl(yi (t)) represents the neuron
activation function at time t; di jl(t) represents the connection weights of the j th unit
on the i th unit at time t − τi jl(t); τi jl(t) corresponds to the transmission delay signal
of the i th unit along the lth axon of the j th unit at time t and is a nonnegative function;
Ji (t) denotes the external input signal on the i th unit at time t; si (t) represents the
rate with which the i th unit will reset its potential to the resting state when detached
from network.

In the above system we consider the following conditions on the parameters of
the model:

• (A1) si (t), di jl(t) (i, j = 1, 2, . . . , n, l = 1, 2, . . . ,m) are bounded and contin-
uous functions defined on t ∈ R+.

• (A2) gi jl(v) (i, j = 1, 2, . . . , n, l = 1, 2, . . . ,m) satisfy the Lipschitz condition,
i.e. there are constants ςi jl > 0 such that;
|gi jl(v1) − gi jl(v2)| ≤ ςi jl |v1 − v2| ∀ v1, v2 ∈ R.

• (A3) τi jl(t) (i, j = 1, 2, . . . , n, l = 1, 2, . . . ,m) are nonnegative, bounded and
continuous functions defined on R+.

• (A4) If there exist constants ai jl , ci jl ∈ R, ui > 0 (i, j = 1, 2, n, l = 1, 2,m), b >

1, α > 0 such that;

bui si (t) − (b − 1)
∑m

l=1

∑n
j=1, j �=l u j |di jl(t)|

b−ai jl
b−1 ς

b−ci jl
b−1

i jl − bui |diii (t)|ςi i i
− ∑m

l=1

∑n
j=1, j �=l u jς

li jl
i jl |di jl(t)|ai jl > α ; ∀ t ≥ 0 and i=1,2,…,n.

Let τ=sup
{
τi jl : t ∈ [0,∞), i, j = 1, 2, . . . , n, l = 1, 2, . . . ,m

}
and b > 1 be a

known constant. Let C[−τ, 0] be the Banach space of continuous functions ϕ(θ) =
(ϕ1(θ), ϕ2(θ), . . . , ϕn(θ)) : [−τ, 0] → Rn .Wedefine‖ϕ‖ = sup−τ<θ<0|ϕ(θ)|where
|ϕ(θ)| = [max1≤i≤n |ϕ(θ |s] 1

s .
We assume that all the solutions of system (2.1) satisfy the initial condition:

yi (θ) = ϕi (θ), θ ∈ [−τ, 0]; i = 1, 2, . . . , n (2.2)

We know by the fundamental theory of functional differential equations, system (2.1)
has a unique solution (y1(t), y2(t), . . . , yn(t)) which satisfies the initial condition
(2.2).

In this paper, we use some other definitions of boundedness and global exponential
stability and lemmas on Young inequality and Dini derivative which will be used to
prove the results from [3].
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3 Boundedness

Theorem 3.1 Let A1-A4 hold. Then all the solutions of the system (2.1) are defined
and are bounded on R+

Proof Let us assume that y(t)=(y1(t), y2(t), . . . , yn(t)) be any solution of the sys-
tem (2.1) with initial function ϕ ∈ C[−τ, 0] at t = 0. Let yi (t) = uivi (t), (i =
1, 2, . . . , n) then (2.1) becomes:

dvi (t)

dt
= −si (t)vi (t) +

m∑

l=1

n∑

j=1, j �=l

1

ui
di jl (t)gi jl (u jv j (t − τi jl (t))) + 1

ui
diii (t)giii (uivi (t)) + 1

ui
Ji (t).

(3.1)
where i = 1, 2, 3, . . . , n. By calculating the upper right derivative D+|vi (t)|s and
get :

D+|vi (t)|s ≤ −bsi (t)|vi (t)|b + b
m∑

l=1

n∑

j=1, j �=l

u j

ui
|di jl (t)||vi (t)|(b−1)ςi jl |v j (t − τi jl (t))|

+ b

ui
|Ji (t)||vi (t)|(b−1) + b|diii (t)||vi (t)|bςi i i + b

m∑

l=1

n∑

j=1, j �=l

1

ui
|di jl (t)||gi jl (0)||vi (t)|(b−1)

+ b

ui
|diii (t)||vi (t)|(b−1)|giii (0)|

(3.2)
By using Young’s Inequality: b

∑m
l=1

∑n
j=1, j �=l

u j
ui

|di jl (t)||vi (t)|(b−1)ςi jl |v j (t − τi jl (t))|

≤ (b − 1)[
m∑

l=1

n∑

j=1, j �=l

u j

ui
|di jl (t)|

b−ai jl
b−1 ς

b−ci jl
b−1

i jl |vi (t)|b] +
m∑

l=1

n∑

j=1, j �=l

u j

ui
|di jl (t)|ai jl ςci jl

i jl |v j (t − τi jl (t))|b

Therefore from (3.2),

D+|vi (t)|b ≤ 1

ui
[−bui si (t) + (b − 1)

⎡

⎣
m∑

l=1

n∑

j=1, j �=l

u j |bi jl (t)|
b−ai jl
b−1 ς

b−ci jl
b−1

i jl |vi (t)|b
⎤

⎦

+bui |diii (t)|ςi i i + bR∗vi (t)−1]|vi (t)|b +
m∑

l=1

n∑

j=1, j �=l

u j

ui
|di jl (t)|ai jl ςci jl

i jl max
t−τ≤b1≤t

|v j (b1)|b

∀t ≥ 0; i = 1, 2, . . . , n
(3.3)

where
R∗ = supt≥0;i=1,2,...,n

{
|Ji (t)| + ∑m

l=1

∑n
j=1, j �=l |di jl(t)||gi jl(0)| + |diii (t)||giii (0)| :

t ≥ 0, i = 1, 2, . . . , n}
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By choosing a large constant q from A4 such that:

−bui si (t) + (b − 1)
m∑

l=1

n∑

j=1, j �=l

u j |di jl (t)|
b−ai jl
b−1 ς

b−ci jl
b−1

i jl + bui |diii (t)|ςi i i + bR∗q−1

+
m∑

l=1

n∑

j=1, j �=l

u j |di jl (t)|ai jl ςci jl
i jl < 0

(3.4)
∀ t ≥ 0 and i = 1, 2, . . . , n and ||ϕ|| ≤ min1≤i≤n{ui }q . Thuswe get; |yi (t)| <

uiq, ∀ t ≥ 0, i = 1, 2, . . . , n. We prove this by contradiction. If this statement is
false then ∃ some i and time t1 ≥ 0 such that |yi (t1)| = uiq, D+|yi (t1)|b ≥ 0 and
|y j (t)| ≤ u jq; ∀ − τ ≤ t ≤ t1 and j = 1, 2, . . . , n.

From this we further obtain |vi (t1)| = q, D+|vi (t1)|b ≥ 0 and |v j (t)| ≤ q; ∀ −
τ ≤ t ≤ t1 and j = 1, 2, . . . , n.

Then from (3.3) and (3.4) we get, D+|vi (t1)|b < 0. This is a contradiction.
So, |vi (t)| < q; ∀t ≥ 0. So |yi (t)| ≤ uiq; ∀t ≥ 0.
Hence this solution y(t) = (y1(t), y2(t), . . . , yn(t)) is defined and is bounded

on R+.
Hence proved.

4 Global Exponential Stability

Theorem 4.1 Let A1 − A4 hold. Then (2.1) is globally exponentially stable.

Proof For proving this at first we need to assume two solutions of the system (2.1).
Let y1(t) = (y11(t), y12(t), . . . , y1n(t)) and y2(t) = (y21(t), y22(t), . . . , y2n(t)) be
any two solutions with initial conditions: y1(θ) = ϕ1(θ) and y2(θ) = ϕ2(θ); ∀θ ∈
[−τ, 0] where ϕ1(θ) = (ψ11(θ), ϕ12(θ), . . . , ϕ1n(θ)) and ϕ2(θ) = (ϕ21(θ), ϕ22(θ),

. . . , ϕ2n(θ)) By Theorem 3.1 we obtain that y1(t) and y2(t) are defined and are
bounded ∀t ∈ R+

Let zi (t) = y1i (t) − y2i (t) and z(t) = (z1(t), z2(t), . . . , zn(t)).
From A2 we get:

dzi (t)

dt
≤ −si (t)zi (t) +

m∑

l=1

n∑

j=1, j �=l

|di jl(t)|ςi jl |z j (t − τi jl(t))| + |di jl(t)|ςi i i |zi (t)|
(4.1)

Let zi (t) = ui xi (t); i = 1, 2, . . . , n.

Then (4.1) is transformed to:

dxi (t)

dt
≤ −si (t)xi (t) +

m∑

l=1

n∑

j=1, j �=l

u j

ui
|di jl (t)|ςi jl |x j (t − τi jl (t))| + |diii (t)|ςi i i |xi (t)|

(4.2)
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From (A4), we choose a constant ε > 0 such that:

bui si (t) − (b − 1)
m∑

l=1

n∑

j=1, j �=l

u j

ui
|di jl(t)|

b−ai jl
b−1 ς

b−ci jl
b−1

i jl − bui |diii (t)|ςi i i

−ebεt
m∑

l=1

n∑

j=1, j �=l

u j

ui
|di jl(t)|ai jl − bεui >

α

2

∀t ≥ 0 and i=1,2,…,n.
Let qi (t) = ebεt |xi (t)|b.

We calculate the upper right derivative D+qi (t) and by using Young’s Inequality
in (4.2) we get;

D+(qi (t)) ≤ b(ε − si (t) + diii (t)ςi i i (t))qi (t) + (b − 1)
m∑

l=1

n∑

j=1, j �=l

u j

ui
|di jl (t)|

b−ai jl
b−1 ς

b−ci jl
b−1

i jl qi (t)

+
m∑

l=1

n∑

j=1, j �=l

u j

ui
|di jl (t)|ai jl ςci jl

i jl e
bεt sup

t−τ≤b1≤t
p j (b1)

(4.3)
We choose a constant R ≥ 1 such that Rb ≥ (min1≤i≤n{ubi })−1, then for each i =
1, 2, . . . , n;

qi (0) = |xi (0)|b = |ϕ1i (0) − ϕ2i (0)|b
ubi

≤ ||ϕ1 − ϕ2||
min{ubi }

< Rb||ϕ1 − ϕ2||b (4.4)

Hence we further get qi (t) < Rb||ϕ1 − ϕ2||b ∀t ≥ 0 and i = 1, 2, . . . ., n.

We prove this by contradiction. If it is not true, then ∃ some i and t1 > 0 such
that qi (t1) < Rb||ϕ1 − ϕ2||b; D+(qi (t1) ≥ 0 and q j (t) < Rb||ϕ1 − ϕ2||b ∀ − τ ≤
t ≤ t1; j = 1, 2, . . . , n. But from (4.3) we get;

D+(qi (t1)) ≤ 1

ui
b(ε − si (t) + diii (t)ϕi i i )ui + (r − 1)

m∑

l=1

n∑

j=1, j �=l

u j |di jl (t)|
b−ai jl
b−1 ϕ

b−ci jl
b−1

i jl

+
m∑

l=1

n∑

j=1, j �=l

u j |di jl (t)|ai jl ςci jl
i jl e

bεt ]Rb||ϕ1 − ϕ2||b

≤ − 1

2ui
αRb||ϕ1 − ϕ2||b < 0

This is a contradiction. Therefore, qi (t) < Rb||ϕ1 − ϕ2||b ∀t ≥ 0 and i = 1, 2, . . . , n
That is; ebεt |xi (t)|b ≤ Rb||ϕ1 − ϕ2||b; ∀t ≥ 0 Hence |xi (t)| ≤ R||ϕ1 − ϕ2||e−εt ;
∀t ≥ 0Further,wehave

∑n
j=1 |y1i (t) − y2i (t)| ≤ nuR||ϕ1 − ϕ2||e−εt ;∀t ≥ 0There-

fore u = max1≤i≤n{ui }. This shows that from definition (2), system (2.1) is globally
exponentially stable. Hence proved. �
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5 Numerical Simulations and Results

Here we have considered the following examples of our model for the verification
of the analytical results obtained. The considered model is of the form:

dy1(t)

dt
= −s1(t)y1(t) + d11(t)g11(y1(t)) + d12(t)g12(y2(t − τ12(t))) + d13(t)g13(y3(t − τ13(t)))

dy2(t)

dt
= −s2(t)y2(t) + d21(t)g21(y1(t − τ21(t)) + d22(t)g22(y2(t)) + d23(t)g23(y3(t − τ23(t)))

dy3(t)

dt
= −s3(t)y3(t) + d31(t)g31(y1(t − τ31(t))) + d32(t)g32(y2(t − τ32(t))) + d33(t)g33(y3(t))

Example 5.1 Here we consider the activation function gi j (x) = tanh(x) and the
parameters are chosen as: r1(t) = r2(t) = r3(t) = 1 + sin t τi j = −0.49 + 0.2
sin t i, j = 1, 2, 3
b11(t) = 1 + cos t; b12(t) = −(1 + sin t); b13(t) = 5 + cos t
b21(t) = 1 + cos t; b22(t) = −(1 + sin t); b23(t) = 1 + sin t
b31(t) = −(1 + cos t); b32(t) = 1 + sin t; b33(t) = −(1 + sin t)
Here we choose ui = ai j = ci j = ηi j = 1 & s = 2. We see that the system experi-
ences unstable behavior. Figures1 and 2 depicts the unstable nature.

Example 5.2 Again we have considered the activation function gi j (x) = tanh(x).
Obviously it is unbounded and satisfy Lipschitz condition. We take: s1(t) = s2(t) =
s3(t) = 5 + sin t
τi j = 0.8 − 0.2 sin t i, j = 1, 2, 3
d11(t) = 5 + 4 cos t; d12(t) = −(5 + 5 sin t); d13(t) = 1 + cos t
d21(t) = 5 + 1

5 cos t; d22(t) = −(5 + 5 sin t);
d23(t) = −(2 + sin t)
d31(t) = 1 + cos t; d32(t) = −(1 + 1

2 sin t);
d33(t) = −(1 + sin t)

Fig. 1 Solution trajectories
x1(red), x2(green), x3(blue)
of the model showing
unstable behavior when
delay
τi j = −0.49 + 0.2 sin t
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Fig. 2 3D plot showing unstable behavior when delay τi j = −0.49 + 0.2 sin t
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Fig. 3 Solution trajectories y1, y2, y3 of the model showing Stable behavior satisfying A4 when
delay τi j = 0.8 − 0.2 sin t

We choose ui = ai j = ci j = ςi j = 1 & b = 2. Clearly the parameters satisfy A4 and
thus by Theorem 3.1 and 4.1 the solutions of system (2.1) are bounded and globally
exponentially stable. Figures 1 and 2 depict the dynamical behavior.

In Figs. 1 and 2 we see the unstable behavior of the system (2.1) which shows that
the system is unstable in nature. But in the Figs. 3 and 4 we see the stable behavior
of the system (2.1). As in Example 5.2 we have chosen the parameters in such a way
such that (A4) is satisfied. So it clearly illustrates that Theorem4.1 is satisfied. Here
we have considered the delay functions τi jl(t) (i, j = 1, 2, . . . , n, l = 1, 2, . . . ,m)

as nonnegative, bounded and continuous functions on R+ which make the results
simpler alike [4]where discrete anddistributed delay is considered.Also herewehave
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Fig. 4 3D plot showing
stable behavior when delay
τi j = 0.8 − 0.2 sin t
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considered non-autonomous system alike the model in [4] which is an autonomous
system. Our model is more realistic as it is seen that due to progressive processes
of physical systems as well as internal and external disruptions, the strength of the
neuron vary with time.

6 Conclusions

Here we have considered the non-autonomous cellular neural network model with
time varying delays. In many prevailing studies of dynamics of neural networks con-
stant delays have been taken into account. But in this paper we have considered time
varying delay which is very crucial as it has been observed that the occurrence of the
awkward shifts in the phases of neural signals substantially affects the performance
of the system. Numerous diseases are the consequences of this. In this paper the delay
functions τi jl(t) are non-negative, bounded and continuous in the set of positive real
numbers. Our neural networkmodel is more practical as we have omitted the delay in
the self connecting neurons. A signal transmission from a neuron to itself is clearly
negligible. This modification simplifies the existing results. Here we have proved
the boundedness of the state of neuron and the global exponential stability of the
system based on certain criteria which is feasible for analyzing and designing the
neural network. We have estimated the upper bound of the solutions of the system
by applying Young inequality technique and Dini derivative.
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The analytical results involving global exponential stability are demonstrated by
numerical results using Matlab 15. These results can be used to design stable neural
networks with time varying parameters and delays in practice.
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Topological Configuration
in the Heisenberg Spin Sequence
and DNA

Subhamoy Singha Roy

Abstract We have considered here that the conformational properties of a DNA
molecule can be mapped onto a Heisenberg spin system when spins are located on
the axis forming an antiferromagnetic chain. This helps us to study the topological
properties of a DNA molecule in terms of SU(2) gauge fields. The entanglement
entropy of the spin system in a supercoil has been determined and it is pointed out that
this effectively corresponds to the thermodynamic entropy. The model reproduces
salient features of the Rod-Like-Chain model avoiding the “RLC model crisis”.

Keywords Heisenberg spin system · Antiferromagnetic spin chain · Lagrangian ·
Entanglement entropy · Gauss linking number · Chern-Simons topology · DNA
supercoil · Nonquantized monopole

1 Introduction

It is nowwell known thatDNAcan be regarded as a physical elastic object in a viscous
environment. Two strands of double helix are antiparallel and two polynucleotide
chains are coiled about the same axis such that B-DNA (Z-DNA) has right-handed
(left-handed) helical sense. In earlier studies it has been shown that elongation verses
force characteristics of a DNA molecule [1] can be described [2] by the worm-like-
chain (WLC), which essentially depicts a chain by an elastic continuous curve at
thermal equilibrium with a single elastic constant, the persistence length A charac-
terizing the bending energy [3]. It has been shown that the analytic solution of WLC
can be achieved through the mapping to a quantum mechanical problem. In fact
its partition function corresponds to Euclidean path integral for a quantum dumbbell
when rotations and vibrations are ignored so that it represents a rigid rotator. The gen-
eralization of the WLC with twist rigidity was considered by Bouchiat and Merzard
[4] and it was shown that a DNA molecule at small supercoiling can be described
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Fig. 1 DNA molecule as a
spin chain. a DNA molecule
and b the corresponding
antiferromagnetic spin
system

(a)

(b)

by a thin elastic rod involving the twist rigidity. It is called the rod-like-chain (RLC)
model. The partition function can bemapped onto the path integral representation for
a quantum charged particle in the field of a magnetic monopole with nonquantized
charge [4]. The theory is singular in the continuum limit and needs to be regularized
at an intermediate length scale. It is found that the model is in good agreement with
the experimental data at small supercoiling region.

In this note we shall study the specific properties of DNA by taking into consid-
eration that the conformational properties of a DNA molecule can be mapped onto
a Heisenberg spin system. In fact as two polynucleotide chains are coiled about the
same axis with a specific helical sense in a DNA molecule, we may visualize it such
that a spin with a specific orientation is inserted on the axis indeed as the rotation of
the two strands about the axis in the positive direction through an angle π is identical
with that of rotation about the axis in the negative direction through an angle π , we
can uplift the rotation group SO(3) to SU(2). A spin is represented as an SU(2) gauge
bundle [5]. In view of this we can consider that twisting of the two strands can be
taken to be represented by a spin inserted on the axis such that two adjacent coils
have opposite orientations of the spin. This essentially implies that two strands twist-
ing about the axis in the opposite direction can be designated by two spins having
orientations +1/2 and −1/2. When these spins are inserted on the axis such that two
spins having opposite orientations are located in the two adjacent coils with lattice
spacing of one period of helix this represents an antiferromagnetic spin chain. The
nearest neighbour spin—spin interaction can be viewed as to represent the twisting
energy (Fig. 1).

In an earlier paper [6] we have studied the denaturation of DNA by mapping
its conformational properties onto a Heisenberg spin chain. It has been shown that
denaturation occurs when the entanglement entropy of the spin chain vanishes and
appears to be caused by quantum phase transition induced by a quench [7] when
the temperature effect is incorporated in the quench time. Here torsion takes the role
of the external field. In a recent paper [8] it has been pointed out that the sequence
heterogeneity interplays with the entropy effects and we have the onset of denatura-
tion bubbles. The melting profiles for different sequence-sequence DNA molecules
have been studied and the results are found to be in excellent agreement with experi-
ments.We shall study here the topological and elastic properties of DNA bymapping
it onto Heisenberg spin chain by utilising the fact that a spin can be treated as an
SU(2) gauge bundle so that a gauge theoretic treatment of DNA can be formulated.
We have shown in some earlier papers [5, 9] that a spin can be represented by an



Topological Configuration in the Heisenberg Spin Sequence and DNA 199

SU(2) gauge bundle and we can study a spin system in terms of these gauge fields.
Here we shall show that when the conformational properties of DNA are mapped
onto a Heisenberg spin chain we can represent the topological properties such as the
linking number in terms of these gauge fields. The bending as well as the twisting
energy can be formulated in terms of the Lagrangian involving these gauge fields.
It is pointed out that the thermodynamic entropy of a DNA supercoil can be repre-
sented by the entanglement entropy of the spin chain.We have analytically estimated
the free energy per unit length of a DNA supercoil, which corresponds to that of a
strongly confined polymer in a tube and the result is found to be in good agreement
with that obtained from computer simulation. It is shown that the antiferromagnetic
spin chain manifests certain salient features of the rod-like chain (RLC) model when
the partition function is mapped onto the path integral representation of a quantum
charged particle in the field of a magnetic monopole with nonquantized monopole
charge. It is argued that this formulation helps us to avoid the “RLC model crisis”,
which involves the violation of rotational invariance due to the nonquantized value
of angular momentum.

In Sect. 2 we depict DNA as a spin chain. In Sect. 3 we study the topological
properties of a DNAmolecule and also consider the entropy of a DNA supercoil and
we compare the present formalism with the RLC model from an analysis of the spin
system.

2 DNA as a Spin Chain

We consider that two polynucleotide chains are coiled about the same axis with a
specific helical sense in a DNA molecule. This can be viewed as if a spin with a
specific orientation is inserted on the axis of the coil such that two adjacent coils
have opposite orientations of the spin. In fact with each turn two strands move in the
opposite side of the axis and so the spin orientation assigned for the two adjacent
coils should be opposite to each other. It may be noted that twisting of the two
strands in mutually opposite directions can be taken to imply that two strands can be
designated by two spins having orientations +1/2 and −1/2. When these two spins
having opposite orientations are inserted on the axis such that these are located in
the two adjacent sites with lattice spacing of one period of helix this represents an
antiferromagnetic spin chain. The nearest neighbour spin—spin interaction can be
viewed as to represent the twisting energy.

As the two strands can be taken to be designated by two opposite spin orientations
we can consider that a unit vector depicting the tangent t = ∂sr, where r(s) is a space
curve parametrized by the arc length s of the helix can bemapped onto the spin vector
when the spin is located at the spatial point x on the molecular axis about, which the
two strands move. It is noted that any arbitrary deformation of the interwound helices
such as bending, twisting and stretching will deviate the axis from a simple straight
line. A spin vector in the Lie algebra of SU(2) representation can be constructed with
bosonic or fermionic oscillators. We write the spin vector S(x) as
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S(x) = ψ†
α(x)σαβψβ(x), (1.1)

where ψ†(ψ) is the fermionic oscillator function and σ αβ is the vector of Pauli
matrices. A unit vector n is constructed as

n = (
ψ∗

1ψ∗
2

)
σ

(
ψ1

ψ2

)
(1.2)

with

ψ1 = (
cos θ

2

)
eiφ/2

ψ2 = (
sin θ

2

)
e−iφ/2 (1.3)

This helps us to write the spin vector (1.1) in terms of the unit vector (1.2) as

S(x) = (
√
3/2)ψ†

α(x)σ αβψβ (1.4)

We can construct a unit vector nμ with μ = 0, 1, 2, 3 in 3 + 1 dimensions
incorporating the unit vector n given by Eq. (1.2)

nμ = (1/
√
2)

(
φ∗
1φ

∗
2

)
σμ

(
ψ1

ψ2

)
(1.5)

with σ0 = I , being the identity matrix and σ is the vector of Pauli matrices. We
construct the topological current

Jμ = (
1/12π2

)
εμvλσ εabcdna∂vnb∂λnc∂σnd , (1.6)

where (a, b, c, d) correspond to (0, 1, 2, 3) and (μ, v, λ, σ ) correspond to space-time
indices. The current Jμ can be written in the form [10].

Jμ = (
1/24π2

)
εμλσTr

(
g−1∂vg

)(
g−1∂λg

)(
g−1∂σ g

)
(1.7)

with g = n0 I + in · σ , which belongs to the group SU(2). If we demand that in
Euclidean four-dimensional spacetime the field strength Fμv of a gauge potential
Aμ vanishes at all points on the boundary S3 of a certain volume V 4 inside, which
Fμv �= 0 the gauge potential tends to a pure gauge towards the boundary and we
write

Aμ = g−1∂μg (1.8)

with g ∈ SU (2).
We can now write the topological current given by (1.7) as [5]

Jμ = (
1/16π2

)
εμvλσTr{AvFλσ + (2/3)Av AλAσ } (1.9)
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with Aμ given by Eq. (1.8). It is noted that as the spin vector is constructed from
the unit vector n given by (1.2), which is incorporated in the current Jμ as is evident
from Eq. (1.6), we can associate spin with this current Jμ. In fact we can consider
the topological Lagrangian in terms of the SU(2) gauge fields in affine space

L = −(1/3)TrεμvαβFμv Fαβ (1.10)

This gives rise to the topological current [11]

Jμ = εμvλσav × fλσ = εμvλσ ∂vfλσ , (1.11)

where we have taken the SU(2) gauge field Aμ and the corresponding field strength
Fμv as

Aμ = aμ · σ and Fμv = fμv · σ (1.12)

σ being vector of Pauli matrices. From this it appears that the spin vector S(x) can
be depicted as the topological current Jμ given by Eq. (1.11). In terms of this current
a spin system on a lattice can be viewed as if currents are located on the vertices
when gauge fields lie on links [9].

3 Topological Properties of a DNA Molecule

In length scales of a large number of base pairs DNA in vivo is organized into
topologically independent loops. The two strands of a circularDNAmolecule possess
as a topological invariant the number of times they wind around each other, which is
known as the linking number. A B-DNA molecule has one right-handed twist per h
= 3.4 nm along its length. When these are closed in a planar circle without twisting
of the ends the resulting linking number is Lk0 = L/h = ω0L/(2π), where L is
the length and ω0 is the spatial rotation rate of the base pairs about the central axis
[12]. Deviations in the twisting rate from ω0 is measured relative to Lk0 through the
parameter defining the excess linking σ = (ΔLk/Lk0), where ΔLk = Lk − Lk0.
The linking number Lk is expressed as Lk = Tw+Wr , where Tw represents the twist
corresponding to the rotation of the internal degrees of freedom about the molecule
axis and Wr represents the writhe [13–15]. The twist measures the winding of one
curve about the other. It can be mathematically expressed as [12]

Tw =
L∫

0

(ds/2π)[ω0 + Ω(s)] = Lk0 + ΔTw (1.13)
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where Ω is the twist strain measuring the excess or deficit rotation of the base
pairs about the axis and s defines the arc length. The writhe characterizes the chiral
deformation of a curve. One can assign an orientation to a curve and compute the
sum of signed crossings in a planar projection along every direction. Wr is equal to
the average of such sums over all projections [16].

We can understand twist and writhe more explicitly from the following consider-
ations [17]. Let us take that there are two oriented non-intersecting closed curves γ 1

and γ 2 and imagine that γ 2 carries a unit current in the direction of its orientation.
Evidently this gives rise to a magnetic field. Now, applying Ampere’s law to deduce
the number of times γ 1 encircles γ 2 and then using the Biot-Savert law, which helps
us to estimate the magnetic field due to the current we can write

Lk(γ1, γ2) =
∮

r1

B(r1)dr1 = 1

4π

∮

γ1

∮

γ2

{(r1 − r2)(dr1 × dr2)}/|r1 − r2| (1.14)

This is called theGauss linking number, which is symmetric under the interchange
of γ1 ↔ γ2. For a closed loop of DNA we identify the curves with the strands. Two
such parallel curves (γ1, γ2) form the edges of a ribbon of width ε. We now consider
(γ1, γ2) the curve r(t) running along the axis of the ribbon midway between and γ1
and γ2 denote it as γ . The unit tangent to γ at the point r(t) is given by

t (t) = .
r(t)/|r(t)| (1.15)

the dot denoting the differentiation with respect to t. A unit vector u(t) perpendicular
to t(t) lies in the ribbon pointing from r1(t) to r2(t). We can now write

r1(t) = r(t) − (1/2)εu(t)
r2(t) = r(t) + (1/2)εu(t)

(1.16)

Expressing

.
u = ω × u, (1.17)

where ω(t) is the angular velocity vector we can define twist as

Tw = 1

2π

∮

γ

(ω · t)dt (1.18)

If we let r1(t) and r2(t) equal to the single axis curve r(t) in the integrand of (1.14)
the self-linking integral known as the writhe is given by

Wr = 1

4π

∮

γ

∮

γ

{
(r(t1) − r(t2))

( .
r(t1) × .

r(t2)
)}
dt1dt2/|(r(t1) − r(t2))|3 (1.19)
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The write is a property of the overall shape of the curve γ and is independent of
the ribbon that contains it. We have the relation

Lk = Tw + Wr, (1.20)

which is known as the Calugareanu-White-Fuller relation. It may be mentioned here
that the expressions (1.19) and (1.20) were also derived by Frank-Kamenetskii and
Vologodskii [18] in the context of their study on the physical properties of circular
DNAs. Indeed these authors have presented the mathematical basis of the theory of
knots and links as well as the theory of ribbons in their analysis on the topological
aspects of polymers and their biophysical applications. From the point of view that
a DNA molecule can be depicted as a spin system we can determine the linking
number from the spin degrees of freedom. It is noted that the expression of the
current Jμ associated with the spin given by Eq. (1.9) essentially corresponds to the
Chern-Simons secondary characteristics class. The topological charge

q =
∫

J0d
3x (1.21)

corresponds to the winding number associated with the homotopy π3
(
S3

) = Z and
can be written as

q = 2μ = (
11/24π2)

3∫

S

εμvλσTr
(
g−1∂vg

)(
g−1∂λg

)(
g−1∂σ g

)
(1.22)

This charge q essentially represents the Pontryagin index, which is an integer and the
relation q = 2μ implies that μ corresponds to the magnetic monopole strength. This
Pontryagin index can be written as the integral in the four-dimensional manifoldM4

as

q = (
1/16π2

) ∫

M4

Tr(F ∧ F) (1.23)

where F is the two-form related to the field strength associated with the SU(2) gauge
field Aμ. Now, from the relation

∫

M4

Tr(F ∧ F) =
∫

M3

Tr(A ∧ d A + (2/3)A ∧ A ∧ A) (1.24)

where M3 is a three-dimensional manifold and A is the one-form corresponding to
the SU(2) gauge field Aμ we note that the RHS of Eq. (1.24) represents the Chern-
Simons invariant and is thus found to be associated with the Pontryagin index in a
four-dimensional manifold. Noting that the Pontryagin index corresponding to the
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charge related to the gauge current Jμ given by Eq. (1.9), which is associated with
the spin, we can consider spin in the framework of Chern-Simons topology. In fact
from Eq. (1.11) we note that any component of the spin vector can be written as

Jaμ(a = 1, 2, 3) = εμvλσav∂λaσ (1.25)

where av corresponds to an Abelian gauge field. When we project it onto a three-
dimensional manifold this corresponds to the Chern-Simons term εvλσav∂λaσ . In the
Abelian theory we consider the one-form a associated with the gauge field av and
choose the action

S = (k/8π)

∫

M3

εi jkai∂ j ak, (1.26)

where k is an integer. We now pick up some circles Ca and some integers na corre-
sponding to representations of the Abelian gauge group. It is assumed that two curve
Ca and Cl do not intersect for a �= b . As shown by Polyakov [19] the expectation
value of the product

W =
∏

a

exp(ina)
∫

Ca

a (1.27)

with respect to the measure determined by ei S is given by

〈W 〉 = exp

⎡

⎣(I/2k)
∑

a,b

nanb

∫

Ca

dxi
∫

Cb

dy jεi jk
{
(x − y)k/|x − y|3}

⎤

⎦ (1.28)

For a �= b this integral is essentially the linking number

φ(Ca,Cb) = 1

4π

∫

Ca

dxi
∫

Cb

dy jεi jk
{
(x − y)k/|x − y|3} (1.29)

As long as Ca and Cb do not intersect φ(Ca,Cb) is a well-defined integer. Thus,
ignoring the term a = b, we have

〈W 〉 = exp

[

(2π i/k)
∑

a,b

nanbφ(Ca,Cb)

]

(1.30)

The appearance of linking number from the current representing the spin suggests
that the linking number can be associated with a spin system.
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From this analysis it appears that when a DNA molecule is represented as a spin
system the linking number can be considered as a topological invariant. It should
be mentioned that though the linking number is a topological invariant when it is
split into twist (Tw) and writhe (Wr) these entities are not topological invariants.
Since the linking number of a closed DNA molecule remains constant during any
deformation of the molecule that preserves chemical bonding, it can only be changed
by mechanisms in which chemical bonds are disrupted [16].

The entanglement entropy can be written in the form

S ≈ πr2/4r20 (1.31)

r being the radius of the tube and r0 a fundamental area unit. We now identify
r ≈ A, A being the bending elastic constant and r0 is taken to represent the radial
displacement of a given point on the coil, which satisfies the condition |r0| < R [17].
Taking the mean value |r0| = R/2, the entanglement entropy is given by

S ≈ π A2/R2 (1.32)

Similarly for the displacement of a given point on the coil along the supercoil axis,
which is of the order of π P , P being the pitch

S ≈ π A2/(π P)2 (1.33)

So the total entropy is given by

S = π A2/R2 + π A2/(π P)2 (1.34)

Now, we observe that this entanglement entropy effectively corresponds to the
thermodynamic entropy. Indeed for a tube of narrow radius entanglement entropy
cannot vanish, whereas in the limiting case of radius r → 0 we can think of zero
radius (straight line) when the total elastic energy vanishes at zero temperature. In
this case the entanglement entropy also vanishes.

In fact the Berry phase acquired by a spin state in a spin 1/2 chain when the
Hamiltonian is parallel transported along a closed circuit is given by [18–21]

2π∫

0

Aφdφ = 2π(1 − cos θ) (1.35)

φB = π(1 − cos θ) (1.36)

It is noted that the holonomy given by Eq. (1.35) is twice this phase factor. The
effective monopole charge associated with a spin state in an entangled spin system
is given by the relation
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μeff = (1/2)(1 − cos θ) (1.37)

which follows from the relation φB = 2πμ [22]. Evidently the monopole charge
takes nonquantized value apart from the situation when the polar angle θ of the spin
axis with the quantization axis is given by θ = 0, π/2 and π . This nonquantized
monopole charge takes values on theRG flow of themonopole charge in an entangled
spin system. Thus, we observe that when we map a DNA molecule onto an antifer-
romagentic spin system the salient features of the RLC model are well reproduced
avoiding the “RLC model crisis”.

4 Discussion

We have shown that a DNA molecule can be treated as a quantum spin system
such that spins are located on the axis forming an antiferromagnetic chain. These
spins can be associated with SU(2) gauge field currents when gauge fields lie on
the links. We have studied the topological properties of a DNA molecule as bending
(curvature) and twisting (torsion) in terms of these gauge fields. A significant result
of this formalism is that bending and twisting are not independent entities. In fact
bending influences the propagation of twisting strain along the DNA, which has been
supported by experiments.

The formulation of DNA supercoil in terms of an antiferromagnetic spin chain
gives rise to the entanglement entropy, which induces the entropic potential asso-
ciated with the free energy per unit length corresponding to the entropy cost of
confining a stiff polymer inside a narrow tube. The entanglement entropy effectively
represents the thermodynamic entropy and this repulsive entropic potential opposes
the elastically driven collapse of a supercoil, which can occur at zero temperature.

Finally, we have observed that the spin chain model reproduces the salient feature
of the RLC model when the partition function is mapped onto the path integral
representation of a quantum charged particle in the field of a magnetic monopole
with nonquantized charge. However, in this case the RLC model crisis is avoided
as the nonquantized monopole charge appears to take values on the RG flow of the
monopole charge in an entangled spin system.
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Modelling Studies Focusing
on Microphytobenthos and Its Role
in Benthic-Pelagic Coupling

Swagata Sinha, Arnab Banerjee, Nabyendu Rakshit and Santanu Ray

Abstract Microphytobenthos (MPB) are much less conspicuous than other groups
of organisms occupying the benthic photic zone but are ecologically much important
due to their roles in benthic-pelagic coupling, nutrient cycling, association with
macrophytes and as food source for many benthic as well as pelagic predators. While
there have been numerous studies on MPB, modelling studies on its role in benthic-
pelagic couple (BPC) andBPC in general has been negligible.Mostmodelling studies
on MPB have focused on its productivity which depends on many factors such as
irradiance, tidal wave, sediment texture and so on. The role ofMPB in benthicpelagic
coupling helps in maintaining the resilience of the ecosystem, in increasing the
productivity of the system and also regulating the dynamics of the entire system.
The present work is a review article that highlights such modelling studies that have
focused on MPB, its role in coupling and their effectiveness in depicting the real
system and to suggest a future modelling approach that could be applied to study the
aquatic ecosystem as whole including both benthic and pelagic food webs.

Keywords Microalgae · Light attenuation · Nutrient recycling · Vertical
migration · Biofilm resuspension

1 Introduction

Benthos (Greek: ‘bevoo’—meaning bottom) refers to the community of organisms
that live on, in, or near the seabed—the benthic zone. Benthos in euphotic zone
is predominately characterised by photosynthetically active microorganisms though
macroscopic vegetation is also seen. The term microphytobenthos (MPB) refers to
microscopic, unicellular eukaryotic algae (Baccilariophyceae, Chlorophyceae and
Dinophyceae) and prokaryotic Cyanobacteria that grow in a wide range of habitats
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such as intertidal sand and mud flats, salt marshes, submerged aquatic vegetation
beds. Concentration of benthic microalgae in sediment-water interface microhabitat
is very high and may exceed biomass of phytoplankton of overlying water column.
Contribution of MPB to primary production in littoral zones is significant, though it
is less conspicuous than macroalgae or vascular plants [1].

Modelling studies on aquatic ecosystem till date mainly focus on pelagic part
of the food web. However, the distinction between benthic and pelagic life styles
is not possible in the strictest sense, especially in shallow water systems since, the
exchange of organisms and nutrients between the sediment and water column is
common—the MPB being resuspended by water currents and wave action, dwell in
the water column and contribute to the planktonic community [2]. Benthic-Pelagic
coupling (BPC) connects the two food webs inticrately and effects the entire system.
This review work focuses on the different studies done on MPB, BPC and MPB’s
role in BPC and in the end, suggests an approach, that can be used to study the entire
aquatic food web highlighting the role of MPB and BPC.

1.1 Importance of Microphytobenthos

Diversity and functional role of microphytobenthic communities has been a major
research topic since a long time [3]. MPB have very important ecological role as
follows

1. Benthic microalgae and bacteria are the most productive within tropical and tem-
perate intertidal sediments [4].

2. They also serve as important habitats for smaller invertebrates such as chirono-
mids, amphipods and several smaller meiofauna [5].

3. Benthicmicroalgae attached tomacrophytes trap nutrients before they reachwater
column and returns them to sediments when epiphytic algae settle [6].

4. They serve as chemical modulators in aquatic ecosystems [7].
5. Stabilising the substrata is another significant role of benthic microalgae [8]. Sev-

eral species of benthic microalgae such as pennate diatoms and blue green algae,
while growing on the surface layer of the bottom sediments, get attached to the
sand and detritus by the mucilaginous substances called extracellular polymeric
substances (EPS) secreted by themselves, thus stabilising the substrata.

6. MPB are excellent indicators of short term stress owing to their short life span,
sensitivity to nutrient variation and, widespread habitat frommarine to freshwater
ecosystems.

7. Owing to their role in nutrient cycling and trophic interactions, MPB also acts as
connecting or coupling link between benthic and pelagic food webs (discussed
below).
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2 Role of Microphytobenthos in Nutrient Cycling

MPB strongly impacts mineralization pathways and nutrient fluxes at the sediment
interface by virtue of photosynthesis and nutrient assimilation [9]. Lake epipelic and
epipsammic algae also produce extrapolymeric substances, an important source of
fresh organic matter, that can fuel heterotrophic bacteria, thus indirectly influencing
the benthic food web [10]. Several studies have shown that MPB modulate the flux
of nutrients across the water-sediment interface [11].

Amount of particular nutrient (Nu) sequestered by sediments can be estimated
as a function of nutrient sedimentation rate (dSNu/dt) and net nutrient efflux rate
(dENu/dt) across sediment-water interface [12]. Particulate detrital algal fluff resus-
pension is an important process in most aquatic ecosystems but cannot be measured
directly. To prevent an overestimation of particulate organic matter sedimentation,
a resuspension factor, assuming resuspension of 50% of apparent nutrient storage,
was also included. Estimated apparent Nu-storage was quantified, assuming steady
state for MPB biomass using the following mass balance equation (1)

Apparent Nustorage = 0.5× dsNu

dt
− deNu

dt
(1)

2.1 Nitrogen Uptake by Microphytobenthos

Denitrification—the conversion of nitrate or nitrites to nitrogen andmineralization—
the conversion of organic nitrogen to ammonium are two of the most important
steps of nitrogen cycling, determining the fate of the nitrogen in the system; more
denitrification results in more loss of nitrogen from the system.

1. Sundbäck et al. [13] showed that MPB incorporate between 40 and 100% of
remineralized nitrogen andHochard et al. [14] showed that competition for nitrate
and ammonia betweenMPB and bacteria led to reduction of coupled nitrification-
denitrification.

2. Studies have shown that N assimilation by MPB is greater by a factor of 70 than
the loss of N by denitrification [14].

3. It plays an important role in regulating the timing and dynamics of nitrogen fluxes
between sediment and overlying water column over time scales of days [15].

4. MPB-colonized-sediment is a major source of organic matter, directly sustaining
both benthic and pelagic higher trophic levels [16] and contributes towater column
via re-suspension of living cells and particulate organic nitrogen [17].

5. Nitrogen loss from the sediment is however, regulated by both MPB and physical
processes and the extent of effect of both varies seasonally [18].
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3 Factors Affecting Microphytobenthos Productivity

MPB show vertical migration along the sediment in response to different factors, thus
only the proportion of MPB occupying the top most layer of sediment is effectively
productive. Productivity ofMPB is regulated bymany factors, highlighted in Table1.

Table 1 Factors affecting MPB productivity

Factors Effects

Light 1. Light is only available on the mud surface during day time emersion
periods and high turbidity prevents even that [19]

2. Microalgae migrate actively to the top illuminated sediment layer [20]

3. The algae actively migrate back into the deeper layers to prevent
resuspension and predation before immersion period or when light
availability is low

4. Migratory behaviour of MPB helps MPB to maximise photosynthesis
by reducing exposure to photoinhibitory levels of light [21]

Resuspension of MPB 1. Wind induced waves [22] or bioturbation [23] cause resuspension of
MPB

2. Changes the biomass of MPB on the sediment surface

3. Increases the turbidity of the water column causing light attenuation

4. More nutrients are available to the pelagic life forms resulting in their
increased reproduction, which increases the turbidity of the water
column

5. Light attenuation results in decreased MPB productivity [22]

Tidal waves MPB productivity at low tide (when sufficient light reaches the
sediment) is almost twice the productivity at high tide [24]

Temperature [25] showed that the mud surface temperature influences the
photosynthetic capacity of the MPB especially during low tide

Grazing pressure 1. When grazing pressure reduces the total biomass of the MPB in the
photic layer of the sediment [26], productivity is reduced

2. Increased MPB diversity (under grazing pressure) affects
productivity [27]

Nutrition Changes in nutrient concentrations due to resuspension by disturbance
or any sediment biotic factor can significantly alter community structure
of MPB

Sediment texture 1. [28] showed that sediment texture type affect the vertical distribution
of MPB

2. Chlorophyll-a was distributed down to 10cm in the sandy sites as
compared to the distribution down to 4cm in the muddy sites



Modelling Studies Focusing on Microphytobenthos … 213

4 Benthic-Pelagic Coupling

In freshwater lakes, benthic primary production was seen to account for up to 98%
of total primary production [29]. Griffiths et al. [30] defined benthic-pelagic cou-
pling (BPC) as those processes which connect the bottom substrate and the water
column habitats through the exchange ofmass, energy and nutrient. Essential ecosys-
tem functions, such as production and energy transfer in food webs, biogeochemical
cycling and provisioning of fish nursery areas [31] are supported by multiple and
interacting benthic-pelagic coupling processes [32]. Contributions of 30–80% of
the phytoplanktonic nitrogen requirement in shallow (5–50 m) coastal environments
originate from the sediments [33]. Nutrients exported to sediment in the form of
detritus, when re-introduced in water column as re-mineralised inorganic nutrients
creates potential for high primary productivity in the water column even when ter-
restrial nutrient input is low [34].

4.1 Mechanisms of BPC

BPC mechanisms are essential for the ecological understanding of the structure and
function of aquatic ecosystems [35]. Processes involved in benthic pelagic coupling
are shown in Fig. 1.

Fig. 1 Diagrammatic representation of different processes involved in benthic pelagic coupling
(adapted from [36])
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The major mechanisms for benthic-pelagic coupling can be grouped into the
following according to Baustian et al. [36].

(1) Organism movement: Zooplankton and fish by virtue of their migratory
behaviour couple benthic and pelagic systems [37]. Pelagic larval stages of
marine benthicmacrofauna andmany freshwater andmarine benthicmacroinver-
tebrates during emergence serve as prey for pelagic fish [38]. Fishes experience
ontogenetic shifts in behavior and feeding patterns between pelagic and benthic
zones.

(2) Trophic interactions: Studies in theGironde estuary showed that demersal fishes
fed on supra, epibenthic, and pelagic preys [39]. Phytoplankton and microzoo-
plankton face considerable grazing pressure from benthic suspension feeders
such as bivalves [40]. Demersal fishes on the Bay of Biscay continental shelf
consume benthic epifauna and are consumed by pelagic top predators [41].

(3) Biogeochemical cycling: Benthic production in shallow lakes is stimulated by
nutrient sources such as decomposing carcasses of fishes [37]. Benthic zebra
mussels in freshwater systems feed on pelagic phytoplankton and then excrete
dissolved nutrients (P and N) back into the pelagic water column [42]. In shal-
low ecosystems where sufficient light penetrates below the surface mixed layer,
macrophytes, macroalgae, and microphytobenthos dominate benthic primary
production at the sediment-water interface [43] and gross primary production
can exceed respiration [44]. Bioturbation links the benthic and pelagic systems
by suspending sediment that influences phytoplankton and zooplankton recruit-
ment [45] and also stimulates mineralization of organic matter and the release
of nutrients [46], thereby affecting the growth of phytoplankton in the pelagic
zone [47].

5 Microphytobenthos and Benthic Pelagic Coupling

Processes that connect benthic and pelagic habitats influence the ecology of both,
particularly in ecosystems with large areas of benthic habitat relative to water vol-
ume [48].

MPB in Nutrient Cycling: MPB can potentially regulate the light and nutrient
environment of an aquatic system. If MPB restricts resuspension of particulate mate-
rial and efflux of dissolved nutrients, the overlying water column is clear and nutrient
poor which allowsmore light to reach the benthos, thus facilitatingmore productivity
in light limitedMPB and does not facilitate bloom. Both benthic and pelagic systems
are intimately linked and there are two stable states-one benthic dominated and one
pelagic dominated as shown in Fig. 2. Role of MPB in nutrient cycling has already
been discussed in details Sect. 2 of this article.MPB in Trophic Interaction: In the
study ofZanden et al. [49] itwas seen that preyfish population alonewas not sufficient
to support the piscivorous fish population and top-down effect was weak. However,
in presence of zoobenthos (whose population was supported by MPB), piscivorous
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Fig. 2 a A benthic dominated system, which is characterized by high benthic biomass and pro-
ductivity which increases water clarity and reduces nutrient availability in to the pelagic system; b
A pelagic dominated system-resuspension decreases benthic biomass and productivity and water
clarity and increases nutrient availability which in turn results in increased pelagic production. Red
arrows indicate negative effect and blue arrows indicate positive effect (adapted from [17])

fish population thrived and a strong top-down effect was seen, thus establishing the
importance of benthic-pelagic coupling in intensifying trophic interactions.MPB in
Organism Movement: Resuspension to the water column allows MPB to be a part
of the pelagic system and when it settles back it again participates in the benthic
food web. Thus, it is quite evident that MPB plays a role in BPC through all the three
mechanisms of BPC. However, modelling studies focusing on its role in BPC has
been negligible.

5.1 Effect of Anthropogenic Stress on BPC and MPB

Table2 summarises the effects of such stressors on different processes that com-
prises the benthic-pelagic coupling linkages as well as the probable effects on MPB
dynamics.

6 Microphytobenthos Dynamics (Modelling Approach)

(1) Pinckney and Zingmark [61]: Microalgae migrate up and down in the sediment,
moving in and out of the sediment photic zonewhich is responsible for the regular
periodicities in production. This simulation model incorporates three important
factors, viz. (1) in-situ irradiance at sediment surface (taking into account all
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Table 2 Effects of anthropogenic stressors on mechanisms of BPC and MPB dynamics

Stressors Benthic pelagic coupling mechanisms MPB dynamics

Organism
movement

Trophic
interaction

Biogeochemical
cycling

Nutrient overload Increased sinking
of pelagic
organisms [50];
less resuspension
of benthic
biomass [30]

Shift from
benthic
production to
pelagic
production [51]

Increased flow of
pelagic organic
matter to
sediments [52]

Productivity and
biomass
decreases due to
reduced light
availability
because of high
pelagic
production

Invasive species Increased
bioturbation [53];
change in
abundance of
migratory
organisms [36]

Increased benthic
production results
in increased
pelagic
production via
trophic cascade
[54]

Increased
bioturbation
results in release
of nutrients from
sediment [55] and
decreased water
clarity

Effect is
species-specific;
depending on the
feeding habit of
species
introduced

Overfishing Abundance and
behaviour of
migratory
organisms altered
[56, 57];
resuspension of
benthic biomass
depends on type
of fishing gear
used [30]

Predators
removed [58]; if
the predator
targets benthic
organisms then
abundance of
benthic
organisms
increase and if
pelagic organisms
are targets then
abundance of
pelagic organisms
increase [30]

Filter feeding
organisms
decrease in case
of bottom
trawling [30]

In case the fish
species removed
feed on MPB then
MPB biomass
increases;
otherwise it is
reduced

Climate change Ice cover loss
may increase
wave induced
bottom shear [30]

Drastic climate
change can result
in changes in
food web
structure [59]

Vertical flux of
carbon decreases
[60]

May affect
community
structure of MPB
resulting in
changes in
productivity

the factors that affect its quality and quantity), (2) biomass specific production
and (3) vertical migration of the microalgae. The drawback of this model is
that secondary factors affecting production rates such as desiccation at sediment
water interface, high pH values, carbon limitation, photo-inhibition and so on,
seasonal fluctuation of photosynthetic biomass, and effect of tidal resuspended
benthic algae, grazing, self-shading are not taken into account.

(2) (a) Guarini et al. [19]: Vertical migratory behaviour of the microalgae causes
the biomass of microalgae present at the surface of the sediment during day



Modelling Studies Focusing on Microphytobenthos … 217

time emersion period and immersion period to vary greatly which results in a
difference in productivity. To represent this difference in the biomass in two dif-
ferent layers of the sediment at two different times (emersion and immersion),
a deterministic two-compartment model representing the simultaneous evolu-
tion of S-chlorophyll-a concentration (indicating biomass) in the biofilm at the
sediment surface and F-chlorophyll-a concentration in the underlying first cen-
timetre of mud was formulated. The drawback of this model is that two of the
major regulatory processes, loss and production are considered as linear and their
spatial variability is not accounted for. Also, the effect of light and temperature
is not considered.
(b) Guarini et al. [62]: This updated model takes the effect of light and temper-
ature into consideration and compartments comprise of the illuminated photic
layer S (which is equivalent to the biofilm of the previous compartment) and the
aphotic layer B where sunlight does not penetrate. The equations are modified
from the earlier model only in the term of productivity pwhich now includes the
effects of light and temperature and is denoted by pB.
(c) Guarini et al. [63]: When the migration period (that is the total amount of
time spent by microalgae at the surface of the sediment) exceeds the duration of
the emersion period, the biofilm is resuspended at the beginning of the flooding
tide. The main objective of this model was to include a critical time period and
critical biomass, beyond which the biofilm is resuspended.
In this model, the daytime emersion periods are divided into productive period
Ep and the period when the biofilm disappears En; night emersion period N and
immersion period I were also separated. Potential duration of the biofilm Tp is
a function of biomass and the critical biomass Bc above which the biofilm is
exported to the water column is a function of TE, the duration of the day time
emersion. When, Tp is more than TE, that is cell renewal is not completed and
the biofilm is still at the surface during the emersion period, S is resuspended or
exported to the water column.
The model only takes into account resuspension due to tidal effects and fails to
account for resuspension occurring due to bioturbation and sloppy feeding by
grazers. Also, similar to the very firstmodel by these authors, the globalmortality
rates are considered to be linear.

(3) Serâdio and Catarino [64]: It is a model similar to the first model of Guarini et
al. (2000b), the only difference being that dark level chlorophyll-a fluorescence
is measured.

(4) Hochard et al. [14]: The earlier MPB models developed for estimating produc-
tion in the intertidal zone [63] did not take into account the nitrogen cycle or the
diagenetic processes occurring in the sediment which effect the MPB dynamics
considerably [65]. This model is derived from the OMEXDIA model [66] and
includes four extra variables depicting MPB carbon concentration, MPB nitro-
gen concentration, MPB chlorophyll a concentration and EPS. Another major
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difference of this model with the OMEXDIA model is the assumption that all
ammonium released during oxic mineralization is directly transformed to nitrate
was not retained, to account for the competition between nitrifying bacteria and
MPB.

This model takes into account a change in concentration with time as well as with
depth which is advantageous because impact of MPB on diagenesis largely resulted
from changes in the spatial distribution of the compounds-MPB accumulation near
the surface increases oxygen levels due to photosynthesis which directly impacts
mineralization. One major drawback of this model is that, one of the most important
factors affecting MPB dynamics—vertical migration—is not included.

7 Modelling Studies Focusing on Both MPB and BPC

(1) Brito et al. [67]: Preliminary results of the model which couples benthic and
pelagic compartments of the shallow coastal lagoon—Ria Formosa indicate pres-
ence of a large biomass of benthic microalgae, which is mainly dependent on
the nutrients in pore water and by the phenomenon of resuspension strongly
influences the pelagic chlorophyll concentration.

(2) Hochard et al. [68]: The benthic pelagic coupled model of southwest lagoon of
New Caledonia clearly showed that sediment erosion and wave bottom currents
driven pore water advection causes significant disturbances to the system that
relaxes the control ofMPB on nutrient fluxes and results in liberation of nutrients
to the water column, along with increased inputs of suspended sediment organic
matter (OM) and MPB.

(3) Lindegren et al. [69]: The occurrence of regime shifts and how multiple drivers
such as climate change, eutrophication and so on affect the regime shifts in a
eutrophied and heavily exploited marine system Kattegat were tested by the
authors by studying the state and regulatory pathways of the system. When a
large part of the primary production sinks to the bottom and benthic individuals
are favouredmore than pelagic consumers, a regime shift from pelagic to benthic
system occured.

(4) Rakotomalala et al. [70]: The common cockle Cerastoderma edule regulates
the MPB erosion flux in the water column in Baie des Veys (Lower Normandy,
France) as it is a major bioturbator in terms of biomass. The authors of this study
developed a numerical model that reproduces the export of MPB associated with
the biogenic layer erosion considers two compartments—the water column and
the sediment where cockles are present.

Recent modelling studies on BPC [71, 72] have focused on the nutrient dynamics
and physical parameters and not on the biological aspects.
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8 Difficulties of Conducting Studies on Benthic-Pelagic
Coupling

– Coupled links integrate different depths within the water column and may also
do the same on a smaller scale over depths within sediments. However, most
of the surveillance techniques and experimental methodologies available usually
focus on the sediment-water interface. Thus proper quantification of the linkages
between two compartments is a huge undertaking [73].

– Moreover, because of the size constraints of the recording devices of most surveil-
lance and experimental approaches, the materials are observed only when they fall
within a very specific and restricted size range.

– Simple knowledge about the amount ofmaterial leaving or arriving at the sediment-
water interface, without following the subsequent fate of the organisms as to their
spatial distribution provides only a limited view of the benthic-pelagic coupling.

– Biological components of both benthic and pelagic systems have patchy distri-
bution, along both vertical and horizontal axes which poses many difficulties in
sampling.

– Relating emergence and settlement processes of macrofaunal organisms to sed-
iment physico-chemical and microbiological features is also potentially compli-
cated by the scale at which those features are routinely measured.

9 Future Prospects

Even thoughMPB performs many functions—frommaintaining the resilience of the
ecosystem to increasing its productivity and preventing nutrient loss from the system
(through benthic pelagic coupling and its role in nutrient cycling respectively)—
its importance in the studied ecosystem models are understated. There are many
studies focusing on the functional role of MPB, however, studies of aquatic food
web dynamics especially those in themarine systems havemostly focused on pelagic
interactions of phytoplankton production and consumption by herbivorous grazers
while completely ignoring the fate of detritus that settle to bottom and the role of
MPB in recycling the nutrients obtained from these organic matters to the pelagic
system.

Whole system can only be successfully studied if benthic and pelagic systems are
considered in unison. As discussed in Sect. 3, BPC is what connects the two systems.
In Sect. 4, the importance of MPB over other benthic components in BPC has been
highlighted. The main aim of this work was to study the available modelling works
focusing on MPB and its role in BPC. While there are many studies focusing on
MPB, they mainly focus on MPB productivity and very few have been done on its
role in BPC. Studies focusing on BPC mainly consider the biogeochemical aspect
and have not been considered here. The few studies mentioned in Sect. 6, are the only
ones considering some other mechanisms as well but still they consider only MPB
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Fig. 3 A conceptual model developed to study the whole aquatic ecosystem of an estuary

and not other benthic compartments. Whole system studies achieved through static
modelling approaches can be used for conducting such in-depth studies.

Static modelling approaches using ecological network analyses have been applied
in various situations. For example, recent applications include study of the trophic
structure and determination of robustness of reservoir ecosystem [74, 75]. A study by
Rakshit et al. [76] using static models for temporal comparison of trophic structure of
the Hooghly-Matla estuarine system considers a few benthic compartments as well.
However, such an approach has not yet been applied to study the aquatic system as
a whole with equal focus on both pelagic and benthic systems.

A conceptual model integrating both benthic and pelagic food webs has been
developed as shown in Fig. 3.

Development of an MPB based food web model using the above conceptual
diagram and studying it using ENA could yield valuable information about the sig-
nificance and role of the MPB coupled links in different aquatic ecosystems.
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Abstract Recent trends of aquaculture, as well as mariculture, go towards more
profits in minimum time investment. Every growing country is following this trend.
Shrimp culture (both freshwater and saline water) is one of the best-suited cultures
in relation to all of these demands. There is a direct relationship between the ecosys-
tem and Shrimp culture. The particular ecosystem provides suitable factors which
makes Shrimp culture successful. Every ecosystem has its own uniqueness which
causes it to be different from others. Human society derives their benefits from this
natural unique ecosystem and these benefits are considered as the part of ecosystem
services. Ecosystem services can be calculated in terms of ecological economic anal-
ysis. Ecological economics and its application is the major pathway to understand
the relationship between unique ecosystem components and ecosystem services. In
Shrimp culture, especially in case of brackish water culture, the farmers add lots
of external substances in water. These elements cause environmental damages and
affect ecosystem health. Eco-economic study of ecosystem services can enlighten
the conflicts between economic benefits and ecosystem loss. The decision makers
can get an overall idea about how the optimization of ecosystem services could be
done in case of Shrimp culture.
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1 Introduction

Aquaculture has emerged rapidly in last few decades. The aquaculture is trans-
forming into future food supplier to human overgrowing population and it causes
socioeconomic limitations, affecting ecosystem from local to global situations [1].
Form different purposes of human society are being benefited by marine and aquatic
ecosystem. The ecosystem approach to aquaculture (EAA) turns primary concern
of researchers and the concept EAA is not fully understood though EAA defines
an interdisciplinary perspective toward interruption of the ecosystem by aquacul-
ture [2]. Best management practice (BMP) for good aquaculture practice (GAP) is
important to “reduce key impact” and BMP helps to increase producers efficiency,
reduce waste and improve income [1]. Shrimp culture is “high value” product of mar-
iculture. There are many species of shrimp but in worldwide Pacific White Shrimp
(Litopaneus monodon) and Black Tiger Shrimp (Penaeus monodon) are major cul-
tivation species. More or less same process is followed by the entire world for the
shrimp culture [3]. Marine shrimp species generally are cultivated in water bodies
of coastal region. Trend of marine shrimp culture is arising inland by creating an
artificially ideal environment for shrimp culture. Most intensive practice for eco-
nomic growth with increasing demand in world market is befalling in marine shrimp
culture. Ecological and environmental manipulation is a maximum outcome of this
culture. Service provided by ecosystem and ecosystem functioning is changing from
the perspective of value, drastically with some magnitudes. Eco-economic valuation
of natural capital is derelict. Time has come to make some changes to establish some
sustainable development goals to diminish the conflicts between mariculture and
sustainable ecosystem and good decision making [4].

2 Mari-Culture as New Form of Aquaculture

Mariculture is a branch of aquaculture where cultivation of fish and others marine
organisms are done for human consumption. Major mariculture organisms are dif-
ferent marine fish, oysters, shrimps, marine algae etc. Environmental resources play
main function in culture of marine organisms and the supply of the resources should
be in accurate for each and every culture and cultured species [5]. From1984, produc-
tion of food by aquaculture is growing steadily near about 10%per year in comparison
to live stock meat and capture fisheries and expansion of aquaculture happened in the
year of 1980 [6]. There are lots of different techniques for the mariculture, evolving
day by day. Among these techniques, cage culture and closed system culture are
important ones. In some countries (i.e. France), closed system culture is superior
over widely accepted cage farming. Closed system culture is more eco-friendly and
follows more conventional hatchery operation [7]. Mariculture with offshore cage
culture system first grounded its foot in the 1950s at Japan and from last few decades
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mostly salmon farming in North America and northern Europe is occurred by cage
farming [7].

3 Shrimp Culture as a Trend of Recent Aquaculture
as well as Mariculture

Every coastal country’s recent trend of mariculture goes towards shrimp harvesting
industries and a large part of their coastal economy is dependent on foreign export
of shrimp. The boost up of shrimp production has been gradually raised from 1975
and before 1975; it was accounted that 2% world market occupied by shrimp [8].

Global Status of Shrimp Culture

R. R Stickney reported in Encyclopedia of Aquaculture, 2000 that “shrimp culture
increased 300% from 1975 to 1985, 250% from 1985 to 1995, and if it increases
200% between 1995 and year 2005, would shrimp culture production will be at 2.1
million metric tons (hereafter abbreviated as MTD 1.1 standard tons D 2,204.6 lb,
or 1,000 kg). Present world shrimp culture production is 737 thousand MT annually,
or 24.5% of the 3 million MT would market for shrimp.” From decades shrimp is
one of the most-traded product and now it is second in value term among the other
aquaculture products (Fig. 1). Different countries from Asia lead the World shrimp
production. Shrimp export contributes in economic growth but now shrimp produc-
ing countries face the challenges of decline in production by disease outbreak and
global price of shrimp is falling [9]. Over production of shrimp is the main cause of
decreasing price of shrimp in Global market. From FAO report of The State ofWorld
Fisheries and Aquaculture 2016, the scenario of increasing production of crustacean
(shrimp) has been cleared—“annual per capita availability of crustaceans grew sub-
stantially from 0.4 kg in 1961 to 1.8 kg in 2013”. Shrimps and others aquaculture
production contributes employment to rural poor people by labour inputs, seed and
feed collection [10]. Shrimp, Prawn and lobster cultivation is followed by different
countries which are environmentally equipped by proper ecological condition for
cultivation of these crustaceans. Recently production of shrimp has shown alteration
of ecosystem services and worldwide shrimp culture faces the challenges to sus-
tainable development. Sustainability is necessary to maintain the balance between
ecosystem health and economic growth.

4 Ecosystem Services and Ecological Economics

Ecosystem services are ecological features or functions that have direct impacts on
human society. The benefits are driven by human from features and functioning of
ecosystem is known as ecosystem services [11]. Different factors such as economic
growth, politics, religious activities, culture and lots of biophysical factors regulate



228 S. Das et al.

Fig. 1 Shares of the main group of species. Here it shows among the most trading products of
aquaculture, Shrimps and prawns are in the second position according to their share value percentage
neglecting the “other fish” group (which considers all othermarine and freshwater species). Adapted
from FAO [9]

the ecosystem services of a particular ecosystem [12]. The major factor for chang-
ing and losing native ecosystem services is anthropogenic stress. With relation to
increasing human population size and economic growth over last few decades, near
about 60% of ecosystem services had been disrupted or lost [13].

4.1 Forms of Ecosystem Services

Ecosystem which gives services to human society is also referred as ‘natural capital’
and the term ‘capital’ is connecting ecosystem services with human economy [14].
In the year 1997, Robert Costanza and other co-workers listed different ecosystem
services as functions for a particular study. These are as follow: (1) Gas regula-
tion (e.g.—CO2/O2 regulation, SOx level) 2. Climate regulation (e.g.—greenhouse
gas regulation) 3. Disturbance regulation (e.g.—storm protection, flood control) 4.
Water regulation (e.g.—providing water for agricultural) 5. Water supply (e.g.—
provisioning water by watersheds) 6. Erosion control and sediment retention (e.g.—
prevent loss of soil by wind) 7. Soil formation (e.g.—weathering of rocks and accu-
mulation of organic materials) 8. Nutrient cycling (e.g.—nitrogen, phosphorus and
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other elements cycle) 9. Waste treatment (e.g.—waste treatment, pollution control)
10. Pollination (e.g.—provide pollinator for reproduction) 11. Biological control
(e.g.—predators, parasitoid control herbivory) 12. Refugia (e.g.—habitat for migra-
tory species) 13. Food production (e.g.—production of fish, crop) 14. Raw materials
(e.g.—production of lumber) 15. Genetic resources (e.g.—medicines, gene for resis-
tance against pathogen of organism) 16. Recreation (e.g.—eco-tourism) 17. Cultural
(e.g.—spiritual, cultural support) [15].

4.2 Valuation of Services Provided by the Ecosystem

The crucial part of ecosystem service is to define value of a natural capital. The
ecosystem service has a holistic approach toward evaluation of ecosystem structure,
function and processes for proper valuation. The value includes whole marketed and
non-marketed mechanism to detect the value of a particular ecosystem and its ser-
vices [16]. There are lots of doubts. The basic point of views behind the doubt has
completely contrast outcomes. One of them considers nonanthropogenic approach
to derive the value and another one considers anthropocentric, economic approach
to derive value of ecosystem services [17]. To detect the proper value of ecosys-
tem services, the holistic approach has been taken which considers anthropocentric
approach and all value of services are interpreted into economic valuation. Few mis-
apprehensions are present in terms of economic valuation. There are lots of believes
that mention economic valuation is just an assessment of the commercial value of
anything. Actually economic valuation incorporates many components which have
no commercial or market value [18]. In the book of “Valuing Ecosystem Services
toward Better Environmental Decision-Making” reported to clear concept of eco-
nomic valuation of any ecosystem service that is: “The instrumental value of an
ecosystem service is a value derived from its role as a means toward an end other
than itself. In other words, its value is derived from its usefulness in achieving a
goal. In contrast, intrinsic value is the value that exists independently of any such
contribution; it reflects the value of something for its own sake. For example, if a
fish population provides a source of food for either humans or other species, it has
instrumental value. This value stems from its contribution to the goal of sustain-
ing the consuming population. If it continues to have value even then it were no
longer “useful” to these populations (e.g., if an alternative, preferred food source
were discovered), that remaining value would be its intrinsic value. For example, if
the Grand Canyon and the Florida Everglades have intrinsic value, that component
of value would be independent of whether humans directly or indirectly use them—
either as sites for recreation, study, or even contemplation. Intrinsic value can also
stem from heritage or cultural sources, such as the value of culturally important
burial grounds. Because intrinsic value is the value of something unrelated to its
instrumental use of any kind, it is often termed ‘noninstrumental’ value” [17].
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4.3 Ecological Economics: Approach to Connect Natural
Capitals with Ecosystem Services

Ecological economics is an interdisciplinary or transdisciplinary subject which
relates social science with economics and economics with natural science. Eco-
logical economics deals with quantification of ecosystem services. Human societal
pattern now has been entrapped into economic growth. Economic growth creates dif-
ferent problems like unequal distribution of wealth, reduction of birth rate of human
population, environmental pollution, ecosystem degradation and loss of natural cap-
itals [16]. Measures of economic activity which is used by most nations like gross
domestic product (GDP), mostly neglect depletion of natural capitals [19]. Natural
capital is one of the main controlling factors of consumption of goods and individual
utility. For a holistic overview of ecological economics natural capital is included
along with others three capitals (built, social and human capitals) [20]. It has been
cleared that in the absence of “human capital”, “social capital” and “built capital”
ecosystem never dispense any benefits [21]. The estimation of value of ecosystem
services provided by any biome and its alteration by human manipulation can be
estimated by quantifying benefits before and after human manifestation [22].

4.4 Ecological Footprint and Natural Capital

Ecological Footprint (EF) is one of the key indicators of natural capital. Ecological
Footprint is defined as “area of productive land and water ecosystems required to
produce the resources that the population consumes and assimilate the wastes that
the population produces, wherever on Earth that land and water may be located”
[23]. Robert Costanza denoted Ecological Footprint as, “the EF a useful provisional
indicator of sustainability at the global scale, but it should be cast in these terms;
as a technologically skeptical indicator” [24]. Though assessment of the theoretical
concept of Ecological Footprint does not have any particular method but it is an
important indicator of natural capitals.

5 Farmer’s Manipulation in Shrimp Culture

In case of shrimp culture, particular ecosystem and particular environmental condi-
tions are very important. The suitable ecosystemprovides specific ecosystem services
instead of that the increasing production of shrimp or any others product in a par-
ticular ecosystem could never be possible but the major question is alteration of
ecosystem services.

• Different types of culture methods and harvesting procedures are followed world-
wide for shrimp culture. Among these culture methods, semi-intensive culture is
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most popular aquaculture method. There are many types of semi-intensive cultural
methods like continuous and batch culture [25].

• In continuous culture, regular stocking and selective harvesting are done and water
is not drained out. It results that large remaining shrimp is predominant and low-
ering the growth rate of new stocks by competition.

• In batch culture, stocking is done in each pond once and after harvesting product in
desire size entire water would be drained out. In contrast to the continuous culture,
it avoids competition and predatory effect of remaining shrimps.

• In low, medium, high technology semi-intensive system the stocking density is
maintained from low number to high number respectively. According to intensive
culture methods, different parameters are set and water quality is maintained. The
yearly cycle of production varies in tropical and subtropical countries and due to
seasonal variation implementation of culture methods also differ.

• In culture methods, periodic or daily measurement of pH, DO2, temperature, hard-
ness, alkalinity, ammonia, nitrite, nitrate is important to maintain proper growth
rate of shrimps. Weeds grows in the shallow water and shows r-selected growth
[26]. These aquatic weeds act as shelter and food for shrimp. Farmers generally
provide food two to three times daily.

• In open intensive and semi-intensive culture of brackish water shrimp, exchange
of water, application of fertilizer and food is practiced [27].

• Graslund and Bengtsson (2001) reported in an enlisted manner all chemicals, fer-
tilizers, insecticide and disinfectants are used in shrimp farming, shrimp hatcheries
with the impact of these substances [28].

6 Alteration of Ecosystem Services by Shrimp Culture

For brackish water shrimp culture by intensive or semi-intensive methods, generally
saline water is influent and effluent from source by proper channel. There is a huge
difference in quantity of factors between influent and effluent water of shrimp farms.
Effluent water of shrimp culture contains different chemical substances, organic
material, excreta etc. Effluent water is generally drained into riverine or marine sys-
tem. In marine water, nitrate is main limiting element of phytoplankton growth but in
case of shrimp (most likely marine species: Penaeus vannamei, Penaeus monodon,
Penaeus stylirostris) the nitrate concentration exceeds the standard value from more
than 55% [29]. This causes major threat of eutrophication of sea and river. Apart
from farming manipulation by different chemicals water gets contaminated by sedi-
ment and a direct relation occurs between sediment accumulations, pond water, food
consumption rate, stocking density at different stages of shrimp [30].

Marine and riverine ecosystems provide lots of services: (a)water supply, (b) food,
(c) salt production, (d) oxygen supply, (e) medium of transport, (f) maintenance of
biogeochemical cycles, (g) cultural support, (h) spiritual support etc. Marine shrimp
culture directly or indirectly alters these services. Popular practice of exotic shrimp
culture decreases the value of native cultivated species.Dischargedwater fromshrimp
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culture pollutes water and increases contamination of disease. For domestic water
supply, the purification cost increases due to proper implementation of purification
methods. Conversion of fertile land into shrimp farm is a recent trend in coastal
countries of Asia, as results, soil fertility is permanently degraded and these changes
are unaltered.This brief scenario of alterationof ecosystemservices by shrimpculture
is retention point of decision making.

7 Eco-Economic Analysis of Loss of Ecosystem Services
and Economic Gain by Shrimp Culture

Shrimp culture as well as mariculture increase value of some services (e.g. food
production value) consequently, decrease the value of some ecosystem services.
Cost and benefit analysis is a useful economic method which can help to detect
actual holistic benefits with relation to cost of ecosystem services [31].

PBt = Bt

(1+ r)t
(1)

PCt = Ct

(1+ r)t
(2)

Here, r is the discount rate; Bt is the benefit in tth year; Ct is the cost in tth year; PBt

and PCt are discounted present value of cost and benefit respectively. Net present
value (NPV) is another important factor of cost-benefit analysis. NPV represents net
sum of benefits in every year.

NPV =
T∑

t=0

Bt − Ct

(1+ r)t
(3)

Benefit to cost ratio (BCR) is an important method of cost benefit analysis and
formula of BCR is:

BCR =
T∑

t=0

Bt

(1+ r)t

/ T∑

t=0

Ct

(1+ r)t
(4)

Higher value of BCR indicates efficient use of resource and environment. Among the
economics, cost benefit analysis is popular method and now it shows its relevancy
by its usefulness [32].

Emergy is ameasure that determines transformation of energy into different forms.
Each of the transformed energy contributes in different support system for human
welfare and the flow of solar energy through different transformation has role in
economy of human society. For production of one joule of any type of energy how
much available energy is directly or indirectly required known as Emergy [33]. Solar
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energy is actual source of all energy. Collection of data, construction of energy flow
diagram, “transformation of the flows into solar emergy”, calculation emergy based
indices are main analysing procedure [34]. Among these indices, environmental load
ratio (ELR), emergy yield ratio (EYR) and environmental sustainability index (ESI)
are important ones [34]. These indexes are important for accounting energy in social
and economic sector for different services.

ELR = F + N

F
(5)

EYR = Y

F
(6)

ESI = EYR

ELR
(7)

Here, Y = the energy output, F = the energy input, measured by feedback from
economy, N = non-renewable input.

Environmental load ratio (ELR) is useful to detect total nonrenewable energy
released per unit of local renewable energy. Emergy yield ratio (EYR) expresses
total energy output per total energy input. Environmental sustainability index (ESI)
is the total emergy yield per environmental loading. So these indexes relate princi-
ples of thermodynamics with socioeconomic aspects as well as ecoeconomic conse-
quences. In ecological economic studies the emergy is represented by emdollarwhich
defines the ratio of the total yield from shrimp culture (expressed in currency) and
total emergy in money. Elevated value of emdollar specifies more loss of ecosystem
functioning and services [34, 35].

For the restoration of ecosystemservices public support ismandatory [36].Contin-
gent ValuationMethod (CVM) is used to detect the value of ecosystem services from
people perspective by evaluating people willingness to pay (WTP) for restoration or
maintaining specificity of ecosystem services [37]. Distinctness of demographic and
other situation could be used as independent variables during formulation to forecast
variation of WTP in relation to people’s present condition [36].

FAO’s dataset of Indian freshwater and marine shrimp production (in ton) from
2012 to 2016 reflected emerging production of shrimp but maximum production
increases for the marine shrimp. Environmental and ecosystem damage is greater in
case ofmarine shrimp culture. So, Fig. 2 indirectly indicates the increasing ecosystem
alteration along with the shrimp production.

8 Ecosystem Service, Ecological Economics, Policy Making
and Ecosystem Based Fisheries Management (EBFM)

Nonlinear change in ecosystem functioning and services always makes difficulties
for policymakers. The concept of an externality of economics deals with consecutive
result of ecosystem services [38]. For policy making, there is a need to proper assess-
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Fig. 2 Comparison productions of fresh water and marine shrimps in India (2012–2016)

ment of the linked effect of economy on environment and vice versa [39]. Decision
makers or public policy makers always focus on some prime objective to overcome
the conflicts between eco-economic and ecosystem services with human popula-
tion’s needs. In this aspect a good example has been reported by T. D. Crocker and J.
Tschirhart: “the decision of a nation to gazette a new national park could require deci-
sion makers to (1) educate the public about the benefits of this decision, (2) attempt
to ensure the equitable distribution of benefits (3) impute an economic valuation of
the services provided by the park and (4) consider landscape management issues
inside of and adjacent to the park” [39]. How can all ecological, sociocultural, eco-
nomic cost and benefits act as a driving force of changes in ecosystem services and
value of natural capital and how far the policy is viable with relation to the ecosys-
tem dynamics are important questions before drawing any sustainable decision [40].
A holistic approach towards ecosystem and its all criteria are important aspects in
policy making. Ecosystem based fisheries management (EBFM) depicts a holistic
approach to maintaining ecosystem qualities and sustainability with relation to the
benefits from ecosystem services [41]. The relevance of EBFM in policy making is
useful as EBFM is accumulated overcome of ‘ecological factor’, ‘human welfare’
and ‘management’.

9 Conclusion

Overall view of shrimp culture and its relationship with ecosystem services and
ecological economics has been enlightened. In relation to growing human population
size supply of protein diet is increasing day by day and that is enforcing growing
aquaculture. In growingphaseof aquaculture itmodifies itself by innovative strategies
and techniques. These transitions are cause of experimentation with environment
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as outcomes different alterations from ecosystem function to services occurs. The
impact on human population is indirect and silent. Here, in this review focus is
very specific. Shrimp is one of the major aquaculture products, emerging extensively
in tropical and subtropical countries. Analysis of ecological economics, ecosystem
services is very relevant for decision making and drawing a good policy to create
balance between sustainable growth of shrimp culture and ecosystem individualities
by its functions and features. The dynamic changes of ecosystem and shrimp as well
as any cultivation is difficult to predict and it needs to establish a good model to
understand the complexity in simple way.
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Abstract An Ecosystem can be defined as a community of interconnected elements
comprising of living (biotic) and nonliving (abiotic) components of their surround-
ing environment interacting with each other. Among different types of ecosystems,
estuarine system is of interest because the most sensitive land-water-atmosphere
interactions are pronounced at these regions. It provides diverse habitat for wide
variety of aquatic resources of ecological and economic significance including fin-
fish, prawn, bivalve, gastropod, fiddler crab and plankton and so on. But recent years
have seen gradual degradation of estuarine ecosystem, mainly in coastal landscape of
India, owing to the different anthropogenic factors such as overfishing, development
of agriculture and sewage from aquaculture farms, expansion of human settlements.
These hamper the ecological balance affecting the food web of the concerned sys-
tems. It may lead to impacts including extinction of species, alternation of species
diversity of different trophic levels, declination of mean trophic level within the sys-
tem and significant habitat modification or destruction. Beside this, it also affects
the social and economic wellbeing of the coastal communities. So it is important for
us to know about recent trends of Indian estuarine ecosystems biodiversity and their
proper sustainable management in future. For this purpose, understanding of how
ecosystems are structured and how they function is much necessary and ecosystem
health analysis is a more scientific and appropriate approach than any other ecolog-
ical studies. So, our study emphasizes on three major aspects: (1) current scenario
of ecosystem heath and biodiversity of Indian estuaries at both temporal and spatial
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1 Introduction

The term estuary is derived from the Latin ‘aestus’ meaning heat, boiling or tide.
Specifically, the adjective ‘asetuarium’ means tidal. According to Oxford Dictionary
estuary defines as “the tidal mouth of a great river that is where the tide meets the
current”. However the most widely accepted definition of an estuary in the scientific
literature is given by Pritchard [44]. An estuary is a semi-enclosed coastal body of
water which has a free connection with the open sea and within which sea water
is measurably diluted with fresh water derived from land drainage. The fresh water
discharge from rivers varies with the seasonal and tidal changes during a year causes
considerable fluctuations in salinity and other physico-chemical conditions resulting
in significant changes in estuarine ecosystem. Besides this, estuaries have great eco-
logical significance because the most sensitive land-water-atmosphere interactions
are pronounced in these regions. Along with tropical rainforests and coral reefs,
estuaries are considered as the world’s most productive ecosystems, more produc-
tive than the rivers and oceans that influence them from either side. This is due to
the fact that nutrient rich river waters combine with warmer, light infused shallow
coastal waters and the resulting upwelling process of nutrient-rich deep ocean waters
support high primary productivity. The mixing of lighter fresh water and heavier salt
water trap and circulate nutrients in such a manner that they are often retained and
recycled by benthic (bottom dwelling) organisms to create a self-enriching system.
Estuaries also act as energy subsidies through tidal transport of food and nutrients
and removal of wastes. This vast primary productivity is the cornerstone of the estu-
arine food chain, providing food for large populations that inhabit the estuary. In
some estuaries, where productivity exceeds the amount that can be used within the
estuary, the action of regular tidal flushing moves nutrients and organic materials
to adjacent coastal waters thereby increasing their productivity. So, estuaries play a
key role in sustenance and maintenance of other ecosystems by enriching their pro-
ductivity. An important characteristic of most estuaries is the presence of mangrove
forest in the deltaic region of the river mouth. This unique vegetation has a signifi-
cant role in promoting fish diversity. Thus, the estuaries and connected mangroves
constitute important fishery resources of the country. As for example, the Hooghly
Matla estuarine ecosystem with adjacent mangroves is one of the largest ecosystems
of the world [41] and has great ecological importance in coastal landscape of India
as it supports many essential fisheries of high economic value like Hilsa Population.
It provides a nursery for the larval forms of some marine fish species and provides
shelter and food for many young and adult fish and shellfish. These in turn provide
food for other levels of the food chain including shore birds, waterfowl, larger fish
and marine mammals.

Estuarine ecosystems are some of the most heavily used and threatened natural
systems globally [12, 24, 68]. The degree of exploitation due to human activities is
intense and increasing; 50% of salt marshes, 35% of mangroves, 30% of coral reefs,
and 29% of seagrasses are either lost or degraded worldwide [40, 63, 64, 66, 67].
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2 Studies on Indian Estuaries

India has a rich enormous bounding coastline and vast stretches of estuaries with an
area of approximately 7500 km. India has 14 major, 44 medium and 162 minor rivers
with a total catchment area of 3.12× 106 km2, discharging 1645 km3 of freshwater
every year to the seas around the country. The major rivers are Ganga, Mahanadi,
Godavari, Krishna and Kaveri on the east coast and Narmada and Tapti on the west
coast. These seven rivers have a catchment area of 1.83× 106 km2 and discharge
812 km3 of freshwater transporting 1194× 106 ton of silt to the marine waters every
year [70]. Almost 50 estuaries are present along both east and west coast in India.
These are summarized in the following Table1.

Table 1 Summary of different Indian estuaries along both east and west coast in India

East Coast estuaries West Coast estuaries

1. Hooghly estuary 25. Kadinamkulam estuary

2. Rushikulya estuary 26. Estuaries of Kochi

3. Bahuda estuary 27. Korapuzha estuary

4. Mahanadi estuary 28. Beypore estuary

5. Godavari and Krishna estuaries 29. Olipuram Kadavu backwaters

6. Gosthani estuary 30. Edava-Nadayara and Paravur backwaters

7. Kandaleru estuary 31. Poonthura estuary

8. Swarnamukhi and Konderu estuaries 32. Puthuponnani and Chandragiri

9. Araniar estuary 33. Shiriya, Thotapally and Pozhikara

10. Ennore estuary 34. Netravathi and Gurupur estuaries

11. Cooum estuary 35. Mulki estuary

12. Adyar estuary 36. Pavenje estuary

13. Muttukadu backwaters 37. Gangolli estuary

14. Edaiyur–Sadras estuarine complex 38. Kali estuary

15. Uppanar estuary 39. Mandovi–Zuari estuarine complex

16. Vellar estuary 40. Estuaries of Mumbai

17. Kollidam (Coleroon) estuary 41. Waghotana estuary

18. Kaveri (Cauvery) estuary 42. Vashishti estuary

19. Agniar estuary 43. Purna estuary

20. Kallar estuary 44. Mahi estuary

21. Pinnakayal and Pullavazhi estuaries 45. Damaganga - Kolak river estuaries

22. Athankarai and Kanjirangudi 46. Par river estuary

23. Kottakkarai, Uppar, Vaigai, Kottakkudy 47. Ambika-Kaveri-Kareira estuarine complex

24. Thengapattanam estuaries 48. Mindola river estuary

49. Tapti and Narmada river estuaries

50. Auranga estuary
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Considerable work has been carried out on Indian estuaries such as Hooghly,
Mahi, Narmada, Tapi, Puma, Par, Ambika, Auranga, Kolak, Damanganga, Ulhas,
Mahim, Savitri, Kundalika, Vashisti, Ashatmudi and Erniore estuaries and Cochin
Backwaters during last four decades. The Zoological Survey of India (ZSI), Kolkata
and ENVIS centre, Annamalai University have published many reports on estuaries
between 1985 and 1995.Many estuaries of the Indian subcontinent were thus studied
and several experiments were performed on their hydrochemistry, geomorphology,
and so on. These are summarized in following Tables2 and 3.

3 Hooghly Estuary

HooghlyMatla estuarine ecosystem (HMES) ecosystem is one of the largest detritus-
based ecosystems of the world [41]. This estuarine complex along with mangrove
forest has achieved a notable place on the global map due to its greatest halophytic
formation in the world [51]. It extends over two countries: India (West Bengal) and
Bangladesh. The entire region is characterised by a dense network of rivers, canals
and creeks. It is situated 21◦ 32′N and 22◦ 40′N; 88◦ 05′E and 89◦E, at an altitude
0–10 m above sea level and just south of Kolkata. It houses the estuarine phase of the
River Ganges and measures 9630 km2, out of which 4262 km2 is intertidal area. It
also supports many essential fisheries of high economic value. Maximum catches are
recorded (90%) from lower part of the estuary, including some fishing centres such
as Diamond Harbour, Kakdwip, Namkhana, Bokkhali, Jambudwip, Frasergung and
Sagar Island [26]. But in recent years this ecosystem is degrading gradually owing
to the different anthropogenic factors such as overfishing, development of agricul-
ture, sewage discharge from aquaculture farms expansion of human settlements (900
km2; 2001 census), establishment of Farakka barrage in the upper stream of river,
construction of Kolkata-Haldia ports and climatic factors such as rise in temperature,
sea level, salinity and increasing frequency of severe cyclones such as Nargis, Bijli
and Aila in recent years [14, 15]. These hamper the ecological balance affecting the
foodweb of the concerned system. The increasing trend of fish yield over years (from
27014.5 tonnes in 1984–93 to 64204.3 tonnes in 1999–2003) has resulted in a drastic
decline in the fish catch per unit effort (CPUE) from 189.7kg in 1990–91 to 44kg
in 2002–03 [27, 38, 59]. Futhermore, it may lead to critical situations where fish
population will no longer be able to sustain themselves and may become extinct. For
example, species like Lisa tade, Lates calcarifer have declined and Tenualosa toli,
Chanos chanos are totally absent in recent years [26, 59]. These situations may lead
to impacts including alternation of species diversity of other trophic levels, declina-
tion of mean trophic level within the system and significant habitat modification or
destruction. Besides this, it affects the social and economic wellbeing of the coastal
communities that depend on fish for their way of life.
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Table 2 Summary of work done in different Indian estuaries with respect to Hydro-chemical,
Geo-chemical

Worker Work done

Hydro-chemical properties

Nair and Azis [37] Studied hydrochemical and geochemical properties of water and
sediment nutrients of Ashtamudi estuary, Kerala

Upadhyay [65] Monitored seasonal pattern of temperature, salinity, pH, dissolved
oxygen, phosphate, nitrate and silicate profiles of the Mahanadi estuary

Sastry and Chandramohan [58] Comprehensive survey of the pollution status of Godavari estuary

Anilkumar et al. [2] Monitored mixing characteristics and seasonal dynamics of Beypore
estuary

Saha et al. [55] Focused on physicochemical characteristics in relation to pollution and
phytoplankton production potential of brackish water in Sundarbans of
India

Balakrishna and Probst [4] Studied the source of organic carbon and nitrogen in the Godavari river
and its tributaries, the yield of organic carbon from the catchment,
seasonal variability in their concentration and the ultimate flux of
organic and inorganic carbon into the Bay of Bengal

Biswas et al. [6] Studied seasonal and spatial variation of dissolved and atmospheric
methane (CHU) in the estuaries of the Sundarban mangrove ecosystem.

Anil Kumar et al. [2] Studied water quality of Adimalathura estuary, a small brackish water
biotope of Kerala, exposed to pollution from the domestic wastes and
coconut husk rotting. This study revealed the deleterious effects of
waste disposal on the water quality and showed marked increase in the
concentration level of nutrients and a decrease in dissolved oxygen

Prabu et al. [43] Reported higher nutrient concentrations during the monsoon season and
lower during summer while studying seasonal variations in Uppanar
estuary

Krithika et al. [21] Seasonal and tidal dynamics of dissolved nutrients, chlorophyll and
primary production in the Pichavaram mangrove system, Southeast
coast of India

Soundarapandian et al. [61] Investigated physicochemical parameters such as rainfall, temperature,
salinity, pH, dissolved oxygen and nutrients like nitrate, nitrite,
inorganic phosphate and reactive silicate in Uppanar estuary, Cuddalore,
southeast coast of India

Pradhan et al. [43] Applied multivariate statistics and principal component analysis (PCA)
to mark the influence of modernization on the quality of the Devi estuary

Geo-chemical properties

Ghosh and Choudhury [9] Focused on the sediments of Hoogly estuary and also distribution of
organic carbon, total nitrogen, available nitrogen, total phosphorus and
available phosphorus in relation to the texture of the sediment

Nasnolkar et al. [39] Studied sediment organic carbon, total nitrogen, total phosphorous and
hydrography of the overlying waters of the estuarine region in Mandovi
estuary and a significant linear variation was indicated among nutrients
and sediment characteristics

Rajasegar et al. [45] Emphasized the effect of nutrient rich water from the shrimp farms on
sediment composition, organic carbon, total phosphorus and total
nitrogen content of sediments in Vellar estuary

Ram et al. [47] Determined concentrations of Total Organic Carbon (TOC), Hg, Al, Fe
in sediment of the Amba estuary in Mumbai harbor



242 N. Rakshit et al.

Table 3 Summary of work done in different Indian estuaries with respect to biological aspects

Biological properties

Goswami and Devassy [11] Observed seasonal changes in the cladocera in
Mandovi and Zuari estuaries

Godhantaraman [10] Studied seasonal abundance and the
relationship of microzooplankton with higher
trophic levels in the tropical estuarine and
mangrove waters, Parangipettai

Perumal et al. [41] Investigated the hydrography, composition and
community structure of phytoplankton and
zooplankton, including chlorophyll-a content
and primary productivity at the Kaduviyar
estuary (Southeast coast of India)

Sanilkumar et al. [55] Monitoring and surveillance of algal blooms
along the southwest coast of India

Naik et al. [36] Measured seasonal variations of phytoplankton
and chlorophyll. A along with its
environmental variations including nutrients in
Mahanadi estuary

Ansari et al. and Ansari and Parulekar [3] Revealed that the estuarine sediment was
inhabited by a wide variety of benthic
organisms whose population varies with season
and location in Mandovi estuary

Harkantra and Rodrigues [13] Investigated species diversity, biomass and
population density of soft bottom macro fauna
in relation to environmental influences of
Mandovi and Zuari estuaries

Kailasam and Sivakami [16] Monitored the effect of thermal effluent
discharge on benthic fauna of Tuticorin bay

Murugesan et al. [31] Explored the marine zone of Vellar estuary for
temporal changes in community structure of
benthos using advanced statistical tools

Rao et al. [50] Explored the community structure of
polychaete fauna of Godavari by using
multivariate analysis

4 Modelling Studies on Ecosystem Health and Biodiversity
Status of Hooghly Estuary, India

There have been several modeling studies regarding ecosystem health and biodiver-
sity status of Hooghly estuary including static modelling and as well as processed
dynamic modelling approaches. In static modelling approach, the system is assumed
to be steady state condition and all inputs and outputs of each compartment are equal.
But In process based dynamicmodelling each compartment including both biotic and
abiotic compartments are stimulated in respect to time variation. Both these mod-
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elling approaches are able to analyze qualitative as well as quantitative properties
of the system such as dynamic behavior of the system, overall system exploitation
status.

4.1 Process Based Dynamic Modelling Approaches

Two multi-dimensional dynamic simulation models were proposed by Mandal et al.
[25] in order to quantify the contribution of dissolved inorganic nitrogen (DIN)
to estuarine water from adjacent mangrove forest and also the impact of this DIN
to plankton dynamics of the Hooghly-Matla estuarine system. In their first mod-
elling approach, Nitrogen is considered as important nutrient which occurs in var-
ious organic and inorganic forms such as soil total nitrogen, soil organic nitrogen,
soil inorganic nitrogen, total organic nitrogen of water, dissolved organic nitrogen
of water, particulate organic nitrogen of water and dissolved inorganic nitrogen of
water and it plays a crucial role in the regulation of productivity in this estuarine sys-
tem. Modelling of nitrogen dynamics from mangrove litterfall and particularly the
release of dissolved inorganic nitrogen in this estuarine system is important because
of its role in primary productivity by means of growth of phytoplankton and other
higher plants and all other biological components of grazing food chain. The most
important aspect of model output is sensitivity analysis with respect to proper sus-
tainable management of estuarine system and this study reveals that the leaching
rate of soil organic nitrogen to total organic nitrogen of water and loss rate of soil
organic nitrogen as humic acid and fulvic acids are very sensitive parameters in this
system. So, these parameters should be considered for future management practices.
Afterwards, the final study revealed that the availability of nutrient throughout the
stretch of estuary depends on leaching rate of inorganic nitrogen and uptake of nutri-
ent by phytoplankton which reinforces the previous study and helps to understand
the grazing food chain more elaborately. Maximum nutrient load in estuary occurs
in monsoon. Phytoplankton biomass solely depends upon the nutrient availability
and grazing of zooplankton. These studies are focused on nitrogen biogeochemical
process and gazing pathway in this system.

But in every system mainly mangrove-based detritus pathway is much more
important than gazing pathway. Decomposition and subsequent remineralization of
mangrove litter is main source of detritus and it also paly important role in nutrient
dynamics both in the forest as well as estuarine system. A five-compartment dynamic
model of detritus food web dynamics have been developed by the authors Roy et al.
[54] to study the impact of detritivorous fish on the mangrove estuarine detritus food
web. Almost 70% of the detritus formed in the soil was being washed to the estuarine
water which acts as source or sink of nutrient for the primary producers of aquatic
food chain. A significant amount of detritus in the estuarine water is readily con-
sumed by a group of detritivorous fishes before it is rematerialized completely to its
inorganic nutrient form. Model results depict the dependence of detritivorous fishes
on detritus biomass which is further dependent upon several factors like mortality of
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phytoplankton, zooplankton, and detritivorous fishes; and chiefly on litter biomass
and litter decomposition. So, this study revealed the importance of detritus pathway
for maintaining mineral cycle and subsequently the ecosystem health of this estuary.

It is a well-known fact that mangrove forests serve as an important source of
carbon and other nutrients to the adjacent lagoonal and coastal systems. To represent
important role of carbon as nutrient, the authors Mukherjee et al. [30] proposed
a seven compartment model focusing on the dynamics of carbon in this estuarine
system. Different forms of carbon present in soil (soil organic carbon (SOC), soil
inorganic carbon (SIC)) and in water (dissolved inorganic carbon (DIC), dissolved
carbon dioxide (DCO2), dissolved bicarbonate (DBC), dissolved organic carbon
(DOC) and particulate organic carbon (POC)) are taken into consideration. Model
simulation results show seasonal variations of litterfall biomass—the main source
of SOC pool that is ultimately transported to the estuary. Besides this, the death of
organisms in soil and water increases the SOC and POC content respectively. pH of
water is major controlling factor and depending on this, DIC is converted to DCO2
and DBC, which serve as raw material during photosynthesis of phytoplankton.
Mineralization rate of SOC to SIC and uptake rate of DCO2 and DBC are considered
as most sensitive parameters and need more attention in future.

All these studies regarding biogeochemical processes and nutrient cycling of
major elements like nitrogen, phosphorus and carbon helps to understand quantitative
and qualitative measurement of the concerned system.

4.2 Static Modelling Approaches Regarding Ecosystem
Health

To evaluate ecosystem health and the anthropogenic effect on Sundarban mangrove
estuarine ecosystem, best-known detritus-based ecosystems, two approaches like
spatial as well as temporal scale are done by Prof. Ray and his research team. During
his first study [51], two islands, one from virgin part (Prentice island) and the second
from reclaimed part (Sagar island) of the estuary are selected for comparative study
of benthic food webs of both by using network analyses. Prentice island is almost
free from both direct and indirect human interferences and fully covered by different
mangrove vegetations. The soil of this island is typically muddy, alluvial in nature
and full of detritus coming from huge litterfall of the mangroves. On the other hand
Sagar island, the largest in the deltaic system, is fully disturbed due to all sorts of
direct and indirect anthropogenic stresses. Most part of the island is occupied by
human habitation. The results demonstrate a remarkable difference between these
two islands- where the virgin ecosystem is dominantly controlled by detritus supplied
from the litterfall of mangroves, the bottom community of reclaimed island receives
a large contribution from the phytoplankton populations. Using mineral cycling as
an indicator, the Virgin island appeared to be in good health as the detritus pathway
is more dominant there. The number of pathways of recycling is found to be much
higher in undisturbed system in comparison to that of the reclaimed as indicated
by the low Finn cycling index in the disturbed part. Litterfall comprises only 16 in



Recent Trends of Ecosystem Health and Biodiversity Status … 245

reclaimed island where as in virgin Island it is about 70%. Pathway redundancy is
rather high in disturbed system, indicating the system is highly resilient to further
perturbation which is a desirable criterion for healthy ecosystem. However, in virgin
forest the ascendancy value is much higher than the redundancy, showing that the
system is healthy and almost free from any anthropogenic stress.

To understand exploitation status of ecosystem health Ecopath with Ecosim soft-
ware as static modelling tool for temporal comparison of trophic structure of the
Hooghly-Matla estuarine system have applied by Rakshit et al. [49] for both qualita-
tive and quantitative assessment of due to anthropogenic effects. Twomass-balanced
network models of Hooghly Matla estuarine system, from two different time peri-
ods (less exploited phase 1985–1990 and highly exploited phase 1998–2003 were
constructed for this purpose. The models were used to estimate the important bio-
logical interactions and relationships among different ecologically important groups.
Twenty functional groups based on species of different habitats from coastal areas in
this ecosystem have been selected, including shrimps, squids, crabs, mackerel, small
pelagics, demersal fishes, benthic feeders, predator fishes and trash fish (Fig. 1). The
biomass values for all components are estimated from catch production and bottom
trawling surveys.

The values of Ecotrophic Efficiency in the models are high (>0.5) for most groups
of higher trophic levels. Most fish population approached high degree of exploitation
with change in the overall trophic structure mainly due to top down effects. Several
system statistics and network flow indices from the model outputs indicate that this
estuary is facing degradation and stress resulting in some degrees of instability (see
Table2).

Fig. 1 Flow diagram of the HMES where the nodes represent the components, curved lines show
food web connectivity and horizontal straight lines represent the trophic levels
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5 Future Prospects

Even Existing ecosystem models of Hooghly estuary both dynamic and static mod-
els are briefly discussed and summarized. But coupling of physical and biological
models are still unexplored in this system due to much more complexity. In future,
it will be better predicting biodiversity status of whole system, its productivity and
as well as dynamic behavior of benthic pelagic coupling. In this regard, it should be
mentioned that pelagic-benthic coupling plays an important role in nutrient cycling
and increasing productivity of system. Recent study by Rakshit et al. [49] using
static models for temporal comparison of trophic structure of the Hooghly-Matla
estuarine system considers only a few benthic compartments. However, modelling
approaches including benthic-pelagic coupling have been negligible. So. In future
more scientific and better predicting aquatic models including pelagic as well as ben-
thic environment are expected. Now it should be concluded for development of better
predicting models, extensive and more scientific empirical works should be required
(Tables4 and 5).

Table 4 Functional fish groups including specieswith references included inmodelling ofHooghly
estuary

Group Included species Biomass P/B Q/B

Cartilaginous
fish

Skates or Guitarfish (Rhinobatos
sp.), Sawfish (Pristis microdon),
sting ray (Himantura sp.) and Shark
(Scoliodon laticaudus)

Srinath et al. [62] Mohamed et al. [28]

Polynemids Polynemus paradiseus,
Eleutheronema tetradactylum
(Gurjeoli)

Nath et al. [38],
Sinha [58]

Khan et al. [34] and Nabi et
al. [18]

Demersal fish Large (Lates calcarifer), Medium
(Sillaginopsis panijus) or small
(Harpadon nehereus)

Nath et al. [38],
Sinha [58]

Balli et al. [5], Karmakar
[17], Khan et al. [19, 20]

Pelagic fish Medium Pelagic fish (Rastrelliger
kanagurta) and small pelagic fish
(Setipinna sp., Coilia sp.)

Nath et al. [38],
Sinha [58]

Khan et al. [19, 20], Nabi et
al. [33]

Benthopelagic
fish

Medium (Trichiurus
gangeticus–Ganges hairtail) and
large (Daysciaena albida, Sciaena
biauritus, Otolithoides pama)

Nath et al. [38],
Sinha [58]

Chakraborty [7], Reuben et
al. [52]

Mesopelagic
Fish

Pampus argenteus (Butter fish) Nath et al. [38],
Sinha [58]

Khan et al. [20]

Mullets Liza parsia, Liza tade Nath et al. [38],
Sinha [58]

Moorthy et al. [29], Ran-
gaswamy [48]

Catfish Tachysurus jella, Mystus gulio,
Plotosus canius, Pangasius
pangasius, Osteogeneiosus militaris

Nath et al. [38],
Sinha [58]

Raje et al. [4]

Hilsa Tenualosa ilisha; Ilisha
megaloptera; Ilisha elongate; Ilisha
toil

Nath et al. [38],
Sinha [58]

Amin et al. [1], Reuben et al.
[52]
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Table 5 System statistics, flows higher-order indices of HooghlyMatla estuary for the time periods
1985–1990 and 1998–2003

Parameter/ecosystem indices Unit Phase 1
(1985–1990)

Phase 2
(1998–2003)

Sum of all consumption t km−2 year−1 5743.80 4009.51

Sum of all exports t km−2 year−1 5262.76 2124.3

Sum of all respiratory flows t km−2 year−1 3051.45 2313.11

Sum of all flows into detritus t km−2 year−1 8332.25 4168.85

Total system throughput t km−2 year−1 22,390.26 12615.76

Sum of all production t km−2 year−1 11374.84 11276.31

Calulated total net primary production t km−2 year−1 9831.25 10381.80

Total primary production/total respiration 3.22 4.49

Net system production t km−2 year−1 6779.81 8068.7

Total Primary production/total biomass 40.34 41.57

Total biomass/total throughput year−1 0.02 0.01

Total biomass (excluding detritus) t km−2 236.53 257.35

System omnivory index 0.24 0.24

Ecopath pedigree index 0.54 0.54

Measure of fit, t∗ 2.65 2.65

Ascendancy Flowbits 22287
(36.32%)

12993 (30%)

Throughput t/km2/year 22390.26 126165.760

Overhead Flowbits 39077
(63.68%)

30324 (70%)

Development capacity 61365 43317

Throughput cycled (excluding detritus) t/km2/year 39.61 42.65

Predatory cycling index (excluding detritus) % of
throughput

0.69 0.99

Throughput cycled (including detritus) t/km2/year 1735 1059

Finn’s cycling index % of
throughput

7.75 8.4

Finn’s mean path length 2.69 2.84

Finn’s straight through path length (excluding
detritus)

1.86 1.83

Finn’s straight through path length (excluding
detritus)

2.48 2.61
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6 Conclusion

Estuaries are also highly productive and play an important role in the food chain.
Now a day the conservation importance of estuaries has already been noted due to
the fact that most of the estuaries areas around the world are approaching towards
degradation. At the same time, urbanizations that have developed alongside estuaries
are often low lying and prone to flooding. The problem is made more complicated
due to the complex nature of estuary systems.Within an estuary, form and process are
extremely linked and there are no obvious dependent and independent variables or
clear cause-effect hierarchies. This interdependencemeans that changes in one part of
the system can cause responses elsewhere in the estuary. So, management issues for
the estuaries should be dealt depending upon different aspects like habitat resoration,
resource conservation, policies and planning along with examples and cases studies
from various part of India. On the other hand, it is necessary that system analyses and
management outlines shouldbe focusedon thepolicymakers andmanagers interested
in understanding and protecting the precious estuarine systems of the country. By
that way, a strategic approach to estuary management must be developed in future to
overcome biodiversity loss, extinction of species and future endangerment as well.

Acknowledgements Author Nabyendu Rakshit acknowledges the University Grants Commission,
Govt. of India, for NET-JRF fellowship, Ref. No. 20161430758. Author Arnab Banerjee acknowl-
edges theUniversityGrantsCommission,Govt. of India, for providingDr.DSKothari PostDoctoral
fellowship, F No: BL/17-18/0490.

References

1. Amin, S.M.N., Rahman, M.A., Haldar, G.C., Mazid, M.A., Milton, D.: Population dynamics
and stock assessment of Hilsa shad, Tenualosa ilisha in Bangladesh. Asian Fish. Sci. 15, 123–
128 (2002)

2. Anilkumar,N., Sankaranarayanan,V.N., Josanto,V.: Studies onmixingof thewaters of different
salinity gradients using Richardsons number and the suspended sediment distribution in the
Beypore estuary, south west coast of India (1999)

3. Ansari, Z.A., Parulekar, A.H.: Distribution, abundance and ecology of the meiofauna in a
tropical estuary along the west coast of India. Hydrobiologia 262(2), 115–126 (1993)

4. Balakrishna, K., Probst, J.L.: Organic carbon transport and C/N ratio variations in a large
tropical river: Godavari as a case study. India. Biogeochem. 73(3), 457–473 (2005)

5. Balli, J.J., Chakraborty, S.K., Jaiswar, A.K.: Population dynamics of Bombay duckHarpadon-
tidae nehereus (Ham, 1822)(Teleostomi/Harpadontidae) fromMumbai waters. India. Indian J.
Mar. Sci. 40, 67 (2011)

6. Biswas, H., Mukhopadhyay, S.K., Sen, S., Jana, T.K.: Spatial and temporal patterns of methane
dynamics in the tropical mangrove dominated estuary, NE coast of Bay of Bengal. India J.
Marine Syst. 68(1–2), 55–64 (2007)

7. Chakraborty, S.K.: Fishery, age, growth andmortality estimates ofTrichiurus lepturusLinnaeus
from Bombay waters. Indian J. Fish. 37, 1–7 (1990)

8. Chakraborty, S.K., Devadoss, P., Manojkumar, P.P., Feroz Khan, M., Jayasankar, P., Sivakami,
S., Gandhi, V., Appanasastry, Y., Raju, A., Livingston, P., Amcer Hamsa, K.M.S., Badruddin,
M., Ramalingam, P., Dhareswar, V.M., Seshagirl Rao, C. V, Nandakumaran, K., Chavan, B.B.,



Recent Trends of Ecosystem Health and Biodiversity Status … 249

Seetha, P.K.: The fishery, biology and stock assessment of jew fish resources of India. Mar.
Fish. Res. Manag. 604–616 (2000)

9. Ghosh, P.B., Choudhury, A.: Copper, zinc and lead in the sediment of Hooghly estuary. Envi-
ronment and Ecology 7, 427–430 (1989)

10. Godhantaraman, N.: Seasonal variations in taxonomic composition, abundance and food web
relationship of microzooplankton in estuarine and mangrove waters, Parangipettai region,
southeast coast of India (2001)

11. Goswami, S.C. and Devassy, V.P.: Seasonal fluctuations in the occurrence of Cladocera in the
Mandovi-Zuari estuarine waters of Goa (1991)

12. Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., D’agrosa, C., Bruno,
J.F., Casey, K.S., Ebert, C., Fox, H.E. and Fujita, R., : A global map of human impact on marine
ecosystems. Science 319(5865), 948–952 (2008)

13. Harkantra, S.N. and Rodrigues, N.R.: Environmental influences on the species diversity,
biomass and population density of soft bottom macrofauna in the estuarine system of Goa,
west coast of India (2004)

14. Hazra, S.,Ghosh, T.,DasGupta, R., Sen,G.: Sea level and associated changes in the Sundarbans.
Sci. Cult. 68, 309–321 (2002)

15. Hazra, S., Samanta, K., Mukhopadhyay, A., Akhand, A.: Temporal change detection (2001–
2008) of the Sundarban. Unpubl, Report, WWF-India (2010)

16. Kailasam, M., Sivakami, S.: Effect of thermal effluent discharge on benthic fauna off Tuticorin
bay, south east coast of India. Jndian Journal of Marine Sciences 33(2), 194–201 (2004)

17. Karmakar, J.K.: Study on some aspect of biologywith special reference to population dynamics
of Bhetki; Lates calcarifer (Bolch, 1970). University of Chittagong, Bangladesh (2003)

18. Khan, M.G., Islam, M.S., Quayum, S.A., Sada, M.N.U., Chowdhury, Z.A.: Biology of the fish
and shrimp population expoloited by estuarine set bagnet, in: BOBP Seminar. Coxs Bazar,
Bangladesh, p. 20 (1992)

19. Khan, M.Z., Kumaran, M., Jayaprakash, A.A., Scariah, K.S., Deshmukh, V.M., Dhulkhed,
M.H.: Stock assessment of pomfrets off west coast of India. Indian J. Fish. 39, 249–259 (1992)

20. Khan, S., Banu, N., Isabella, B.: Studies on some aspects of the biology and fecundity ofMystus
tengra (Hamilton-Buchanan). Bangladesh J. Zool 20, 151–160 (1992)

21. Krithika, K., Purvaja, R., Ramesh, R.: Fluxes of methane and nitrous oxide from an Indian
mangrove. Current Science 218–224 (2008)

22. Kumary, K.A., Azis, P.A., Natarajan, P.: Water quality of the Adimalathura Estuary, southwest
coast of India. J. mar. biol. Ass. India 49(1), 01–06 (2007)

23. Kumar, R.S.: Soil macro-invertebrates in a prawn culture field of a tropical estuary. Indian
Journal of Fisheries 49(4), 451–455 (2002)

24. Lotze, H.K., Lenihan, H.S., Bourque, B.J., Bradbury, R.H., Cooke, R.G., Kay, M.C., Kidwell,
S.M.,Kirby,M.X., Peterson,C.H., Jackson, J.B.:Depletion, degradation, and recovery potential
of estuaries and coastal seas. Science 312(5781), 1806–1809 (2006)

25. Mandal, S., Ray, S., Ghosh, P.B.: Modelling of the contribution of dissolved inorganic nitrogen
(DIN) from litterfall of adjacent mangrove forest to Hooghly-Matla estuary. India. Ecological
Modelling 220(21), 2988–3000 (2009)

26. Mitra, P.M., Karmakar, H.C., Ghosh, A.K.: Fisheries of Hooghly-Matlah estuarine system:
further appraisal 1994-95 to 1999-2000 (Bulletin no. 109) (2001)

27. Mitra, P.M., Karmakar, H.C., Sinha, M., Ghosh, A., Saigal, B.N.: Fisheries of the Hooghly-
Matlah estuarine system-an appraisal (CIFRI Bulletin no. 67) (1997)

28. Mohamed, K.S., Zacharia, P.U., Muthiah, C., Abdurahiman, K.P., Nayek, T.H.: A Trophic
Model of the Arabian Sea Ecosystem of Karnatakaand Simulation of Fishery Yields for its
Multigear Marine Fisheries. Kerala, India (2005)

29. Moorthy, K.S.V., Reddy, H.R.V., Annappaswamy, T.S.: Age and growth of blue spot mullet,
Valamugil seheli (Forskal) from Mangalore. Indian J. Fish. 50, 73–79 (2003)

30. Mukherjee, J.,Ray, S.,Ghosh, P.B.:A systemdynamicmodelingof carbon cycle frommangrove
litter to the adjacent Hooghly estuary, India. Ecological modelling 252, 185–195 (2013)



250 N. Rakshit et al.

31. Murugesan, P., Ajmal Khan, S., Ajithkumar, T.T.: Temporal changes in the benthic community
structure of the marine zone of Vellar estuary southeast coast of India. Journal of the Marine
Biological Association of India 49(2), 154–158 (2007)

32. Nabi, M.R.: Management of Estuarine Set Bag Net Fishery of Bangladesh: Application of Tra-
ditional Scientific Methods, Sustainable Livelihoods Approach and Local Indigenous Knowl-
edge. Ph. D. Dissertation, Borneo Marine Research Institute, University Malaysia Sabah,
Malaysia (2007)

33. Nabi, M.R., Hoque, M.A., Rahman, R.A., Mustafa, S., Kader, M.A.: Population dynamics of
Polynemus paradiseus from estuarine set bag net fishery of Bangladesh. Chiang Mai J. Sci. 34,
355–365 (2007)

34. Nandy, A.C., Bagchi, M.M., Majumder, S.K.: Ecological changes in the Hooghly estuary due
to water release from Farakka Barrage. Mahasagar 16, 209–220 (1983)

35. Narasimham, K.A., Kripa, V., Balan, K.: Molluscan shellfish resources of India-an overview.
Indian J. Fish. 40, 112–124 (1993)

36. Naik, S., Acharya, B.C. and Mohapatra, A.: Seasonal variations of phytoplankton in Mahanadi
estuary, east coast of India (2009)

37. Nair, N.B. andAzis, P.A.: Hydrobiology of the Ashtamudi estuary- a tropical backwater system
in Kerala (1987)

38. Nath, D., Misra, R.N., Karmakar, H.C.: The Hooghly estuarine system-ecological flux, fishery
resources and production potential, p. 130. Bull. Cent. Inl. Fish. Res, Inst (2004)

39. Nasnolkar, C.M., Shirodkar, P.V., Singbal, S.Y.S.: Studies on organic carbon, nitrogen and phos-
phorus in the sediments of Mandovi Estuary. Goa. Oceanographic Literature Review 12(43),
1208 (1996)

40. Pillay, T.V.R.: Biology of the Hilsa, Hilsa ilisha (Hamilton) of the river Hooghly. Indian J.
Fish. 5, 201–257 (1958)

41. Perumal, N.V., Rajkumar, M., Perumal, P. and Rajasekar, K.T.: Seasonal variations of plankton
diversity in the Kaduviyar estuary, Nagapattinam, southeast coast of India (2009)

42. Prabu,V.A., Rajkumar,M., Perumal, P.: Seasonal variations in physico-chemical characteristics
of Pichavaram mangroves, southeast coast of India. J. Environ. Biol 29(6), 945–950 (2008)

43. Pradhan, U.K., Shirodkar, P.V., Sahu, B.K.: Physico-chemical characteristics of the coastal
water off Devi estuary, Orissa and evaluation of its seasonal changes using chemometric tech-
niques. Current Science 1203–1209 (2009)

44. Pritchard, D.W.: Estuarine classification—a help or a hindrance. In Estuarine circulation (pp.
1-38). Humana Press (1989)

45. Rajasegar, M., Srinivasan, M. and Khan, S.A.: Distribution of sediment nutrients of Vellar
estuary in relation to shrimp farming (2002)

46. Raje, S.G., Dineshbabu,A.P., DAS, T.: Biology and stock assessment ofTachysurus jella (Day).
Indian J. Fish. 55, 295–299 (2008)

47. Ram, A., Rokade, M.A. and Zingde, M.D.: Mercury enrichment in sediments of Amba estuary
(2009)

48. Rangaswamy, C.P.: Maturity and spawning of Mugil cephalus of Lake Pulicat. Recent Res.
Estuar. Biol. 47–60 (1975)

49. Rakshit, N., Banerjee, A., Mukherjee, J., Chakrabarty, M., Borrett, S.R., Ray, S.: Comparative
study of food webs from two different time periods of Hooghly Matla estuarine system, India
through network analysis. Ecological Modelling 356, 25–37 (2017)

50. Rao, D.S., Rao, M.S., Annapurna, C.: Polychaete community structure of Vasishta Godavari
estuary, east coast of India. Journal of the Marine Biological Association of India 51(2), 137–
144 (2009)

51. Ray, S.: Comparative study of virgin and reclaimed islands of Sundarban mangrove ecosystem
through network analysis. ecological modelling, 215(1-3), pp.207-216 (2008)

52. Reuben, S., Dan, S.S., Somaraju,M.V., Philipose, V., Sathianandan, T.V.: The resources of hilsa
shad, Hilsa ilisha (Hamilton), along the northeast coast of India. Indian J. Fish. 39, 169–181
(1992)



Recent Trends of Ecosystem Health and Biodiversity Status … 251

53. Reuben, S., Vijayakumaran, K., Achayya, P., Prabhakar, R.V.D.: Biology and exploitation of
Trichiurus lepturus Linnaeus from Visakhapatnam waters. Indian J. Fish. 44, 101–110 (1997)

54. Roy, M., Ray, S., Ghosh, P.B.: Modelling of impact of detritus on detritivorous food chain of
Sundarban mangrove ecosystem, India. Procedia Environmental Sciences 13, 377–390 (2012)

55. Saha, S.B., Mitra, A., Bhattacharyya, S.B., Choudhury, A.: Status of sediment with special
reference to heavy metal pollution of a brackishwater tidal ecosystem in northern Sundarbans
of West Bengal. Tropical Ecology 42(1), 127–132 (2001)

56. Sanilkumar, M.G., Joseph, K.J. and Saramma, A.V.: Microalgae in the southwest coast of India
(Doctoral dissertation, Cochin University of Science & Technology) (2009)

57. Sarkar, S.K., Singh, B.N., Choudhury, A.: Composition and variations in the abundance of
zooplankton in the Hooghly estuary, West Bengal. India. Proc. Anim. Sci. 95, 125–134 (1986)

58. Sastry, A.G.R. andChandramohan, P.: Diel and tidal fluctuations in thewater quality ofVasishta
Godavari estuary (1990)

59. Sinha, M.: Farakka barrage and its impact on the hydrology and fishery of Hooghly estuary, in:
The Ganges Water Diversion: Environmental Effects and Implications. Springer, pp. 103–124
(2004)

60. Smith, B.D., Braulik, G., Strindberg, S., Ahmed, B., Mansur, R.: Abundance of Irrawaddy
dolphins (Orcaella brevirostris) and Ganges river dolphins (Platanista gangetica gangetica)
estimated using concurrent counts made by independent teams in waterways of the Sundarbans
mangrove forest in Bangladesh. Mar. Mammal Sci. 22, 527–547 (2006)

61. Soundarapandian, P., Premkumar, T., Dinakaran, G.K.: Studies on the physico-chemical char-
acteristic and nutrients in the Uppanar estuary of Cuddalore, South east coast of India. Curr.
Res. J. Biol. Sci 1(3), 102–105 (2009)

62. Srinath, M., Kuriakose, S., Ammini, P.L., Prasad, C.J., Ramani, K., Beena, M.R.: Marine Fish
Landings in India 1985–2004. C. Spec. Publ. 89, 1–161 (2006)

63. UNEPWorld Conservation Monitoring Centre and Census of Marine Life on Seamounts (Pro-
gramme). Data Analysis Working Group.: Seamounts, deep-sea corals and fisheries: vulner-
ability of deep-sea corals to fishing on seamounts beyond areas of national jurisdiction (No.
183). UNEP/Earthprint (2006)

64. UNFAO.: Statistical Year Book (2012)
65. Upadhyay, S.: Physico-chemical characteristics of the Mahanadi estuarine ecosystem, east

coast of India. Indian J Mar Sci (1988)
66. Valiela, I., Bowen, J.L., York, J.K.: Mangrove Forests: One of the World’s Threatened Major

Tropical Environments: At least 35 of the area of mangrove forests has been lost in the past two
decades, losses that exceed those for tropical rain forests and coral reefs, two other well-known
threatened environments. Bioscience 51(10), 807–815 (2001)

67. Waycott, M., Duarte, C.M., Carruthers, T.J., Orth, R.J., Dennison, W.C., Olyarnik, S., Calla-
dine, A., Fourqurean, J.W., Heck, K.L., Hughes, A.R., Kendrick, G.A.: Accelerating loss of
seagrasses across the globe threatens coastal ecosystems. Proceedings of theNational Academy
of Sciences 106(30), 12377–12381 (2009)

68. Worm, B., Barbier, E.B., Beaumont, N., Duffy, J.E., Folke, C., Halpern, B.S., Jackson, J.B.,
Lotze, H.K., Micheli, F., Palumbi, S.R. and Sala, E.: Impacts of biodiversity loss on ocean
ecosystem services. science, 314(5800), pp.787-790 (2006)

69. Zafar, M., Mustafa, M.G., Amin, S.M.N., Akhter, S.: Studies on population dynamics of Acetes
indicus from Bangladesh coast. J. Nat. Ocea. Mar. Inst 14, 1–15 (1997)

70. Zingde, M.D., Bhosle, N.B., Narvekar, P.V., Desai, B.N.: Hydrography and water quality of
Bombay harbour. Society of Biosciences, Muzaffarnagar (1989)



Guanotrophication by Waterbirds
in Freshwater Lakes: A Review
on Ecosystem Perspective
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Abstract Freshwater lakes throughout the world are nowadays threatened by cli-
mate change and eutrophication. As a result the crisis of drinking water and disease
outbreak resulting from poor water quality has become a global issue for policymak-
ers. Waterbirds are an inherent part of freshwater lake ecosystem and the effects of
waterbird on lake ecosystem remain an important area of research in the last cen-
tury. Many freshwater lakes throughout the globe support a huge number of water-
bird congregations. Nutrients from waterbird droppings may serve as an important
source of nutrients to those freshwater lakes and sometime may lead to eutroph-
ication (by excess nitrogen and phosphorus loading). Waterbird can modulate the
nutrient dynamics of the waterbody in two ways: (i) by changing the form of nutri-
ent in the waterbody (nutrient cycling), (ii) by bringing nutrient from another area
to waterbody (external nutrient loading) and the vice versa (nutrient input). Several
attempts have been taken to estimate nutrient loading by waterbirds in waterbodies
and mostly relies on extrapolation from bird count. Recent approaches incorporate
avian bioenergetics for nutrient loading estimation. Effects of bird faeces on water
quality, the faecal nutrient content of different species, nutrient loading estimation
methods, factors affecting nutrient loading by waterbirds, ways to reduce the nutrient
level in thewaterbody andnutrient cycling pathways ofwaterbird faeces in the aquatic
ecosystem are reviewed in this article with a brief future perspective. The study of
guanotrophication is not only important with respect to water quality maintenance
but also for conservation of waterbirds and their habitat.
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1 Introduction

Freshwater lakes throughout the world are now threatened by climate change and
eutrophication. As a result crisis of drinking water and disease outbreak resulting
from poor water quality has become a global issue for policy makers. In addition to
atmospheric input, anthropogenic (fertilizer, drainage etc.) and biotic input (excreta
of different animals, deadmaterials etc.) are sources of nutrient towaterbodies. Being
an inherent part of the aquatic ecosystem, the study about effect of waterbirds on the
ecosystem remained an important area of research sincemiddle of the last century. It is
evident fromprevious studies that nutrients frombird guanomay serve as a vital agent
for eutrophication of the waterbodies with the high avian congregation (discussed
in Sect. 3). Guanotrophication is a popular term for the nutrient enrichment of water
bodies by bird droppings [1]. According to previous studies, congregation of huge
number of waterbird in water bodies like lakes for long period may have undesirable
effect on water quality through destruction of wetland vegetation [2], reduction in
water quality [3, 4], increase of heavy metal concentration [5], increase of coliform
bacteria [6] and increase of water hardness [7, 8]. Degraded water quality also may
result in a disease outbreak in waterbirds [9, 10]. In addition, guanotrophication also
may promote changes in zooplankton community [11, 12] (Fig. 1).

The term waterbird or aquatic avifauna refers to cormorants, ducks, grebes,
moorhen, waterhen, jacana etc., which feeds and roosts on the waterbody. Another
term used multiple times in this review is waterfowl, which indicates mainly the
member of the Order Anseriformes (Ducks, Swans, Geese etc.). Waterbird can mod-
ulate the nutrient dynamics of the waterbody in three ways: (i) by changing the
form of nutrient in the waterbody (nutrient cycling or internal loading), (ii) by bring-
ing nutrient from another area to waterbody (external nutrient loading) and (iii) by
exporting nutrient from aquatic body to terrestrial ecosystem [13].

Fig. 1 Thewaterbirds as nutrient vectors. (i) Nutrient cycling: Thewaterbirds (likemoorhen, coots,
pygmy goose, jacana, grebe) which feeds and defecate in the same waterbody, converts one form of
nutrient to another. (ii) Thewaterbirds (likemost of the ducks, geese, swans) which feed in terrestrial
habitats but roost at aquatic habitat, causes the net nutrient import to the aquatic ecosystem. (iii) The
waterbirds (like herons, egrets, cormorants, kingfishers), which feed on aquatic ecosystem and roost
on terrestrial ecosystem, leads to ultimate net nutrient export from aquatic to terrestrial ecosystem



Guanotrophication by Waterbirds in Freshwater Lakes … 255

Table 1 Summary of the literature reviewed

Subject Literature

Estimation of nutrient loading [3, 4, 14, 15]

Faecal nutrient analysis [4, 16–24, 24–29]

Correlative study between waterbird and
limnochemical variables

[7, 8, 30–32]

Bioassay study [14, 29, 33, 34]

In this article, the faecal nutrient content of different waterbirds, the effect of
faecal addition onwater quality, different nutrient loading estimationmethod, factors
affecting nutrient loading by waterbirds, ways to reduce the nutrient level in the
waterbody and nutrient cycling pathways of waterbird faecal matter in the freshwater
ecosystem are discussed with brief future perspective (Table 1).

2 Faecal Matter Analysis

The faecal composition of waterbird is highly variable because it depends on several
factors (Table2). Again, the measurement of nutrient concentration in waterbird
droppings also varies considerably between studies due to different measurement
approach by different workers [35]. The dry weight of single waterbird dropping lies
between 0.2–0.4% of body weight [18]. The daily dropping production as dry mass
for waterfowls was assumed between 2.25% [36] and 3.2% [18] of body weight for
estimation of defecation rate of waterfowls, for which defecation rate is unknown.
For domestic ducks, the defecation rate estimated at 3.8% of body weight [37]. The
pH of waterfowl faecal matter lies between 5.0 to 8.5 [18]. The moisture content is
between 66.69% to 92.5% [16, 18, 22]. The bird droppings consist of mainly two
parts: labile and recalcitrant portion. The labile portion readily dissolved in water
and increase the level of inorganic nutrient within 3 days of faecal addition [19]. The
recalcitrant portion is resistant to decomposition and consist majority of the faecal
matters including insoluble uric acid and undigested solid food materials [38]. As
a result, most of this portion readily settles down to the sediment [39]. Inorganic
nutrient from the recalcitrant portion started to appear in the water column after
15–30 days of addition as a result of decomposition [19]. As the guano decomposes,
nitrogen (N) content is lost gradually as ammonia and guano becomemore phosphatic
[40]. The faecal nutrient content of some waterbirds is given in Table2.
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Table 2 Body mass, feeding habit (FH), Total Nitrogen (TN) and Total Phosphorous (TP) of some
waterbirds found in the literature. In the table, “H” indicates herbivorous feeding habit and “C”
indicates carnivorous feeding habit
Scientific name Body weight (kg)

[41]
FH TN (mg gDW−1) TP (mg gDW−1) Reference

Anas
platyrhynchos

1.141 ± 0.07 H 52.3 17.4 [24]

– 17.4 [22]

53.1 8.5 [17]

26.2 ± 0.8 13.2 ± 1.3 [21]

Anser albifrons 2.531 ± 0.219 H 32.6 ± 17.18 4.09 ± 3.60 [18]

A. anser 3.308 ± 0.298 H 23.633 ± 17.79 3.933 ± 2.85 [18]

A.
brachyrhynchus

2.645 ± 0.184 H 19.563 ± 9.253 4.829 ± 2.646 [18]

40 ± 2.6 3.6 ± 0.3 [19]

A. caerulescens 2.641 ± 0.211 H 26.48 ± 4.802 – [16]

A. fabalis 2.771 ± 0.256 H 29.3 0.656 [18]

Branta
canadensis

3.727 ± 0.314 H 5.72 14 [24]

20.8 3.671 [18]

5.7 14 [22]

48 ± 22 15 ± 6 [4]

11.9 ± 3.2 2 ± 0.7 [20]

B. leucopsis 1.687 ± 0.09 H 13.267 ± 1.963 6.031 ± 1.112 [18]

11 ± 2.062 3.3 ± 0.225 [29]

Cygnus
columbianus

2.19 ± 0.62 H 50.610 ± 21.462 8.885 ± 5.335 [27]

C. cygnus 9.35 H 11.05 ± 0.636 4.785 ± 4.172 [18]

C. olor 10.735 ± 0.775 H 15.8 ± 7.778 7.101 ± 0.278 [18]

Mareca penelope 0.772 ± 0.067 H 27 0.874 [18]

Dropping
collected from
heronry

– C 88.160 ± 5.480 7.529 ± 1.572 [28]

Larus argentatus 1.085 ± 0.093 C 73.05 4.62 [42]

8.4 ± 1.242 9.1 ± 1.329 [23]

L. canus 0.404 ± 0.04 C 70.25 4.24 [42]

L. fuscus 0.818 ± 0.06 C 68.58 4.33 [42]

L. marinus 1.659 ± 0.241 C – 47.533 ± 10.486 [23]

L. michahellis 1.154 ± 0.095 C 44.2 ± 25.7 7.3 ± 4.1 [26]

L. ridibundus 0.284 ± 0.02 C 54.28 3.39 [42]

72.4 78.6 [17]

Nordic Geese – H – 8.85 ± 0.001 [25]

Gull – C 29.6 ± 3.7 16.2 ± 2.9 [21]

Heron – C 42.1 ± 6.7 114.7 ± 12.1 [21]

Cormorant – C 32.8 ± 0.2 143.2 ± 3.5 [21]



Guanotrophication by Waterbirds in Freshwater Lakes … 257

3 Effect of Nutrient Loading by Waterbird on Water
Quality

Most of the study in this regard compared the effect ofwaterbird-born nutrient loading
with other sources of nutrient entering the waterbody. The effect of nutrient loading
onwater quality varies between studies. Some studies found that nutrient contribution
bywaterbirdmay degradewater quality [4, 15, 25, 43], but other study found nutrient
contribution by waterbird is negligible in comparison to other allochthonous sources
[21, 37, 44] (Table3).

The results of these studies are mostly incomparable, because of the variability
of estimation method, varied anthropogenic pressure etc. Some studies only consid-
ered external input, while other studies include both internal and external input; and
studies which considered both kinds of nutrient loading, actually overestimated the
actual contribution by waterbirds. Again, instead of direct estimation as previously
discussed, some study measured nutrient loading effect on water quality indirectly.
Some study compared the water quality of inflow and outflow of a waterbird refuge
[34, 38], some compared between water quality of high water-use pond and low
water-use pond [31, 45] and some compared between changes in water quality indi-
cators with changes in bird number [7, 8, 32]. Olson et al. found primary productivity
at lake inlet was limited by both N and P, whereas output is limited by only N [34].
This indicates an important P subsidy by waterbird in a waterbody. Some studies
found that waterbird can contribute a significant amount of nutrient and sustains lake
productivity when other sources of nutrient were scarce [32, 46]. Nutrient loading
by birds varies seasonally due to fluctuation in both waterbird number and nutrient
content in food [15]. Tobiessen and Wheat found that nutrient added by waterbirds
do not have any long-term and short-term effect on water quality [32]. Scherer et al.
was also unable to find any short-term effect but hypothesized that bird droppingmay
have long-term effect in water quality degradation [37]. Some studies found a posi-
tive correlation of nutrient content in water and sediment with the bird number [7, 8,
31, 46], but other studies were unable to find this correlation for phosphorus [37, 39,
49]. Most studies were unable to find the change in chlorophyll-a level and Secchi
depth due to nutrient loading by waterbird [29, 32, 37, 39, 49], except [33, 45]. In
the bioassay experiment, it has been found that chl-a level increased after some days
of faecal addition [22], similar observation was also found in the natural ecosystem
[1]. Again, some study unable to find any correlation between fecal addition and
chl-a, both in the natural environment [32] and also in mesocosm experiment [39].
Harris et al. found a significant difference (p<0.05) in chlorophyll-a and TP between
high bird use pond and low bird use pond [45]. This lack of correlation may be the
result of low arctic temperature or zooplankton grazing pressure on phytoplankton
[29] or increased competition with macrophyte [24, 50].
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Table 3 Summary of nutrient loading estimates found in literatures as Nitrogen (N) and Phospho-
spus (P). The relative contribution of guanotrophy in comparison to other nutrient sources indicated
as %N and %P
Lake/Area
of the study

Waterbird
group
concerned

Area (ha) N (g m−2

yr−1)
P (g m−2

yr−1)
%N %P Reference

Bay Beach
WLS, USA

Ducks and
Geese

1.97 4.8 4.8 – – [45]

Baton,
Rouge, USA

” 3.7 – 0.27 – 7.4 [44]

1.4 – 0.43 – 7.9 [44]

Wintergreen
lake, USA

” 15 1.87 0.59 27 70 [4]

Green Lake,
USA

All 105 – 0.15 28.7 17.43 [37]

Grand Lieu,
France

” 5150 0.11 0.04 0.7 2.4 [21]

0.15 0.05 0.4 6.6 [21]

Gull Pond,
USA

Gull 44 – 0.12 – 42 [23]

Middle
Creek
Reservoir,
USA

Geese 162 3.67 0.52 – – [34]

Lake Waban,
USA

” 360 – 0.008 – 0.4 [46]

Greenfield
Lake, USA

All 37 0.14 0.23 – – [14]

Bosque del
Apache
NWR, USA

Geese 50.2 14.29 1.76 – – [15]

All inland
lakes of
Netherland

Herbivorous
waterbirds

3.57 × 105 0.074−0.14 0.009−0.01 – – [3]

Carnivorous
waterbirds

” 0.026−0.065 0.012−0.016 – – [47]

Lake
Arendsee,
Germany

Geese 514 – 0.54 – 88 [25]

– 0.336 – 92 [25]

Brown
Moss, UK

Ducks and
Geese

33 0.741 0.234 17 73 [43]

Swan Lake,
Canada

Geese 5.48 – 0.26 – 74.6 [48]
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4 Estimation of Nutrient Loading (NL) by Waterbird

As discussed earlier the estimation of NL is very important from a management per-
spective. This is impossible to measure NL directly from a field experiment. Com-
monly, nutrient loading is estimated by counting the number of birds and extrap-
olating it with the defecation rate and faecal nutrient content. To get an accurate
measure of allochthonous nutrient loading by waterbirds, following factors must be
considered: (i) duration of a day birds spent at the lake, (ii) the defecation rate, (iii)
season and species-specific energy requirement of waterbirds, (iv) life history and
behavioral pattern, and (v) species-specific feeding habit of waterbirds for the loca-
tion of interest. The methods of estimating nutrient loading by waterbirds found in
the different literature are given bellow chronologically.

4.1 Nutrient Loading Model by Harris et al. [45]

It was the pioneering approach towards estimating the NL by waterfowls. It was
quantified by multiplying the number of bird-days (average monthly number of indi-
viduals counted per daymultiplied by the number of days permonth)with the nutrient
content in faecal matter. The main drawback of this method is internal and exter-
nal cycling of nutrient was not differentiated. Moreover, species variation was also
neglected in this method.

4.2 Phosphorus Loading Model by Gremillion
and Malone [44]

This nutrient loading model considered the allometric relationship between body
mass, time spent bywaterbirds in lake and defecation rate to estimate species-specific
nutrient loading by waterfowls. The model is as follows:

NL =
n∑

S=1

N ∗ DM ∗ BM ∗ RT ∗ B (1)

Here, N is a nutrient concentration in faecal matter, DM is dropping mass, BM is
body mass, RT is residence time in the lake and B is a number of bird-days, S is
number of species and n indicates the n-th species. The main drawback of this model
is, the bioenergetics is neglected. Similar concept has been adopted in several studies
with little modification for NL estimation [4, 14, 21, 23, 23, 34, 37, 46, 51, 52].
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4.3 Bioenergetics Model by Post et al. [15]

This model includes the bioenergetics model [53] to estimate daily energy require-
ments of waterbird. The daily energy requirement (DER) includes energetic costs of
existence metabolism, routine metabolism of free-living birds and flight. Existence
metabolism, in turn, depends on body mass and average daily temperature. Nutrient
uptake will depend on its energy requirement. If bird feeds on low energy containing
food, they need more food and conversely, if they feed on high energy containing
food item, they need less to eat [2]. So, eating high energy content feed results in
lower faecalmass and consequently, lower nutrient loading.Again, they also included
gut passage time (or retention time) (RT) to estimate in which site waterbirds were
defecating. This is the first approach to differentiate between autochthonous and
allochthonous input by waterbirds. This kind of model is more biologically sound,
accurate and realistic but much complex than previous approaches.

4.4 Bioenergetics Model by Hahn et al. [3, 47]

Two different models were proposed for NL estimation for both carnivorous [47]
and herbivorous waterbirds [3]: (i) for estimation from feeding data, (ii) estimation
from defecation data. For carnivorous birds, the author further proposed three dif-
ferent models for chicks, non-breeding and breeding adults. In case of herbivorous
waterbirds, the feeding model consists of RT, foraging time (Tf), species and season-
specific proportion of energy obtained from terrestrial food (ft), DER, the apparent
metabolizable energy of food (AM) and elemental composition of food (Xfood). The
defecation model includes, ft, RT, dropping rate (DrR), dropping mass (DrM) and
elemental composition of dropping (Xdrop). For non-breeding carnivorous water-
birds, the feeding model includes: fraction of total released nutrients contributed to
waterbody (A), DER, AM, E and Xfood. In defecation model, instead of Xfood, Xdrop

is taken and an additional term (fixed relation between food intake and excrement
considered. The model for breeding birds is same except an additional term nesting
period (Tnest) is included. For chicks, the author considered for feeding model total
energy requirement for entire chick-rearing period instead of DER, clutch size (CS),
survival probability of chicks, nutrient needed for chick development (Xsyn), Xfood,
AM and E. The excretion model differs similarly like non-breeding bird model from
feeding model. Author used this model to estimate nutrient loading by waterbirds in
different lakes in Netherland.

Nutrient loading outputs from both the feeding and excretion models were com-
pared, but it was found that later model significantly underestimates nitrogen loading
as compared with previous one. Two possible reasons were suggested by the author:
(i) if waterfowls made more than one feeding-migration in a day and, (ii) excretory
loss of a certain portion of nitrogen as volatile ammonia. This defecation model was
further used for quantification of gull derived external nitrogen input [54]. The dif-
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ferent nutrient loading studies as found in previous literature regarding guanotrophy
is summarized in Table3.

5 Variability in Nutrient Loading Estimation

As mentioned earlier, variability encountered in this review in nutrient loading esti-
mates is mainly due to the different method followed in different studies. Some
studies included internal loading which actually made overestimation of the nutrient
loading [25, 45]. Estimation of nutrient loading in [45] relies on nutrient loading
rate of domestic ducks. But, nutrient content in wild waterfowl faecal matter varies
considerably from domestic waterfowls [4, 55]. Seasonal variation in N:P ratio in
waterbird dropping was neglected in most of the studies [15]. Most of the studies
neglected the nutrient demand during pre-migration fattening of bird except [3].
Moreover, the basis of the most of the nutrient loading study was bird count and
it is the biggest problem in nutrient loading estimation. Increasing sample size by
counting birds for multiple times during a month or by taking the averaged count
data from different birders will provide a better estimation of number of birds [4]. In
addition, the use of citizen science platform like eBird will be useful to obtain data
about bird abundance for large lakes [56, 57].

6 Factors Affecting Allochthonous Nutrient Input
by Waterbirds

In addition to food quality, allochthonous nutrient input by waterbirds is mainly
dependent on the feeding and roosting behaviour of waterbird. These factors are
described as follows: i. Daily migration pattern: Compared with more than one
daily migration to foraging site, waterbirds making only one migration contributes
less nutrient input to the roosting site [15]. ii. Food quality: Waterbirds fed with
food of high and low energy value show similar elemental composition [58]. Again,
low amount of high energy containing food can fulfil the daily energy need of water-
birds than low energy containing food [59]. As a result, low energy containing food
produces more waste (similarly caused more nutrient loading) in compared to high
energy containing food [15, 60]. iii. Retention time: Food retention time or gut
passage time is proportional to nutrient loading in the lake [3, 15]. iv. Temperature:
Energetic costs of foraging exceed gain during very low temperature, so waterbirds
prefer to stay at the roosting site at very low temperature [61, 62]. Again existence
metabolism increases with temperature [15]. So, bird needs more food with increas-
ing temperature. v.Wind speed:At high wind speed waterbirds prefer single feeding
migration in a day [15]. It was also reported that, high wind speed and rainfall results
in lower feeding activity of some dabbling ducks [63, 64].
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7 Ways to Reduce the Nutrient Level in the Lake

It is known that congregation of a huge number of waterbirds (feeds mostly outside
the lake) in a small space may lead to reduced water quality [3, 4]. The nutrient load-
ing in the lake can be reduced in several ways as discussed as follows: 1. Dredging:
Dredging is a common practice to improve water quality in wetlands by removing
nutrient-rich sediments. But, it is not a sustainable way to improve water quality [45,
65]. 2. Shifting bird-use inside and between wetland: Forcing waterbirds to shift
between water bodies or spreading the waterbird in a lake will improve water quality
[49, 61]. But this method will be unethical and disturbance to bird will reduce bird
number in a waterbody. 3. Nutrient inactivation: Another method to reduce the
nutrient content in the water column is just to precipitate them chemically (with the
application of alum, fly ash, PhoslockTM etc.) to sediment [20, 45]. But, an ecologi-
cal consequence of this method needs more study. 4. Decreasing nutrient retention
time in the lake: Decreasing hydraulic retention time by increasing flushing rate is
another way to prevent water quality degradation. But, it is always not possible in
a wetland, especially in a dry area and closed lake. 5. Increasing ecological com-
plexity: The excess nutrient can be utilized in the wetland by increasing ecological
complexity by introducing exotic species to wetland [45]. Eutrophic lakes have the
potential to support a greater number of waterbirds (both species richness and abun-
dance) [66, 67]. So, control of eutrophication should consider the trade-off between
cleaner water and reduced biodiversity [31].

8 Fates of Guano Derived Nutrient in Aquatic Ecosystem

As discussed earlier, most of the bird dropping settles down quickly to bottom sed-
iment and most of the feces not readily decomposed. After gradual decomposition,
the organic nutrients converted into inorganic bioavailable forms. This decomposi-
tion process is enhanced by temperature and mixing of sediments. The flocculant
sediment in lakes is disturbed by wind flow, mixing by benthic organism and water-
bird etc., which further boost the mineralization process. The main element of bird
droppings we discussed so far is the N and P, which affect the water chemistry.
The nutrient cycling process of these elements is very different. Details of nitrogen
and phosphorus cycle can be found in different literatures [68–70]. For the ease of
discussion these processes are discussed below under the following two subsections.

8.1 Cycling of Nitrogen

As discussed earlier, the main nitrogenous waste in bird droppings is uric acid. In
addition to this, bird feces contain some amount of ammonia and nitrogen contents
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Fig. 2 Possible pathways of nitrogen cycling of waterbird-derived nutrient and nutrient from other
sources in waterbody

of undigested food materials. Being mostly insoluble, waterbird dropping mostly
settles down to sediment. Ammonia and a very little fraction of uric acid remain in
the water column. Organic nitrogenous wastes in sediments decomposed to simpler
form and ultimately converted to ammonium (NH+

4 ) by the action of microbes in
aerobic and anaerobic conditions. NH+

4 diffused between water column and sedi-
ments as per concentration gradient. NH+

4 in oxidized sediment layer converted to
nitrite (NO−

2 ) and ultimately to nitrate (NO−
3 ) by nitrification. Some proportion of

NH+
4 is converted to NH3 in high pH (more than 7.5). NH3 is volatile and lost to

atmosphere. Some amount of NH+
4 and NO−

2 lost from the sediment by annamox.
NO−

2 being very unstable readily converted to NO−
3 and present in very low amount

in water column and sediments. A fraction of NO−
3 is further converted to atmo-

spheric nitrogen and lost from wetland by denitrification. Plant and phytoplankton
can utilize NH+

4 and NO−
3 as food. Phytoplankton further utilized by zooplankton

and which is further taken by fishes. Some portion of feces recycled through detritus
pathway. In case of shallow lakes or ponds, most of the ponds are dominated by
macrophytes. Macrophytes are able to uptake nitrogen inorganic nitrogen from the
sediments (Fig. 2).
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Fig. 3 Possible pathways of phosphorous cycling of waterbird-derived nutrient and nutrient from
other sources in waterbody

8.2 Cycling of Phosphorous

Unlike nitrogen cycle, phosphorus cycle is not operated by redox potential in sed-
iment. As stated above, most of the droppings settle down in sediments, most of
phosphorus goes to sediment phosphorus pool. Sediment organic phosphorus also
can resuspend to water. Organic phosphorus after degradation forms inorganic phos-
phorus. Inorganic phosphorus is not always bioavailable, only bioavailable form
is orthophosphate. The inorganic phosphorus in lake remains in different form:
bioavailable orthophosphate, phosphorus adsorbed in organic colloids, phosphorus
adsorbed in metals in sediments and phosphorus bound to organic matter in sed-
iments. Because of this nature of phosphorus, phosphorus is limiting in most of
the waterbody and unlike nitrogen do not show atmospheric cycling instead shows
sedimentary cycling. When temperature increases, the hypolimnion of lake become
anoxic and this anoxic environment promotes release of orthophosphate from sedi-



Guanotrophication by Waterbirds in Freshwater Lakes … 265

ments. Again, release of bioavailable orthophosphate is enhanced by the disturbance
in sediment. Autotroph can uptake bioavailable orthophosphate from sediment and
phosphorus from autotroph then goes to grazing food chain. Again, sediment phos-
phorus can also be cycled through detritus food chain. As the guano decomposed,
sediment lose the N as it is more soluble in water, results in phosphatic sediment
(Fig. 3).

9 Conclusion

The relative importance of waterbird-derived nutrient depends on the land-use pat-
tern. Lake which received a large amount of nutrient through drainage, non-point
sources have little effect of waterbird input. But, in the arid area or close lake with no
inlet and outlet or in oligotrophic lakes waterbirds contributes a significant amount of
nutrients and in most cases, support the productivity of that lake. Estimates of nutri-
ent loading by waterbirds have mostly been done with data from existing literature.
But, development in technology, changes in fertilizer application etc. have changed
the agricultural practice over the decades, which in turn have affected elemental
concentration and energy quality of food of waterbird. So, using historical loading
rates may lead to bias towards old studies and may give inaccurate results. Again,
species composition of waterbird and nutrient content in food vary geographically.
The retention time of food also varies with a different diet of waterbird and the diet
compositions also show geographical variations. No study has so far been done in
the tropics where the physical conditions are very much different from temperate
regions. The hot tropical region may increase energy demand of bird by increasing
energy of existence (a function of temperature). So, using nutrient loading or defe-
cation rate values form the studies of temperate origin may give wrong results if
applied in tropics. As mentioned earlier, ducks are neglected globally. But the large
congregation of ducks may result in considerable amount of external load to the lake.
Data unavailability of defecation rates and retention time of species like Whistling-
Ducks, Pygmy-Goose have become a problem for estimating nutrient loading for
this So, in future species, site and season-specific studies are required to understand
more deeply and accurately the external nutrient inputs to the lake by waterbirds.
Little study has been done on ecosystem approach of guanotrophy. A recent review
concluded regarding the need of experimental ecosystem approach [35]. There are
many studies exist regarding what effect waterbird put on the aquatic ecosystem.
But, there is a little study performed about how question except for some isotopic
study [33] and bioassay study [34]. Process-based dynamic model approach, as has
been developed for semiaquatic waders at Okefenokee marshland [71], can be a best
answer for the how question. This kind of model can be also useful in management
perspective.
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On the Volatility of High Frequency
Stock Index Based on SV Model of
MCMC

Y. X. Zheng, Y. H. Zhang and X. H. Lu

Abstract By using of 5-min high-frequency data in CSI 300 index stock high-
frequency data from 15th Jan. 2018 to 5th Mar. 2018, basing on Bayesian Analysis
simulated by MCMC, this paper adopts the Stochastic Volatility model to do empiri-
cal researches on China’s stock market and utilizes DIC criterion to do model fitting
comparison. The result shows that China’s stock market has higher volatility per-
sistence, and the fitting effect for SV model to 5-min high-frequency data is better
than the low-frequency data, and the standard stochastic volatility model (SV-N) is
more suitable for high frequency-data of 5-min than the heavy-tail finance stochastic
volatility model (SV-T).

Keywords SV model · Gibbs sampling · Bayesian analysis ·Monte Carlo method

1 Introduction

Volatility is one of themost important characteristics of financial market, it is directly
related to market uncertainty and risk, and is one of the most concise and effective
indicators of financial market quality and efficiency [18]. We know that the degree
of change between yields is called volatility, but it is not observable. Therefore, how
to effectively describe the dynamic behavior of financial market fluctuations has
become the focus research on financial market.
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With the development of computer and communication technology, high fre-
quency data can better capture real-time information in financial market and reflect
market changes more comprehensively. Andersen and Bollerslev (1998) proposed
the measurement of volatility based on the “day sum squared rate of return” and
created a precedent for the study of volatility using intraday high frequency data
[3, 14]. Therefore, studying high-frequency data in the financial market helps us
to understand the micro-structural characteristics of the financial market, and has
important applications in risk management and finance engineering, such as deriva-
tives pricing, and has become an advantageous tool for market surveillance agencies.
As a fast-growing field, there are some typical characteristics for the empirical anal-
ysis of high-frequency data in the US stock market such as volatility day-type trend,
calendar effect, kurtosis and first-order negative correlation of price series [4.5]. The
research on the volatility of China’s stock high-frequency data mainly focuses on
the non-parametric estimation of integral volatility and modeling and forecasting of
volatility [5, 8, 15, 18], but there are still many problems not to be solved.

In the research article [16, 17], which eliminates the day pattern and establishes
the ACD Model by using of high frequency data of CSI 300 stock index. They
also discusses the information about the transmission mechanism for the duration of
trading volume. By using ACD model, studies of high-frequency data of one minute
before and after, the implementation of the fuse mechanism analyzes the impact of
the fuse mechanism on China’s A-share market. Inspired by these, this paper will
empirically analyze the 5-min high frequency data of the CSI 300 stock index from
15th January 2018 to 5th March 2018, and study the volatility characteristics of the
micromarket returns.We also analyze the effect on high frequency data of SVmodel.
Bayesian inference for standard stochastic volatility (SV-N) model and heavy-tail
stochastic volatility (SV-T) model will be deduced combing with R and WinBUGS,
and the model will be fitted by using Markov Monte Carlo(MCMC) method. Then
we analyze and compare the fit of the two models under different K-lines. This paper
will fit the low-frequency daily rate data and the 5-min high-frequency rate data with
SVmodel. The results show that the SVmodel has a better fitting effect on the 5-min
high-frequency data.

2 Model Principle

Let Pt be the closing price of the stock index on the t th trading day, yt = ln Pt+1 −
ln Pt be the daily return sequence. The standard stochastic volatility (SV-N)model is:

{
yt = exp(θt/2)εt , εt ∼ i.i.d.N (0, 1), t = 1, 2, . . . , n,

θt = μ + φ(θt−1 − μ) + ηt , ηt ∼ i.i.d.N (0,σ2), t = 1, 2, . . . , n,
(1)



On the Volatility of High Frequency Stock Index Based … 273

where εt is the white noise interference term that obeys the standard normal distribu-
tion; θt is the logarithmic volatility, and is a Gaussian AR(1) process that obeys the
persistence parameterφ, reflecting the impact of current volatility on future volatility,
the SV model is stable in covariance when | φ |< 1; ηt is the volatility disturbance
level of independent and identical distribution, obeying (0,σ2) normal distribution;
moreover εt and ηt are white noise sequences mutually independent.

If we look yt as t distribution with ω degrees of freedom in the SV-N model
(2.1), we will get a heavy-tail stochastic volatility model (SV-T for short), here the
perturbation εt obeysmean is 0, a normalized t-distribution withω degree of freedom
variance is 1, which has the ability to capture the high peak and heavy-tail of the
actual financial gain sequence.

Heavy-tail finance stochastic volatility model (SV-T) is

{
yt = exp(θt/2)εt , εt ∼ i.i.d.t (0, 1,ω), t = 1, 2, . . . , n,

θt = μ + φ(θt−1 − μ) + ηt , ηt ∼ i.i.d.t (0,σ2), t = 1, 2, . . . , n.
(2)

We will apply Bayesian inference method to deal with the volatility of SV model.
The posterior density distributions of the model parameters will be discussed sepa-
rately.

Set φ = 2φ − 1. The prior distribution of the parameters μ, φ1, σ and θ0 in SV-N
is [10]

φ1 ∼ Be(20, 1.5);σ2 ∼ IGa(2.5, 0.025);μ ∼ N (0, 100); θ0 ∼ N (μ,σ2), (3)

The prior distribution of SV-T model with an extra ω

ω ∼ χ(8), f reedom : I (4, 40). (4)

Because the calculation of posterior distribution of the SV model will use high-
dimensional integrals, and the Markov chain can converge to a stable probability
distribution by shifting the probability matrix, we will simulate the high-dimensional
probability distribution by means of MCMC with the steady distribution character-
istics of the Markov chain. When the Markov chain passes the preburning stage
to eliminate the influence of the initial parameters and reaches the stationary state,
each state transition can generate a sample of the distribution to be simulated. Gibbs
sampling can decompose a high-dimensional estimation problem into several low
dimensional problems by using the conditional distribution of all parameters.

The Gibbs sampling algorithm [11] is as follows. Given starting point θ(0) =
(θ01, θ

0
2, . . . θ

0
d), i = 0, 1, . . . t , iterate the following steps

(1) Extract random number θ(i+1)
1 from p(θ1 | θ(i)2 , . . . , θ(i)d , y);

(2) Extract random number θ(i+1)
2 from p(θ2 | θ(i)1 , . . . , θ(i)d , y);

(3) Extract random number θ(i+1)
3 from p(θ3 | θ(i)1 , . . . , θ(i)d , y);

· · ·
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(4) Extract random number θ(i+1)
d from p(θd | θ(i)1 , . . . , θd − 1(i), y).

Thenwe get a sequence ofGibbswith length t which is θ(t) = (θ(0), θ(1), . . . , θ(t)),
after m iterations of annealing, the Gibbs sequence can converge to a smooth dis-
tribution that independent with the initial value. After the pre-burning sample is
discarded, the Markov chain’s implementation value is obtained, that is the sequence
X (m+1), . . . , X (t).

As there are many unknown variables and observations in SV model, we will
choose the DIC criterion to compare and analyze the degree of fitting of the two
models. The DIC criterion [7] consists of two parts, one is D representing the good
and bad of the model fitting data, dispersion of posterior mean. Another one is PD
that to measure the complexity of the model.

DIC = D + PD; (5)

D = Eθ�y[− ln L(y|θ)]; (6)

PD = Eθ|y[− ln L(y|θ)]. (7)

where θ is the posterior mean of θ, L(y | θ) is the likelihood function under the
condition of known parameters and fluctuation mean. Eθ|y[X ] denotes the mean
under the posterior distribution g(θ | y)[12].

3 Empirical Analysis

Wewill simulate the volatility ofChina’s stockmarket by using 5-min high-frequency
data of the CSI 300 stock index from 15th Jan. 2018 to 5th Mar. 2018 in normal trad-
ing time. The data comes from the Great wisdom 365 software, and the sample size
is 1488. The CSI 300 stock index has a wide sampling and strong representative-
ness, which can more accurately reflect the general trend of China’s stock price. We
analyze the statistical characteristics of the series of returns and study the volatility
aggregation effect of China’s stock market by R. we knew that the yield sequence is
generally stable from its logarithmic yield from Fig. 1.

Table1 shows the basic statistical characteristics of the sequence yt . The yield
variability of the sequence yt is not significant and the trend is relatively stable.
The left-handed for the distribution of yields shows that the stock has risen slowly
and dropped sharply. The peak value of the sequence is much larger than that of
the normal distribution, indicating that the sequence distribution has the proterty of
Peak and heavy-tail compared to the normal distribution. The J-B statistic [4] shows
that the sequence yt does not obey the normal distribution. From the Box.test value,
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Fig. 1 CSI 300 logarithmic return rate chart

Table 1 Basic statistical characteristics of the sequence

Stock Mean Standard Skewness Kurtosis J-B Box.test

index deviation

CSI 300 2.61 ∗ 10−5 9.685 ∗ 10−5 –1.21676 20.43131 2.2 ∗ 10−16 2.103 ∗ 10−3

Fig. 2 Estimation of parameters posterior distribution density for the 5-min SV-N model of CSI
300

we can reject the original hypothesis sequence is irrelevant, so the sequence has
autocorrelation.

In this paper, we estimate Bayesian parameters of two models with WinBUGS. It
takes 10000 iterations for each parameter to be estimated as a preburning sample to
ensure thatGibbs is close enough to the random sample from the joint distribution and
the convergence of the parameters. After 30001 iterations, the model was simulated
and estimated to obtain the following posterior distribution density function graph.

Parameter μ has symmetry in these two models from Figs. 2 to 3, φ is slightly
left-biased. Parameter σ is symmetric in SV-N model. σ is slightly right-biased and
ω is obviously right-biased in SV-T model. The posterior distribution curve of the
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Fig. 3 Estimation of parameters posterior distribution density of the 5-min SV-T model in CSI 300

Table 2 Bayesian estimation results of CSI 300 SV-N and SV-T model parameters

Node Mean sd MC error 2.5% Median 97.5% Start Sample

SV-N mu −14.24 0.05827 0.001647 −14.36 −14.24 −14.13 10000 30001

phi1 0.9442 0.00943 5.911E-4 0.9234 0.9449 0.9604 10000 30001

sigma 0.351 0.03266 0.002288 0.2907 0.3499 0.418 10000 30001

SV-T mu −14.47 0.08354 0.003295 −14.63 −14.47 −14.3 10000 30001

nu 7.042 0.8692 0.05323 5.657 6.919 8.993 10000 30001

phi1 0.9823 0.004324 2.727E-4 0.9726 0.9828 0.9894 10000 30001

sigma 0.1526 0.01985 0.001467 0.1182 0.1526 0.1941 10000 30001

two model parameters is smooth, so the Markov chain has been basically stable. It
shows that the parameters of the simulated estimation are effective.

The MC errors of the SV-N and SV-T models are far smaller than the standard
deviation of the parameters from Table2. The quantile interval estimation of each
parameter is basically stable, and the fluctuation caused by the random model is
small, so the estimation result is convergent and effective. SV-T model has stronger
volatility and higher risk than SV-N model from the value of μ. There is continuity
in the yield of the CSI 300 stock index from the value of φ. We can calculate the
half-life of a fluctuating shock, the duration of the shock is half of its initial value
decay by the formula − ln(2)/ln(φ)[9]. The half-lives of SV-N and SV-T are 12.1
and 38.8 weeks respectively, indicating that the CSI 300 stock index has obvious
fluctuation accumulation characteristics and the SV-T model has a stronger fluctua-
tion persistence [6]; εt and ηt are independent error processes in the SV-N and SV-T
models, and therefore are not taken into account leverage effects [13]; SV-N is noisy
in the simulation process from the value of ω. The CSI 300 stock index yield does not
obey the normal distribution, but it has the characteristics of high peak and heavy-tail
(Fig. 3).

We analyzeDICfitting of the low-frequency daily yield and 5-min high-frequency
return rate for SV-N and SV-Tmodels byWinBUGS. SV-Nmodel is better than SV-T
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Table 3 Com parison of DIC of SV-N and SV-T

Time Model Dbar Dhat PD DIC

5-min high
-frequency

SV-N −42967.600 −43355.000 387.389 −42580.200

SV-T −42663.100 −42829.000 165.850 −42497.300

Daily low-
frequency

SV-N −63.908 −63.956 0.048 −63.860

SV-T −51.615 −52.185 0.570 −51.045

model data, but it is more complex for high-frequency 5-min and low-frequency daily
rate data from the DIC comparison (Table3). The high-frequency of 5-min is better
than the low-frequency daily data fitting from the perspective of DIC synthesis. The
SV-N model is more suitable for simulating the CSI 300 stock index for the high-
frequency 5-min yield data, which proves that the SV model is suitable for fitting
the high frequency data.

4 Conclusion

We use high-frequency 5-min data of the CSI 300 index as sample data to study the
volatility of the China’s stock market with the high-frequency data, and analyze the
statistical characteristics of yield data by using SV-N model and SV-T model. Then
Bayes analysis is applied, and a priori distribution of parameters is set, the MCMC
simulation process of Gibbs sampling is constructed. We compare the fitting degree
under different models of the same data respectively by the DIC criterion.

The results indicates that:
China’s CSI 300 index yield does not obey the normal distribution, but shows

the characteristics of the heavy-tail,which further reflects the strong persistence of
high-frequency income in China’s stock market,shows that the current high volatility
level will not return to a lower level of volatility quickly, it will continue to maintain
high volatility in a couple of time periods.

By DIC analysis of the daily yield data and 5-min yield data, we conclude that
the stochastic volatility model fits better to high-frequency 5-min yield data.

The SV-N model performs better than the SV-T model.
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The Effects of Unequal Diffusion
Coefficients on Spatiotemporal Pattern
Formation in Prey Harvested
Reaction-Diffusion Systems

Lakshmi Narayan Guin

Abstract In this investigation, we explore the spatiotemporal dynamics of reaction-
diffusion predator-prey systems with Holling type II functional response. For partial
differential equation, we consider the diffusion-driven instability of the coexistence
equilibrium solution through spatiotemporal patterns. We find the conditions for
Turing bifurcation of the system in a two-dimensional spatial domain by making use
of the linear stability analysis and the bifurcation analysis. By choosing the ecological
system parameter as the bifurcation parameter, we show that the system experiences
a sequence of spatiotemporal patterns. The results of numerical simulations unveil
that there are various spatial patterns including typical Turing patterns such as hot
spots, spots-stripes mixture and stripes pattern through Turing instability. Our results
show that the ecological system parameter plays a vital function in the proposed
reaction-diffusion predator-prey models. Numerical design has been finally carried
out through graphical representations of those outcomes towards the end in order to
recognize the spatiotemporal behaviour of the system under study. All the outcomes
are predictable to be of use in the study of the dynamic complexity of flora and fauna.

Keywords Reaction-diffusion equations · Prey refuge · Prey harvesting · Turing
instability · Spatiotemporal pattern

AMS 35B36 · 35G31 · 35K55 · 37C75 · 37H20 · 70Kxx · 82B26

1 Introduction

The dynamical correlation between interacting species has been explored extensively
in recent years due to its worldwide existence and significance in mathematical
biology and ecology. The purpose of this research is to study systematically the
dynamical properties of reaction-diffusion predator-prey model with Holling type II
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functional response. A usual interaction of predator and prey is well known as the
Holling type II model, which is broadly used in real life ecological relevance, and
it has also been used to illustrate the spatiotemporal dynamics of reaction-diffusion
predator-preymodel systems [6, 7, 10, 11, 19–21]. In the present literature, reaction-
diffusion systems typically take place as models for interactions between predator-
prey species where the species can vary in size in space and move according to
physical diffusion. The central focus of this paper is to investigate the predator-prey
dynamics with both refuge and harvesting where, the interacting species moves in
two-dimensional space consistent with self-diffusion.

Refuge exercise is any approach that reduces predation risk. The existence of
refuges can evidently have significant effects on the co-existence of predator and
prey species. Usually, prey species may escape being killed by predator species
either by defending themselves or by evading. One approach to escape is to shift
into a refuge where predation possibility is reduced [3, 16, 17, 22, 23]. By adding
a large refuge to a model, Hassel [14] explained that the system revealed divergent
oscillations in the absence of refuge, replaced the oscillatory behaviour bymeans of a
stable equilibrium. Chen et al. [2] argued the instability and global stability properties
of the equilibria and the existence and uniqueness of limit cycle of a Holling-Tanner
type II predator-prey model incorporating a prey refuge. They establish that dynamic
behaviour of the model system very much depends on the prey refuge parameter and
increasing amount of refuge could increase prey densities and guide to predator
eruptions. Even though there are many biological as well as ecological research
articles available on the predator-prey temporal dynamics by incorporating a prey
refuge, the significance of spatial prey refugia and diffusion on predator-prey model
have received much less attention in the literature. The effects of refuges used by
prey species on the dynamics of considered reaction-diffusion predator-prey model
is examined at this point.

It is familiar that the harvesting has an important consequence on the dynamics
of a model. In a predator-prey model with non-constant prey harvesting, the aim
is to find out how much we can harvest without changing seriously the harvested
species. The utilization of biological reserves and the harvesting of some ecological
species are frequently observed in fishery, forestry, and wildlife management. Math-
ematical models have been exercised at length and effectively to gain insight into
the scientific management of renewable resources like fishery and forestry [15, 18,
26]. Consequently, it is essential to revise the suitable interacting species model with
non-constant prey harvesting. However, the effect of non-constant prey harvesting
on the spatiotemporal dynamics of a reaction-diffusion predator-prey system has not
been analyzed regularly. To the best of our information, little interest has been paid to
the dynamics of a reaction-diffusion predator-preymodel incorporating non-constant
prey harvesting.

A number of research papers have been published over the last three decades on
reaction-diffusion predator-prey models and different types of spatial patterns have
been accounted for these reaction-diffusion systems [8, 9, 12, 13, 24]. A number
of ecological models that explain reaction-diffusion predator-prey dynamics with
harvesting have been enlarged, stemming from the significant research articles in
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the literature [4, 5, 13]. In these efforts the spatiotemporal dynamics of a predator-
prey system with linear/nonlinear harvesting is modeled by the reaction-diffusion
system. In [4, 5], it is demonstrated that the considered harvested model can generate
spatiotemporal patterns through diffusion-driven instability.We summarize the result
of interest from [4, 5] which measures the usefulness of the Turing pattern formation
of a diffusive systemwhen supplementedwithmutual impacts of both prey refuge and
harvesting. In this paper, a reaction-diffusion model describing the Holling-Tanner
type II predator-prey interaction with intra-specific competition among predators
and combined impacts with both prey refuge and harvesting is proposed. The aim
of this manuscript is to study the influences of both prey refuge and harvesting
on the spatiotemporal dynamics of a reaction-diffusion model with Holling type II
prey-dependent functional response. Efforts have also been prepared to investigate
the Turing pattern formation in a two-species interaction through diffusion-driven
instability in the proposed predation model [25].

The rest of this paper is organized in the followingmanner: In Sect. 2, the predator-
prey model in presence of diffusion is introduced with both prey refuge and harvest-
ing. In Sect. 3, the model is examined in presence of spatial diffusion and the Turing
bifurcation analysis around the unique positive spatially homogeneous steady state
have been carried out. In Sect. 4, the Turing pattern formation via computational
scheme is discussed briefly and numerical simulation results are analyzed. Finally,
in Sect. 5, the ecological implications of analytical and numerical findings are talked
about independently for the intention of sustaining ecological stability in nature.

2 The Mathematical Model with Diffusion and Its Analysis

In this investigation, we consider an extendedmodel of the classical Bazykin’s model
[1] to explore the outcomes of both refuge and harvesting on the spatial pattern for-
mation via diffusion-driven instability. In view of that, an effort is prepared to explore
the following two-dimensional continuous pursuit-evasion predator-prey model with
both linear prey harvesting and constant proportion of prey refuge as

∂u

∂t
= ru

(
1 − u

K

)
− p1(1 − m)uv

(1 − m)u + p2
− Hu + D1∇2u, (2.1a)

∂v

∂t
= −p3v + p4(1 − m)uv

(1 − m)u + p2
− p5v

2 + D2∇2v, (2.1b)

u(0, x, y) > 0, v(0, x, y) > 0, (2.1c)

where u, v denote prey and predator species respectively at (t, x, y) in a given spatial
domain of R2, and r , K , p1, p2, H , p3, p4, p5, D1, D2 are all positive ecological
parameters. Here r represents intrinsic growth rate and K , the carrying capacity of the
prey species; m ∈ [0, 1) is the prey refuge parameter; p1 is the maximum number of
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prey that can be eaten by each predator in unit time; p2 is the interference coefficient
of the predator; p3 is the death rate of the predator; p4 is the maximal predator
growth rate; p5 is the intra-specific competition among predators and H ∈ [0, 1)
stands for linear harvesting rate of prey species. The terms ∇2u, ∇2v represent
the diffusion of prey and predator species respectively, where ∇2 indicates two-
dimensional Laplacian operator; D1 and D2 are the self-diffusion coefficients for u
and v, respectively.

System (2.1) takes place as aHolling-Tanner type II diffusive predator-preymodel
of interacting populations in the same spatial domain of R2. Assuming that all the
utilized ecological parameters do not depend on space or time, that is, the envi-
ronment is uniform. It is supposed that the refuge protecting mu of prey, where
m ∈ [0, 1), is constant and hence (1 − m)u is only prey available to predator for
predation. Throughout the analysis, we believe that the predator species in the model
(2.1) is not of commercial/economical significance and accordingly the prey species
is continuously being harvested with non-constant rate in time by a harvesting orga-
nization.

In order tominimize the number of parameters inmodel (2.1), we set (u, v, t, x, y)
= (Kũ,

Kp4 ṽ
p1

, t̃
r , x̃ L , ỹL); L designates the characteristic length of the spatial domain

�, and accordingly we arrive at the following equations containing dimensionless
quantities of the system (2.1) (after dropping tildes):

∂u

∂t
= F1(u, v) + d1∇2u, (x, y) ∈ �, t > 0, (2.2a)

∂v

∂t
= F2(u, v) + d2∇2v, (x, y) ∈ �, t > 0, (2.2b)

u(0, x, y) > 0, v(0, x, y) > 0, (x, y) ∈ �, (2.2c)

where F1(u, v) = u(1 − u) − b(1−m)uv
(1−m)u+a − hu, F2(u, v) = −cv + b(1−m)uv

(1−m)u+a − dv2

and the dimensionless system parameters are a = p2
K , b = p4

r , c = p3
r , d = Kp4 p5

p1r
,

h = H
r , d1 = D1

r L2 and d2 = D2
r L2 .

To solve the reaction-diffusionmodel (2.2), we employNeumann boundary condi-

tion as ∂
∂ξ

[
u
v

]
(x,y)

= 0, (x, y) ∈ ∂�, t > 0 where ∂� is the closed smooth bound-

ary of the reaction-diffusion domain � and ξ is the unit outward normal to ∂�.
With the purpose of spatial pattern formation through diffusion-driven instability

of system (2.2), first we have to think over the non-spatial system of (2.2). Actually,
the non-spatial system of (2.2) has three equilibria, which correspond to spatially
homogeneous equilibria of system (2.2), in the positive quadrant as follows:
(i) e0(0, 0) (total extinct);
(ii) e1(1 − h, 0) (extinct of the predator);
(iii) a non-trivial feasible stationary state e2(u2, v2) (coexistence of both the species)
where v2 = [a+(1−m)u2](1−u2−h)

(1−m)b ; u2 ∈ (0, 1 − h), h ∈ [0, 1) and u2 be the root of the
cubic polynomial equation

αu3 + βu2 + γ u + δ = 0, (2.3)
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α = (1 − m)2d > 0,

β = −(1 − h)(1 − m)2d + 2(1 − m)da,

γ = −(1 − m)2cb − 2(1 − h)(1 − m)da + (1 − m)2b2 + a2d,

δ = −(1 − h)da2 − (1 − m)cab < 0.

Due to the ecological meaning, prime interest has been focused to investigate
the dynamic behaviour about the positive and unique interior equilibrium point
e2(u2, v2).

Now, we will discuss about the possible equilibrium solutions of the non-
spatial system of (2.2). Figure1 illustrates the nullcline of the model system,
which is the intersection of prey nullcline (the blue one) and predator nullcline
(the green one). The prey nullcline consists of the axis u = 0 and the curve
v = (1−u−a4)[(1−a2)u+a3]

a1(1−a2)
and the predator nullcline is given by v = 0 and the curve

v = 1
a6

(−a5 + a1(1−a2)u
[(1−a2)u+a3] ). One can observe the positive and unique interior equilib-

rium point e2(0.07767770319458, 0.33798353957001) corresponding to the param-
eter values a = 0.3, b = 1.0, c = 0.02, d = 0.5, m = 0.1, h = 0.1 (cf. Fig. 1).
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Fig. 1 Nullclines of the non-spatial system of (2.2) in uv-plane (blue colour curve for the prey
nullcline, green colour curve for the predator nullcline) for a = 0.3, b = 1.0, c = 0.02, d = 0.5,
m = 0.1, h = 0.1.
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3 Analysis in Presence of Diffusion of the System (2.2):
Turing Bifurcation

To carry out a linear stability analysis for the non-trivial stationary state e2(u2, v2), we
have to linearized the reaction-diffusion system (2.2) around the spatially homoge-
neous equilibrium point e2(u2, v2) for small space- and time-dependent perturbations
and expand them in Fourier space. For this, let

u(
−→x , t) = u2 + u(

−→x , t), |u(
−→x , t)| << u2,

v(−→x , t) = v2 + v(−→x , t), |v(−→x , t)| << v2,

and

[
u(

−→x , t)
v(−→x , t)

]
=

[
ζ1
ζ2

]
eλt ei

−→
k −→x ,

−→
k = (kx , ky),

where −→x = (x, y) and
−→
k .

−→
k = k2; k and λ are the wave number vector and fluc-

tuated growth rate in time t , respectively; ζ1, ζ2 are the corresponding amplitudes.
Then, we find the corresponding characteristic equation as follows:

|J − k2d − λI2| = 0, (3.1)

J =
[
1 − 2u2 − b(1−m)av2

[(1−m)u2+a]2 − h − b(1−m)u2[(1−m)u2+a]
b(1−m)av2

[(1−m)u2+a]2 −c + b(1−m)u2[(1−m)u2+a] − 2dv2

]
=

[
J11 J12
J21 J22

]
, d =

[
d1 0
0 d2

]
, I2 =

[
1 0
0 1

]
.

The solutions of (3.1) can be achieved by the subsequent form:

λ2,1 = −B ± √
B2 − 4C

2
, (3.2)

B(k2) = k2(d1 + d2) − tr(J ), (3.3)

C(k2) = det J + k4d1d2 − k2(d1 J22 + d2 J11). (3.4)

The system (2.2) will be unstable if at least one of the eigenvalues λ2 or λ1 is positive.
So, diffusion-driven instability can only be reached if C(k2) < 0 and this condition
guarantees that the coefficient of k2 in (3.4) is positive i.e.

d1 J22 + d2 J11 > 0 (3.5)

Here,C(k2) is a parabolic type quadratic function of k2. Let, theminimumofC(k2) =
0 is arrived at

k2cr = d1 J22 + d2 J11
2d1d2

> 0. (3.6)

At k2 = k2cr , C(k2) < 0 transfers into
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(d1 J22 + d2 J11)
2 > 4d1d2(det J ). (3.7)

Specifically, Turing instability involves the following necessary and sufficient con-
ditions:

(i) J11 + J22 < 0,

(i i) J11 J22 − J12 J21 > 0,

(i i i) d1 J22 + d2 J11 > 0,

(iv)
(d1 J22 + d2 J11)2

4d1d2
> (J11 J22 − J12 J21).

Mathematically, theTuring bifurcation of the system (2.2) happenswhen Im(μ(k)) =
0, Re(μ(k)) = 0 at k = kT �= 0 where the wave number kT satisfies k2T =√

(J11 J22−J12 J21)
d1d2

. The equilibria that can be found in the Turing space, are stable with
regard to homogeneous perturbations but they mislay their stability with respect
to perturbations of specific wave number k. The diffusion-driven instability cannot
happen except the ratio of diffusion coefficient d2

d1
is suitably away from unity. From

the conditions J11 + J22 < 0 and d1 J22 + d2 J11 > 0, one can able to find d2 > d1
easily, which points out that diffusivity of the predator is greater than that of the prey
species.

4 Numerical Simulation Results: Spatiotemporal Pattern

In this section, numerical simulations are executed for the reaction-diffusion sys-
tem (2.2) in two-dimensional square domain � = [0, 100] × [0, 100] and the cor-
responding system parameters values chooses within the regime of Turing space.
Extensive testing was presented through numerical simulation to understand the
complex dynamical behaviour of the model (2.2), and the consequences are revealed
here. In order to solve the reaction-diffusion system numerically, we use explicit
finite difference scheme for the spatial derivatives and an explicit Euler method
for the time integration with appropriate time step satisfying the CFL (Courant-
Friedrichs-Lewy) stability criterion for two dimensional diffusion equations (i.e.
|di ( 1

(Δx)2 + 1
(Δy)2 )Δt | < 1

2 , i = 1, 2) by means of space step size Δx = Δy = 1.0
and time step Δt = 0.005. We carried out extensive numerical simulations of the
reaction-diffusion system (2.2) in � = [0, 100] × [0, 100] and the qualitative out-
comes are revealed in the study. Our numerical simulationsmake use of the following
initial conditions:

u(0, x, y) = u2,

v(0, x, y) = v2 ∗ ((x − 50)2 + (y − 100)2 >= 100) + 0.00 ∗ ((x − 50)2 + (y − 100)2 < 100).

Throughout the numerical simulations, special types of dynamics are obtained and
the allocations of prey and predator species are always of the similar type. As a result,
we can confine our analysis of pattern formation to prey species.
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4.1 The Effect of Unequal Diffusion Coefficients d1 and d2

Figure2 illustrates the progress of the stationary Turing pattern of the prey species
at (i) d2 = 5.0, (ii) d2 = 10.0, (iii) d2 = 20.0, (iv) d2 = 40.0 with small random
perturbation of the stationary solution u2 and v2 of the spatially homogeneous system
(2.2) through a = 0.3, b = 1.0, c = 0.02, d = 0.5, m = 0.0, h = 0.0, d1 = 0.1. In
addition, we can examine that as d2 increases from 5.0 to 40.0, the radius of hot
spots are uniformly increases and significantly the concentration of the prey species
increases also. The entire thing occurs over the spatial domain, starting from hot
spots with small radius, and finally the dynamics of the system does not undergo any
further changes.
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Fig. 2 Distinctive spatial pattern of the prey size in two-dimensional space for the system (2.2).
Here the parameter values are a = 0.3, b = 1.0, c = 0.02, d = 0.5, m = 0.0, h = 0.0, d1 = 0.1. a
d2 = 5.0, b d2 = 10.0, c d2 = 20.0, d d2 = 40.0. Predator size shows similar properties
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Fig. 3 Distinctive spatial pattern of the prey size in two-dimensional space for the system (2.2).
Here the parameter values are a = 0.3, b = 1.0, c = 0.02, d = 0.5, m = 0.0, d1 = 0.1, d2 = 40.0.
a h = 0.0, b h = 0.18. Predator size shows similar properties

4.2 The Effect of h in Absence of Refuge

Figure3 shows the evolution of the stationary Turing pattern of the prey species at (i)
h = 0.0, (ii) h = 0.18 with small random perturbation of the stationary solution u2
and v2 corresponding to the other parameters a = 0.3, b = 1.0, c = 0.02, d = 0.5,
m = 0.0, d1 = 0.1, d2 = 40.0. As can be seen from Fig. 3, as h increases, hot spots
patterns are gradually formed and consequently the prey concentration decreases as
well.

4.3 The Effect of m in Absence of Harvesting

Figure4 demonstrates three typical spatiotemporal patterns of the prey species for
special values of m. From the Fig. 4, one can notice that the steady-state pattern
takes a long time to settle down, starting with a homogeneous state e2(u2, v2), and
the random perturbation leads to the structure of hot spots (cf. Fig. 4a), and ending
with the coexistent of hot spots and stripes patterns (cf. Fig. 3c).



288 L. Narayan Guin

(a)

x

y

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45

(b)

x
y

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45

(c)

x

y

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0.05
0.1
0.15
0.2
0.25
0.3
0.35

Fig. 4 Distinctive spatial pattern of the prey size in two-dimensional space for the system (2.2).
Here the parameter values are a = 0.3, b = 1.0, c = 0.02, d = 0.5, h = 0.0, d1 = 0.1, d2 = 40.0.
a m = 0.0, b m = 0.2, c m = 0.3. Predator size shows similar properties

4.4 The Effect of d in Presence of Both Refuge and
Harvesting

Figure5 explains four typical spatial patterns through diffusion-driven instability of
u for the system (2.2) for different values of the parameter d. From the Fig. 5, we
can detect that as the significant parameter d increases, the sequence “hot spots (cf.
Fig. 5a, b) → hot spots and stripe mixture patterns (cf. Fig. 5c) → almost stripes
patterns (cf. Fig. 5d)” is observed.

4.5 The Effect of c in Presence of Both Refuge and
Harvesting

Similarly, from Fig. 6, we can observe that as the value of the parameter c increases,
the sequence “hot spots (cf. Fig. 6a) → hot spots and short stripes (cf. Fig. 6b) →
hot spots and stripe mixture patterns (cf. Fig. 6c) → stripes patterns (cf. Fig. 6d) ” is
found to emerge.

5 Conclusion and Discussion

In the current paper, we have reflected on a diffusive model for predator-prey interac-
tion with Holling-Tanner type II functional response within two-dimensional space.
A variety of spatiotemporal patterns generated by a reaction-diffusion predator-
prey system with both prey refuge and harvesting are investigated analytically and
numerically. A series of numerical simulations illustrated that pattern transition will
emerge when both prey refuge and harvesting are added. We obtained the required
conditions for diffusion-driven instability in terms of system parameters. We have
also confirmed the idea that resulting spatial pattern lies in the interior of Turing
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Fig. 5 Distinctive spatial pattern of the prey size in two-dimensional space for the system (2.2).
Here the parameter values are a = 0.3, b = 1.0, c = 0.02, m = 0.1, h = 0.1, d1 = 0.1, d2 = 10.0.
a d = 0.35, b d = 0.75, c d = 0.82, d d = 0.85. Predator size shows similar properties

space. Numerical simulation results indicate that Turing patterns (cf. Figs. 2, 3, 4,
5 and 6) can emerge through the interaction between the diffusion and both prey
refuge and harvesting with other momentous system parameters in the system (2.2).
Throughout the investigation, we have noticed that the variety of parameter values
is important to study the effect of diffusion and diffusion-driven Turing instability
cannot happen for d1 = d2.

Figure3 demonstrates the evolution of the stationary spatial pattern of the prey
species (u) at different h by keeping the value of prey refuge m fixed at m = 0.0 and
as h increases, uniform hot spot patterns are gradually formed and consequently the
prey concentration decreases. Different Turing patterns of the prey species emerge
as we vary constant proportion of prey refuge m by keeping the value of linear prey
harvesting h fixed at h = 0.0 (cf. Fig. 4a–c). The absence of prey refuge m = 0.0
results in spot patterns, that is, where the prey abundance is higher in isolated zones
(cf. Fig. 4a). Now, as we increase the value of prey refuge, we get a mixture of stripe
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Fig. 6 Distinctive spatial pattern of the prey size in two-dimensional space for the system (2.2).
Here the parameter values are a = 0.3, b = 1.0, d = 0.5, m = 0.1, h = 0.1, d1 = 0.1, d2 = 10.0.
a c = 0.02, b c = 0.12, c c = 0.13, d c = 0.145. Predator size shows similar properties

and spot patterns. In the presence of prey refuge and harvesting, variations in intra-
specific competition among predators (d) generate spots, mixture of spots and stripes
(cf. Fig. 5). Therefore, by increasing the value of intra-specific competition among
predators (d), the pattern sequence “hot spots (cf. Fig. 5a, b) → hot spots and stripe
mixture patterns (cf. Fig. 5c) → almost stripes patterns (cf. Fig. 5d) ” is detected.
So, the consequences based on the current system explain that the effect of both prey
refuge, harvesting and intra-specific competition among predators for spatial pattern
formation is insightful on the dynamic complexity of ecosystems.

In this paper, we have studied the effect of internal competition response on the
formation and characters of Turing patterns. In reality, the formation and charac-
teristics of Turing patterns may be influenced by some other factors in ecological
systems, including fluctuate environment feedback, circumstance noise and the peri-
odic travelling wave feedback, and these will be investigated in the future.
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Optimal Pricing Strategy
in a Two-Echelon Supply Chain
with Admissible Advanced and Delayed
Payments

B. C. Giri, R. Bhattacharjee and T. Maiti

Abstract In the traditional economic order quantity model, the purchasing cost of
an order is paid at the time of its receipt. However, in reality, installment payment of
purchasing cost is very common and many distributors pay the purchasing cost to the
manufacturers in installments (upstream partial prepayment). In a similar manner,
distributors allow retailers to pay the purchasing cost after the goods are received
(downstream partial delay payment). This article develops a two-echelon supply
chain model with a single-manufacturer and a single-retailer in which the manufac-
turer adopts a lot-for-lot policy for meeting the demand of the retailer under admis-
sible advanced and delayed payment options. The market demand at the retailer is
assumed to be linearly dependent on the selling price. The effect of advanced/delayed
payment on the optimal payment time is analyzed. The optimal results of the devel-
oped model and sensitivity analysis are presented for a numerical example. It is
revealed that the supply chain’s average profit attains the maximum when the opti-
mal cycle time is longer than the optimal payment time.

Keywords Supply chain · Lot-for-lot policy · Price-dependent demand ·
Advanced/delayed payment

1 Introduction

The competitive strategy of a supply chain largely depends on its payment pro-
cedure. The optimal payment is an important driver in the suitable balance in
efficient-responsiveness spectrum of supply chain framework. In the traditional EOQ
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(Economic Order Quantity) model, the purchasing cost of an order is paid at the time
of its receipt. In some cases, retailers request purchasers to pay all or a fraction of
the purchasing cost in advance and the remaining fraction in several installments.
In practice, retailers are often allowed delayed payments by their suppliers in order
to increase sales volume. For retailers, the delayed payment not only lowers the
opportunity cost of capital but also allows them to earn interest on the revenue of
goods sold.

Timing of payment of purchasing cost plays a major role in deriving the optimal
decisions of the distributors or retailers. There are three basic payment strategies, viz.
(i) delivery time payment, (ii) delayed payment and (iii) advanced payment.Goyal [1]
initiated a fixed delay payment period in the traditional EOQ model. Subsequently,
many researchers proposed inventory models relating to the permissible delay in
payments (Jamal et al. [2]; Teng et al. [3]; Chung [5] and others). Significant amount
ofwork has so far been done in this area assuming that the length of the delay payment
period is linked to the retailer’s order quantity (Huang [6]), and two-level trade credit
policy (Giri and Maiti [7]; Giri and Sharma [8]). Some researchers assumed that
the supplier provides the delay payment period and cash discount simultaneously
(Yang [9]).

In response to the supplier’s trade credit offer, the retailer may pay before time
or fail to pay in time. The supplier can charge additional cost on delay time or
provide cash discount for prior payment. In this situation, the optimal payment time
decision is more important to the retailer in doing business. However, the optimal
payment time decision from the point of view of the retailer has been studied by
some researchers. Jamal et al. [2] and Sarker et al. [10] determined optimal cycle
time and payment time when the supplier allows a specified credit period to the
retailer for payment without penalty. Liao and Chen [11] focused on a retailer’s
inventory control system in the optimal delay in payment time for initial stock-
dependent consumption rate when a wholesaler permits a delayed payment. Huang
[12] investigated the buyer’s optimal cycle time and optimal payment time under the
supplier’s trade credit policy and cash discount policy. Chang et al. [13] developed
a mathematical model to determine the optimal payment period and replenishment
cycle when the supplier offers the retailer a permissible delay in payments. Maiti
et al. [14] studied the effect of advanced payment for price-dependent demand in a
stochastic environment. Recently Giri et al. [15] investigated optimal payment time
with trade credit financing. Li et al. [16] focused on advance-cash-credit payments by
a discounted cash flow analysis. Correlation between expiration date and advanced
payment was interestingly discussed by Teng et al. [17]. Zhang et al. [18] exhibited
ordering policy with advanced payment for stable supply capacity.

In this paper, we consider the optimal payment time of the retailer in a two-
echelon supply chain system where the retailer has the full liberty to pay whenever
hewants (before the distribution cycle starts, in the intermediate timewith variations)
under somemutually agreed conditions on thewholesale pricewith themanufacturer.
The paper is structured as follows. In the next section, notations and assumptions
for developing the model are given. The proposed model is formulated in Sect. 3.
Section4 deals with model analysis and some important properties of the proposed
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model. Section5 demonstrates the developedmodel for a numerical example. Critical
value of the controlling parameter for flipping the choice of the model is also pre-
sented in this section. Sensitivity analysis is presented in Sect. 6. Section7 concludes
the paper and gives some directions for future research.

2 Notations and Assumptions

The following notations are used to develop the proposed model:

p retailer’s unit selling price (decision variable)
D(= D(p)) demand rate at the retailer
P(> D) production rate at the manufacturer
Q retailer’s order quantity
T replenishment interval of the retailer, i.e. the cycle time (decision variable)
R time period after/before which the actual payment is made by the retailer
tm time delay for the manufacturer to begin production
w unit cost for the retailer
β controlling factor for payment time variation
w1 wholesale price for advanced payment
w2 wholesale price for delayed payment
c unit cost for the manufacturer
ar retailer’s ordering cost per order
am manufacturer’s set up cost per set up
hr retailer’s holding cost (excluding the opportunity cost) per unit per unit time
hm manufacturer’s holding cost (excluding the opportunity cost) per unit per unit time
ie interest rate at which interest is earned from the bank
i p interest rate at which interest is paid to the bank
iv interest rate lost by the manufacturer (opportunity cost).

The following assumptions are made for developing the proposed model.

• The supply chain under consideration consists of a single-manufacturer and
a single-retailer for trading a single product where the manufacturer follows a
lot-for-lot production policy in response to the retailer’s order quantity.
• The market demand D at the retailer is linearly dependent on the selling price
p. We take D = D(p) = a − bp, where a > 0, b > 0 such that p < a/b.
• Shortages in the retailer’s inventory are not allowed and all replenishments are
made instantaneously.
• The manufacturer’s production rate is sufficiently greater than the retailer’s
demand rate.
• The manufacturer offers an optional payment procedure to the retailer. This
offer contains advanced payment or delayed payment. Advanced payment has to
be made before the initiation of replenishment. The delayed payment is classified
into two categories. The payment can be made during any time of replenishment
i.e., within T or after the completion of a replenishment cycle. If the payment
is made in advance then the wholesale price w1 will be (1 − β)w and, in case
of delayed payment, the wholesale price w2 will be (1 + β)w, where β is the
controlling factor for payment time variation.
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• If the payment time is adopted by the retailer as the advanced mode, then at the
time of payment, the retailer has to take a bank loan to fulfill the payment at an
interest rate i p and repay it at the end of the cycle.
• If the payment time is adopted by the retailer as the delayed mode, then before
the time of payment, the manufacturer incurred an opportunity loss at an interest
rate iv.
• During the whole process, the retailer deposits his earning to an interest giving
organization (bank) with an interest rate ie and according to the requirement of the
retailer, it is accessible without any condition.
• The planning horizon is infinite.

3 Model Formulation

3.1 Retailer’s Perspective

The instantaneous states of the retailer’s inventory level Ir (t) at any instant t in the
time interval [0, T ] can be described as

d Ir (t)

dt
= −D, 0 ≤ t ≤ T ; Ir (T ) = 0.

Solving, we get

Ir (t) = D(T − t), 0 ≤ t ≤ T .

Since Ir (0) = Q, therefore, we have Q = DT . Then the holding cost per unit time
of the retailer is

hr
T

∫ T

0
Ir (t)dt = hr DT

2
.

We now consider the following two cases based on the relation of the payment time
R and the replenishment interval T whose variation is basically termed as advanced
payment and delayed payment.

Case I: Advanced payment
In this payment mode, it is assumed that the payment towards the manufacturer is
done before the item is procured for next phase delivery. The total sales revenue in
the period is pDT and the profit is (p − w1)DT . Due to advanced payment, the
retailer takes loan from bank and repays at the end of the cycle i.e., the interest is to
be paid with a duration of (T + R) time. Since the interest rate at which interest is
paid to the bank is i p, the total amount of interest is i pw1DT (T + R). Meanwhile,
when the disbursement of the procured quantity is started from the retailer’s end, the
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accumulated revenue is kept in an interest giving organization (bank) with interest
rate ie. The corresponding gain is

ie p
∫ T

0
Dt dt = ie pDT 2

2
.

So the net profit of the retailer
= sales prof i t − ordering cost − holding cost − interest paid to the bank +
interest earned f rom the bank.
Therefore, the retailer’s net profit per unit time T Pr I (T, p, R) is given by

T Pr I (T, p) = (p − w1)D − ar
T

− hr DT

2
− i pw1D(T + R) + ie pDT

2
(1)

Case II: Delayed payment
In this case, two subcases may arise depending on the payment time. Payment can
be made any time within the cycle i.e., 0 < R < T , or after the completion of a cycle
i.e., T < R.

Subcase IIA: 0 < R < T
In this scenario, the total sales revenue is pDT and the total wholesale price isw2DT .
So the net profit becomes (p − w2)DT . As the payment time is after the starting of
the product sales inception, in this duration, the retailer keeps the earning into an
interest giving concern (bank) with an interest rate ie. So the accumulated interest in
this time interval will be

ie p
∫ R

0
Dt dt = ie pDR2

2
.

After the payment made at time R, the sales revenue is also kept in the bank to get
the interest during the residual time. The corresponding interest will be

ie p
∫ T−R

0
Dt dt = ie pD(T − R)2

2
.

We now have the following two important observations:

(i) At the time of payment, if the sum of total sales revenue and acquired interest is
less than or equal to w2DT , then the deficit amount has to be taken from a bank
with an interest rate i p. So the interest to be paid to the bank will be

i p

∫ T−R

0

[
w2DT − p

∫ R

0
Dt dt − ie p

∫ R

0
Dt dt

]
dt.

(ii) At the time of payment, if the sum of total sales revenue and acquired interest
is greater than or equal to w2DT , then the residual amount and the collected
sales revenue will be deposited into an interest giving organization (bank) for
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the duration of (T − R) time at an interest rate ie. The interest to be earned from
the bank will be

ie

∫ T−R

0

[
p

∫ R

0
Dt dt + ie p

∫ R

0
Dt dt − w2DT

]
dt.

In both the cases, the ordering cost and the holding cost remain same as Ar and
hr DT 2

2 .
So the net profit of the retailer
= sales prof i t + interest earned f rom the bank − ordering cost − holding
cost − interest paid to the bank(or + interest earned).

Therefore, the retailer’s net profit per unit time in the two situations are given by

T Pr I I A1(T, p) = (p − w2)D + ie p
DR2

2T
+ ie pD(T − R)2

2T
− ar

T
− hr DT

2

−i p
T − R

T

(
w2DT − ie p

DR2

2
− p

DR2

2

)
(2)

and

T Pr I I A2(T, p) = (p − w2)D + ie p
DR2

2T
+ ie pD(T − R)2

2T
− ar

T
− hr DT

2

+ie
T − R

T

(
p
DR2

2
+ ie p

DR2

2
− w2DT

)
(3)

Subcase IIB: T < R
In this case, payment will be made after completion of the cycle i.e., T < R. Sales
revenue, ordering cost and holding cost components are all same as the subcase IIA.
But as the payment is made after time T , the interest earned by the retailer consists
of two parts. Firstly, the interest earned during the cycle [0, T ] is

ie p
∫ T

0
Dt dt = ie pDT 2

2

and the interest earned during [T, R] is

ie pDT
∫ R

T
dt = ie pDT (R − T ).

So the net profit of the retailer
= sales prof i t + interest earned f rom the bank − ordering cost − holding
cost .
Therefore, the retailer’s net profit per unit time T Pr I I B(T, p) is given by

T Pr I I B(T, p) = (p − w2)D + ie p
(DT

2
+ D(R − T )

)
− ar

T
− hr DT

2
(4)
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3.2 Manufacturer’s Perspective

The manufacturer’s inventory level Im(t) at any time t is given by

Im(t) = P(t − tm); tm ≤ t ≤ T .

Therefore, the holding cost of the manufacturer is

hm

∫ T

tm

Im(t)dt = hm P(T − tm)2

2
.

Case I: Advanced payment
As the payment is made in advance, the acquired amount will be kept in an interest
giving concern at a rate ie. So then the accumulated interest will be iew1DT R.
Therefore, the manufacturer’s net profit per unit time will be

T PmI (T, p) = (w1 − c)D + iew1DR − am
T

− hm P(T − tm)2

2T
(5)

Case II: Delayed payment
In this case, the wholesale price is considered as w2 and then the total sales profit is
(w2 − c)DT .
Subcase IIA: 0 < R < T
As the payment is made after the delivery, during this time, manufacturer may have
the rolling money which is not achieved in reality. So the corresponding opportunity
loss is ivw2DT R, where iv is the opportunity loss rate. Considering the ordering cost
and the holding cost, the manufacturer’s net profit per unit time is given by

T PmI I A(T, p) = (w2 − c)D − ivw2DR − am
T

− hm P(T − tm)2

2T
(6)

Subcase IIB: T < R
As the payment is made after the cycle time, the opportunity loss is ivw2DT (T + R).
Other cost components remain same as case IIA. Hence the manufacturer’s net profit
per unit time becomes

T PmI I B(T, p) = (w2 − c)D − ivw2D(T + R) − am
T

− hm P(T − tm)2

2T
(7)

Since the manufacturer is a make-to-order producer, he follows a lot-for-lot produc-
tion policy in response to the retailer’s demand. Therefore, if the lot demanded by
the retailer is Q(= DT ) and the manufacturer produces that lot during the period
(T − tm) at the rate P , thenwe have Q = P(T − tm)which gives P(T−tm )

T = Q
T = D.

Substituting D = P(T−tm )

T , we obtain the manufacturer’s profit per unit time as
follows:
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T PmI (T, p) = (w1 − c)D + iew1DR − am
T

− hmD2T

2P
(8)

T PmI I A(T, p) = (w2 − c)D − ivw2DR − am
T

− hmD2T

2P
(9)

T PmI I B(T, p) = (w2 − c)D − ivw2D(T + R) − am
T

− hmD2T

2P
(10)

3.3 Integrated Supply Chain

Taking into account all the cases discussed in the previous subsections, the net profit
per unit time of the integrated supply chain is given by

T P(T, p) = T Pr (T, p) + T Pm(T, p)

=

⎧⎪⎪⎨
⎪⎪⎩

T P1(T, p), if payment is made in advance;
T P2(T, p) if 0 ≤ R ≤ T and w2DT > ie p

DR2

2 + p DR2

2 ;
T P3(T, p), if 0 ≤ R ≤ T and ie p

DR2

2 + p DR2

2 > w2DT ;
T P4(T, p), if T ≤ R.

(11)

where

T P1(T, p) = T Pr I (T, p) + T PmI (T, p)

= (p − c)D − ar
T

− hr DT

2
− i pw1D(T + R) + ie pDT

2
+ iew1DR

− am
T

− hmD2T

2P
T P2(T, p) = T Pr I I A1(T, p) + T PmI I A(T, p)

= (p − c)D + ie p
DR2

2T
+ ie pD(T − R)2

2T
− ar

T
− hr DT

2

−i p
T − R

T

(
w2DT − ie p

DR2

2
− p

DR2

2

)
− ivw2DR − am

T
− hmD2T

2P
T P3(T, p) = T Pr I I A2(T, p, R) + T PmI I A(T, p)

= (p − c)D + ie p
DR2

2T
+ ie pD(T − R)2

2T
− ar

T
− hr DT

2

+ie
T − R

T

(
p
DR2

2
+ ie p

DR2

2
− w2DT

)
− ivw2DR − am

T
− hmD2T

2P
T P4(T, p) = T Pr I I B(T, p) + T PmI I B(T, p)

= (p − c)D + ie p
(DT

2
+ D(R − T )

)
− ar

T
− hr DT

2

− ivw2D(T + R) − am
T

− hmD2T

2P
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4 Model Analysis

Theorem 1 For given values of p and R, there exists a unique optimal cycle length
T ∗
i (p) which maximizes T Pi (T |p), i = 1, 2, 3, 4 provided that i p <

pie−hr
2w(1−β)

, i p >
1
R (2 − 1

ie
), ie > hr

(p+2w(1+β))
, and ie < hr

p .

Proof For given p and R, the profit function is well defined and continuous in T .
Therefore, differentiating T P1(T |p) with respect to T , we get

T P
′
1(T |p) = ar + am

T 2
− (a − bp)(ahm − pbhm + P(hr − pIe − 2Ipw(−1 + β)))

2P

T P
′′
1 (T |p) = −2(ar + am)

T 3
< 0, as ar , am > 0.

Then the optimal value of T , say T ∗
1 (p), can be obtained by equating T P

′
1(T |p) = 0

which gives

T ∗
1 (p) =

√
2P(ar + am)

(a − bp)(ahm − pbhm + P(hr − pIe − 2wIp(−1 + β)))
(12)

For the delayed payment, when 0 ≤ R ≤ T and w2DT > ie p
DR2

2 + p DR2

2 we have

T P
′
2(T |p) = 1

2PT 2
(2P(ar + am) − (a − bp)((ahm − pbhm + Phr )T

2 −
pIe P(R2(−2 + Ip R) + T 2) + pIp(−R3 p + 2wT 2(1 + β))))

which gives the optimal cycle length as

T ∗
2 (p) =

√
(2(ar + am) + R2(−2Ie + (1 + Ie Ip R)p(a − bp)P))

(a − bp)(ahm − pbhm + P(hr − Ie p + 2wIp(1 + β)))
(13)

On the other hand, for the delayed payment when 0 ≤ R ≤ T and w2DT <

ie p
DR2

2 + p DR2

2 we have

T P
′
3(T |p) = 1

2PT 2
(2P(ar + am) − (a − bp)(pI 2e R

3P + (ahm − pbhm + hr P)T 2

+pI e(2R2 p + R3 p − T 2(p + 2w(1 + β)))))

which gives the optimal cycle length as

T ∗
3 (p) =

√
(2(ar + am) + Ie R2(2 + R + Ie R)p(−a + bp)P))

(a − bp)(ahm − pbhm + P(hr − Ie(p + 2w(1 + β)))
(14)
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For delayed payment, in case of R > T , we have

T P
′
4(T |p) = − (a − bp)(ahm − pbhm + (hr + pIe)P)

2P
+ ar + am

T 2

T P
′′
4 (T |p) = −2(ar + am)

T 3
< 0.

Hence the optimal cycle length is

T ∗
4 (p) =

√
2P(ar + am)

(a − bp)(ahm − pbhm + P(hr − pIe))
(15)

We now consider the optimal cycle length for the cases discussed above. We draw
the following relations from the delayed payment cases and classifications:
T ∗
2 (p) ≥ R and w2DT > ie p

DR2

2 + p DR2

2 give

�1(p) ≡ R2
[
(a − bp)(ahm − pbhm + P(hr − Ie p + 2wIp(1 + β)))

]

−
(
2(ar + am) + R2(−2Ie + (1 + Ie Ip R)p(a − bp)P)

)
≤ 0.

Similarly, T ∗
3 (p) ≥ R and ie p DR2

2 + p DR2

2 > w2DT give

�2(p) ≡ R2
[
(a − bp)(ahm − pbhm + P(hr − Ie(p + 2w(1 + β)))

]

−
(
2(ar + am) + Ie R

2(2 + R + Ie R)p(−a + bp)P)
)

≤ 0,

and T ∗
4 (p) ≤ R gives

�3(p) ≡ R2
[
(a − bp)(ahm − pbhm + P(hr − pIe))

]
− 2P(ar + am) ≥ 0.

Using the values of �i (p), i = 1 to 3 , we have the following result:

Theorem 2 For given values of p and R,

(i) if �1(p) ≤ 0 , then the optimal cycle length T ∗(p) = T ∗
2 (p);

(ii) if �2(p) ≤ 0 , then the optimal cycle length T ∗(p) = T ∗
3 (p);

(iii) if �3(p) ≥ 0 , then the optimal cycle length T ∗(p) = T ∗
4 (p).

5 Numerical Results

To demonstrate the proposed model numerically, we consider the following numer-
ical examples satisfying the conditions in each of the four cases:
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Table 1 Optimal results in four different cases (examples)

Case p∗ T ∗ �r (T, p) �m(T, p) �(T, p)

I 316.265 1.6165 2517.97 4269.39 6787.36

I I A1 320.262 3.64405 7886.72 799.266 8685.98

I I A2 304.812 2.82131 6524.22 832.307 7356.53

I I B 303.531 1.16745 7758.46 516.058 8274.51

Example 5.1 (Case I: Advanced payment)
a = 100; b = 0.2; c = 60; am = 650; ar = 620; hm = 1.5; hr = 1.8; β = 0.04;
P = 600; w = 150; ie = 0.15; i p = 0.25; R = 2.

Example 5.2 (Case IIA: Delayed payment: 0 ≤ R ≤ T and w2DT > ie p
DR2

2 +
p DR2

2 ) iv = 0.22; and all other parameter-values are same as given in Example 5.1.

Example 5.3 (Case IIA: Delayed payment: 0 ≤ R ≤ T and ie p DR2

2 + p DR2

2
> w2DT ) i p = 0 and all other parameter-values are same as given in Example 5.2.

Example 5.4 (Subcase IIB: Delayed payment: T ≤ R) All parameter-values are
same as given in Example 5.2.

Table1 shows the optimal results obtained in Examples 5.1–5.4. It is clear from
Table1 that the whole supply chain’s profit attains the maximum in case I I A1 where
the optimal cycle time is longer than the optimal payment time. Also, the optimal
payment time is longer than the delayed payment period but w2DT > ie p

DR2

2 +
p DR2

2 holds true. It is further noted that the variation of the controlling parameter β

leads to a critical situation where the requirement of the model flips from delayed
payment to advanced payment.

From Table2 it is clearly observed that, with gradual increment of β, the total
optimal profit for delayed payment decreases and the total optimal profit for advanced
payment increases. For β = 0.04, the total profit for delayed payment is 8685.98
and for advanced payment is 6787.36. At β = 0.278112, the total profit for both the
models are same and after that the corresponding total profit for advanced payment
becomes higher than that of the delayed payment. At this particular moment, the
supply chain will adopt the decision for flipping the model from delayed payment
mode to advanced payment mode.

6 Sensitivity Analysis

In this section, we examine the effects of changes in the parameter-values on the
optimal decisions of the proposed model. We change one parameter value at a time
keeping the other parameter-values unchanged.
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Table 2 Critical value for β

Value of β Delayed payment Advanced payment (R < T )

p∗ T ∗ �∗ p∗ T ∗ �∗

0.04 320.26 3.644 8685.98 316.26 1.616 6787.36

0.06 320.19 3.564 8595.35 315.99 1.662 6854.63

0.08 320.72 3.490 8506.91 315.73 1.711 6923.30

0.15 321.65 3.264 8212.76 315.08 1.933 7176.77

0.25 323.14 3.010 7827.57 315.59 2.525 7590.80

0.27 323.46 2.966 7754.74 316.20 2.739 7685.44

0.275 323.54 2.956 7736.73 316.41 2.803 7710.04

0.277 323.57 2.951 7729.55 316.50 2.830 7719.99

0.278 323.59 2.949 7725.96 316.54 2.844 7725.00

0.278112 323.59 2.949 7725.56 316.55 2.845 7725.56

0.279 323.60 2.947 7722.38 316.59 2.858 7730.02

0.28 323.62 2.945 7718.80 316.64 2.872 7735.06

0.29 323.78 2.924 7683.17 317.23 3.032 7786.55

0.31 324.10 2.885 7612.80 319.12 3.487 7896.79

Table 3 Sensitivity analysis: advanced payment

Parameter Value Delayed payment Advanced payment (R < T )

p∗ T ∗ �∗ p∗ T ∗ �∗

a 92 296.35 1.624 5228.96 298.18 3.400 6796.48

96 306.27 1.617 5985.73 309.18 3.517 7711.49

100 316.26 1.616 6787.36 320.26 3.644 8685.98

104 326.33 1.621 7633.83 331.44 3.783 9721.20

108 336.46 1.632 8525.17 342.73 3.936 10818.50

b 0.19 330.09 1.672 7476.54 335.14 3.848 9541.68

0.195 322.98 1.642 7122.28 324.49 3.740 9100.61

0.20 316.26 1.616 6787.36 320.26 3.644 8685.98

0.205 309.90 1.594 6470.27 313.42 3.556 8295.53

0.21 303.85 1.574 6169.69 306.94 3.476 7937.24

R 1.90 315.54 1.610 6840.38 318.06 3.310 8545.44

1.95 315.90 1.613 6813.84 319.18 3.475 8613.19

2 316.26 1.616 6787.36 320.26 3.644 8685.98

2.05 316.62 1.620 6760.93 321.32 3.817 8763.92

2.10 316.98 1.623 6734.55 322.34 3.995 8847.11

The following observations are made from the results presented in Table3 for
advanced payment.

• The selling price increases when the basic market demand a increases. A higher
basic market demand generates higher total demand. The higher selling price
increases the profit as well as the cycle length for both the cases.
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• The sensitivity coefficient of the selling price b has direct impact on the market
demand. For higher value of b, the demand is low. Then the retailer must decrease
his selling price in order to protect the market demand. As a result, the net profit
and the cycle length decrease. These observations are similar in both the cases.

• When the optimal payment time increases, the optimal selling price and the
cycle length increase whereas the whole system’s profit decreases nominally in
delayed payment mode. But in advanced payment mode, the whole system’s profit
increases.

7 Conclusions

In this study, we develop a two-level supply chain model with one retailer and one
manufacturer for trading a single product, where the system offers advanced payment
and delayed payment options. The model will provide an expert decision making
machinery depending on the available input parameters.

Here one advanced payment option and three delayed payment modes are con-
sidered with the relationship amongst the cycle length T and payment time R. The
study reveals that the whole supply chain’s profit attains the maximum where the
optimal cycle time is longer than the optimal payment time. Payment in advanced
mode implies that the manufacturer’s profit is higher than the retailer’s profit and
naturally in the delayed mode, the retailer’s profit is higher than the manufacturer’s
profit.

Most importantly, it is identified that for a critical value of β the model should
flip its character in view of the total profit of the supply chain.

For future research, the model can be extended in several ways. For instance,
one can incorporate shortages, deterioration in inventory, cash discounts, non-linear
demand pattern, etc. in this model. Moreover, one can extend the proposed model by
considering credit period with variations. Upstream partial prepayment and down-
stream partial delay payment will also be useful considerations in extending the
model.
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Studies on Atherosclerotic Plaque
Formation: A Mathematical Approach

Debasmita Mukherjee, Lakshmi Narayan Guin and Santabrata Chakravarty

Abstract Atherosclerosis is one of the main causes behind several cardiovascu-
lar diseases (CVDs). It occurs due to plaque accumulation in the innermost layer
of artery, known as intima. The present study deals with a qualitative mathematical
model consisting of a system of ten nonlinear ordinary differential equations (ODEs)
involving ten important interacting cellular components coming into play namely,
low density lipoprotein, free radicals, chemoattractants, monocytes, macrophages,
T-cells, smooth muscle cells, foam cells and collagen in order to describe the evolu-
tion of atherosclerotic plaque. Numerical results obtained for this model are shown
through several plots represented by phase portraits of some subsystems. As the
present model is encountered with various important cellular components involving
atherosclerosis, so it is believed to provide a platform for in silico treatment of this
pernicious disease.

Keywords Atherosclerosis · Non-linear ODE system · Routh-Hurwitz criterion

1 Introduction

Atherosclerosis is a chronic vascular disease which is the main cause behind deaths
from cardiovascular diseases (CVDs) in the form of heart attack (myocardial infarc-
tion) and stroke (cerebrovascular accident), worldwide. Previous studies recorded
that 31% of deaths occur due to CVDs.
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When cholesterol level increases in blood, mainly bad cholesterol (or LDLs)
passes through endothelium lesions and comes into the intima. In intima, LDLs
get oxidised with free radicals and thus formed new species, called oxidised LDLs.
In presence of oxidised LDL, endothelium layer and SMCs secrete chemoattrac-
tants. Chemoattractants attracts monocytes and T-cells from lumen to intima. In
intima, monocytes diferentiate into macrophages. These macrophages have an affin-
ity towards ox-LDL. They absorb ox-LDL via scavenger receptor and form a fatty
steak called foam cells. SMCsmove frommedia to intima in the presence of chemoat-
tractant in the intima and they form a fibrous cap surrounding the foam cells. The
foam cell surrounded with fibrous cap together is called plaque, when this plaque
accumulation increases, the shear stress of endothelium layer crosses its limit and
then plaque bulges into lumen. Plaque is thrombogenic and it hinders the smooth
blood flow in the lumen. The process is described in Fig. 1.

Quite a good number of previous model studies in terms of ODEs and PDEs are
available in the recent past where this entire biochemical process is described in
mathematical terms. To name a few, [2, 3, 5, 6] have described the formation of
atherosclerotic plaques in terms of ODEmodels whereas [4] has provided both ODE
and PDE models of early stage of this disease. References [1, 7, 8] have decribed
the models of atherosclerosis in terms of PDE models. In [9] an extensive detailed
list of previous models and their significance are provided.

Fig. 1 Various stages of atherosclerotic plaque formation
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In this paper, the entire biochemical process is described through ten dimensional
nonlinear autonomous system of ODEs and it is a modified model described in [4].
Model equations for collagen and foam cells are significantly modified and there are
fewer modification in the overall model. The present model is found to be locally
stable from both theoretical and numerical points of view. As the system is ten
dimensional, so several subsystems are considered to reveal the complex features
of this model. Most of the previous models involved only foam cells as the output
of atherosclerosis whereas this current model has taken care of foam cells and the
fibrous cap surrounded the plaque made up from collagen as two separate equations.
The aim of this present article is to provide only a stable mathematical model to
contribute in the clinical investigation on this topic.

The paper is organised as follows, in Sect. 2, the model is formulated through a
systemof ten nonlinearODEs, inSect. 3 themodel is nondimesionalised and inSect. 4
stability analysis has been performed. In Sect. 5 numerical simulation is explained
at length while in Sect. 6, concluding remarks is provided.

2 Formulation of the Model with Proper Justification

To understand the dynamics of biochemical process an autonomous system of ten
non-linear ODEs is presented here. Among several important components involved
in atherosclerotic plaque formation the components like LDLs, free radicals, mod-
ified/oxidised LDLs, chemoattractants, monocytes, macrophages, T-cells, smooth
muscle cells, foam cells and collagens are chosen as dependent variables. The model
is described as follows:

d L̃

dt
= σL

︸︷︷︸

LDL resource

− kL R̃ L̃
︸ ︷︷ ︸

LDL interaction with radical

− dL L̃
︸︷︷︸

diffusion of LDL

, (1)

d R̃

dt
= σR

︸︷︷︸

radical resource

−kL R̃ L̃ − dR R̃
︸︷︷︸

diffusion of radical

, (2)

d X̃

dt
= kL R̃ L̃ − ρin M̃ X̃

︸ ︷︷ ︸

ingestion of oxLDL by macrophages

− dX X̃
︸︷︷︸

diffusion of oxLDL

, (3)

dC̃

dt
= ρC X̃

︸︷︷︸

insertion of chemoattractant in intima

− dC C̃
︸︷︷︸

death of chemoattractant

, (4)

dm̃

dt
= ρmC̃

︸︷︷︸

insertion of monocytes into intima

− ρM m̃
︸︷︷︸

differentiation of monocytes into macrophages

− dmm̃
︸︷︷︸

death of monocytes

, (5)
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d M̃

dt
= ρM m̃

︸︷︷︸

differentiation of monocytes into macrophages

−ρin M̃ X̃ − dM M̃
︸ ︷︷ ︸

death of macrophages

, (6)

dT̃

dt
= ρT C̃

︸︷︷︸

insertion of T cell into intima

− dT T̃
︸︷︷︸

death of T cells

, (7)

d S̃

dt
= ρSC̃

︸︷︷︸

insertion of SMCs into intima

− mS S̃
︸︷︷︸

migration of SMCs from media to intima

− dS S̃
︸︷︷︸

death of SMCs

, (8)

d F̃

dt
= αρin M̃ X̃ − dF F̃

︸︷︷︸

death of foam cells

, (9)

dG̃

dt
= βρin M̃ X̃ + mS S̃ − dG G̃

︸︷︷︸

degradation of collagen

. (10)

Here L̃ , R̃, X̃ , C̃ , m̃, M̃ , T̃ , S̃, F̃ and G̃ represent the respective time-dependent
concentration of LDLs, free radicals, oxidized LDLs, chemoattractants, monocytes,
macrophages, T-cells, smooth muscle cells, foam cells and collagens and the remain-
ing parameters of the model have their nomenclatures listed in Table2. All the above
Eqs. (1)–(10) represent the respective rate of concentration for all the cellular com-
ponents arising from the interplay among the components in the entire biochemical
process. The genesis of these equations are further explained sequentially so as to
have complete understanding of the model formulation. Equation (1) depicts con-
stant source of LDL, interaction of LDL with radicals and diffusion term for LDL.
Equation (2) has similar explanations to that of (1) for radicals. In Eq. (3), first term
is the formation term of oxidised LDL from interaction of LDL and radicals, second
term is the loss term due to ingestion by macrophages and the third term is also the
loss term due to its natural diffusion. Equation (4) refers insertion of chemoattractant
in intima depending on the presence of ox-LDL in the intima followed by its loss
due to death. Equation (5) represents the source term for monocyte concentration as
proportional to that of chemoattractant in the intima, then its loss due to its differ-
entiation into macrophages followed by its natural death. In the Eq. (6) first term is
the source term for macrophages obtained from differentiation of monocytes, then
loss of macrophages due to its involvement in the ingestion process followed by
its natural death term. Equation (7) models the source term for T-cell concentration
in intima as proportional to the presence of chemoattractant followed by its natural
death term. Equation (8) represents concentration of SMCs in the intima as pro-
portional to the presence of chemoattractant, then its loss due to its involvement in
the collagen formation and the third term stands for its natural death. Equation (9)
shows the concentration of foam cells, its source term is the ingestion term obtained
from macrophage and ox-LDL followed by its natural death. The last equation of
this current model equation (10) depicts the collagen concentration, first term is a
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fractional part of the ingested term, second term is because SMCs are involved in
the process of collagen formation and finally its own natural degradation term. Here
αρin M̃ X̃ in (9) and βρin M̃ X̃ in (10) represent the fractional part of ox-LDL ingested
macrophages contributing into atherosclerotic foam cell formation and fibrous cap
formation, where α + β = 1.

3 Rescaled Model

For the purpose of introduction of rescaling, we introduce two parameters r (sec−1)
and δ (concentration−1). The time variable t is changed to τ = r t , in which
r has unit sec−1. The cell concentrations are changed as yi = ỹi

δ
, where yi =

L , R, X, C, m, M, T, S, F, G for i = 1, 2, . . . , 10 respectively. The value of
r is chosen to be equal to 6 × 10−7 sec−1 as in [8] which leads to estimate the value of
non-dimensional time τ = 1 when t is nearly 19 days approximately. The respective
system of rescaled equations should now be read as follows:

d L

dτ
= u11 − u12RL − u13L , (11)

d R

dτ
= u21 − u12RL − u23R, (12)

d X

dτ
= u12RL − u32M X − u33X, (13)

dC

dτ
= u41X − u42C, (14)

dm

dτ
= u51C − a52m − u53m, (15)

d M

dτ
= u52m − u32M X − u63M, (16)

dT

dτ
= u71C − u72T, (17)

d S

dτ
= u81C − u82S − u83S, (18)

d F

dτ
= αu32M X − u92F, (19)

and
dG

dτ
= βu32M X + u82S − u103G (20)

where,

u11 = σL/δr, u12 = kLδ/r, u13 = dL/r, u21 = σR/δr, u23 = dR/r

u32 = ρinδ/r, u33 = dX/r, u41 = ρC/r, u42 = dC/r, u51 = ρm/r
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u52 = ρM/r, u53 = dm/r, u63 = dM/r, u71 = ρT /r, u72 = dT /r

u81 = ρS/r, u82 = mS/r, u83 = dS/r, u92 = dF/r, u103 = dG/r.

4 Stability Analysis

The following theorem shows that under certain suitable conditions, all the solu-
tions of the system of equations (11)–(20) are non-negative. A set � in R

10+ may be
ascertained such that all solutions starting from � remain bounded.

Theorem 1 Let all the parameters of the system of equations (11)–(20) be pos-
itive and � be a region in R

10+ defined as, � = {(L , R, X, C, m, M, T, S, F, G) ∈
R

10+ |0 ≤ L ≤ L̄, 0 ≤ R ≤ R̄, 0 ≤ X ≤ X̄ , 0 ≤ C ≤ C̄, 0 ≤ m ≤ m̄, 0 ≤ M ≤ M̄,

0 ≤ T ≤ T̄ , 0 ≤ S ≤ S̄, 0 ≤ F ≤ F̄, 0 ≤ G ≤ Ḡ}. Then � is positive invariant and
all the solutions starting from � are uniformally bounded, the parameters over bar
are being the respective upper bounds.

Proof First one may make an attempt to prove the positive invariant part.
Let (L(0), R(0), X (0), C(0), m(0), M(0), T (0), S(0), F(0), G(0)) ∈ �.
If possible, suppose L(τ ) be non positive. Then there exists τ0 > 0 such that L(τ0) =
0 and L(τ ) > 0 for any τ satisfying 0 ≤ τ ≤ τ0.Then necessarily d L

dτ
|τ=τ0 ≤ 0. This

is a contradiction, because
d L
dτ

|τ=τ0 = u11 − u12R(τ0)L(τ0) − u13L(τ0) = u11 > 0.
Hence, L(τ ) is positive ∀τ ≥ 0.
In exactly similar way R(τ ), X (τ ), C(τ ), m(τ ), M(τ ), T (τ ), S(τ ), F(τ ) and G(τ )

are positive ∀τ ≥ 0 can be shown, so these proves are omitted here.

Next the part of boundedness may be shown as follows.
From equation (11), one may have
d L
dτ

= u11 − u12RL − u13L ≤ u11 − u13L .
=⇒ d L

dτ
+ u13L ≤ u11.

=⇒ L(τ ) ≤ u11
u13

+ κ2e(−u13τ), where κ2 is a positive integrating constant. The term

κ2e(−u13τ) vanishes as τ → ∞. So, L(τ ) ≤ u11
u13

as, τ → ∞, i.e L(τ ) remains bounded
∀τ ≥ 0.

Theorem 2 The system represented by (11)–(20) is locally asymptotically stable.

Proof To prove the system is locally stable, one needs to consider the correspond-
ing linearised system. Let us suppose the Jacobian matrix corresponding to (11)–
(20) is J . After evaluating this Jacobian matrix at the equlibrium positions of the
system (11)–(20) one gets the characteristic polynomial at each of these equlib-
rium. As the calculation is quite complex, so here a general approach is pro-
vided to prove the stability of this system. Denote the jacobian matrix obtained
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Table 1 Routh table of V ∗

x10 v101 v102 v103 v104 v105 v106

x9 v91 v92 v93 v94 v95 0

x8 v81 v82 v83 v84 v85 0

x7 v71 v72 v73 v74 0 0

x6 v61 v62 v63 v64 0 0

x5 v51 v52 v53 0 0 0

x4 v41 v42 v43 0 0 0

x3 v31 v32 0 0 0 0

x2 v21 v22 0 0 0 0

x v11 0 0 0 0 0

1 v01 0 0 0 0 0

at equlibrium point by J ∗. Suppose the characteristic polynomial of J ∗ may
be expressed as, x10 + c9x9 + c8x8 + c7x7 + c6x6 + c5x5 + c4x4 + c3x3 + c2x2 +
c1x + c0 = g(x), where ck = (−1)10−k

∑

|D|=10−k V ∗[D], i.e, ck are the sum of
all principal minors of order (10 − k) of the matrix V ∗ multiplied by (−1)10−k .
Here D ⊆ {1, 2, . . . , 10} and V ∗[D] denotes the principal minors of V ∗ formed
by the columns and rows with indices from D. Let us denote, 1 = v101, c8 = v102,
c6 = v103, c4 = v104, c2 = v105, c0 = v106, c9 = v91, c7 = v92, c5 = v93, c3 = v94,
c1 = v95. Then Routh table of the polynomial g(x) may be formed as in Table1;
where vi j = v(i+1) j v(i+2)( j+1)−v(i+1)( j+1)v(i+2)( j)

v(i+1) j
, for i = 0, 1, 2, . . . , 10 and j = 1, 2, . . . , 6.

Routh-Hurwitz criterion states that a system is stable if and only if all terms in the
first column are positive and if these conditions are not satified then there will be an
unstable solution. Numerical justification of this theorem is shown in next section
by considering several subsytems and showing the behaviour of phase portraits for
different choice of initial conditions around the non-zero equilibrium point.

5 Numerical Simulation and Discussion of the Results

The model parameters involved in system (11)–(20) are not available in the existing
literatures for human models, so few of them are collected from previous stud-
ies and rest of them are assumed for this particular model and as provided in
Table2. The model equations have been solved numerically using Runge-Kutta
4th order method. The non-zero equilibrium point is found to be, ν0 = [L =
0.414714574672321, R = 2.28646012986491 × 10−5,
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Table 2 List of parameter values used in the model

Parameters Descriptions Numeric
values

Source

u11 Constant source of LDL 64 [3]

u12 Reaction rate of LDL and radicals 0.5 × 107 [3]

u13 Death rate of LDL 40 [3]

u21 Constant source of radicals 100 Present study

u23 Death rate of radicals 2.3 × 106 [3]

u32 Ingestion rate of macrophages and ox-LDL 104 [4]

u33 Death rate of ox-LDL 40 Present study

u41 Rate of production of chemoattractant 1000 Present study

u42 Death rate of chemoattractant 10 Present study

u51 Monocyte insertion rate into intima inversely
varying with WSS

1000 Present study

u52 Differentiation rate of monocyte into
macrophages

2 [5]

u53 Death rate of monocytes 10 Present study

u63 Death rate of macrophages 0.1 [8]

u71 Rate of production of T-cells 10 Present study

u72 Death rate of T-cell 7 [1]

u81 Rate of production of SMCs 10 Present study

u82 Mmigration rate of SMCs from media to intima 0.1 Present study

u83 Death rate of SMCs 17 [1]

u92 Death rate of foam cells 0.6 [1]

u103 Death rate of of collagen 0.05 Present study

α Fractional part of lipid core contributing in
plaque formation

0.75 Present study

β Fractional part of lipid core contributing in
fibrous cap formation

0.25 Present study

X = 0.00284781527236790, C = 0.284781527236790,
m = 23.7317939363991, M = 1.66083470585807, T = 0.406830753195414,
S = 0.166538904816836, F = 59.1218805027656, G = 236.820599820696].
It is sufficient to take the time-series plots over a span of 400 dimensionless time-
scale because it is equivalent to 20 years real time and an atherosclerotic plaque
takes 14 − 15 years to grow fully. So the figures presented here are taken over 400
dimensionless time-scale. Figure2 represents time -series plots of all cellular com-
ponents involved in the present model, (a) for larger time-scale τ = 400 and (b) for
smaller time-scale 20. Similarly, Fig. 3 represent time series plots of LDLs, radicals,
ox-LDL, chemoattractants, T-cells and SMCswhich are separately provided because
they are not clearly visible in the Fig. 2.
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Fig. 2 Time series representations of all cellular species corresponding to a smaller (τ = 20) and
b larger (τ = 400) span of time

The system (11)–(20) is a stable system which has been shown theoretically
in Theorem 4.2. Also it has been found that the Jacobian matrix corresponding to
the system (11)–(20) has either negative real eigenvalues or complex conjugates
with negative real parts at ν0, which suffices the stability nature of the formu-
lated model. To show the stable nature of this particular model, several phase por-
traits of two-dimensional or three- dimensional corresponding to some subsytems
considered in random order are shown. Figure4 shows the two-dimensional phase



316 D. Mukherjee et al.

(a)

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Time

C
el

l C
ou

nt
L
R
X
C
T
S

(b)

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5

4

Time

Ce
ll C

ou
nt

L
R
X
C
T
S

Fig. 3 Time series representation of the concentrations of rest of cellular species of the model not
clearly visible in Fig. 2 for a τ = 20 and b τ = 400 using parameter value of Table2

portraits of few subsytems converging around the non-zero equilibrium point for
different initial conditions. Similarly, Fig. 5 shows the same for three-dimensional
phase portraits.
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Fig. 4 Two dimensional projection of the phase portraits for several subsystems arising from the
original model corresponding to a (m,X) b (G,m), c (m,M), d (M,T)-spaces by using parameter
values of Table2 for two different initial conditions
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Fig. 5 Three dimensional projection of the phase portraits for several subsystems arising from the
original model corresponding to a (X,m,C), b (X,M,m), c (F,m,X), d (M,m,G)-spaces by using
parameter values of Table2 for two different initial conditions



318 D. Mukherjee et al.

6 Concluding Remarks

In the presented article, a mathematical model comprising a system of ten nonlinear
ODEs describing the early stages of atherosclerotic plaque formation is provided
in details. The model is being proved to have all the cellular components positive,
bounded and the system is locally stable. The purpose of this article is to provide
a stable system to enhance better understanding on the dynamics of atherosclerotic
plaque. The model formulated in the present study has been shown to be stable
both theoretically and numerically. Normal diffusion has been applied in the spatial
atherosclerotic dynamics by some investigators [1, 7, 8], which is a more general
form for describing the diffusion phenomena in the nature. This issue needs further
investigation and discussion and hence has a future scope of research.
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Threshold of a Stochastic Delayed SIR
Epidemic Model with Saturation
Incidence

Yanli Zhou

Abstract A stochastic SIR epidemic model with time delay and saturation inci-
dence is formulated in this paper. We show that the disease dynamics of the stochas-
tic delayed SIR model can be governed by its related threshold RS

0 , whose value
completely determines the disease to go extinct and prevail for any size of the white
noise. The results are improved and the method is simpler than the previously-known
literature. And the related results recover the known results in the earlier literature
as special cases. The presented results are illustrated by numerical simulations.

Keywords The threshold · Stochastic SIR epidemic model · Time delay ·
Saturation incidence

1 Introduction

In recent years, stochastic epidemic system driven by Brownian motion has been
received great attention and has been studied extensively, see [1–10]. Under some
simple conditions, the authors showed that Brownian motion can suppress the explo-
sion of the solution. These important results reveal that environmental variationsmay
have significant impacts on the properties of epidemic systems.

For human disease, the nature of epidemic growth and spread is inherently random
due to the unpredictability of connections between people and population is subject
to a continuous spectrum of disturbances. Hence the variability and randomness of
the environment are fed through to the state of the epidemic. Stochastic differential
equation (SDE) models could be a more appropriate way of modeling epidemics in
many circumstances.

There are different possible approaches to introduce random effects in the epi-
demic models affected by environmental white noise from biological significance
and mathematical perspective. Some scholars demonstrated that one or more system
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parameter(s) can be perturbed stochastically with white noise term to derive environ-
mentally perturbed system. In [3], Jiang et al. investigated a stochastic epidemic SIR
models by introducing randomness into the natural death rates, where they proved
existence of the positive solution and discussed the asymptotic behavior. In [11], their
method to include stochastic perturbation is similar to that of Jiang et al. [3]. They
discussed the asymptotic properties of a stochastic delayed SIR epidemic model with
temporary immunity. The studied model in [11] is as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dS(t) = [
� − μS(t) − βS(t)I (t) + γe−μτ I (t − τ )

]
dt + σ1S(t)dB1(t),

dI (t) = [
βS(t)I (t) − (μ + γ + δ)I (t)

]
dt + σ2 I (t)dB2(t),

dR(t) = {[γ I (t) − γe−μτ I (t − τ )] − μR(t)
}
dt + σ3R(t)dB3(t),

(1.1)

where S, I , R denote the host population the susceptible, the infective and the
recovered sub population, respectively. � is the birth rate, μ is the natural rates,
δ is mortality rate induced by the disease, β denotes the transmission coefficient
between compartments S and I , γ is the recovery rate of the infective individuals, τ
is the length of immunity period. B1, B2 and B3 are mutually independent Brownian
motions on the suitable probability space (�,F , {Ft }t≥0, P) with the intensity of
environmental white noise σ1, σ2 and σ3. The parameters are all supposed to be
positive.

Using the same method as in [3], Yang et al. [12] considered the SIR model with
saturated incidence and investigated their dynamics according to the basic repro-
duction number under additional conditions. The studied model in [12, 13] is as
follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dS(t) = [
� − μS(t) − βS(t)I (t)

1 + αI (t)

]
dt + σ1S(t)dB1(t),

dI (t) = [βS(t)I (t)

1 + αI (t)
− (μ + γ + δ)I (t)

]
dt + σ2 I (t)dB2(t),

dR(t) = [
γ I (t) − μR(t)

]
dt + σ3R(t)dB3(t).

(1.2)

Finding the threshold value is a very meaningful research topic. However, they
[11, 12] did not accurately point out the threshold whose value can completely deter-
mine the dynamics of the considered models. In this paper, we will try to find the
threshold conditions for the following delayed SIR epidemic model with saturation
incidence:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dS(t) = [� − μS(t) − βS(t)I (t)

1 + αI (t)
+ γe−μτ I (t − τ )]dt + σ1S(t)dB1(t),

dI (t) = [βS(t)I (t)

1 + αI (t)
− (μ + γ + δ)I (t)]dt + σ2 I (t)dB2(t),

dR(t) = [γ I (t) − γe−μτ I (t − τ ) − μR(t)]dt + σ3R(t)dB3(t).
(1.3)
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Since R(t) does not appear explicitly in the first two equations of (1.3), so we omitted
the third equation without loss of generality. Then, we only discuss the following
system

⎧
⎪⎨

⎪⎩

dS(t) = [
� − μS(t) − βS(t)I (t)

1 + αI (t)
+ γe−μτ I (t − τ )

]
dt + σ1S(t)dB1(t),

dI (t) = [βS(t)I (t)

1 + αI (t)
− (μ + γ + δ)I (t)

]
dt + σ2 I (t)dB2(t),

(1.4)
instead of (1.3).

Remark 1 The coefficients of system (1.4) are locally Lipschitz continuous, using
the Lyapunov analysis method (see [11]) by defining a C2−function

V (S(t), I (t)) = (
S(t) − 1 − logS(t)) + (I (t) − 1 − logI (t)

) + γe−μτ

∫ t

t−τ

I (s)ds

for (S(t), I (t)) ∈ R
2+, we can prove that the solution of system (1.4) is positive and

global. The proof is similar to Liu et al. [11], and hence is omitted.
The outline of the paper is as follows. In Sect. 2, by using simpler method, the

threshold of the stochastic delayed SIR epidemic model is obtained, whose value is
below 1 or above 1 will completely determine the disease to go extinct or prevail
for any size of the white noise. In Sect. 3, numerical simulations are carried out to
illustrate the theoretical results.

2 The Main Results

For simplicity, we introduce the following notations and lemmas which will be used
later.

〈x(t)〉 = 1

t

∫ t

0
x(u)du.

Let

RS
0 = 1

μ + δ + γ
(β

�

μ
− σ2

2

2
),

which is an important parameter.

Lemma 2.1 (see [14]) Let A(t) and U (t) be two continuous adapted increasing
process on t ≥ 0 with A(0) = U (0) = 0 a.s. Let M(t) be a real-valued continuous
local martingale with M(0) = 0 a.s. Let X0 be a nonnegative F0-measurable ran-
dom variable such that E X0 < ∞. Define X (t) = X0 + A(t) −U (t) + M(t) for all
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t ≥ 0. If X (t) is nonnegative, then limt→∞ A(t) < ∞ implies limt→∞ U (t) < ∞,
limt→∞ X (t) < ∞ and limt→∞ M(t) < ∞ hold with probability one.

Lemma 2.2 (see [15]) Let M(t), t ≥ 0 be a local martingale vanishing at time 0
and define

ρM(t) :=
∫ t

0

d〈M, M〉(s)
(1 + s)2

, t ≥ 0

where 〈M, M〉(t) is Meyers angle bracket process. Then

lim
t→∞

M(t)

t
= 0 a.s. provided that lim

t→∞ ρM(t) < ∞ a.s.

Lemma 2.3 Let (S(t), I (t), R(t)) be the solution of system (1.3) with initial value
S(0) > 0, I (ζ) ≥ 0 for all ζ ∈ [−τ , 0) with I (0) > 0 and R(0) > 0, then

lim sup
t→∞

[S(t) + I (t) + R(t)] < ∞ a.s. (2.1)

Moreover,

lim
t→∞

1

t

∫ t

0
σ1S(s)dB1(s) = 0, lim

t→∞
1

t

∫ t

0
σ2 I (s)dB2(s) = 0,

lim
t→∞

1

t

∫ t

0
σ3R(s)dB3(s) = 0 a.s. (2.2)

Proof 1 By (1.3), we get

d(S + I + R) = [� − μ(S + I + R) − δ I ]dt + σ1SdB1(t) + σ2 IdB2(t)

+σ3RdB3(t).

This admits a unique solution which can be written as follows:

S + I + R = �

μ
+ [S(0) + I (0) + R(0) − �

μ
]e−μt − δ

∫ t

0
e−μ(t−s) I (s)ds + M(t)

≤�

μ
+ [S(0) + I (0) + R(0) − �

μ
]e−μt + M(t),

whereM(t)=σ1
∫ t
0 e

−μ(t−s)S(s)dB1(s) + σ2
∫ t
0 e

−μ(t−s) I (s)dB2(s) + σ3
∫ t
0 e

−μ(t−s)

R(s)dB3(s) is a continuous local martingale with M(0) = 0 a.s. Define

X (t) = X (0) + A(t) −U (t) + M(t),

with X (0) = S(0) + I (0) + R(0), A(t) = �

μ
(1 − e−μt ) and U (t) = (

S(0)

+ I (0) + R(0)
)
(1 − e−μt ) for all t ≥ 0. According to the stochastic comparison
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theorem, S(t) + I (t) + R(t) ≤ X (t) a.s. It is easy to check that A(t) and U (t) are
continuous adapted increasing processes on t ≥ 0 with A(0) = U (0) = 0. By using
Lemma 2.1, we obtain that limt→∞ X (t) < ∞ a.s. Then, we complete the proof
of (2.1).

For simplicity, we denote

M1(t) =
∫ t

0
σ1S(s)dB1(s), M2(t) =

∫ t

0
σ2 I (s)dB2(s), M3(t) =

∫ t

0
σ3 I (s)dB3(s).

Compute that 〈M1, M1〉(t) = ∫ t
0 σ2

1S
2(s)ds and by (2.1), we get

lim
t→∞ ρ1(t) = lim

t→∞

∫ t

0

σ2
1S

2(s)ds

(1 + s)2
≤ σ2

1 sup
t≥0

[S2(t)] < ∞.

Thus, from lemma 2.2, limt→∞ 1
t

∫ t
0 σ1S(s)dB1(s) = 0. Obviously, the left can be

proved similarly. Then, the proof is completed. �

Lemma 2.4 (see [16]) Let f ∈ C
[
(0,∞) × �, (0,∞)

]
and F ∈ C

([0,∞] ×
�, R

)
. If there exist positive constants λ0, λ and T such that

log f (t) = λt − λ0

∫ t

0
f (s)ds + F(t) a.s.

for all t ≥ T , and limt→∞
F(t)

t
= 0 a.s., then

lim sup
t→∞

1

t

∫ t

0
f (s)ds = λ

λ0
a.s.

Lemma 2.5 Let (S(t), I (t)) be the solution of model (1.4) with initial value S(0) >

0 and I (ζ) ≥ 0 for all ζ ∈ [−τ , 0) with I (0) > 0. Then

lim
t→∞

S(t) + I (t) + γe−μt
∫ t
t−τ e

μs I (s)ds

t
= 0 a.s.

Moreover,

lim
t→∞

S(t)

t
= 0 , lim

t→∞
I (t)

t
= 0 , lim

t→∞
e−μt

∫ t
t−τ e

μs I (s)ds

t
= 0 a.s. (2.3)

Remark 2 Lemma 2.5 can be easily proved by the same way as Lemma 2.1 in
[7, 11], where they obtained the results by Burkholder-Davis-Gundy inequality,
Bore-Cantelli lemma, Doob’s martingale inequality and Strong Law of Large Num-
bers. So we omit theirs proofs. The details of the proof can be found in [7, 11].
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Theorem 2.1 Let (S(t), I (t)) be the solution of model (1.4) with initial value
S(0) > 0 and I (ζ) ≥ 0 for all ζ ∈ [−τ , 0) with I (0) > 0.

(I) If RS
0 < 1, then lim supt→∞ log

I (t)

I (0)
≤ (μ + δ + γ)(RS

0 − 1) < 0 a.s. namely,

I (t) tends to zero exponentially;

(II) If RS
0 > 1, then lim supt→∞〈I (t)〉 = μ

αμ + β
(RS

0 − 1) > 0 a.s. namely, the dis-

ease will be persistent in mean.

Proof 2 Notice that

d(S + I + γe−μτ

∫ t

t−τ

I (s)ds) = [� − μS − (μ + δ + γ(1 − e−μτ ))I ]dt
+ σ1S(t)dB1(t) + σ2 I (t)dB2(t).

Integrating from 0 to t on both sides of the above, yields

S(t) − S(0)

t
+ I (t) − I (0)

t
+ γe−μτ

∫ t
t−τ I (s)ds − γe−μτ

∫ 0
−τ I (s)ds

t

= � − μ〈S(t)〉 − (μ + δ + γ(1 − e−μτ ))〈I (t)〉 + 1

t
M1(t) + 1

t
M2(t).

Then, we have

〈S(t)〉 =�

μ
− μ + δ + γ(1 − e−μτ )

μ
〈I (t)〉 + 1

t
ϕ1(t), (2.4)

where

ϕ1(t) = − 1

μ
[S(t) − S(0) + I (t) − I (0) + γe−μτ

∫ t

t−τ

I (s)ds

− γe−μτ

∫ 0

−τ

I (s)ds − M1(t) − M2(t)].

Applying Lemma 2.3 and Lemma 2.5, we obtain that

lim
t→∞

ϕ1(t)

t
= 0 a.s.

By integrating (1.4), we have that

� − (μ + β

α
)〈S(t)〉 + 1

α
〈 βS(t)

1 + αI (t)
〉 + γe−μτ 〈I (t)〉 = 1

t
ϕ2(t), (2.5)

where ϕ2(t) = S(t) − S(0) + γe−μτ
∫ t
t−τ I (s)ds − γe−μτ

∫ 0
−τ I (s)ds − M1(t).
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By Lemma 2.3 and Lemma 2.5, we can easily get

lim
t→∞

ϕ2(t)

t
= 0 a.s.

Define V (I (t)) = log I (t) and by Itô formula, we have

d log I (t) = [ βS(t)

1 + αI (t)
− (μ + δ + γ) − 1

2
σ2

2]dt + σ2dB2(t). (2.6)

Integrating from 0 to t and dividing t on both sides of (2.6), we have

1

t
log

I (t)

I (0)
= 〈 βS(t)

1 + αI (t)
〉 − (μ + δ + γ) − 1

2
σ2

2 + σ2B2(t)

t
. (2.7)

Substituting (2.4) and (2.5) into (2.7), we have

1

t
log

I (t)

I (0)
= β

μ
� − (μ + δ + γ) − 1

2
σ2

2

− αμ + β

μ
[μ + δ + γ(1 − e−μτ )]〈I (t)〉 + F(t)

t
, (2.8)

where F(t) = −αμ + β

μ
ϕ1(t) + αϕ2(t) + σ2B2(t). By the strong law of large num-

bers and Lemma 2.3, we can get limt→∞
F(t)

t
= 0.

If RS
0 < 1, by the fact that I (t) > 0 a.s., we complete the proof of (I). If RS

0 > 1,
by Lemma 2.4 and (2.8) yields the desired result (II). The proof is completed.

Remark 3 In Theorem 2.1, it is easy to see that the disease dynamics of SDE model
with delay can be governed by its related parameter RS

0 : if R
S
0 < 1, the disease will

die out stochastically; if RS
0 > 1, the disease will break out. Then, the parameter

RS
0 completely determines the disease to go extinct or prevail for any size of the

white noise. It shows RS
0 is the threshold of (1.3). Comparing with [11, 12], the

related results are improved, and the method is simplified due to the nonnegative
semimartingale convergence theorem.

3 Numerical Simulations and Conclusion

In this section, computer simulation of the path of (S(t), I (t)) for model (1.4) is
given by using the EM method with initial value (S(0), I (0)) = (0.6, 0.2). At the
same time, we shall assume that all parameters are given in appropriate units (see
[13, 17, 18]).
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Example 1 As numerical example, let us suppose that

� = 0.6,μ = 0.2,α = 0.2,β = 0.3, γ = 0.3, δ = 0.1,σ1 = 0.3,σ2 = 0.8,σ3 = 0.5.

We can therefore compute that RS
0 = 0.967 < 1. By (I) of Theorem 2.1, the disease

will die out. The computer simulation in Fig. 1 supports this result clearly, illustrating
extinction of the disease.

Example 2 Assume that the system parameters and the initial conditions are the
same as in Example 1, except σ2 = 0.2, such that the conditions of Theorem 2.1
(II) hold. Note that RS

0 = 1.476 > 1. That is to say, the disease will prevail. The
computer simulation in Fig. 2 supports this result clearly, illustrating persistence of
the disease.

Movement of infective individuals can be seen for different values of delay τ
in Fig. 3. As the value of delay τ increasing, the amplitude of these oscillations
decrease correspondingly. For large values of time delays τ , complex dynamics of
the model is observed as oscillations occur at the early stages and the oscillations are
damped. Effects of recovered individuals can be seen for different values of delay τ
in Fig. 4, in the beginning, as the value of delay τ increasing, the amplitude of these
oscillations increase correspondingly. For sufficiently large τ , initial oscillations are
quickly damped.

Investigating epidemicmodels, we paymore attention to the extinction and persis-
tence of the disease. In the deterministic models, the value of the basic reproductive
number R0 determines the prevalence or extinction of the disease. If R0 < 1, the dis-
ease will be eliminated from the community, whereas an epidemic occurs if R0 > 1.

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9

10

Time

Si
ze

S
I

Fig. 1 Simulations of the path S(t), I (t) for the stochastic delayed (1.4) with noise parameter value
σ2 = 0.8, τ = 0.1
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Fig. 2 Simulations of the path S(t), I (t) for the stochastic delayed (1.4) with noise parameter value
σ2 = 0.2, τ = 0.1
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Fig. 3 Variation of infective populationwith time for different values of delay τ forσ2 = 0.2,β = 3

For stochastic models, there may be not endemic equilibrium and there different
types of persistence and extinction. In this paper, we provide a simple but effective
method for estimating the threshold of a class of the stochastic epidemic models by
use of the nonnegative semimartingale convergence theorem. The threshold RS

0 is
obtained for the stochastic delayed SIR model, whose value will completely deter-
mine persistence or extinction of the disease. If RS

0 < 1, the disease is eliminated,
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Fig. 4 Variation of recovered population with time for different values of delay τ for σ2 = 0.2,
β = 3

whereas if RS
0 > 1 the disease persists in the population. Besides, when RS

0 > 1,
the system is proved to be convergent in time mean. Our results recover the known
results in the earlier literature special cases. On the other hand, comparing with the
previously-known literatures, the method is simpler than before and the results are
improved.
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Semi-stationary Equilibrium Strategies
in Non-cooperative N-person
Semi-Markov Games

Prasenjit Mondal and Sagnik Sinha

Abstract For a limiting ratio average (undiscounted) non-cooperative N -person
semi-Markov game with finite state and action spaces, we prove that the solutions in
the game where all players are restricted to semi-stationary strategies (that depend
only on the initial state and the current state) are solutions for the unrestricted game.
Furthermore, we consider zero-sum two-person semi-Markov games with action
independent transitions (where the transition probabilities are independent of the
actions of the players in each state) and prove the existence of an optimal semi-
stationary strategy for each player. An example is provided to show that the semi-
stationary optimal strategies cannot be strengthened further for such class of games.

Keywords Semi-Markov games · Limiting ratio average payoff · Nash
equilibrium · Action independent transitions · Optimal semi-stationary strategies
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1 Introduction

A semi-Markov game (SMG) is a generalization of a stochastic game [17] using
variable sojourn times which depend not only on the present state and the actions
chosen but also on the state at the next decision epoch. In the literature of SMGs
with limiting ratio average (undiscounted) payoff, to prove the existence of opti-
mal/Nash equilibrium strategies, various recurrence like conditions are assumed at
the outset. For example, [5, 8, 16] gave an ergodicity condition whereas, [6, 20]
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used some variants of a Lyapunov-like condition which yields the so-called weighted
geometric ergodicity property. Limiting ratio average SMGs have also been studied
using various special structures on the data (i.e. rewards and transitions)—a subclass
of SeR-SIT (Separable Reward and State Independent Transition) SMGs [10], single
controller unichain SMGs [11, 13].

In this paper, we study non-cooperative N -person finite state and action spaces
SMGs with a general multichain structure. A form of limiting ratio average (undis-
counted) payoff is the criterion for comparing different strategies. Jianyong and
Xiaobo [7] showed in an example that an undiscounted semi-Markov decision pro-
cess (SMDP, i.e. a one player SMG) may not have an optimal stationary policy.
Mondal and Sinha [11] showed the existence of an optimal semi-stationary policy
(that depends only on initial and current state) in that example. Sinha and Mondal
[18] proved the existence of semi-stationary optimal policies for a finite state and
action spaces SMDP. Mondal [15] studied the zero-sum two-person undiscounted
SMGswith an absorbing set of states and using an existence result of SMDP [14], the
author proved that a pair of strategies optimal in the class of semi-stationary strate-
gies will also be optimal in the class of all strategies. The author also proved that
such an absorbing SMG has an optimal pair of semi-stationary strategies when the
transition probabilities are independent of the actions of the players (such games are
called action independent transition SMGs). However, the results of [15] are appli-
cable only for the class of zero-sum two-person SMGs where all states but one are
absorbing for any pair of stationary strategies. Some natural questions arise as what
happen if we consider the case of a general multichain non-cooperative nonzero-sum
N -person SMG and the case of a zero-sum two-person multichain SMG with action
independent transitions. We solve such problems in this paper.

This paper is organized as follows. In Sect. 2, we define a non-cooperative N -
person undiscounted SMG with finite state and action spaces. We prove that if a
Nash equilibrium exists in the class of semi-stationary strategies, then it will be an
equilibrium point in the class of all strategies. In Sect. 3, a class of zero-sum two-
person action independent transition SMGs has been studied. The existence of an
optimal pair of semi-stationary strategies is proved for such games. An example is
provided to show that this result cannot be strengthened further to obtain an optimal
pair of stationary strategies.

2 Non-cooperative N-person Finite Semi-Markov Games

A non-cooperative N -person finite (state and action spaces) semi-Markov game
(SMG) is defined by a collection of objects< S, Ai = {Ai (s) : s ∈ S}, p, Q, ri ; i =
1, 2, . . . , N >. Here S = {1, 2, . . . , z} is the state space and for each s ∈ S, i =
1, 2, . . . , N , Ai (s) is the set of admissible actions of player i in state s. We
assume that S, Ai (s), s ∈ S, i = 1, 2, . . . , N are finite (nonempty) sets. Let K =
{(s, a1, a2, . . . , aN ) | s ∈ S, ai ∈ Ai (s), i = 1, 2, . . . , N } ⊆ S × A1 × A2 × · · · ×
AN . For each k ∈ K, p(· | k) is the stochastic kernel (probability distribution) on
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S and it governs the transition from one state to another. For each k = (s, a1, a2, . . . ,
aN ), s ′ ∈ S, Qss ′(· | a1, a2, . . . , aN ) is a probability distribution function on [0,∞)

given K × S, and is called the conditional transition time distribution. Finally,
ri : K → R, i = 1, 2, . . . , N is called the payoff function and it represents the imme-
diate (expected) reward for player i.
The game is played over the infinite future as follows: At the first decision epoch,
the game starts at a state s1 ∈ S and the players choose their actions a1i ∈ Ai (s1), i =
1, 2, . . . , N , simultaneously and hence independently of one another. Consequently,
player i , i = 1, 2, . . . , N receives an immediate reward ri (s1, a11, a

1
2, . . . , a

1
N ); the

systemmoves to a new state s2 with probability p(s2|s1, a11, a12, . . . , a1N ) and the time
for this transition is determined by Qs1s2(· | a11, a12, . . . , a1N ). The process repeats
itself from state s2 and the game continues on indefinitely.

Non-cooperative nonzero-sum N -person SMGs were studied in [16] and [5].
Clearly, when the transition times are identical, the game reduces to a discrete-time
stochastic game [17]. A semi-Markov decision process (SMDP) is defined as an
SMG where all the players except one are restricted to one action in each state. Thus
an SMDP is a one person SMG. For n ∈ N (the set of all natural numbers), let Hn

be the space of all histories upto the nth decision epoch, i.e., Hn = Hn−1 × A1 ×
. . . × AN × S withH1 = S. A generic element hn ∈ Hn is defined as

hn = (s1, a
1
1, a

1
2, . . . , a

1
N , s2, a

2
1, a

2
2 , . . . , a

2
N , . . . , sn),

where (sl, al1, a
l
2, . . . , a

l
N ) ∈ K are respectively the state and actions of the players

at the lth decision epoch.
A behavioral strategy πi of player i is a sequence {πin}∞n=1 of stochastic kernel on
Ai given Hn satisfying the constraint

πin(Ai (sn)|hn) = 1, sn ∈ S, hn ∈ Hn, n ∈ N.

A strategy {πin}∞n=1 of player i is called semi-Markov if

πin(·|hn) = πin(·|s1, sn) for all hn ∈ Hn, n ∈ N,

i.e., if each πin depends on the history hn only through the initial state s1, current
state sn and the decision epoch number n.
A strategy {πin}∞n=1 of player i is called semi-stationary if there exists a function gi
such that

πin(·|hn, s1 = s, sn = s ′) = gi (s, s
′) for all s, s ′ ∈ S, hn ∈ Hn, n ∈ N.

A semi-stationary strategy depends only on the initial state and the current state
of the game. Thus, a semi-stationary strategy is a semi-Markov strategy which is
independent of time count n.
A strategy {πin}∞n=1 of player i is called stationary if there exists a function fi such
that
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πin(·|hn, s1 = s) = fi (s) for all s ∈ S, hn ∈ Hn, n ∈ N.

A strategy is called pure if it is not randomized.
For simplifying the notation, we shall write gi and fi respectively as the semi-
stationary and stationary strategy for player i (i = 1, 2, . . . , N ). Let Πi , Gi and Fi

be respectively the classes of all behavioral, semi-stationary and stationary strategies
of player i (i = 1, 2, . . . , N ) in a finite N -person semi-Markov game. Similar classes
of strategies (policies) in an SMDP will be denoted as Π , G and F respectively.
Let (X1, A1

1, A
1
2, . . . , A

1
N , X2, A2

1, A
2
2, . . . , A

2
N , . . .) be a coordinate sequence in

� = K∞ × S. Given an initial state s ∈ S and an N -tuple of strategies (π1, π2, . . . ,

πN ), Kolmogorov’s theorem ([1]) guarantees the existence and uniqueness of a prob-
ability measure Pπ1,...,πN (· | X1 = s) on the product σ -field of �. Let Eπ1,...,πN (· |
X1 = s) be the corresponding expectation operator.

Definition 1 For (π1, . . . , πN ) ∈ Π1 × · · · × ΠN , the expected limiting ratio aver-
age payoff to player i (i = 1, 2, . . . , N ) in state s ∈ S is defined as

φi (s, π1, . . . , πN ) = lim inf
n→∞

Eπ1,...,πN [
n∑

m=1
ri (Xm, Am

1 , . . . , Am
N ) | X1 = s]

Eπ1,...,πN [
n∑

m=1
τ(Xm, Am

1 , . . . , Am
N ) | X1 = s]

,

where

τ(s, a1, . . . , aN ) =
∑

s ′∈S
p(s ′|s, a1, . . . , aN )

∫ ∞

0
t dQss ′(t |a1, . . . , aN )

is the expected (mean) sojourn time in state s when the players choose their actions
ai ∈ Ai (s), i = 1, 2, . . . , N .

Remark 1 For an initial state s ∈ S and an N -tuple of strategies (π1, π2, . . . , πN ),
the payoff function φi (s, π1, . . . , πN ) is a function of the probability measure
Pπ1,...,πN (· | X1 = s). Note that the strategies considered here do not use the informa-
tion about the previous and current sojourn times. [4, Theorem 4.3, p. 266] showed
that the probabilitymeasure Pπ1,...,πN (· | X1 = s) (and hence the expectation operator
Eπ1,...,πN (· | X1 = s)) is independent of the sojourn times of the game.

Assumption 1 There exist ε > 0, M > 0 such that

ε ≤ τ(s, a1, . . . , aN ) ≤ M ∀(s, a1, . . . , aN ) ∈ K.

For simplicity of notation, we shall write
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φi (s, π1, . . . , πN ) = lim inf
n→∞

n∑

m=1
rmi (s, π1, π2, . . . , πN )

n∑

m=1
τm(s, π1, π2, . . . , πN )

,

where rmi (s, π1, π2, . . . , πN ) and τm(s, π1, π2, . . . , πN ) are respectively the expected
reward to player i , i = 1, 2, . . . , N and the expected sojourn time at the m-th deci-
sion epoch when the players use the strategies π1, π2, . . . , πN respectively and when
the initial state is s.

Definition 2 (Nash equilibrium) An N -tuple of strategies (π∗
1 , . . . , π∗

N ) ∈ Π1 ×
· · · × ΠN is said to be a Nash equilibrium if

φi (s, π
∗
1 , . . . , π∗

N ) ≥ φi (s, π
∗
1 , . . . , π∗

i−1, πi , π
∗
i+1, . . . , π

∗
N ) for all s ∈ S,

for any πi ∈ Πi , i = 1, 2, . . . , N .

For a one player SMG (i.e., SMDP), we have the following result.

Theorem 1 ([18], Theorems 1 and 2, p. 866) Let < S, A, p, Q, r > be a semi-
Markov decision process and φ be the limiting ratio average payoff function. Then
there exist pure semi-stationary strategies g∗, g∗∗ ∈ G such that

φ(s, g∗) ≥ φ(s, π) and φ(s, g∗∗) ≤ φ(s, π) for allπ ∈ Π and all s ∈ S.

We observe the following result for a non-cooperative N -person SMG:

Theorem 2 Let G =< S, Ai = {Ai (s) : s ∈ S}, p, τ, ri ; i = 1, 2, . . . , N > be a
non-cooperative N-person semi-Markov game and let s ∈ S be a fixed and arbitrary
initial state. If there exists an N-tuple of stationary strategies ( f ∗

1 , f ∗
2 , . . . , f ∗

N ) such
that

φi (s, f ∗
1 , f ∗

2 , . . . , f ∗
N ) ≥ φi (s, f ∗

1 , . . . , f ∗
i−1, fi , f ∗

i+1, . . . , f ∗
N )

for all fi ∈ Fi , i = 1, 2, . . . , N

then ( f ∗
1 , f ∗

2 , . . . , f ∗
N ) is a Nash equilibrium of the game for the initial state s.

Proof We follow the approach of [19] in our proof. Define a semi-Markov decision
model G0 =< S0, A0, p0, r0, τ0 > with player 1 as the decision maker as follows:
S0 = S, A0(s) = A1(s) for each s ∈ S and

p0(s
′|s, a) =

∑

a2∈A2(s)

· · ·
∑

aN∈AN (s)

p(s ′|s, a, a2, . . . , aN )

N∏

i=2

f ∗
i (s, ai ),

= p(s ′|s, a, f ∗
2 , . . . , f ∗

N )

r0(s, a) =
∑

a2∈A2(s)

· · ·
∑

aN∈AN (s)

r1(s, a, a2, . . . , aN )

N∏

i=2

f ∗
i (s, ai ),
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= r1(s, a, f ∗
2 , . . . , f ∗

N )

τ0(s, a) =
∑

a2∈A2(s)

· · ·
∑

aN∈AN (s)

τ (s, a, a2, . . . , aN )

N∏

i=2

f ∗
i (s, ai )

= τ(s, a, f ∗
2 , . . . , f ∗

N )

for all s, s ′ ∈ S, a ∈ A1(s). Let π1 = {π1n}∞n=1 ∈ Π1 be any strategy for player 1
in the SMG. We apply this strategy in our decision model by creating pseudo-
histories hn = (s1, a11, . . . , a

1
N , s2, . . . , sn−1, a

n−1
1 , . . . , an−1

N , sn) for the n-th deci-
sion epoch (n ∈ N). Denote by s1 = s ∈ S the initial state of the model and let
h1 = (s1) for the first decision epoch. Then π11 is well defined and we can use π11

to choose the initial action a11 ∈ A1(s1). Let s2 be the new state for the second deci-
sion epoch. Then choose a1i ∈ Ai (s1), i = 2, 3, . . . , N according to the joint prob-

ability distribution P(a12 ∈ A1
2, . . . , a

1
N ∈ A1

N |h1) =
∏N

i=2 f ∗
i (s1,a1i )p(s2|s1,a11 ,...,a1N )

p0(s2|s1,a11 ) and

define h2 = (s1, a11, a
1
2, . . . , a

1
N , s2). Now we assume that hn−1 has been created.

Then choose an−1
1 ∈ A1(sn−1) usingπ1(n−1) conditioning on the pseudo-history hn−1.

Let sn be the new state at the n-th decision epoch. Then choose an−1
i ∈ Ai (sn−1),

i = 2, 3, . . . , N according to the joint probability distribution

P(an−1
2 ∈ An−1

2 , an−1
3 ∈ An−1

3 , . . . , an−1
N ∈ An−1

N |hn−1)

=
∏N

i=2 f ∗
i (sn−1, a

n−1
i )p(sn|sn−1, a

n−1
1 , . . . , an−1

N )

p0(sn|sn−1, a
n−1
1 )

. (1)

By this construction of pseudo-histories on each decision epoch, we can apply the
strategy π1 to the decision model. Now we show that

φ0(s1, π1) = φ1(s1, π1, f ∗
2 , . . . , f ∗

N ), (2)

where φ0 is the undiscounted payoff function of the decision model G0.
For this, we first show by induction on the decision epoch number n that

Pπ1(hn) = Pπ1, f ∗
2 ,..., f ∗

N
(hn) for all n ∈ N, (3)

where Pπ1(hn) and Pπ1, f ∗
2 ,..., f ∗

N
(hn) are respectively the probabilities of the pseudo-

history hn in the semi-Markov decision model and the history hn in the original
semi-Markov game when the initial state is s1 = s.
The equality (3) is obvious for n = 1. By induction hypothesis, suppose that (3)
holds for decision epoch number less than n. Then using (1), we have

Pπ1(hn) = Pπ1(hn−1)Pπ1(a
n−1
1 |hn−1)P(an−1

2 , . . . , an−1
N |hn−1)p0(sn|sn−1, a

n−1
1 )

= Pπ1, f ∗
2 ,..., f ∗

N
(hn−1)Pπ1(a

n−1
1 |hn−1)p0(sn|sn−1, a

n−1
1 )
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[∏N
i=2 f ∗

i (sn−1, a
n−1
i )p(sn|sn−1, a

n−1
1 , . . . , an−1

N )

p0(sn|sn−1, a
n−1
1 )

]

= Pπ1, f ∗
2 ,..., f ∗

N
(hn).

Hence (3) holds and it follows that

rn0 (s1, π1) = rn1 (s1, π1, f ∗
2 , . . . , f ∗

N ) and τ n
0 (s1, π1) = τ n(s1, π1, f ∗

2 , . . . , f ∗
N )

for all n ∈ N,

which proves (2). Next we show that f ∗
1 is optimal for our decision model G0 of

maximization type with initial state s. The first part of Theorem 1 implies that there
exists a stationary optimal strategy f s0 ∈ F for our semi-Markov decision model G0

with initial state s. Then we have

φ0(s, f s0 ) = φ1(s, f s0 , f ∗
2 , . . . , f ∗

N ) ≤ φ1(s, f ∗
1 , f ∗

2 , . . . , f ∗
N ) = φ0(s, f ∗

1 ).

Thus, f ∗
1 is also optimal for G0 with initial state s. Let π1 ∈ Π1 be any behavioral

strategy for player 1 in the SMG. Then

φ1(s, π1, f ∗
2 , . . . , f ∗

N ) = φ0(s, π1) ≤ φ0(s, f ∗
1 ) = φ1(s, f ∗

1 , f ∗
2 , . . . , f ∗

N ).

Similarly, we can show that for any behavioral strategy πi ∈ Πi , i = 2, 3, . . . , N

φi (s, f ∗
1 , f ∗

2 , . . . , f ∗
N ) ≥ φi (s, f ∗

1 , . . . , f ∗
i−1, πi , f ∗

i+1, . . . , f ∗
N ).

Hence the theorem is proved. �

Corollary 1 Suppose there exists an N-tuple of semi-stationary strategies (g∗
1 , g

∗
2 ,

. . . , g∗
N ) such that for all s ∈ S,

φi (s, g
∗
1 , g

∗
2 , . . . , g

∗
N ) ≥ φi (s, g

∗
1 , . . . , g

∗
i−1, gi , g

∗
i+1, . . . , g

∗
N )

for all gi ∈ Gi , i = 1, 2, . . . , N

then (g∗
1 , g

∗
2 , . . . , g

∗
N ) is a Nash equilibrium of the game.

Note: Corollary 1 states that if (g∗
1 , g

∗
2 , . . . , g

∗
N ) is Nash equilibrium in the class of

semi-stationary strategies, then they will be so among all strategies.

Proof Given a semi-stationary strategy g, let gs be the stationary strategy determined
by g when the initial state is s ∈ S. Let s ∈ S be fixed and arbitrary. By the given
condition, there exists an N -tuple of stationary strategies (g∗s

1 , g∗s
2 , . . . , g∗s

N ) such
that

φi (s, g
∗s
1 , g∗s

2 , . . . , g∗s
N ) ≥ φi (s, g

∗s
1 , . . . , g∗s

i−1, g
s
i , g

∗s
i+1, . . . , g

∗s
N )

for all gsi ∈ Fi , i = 1, 2, . . . , N .
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By Theorem 2, (g∗s
1 , g∗s

2 , . . . , g∗s
N ) is a Nash equilibrium of the game when the

initial state is s. Since the above inequality holds for any s ∈ S, the N -tuple of
semi-stationary strategies (g∗

1 , g
∗
2 , . . . , g

∗
N ) is a Nash equilibrium of the N -person

game. �

3 Action Independent Transition Semi-Markov Games

We begin with the following:

Definition 3 An action independent transition (AIT) semi-Markov game is a semi-
Markov game where the transition probabilities are independent of the actions of the
players in each state. This means

p(s ′|s, a1, a2, . . . , aN ) = p(s ′|s) for all (s, a1, a2, . . . , aN ) ∈ K, s ′ ∈ S.

We obtain some results on zero-sum two-person AIT semi-Markov games. An N -
person SMG is called a zero-sum two-person SMG if N = 2 and r1(s, a1, a2) =
−r2(s, a1, a2) for all (s, a1, a2) ∈ K. In this case, we simply write r1(s, a1, a2) =
r(s, a1, a2) and the payoff function φ1(s, π1, π2) = φ(s, π1, π2) for all s ∈ S and
(π1, π2) ∈ Π1 × Π2. For the zero-sumcase,we are concernedwith value and optimal
strategies.

Definition 4 A zero-sum two-person undiscounted SMG is said to have a value
vector φ = [

φ(s)
]
z×1 if

sup
π1∈Π1

inf
π2∈Π2

φ(s, π1, π2) = inf
π2∈Π2

sup
π1∈Π1

φ(s, π1, π2) = φ(s) for all s ∈ S.

A pair of strategies (π∗
1 , π∗

2 ) is average optimal for the two players if

φ(s, π1, π
∗
2 ) ≤ φ(s) ≤ φ(s, π∗

1 , π2) for all s ∈ S and all (π1, π2) ∈ Π1 × Π2.

For a zero-sum two-person undiscounted SMG, Mondal [13, Theorem 3.2, p .8]
proved that the existence of an optimal in the class of semi-Markov strategies will be
optimal in the class of all strategies. The following result is more sharper than that
in the sense that we need to consider only the class of semi-stationary strategies.

Theorem 3 Let G =< S, A1, A2, p, r, τ > be a zero-sum two-person semi-Markov
game with limiting ratio average payoff. If there exists a pair of semi-stationary
strategies (g∗

1 , g
∗
2) such that for all s ∈ S,

φ(s, g1, g
∗
2) ≤ φ(s, g∗

1 , g
∗
2) ≤ φ(s, g∗

1 , g2) for all (g1, g2) ∈ G1 × G2,

then (g∗
1 , g

∗
2) is a pair of optimal strategies of the game.
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Proof The proof that φ(s, g∗
1 , g

∗
2) ≥ φ(s, π1, g∗

2) for all s ∈ S, π1 ∈ Π1 follows
exactly in similar lines as in Theorem 2 and Corollary 1. The other requirement
φ(s, g∗

1 , g
∗
2) ≤ φ(s, g∗

1 , π2) for all s ∈ S, π2 ∈ Π2 can be proved in analogous way
with the help of second part of Theorem 1. �

Remark 2 Theorem 3 is the zero-sum version of Corollary 1 for the case N = 2.
The converse is not true, i.e., the existence of value of a limiting ratio average semi-
Markov game does not necessarily imply the existence of value in semi-stationary
strategies. See Big Match [2].

We associate with each ( f1, f2) ∈ F1 × F2, r( f1, f2) =
[
r(s, f1, f2)

]

z×1
, τ( f1, f2)

=
[
τ(s, f1, f2)

]

z×1
and P( f1, f2) =

[
p(s ′|s, f1, f2)

]

z×z
as the expected reward vec-

tor, mean sojourn time vector and the transition probability (Markov) matrix respec-
tively. By [3, theorem 2.1, p. 175], there exists a Markov matrix P∗( f1, f2) (called
the Cesaro limiting matrix) such that

lim
n→∞

1

n + 1

n∑

m=0

Pm( f1, f2) = P∗( f1, f2).

Now we have the following expression for the undiscounted payoff.

Lemma 1 For each pair of strategies ( f1, f2) ∈ F1 × F2,

φ(s, f1, f2) =
[
P∗( f1, f2) r( f1, f2)

]
(s)

[
P∗( f1, f2) τ ( f1, f2)

]
(s)

for all s ∈ S.

Action independent transition SMGs with undiscounted payoffs have been studied
in [15] but only for the class of SMGs with absorbing states. Mondal and Sinha [12]
studied zero-sum two-person AR-AIT-ATT (Additive Reward-Action Independent
Transition and Additive Transition Time) SMGs with discounted payoff. We study
AIT SMGs with a general multichain structure and obtain the following:

Theorem 4 A zero-sum two-person action independent transition semi-Markov
game with limiting ratio average payoff has value and an optimal pair of semi-
stationary strategies.

Proof Since the transition probabilities are independent of the actions of the players
in each state, we have

P( f1, f2) = P =
[
p(s ′|s)

]

z×z
for each ( f1, f2) ∈ F1 × F2.

Thus, P∗( f1, f2) = P∗ =
[
p∗(s ′|s)

]

z×z
. Therefore, byLemma1, for each ( f1, f2) ∈

F1 × F2,
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φ(s, f1, f2) =
∑

s ′∈S
p∗(s ′|s)r(s ′, f1, f2)

∑

s ′∈S
p∗(s ′|s)τ (s ′, f1, f2)

for all s ∈ S.

The above payoff function can be expressed in the form xtUy
xt V y , where x = (x1, x2, . . . ,

xz) with xs = ( f1(s, a1) : a1 ∈ A1(s)) ∈ R|A1(s)|,1 y = (y1, y2, . . . , yz) with ys =
( f2(s, a2) : a2 ∈ A2(s)) ∈ R|A2(s)| and

U =

⎡

⎢
⎢
⎣

U1
U2

. . .

Uz

⎤

⎥
⎥
⎦,Us ′ =

[
p∗(s ′|s)r(s ′, a1, a2)

]

|A1(s ′)|×|A2(s ′)|
for each s ′ ∈ S,

V =

⎡

⎢
⎢
⎣

V1
V2

. . .

Vz

⎤

⎥
⎥
⎦, Vs ′ =

[
p∗(s ′|s)τ (s ′, a1, a2)

]

|A1(s ′)|×|A2(s ′)|
for each s ′ ∈ S,

the other elements in U and V are zero. Note that

xtUy = xt1U1y1 + · · · + xtzUz yz

=
∑

a1∈A1(1)

∑

a2∈A2(1)

p∗(1|s)r(1, a1, a2) f1(1, a1) f2(1, a2) + · · ·

+
∑

a1∈A1(z)

∑

a2∈A2(z)

p∗(z|s)r(z, a1, a2) f1(z, a1) f2(z, a2)

=
∑

s ′∈S

∑

a1∈A1(s ′)

∑

a2∈A2(s ′)

p∗(s ′|s)r(s ′, a1, a2) f1(s ′, a1) f2(s ′, a2)

=
∑

s ′∈S
p∗(s ′|s)r(s ′, f1, f2).

Similarly, xt V y = ∑

s ′∈S
p∗(s ′|s)τ (s ′, f1, f2).

The minimax theorem of rational form xtUy
xt V y was established by Loomis [9]. Thus,

we obtain a pair of stationary optimal strategies ( f ∗s
1 , f ∗s

2 ) for the initial state s ∈ S.
Then the pair of semi-stationary strategies (g∗

1 , g
∗
2), where g

∗
1 = ( f ∗1

1 , f ∗2
1 , . . . , f ∗z

1 )

and g∗
2 = ( f ∗1

2 , f ∗2
2 , . . . , f ∗z

2 ), is optimal for the semi-Markov game and the theorem
is proved. �

Theorem 4 cannot be strengthened further in the sense that an action independent
transition semi-Markov game may not have a stationary optimal strategy pair. This
fact follows from the following example.

1We use the notation |A| to denote the number of elements in the set A.
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Example 1 Consider an SMG with state space S = {1, 2, 3}, action sets A1(1) =
A2(1) = A1(3) = A2(3) = {1}, A1(2) = A2(2) = {1, 2}. Rewards, transition prob-
abilities and mean sojourn times are given below.

State 1:

������1
(1, 0, 0)

1
State 2: �

�����3
(0, 1, 0)

4 ������3.76
(0, 1, 0)

5

������2
(0, 1, 0)

5 ������1
(0, 1, 0)

3

State 3:

�������5
( 14 , 3

4 , 0)
2

where a cell
������r
(q1, q2, q3)

τ

specifies that r is the immediate reward; q1, q2 and q3

are the transition probabilities that the next states are states 1, 2 and 3 respectively
and τ is the expected sojourn time if this cell is chosen. Note that states 1 and 2 are
absorbing. Thus, there exists an optimal pair of stationary strategies when the initial
states are states 1 and 2. We have

φ(1) = val[1] = 1 and φ(2) = val

[ 3
4

3.76
5

2
5

1
3

]

= 3

4
,

where val denotes the minimax value of the matrix game. The unique optimal sta-
tionary strategies for states 1 and 2 are given by ( f ∗

1 (1), f ∗
2 (1)) = ((1), (1)) and

( f ∗
1 (2), f ∗

2 (2)) = ((1, 0), (1, 0)). Let f ∗
1 = { f ∗

1 (1), f ∗
1 (2), f ∗

1 (3)} = {(1), (1, 0),
(1)} and f ∗

2 = { f ∗
2 (1), f ∗

2 (2), f ∗
2 (3)} = {(1), (1, 0), (1)} which are extensions of

f ∗
1 and f ∗

2 for state 3. It follows that

φ(3, f ∗
1 , f ∗

2 ) =
1
4 × 1 + 3

4 × 3
1
4 × 1 + 3

4 × 4
= 10/13.

If we choose f2 = { f2(1), f2(2), f2(3)} = {(1, 0), (0, 1), (1)}, then it is easy to see
that

φ(3, f ∗
1 , f2) = 12.28/16 < 10/13 = φ(3, f ∗

1 , f ∗
2 )

and φ(2, f ∗
1 , f2) = 3.76/5 > 3/4 = φ(2, f ∗

1 , f ∗
2 ).

Thus, player 2 has no optimal in the class of stationary strategies.
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4 Conclusions

In this paper, we investigate the role of semi-stationary strategies in studying the gen-
eral limiting ratio average (undiscounted) semi-Markov games. We obtain a struc-
tured class of multichain zero-sum two-person action independent transition semi-
Markov games that possess semi-stationary optimal strategies. For the nonzero-sum
case of such games, the existence of Nash equilibrium is still an open problem. It is
also interesting to find other structured classes of semi-Markov games which pos-
sess semi-stationary optimal/Nash equilibrium strategies under undiscounted payoff
criterion.

Acknowledgements The authors wish to thank the unknown referees who have patiently gone
through this paper and whose suggestions have improved its presentation and readability consider-
ably.
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Max Plus Algebra, Optimization
and Game Theory

Dipti Dubey, S. K. Neogy and Sagnik Sinha

Abstract Max-plus algebra has been applied to several fields like matrix algebra,
cryptography, transportation, manufacturing, information technology and study of
discrete event systems like subway traffic networks, parallel processing systems,
telecommunication networks for many years. In this paper, we discuss various opti-
mization problem using methods based on max-plus algebra, which has maximiza-
tion and addition as its basic arithmetic operations. We present some sub-classes of
mathematical optimization problems like linear programming, convex quadratic pro-
gramming problem, fractional programming problem, bimatrix game problem and
some classes of stochastic game problem in max algebraic framework and discuss
various connections between max-plus algebra and optimization.

Keywords Max-plus algebra · Linear programming · Convex quadratic
programming problem · Fractional programming problem · Bimatrix game
problem

1 Introduction

We begin by introducing max-plus algebra or max algebra (in short) defined by
the algebraic structure (Rmax ,⊕,⊗) = (Rmax ,max,+)whereRmax = R ∪ −∞. In
max-plus algebra, the classical arithmetic operations of addition and multiplication
are replaced by maximum and addition respectively. We denote a ⊕ b = max(a, b)
and a ⊗ b = a + b where a, b ∈ Rmax . The max-plus algebra started developing in
the late 1950s, just after the area of Operations Research started to develop [11].
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Several systems which are not linear in the conventional algebra turn out to be linear
in max algebra and hence become ammenable to mathematical treatment, similar to
that we use for linear systems. Over the time max-algebra has drawn lot of attention
to the researchers due to the fact that both its algebraic operations are commutative
and associative, and also they satisfy the distributive law. Thereforemany of the basic
tools from classical linear algebra are also usable in max algebra.

The list of algebraic properties of max plus algebra [17] are listed below. We
summarize below the well known key points about max-plus algebra or max algebra.

• The algebraic structure (Rmax ,⊕,⊗) = (R ∪ −∞,max,+) is called the max-
plus algebra.

• We introduce the notation of ε = −∞ and e = 0 following Baccelli et al. [2].
• Notations ε, e is used instead of −∞ and 0 respectively for emphasis their special
meanings and to avoid confusion with their roles in conventional algebra.

• Algebraic structure Rmax is an example of a commutative, idempotent semiring
(or dioid).

This structure satisfies axioms: Operation ⊕
• Associativity: x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z ∀ x, y, z ∈ Rmax

• Commutativity: x ⊕ y = y ⊕ x ∀ x, y ∈ Rmax

• Existence of a zero element(ε): x ⊕ ε = ε ⊕ x = x, ∀ x ∈ Rmax

• idempotency of ⊕: x ⊕ x = x∀ x ∈ Rmax ,

axioms: Operation ⊗
• Associativity: x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z ∀ x, y, z ∈ Rmax .

• Commutativity: x ⊗ y = y ⊗ x ∀ x, y ∈ Rmax .

• Existence of a unit element(e): x ⊗ e = e ⊗ x = x ∀ x ∈ Rmax .

• existence of absorbing element(ε): x ⊗ ε = ε ⊗ x = ε ∀ x ∈ Rmax .

• Distributivity of ⊗ over ⊕: x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z) ∀ x, y, z ∈ Rmax .

The structure (Rmax ,⊕,⊗) satisfies all the semi-ring axioms, i.e.,

• ⊕ is associative, commutative, with zero element ε.
• ⊗ is associative, distributes over ⊕ and ⊗ has a unit element e.
• ε is absorbing for ⊗.

Such a structure satisfying above axioms is called semi-ring. This semi-ring is com-
mutative if x ⊗ y = y ⊗ x , idempotent if x ⊕ x = x . The term dioid is used some
times for idempotent semi-ring. Therefore Max-plus algebra is an example of a com-
mutative and idempotent semiring. Note that max algebra is not a ring, because the
operation ⊕ does not have a inverse. For instance the equation a ⊕ x = b does not
have a solution if a > b. See [10] and [9] for details.

In this paper, we observe that this algebraic structure enables us to formulate
and solve certain non-linear problems in a linear-like way. For details of algebraic
properties of max-algebra and its applications see [3–7].
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2 Notations and Definitions

We use the notation ⊕ = max and ⊗ = plus. We consider max-plus matrices and
max-plus vectors with entries from Rmax. All max-plus vectors are column vectors
unless otherwise specified. Let p ∈ R. The pth max-algebraic power of x ∈ R is
denoted by x⊗p

and corresponds to px in conventional algebra. Let M = {1, . . . ,m}
and N = {1, . . . , n}. An m × n max-plus matrix A = [ai j ] ∈ R

m×n
max is an m × n

array of entries where ai j ∈ Rmax . Max-plus matrix addition and multiplication
is analogous to classical matrix addition and multiplication. For three max-plus
matrix A, B ∈ R

m×n
max ,C ∈ R

n×p
max ,we define A ⊕ B = [ai j ⊕ bi j ], k ⊗ A = [k ⊗ ai j ]

= [k + ai j ] where k ∈ Rmax and B ⊗ C = [⊕n
j=1bi j ⊗ c jk] = [⊕n

j=1(bi j + c jk)] =
[max

j
(bi j + c jk)] is an m × p matrix. The matrix operations are illustrated below in

the following example.

Example 1 ⎡
⎣

0 −1 1
−2 6 −5
0 −3 9

⎤
⎦ ⊕

⎡
⎣

5 −2 3
−5 6 2
2 −5 7

⎤
⎦ =

⎡
⎣

5 −1 3
−2 6 2
2 −3 9

⎤
⎦

[
5 −2 3

−5 6 2

]
⊗

⎡
⎣

1 −2
−1 7
4 2

⎤
⎦ =

[
(5 + 1) ⊕ (−2 + (−1)) ⊕ (3 + 4) (5 + (−2)) ⊕ (−2 + 7) ⊕ (3 + 2)
(−5 + 1) ⊕ (6 + (−1)) ⊕ (2 + 4) (−5 + (−2)) ⊕ (6 + 7) ⊕ (2 + 2)

]
=

[
7 5
6 13

]

7 ⊗
[

5 −2 3
−5 6 2

]
=

[
12 5 10
2 13 9

]

The system ⎡
⎣

5 −2 3
−5 6 2
2 −5 7

⎤
⎦ ⊗

⎡
⎣
x1
x2
x3

⎤
⎦ =

⎡
⎣

5
−2
9

⎤
⎦

written in the conventional notation are as follows.

max(5 + x1,−2 + x2, 3 + x3) = 5,

max(−5 + x1, 6 + x2, 2 + x3) = −2,

max(2 + x1,−5 + x2, 7 + x3) = 9.

Example 2 We illustrate the usefulness of max-plus algebra in real life using
the following example. Suppose three flights leave three different cities Mumbai,
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Chennai and Kolkata but arrive at Delhi. From Delhi there is a flight to New York
connecting all three flights to Delhi. Let us denote the departure times of the flights
as x1, x2, x3 and x4 respectively. The given duration of the three flights (including
the times for changing the aircraft) are d1, d2 and d3, respectively. Here, we need to
determine the departure times of flights of the flights from Mumbai, Chennai and
Kolkata. Therefore

x4 = max(x1 + d1, x2 + d2, x3 + d3).

In max algebraic framework this can be written as

x4 = x1 ⊗ d1 ⊕ x2 ⊗ d2 ⊕ x3 ⊗ d3.

So if d is the given departure time of the flight from Delhi to New York then in
order to find out x1, x2 and x3, we need to solve the following max-algebraic linear
equation.

x1 ⊗ d1 ⊕ x2 ⊗ d2 ⊕ x3 ⊗ d3 = d.

2.1 System of Multivariate Polynomial Equalities
and Inequalities in the Max Algebra

De Schutter and DeMoor [12] consider the following problem involving a system of
multivariate polynomial equalities and inequalities as a generalized framework for
many importantmax-algebraic problems such asmatrix decompositions, transforma-
tion of state space models, state space realization of impulse responses, construction
of matrices with a given characteristic polynomial which is stated as follows.

Suppose {1, . . . , m̃k} be a given a set of integers and {ãki }, {b̃k} and {c̃ki j } are three
sets of coefficients where i ∈ {1, . . . , m̃k}, j ∈ {1, . . . , n}, k ∈ { p̃1 + 1, . . . , p̃1 +
p̃2}. The problem is to find a vector z ∈ R

n that satisfies

m̃k⊕
i=1

ãki ⊗
n⊗
j=1

z⊗
j
c̃ki j = b̃k for k = 1, . . . , p̃1, (1)

m̃k⊕
i=1

ãki ⊗
n⊗
j=1

z⊗
j
c̃ki j ≤ b̃k for k = p̃1 + 1, . . . , p̃1 + p̃2. (2)

or show that no such vector z exists.
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In conventional algebra this can be written as

max
i=1,...,m̃k

(ãki +
n∑
j=1

c̃ki j z j ) = b̃k for k = 1, . . . , p̃1,

max
i=1,...,m̃k

(ãki +
n∑
j=1

c̃ki j z j ) ≤ b̃k for k = p̃1 + 1, . . . , p̃1 + p̃2.

De Schutter and De Moor [12] also observe that the general solution set of a system
of multivariate max-algebraic polynomial equalities and inequalities is the union of
a set of bounded and unbounded polyhedra. Further a method was developed to find
all solutions of a system of multivariate polynomial equalities and inequalities in the
max algebra.

2.2 Max Algebraic Linear System and Set Covering Problem

In this section, we discuss about the equivalence of a max algebraic linear system
and a set covering problem. See [8] and [24] for details.

Let A ⊗ x = b is a max-algebraic linear system where A = [ai j ] ∈ R
m×n
max and

b ∈ R
m
max . This can be written as

max
j=1,...,n

(ai j + x j ) = bi (i = 1, . . . ,m).

By subtracting the right-hand side values we get a linear system whose all right
hand-side constants are zero

max
j=1,...,n

(ai j − bi + x j ) = 0 (i = 1, . . . ,m).

Using the max-plus matrix notation, this is written as

B ⊗ A ⊗ x = B ⊗ b = 0

where
B = diag

[
b⊗−1

1 · · · b⊗−1

m

]
.

This linear system with all right hand-side constants zero (A ⊗ x = 0) is called
normalized linear system and the process obtaining it is called normalization.

Let S = {x ∈ R
n : A ⊗ x = b} and Mj = {k ∈ M : akj − bk = maxi∈M(ai j −

bi )∀ j ∈ N }whereM = {1, . . . ,m} and N = {1, . . . , n}.Let x∗
j = −maxi∈M(ai j −

bi )∀ j ∈ N }.
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In what follows we consider the following two problems.

1. [Unique] Solvability: Given A ∈ R
m×n
max and b ∈ R

m
max does the system A ⊗ x = b

have a [unique] solution?
2. [Minimal] Set Covering: Given a finite set M = {1, . . . ,m} and subsets

M1, . . . , Mn of M is ∪n
j=1Mj = M (is ∪n

j=1Mj = M but ∪n
j=1, j 
=kM j 
= M for

some k ∈ {1, . . . , n})?
The following result is observed in [8] and [24].

Theorem 1 1. S 
= ∅ ⇐⇒ ∪n
j=1Mj = M

2. |S| = 1 ⇐⇒ ∪n
j=1Mj = M, ∪ j∈N ′ Mj 
= M for any N

′ ⊆ N , N
′ 
= N .

The above theorem shows that the solvability of max algebraic linear system is
equivalent to set covering and unique solvability of max algebraic linear system is
equivalent to minimal set covering.

Example 3 We make use of the example provided by Butkovic [8] for illustration
of the procedure. Consider the max algebraic linear system A ⊗ x = b where

A =

⎡
⎢⎢⎢⎢⎣

−2 2 2
−5 −3 −2
−5 −3 3
−3 −3 2
1 4 6

⎤
⎥⎥⎥⎥⎦

, x =
⎡
⎣
x1
x2
x3

⎤
⎦ , b =

⎡
⎢⎢⎢⎢⎣

3
−2
1
0
5

⎤
⎥⎥⎥⎥⎦

For each i ∈ M, we compute (ai j − bi )∀ j ∈ N we obtain the following matrix

Ā =

⎡
⎢⎢⎢⎢⎣

−5 −1 −1
−3 −1 0
−6 −4 2
−3 −3 2
−4 −1 1

⎤
⎥⎥⎥⎥⎦

. (3)

So, x∗
1 = −max{−5,−3,−6,−3,−4} = 3. Therefore −x∗

1 is maximum entry of
column 1, −x∗

2 is maximum entry of column 2 and−x∗
3 is maximum entry of column

3 of the matrix Ā. Hence x∗
1 = 3, x∗

2 = 1 and x∗
3 = −2.

3 Max Version of Various Optimization Problem

In this section we consider a class of optimization problems which lead to systems
of multivariate max-algebraic polynomial equalities and inequalities. First we look
at linear programming problem.
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3.1 Linear Programming

Consider the primal linear program (P): Minimize c̃T x̃ subject to Ax̃ ≥ b̃, x̃ ≥ 0 and
its dual (D): Maximize b̃T ỹ subject to AT ỹ ≤ c̃, ỹ ≥ 0 where A ∈ R

m×n, b̃ ∈ R
m

and c̃ ∈ R
n.

If x̃∗ is feasible to P and ỹ∗ is feasible to D then x̃∗, ỹ∗ are optimal to the respective
problem iff

ỹ∗(Ax̃∗ − b̃) + x̃∗(c̃ − AT ỹ∗) = 0.

This implies

ỹ∗(Ax̃∗ − b̃) = 0,

x̃∗(c̃ − AT ỹ∗) = 0.

In max algebraic notation solving an LP reduces to a multivariate max-algebraic
polynomial equalities and inequalities system as follows:

Find x̃ ∈ R
n, ỹ ∈ R

m such that

b̃⊗−1

i

n⊗
j=1

x̃⊗ai j

j ≥ 0 for i = 1, . . . ,m, (4)

c̃i

m⊗
j=1

ỹ⊗(−a ji )

j ≥ 0 for i = 1, . . . , n, (5)

n⊕
i=1

x̃i ⊕ c̃i

m⊗
j=1

ỹ⊗(−a ji )

j = 0. (6)

m⊕
i=1

ỹi ⊕ b̃⊗−1

i

n⊗
j=1

x̃⊗ai j

j = 0. (7)

3.2 Convex Quadratic Programming

Quadratic programming problems arises in a number of applications in economics
and engineering. Hence through quadratic and linear programming problem, comple-
mentary slackness principle is also highly useful in the economic theory and models
and has been recognized as equilibrium condition.
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Consider the convex Quadratic Programming problem.
Minimize f (x) = c̃T x + 1

2 x
T Qx subject to Ax ≥ b̃, x ≥ 0 where Q ∈ R

n×n is
symmetric, A ∈ R

m×n, b̃ ∈ R
m and c̃ ∈ R

n.

The Karush-Kuhn-Tucker necessary and sufficient optimality conditions special-
ized to this problem yields the following equations and inequalities.

c̃ + Qx̃ − AT ỹ − ũ = 0
−Ax̃ + ṽ = −b̃
x̃ T ũ = ỹT ṽ = 0
x̃ ≥ 0, ỹ ≥ 0, ũ ≥ 0, ṽ ≥ 0

In max algebraic notation solving a convex quadratic programming problem
reduces to a multivariate max-algebraic polynomial equalities and inequalities sys-
tem as follows:

Find x̃ ∈ R
n, ỹ ∈ R

m such that

c̃i

n⊗
j=1

x̃⊗(qi j )

j

m⊗
j=1

ỹ⊗(−a ji )

j ⊗ ũ⊗−1

i = 0 for i = 1, . . . , n, (8)

b̃⊗−1

i

n⊗
j=1

x̃⊗ai j ≥ 0 for i = 1, . . . ,m, (9)

m⊕
i=1

ỹi ⊕ b̃⊗−1

i

n⊗
j=1

x̃⊗ai j

j = 0. (10)

n⊕
i=1

x̃i ⊕ ũi = 0 (11)

3.3 Linear Fractional Programming Problem

The problem of minimizing a linear fractional function subject to linear inequality
conditions also reduces to a multivariate max-algebraic polynomial equalities and
inequalities system via the Karush-Kuhn-Tucker conditions.

Given a matrix A ∈ R
m×n, vectors b̃ ∈ R

m, c̃, d̃ ∈ R
n and α, β ∈ R, the linear

fractional programming problem is defined as follows:

Minimize f (x̃) = (c̃T x̃ + α)

(d̃T x̃ + β)
(12)

subject to
Ax̃ ≤ b̃,−x̃ ≤ 0 (13)
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Let S = {x̃ | Ax̃ ≤ b̃, x̃ ≥ 0}. It is assumed that d̃T x̃ + β 
= 0 ∀ x̃ ∈ S or without
loss of further generality,we assume that d̃T x̃ + β > 0∀ x̃ ∈ S.With this assumption
the function f (x̃) is both pseudo-convex and pseudo-concave. The Karush-Kuhn-
Tucker optimality conditions are both necessary and sufficient for a point x̄ to be
a solution to (12) and (13). Thus x̄ is a solution to (12) and (13) iff there exists a
ȳ, ū, v̄ ≥ 0 (where ȳ, ū ∈ R

m, and v̄ ∈ R
n) such that

∇ f (x̄) + AT ū − v̄ = 0
Ax̄ + ȳ = b̃
x̄ T v̄ + ȳT ū = 0
x̄ ≥ 0, ū ≥ 0
v̄ ≥ 0, ȳ ≥ 0

For linear fractional programming problem, it is easy to compute ∇ f (x̄). This is
given by

∇ f (x̄) = (d̃T x̄ + β)−2[(d̃T x̄ + β)c̃ − (c̃T x̄ + α)d̃]

which reduces to (d̃T x̄ + β)−2[D̃x̄ + β c̃ − αd̃].
Here D̃ is a n × n matrix whose i j th element d̃i j is given by d̃ j c̃ j − d̃i c̃i for 1 ≤

i ≤ n, 1 ≤ j ≤ n. We see that x̄ is a solution to (12) and (13) iff there exists a
ȳ ∈ R

m, ū ∈ R
m and v̄ ∈ R

n such that

D̃x̄ + β c̃ − αd̃ + AT ū − v̄ = 0
Ax̄ + ȳ = b̃
x̄ T v̄ + ȳT ū = 0
x̄ ≥ 0, ū ≥= 0
v̄ ≥ 0, ȳ ≥ 0

In max algebraic notation solving a fractional programming reduces to a multi-
variate max-algebraic polynomial equalities and inequalities system as follows:

Find x̄ ∈ R
n, ȳ ∈ R

m such that

c̃⊗β

i ⊗ d̃⊗−α

i

n⊗
j=1

x̄⊗(d̃i j )

j

m⊗
j=1

ū⊗a ji

j ⊗ v̄⊗−1

i = 0 for i = 1, . . . , n, (14)

b̃i

n⊗
j=1

x̄⊗−ai j

j ≥ 0 for i = 1, . . . ,m, (15)

m⊕
i=1

ūi ⊕ b̃i

n⊗
j=1

x̄⊗−ai j

j = 0. (16)

n⊕
i=1

v̄i ⊕ x̄i = 0 (17)
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3.4 Computation Nash Equilibrium Pair in Bimatrix Games
Using Max-Plus Algebra

A bimatrix game is a noncooperative nonzero-sum two person game in which each
player has a finite number of actions (known as pure strategies). Let player 1 have
m pure strategies and player 2 have n pure strategies. In a game if player 1 chooses
strategy i and player 2 chooses strategy j they incur the costs ai j and bi j respectively
where A = [ai j ] ∈ R

m×n and B = [bi j ] ∈ R
m×n are given cost matrices.

A mixed strategy for player 1 is a probability vector x ∈ R
m . We denote mixed

strategy for player 2 as a probability vector y ∈ R
n. If player 1 adopts a mixed

strategy x and player 2 adopts a mixed strategy y then their expected costs are given
by xT Ay and xT By respectively.

A pair of mixed strategies (x∗, y∗)with x∗ ∈ R
m and y∗ ∈ R

n is said to be a Nash
equilibrium pair if

(x∗)T Ay∗ ≤ xT Ay∗ ∀ x ∈ R
m and

(x∗)T By∗ ≤ (x∗)T By ∀ y ∈ R
n.

We assume that all entries of the matrices A and B are positive (since addition of a
constant to all entries of A or B leaves the set of equilibrium points invariant). In max
algebraic notation solving a bimatrix game reduces to a multivariate max-algebraic
polynomial equalities and inequalities system as follows:

Find x ∈ R
m, y ∈ R

n such that

ei
⊗−1

n⊗
j=1

y j
⊗ai j ≥ 0 for i = 1, . . . ,m, (18)

ei
⊗−1

m⊗
j=1

x j
⊗(b ji ) ≥ 0 for i = 1, . . . , n, (19)

m⊕
i=1

xi ⊕ ei
⊗−1

n⊗
j=1

y j
⊗(ai j ) = 0. (20)

n⊕
i=1

yi ⊕ ei
⊗−1

m⊗
j=1

x j
⊗b ji = 0. (21)

where em and en are m vectors and n vectors whose components are all 1’s.
Note that if (x∗, y∗) is aNash equilibriumpair then (x̃, ỹ) is a solution to (18)–(21)

where
x̃ = x∗/(x∗)T By∗ and ỹ = y∗/(x∗)T Ay∗. (22)
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Conversely, if (x̃, ỹ) is a solution of (18)–(21) then x̃ 
= 0 and ỹ 
= 0 in (22) is
ensured from the positivity of the cost matrices A and B. Therefore (x∗, y∗) is a
Nash equilibrium pair where

x∗ = x̃/eTm x̃ and y∗ = ỹ/eTn ỹ.

We can make use of the method proposed by Schutter and De Moor [12] to find
all solutions of the system of multivariate polynomial equalities and inequalities in
the max algebra that arises in the context of linear programming.

4 Application of Max Plus Algebra in Stochastic Games

In 1953, Shapley [21] introduced Stochastic games. The theory of stochastic games
have been used to study many problems like search problems, military applications,
advertising problems, the travelling inspector problem, and problems related to vari-
ous economic applications [14]. In what follows, we first introduce stochastic games
and its various subclasses with special structures. In this section, we consider the
problem of solving a stochastic game using max algebraic approach.

A two-player zero-sum stochastic game with finite state/action space is defined
by the following objects.

• A state space S = {1, 2, . . . ,N }.
• For each s ∈ S, finite action sets A(s) = {1, 2, . . . ,ms} for Player 1 and B(s) =

{1, 2, . . . , ns} for Player 2.
• A reward law R(s) for s ∈ S where R(s) = [ri j (s)] is an ms × ns matrix whose

(i, j)th entry denotes the payoff from Player 2 to Player 1 corresponding to the
choices of action i ∈ A(s), j ∈ B(s) by Player 1 and Player 2 respectively.

• A transition law q = (qi j (s, s ′) : (s, s ′) ∈ S × S, i ∈ A(s), j ∈ B(s)), where
qi j (s, s ′) denotes the probability of a transition from state s to state s ′ given that
Player 1 and Player 2 choose actions i ∈ A(s), j ∈ B(s) respectively.

The game is played in stages t = 0, 1, 2, . . . At some stage t, the players find them-
selves in a state s ∈ S and independently choose actions i ∈ A(s), j ∈ B(s).Player 2
pays Player 1 an amount ri j (s) and at stage (t + 1), the new state is s ′ with probability
qi j (s, s ′). Play continues at this new state.

The players guide the game via strategies. In general, strategies can depend on
complete histories of the game until the current stage. We are however concerned
with the simpler class of stationary strategieswhich depend only on the current state
s and not on stages. So for Player 1, a stationary strategy

f ∈ FS = { fi (s) : s ∈ S, i ∈ A(s), fi (s) ≥ 0,
∑

i∈A(s)

fi (s) = 1}
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indicates that the action i ∈ A(s) should be chosen by Player 1 with probability fi (s)
when the game is in state s.

Similarly for Player 2, a stationary strategy

g ∈ GS = {g j (s) : s ∈ S, j ∈ B(s), g j (s) ≥ 0,
∑
j∈B(s)

g j (s) = 1}

indicates that the action j ∈ B(s) should be chosen with probability g j (s) by Player
2 when the game is in state s.

Here, FS and GS will denote the set of all stationary strategies for Player 1 and
Player 2 respectively. Let f (s) and g(s) be the corresponding vectors of dimension
ms and ns respectively.

Fixed stationary strategies f and g induce a Markov chain on S with transition
matrix P( f, g) whose (s, s ′)th entry is given by

Pss ′( f, g) =
∑

i∈A(s)

∑
j∈B(s)

qi j (s, s
′) fi (s)g j (s)

and the expected current reward vector r( f, g) has entries defined by

rs( f, g) =
∑

i∈A(s)

∑
j∈B(s)

ri j (s) fi (s)g j (s) = f T (s)R(s)g(s).

With fixed general strategies f, g and an initial state s, the stream of expected
payoff to Player 1 at stage t, denoted by vt

s( f, g), t = 0, 1, 2, . . . is well defined and
the resulting discounted and undiscounted payoffs are

φβ
s ( f, g) =

∞∑
t=0

β tvt
s( f, g) for a β ∈ (0, 1)

and

φs( f, g) = lim
T↑∞ inf

1

T + 1

T∑
t=0

vt
s( f, g).

A pair of strategies ( f ∗, g∗) is optimal for Player 1 and Player 2 in the undiscounted
game if for all s ∈ S

φs( f, g
∗) ≤ φs( f

∗, g∗) = v∗
s ≤ φs( f

∗, g),

for any strategies f and g of Player 1 and Player 2 respectively. The number v∗
s is

called the value of the game starting in state s and v∗ = (v∗
1 , v

∗
2 , . . . , v

∗
N ) is called

the value vector. The definition for discounted case is similar.
The games considered by Shapley [21] are now called two-person zero-sum dis-

counted games with finite state and action space. In this fundamental paper, Shapley
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[21] proved the existence of a value and optimal stationary strategies for discounted
case and gave a method for iterative computation of the value of a stochastic game
with discounted payoff. Subsequently, Gillette [16] studied undiscounted case or
limiting average payoff case. Since then, most of the researchers in stochastic game
have dealt with the problem of finding sufficient conditions for the existence of value
and optimal or ε-optimal strategies. Shapley’s stochastic games were also extended
to non-zero-sum games by many researchers. See [15] and [22].

Researchers over the years have tried to identify those classes of zero-sum stochas-
tic games for which there is a possibility of obtaining a finite step algorithm to com-
pute a solution. Many of the results in this area are for zero-sum games with special
structures. These zero-sum stochastic games with special structure are referred col-
lectively as the class of structured stochastic games. For some known classes of
structured stochastic games, it is known that optimal stationary strategies exist and
the game satisfies the orderfield property (i.e., the solution to the game lies in the
same ordered field as the data of the game (e.g., rational)).

Max algebraic approach may be used for some known classes of games which
possess ordered field property. Note that in general, it is difficult to find a pair of
equilibrium (optimal strategies) strategies. Of course one can approximate it in the
discounted case as Shapley has done it in his seminal paper on stochastic games but
it is not an efficient procedure. See also the excellent survey paper by Raghavan and
Filar [20]. Also see Mohan et al. [19].

• Single controller stochastic games: In the case where player 2 is single controller
this means qi j (s, s ′) = q j (s, s ′) ∀ i, j, s, s ′.

• Switching controller stochastic games: In a switching control stochastic game
the law of motion is controlled by Player 1 alone when the game is played in a
certain subset of states and Player 2 alone when the game is played in other states.
In other words, a switching control game is a stochastic game in which the set S
of states are partitioned into sets S1 and S2 where the transition function is given
by

qi j (s, s
′) =

{
qi (s, s ′), for s ′ ∈ S, s ∈ S1, i ∈ A(s) and ∀ j ∈ B(s),
q j (s, s ′), for s ′ ∈ S, s ∈ S2, j ∈ B(s) and ∀ i ∈ A(s).

Many of the researchers have attempted to formulate the problem of computing
a value and optimal strategies as a complementarity model and obtain a finite step
method.

Now we mention a few open problems from Raghavan and Filar [20].

Problem I: Characterize the class of stochastic games which possess the ordered
field property.

Problem II: Is it possible to obtain a finite step algorithm for the class of stochastic
games which possess the ordered field property?

This problem is known to have an affirmative answer for the class of games
discussed above in this section.
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Filar [13] introduced the class of switching controller (SC) stochastic games as a
natural generalization of the single controller game. However from the algorithmic
point of view this class of games appear to be more difficult. The special game
structure was used to develop a finite step algorithm by Vrieze et al. [23], but that
algorithm requires solving a large number of single control stochastic games.

5 Discounted Switching Controller Stochastic Games

An algorithm was proposed by Mohan and Raghavan [18] for discounted switching
controller games which is based on two linear programs. Even though this procedure
converges to the value vector, it need not terminate in finitely many steps since basis
vectors vary continuously. It is possible to put in the max algebraic framework using
the following result.

Theorem 2 Aβ-discounted zero-sum stochastic game possesses values v
β
s for s ∈ S

and optimal stationary strategies f and g for player 1 and 2 respectively, if and only
if (vβ, f, g) solves the following nonlinear system. Find (vβ, f, g) where v

β
s ∈ R|S|

such that

vβ
s

⊗
s ′∈S

qi (s, s
′)⊗

−βv
β

s′ ⊗ [R(s)g(s)]i⊗−1 ≥ 0, i ∈ A(s), s ∈ S1 (23)

vβ
s

⊗−1 ⊗
s ′∈S

q j (s, s
′)⊗

−βv
β

s′ ⊗ [ f (s)R(s)] j ≥ 0, j ∈ B(s), s ∈ S2 (24)

f ∈ Fs, g ∈ Gs (25)

Remark 1 Note that if v
β
s , f (s), g(s) satisfy (23), (24) and (25) then

vβ
s = [βP( f, g)vβ ]s + rs( f, g) (26)

In (26), the quadratic form f (s)R(s)g(s) has notation rs( f, g).

We show that solving a discounted switching control game is equivalent to solv-
ing the following multivariate max-algebraic polynomial equalities and inequalities
system.

Theorem 3 A β-discounted switching control stochastic game has values v
β
s for

s ∈ S and optimal stationary strategies f and g, if and only if

f ∈ FS , g ∈ GS (27)

vβ
s

⊗
s ′∈S

qi (s, s
′)⊗

−βv
β

s′ ⊗ [R(s)g(s)]i⊗−1 ≥ 0, i ∈ A(s), s ∈ S1 (28)
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vβ
s ⊗ θs

⊗−1 ⊗ [R(s)g(s)]i⊗−1 ≥ 0, i ∈ A(s), s ∈ S2 (29)

vβ
s

⊗−1 ⊗ θs ⊗ [ f (s)R(s)] j ≥ 0, j ∈ B(s), s ∈ S1 (30)

vβ
s

⊗−1 ⊗
s ′∈S

q j (s, s
′)⊗

−βv
β

s′ ⊗ [ f (s)R(s)] j ≥ 0, j ∈ B(s), s ∈ S2 (31)

⊕
i∈A(s)

fi (s) ⊕ vβ
s

⊗
s ′∈S

qi (s, s
′)⊗

−βv
β

s′ ⊗ [R(s)g(s)]i⊗−1 = 0, s ∈ S1 (32)

⊕
i∈A(s)

fi (s) ⊕ vβ
s ⊗ θs

⊗−1 ⊗ [R(s)g(s)]i⊗−1 = 0, s ∈ S2 (33)

⊕
j∈B(s)

g j (s) ⊕ vβ
s

⊗−1 ⊗ θs ⊗ [ f (s)R(s)] j = 0, s ∈ S1, s ∈ S2 (34)

⊕
j∈B(s)

g j (s) ⊕ vβ
s

⊗−1 ⊗
s ′∈S

q j (s, s
′)⊗

−βv
β

s′ ⊗ [ f (s)R(s)] j = 0, s ∈ S1, s ∈ S2 (35)

Remark 2 We recommend to use themethod proposed by Schutter andDeMoor [12]
for finding the solutions of the above system of multivariate polynomial equalities
and inequalities in max algebraic frame work to obtain the value vector and opti-
mal stationary strategies for a discounted switching control game. It is well known
that finding a finite step alogorithm to compute value vector and optimal stationary
strategies is an open problem in stochastic games [20] for last two decades. Max
algebraic approach has a huge potential for application of other classes of structured
stochastic games and semi-Markov games.

6 Conclusion

Many of the theorems and techniques available in classical linear algebra have max-
plus analogues.Most of the initial studies carried out on this topicwere limited towhat
are called path algebras in recent literature.Max-plus semi-ring has been successfully
applied to discrete event systems and dynamic programming. See [1] for a nice
survey on this topic. Application in max-Algebraic framework has been successfully
extended to other areas like analytic hierarchy process, multi-objective optimization,
scheduling problems, cryptography, combinatorial optimization, genetic algorithms
and queueing theory.
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So farwehavediscussedmax-plus algebra infinite dimensional settings.However,
applications of max-plus algebra in infinite dimensional settings is an emerging area
of research.

Acknowledgements The authors would like to thank the anonymous referees for their constructive
suggestionswhich considerably improve the overall presentationof the paper. The authorswould like
to thank Professor R. B. Bapat, Indian Statistical Institute, Delhi Centre for his valuable comments
and suggestions. The first author wants to thank the Science and Engineering Research Board,
Department of Science & Technology, Government of India, for financial support for this research.

References

1. Akian, M., Bapat, R.B., Gaubert, S.: Max-plus algebra. Hogben, L., Brualdi, R., Greenbaum,
A., Mathias, R. (eds) Handbook of linear algebra, discrete mathematics and its applications,
Vol. 39, 2nd edn, Chapman and Hall (2014)

2. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.-P.: Synchronization and linearity. Wiley, New
York (1992)

3. Bapat, R.B., Stanford, D., van den Driessche, P.: The eigenproblem in max algebra, DMS-631-
IR, University of Victoria, British Columbia (1993)

4. Bapat, R.B.: Max algebra and graph theory. In: Krishnamurthy, Ravichandran, N. (eds) Pro-
ceedings of the Advance Workshop and Tutorial in Operations Research, Allied Publisher Pvt
Ltd. (2012)

5. Bapat, R.B.: Pattern properties and spectral inequalities in max algebra. SIAM J. Matrix Anal.
Appl. 16, 964–976 (1995)

6. Bouquard, J.-L., Lent, C., Billaut, J.-C.: Application of an optimization problem in max-plus
algebra to scheduling problems. Discrete Appl. Math. 154, 2064–2079 (2006)

7. Burkard, R.E., Butkovic, P.: Max algebra and the linear assignment problem. Math. Program.
Ser. B 98, 415–429 (2003)

8. Butkovic, P.: Max-algebra: the linear algebra of combinatorics? Linear Algebra Appl. 367,
313–335 (2003)

9. Butkovic, P.: Max-linear systems: theory and algorithms. Springer, Berlin (2010)
10. Cuninghame-Green, R.A.: Minimax algebra, lecture notes in economics and mathematical

systems (1979)
11. Cuninghame-Green, R.A.: Minimax algebra. Lecture notes in economics and mathematical

systems, pp. 166. Springer, Berlin, New Yotk (1979)
12. De Schutter, B., De Moor, B.: The extended linear complementarity problem. Math. Program.

71(3), 289–325 (1995)
13. Filar, J.A.: Orderfield property for stochastic games when the player who controls transitions

changes from state to state. JOTA 34, 503–515 (1981)
14. Filar, J.A., Vrieze, O.J.: Competitive markov decision processes. Springer, New York (1997)
15. Fink, A.M.: Equilibrium in a stochastic n-person game. J. Sci. Hiroshima Univ. Ser. A 28,

89–93 (1964)
16. Gillette, D.: Stochastic gamewith zero step probabilities. In: Tucker, A.W., Dresher, M.,Wolfe,

P. (eds) Theory of games. Princeton University Press, Princeton, New Jersey (1957)
17. Heidergott, B., Jan Olsder, G., van der Woude, J.: Max plus at work modeling and analysis of

synchronized systems: a course on max-plus algebra and its applications, Princeton University
Press (2006)

18. Mohan, S.R., Raghavan, T.E.S.: An algorithm for discounted switching control games. OR
Spektrum 9, 41–45 (1987)

19. Mohan, S.R., Neogy, S.K., Parthasarathy, T.: Pivoting algorithms for some classes of stochastic
games: a survey. Int. Game Theory Rev. 3, 253–281 (2001)



Max Plus Algebra, Optimization and Game Theory 361

20. Raghavan, T.E.S., Filar, J.A.: Algorithms for stochastic games, a survey. Zietch. Oper. Res. 35,
437–472 (1991)

21. Shapley, L.S.: Stochastic games. Proc. Natl. Acad. Sci. 39, 1095–1100 (1953)
22. Sobel, M.J.: Noncooperative stochastic games. Ann. Math. Stat. 42, 1930–1935 (1971)
23. Vrieze, O.J., Tijs, S.H., Raghavan, T.E.S., Filar, J.A.: A finite algorithm for the switching

controller stochastic game. OR Spektrum 5, 15–24 (1983)
24. Zimmermann,U.:Linear and combinatorial optimization in ordered algebraic structures.North-

Holland, Amsterdam (1981)



Dynamics of Infectious Diseases with
Periodic Awareness Campaigns

Fahad Al Basir

Abstract In this article, we investigate the effect of an awareness campaign on the
prevalence of infectious diseases, assuming the awareness campaign is organised
periodically. On this basis, an SIS model is developed, considering susceptible and
infected humans, using impulsive differential equations to describe the awareness
campaign. To attain an effective control of the disease, the period and rate of aware-
ness is determined using the mathematical model. Numerical simulations illustrate
the analytical outcomes.

Keywords Mathematical model · Impulsive differential equation · Basic
reproduction number · Stability analysis · Numerical simulations

1 Introduction

Infectious diseases that cause mortality, disability, and social and economic disrup-
tion are a major threat to mankind, which are responsible for a quarter of all deaths
annually in the world [1]. Once an infectious disease appears and spreads in a region,
the government or health organizations do their best to stop the propagation of the
disease. One of the way is to make people aware of the appropriate preventive knowl-
edge of diseases as soon as possible throughmedia and education whichmake people
take precautions to reduce their chances of being infected [2].

The prevalence of any epidemic is strongly dependent on the social behavior
of individuals in a population which makes them susceptible to infection [3, 4].
Behavioral changes alone are capable of making a significant difference on the size
of epidemic [5]. By conducting campaigns through media, human behavior can be
modified towards the disease. These campaignsmay create awareness among various
high-risk groups which help in limiting the spread of infection. Such campaigns
basically focus upon increasing people’s knowledge about disease transmission and
facilitate measures that can reduce chances of being infected [4]. Reducing daily
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contacts in response to information about the presence of disease is a rational action
that can be adopted by many people in the community [6].

In developing and underdeveloped countries, the mass media plays an important
role in changing behavior related to public health [7]. The media not only make
the population acquainted with the disease but also suggest the necessary preven-
tive practices such as social distancing, wearing protective masks or vaccination.
In general the people who are aware adopt these practices so that their chances of
becoming infected are minimized. As the awareness disseminates, people respond
toward it and eventually will change their behavior to alter their susceptibility [8].

Recently, mathematical models have investigated the impact on disease spread
and control [9]. In many studies, awareness campaigns are proportional to number
of infected individuals reported by a health organization, which has been considered
as a continuous process. Here, we assume that the awareness campaign is a discon-
tinuous, periodic process. Mathematically, this awareness implementation feature
can be appropriately modeled through impulsive differential equations, as it has the
ability to capture periodic events [10–12].

2 Mathematical Model Derivation

Let S(t) and I (t) be the density of the susceptible and infected populations respec-
tively at time t . The cumulative density of awareness programs driven by media in
that region is M(t). The total susceptible population is divided into two subclasses:
the unaware susceptible population Su and the aware susceptible population Sa . It
is also assumed that infected individuals recover through treatment. After recovery,
a fraction p of recovered people will join the aware susceptible class, whereas the
remaining fraction q (p + q = 1) will join unaware susceptible class.

People immigrate at a rate π into the susceptible unaware population. Unaware
susceptible individuals become infected after interactionwith infected people at a rate
β. Let d be the natural mortality rate of the population, e is the additional mortality
rate of infected population due to disease and r is the recovery rate.

Here, it is assumed that the unaware susceptible population becomes aware at
the rate α. Due to the effects of awareness programs that is repeatedly performed at
a constant time instants, cumulative density of awareness campaign increases by a
fixed amount ω. Awareness programs cut down at a rate θ , due to ineffectiveness.

The above assumptions lead to the following model with impulsive awqreness
campaign,

dSu
dt

= π − βSu I − αSuM − dSu + qr I

dSa
dt

= αSuM − dSa + pr I

d I

dt
= βSu I − (d + e + r)I
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dM

dt
= −θM, t �= tk,

M(t+) = M(t) + ω, t = tk (1)

with the initial conditions: Su(0) > 0, Sa(0) > 0, I (0) > 0, M(0) > 0.

3 Dynamics of the System

Consider the following subsystem,

dM

dt
= −θM, t �= tk

ΔM = ω, t = tk
(2)

Let τ = tk+1 − tk be the period of the campaign. The solution of the system (2) is,

M(t) = M(t+k )e−θ(t−tk ), for tk < t ≤ tk+1. (3)

In presence of impulsive effect, we have a recursion relation at the moments of
impulse, given by

M(t+k ) = M(t−k ) + ω.

Thus the awareness campaign before and after the impulse is taken is,

M(t+k ) = ω(1 − e−kθτ )

1 − e−θτ

and

M(t−k+1) = ω(1 − e−kθτ )e−θτ

1 − e−θτ
.

Thus the limiting case of the awareness campaign before and after one cycle is as
follows:

lim
k→∞ M(t+k ) = ω

1 − e−θτ
and lim

k→∞ M(t−k+1) = ωe−θτ

1 − e−θτ

and

M(t+k+1) = ωe−θτ

1 − e−θτ
+ ω = ω

1 − e−θτ
.
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Here we have found out that

M(t+k ) − ω

1 − e−θτ
= ω

1 − e−kθτ

1 − e−θτ
− ω

1 − e−θτ
= −ω

e−kθτ

1 − e−θτ
< 0.

There does not exist an equilibrium point for the impulsive system. Hence, we can
evaluate equilibrium-like periodic orbits. There are two periodic orbits: disease-free
periodic orbit and endemic periodic orbit. We only focus on the disease free orbit.
We now recall the following results [13, 14].

Definition 1 Let Λ ≡ (Su, Sa, I, M), B0 = [B : R4+ → R+]. Then B is said to
belong to class B0 if
(1) B is continuous on (tk, tk+1] × R3+, n ∈ N and for each Λ ∈ R4,

lim(t,μ)→(t+k ,Λ) B(t, μ) = B(t+k ,Λ) exists,
(2) B is locally Lipschitzian in Λ.

Lemma 1 Let Z(t) be a solution of the system (1) with Z(0+) ≥ 0. Then Zi (t) ≥
0, i = 1, . . . , 4 for all t ≥ 0. Moreover, Zi (t) > 0, i = 1, . . . , 4 for all t > 0 if
Zi (0+) > 0, i = 1, . . . , 4.

Lemma 2 There exists a constant G such that Su(t) ≤ G, Sa(t) ≤ G, I (t) ≤ G and
M(t) ≤ G for each and every solution Z(t) of system (1) for all sufficiently large t.

Lemma 3 Let us consider B ∈ B0 and assume that

D+B(t, Z) ≤ j (t, B(t,Z(t))), t �= tk,

B(t, Z(t+)) ≤ Φn(B(t,Z(t))), t = tk,

where j : R+ × R+ → R is continuous in (tk, tk+1] for e ∈ R2+, n ∈ N, the
limit lim(t,V )→(t+k ) j (t, g) = j (t+k , x) exists and Φ i

n(i = 1, 2) : R+ → R+ is non-
decreasing. Let y(t) be a maximal solution of the following scalar impulsive differ-
ential equation

dx(t)

dt
= j (t, x(t)), t �= tk, (4)

x(t+) = Φn(x(t)), t = tk, x(0+) = x0,

existing on (0+,∞). Then B(0+,Z0) ≤ x0 implies that B(t,Z(t)) ≤ y(t), t ≥ 0,
for any solution Z(t) of system (1). If j satisfies additional smoothness conditions
to ensure the existence and uniqueness of solutions for (4), then y(t) is the unique
solution of (4).

We now consider the following sub-system:

dM(t)

dt
= −θM, t �= tk, M(t+k ) = M(tk) + ω, M(0+) = M0. (5)

Thus from above Lemma, we obtain the following result,
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Lemma 4 System (5) has a unique positive periodic solution M̃(t) with period τ

and given by

M̃(t) = ω exp(−θ(t − tk))

1 − exp(−θτ)
, tk ≤ t ≤ tk+1, M̃(0+) = θ

1 − exp(−θτ)
.

On this basis, we have the following theorem.

Theorem 1 The disease free periodic solution (S̃u, 0, 0, M̃) of the system (1) is
locally asymptotically stable if

R̃0 < 1 (6)

where,

R̃0 = β

τ(d + e + r)

∫ τ

0
S̃udt.

Proof Let the solution of the system (1) without infected people be denoted by
(S̃u, 0, 0, M̃), where

M̃(t) = ω exp(−θ(t − tk))

1 − exp(−θτ)
, tk ≤ t ≤ tk+1,

with initial conditionM(0+) as inLemma4.Wenow test the stability of the equilibria.
The variational matrix at (S̃u, 0, 0, M̃) is given by

V (t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−αM̃ − d 0 qr − β S̃u −α S̃u

αM̃ −d pr −α S̃u

0 0 β S̃u − (d + e + r) 0

0 0 0 −θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The monodromy matrix M of the variational matrix V (t) is

M(T ) = I exp

(∫ τ

0
V (t)dt

)
,

where I is the identity matrix. We thus have: M(T ) = diag(λ1, λ2, λ3, λ4). Here,
λi , i = 1, 2, 3, 4, are the Floquet multipliers and given by
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λ1 = exp

[
−α

∫ τ

0
M̃dt − dτ

]
< 1, λ2 = exp [−dτ ] < 1,

λ3 = exp

[
β

∫ τ

0
S̃udt − (d + e + r)τ

]
, λ4 = exp(−θτ) < 1.

Now, λ3 < 1 holds if (6) is true. Thus, the periodic solution (S̃u(t), 0, 0, M̃(t)) of
the system (1) is locally asymptotically stable if the conditions given in (6) hold.

4 Numerical Simulation

In this section, numerical simulations are performed to investigate the dynamics of
the system obtained in previous sections. Simulations results are plotted in figures
with the parameters values given in Table1.

Figure1 displays the comparison between the behavior of the system whenever
awareness campaign is carried out at an interval of 10days and in continuous way.
Here, the aware humans are initially increasing and attaining a stable state faster than
in the continuous awareness program, after approximately 900days. The infected
human population becomes extinct within less than 500days.

Time series solution of the systemwith impulses is plotted in Fig. 2 with three dif-
ferent choices of time interval τ . On a close inspection, we observe that the infection
can be controlled much faster in 10days interval compare to the result obtained for
15 and 30days intervals. It is to be noted that the aware population drops to the half
strength in comparison to the observed strength with a 10-days time interval among
three consecutive campaigns. Also, we observed that the time interval of 10days is
more beneficial for overall performance of the system.

Table 1 List of parameters used in numerical simulations and their references [6]

Parameter Definition Value Unit

π Constant recruitment rate 30 Person
day−1

β Disease transmission rate 0.00025 Day−1

α Maximum rate of awareness 0.02 Day−1

from unaware to aware human

d Susceptible class natural death rate 0.005 Day−1

e Additional death rate due to infection 0.02 Day−1

θ Depletion rate of awareness program due to ineffectiveness 0.05 Day−1
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Fig. 1 Solution of the system for two cases, Case I: Continuous campaign (dashed line), Case II:
with impulsive way taking τ = 10 days (solid line). Parameters are taken from Table1
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Fig. 2 System populations are plotted for different time interval τ . Blue line represents τ = 10,
red line is for τ = 15, black line for τ = 30 days, ω = 1
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5 Discission and Conclusion

In this article, we have proposed an epidemic models to estimate and analyze the
effects of an impulsive awareness campaign on infectious disease control. We give
the threshold R̃0 of the infected human free impulsive system (1). When R̃0 < 1,
periodic equilibrium Ẽ∗ is locally asymptotically stable.

We can control the rate of impulsive campaigning and the period of impulse. The
results obtained here imply that we can control the period of impulsive campaign
such that the infection-free periodic solution is locally stable. Thismeans the infected
people could be eradicated in cost effectiveway ifwe implement the impulsive control
strategies with proper rate and interval.

Acknowledgements Author is grateful to the reviewers for their useful comments which enrich
the content of the paper.
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A Vendor-Buyer Supply Chain Model for
Deteriorating Item with Quadratic
Time-Varying Demand and Pro-rata
Warranty Policy

B. Samanta, B. C. Giri and K. S. Chaudhuri

Abstract The article considers a single-vendor a single-buyer supply chain inwhich
the buyer sells a seasonal deteriorating product to customers over a single period of
time. At the buyer’s end, the demand is assumed to be quadratic in time. The vendor
follows a lot-for-lot policy for replenishment made to the buyer and (s)he agrees to
refund the customer’s purchase price on a pro-rata basis, if any item fails during the
warranty period offered by the buyer. We derive and optimize the average expected
total cost of the supply chain in order to obtain the optimal decisions of the integrated
system. An algorithm is developed for finding the optimal solution of the model
numerically. A numerical example is taken to demonstrate the coordination policy
between the vendor and the buyer. Sensitivity analysis is carried out to investigate
the effects of key parameters on the optimal decisions.

Keywords Supply chain · Quadratic demand · Deterioration · Warranty

1 Introduction

Due to rapid technological progress, competition in various types of business grad-
ually increases. Company managers are facing tough challenges from almost all
circumstances in the real market.To overcome these challenges, they learn that the
adjustment and cooperation among all themembers of supply chain ismore beneficial
than those policies obtained separately from the buyer’s and vendor’s perspectives.

The concept of coordination in a supply chain was first introduced by Goyal
[1] by considering a single-vendor single-buyer supply chain scenario. Later on,
numerous works have been carried out to establish vendor-buyer coordination under
different circumstances. It was realized that the supply chain coordination prac-
tices could reduce the total relevant cost or increase the total profit over the chosen
planning horizon [2–6]. Glock [7] considered a buyer sourcing a product from het-
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erogeneous suppliers and tackled both the supplier selection and lot size decision
with the objective of minimising the total system cost. Li and Huang [8] consid-
ered a single-vendor and multiple buyers supply chain model and realised that under
vendor-managed inventory, the production decision does not involve all operational
information of the vendor and buyers. Jauhari [9] considered an integrated vendor-
buyer model with defective items, inspection error and stochastic demand. Hariga
et al. [10] studied a two-stage supply chain model under consignment stock policy.
Hossain et al. [11] investigated vendor-buyer cooperative policy under generalized
lead time distribution with penalty cost for delivery lateness.

In all the above-mentioned works, non-perishability characteristic of buyer’s
inventory is considered. However, in practical situation, perishability or deterio-
ration is a natural phenomenon for many items. Agricultural products, food items,
chemicals, drugs, fashion goods, electronic components, films are some examples of
items in which sufficient deterioration may occur during normal storage periods of
the units. The loss due to deterioration must be taken into account while analyzing
the inventory system. There is a vast literature on deteriorating inventory system.
Readers can go through the latest review article contributed by Goyal and Giri [12]
to learn the summary of the works done on deteriorating inventory system until that
time.

Supply chain researchers considered buyer’s demand rate in different ways. Sev-
eral models were developed by considering constant demand rate. However, in prac-
tice, the buyer’s demand rate may not always remain constant; it may vary with time.
Giri and Maiti [6] developed a supply chain model with linearly time-dependent
demand. A linearly time varying demand means uniform change in demand rate
which is rarely seen to occur in real market. On the other hand, the exponential pat-
tern also seems to be unrealistic in the sense that there is hardly any product whose
demand changes at an exponential rate. In this paper, we consider a quadratic time
dependent demand for a vendor-buyer supply chainmodel over a short selling period.
This type of demand is more realistic because it can represent both accelerated and
retarded growth in demand, and it is quite appropriate for seasonal products like
winter garments or cosmetics.

The analysis of warranty policy and cost model associated with short-term or
fixed term policy have received a lot of attention among the researchers. Failure of a
product may occur due to faulty design, bad workmanship, age, usage or the increase
of operational and environmental stresses above the designed level. It is impossible
to totally avoid all failures. The manufacturer (vendor)/service provider can prevent
or minimize the effect of such failure by ensuing after sales service through warranty
and service contract. Chun and Tang [13] developed an inventory model with the
free-replacement and fixed period warranty policy within a constant warranty period.
Yeh et al. [14] studied the imperfect production system where a repairable product
is sold with free minimal repair warranty. Chen and Lo [15] developed an imperfect
production system with allowable shortages for products extending Yeh et al.’s [14]
model. All these models considered constant warranty cost. In this paper, pro-rata
warranty policy is adopted in which warranty cost is taken as a function of warranty
period and production cost of the product.
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We organize the paper as follows: Assumptions and notations are given in the next
section. Formulations and analysis of the model under perspectives of the buyer, the
vendor and the entire supply chain are given in Sect. 3. An algorithm for finding the
optimal solution of the supply chain is provided.Numerical illustration and sensitivity
analysis are performed in Sect. 4. The paper is concluded with some remarks and
practical implications in Sect. 5.

2 Assumptions and Notations

The following assumptions are made for developing the proposed model.

• The supply chain consists of a single-vendor and a single-buyer.
• Over a short selling period, the buyer sells a seasonal product which is deterio-

rating in nature.
• The demand rate at the buyer’s end is quadratic in time.
• A constant fraction of the buyer’s on-hand inventory deteriorates per unit time.
• The buyer receives order from the vendor in every T time interval.
• The production rate of the vendor varies with time and is greater than the demand
rate of the buyer.

• The vendor follows the lot-for-lot policy for replenishment made to the buyer.
• The buyer sells each item under Pro-Rata Warranty (PRW) policy. Under this

policy, the vendor agrees to refund a fraction of customer’s purchase price, if
any item fails during warranty period offered by the buyer.

• The warranty does not renew.
• Shortages are not allowed to occur in the buyer’s inventory.
• As the vendor’s production rate is greater than the buyer’s demand rate, the vendor
may start production with a time delay in every production cycle.

The following notations are used for developing the proposed model.

d(t) buyer’s demand rate; we take d(t) = a + bt + ct2; a ≥ 0, b > 0, c > 0.
p(t) vendor’s production rate; we take p(t) = kd(T + t), k > 1.
θ deterioration rate at the buyer; 0 ≤ θ < 1.
tm time delay for the vendor to begin production.
ar (am) order (set up) cost per order (set up) for the buyer (vendor).
cr (cm) cost per single item for the buyer (vendor).
hr (hm) holding cost per unit item per unit time for the buyer (vendor).
Iri (t) buyer’s inventory level at any time t where iT ≤ t ≤ (i + 1)t .
Imi (t) vendor’s inventory level at any time t where iT ≤ t ≤ (i + 1)t .
α defective item production rate, 0 ≤ α < 1.
wp warranty period from initial purchase given by the vendor to the buyer.
f (·) probability density function associatedwith timewhenmachine shifts from

an in-control state to an out-of-control state.
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E(N ) expected number of defective items produced in a cycle.
λ failure intensity of a product.
g(t) failure density function.
G(t) cumulative failure distribution of a product associated with g(t).
R(t) failure rate per item at any time t.
r(x) refund cost of a failure item failed at any time x ∈ (t, t + wp) from initial

purchase.
We take r(x) = cr (1 − x−t

wp
), t ≤ x ≤ (t + wp).

w(t) warranty cost at time t ∈ [ iT, (i + 1)T ]
wm total warranty cost in [ iT, (i + 1)T ].

3 Model Development and Analysis

We consider a vendor-buyer integrated system where the buyer receives the first lot
from the vendor at time T and sells these items with a warranty during next T time
according to customer’s demand. If any item fails within warranty period from cus-
tomer’s initial purchase time, the vendor agrees to refund a fraction of customer’s
purchase price. At time 2T , the buyer’s inventory level becomes zero and s(he)
receives the next lot from the vendor. This process will continue. Since the vendor’s
production rate is greater than the buyer’s demand rate, therefore, to produce the
buyer’s order quantity, the vendor may start production after some delay time (tm)

in every production cycle. Then the following questions arise:
(i) How much time can be delayed by the vendor to start production in each cycle?
(ii) What would be the cycle length for which cost is minimum?
To answer these questions, we focus our attention to the i-th inventory cycle of the
buyer, that is, the time interval [iT, (i + 1)T ]; i = 1, 2, 3, . . . The quantity replen-
ished at the beginning of this cycle is the total conforming items produced by the
vendor in the time interval [(i − 1)T, iT ]; i = 1, 2, 3, . . . Since shortages are not
allowed to occur, the expected number of conforming items produced by the vendor
during the time interval [(i − 1)T + tm, iT ] is equal to the buyer’s order quantity,
which is again equal to the total demand and deterioration during the time interval
[iT, (i + 1)T ]; i = 1, 2, 3, . . . at the buyer’s end. The fluctuations of the buyer’s
and the vendor’s inventories are reflected in Fig. 1.

3.1 Buyer’s Perspective

The buyer’s inventory level changes due to the combined effect of demand and
deterioration. Therefore, if Iri (t) denotes the buyer’s inventory level at any time
t, iT ≤ t ≤ (i + 1)T ; i = 1, 2, 3, . . . then the differential equation governing the
instantaneous states of the inventory level at time t is given by
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Fig. 1 Schematic diagram
of vendor-buyer inventory

d Iri (t)

dt
= −θ Iri (t) − d(t); iT ≤ t ≤ (i + 1)T (1)

with Iri ((i + 1)T ) = 0.
Solving (1), we get

Iri (t) = Ae−θ t − 1

θ3
[(a + bt + ct2)θ2 − (b + 2ct)θ + 2c] (2)

where A = e(i+1)T

θ3
[c(i + 1)2(θT )2 + (bθ − 2c)(i + 1)(θT ) + aθ2 − bθ + 2c]

Now, the sum of inventory holding cost and deteriorating cost during the time interval
[iT, (i + 1)T ] is given by

(hr + θcr )
∫ (i+1)T

iT
Iri (t)dt

= (hr + θcr )

θ3

[eθT − 1

θ
{c(i + 1)2(θT )2 + (bθ − 2c)(i + 1)θT + aθ2 − bθ + 2c}

− T

6
{2c(3i2 + 3i + 1)(θT )2 + 3(bθ − 2c)(2i + 1)θT + 6(aθ2 − bθ + 2c)}

]
.

Hence, the buyer’s average total cost for the i-th cycle is given by

Acri (T ) = ar
T

+ (hr + θcr )

θ3

[eθT − 1

θT
{c(i + 1)2(θT )2 + (bθ − 2c)(i + 1)θT

+aθ2 − bθ + 2c} − 1

6
{2c(3i2 + 3i + 1)(θT )2 + 3(bθ − 2c)(2i + 1)θT

+6(aθ2 − bθ + 2c)}
]
; i = 1, 2, 3, .... (3)
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Lemma 1 The function f (x) = ex (x2 − 2x + 2) − 2 is positive and strictly increas-
ing ∀ x > 0.

Lemma 2 The function f (x) = (x + 2)ex − 2
3 is positive and strictly increasing

for all x > 0. Also, f (x) cannot be less than 4
3 for all x > 0.

Proof Clearly f (x) is continuous for all x ≥ 0. Also, f ′(x) = (x + 3)ex > 0 for
all x > 0. Therefore, f (x) is a strictly increasing function on [0,∞). Again,
f (0) = 4

3 > 0. This proves the result.

Lemma 3 f (n) = 2
3 {2(n + 1)2 − n2} > 0, ∀ n ∈ N .

Lemma 4 f (x, n) = (n + 1)2{(x + 2)ex − 2
3 } − 2

3n
2 is positive and strictly

increasing for all x > 0 and n ∈ N .

Proposition 1 The average cost function Acri (T ) is convex provided that b
4a ≤ 2c

b ≤
θ < 1, if a > 0 and 2c

b = θ < 1, if a = 0.

Proof Differentiating (3) twice with respect to T , we obtain

d2Acri (T )

dT 2 = 2ar
T 3 + hr + cr θ

θ

[
c(i + 1)2{(θT + 2)eθT − 2

3
} − 2

3
ci2 + (bθ − 2c)(i + 1)eθT

+ aθ2 − bθ + 2c

(θT )3
{eθT ((θT )2 − 2θT + 2) − 2}

]

Now, aθ2 − bθ + 2c = a{θ2 − 2θ b
2a + ( b

2a )2} + 2c − b2

4a .

Case (i): a > 0
Clearly, aθ2 − bθ + 2c ≥ 0 if 2c − b2

4a ≥ 0, i.e. if b
4a ≤ 2c

b .

Also, bθ − 2c ≥ 0 if θ ≥ 2c
b . Thus,

b
4a ≤ 2c

b ≤ θ < 1.
Case (ii): a = 0
The relations bθ − 2c ≥ 0 and aθ2 − bθ + 2c ≥ 0 give bθ − 2c ≥ 0 and bθ − 2c ≤
0, respectively which then imply θ = 2c

b . Using the above two cases, Lemmas 1 and

4, we see that d2Acri (T )

dT 2 > 0 if 2c
b ≤ θ < 1 and ac > b2 when a > 0. Hence, the

proposition follows.

3.2 Vendor’s Perspective

We assume that the time to machine shift from a in-control state to an out-control
state follows a uniform distribution with probability density function
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f (t) = 1

T − tm
; tm ≤ t ≤ T

= 0; elsewhere.

Then the expected number of defective items produced in the time period [(i −
1)T + tm, iT ] is given by

E(N ) =
∫ iT

(i−1)T+tm

αp(t) f (t)(iT − tm)dt

= αk

12

[
6aT + 2b(3i + 1)T 2 + c(6i2 + 4i + 1)T 3 − ((6i2 + 4i + 1)cT 2

+2(3i − 1)bT + 6a)tm − (4b + (8i − 1)cT )t2m − 3ct3m
]

(4)

Differentiating partially with respect to tm , we obtain

∂E(N )

∂tm
= −αk

12

[
(6i2 − 4i − 1)cT 2 + 2(3i − 1)bT + 6a + 2((8i − 1)cT + 4b)tm

+9ct2m
]

(5)

Proposition 2 For a prescribed scheduling period T , the expected number of defec-
tive items (E(N )) produced by the vendor is decreasing in the delay time tm .

Proof The result can be easily proved from (5) as 6i2 − 4i − 1 > 0 for i=1,2, 3, ...

The instantaneous states of the vendor’s inventory level can be described by the
following differential equation:

d Imi

dt
= p(t) − E(N )

T − tm
, (i − 1)T + tm ≤ t ≤ iT (6)

with Imi ((i − 1)T + tm) = 0.
Solving (6), we get

Imi (t) = (ka − E(N )

T − tm
){(T + t) − (iT + tm)} + kb

2
{(T + t)2 − (iT + tm)2}

+kc

3
{(T + t)3 − (iT + tm)3} (7)

If Qmi denotes the production lot size of the vendor, then we have
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Qmi = Imi (iT ) = k(T − tm)
[
a + b

2
((2i + 1)T + tm) + c

3
((3i2 + 3i + 1)T 2

+(3i + 1)T tm + t2m)
]

− E(N ) (8)

The vendor’s holding cost for the period [(i − 1)T, iT ] is given by

hm

∫ iT

(i−1)T+tm

Imi (t)dt = hm(2 − α)(T − tm)E(N )/(2α) (9)

Suppose that the vendor sells an item with warranty period wp at any time t ∈
[iT, (i + 1)T ] in the i-th cycle. Let the product defect be found at time x ∈ (t, t +
wp) from initial purchase. Then, according to PRW policy, the buyer has to refund
money for remaining (t + wp − x) period for the product. Since cr is the cost of the

product, the refund from the vendor should be r(x, t) = cr
(t+wp−x)

wp
= cr (1 − x−t

wp
).

Since the vendor rejects the defective items, all the items supplied to the buyer are
good in condition. Still a few of those items may fail at the customer end. We assume
that the failure of the product follows an exponential distribution with probability
density function g(x) = λe−λx , where, λ is the failure intensity of a product and
x ∈ (t, t + wp) . Then, the corresponding cumulative failure distribution function
G(x) is given by G(x) = 1 − e−λx , where x ∈ (t, t + wp). If R(x) be the failure
rate function of any product in time x ∈ (t, t + wp) , then we can write R(x) =
g(x)

1−G(x) = λ.

Then the warranty cost at any time t ∈ [iT, (i + 1)T ] is given by

wc(t) =
∫ t+wp−iT

t−iT
r(x, t)d(t)R(x)dx = λcr (wp/2 + iT )(a + bt + ct2)

Hence, the total warranty cost during the period [iT, (i + 1)T ] is

wTC =
∫ (i+1)T

iT
wc(t)dt = λT cr (

wp

2
+ iT )[a + b(i + 1

2
)T + c(i2 + i + 1

3
)T 2]

So, the average expected total warranty cost in [iT, (i + 1)T ] is

wATC = wTC

T
= λcr (

wp

2
+ iT )[a + b(i + 1

2
)T + c(i2 + i + 1

3
)T 2] (10)

As the vendor’s total cost includes ordering cost, holding cost, defective item cost
and warranty cost, therefore, the average expected total cost is given by

ACmi (T, tm) = am + cmE(N )

T
+ hm

T
(T − tm)E(N )(

1

α
− 1

2
) + λcr (

wp

2
+ iT )

× [a + b(i + 1

2
)T + c(i2 + i + 1

3
)T 2] (11)
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3.3 Integrated Approach

Theaverage expected total cost of the integrated supply chain is AC = ACri + ACmi .

Our objective is to

Minimize AC

subject to Qri = Qmi (12)

where Qri =
∫ (i+1)T

iT
(d(t) + θ Iri (t))dt

= T (a + b(i + 1

2
)T + c(i2 + i + 1

3
)T 2) + 1

θ2

[eθT−1

θT
(aθ2 − bθ + 2c

+(bθ − 2c)(i + 1)θT + c(i + 1)2(θT )2) − (aθ2 − bθ + 2c

+(bθ − 2c)(i + 1

2
)θT + c(i2 + i + 1

3
)(θT )2)

]
(13)

and Qmi is given in (8). The constrained optimization problem (12) can be solved
numerically following a simple algorithm given below:

Algorithm:
Step 1. Initialize tm = 0 and ε = a small positive number.
Step 2. Use any suitable one-dimensional search technique to find the optimal value

T ∗ by minimizing AC(T, tm).

Step 3. Calculate S = Qmi (T ∗, tm) − Qri (T ∗).
Step 4. If |S| < ε then t∗m = tm and go to Step 5. Otherwise, do increment or decre-
ment of tm according to S > 0 or S < 0, respectively and then go to Step 2.
Step 5. Calculate AC(T ∗, t∗m). Stop.

4 Numerical Illustration

We consider the following numerical data to illustrate the developed model:
a = 200, b = 2, c = 0.06, am = 80, hm = 0.08, cm = 8, ar = 50, hr = 0.2,
cr = 10, θ = 0.05, α = 0.02, k = 1.4, λ = 0.4,wp = 1 in appropriate units. For
this data set, the surface generated by the cost function AC(T, tm) for wide ranges
of values of T and tm is found convex. Hence, for the chosen data set, the proposed
algorithm can be applied for finding the numerical solution. The optimal results
obtained for the supply chain model are shown in Table1.
We now consider the model from the buyer’s and vendor’s points of view.
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Table 1 Optimal results of the supply chain model for successive ten cycles

i th cycle T ∗ t∗m AC(T ∗, t∗m)

1 0.38137 0.09943 1096.10

2 0.27561 0.07184 1356.46

3 0.22656 0.05905 1559.34

4 0.19680 0.05128 1731.56

5 0.17628 0.04593 1883.92

6 0.16105 0.04197 2022.07

7 0.14916 0.03887 2149.39

8 0.13954 0.03636 2268.11

9 0.13156 0.03428 2379.78

10 0.12479 0.03251 2485.54

Table 2 Optimal results from buyer’s perspective and comparison with integrated model when
tm = 0

i th cycle T ∗ ACri (T ∗)
(A)

ACmi (T ∗)
(B)

(A) + (B) AC(T ∗)

1 0.82183 120.00 1200.21 1320.21 224.11

2 0.81464 120.52 1870.54 1991.06 634.60

3 0.80735 121.06 2540.69 2661.75 1102.41

4 0.79999 121.61 3210.56 3332.17 1600.61

5 0.79260 122.17 3880.08 4002.25 2118.33

6 0.78521 122.74 4549.21 4671.95 2649.88

7 0.77784 123.32 5217.94 5341.26 3191.87

8 0.77052 123.91 5886.29 6010.20 3742.09

9 0.76325 124.50 6554.31 6678.81 4299.03

10 0.75607 125.10 7222.04 7347.140 4861.60

Let us first consider themodel from the buyer’s perspective. For fifth cycle (i = 5),
the buyer’s optimum cycle length is obtained as T ∗ = 0.792604 unit and the average
total cost is ACri = 122.172 units. Substituting T ∗ = 0.792604 and tm = 0 in (11),
we get ACmi = 3880.08 units. Hence the sum of the buyer’s and vendor’s average
cost is AC∗

ri + AC∗
mi = 4002.252 units, which is costlier of 2118.332 units than the

average total cost of the proposed supply chain model. Similar characteristics of the
proposed model is observed for all values of i = 1, 2, ..., 10 as shown in Table2.

We now consider the model from the vendor’s perspective. For the fifth cycle
(i = 5), the vendor’s optimum cycle length is obtained as T ∗ = 0.139701 unit
and the average expected total cost is ACmi = 1563.12 units. Substituting T ∗ =
0.139701 in (5),weget ACri = 367.789units. Then AC∗

ri + AC∗
mi = 1930.909units,



A Vendor-Buyer Supply Chain Model for Deteriorating Item … 381

Table 3 Optimal results from vendor’s perspective and comparison with integrated model when
tm = 0

i th cycle T ∗ ACmi (T ∗)
(C)

ACri (T ∗)
(D)

(C) + (D) AC(T ∗)

1 0.31134 935.062 182.62 1117.68 21.58

2 0.22085 1144.8 242.01 1386.81 30.35

3 0.18042 1306.33 289.89 1596.22 36.88

4 0.15624 1442.76 331.08 1773.84 42.28

5 0.13970 1563.12 367.79 1930.91 46.99

6 0.12748 1672.06 401.23 2073.29 51.22

7 0.11798 1772.32 432.16 2204.48 55.09

8 0.11031 1865.72 461.07 2326.79 58.68

9 0.10396 1953.51 488.32 2441.83 62.05

10 0.09858 2036.59 514.18 2550.77 65.23

which is costlier of 46.989 units than the average expected total cost of the proposed
supply chain model. Similar characteristics of the proposed model is observed for
other values of i = 1, 2, ..., 10 as shown in Table3. From the above discussions we
thus observe that the integrated supply chain model results in lower cost.
We further note that the buyer’s optimum cycle length is always greater than the
vendor’s optimum cycle length in any cycle. Moreover, the average total cost of the
integrated supply chain in any cycle is closer to the average total cost from vendor’s
perspective than that from buyer’s perspective.

4.1 Sensitivity Analysis

In this sub-section, we examine the effects of changes in the parameter-values on the
optimal solution of the proposed supply chainmodel.We change one parameter value
at a time and keep other parameter-values interchanged. We conduct the analysis for
the integrated model for i = 3. The results are shown in Table4.

Table4 indicates that the model is highly sensitive with respect to the parameters
a, cr and λ and moderately sensitive with respect to the parameters am , ar and wp.
When the parameter am increases, the optimum cycle length of the integrated sup-
ply chain increases. If warranty period increases, then the number of defective items
also increases. More items may fail during this extra warranty period. For these more
failure items, the vendor has to return more warranty cost. That is why the average
expected total cost of integrated system also increases. We also check that the model
is insensitive with respect to the remaining parameters hm, cm, hr , θ , c and k.
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Table 4 Sensitivity analysis

Parameter % change
in parameter
value

T ∗ t∗m AC(T ∗, t∗m) % change in
AC(T ∗, t∗m)

a +50 0.18586 0.04842 2020.48 29.57

+20 0.20733 0.05402 1749.89 12.22

−20 0.25230 0.06577 1357.78 −12.93

-50 0.31486 0.08217 1024.66 −34.29

am +50 0.25877 0.06744 1724.17 10.57

+20 0.23998 0.06254 1627.93 4.40

−20 0.21228 0.05532 1486.42 −4.68

−50 0.18878 0.04919 1366.74 −12.35

ar +50 0.2472 0.06443 1664.88 6.77

+20 0.23504 0.06126 1602.67 2.78

−20 0.21775 0.05675 1514.33 −2.89

−50 0.20379 0.05311 1443.16 −7.45

cr +50 0.18561 0.04837 2012.61 29.07

+20 0.20716 0.05399 1746.84 12.02

−20 0.25271 0.06587 1360.57 −12.75

−50 0.31759 0.08279 1030.36 −33.92

λ +50 0.18623 0.04853 2007.91 28.77

+20 0.20751 0.05408 1744.75 11.89

−20 0.25208 0.06570 1363.13 −12.58

−50 0.31449 0.08198 1038.39 −33.41

wp +50 0.22624 0.05896 1760.97 12.93

+20 0.22643 0.05901 1639.99 5.17

−20 0.22669 0.05908 1478.69 −5.17

−50 0.22689 0.05913 1357.72 −12.93

5 Conclusions

Reliability of products is becoming increasingly important due to rapid technological
development and tough competition in the market. In the proposed model, we reject
all the defective items that are produced. Manufacturing cost then increases but it
provides customer/user higher peace of mind. It is impossible to totally avoid all fail-
ures of any product. Warranty protects the manufacturer against any damage/failure
to the product due to misuse or abuse by the user during specified warranty period.
Customers/buyers purchase the product and the decision to purchase is influenced
by several factors such as quality brands and provisions for after sales service such
as warranty. The numerical experiment shows that vendor-buyer coordination policy
provides lower average expected total cost than that of the policy derived from the
vendor’s or the buyer’s perspective only. The proposed model has been developed
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based on simplistic assumptions viz., quadratic demand at the buyer’s end and PRW
warranty policy offered by the vendor. The model, however, can be further extended
to consider more practical situations such as multiple vendors, multiple buyers or
items sold with FRW policy or combination of PRW and FRW policy.
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Pest Control of Jatropha curcas Plant for
Different Response Functions

Arunabha Sengupta, J. Chowdhury, Xianbing Cao and Priti Kumar Roy

Abstract Nowadays Jatropha curcas plants are being considered as a renewable
energy feedstock for the production of biodiesel to overcome the crisis of natural
fuel. The seeds of this plant contain oil which is one of the significant resources
for alternative fuel production i.e. biodiesel. Though Jatropha curcas plant is proven
to be toxic to many insects and animals, it is not pest and disease resistant. On this
regard our research article presents formulation and analysis of amathematicalmodel
for Jatropha plantation with a view to control its natural pests through application
of biological pesticide. We assume linear and hyperbolic functional responses of
predator for susceptible pest, where for infected pest the functional response is linear,
as infected pests are weaker than susceptible pest and easy to catch. We study the
dynamics of the system around each of the ecological feasible equilibrium. The
reduction of disease eradication and predator-pest coexistence are observed around
the predator free and disease free equilibrium respectively.

Keywords Jatropha curcas plant · Biodiesel · Pest control · Stability ·
Mathematical modeling · Functional response · Biological pesticide

1 Introduction

In current global scenario the demandof alternative energy sources are highly thriving
to overcome the crisis of conventional energy sources. As a result production of
renewable energy sources are truly required. Biodiesel is one of the most useful
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alternative fuel which is renewable, clean-burning and cost effective [1, 2]. Jatropha
curcus seed is more effective resource for biodiesel due to its higher oil content and
non-edible nature [3].

There are many biodiesel producing resources like Soybean oil, Palm oil, Mus-
tard oil, Sunflower oil, but Jatropha curcas oil is the most promising as it produces
the purest quality biodiesel [4]. Jatropha plants are generally affected by pests. This
affects the growth of the plant and consequently the oil production. Pest control is
a worldwide problem in agricultural ecosystem management. So we need to control
these pests for healthy growth of the plant and for oil productivity improvement.
Many researchers formulated mathematical model for controlling pest to study the
different aspects of the pest management strategies with probable results for ele-
vated applications using analysis of the system within the mathematical illustration.
Though broad spectrum chemical pesticides have been suggested [5, 6] to use, those
chemical pesticides are harmful to our health and plant growth and it causes envi-
ronmental pollution, health hazards and uneconomic crop production [7]. This leads
to the interest in biological control methods for plant pests. Beside that, the most
effectivemeasures in pest management are determined by the ecology of a pest . Thus
to resolve this type of problem, the concept of Integrated Pest Management (IPM)
[8] is being generated and its application is being increased in the field by marginal
farmers recently. IPM seeks to diminish dependence on pesticides by emphasizing
the contribution of biological control. Role of microbial pesticides in the IPM has
been recently examined for agriculture and other fields [9–11]. As components of
an integrated approach, bio-pesticide can play significant role in pest control [12].
Potentially, the use of virus is one of the most effective biological methods for con-
trolling pests. This advantage is subdued in the case where the transmission is carried
out by an insect vector. In North America and European countries we can see the
practical evidence of the use of virus against insect pests [13]. The experimental and
field use of pathogenic viruses in Europe is listed by Falcon et al. [14].

As the fuel crop is economically very important, our main object is to protect the
crop from its complications to enhance its oil production. Pests are themain barrier for
natural growth of Jatropha curcus plant. Many pests are known to occur on Jatropha
curcus but less than ten type occur quite frequently, e.g. the leaf miner Stomphastis
thraustica, the leaf and stem miner Pempelia morosalis, and the shield-backed bug
Calidea panaethiopica etc. [15].

Thenatural enemy (predator) in the systemsurvives on the susceptible and infected
pest. The predator consumes the infected pest in linear mass action due to the fact
that the viral infection makes some behavioral changes and sub lethal effect on host.
In this research article we want to compare the change in nature of the system due
to the consumption of susceptible pest by predator with Holling type I, II functional
responses in the view of mathematical and numerical analysis.

In the next section we formulate the mathematical model. After that we perform
local stability analysis around different equilibria. In the section after stability anal-
ysis, numerical simulations are shown. Finally, we conclude our findings.
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2 The Model

2.1 General Model Formulation with Suitable Assumptions

Here we have formulated a five dimensional mathematical model, containing bio-
mass of Jatropha plant j (t), susceptible pest s(t), infected pest i(t), predator p(t)
and virus population v(t). Individual plant growth follows logistic fashion where r j
denotes the maximum growth rate and k j denotes the carrying capacity of the plant.
The pest population is partitioned into two classes, Susceptible and Infected pest. Pest
consumes the plant resource at a rate α which is further converted into the susceptible
pest with maximum growth rate rs . The carrying capacity of the susceptible pest
is assumed to be ks . The virus population interact with the susceptible pests and
turn them into infected pest class at a λ. Here we have considered the functional
response f (s) of the predator population on the susceptible pest population as linear,
hyperbolic and sigmoid which helps the predators in their growth at a rate θ1. The
predators consumes the infected pests at a rate l. ξ is the natural mortality rate of the
infected pests. dp is the natural death rate of predators and εp is the intra-specific
competition coefficient among predators present in the predatory guild of infected
pest. θ2 is the growth rate of the predator due to predation of the infected pests. πv is
the constant recruitment rate of the virus. κ is the virus replication rate. The mortality
rate of the virus population is μv.

d j

dt
= r j j (1 − j

k j
) − α js,

ds

dt
= rs js(1 − s + i

ks
) − λsv − f (s)p,

di

dt
= λsv − ξ i − li p,

dp

dt
= p(−dp − εp p) + θ1 f (s)p + θ2i p,

dv

dt
= πv + κξ i − μvv − γ sv. (1)

Where j (0) ≥ 0, s(0) ≥ 0, i(0) ≥ 0, p(0) ≥ 0, v(0) ≥ 0 and all the parameters
are assumed to be non-negative. The function f (s) is of two different following
types:

(i)Holling Type I or linear functional response and (ii)Holling Type II or hyper-
bolic functional response.
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2.2 Linear Functional Response

We first consider the Holling type-I functional response. We consider the equilibria
of the above system and discuss their local stability properties. For linear functional
response, system takes the following form:

d j

dt
= r j j (1 − j

k j
) − α js,

ds

dt
= rs js(1 − s + i

ks
) − λsv − βsp,

di

dt
= λsv − ξ i − li p,

dp

dt
= p(−dp − εp p) + θ1βsp + θ2i p,

dv

dt
= πv + κξ i − μvv − γ sv. (2)

2.2.1 Existence of Equilibria and Stability

Theorem 1 The axial equilibrium point E =(0, 0, 0, 0, πv) exists and the system (2)
is unstable around E for all the parametric values.

Theorem 2 The pest free equilibrium point E0=(k j , 0,0,0,
πv
μv
) exists and the system

(2) is stable around E0 if k j < λπv
rsμv

.

Pest free equilibrium: E0 = (k j , 0, 0, 0,
πv
μv
),

The Jacobian matrix for pest free equilibrium point is given by,

J =

⎛
⎜⎜⎜⎜⎝

−r j −αk j 0 0 0
0 rsk j − λ πv

μv
0 0 0

0 λ πv
μv

−ξ 0 0
0 0 0 −dp 0
0 −γ πv

μv
κξ 0 −μv

⎞
⎟⎟⎟⎟⎠

At E0 the above system is stable if k j < λπv
rsμv

.

Theorem 3 The predator free equilibrium point E1 exists if κ >
γ

λ
and r j

α
< s̄ <

μv

kλ−γ
and the system (2) is stable around E1 for condition (4).

The predator free equilibrium point E1 = ( j̄ , s̄, ī , 0, v̄),
where s̄ is the positive root of the cubic equation As̄3 + Bs̄2 + Cs̄ + D = 0
(A, B,C, D are given in Appendix A) and
v̄ = πv

μv−(kλ−γ )s̄ , j̄ = k j (1 − αs̄
r j

), ī = πvλs̄
ξ [μv−(κλ−γ )s̄] .
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The predator-free equilibrium exists when κ >
γ

λ
and r j

α
< s̄ <

μv

kλ−γ
.

The characteristic equation corresponding to the variational matrix at predator free
equilibrium point given in Appendix A is,

λ5 + B1λ
4 + B2λ

3 + B3λ
2 + B4λ + B5 = 0. (3)

Where Bis(i = 1, 2, 3, 4) are given in Appendix A.
Then by Routh-Hurwitz criterion it follows that the predator free equilibrium point
E1( j̄ , s̄, ī , 0, v̄) is locally asymptotically stable if

(i) Bi (i = 1, 2, 3, 4, 5) > 0

(i i) B1B2B3 > B2
3 + B2

1 B4 (4)

(i i i) (B1B4 − B5)(B1B2B3 − B2
3 − B2

1 B4) > B5(B1B2 − B3)
2 + B1B

2
5 .

Theorem 4 The interior equilibrium point E∗ exists if s∗ <
r j
α
and the system (2)

is stable around E∗ for condition (7).

The interior equilibrium: E∗( j∗, s∗, i∗, p∗, v∗).
Here j∗ =k j (1 − αs∗

r j
),

i∗ is the positive root of the equation

C1i
∗2 + C2i

∗ + C3 = 0. (5)

where Ci s are given in Appendix B and

p∗ = θ1βs∗+θ2i∗−dp

εp
, v∗= i∗[ξεp+l(θ1βs∗+θ2i∗−dp)]

εpλs∗ .
In Eq. (4) we have a single variation of sign. Then by Descartes’ Rule of Sign we
should have unique positive root. Therefore C2 < 0.
i.e. κλξ − μvξ − lμvθ1β

εp
− lμvdp

εps∗ − γ ξ − γ l
εp

(θ1βs∗ − dp) < 0.

lγβs∗2 + (εpμvξ + lμvθ1β + εpγ ξ − κεpξ − lγ dp)s∗ + lμvdp > 0.
This can be written as (s − a)(s − b) > 0 · (a < b)(a, b are given in Appendix B)
The interior equilibrium point E∗ exists when s∗ <

r j
α
.

The characteristic equation corresponding to the variational matrix at interior equi-
librium point given in Appendix B is,

λ5
1 + D1λ

4
1 + D2λ

3
1 + D3λ

2
1 + D4λ1 + D5 = 0. (6)

Where Di (i = 1, 2, 3, 4)s are given in Appendix B.
Then by Routh-Hurwitz criterion it follows that the interior equilibrium point
E∗ =( j∗, s∗, i∗, p∗, v∗) is locally asymptotically stable if

(i) Di (i = 1, 2, 3, 4, 5) > 0

(i i) D1D2D3 > D2
3 + D2

1D4 (7)

(i i i) (D1D4 − D5)(D1D2D3 − D2
3 − D2

1D4) > D5(D1D2 − D3)
2 + D1D

2
5 .
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2.3 Hyperbolic Functional Response

To catch a susceptible pest predators need some time to search for its food. Hence the
searching efficiency of the predators can play an important role in the system. Hence
the objective of this subsection is to introduce the model with hyperbolic functional
response to observe the dynamics of the system. For hyperbolic functional response,
system takes the following form:

d j

dt
= r j j (1 − j

k j
) − α js,

ds

dt
= rs js(1 − s + i

ks
) − λsv − βsp

a + s
,

di

dt
= λsv − ξ i − li p,

dp

dt
= p(−dp − εp p) + θ1

βsp

a + s
+ θ2i p,

dv

dt
= πv + κξ i − μvv − γ sv. (8)

Where a is the searching efficiency of the predator.

2.3.1 Existence of Equilibria and Stability

Theorem 5 The axial equilibrium point E11=(0,0,0,0,πv) exists and the system (8)
is unstable around E11 for all the parametric values.

Theorem 6 The pest free equilibrium point E11
0 =(k j ,0,0,0,

πv
μv
) exists and the system

(8) is stable around E11
0 if k j < λπv

rsμv
.

The Jacobian matrix for pest free equilibrium point is given by,

J =

⎛
⎜⎜⎜⎜⎝

−r j −αk j 0 0 0
0 rsk j − λ πv

μv
0 0 0

0 λ πv
μv

−ξ 0 0
0 0 0 −dp 0
0 −γ πv

μv
κξ 0 −μv

⎞
⎟⎟⎟⎟⎠

At E11
0 the above system is stable if k j < λπv

rsμv
.

Theorem 7 The predator free equilibrium point E11
1 exists if κ >

γ

λ
and r j

α
< ŝ <

μv

kλ−γ
and the system (8) is stable around E11

1 for condition (10) .
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Predator free equilibrium: E11
1 ( ĵ , ŝ, î , 0, v̂).

Where ŝ is the positive root of the cubic equation Àŝ3 + B̀ŝ2 + C̀ ŝ + D̀ = 0
( À, B̀, C̀, D̀ are given in Appendix C) and
v̂ = πv

μv−(κλ−γ )ŝ , ĵ = k j (1 − αŝ
r j

), î = πvλŝ
ξ [μv−(κλ−γ )ŝ]

The predator free equilibrium exists when κ >
γ

λ
and r j

α
< ŝ <

μv

kλ−γ
.

The characteristic equation of the variational matrix given in Appendix C is,

μ5 + b1μ
4 + b2μ

3 + b3μ
2 + b4μ + b5 = 0. (9)

where bi s(i = 1, 2, 3, 4) are given in Appendix C.
Then by Routh-Hurwitz criterion it follows that the predator free equilibrium point
E1 = ( ĵ , ŝ,î ,0,v̂) is locally asymptotically stable if

(i) bi (i = 1, 2, 3, 4, 5) > 0

(i i) b1b2b3 > b23 + b21b4 (10)

(i i i) (b1b4 − b5)(b1b2b3 − b23 − b21b4) > b5(b1b2 − b3)
2 + b1b

2
5.

Theorem 8 The equilibrium point E∗ exists if k j > j∗ and the system (8) is stable
around E∗ for condition (13).

Interior equilibrium: E11∗ ( j∗, s∗, i∗, p∗,v∗).
Here s∗ =

r j
α
(1 − j∗

k j
),

p∗ =− dp

εp
+ θ1βr j (k j− j∗)

εp(aαk j+r j (k j− j∗)) + θ2
εp
i∗

v∗ =
αk j

λr j (k j− j∗) [ξ i∗ + li∗(− dp

εp
+ θ1βr j (k j− j∗)

εp(aαk j+r j (k j− j∗)) + θ2
εp
i∗)]

j∗ is the positive root of the equation

c1 j∗2 + c2 j∗ + c3 = 0. (11)

where ci s are given in Appendix D.
The interior equilibrium exists if k j > j∗.
The characteristic equation of the variational matrix given in Appendix D is,

μ5
1 + B̀1μ

4
1 + B̀2μ

3
1 + B̀3μ

2
1 + B̀4μ1 + B̀5 = 0. (12)

where Bi (i = 1, 2, 3, 4)s are given in Appendix D.
Then by Routh-Hurwitz criterion it follows that the interior equilibrium point
E11∗ =( j∗, s∗, i∗, p∗, v∗) is locally asymptotically stable if

(i)B̀i (i = 1, 2, 3, 4, 5) > 0

(i i)B̀1 B̀2 B̀3 > B̀3
2 + B̀1

2
B̀4 (13)

(i i i)(B̀1 B̀4 − B̀5)(B̀1 B̀2 B̀3 − B̀3
2 − B̀1

2
B̀4) > B̀5(B̀1 B̀2 − B̀3)

2 + B̀1 B̀5
2
.
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3 Numerical Simulation and Discussion

In this section, we will present some numerical simulation results using Matlab to
validate our analytical findings. To reduce the pest, we introduce virus spraying. Here
our main objective is to control the pest population by applying virus to get healthy
Jatropha plant. This numerical experiment and simulation is done under parameters
given as Table1.

In Fig. 1, we plotted the model variables as function of time. It is clear that the
system moves towards its stable region as time increases. In figure (a) the trajec-
tories of plant biomass for Holling type I and II functional responses have been
compared. Here we can observe that for hyperbolic functional response the plant
biomass reaches its stability more faster than other functional responses. We can also
observe from figure (b) and (c)that susceptible pest is transformed into infected pest
for and exterminated by the virus interference. For hyperbolic functional response
transformation of susceptible pest to infected pest is more rapid than other functional
responses. The figure (d) shows that the predator population is initially decreased to
a certain level and then increased gradually. Finally predator population assumes a
steady state (Fig. 2).

Figure3 depicts the effect of the virus replication parameter κ on different popu-
lation. We vary the value of κ from 5 to 500. For less value of κ the system becomes
unstable. Since κ is the virus replication parameter, with the increasing value of κ

the virus population is increasing. Consequently the susceptible pest population is
readily converted into infected pest and susceptible pest population size is decreased.
Here the model systemmoves towards stable pest-free equilibrium point at κ = 500.
As a result plant biomass is reaching its maximum value within 100 days (Tables2
and 3).

Table 1 Existence and stability for Holling type I functional response

Equilibrium point Existence Stability

E = (0, 0, 0, 0, πv)

Exists Always unstable

E0 = (k j , 0, 0, 0,
πv
μv

) Exists Stable if k j < λπv
rsμv

E1 = ( j̄, s̄, ī, 0, v̄) Exists if κ >
γ
λ
and

r j
α

< s̄ <
μv

kλ−γ

Stable if Bi (i = 1, 2, 3, 4, 5) >

0, B1B2B3 >

B2
3 + B2

1 B4, (B1B4 −
B5)(B1B2B3 − B2

3 − B2
1 B4) >

B5(B1B2 − B3)
2 + B1B2

5

E∗ = ( j∗, s∗, i∗, p∗, v∗) Exists if s∗ <
r j
α

Stable if Di (i = 1, 2, 3, 4, 5) >

0, D1D2D3 >

D2
3 + D2

1D4, (D1D4 −
D5)(D1D2D3 − D2

3 − D2
1D4) >

D5(D1D2 − D3)
2 + D1D2

5
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Fig. 1 Comparison of trajectories for different functional responses for: Plant biomass, Healthy
pest, Infected pest, Predator population and Virus population at κ = 500, other parameter values
are given in Table1
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Fig. 3 Dynamics of the system with different values of κ for Holling type II functional responce,
other parameter values are given in Table 1
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Table 2 Existence and stability for Holling type II functional response

Equilibrium point Existence Stability

E11 = (0, 0, 0, 0, πv) Exists Always unstable

E11
0 = (k j , 0, 0, 0,

πv
μv

) Exists Stable if k j < λπv
rsμv

E11
1 = ( ĵ, ŝ, î, 0, v̂) Exists if κ >

γ
λ
and

r j
α

< ŝ <
μv

kλ−γ

Stable if bi (i =
1, 2, 3, 4, 5) > 0, b1b2b3 >

b23 + b21b4, (b1b4 −
b5)(b1b2b3 − b23 − b21b4) >

b5(b1b2 − b3)2 + b1b25
E11∗ = ( j∗, s∗, i∗, p∗, v∗) Exists if k j > j∗, Stable if B̀i (i =

1, 2, 3, 4, 5) > 0, B̀1 B̀2 B̀3 >

B̀3
2 + B̀1

2
B̀4, (B̀1 B̀4 −

B̀5)(B̀1 B̀2 B̀3 − B̀3
2 −

B̀1
2
B̀4) >

B̀5(B̀1 B̀2 − B̀3)
2 + B̀1 B̀5

2

Table 3 Parameters value used for numerical simulation [4, 6, 16]

Parameters Definition Values (Unit)

r j The growth rate of plant biomass 0.03 kg day−1

k j The maximum density biomass of plant 50 kg plant−1

rs Conversion factor of susceptible pest 0.05 day−1

ks The pest carrying capacity 300 plant−1

α The interaction rate between pest and plant 0.0001 plant−1day−1

γ reduction rate constant of virus 0.008 day−1

λ The infection rate of pest by virus 0.003 pest−1day−1

ξ The mortality rate of infected pest 0.01 day−1

dp The mortality rate of predator 0.006 day−1

εp lysis of predator due to competition 0.002 day−1

θ1 conversion factor for predator 0.05

θ2 conversion factor for predator 0.01

μv The decay rate of virus 0.1 gm day−1

β consumption rate of susceptible pest by predator 0.015 pest−1day−1

l consumption rate of infected pest by predator 0.7 pest−1day−1

a the half-saturation coefficient 0.5 (constant)

Figures4 and 5 represent the time series solution of the model equation for hyper-
bolic functional response in virus-plant-healthy pest plane with initial values [50,
100, 50], [20, 200, 20], [5, 300,100] and [30, 300, 60], [20, 200, 20], [10,100, 40]
respectively . Figure 3 describes that as time increases the system converges to
pest-free equilibria for κ = 500. Figure 4 depicts that as time increases the system
converges to endemic equilibria for κ = 100.
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Fig. 4 Phase portrait in virus-plant-healthy pest plane showing that the system moves towards
pest-free equilibrium point and the system becomes stable for Holling type II functional responce
at κ = 500, other parameter values are given in Table 1
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Fig. 5 Phase portrait in virus-plant-healthy pest plane showing that the system moves towards
endemic equilibrium point and the system becomes stable for Holling type II functional responce
at κ = 100, other parameter values are given in Table 1

In Figure6we have shown amesh plotting in κ − λ-susceptible pest plane. Figure (a)

shows that for Holling type I functional response with the increasing value of κ and
λ, the pest population decreases but not gets eradicated totally. In figure (b) we have
seen that for Holling type II functional response, the healthy pests are exterminated
when κ lies between 85 to 200 and λ lies between 0.005 to 0.01.

4 Conclusion

In this research article, our main aim is to control pest of Jatropha curcas plant using
virus as controlling agent. Analytically we inspected the system from the viewpoint
of stability and existence.We have checked the local stability at pest free equilibrium,
predator free equilibriumpoints and interior equilibriumpoint for different functional
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Fig. 6 Mesh plotting for a linear and b hyperbolic in κ − λ-susceptible pest plane

responses on predator. Numerically, we examine the effect of virus replication. Here,
we observe the changes of dynamical behaviorwith respect to different time intervals.
The reason for using different types of Holling functional responses is to observe
which functional responsewould be a suitable candidate to represent pest eradication.
If the pest becomes dominant, then Jatropha will be affected heavily with economic
loss. Also, if the prey becomes extinct, then the natural predator will die out, that may
affect the biological balance of the ecosystem. Thus, it is very important to maintain
the biological balance of the ecosystem in such a way so that in one hand crop yield
will be maximized and predators also survive. We can easily see that hyperbolic
functional response is more effective than that of linear functional response as within
60 days higher number of infected pest will be saturated and the system becomes
stable, whereas for linear functional response it will take 150 days to stabilize the
system. Finally, our work reveals that an introduction of predators/ natural enemies
with a hyperbolic functional response would be most effective to control pest and
maximize healthy plant production.
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Appendix A

Coefficients of As̄3 + Bs̄2 + Cs̄ + D = 0 are as follows,
A = A′

r j ksξ [μv−(κλ−γ )s̄] , B = B ′
r j ksξ [μv−(κλ−γ )s̄] ,

C = C ′
r j ksξ [μv−(κλ−γ )s̄] , D = D′−λπvr j ksξ

r j ksξ [μv−(κλ−γ )s̄] ; where
A′ = rsk jαξ(γ − κλ), B ′ = rsk j (αξksκλ − αξλks + αξμv + ξr jκλ − r jξγ +
αμλ),
C ′ = rsk j (ξλr j ks − αξμvks − ξksκλr j − ξμvr j − λμvr j ), D′ = ξμvrsr j k j ks ,

The Jacobianmatrix for predator free equilibrium point for type I functional response
is given by,
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J =

⎛
⎜⎜⎜⎜⎝

a11 a12 0 0 0
a21 a22 a23 a24 a25

0 a32 a33 a34 a35

0 0 0 a44 0
0 a52 a53 0 a55

⎞
⎟⎟⎟⎟⎠

where
a11 = r j − αs̄ − 2 j̄ r jk j

, a12 = −α j̄ , a21 = rs s̄(1 − s̄+ī
ks

),

a22 = rs j̄(1 − s̄+ī
ks

) − rs
ks
j̄ s̄ − λv̄, a23 = − rs

ks
j̄ s̄,

a24 = −β s̄, a25 = −λs̄, a32 = λv̄, a33 = −ξ ,
a34 = −l ī , a35 = λs̄, a44 = −dp + θ1β s̄ + θ2 ī , a52 = −γ v̄, a53 = kξ , a55 =
−(μv + γ s̄).

The coefficients of Eq.1 are as follows,
B1 = −∑

aii ,
B2 = ∑

aiia j j − ∑
ai j a ji ,

B3 = −∑
aiia j j akk + ∑

ai j a ji akk − ∑
ai j a jkaki ,

B4 = ∑
aiia j j akkall − ∑

ai ja ji akkall + ∑
ai j a jkakiall − ∑

ai j a ji aklalk ,
B5 = −aiia j j akkallamm + ∑

ai j a ji akkallamm − ∑
ai ja jkakiallann +∑

ai j a ji aklalkamm .
(i, j, k, l,m = {1, 2, 3, 4, 5} and i �= j �= k �= l �= m)

Appendix B

The coefficients of Eq.5 are given as follows,
C1=

lμvθ2
εps∗ + γ lθ2,

C2=kλξ − μvξ − lμvθ1β

εp
− lμvdp

εps∗ − γ ξ − γ l
εp

(θ1βs∗ − dp),
C3=λπv.

The constants in (s − a)(s − b) > 0(a < b) are
a = −(εpμvξ+lμvθ1β+εpγ ξ−κεpξ−lγ dp)−√

((εpμvξ+lμvθ1β+εpγ ξ−κεpξ−lγ dp)
2−4l2γ θ1βμvdp)

2lγ θ1β
and

b = −(εpμvξ+lμvθ1β+εpγ ξ−κεpξ−lγ dp)+√
((εpμvξ+lμvθ1β+εpγ ξ−κεpξ−lγ dp)

2−4l2γ θ1βμvdp)

2lγ θ1β
.

The Jacobian matrix for the interior equilibrium point for type I functional response
is given by,

J =

⎛
⎜⎜⎜⎜⎝

a11 a12 0 0 0
a21 a22 a23 a24 a25
0 a32 a33 a34 a35
0 a42 a43 a44 0
0 a52 a53 0 a55

⎞
⎟⎟⎟⎟⎠

where,
where, a11 = r j − αs∗ − 2 j∗ r j

k j
, a12 = −α j∗, a21 = rss∗(1 − s∗+i∗

ks
),
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a22 = rs j∗(1 − s∗+i∗
ks

) − rs
ks
j∗s∗ − λv∗ − βp∗, a23 = − rs

ks
j∗s∗,

a24 = −βs∗, a25 = −λs∗, a32 = λv∗, a33 = −(ξ + lp∗),
a34 = −li∗, a35 = λs∗, a42 = θ1βp∗, a43 = θ2 p∗,
a44 = −dp − 2εp p∗ + θ1βs∗ + θ2i∗, a52 = −γ v∗ a53 = κξ a55 = −(μv + γ s∗).

The coefficients of Eq.6 are as follows,
D1 = −∑

aii ,
D2 = ∑

aiia j j − ∑
ai j a ji ,

D3 = −∑
aiia j j akk + ∑

ai ja ji akk − ∑
ai j a jkaki ,

D4 = ∑
aiia j j akkall − ∑

ai j a ji akkall + ∑
ai j a jkakiall − ∑

ai j a ji aklalk ,
D5 = −aii a j j akkallamm + ∑

ai j a ji akkallamm − ∑
ai j a jkakiallann +∑

ai j a ji aklalkamm − ∑
aiia jkaklalmamj .

(i, j, k, l,m = {1, 2, 3, 4, 5} and i �= j �= k �= l �= m)

Appendix C

Coefficients of Àŝ3 + B̀ŝ2 + C̀ ŝ + D̀ = 0 are as follows,
À = Ã

r j ksξ [μv−(κλ−γ )ŝ] , B̀ = B̃
r j ksξ [μv−(κλ−γ )ŝ] ,

C̀ = C̃
r j ksξ [μv−(κλ−γ )ŝ] , D̀ = D̃−λπvr j ksξ

r j ksξ [μv−(κλ−γ )ŝ] ;
where
Ã = rsk jαξ(γ − κλ), B̃ = rsk j (αξksκλ − αξλks + αξμv + ξr jκλ − r jξγ +
αμλ),
C̃ = rsk j (ξλr j ks − αξμvks − ξksκλr j − ξμvr j − λμvr j ), D̃ = ξμvrsr j k j ks ,

The Jacobian matrix for the predator-free equilibrium point for type II functional
response is given by,

J =

⎛
⎜⎜⎜⎜⎝

b11 b12 0 0 0
b21 b22 b23 b24 b25

0 b32 b33 b34 b35

0 0 0 b44 0
0 b52 b53 0 b55

⎞
⎟⎟⎟⎟⎠

where
b11 = r j − αŝ − 2 ĵ r jk j

, b12 = −α ĵ , b21 = rs ŝ(1 − ŝ+î
ks

),

b22 = rs ĵ(1 − ŝ+î
ks

) − rs
ks
ĵ ŝ − λv̂, b23 = − rs

ks
ĵ ŝ,

b24 = −β ŝ
α+ŝ , b

25 = −λŝ, b32 = λv̂, b33 = −ξ ,

b34 = −l î , b35 = λŝ, b44 = −dp + θ1β
ŝ

α+ŝ + θ2 î , b52 = −γ v̂, b53 = κξ , b55 =
−(μv + γ ŝ).

The coefficients of Eq. 9 are as follows,
b1 = −∑

bii ,
b2 = ∑

bii b j j − ∑
bi j b ji ,

b3 = −∑
bii b j j bkk + ∑

bi j b ji bkk − ∑
bi j b jkbki ,
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b4 = ∑
bii b j j bkkbll − ∑

bi j b ji bkkbll + ∑
bi j b jkbki bll − ∑

bi j b ji bklblk ,
b5 = −bii b j j bkkbllbmm + ∑

bi j b ji bkkbllbmm − ∑
bi j b jkbki bllbnn +∑

bi j b ji bklblkbmm .
(i, j, k, l,m = {1, 2, 3, 4, 5} and i �= j �= k �= l �= m)

Appendix D

The coefficients of Eq.11 are as follows,
c1 = πvλεpr2j + κξλεpr2j − γ ξεpr2j i∗ − γ θ1βr2j + γ θ2αk jar j − γ θ2r j i∗,

c2 = −πvλr jεpaαk j − κξλr jεpaαk j i∗ − 2πvλr2j εpk j − 2κk jξλr2j εp +
ξμvαk jr jεpi − μvαk j ldpr j i∗ + θ1βr j + θ2i∗ + γ ξεpaαr j k j i∗ + 2γ ξεpr2j k j i∗ −
γ r jdpalαr j i∗ − γ r2j dpk j li∗ + γ r2j θ1βk j + γ r j k jθ1β + γ r j k2j θ2aα + γ r2j θ2k j i∗ +
γ r j k jθ2i∗,
c3 = πvλr jεpaαk2j + κk2j ξλr2j εp + κξλr jεpaαk2j i∗ − ξμvα

2k2jεp − ξμvαk2j r jεpi∗
+ μvα

2k2j ldpai∗ + μvαk2j ldpr j i∗ − θ1βr j k j − θ2aαk j i∗ − θ2k jr j i∗ −
λξεpaαr j k2j i∗ − γ ξεpr2j k

2
j i∗ + γ r j k2j dpalαi∗ + γ r2j k

2
j dpli∗ − γ r2j k

2
j θ1β −

γ r2j k
2
j θ2i∗.

The Jacobian matrix for the interior equilibrium point for type II functional response
is given by,

J =

⎛
⎜⎜⎜⎜⎝

b11 b12 0 0 0
b21 b22 b23 b24 b25
0 b32 b33 b34 b35
0 b42 b43 b44 0
0 b52 b53 0 b55

⎞
⎟⎟⎟⎟⎠

where,
b11 = r j − αs∗ − 2 j∗ r j

k j
, b12 = −α j∗, b21 = rss∗(1 − s∗+i∗

ks
),

b22 = rs j∗(1 − s∗+i∗
ks

) − rs
ks
j∗s∗ − λv∗ − βp∗, b23 = − rs

ks
j∗s∗,

b24 = −βs∗, b25 = −λs∗, b32 = λv∗, b33 = −(ξ + lp∗),
b34 = −li∗, b35 = λs∗, b42 = θ1βp∗, b43 = θ2 p∗,
b44 = −dp − 2εp p∗ + θ1βs∗ + θ2i∗, b52 = −γ v∗, b53 = κξ , b55 = −(μv + γ s∗).

The coefficients of Eq.12 are as follows,
B̀1 = −∑

bii ,
B̀2 = ∑

bii b j j − ∑
bi j b ji ,

B̀3 = −∑
bii b j j bkk + ∑

bi j b ji bkk − ∑
bi j b jkbki ,

B̀4 = ∑
bii b j j bkkbll − ∑

bi j b ji bkkbll + ∑
bi j b jkbki bll − ∑

bi j b ji bklblk ,
B̀5 = −bii b j j bkkbllbmm + ∑

bi j b ji bkkbllbmm − ∑
bi j b jkbki bllbnn +∑

bi j b ji bklblkbmm − ∑
bii b jkbklblmbmj .

(i, j, k, l,m = {1, 2, 3, 4, 5} and i �= j �= k �= l �= m)
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Global Dynamics of a TB Model with
Classes Age Structure and
Environmental Transmission

Yan-Xia Dang, Juan Wang, Xue-Zhi Li and Mini Ghosh

Abstract In this article, an age structured SVEIR epidemic model for TB is formu-
lated and analyzed by considering three types of ages e.g., latent age, infection age
and vaccination age. The presented model also incorporates the environmental trans-
mission of TB. The dynamics of the disease is governed by a system of differential-
integral equations. We assume that the vaccines for TB are partially effective. Some
vaccinated individuals get permanent immunity to this disease, but some vaccinated
individuals lose its protective power over a time and become susceptible again.
The dynamical property of the model is established by using LaSalle’s invariance
principle and constructing suitable Lyapunov functions. It has been shown that the
dynamics of the model is governed by basic reproductive numberR(ξ). The disease-
free equilibrium is globally stable if the basic reproductive number R(ξ) < 1. The
endemic equilibrium is locally and globally stable if R(ξ) > 1. As the basic repro-
duction number plays an important role in determining the stability of the system,
reducing this number below one through vaccination can lead to decrease in the trans-
mission of this disease. Additionally, contaminated environment also contributes to
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the increase inR(ξ), so we also need to keep the environment clean to decrease the
basic reproduction number R(ξ) below one. These types of control measures are
easy to implement in our society and certainly this will improve the well-being of
the society.

Keywords TB model · Age-since-latency · Age-since-infection ·
Age-since-vaccination · Environmental transmission · Reproduction number ·
Global stability · Lyapunov function

AMS subject classifications 92D30

1 Introduction

Tuberculosis (TB) [1] is a bacterial disease caused by Mycobacterium tuberculosis.
It is believed that at least one-third of the world human population is the reservoir of
this disease [2, 3]. Usually, this disease is acquired through airborne infection from
someone who has active TB (smear-positive TB).

One of the important features of TB is that a relatively small proportion of those
infected go on to develop clinical disease [4]. Most people are assumed to mount
an effective immune response to the initial infection that limits proliferation of the
bacilli and may lead to long-lasting partial immunity both to further infection and to
reactivation of latent bacilli existing from the original infection.

Active-TB (the clinical disease) can develop into pulmonary or extrapulmonary
form. Extrapulmonary TB is common in children while pulmonary TB is prevalent
in adults. Mycobacterium tuberculosis, the causal agent of the disease, is transmitted
almost exclusively via pulmonary cases (exceptions could include laryngeal TB).

Individuals who have latent infection are not clinically ill or capable of transmit-
ting TB [3]. Exposed individuals may remain in this latent stage for long and variable
periods of time (in fact, may die without ever developing active TB). Apparently, the
longer we carry this bacterium the less likely we are to develop active TB unless our
immune system becomes seriously compromised by other disease. Consequently, the
development of active TB after infection is highly dependent on the infection age.
As a result, in our study, we consider both the latent age and the age of infection.
Additionally, Center for Disease Control (CDC) trace data on TB infection cases had
validated that TB can be transmitted while traveling by air plane [5]. These data sug-
gests that TB infectionsmay occurwithout having extensive and repeated exposure to
TB-active individuals. It is quite possible for an individual to become infected while
using crowded public transportation for several hours a day. This assumption was
supported by an outbreak of tuberculosis which was originated in a neighborhood bar
(see [6]). Thus an individual may acquire infection by using the mass-transportation
or by involving himself/herself in a community meetings/get-togethers. And the
urbanization process that exploded after the industrial revolution has played a fun-
damental role in the observed patterns of TB spread in industrialized nations. The
process of industrialization caused damage to the ecological environment leading to
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urban environmental pollution. This suggests the necessity of modeling both direct
and environmental transmission of this disease. Meanwhile, the persistence and the
pandemic threat of avian influenza as well as the very publicized cholera outbreak in
Haiti have increased the awareness of diseases which transmit both directly and envi-
ronmentally. Therefore, the environmental transmission of bacteria is an important
factor that affects the disease dynamics and needs to be considered in the prevention
and control of such diseases.

Recently, the epidemiological models with vaccination have been analyzed by
many researchers [7–15]. In this article,we assume that the vaccines for TBbacterium
are partially effective, i.e., some vaccinated individuals get permanent immunity to
this disease while some vaccinated individuals lose its protective power over time
and get infected by TB bacteria.

Tuberculosis (TB) is an ancient disease that still supports huge levels of prevalence
across the world. Global tuberculosis control is facing major challenges today. In
general, much effort is still required to make quality care accessible without barriers
of gender, age, type of disease, social setting, and ability to pay. Coinfection with
Mycobacterium tuberculosis andHIV(TB/HIV), especially inAfrica, andmultidrug-
resistant (MDR) and extensively drug-resistant (XDR) tuberculosis in all regions,
make control activities more complex and demanding.

The formulation of suitable mathematical model depending upon geographic
region, societal structure, culture tradition etc. is very important for better prediction
of the future dynamics of this disease. Here we formulate an age structured SVEIR
model of TB disease with environmental transmission by considering three ages,
e.g., latent age, infection age and vaccination age. The purpose of this article is to
analyze the system of differential-integral equations that describes the dynamics of
disease transmission for tuberculosis (TB). We aim to look at how the vaccination
and the contaminated environment influence the transmission dynamics of TB. The
main interest in studying the proposed model is to understand the long-time behavior
of the disease transmission dynamics i.e., whether the disease will die out eventu-
ally or will persist in the population. A clear answer to this question is practically
important to design the suitable disease control strategies.

This article is organized as follows. In Sect. 2, we introduce the model. In Sect. 3,
we compute the equilibria and analyze their local stability. In Sect. 4, we show that the
disease is uniformly persistent if the reproduction numberR(ξ) > 1 by applying the
persistence theory for infinite-dimensional systems. In Sect. 5, we prove the global
stability of the disease-free equilibrium. In Sect. 6, the global stability of the endemic
equilibrium is established. We conclude with a discussion in Sect. 7.

2 The Model

To formulate the model first we denote the number of susceptible human individuals
by S(t). We structure the infected individuals by age-since-infection τ . Let E(τ , t) be
the density of individuals infected by TB bacteria at any time t who are infected with
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age-since-infection τ but not yet infectious. Let i(τ , t) be the density of individuals
infected by TB bacteria at any time t with age-since-infection τ . Let W (θ, t) be the
density of TB bacteria of age θ > 0 at time t in the contaminated environment. Let
V (a, t) be the density of vaccinated individuals with respect to the age of vaccination
a > 0 at any time t. Let R(t) be the number of recovered or immune individuals at
any time t. Keeping in view of the above notation, we formulate our age-structured
SVEIR model with environmental transmission. Here three types of ages e.g. latent
age, infection age and vaccination age are incorporated in the model.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= � − S

∫ ∞

0
β(τ )i(τ , t)dτ − S

∫ ∞

0
ξ(θ)W (θ, t)dθ − (μ + ζ)S +

∫ ∞

0
α2(a)V (a, t)da,

∂E(τ , t)

∂τ
+ ∂E(τ , t)

∂t
= −(μ + m(τ ))E(τ , t),

E(0, t) = S
∫ ∞

0
β(τ )i(τ , t)dτ + S

∫ ∞

0
ξ(θ)W (θ, t)dθ,

∂i(τ , t)

∂τ
+ ∂i(τ , t)

∂t
= −(μ + α1(τ ) + r1(τ ))i(τ , t),

i(0, t) =
∫ ∞

0
m(τ )E(τ , t)dτ ,

∂W (θ, t)

∂θ
+ ∂W (θ, t)

∂t
= −δ(θ)W (θ, t),

W (0, t) =
∫ ∞

0
η(τ )i(τ , t)dτ ,

∂V (a, t)

∂a
+ ∂V (a, t)

∂t
= −(μ + α2(a) + r2(a))V (a, t),

V (0, t) = ζS,

dR

dt
=

∫ ∞

0
r1(τ )i(τ , t)dτ +

∫ ∞

0
r2(a)V (a, t)da − μR.

(2.1)

Here � is the birth/recruitment rate, m(τ ) denotes the removal rate from the latent
period, α1(τ ) gives the additional host mortality due to the bacteria, β(τ ) is the
transmission coefficient and η(τ ) is the shedding rate of an infected individual of
infection age τ infected by TB bacteria. Furthermore,α2(a) denotes the rate at which
vaccine wanes and is a bounded general function of vaccination-age a, ζ is the rate of
vaccination of the susceptible individuals, r1(τ ) denotes the recovery rate of infected
individuals, and r2(a) is the rate of the vaccinated individuals acquiring vaccination
throughout their lives. Finally, ξ(θ) is the transmission rate of TB bacteria from the
contaminated environment, and δ(θ) is the clearance rate of bacteria of age θ from
the environment.

To understand the model, notice that susceptible individuals are recruited at a rate
�. Susceptible individuals can become infected with TB bacteria either through a
direct contact with an infected individual with TB bacteria or through coming into
contact with TB bacteria that are in the environment. Infection through direct con-
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tact with infected individuals can happen through contact with individuals of any
age-since-infection at a specific age-specific transmission rate. As a consequence,
the force of infection of susceptible individuals through direct contact is given by
the integral over all ages-since-infection. So is the force of infection of susceptible
individuals through the contaminated environment. Upon infection through direct or
indirect transmission, the newly infected individuals move to the latent class, then
progress into the infectious class with the progression rate m(τ ). The non-infectious
and infectious individuals infected by TB bacteria with age-since-infection equal to
zero constitute the boundary conditions. Individuals infected with TB shed the TB
bacteria into the environment at a rate η(τ ). All bacterial particles shed by individuals
infected with TB of all age classes are given by the integral. That gives the number of
bacterial particles in the environment with age-since-infection equal to zero at time t
in the environment. Again, the newly vaccinated individuals coming into the vacci-
nated class with age-since-vaccination equal to zero constitutes the boundary condi-
tion. The vaccine lose its protective power with time and eventually some vaccinated
individuals become susceptible again. The total number of the vaccinated individ-
uals becoming susceptible is given by the integral over all ages-since-vaccination.
But the vaccine is partially effective, some vaccinated individuals acquire immunity
throughout their lives. The number of recovered individuals from the infected class
is given by the integral over all ages-since-infection, and the number of individuals
acquiring immunity is given by the integral over all ages-since-vaccination.

We notice that the equation for the recovered individuals is decoupled from the
system and the analysis of system (2.1) is equivalent to the analysis of the following
system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= � − S

∫ ∞
0

β(τ )i(τ , t)dτ − S
∫ ∞
0

ξ(θ)W (θ, t)dθ − (μ + ζ)S +
∫ ∞
0

α2(a)V (a, t)da,

∂E(τ , t)

∂τ
+ ∂E(τ , t)

∂t
= −(μ + m(τ ))E(τ , t),

E(0, t) = S
∫ ∞
0

β(τ )i(τ , t)dτ + S
∫ ∞
0

ξ(θ)W (θ, t)dθ,

∂i(τ , t)

∂τ
+ ∂i(τ , t)

∂t
= −(μ + α1(τ ) + r1(τ ))i(τ , t),

i(0, t) =
∫ ∞
0

m(τ )E(τ , t)dτ ,

∂W (θ, t)

∂θ
+ ∂W (θ, t)

∂t
= −δ(θ)W (θ, t),

W (0, t) =
∫ ∞
0

η(τ )i(τ , t)dτ ,

∂V (a, t)

∂a
+ ∂V (a, t)

∂t
= −(μ + α2(a) + r2(a))V (a, t),

V (0, t) = ζS.

(2.2)
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Model (2.2) is equipped with the following initial conditions:

S(0) = S0, E(τ , 0) = ϕ(τ ), i(τ , 0) = ψ(τ ), W (θ, 0) = φ(θ), V (a, 0) = V0(a).

All parameters are nonnegative, i.e., � > 0, ζ > 0, and μ > 0. We make the fol-
lowing assumptions on the parameter-functions.

Assumption 2.1 The parameter-functions satisfy the following.

1. The functions β(τ ) and ξ(θ) are bounded and uniformly continuous. When β(τ )

and ξ(θ) are of compact support, the support has non-zero Lebesgue measure;
2. The functions m(τ ),α1(τ ), η(τ ), r1(τ ), δ(θ),α2(a), r2(a) belong to L∞(0,∞);
3. The functions ϕ(τ ),ψ(τ ),φ(θ) and V0(a) are integrable.

Define the space of functions

X = R × (L1(0,∞)) × (L1(0,∞)) × (L1(0,∞)) × (L1(0,∞)).

It can be verified that solutions of (2.2) with nonnegative initial conditions belong to
the positive cone for t ≥ 0. Furthermore, adding all the equations we have

d

dt

(

S(t) +
∫ ∞

0
E(τ , t)dτ +

∫ ∞

0
i(τ , t)dτ +

∫ ∞

0
V (a, t)da

)

≤ � − μ

(

S(t) +
∫ ∞

0
E(τ , t)dτ +

∫ ∞

0
i(τ , t)dτ +

∫ ∞

0
V (a, t)da

)

.

Hence,

lim sup
t

(

S(t) +
∫ ∞

0
E(τ , t)dτ +

∫ ∞

0
i(τ , t)dτ +

∫ ∞

0
V (a, t)da

)

≤ �

μ
.

The free bacteria in the environment can be bounded as follows:

d

dt

(∫ ∞

0
W (θ, t)dθ

)

≤ W (0, t) − δ̇

( ∫ ∞

0
W (θ, t)dθ

)

=
∫ ∞

0
η(τ )i(τ , t)dτ − δ̇

( ∫ ∞

0
W (θ, t)dθ

)

≤ η̄

∫ ∞

0
i(τ , t)dτ − δ̇

( ∫ ∞

0
W (θ, t)dθ

)

≤ �

μ
η̄ − δ̇

( ∫ ∞

0
W (θ, t)dθ

)

,
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where η̄ = supτ {η(τ )} and δ̇ = infθ{δ(θ)}. Hence,

lim sup
t

∫ ∞

0
W (θ, t)dθ ≤ η̄ �

μ

δ̇
= η̄�

δ̇μ
.

Therefore, the following set is positively invariant for system

� =
{

(S,E, i,W, V ) ∈ X+
∣
∣
∣
∣

∫ ∞

0
W (θ, t)dθ ≤ η̄�

δ̇μ
,

(

S(t) +
∫ ∞

0
E(τ , t)dτ +

∫ ∞

0
i(τ , t)dτ +

∫ ∞

0
V (a, t)da

)

≤ �

μ

}

.

Finally, since the exit rate from the latent compartment is given by μ + m(τ ), the
probability of still being incubated after τ time units is given by

π1(τ ) = e−μτe− ∫ τ
0 m(s)ds, (2.3)

the exit rate from the infective compartment is given by μ + α1(τ ) + r1(τ ), so the
probability of still being infectious after τ time units is given by

π2(τ ) = e−μτe− ∫ τ
0 (α1(s)+r1(s))ds, (2.4)

similarly the probability of TB bacteria of age θ still being in the environment is
given by

π3(θ) = e− ∫ θ
0 δ(s)ds. (2.5)

And the probability of still being vaccinated after a time units is given by

π4(a) = e−μae− ∫ a
0 (α2(s)+r2(s))ds. (2.6)

The reproduction number corresponding to system (2.2) is given by the following
expression

R(ζ)

=
�

(
∫ ∞
0 m(τ )π1(τ )dτ

∫ ∞
0 β(τ )π2(τ )dτ + ∫ ∞

0 m(τ )π1(τ )dτ
∫ ∞
0 η(τ )π2(τ )dτ

∫ ∞
0 ξ(θ)π3(θ)dθ

)

μ + ζ − ζ
∫ ∞
0 α2(a)π4(a)da

.

(2.7)
Here the reproduction number gives the number of secondary infections that an indi-
vidual infected with TB bacteria will produce in an entirely susceptible population.
R gives the strength of TB bacteria to invade when rare and alone.

In the next sectionwe compute explicit expressions for the equilibria and establish
their local stability.



410 Y.-X. Dang et al.

3 Equilibria and Their Local Stability

System (2.2) always has a unique disease-free equilibrium E0, which is given by

E0 = (S∗
0 , 0, 0, 0, V

∗
0 (a)),

where

S∗
0 = �

μ + ζ − ζ
∫ ∞
0 α2(a)π4(a)da

, V ∗
0 (θ) = ζS∗

0π4(a).

In addition, there is endemic equilibrium E1 given by

E1 =
(

S∗,E∗(τ ), i∗(τ ),W ∗(θ), V ∗(a)
)

.

The endemic equilibrium E1 exists if and only ifR(ζ) > 1. The non-zero components
of the equilibrium E1 are given by

S∗ = 1
∫ ∞
0 m(τ )π1(τ )dτ

∫ ∞
0 β(τ )π2(τ )dτ + ∫ ∞

0 m(τ )π1(τ )dτ
∫ ∞
0 η(τ )π2(τ )dτ

∫ ∞
0 ξ(θ)π3(θ)dθ

,

E∗(τ ) = E∗(0)π1(τ ), i∗(τ ) = i∗(0)π2(τ ), W∗(θ) = W∗(0)π3(θ), V ∗(a) = ζS∗π4(a),
(3.1)

where

E∗(0) = �

(

1 − 1

R
)

, i∗(0) = E∗(0)
∫ ∞
0

m(τ )π1(τ )dτ , W∗(0) = i∗(0)
∫ ∞
0

η(τ )π2(τ )dτ .

Here it can be noticed that

R(ζ) = S∗
0

S∗ . (3.2)

Next, we turn to the linearized equations for the disease-free equilibrium. To intro-
duce the linearization at the disease-free equilibriumE0, letS(t) = S∗

0 + x(t), E(τ , t) =
y(τ , t), i(τ , t) = z(τ , t), W (θ, t) = e(θ, t), V (a, t) = V ∗

0 (a) + h(a, t). The lin-
earized system becomes
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= −S∗

0

∫ ∞

0
β(τ )z(τ , t)dτ − S∗

0

∫ ∞

0
ξ(θ)e(θ, t)dθ − (μ + ζ)x +

∫ ∞

0
α2(a)h(a, t)da,

∂y(τ , t)

∂τ
+ ∂y(τ , t)

∂t
= −(μ + m(τ ))y(τ , t),

y(0, t) = S∗
0

∫ ∞

0
β(τ )z(τ , t)dτ + S∗

0

∫ ∞

0
ξ(θ)e(θ, t)dθ,

∂z(τ , t)

∂τ
+ ∂z(τ , t)

∂t
= −(μ + α1(τ ) + r1(τ ))z(τ , t),

z(0, t) =
∫ ∞

0
m(τ )y(τ , t)dτ ,

∂e(θ, t)

∂θ
+ ∂e(θ, t)

∂t
= −δ(θ)e(θ, t),

e(0, t) =
∫ ∞

0
η(τ )z(τ , t)dτ ,

∂h(a, t)

∂a
+ ∂h(a, t)

∂t
= −(μ + α2(a) + r2(a))h(a, t),

h(0, t) = ζx.

(3.3)

To study the system (2.2), we look for solutions of the form x(t) = x̄eλt, y(τ , t) =
ȳ(τ )eλt, z(τ , t) = z̄(τ )eλt, e(θ, t) = ē(θ)eλt and h(a, t) = h̄(a)eλt . We obtain the
following eigenvalue problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λx̄ = −S∗
0

∫ ∞
0

β(τ )z̄(τ )dτ − S∗
0

∫ ∞
0

ξ(θ)ē(θ)dθ − (μ + ζ)x̄ +
∫ ∞
0

α2(a)h̄(a)da

dȳ(τ )

dτ
= −(λ + μ + m(τ ))ȳ(τ ),

ȳ(0) = S∗
0

∫ ∞
0

β(τ )z̄(τ )dτ + S∗
0

∫ ∞
0

ξ(θ)ē(θ)dθ,

d z̄(τ )

dτ
= −(λ + μ + α1(τ ) + r1(τ ))z̄(τ ),

z̄(0) =
∫ ∞
0

m(τ )ȳ(τ )dτ ,

dē(θ)

dθ
= −(λ + δ(θ))ē(θ),

ē(0) =
∫ ∞
0

η(τ )z̄(τ )dτ ,

dh̄(a)

da
= −(λ + μ + α2(a) + r2(a))h̄(a),

h̄(0) = ζ x̄.

(3.4)

Solving the differential equations, we obtain

ȳ(τ ) = ȳ(0)e−λτπ1(τ ), z̄(τ ) = z̄(0)e−λτπ2(τ ), ē(θ) = ē(0)e−λθπ3(θ),

h̄(a) = ζ x̄e−λaπ4(a).
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Substituting for ȳ(τ ) in the equation for z̄(0), expressing z̄(0) in term of ȳ(0), and
replacing z̄(0) in the equation for ē(θ), we obtain

z̄(τ ) = ȳ(0)e−λτπ2(τ )

∫ ∞

0
m(τ )e−λτπ1(τ )dτ ,

ē(θ) = ȳ(0)e−λθπ3(θ)

∫ ∞

0
m(τ )e−λτπ1(τ )dτ

∫ ∞

0
η(τ )e−λτπ2(τ )dτ .

Similarly, substituting for z̄(τ ) and ē(θ) in the equation for ȳ(0), then dividing ȳ(0)
from both side of the resulting equation, we get the following characteristic equation:
G1(λ) = 1 where

G1(λ) = S∗
0

( ∫ ∞

0
m(τ )e−λτ π1(τ )dτ

∫ ∞

0
β(τ )e−λτ π2(τ )dτ+

∫ ∞

0
m(τ )e−λτ π1(τ )dτ

∫ ∞

0
η(τ )e−λτ π2(τ )dτ

∫ ∞

0
ξ(θ)e−λθπ3(θ)dθ

)

.

(3.5)

Now we are ready to establish the following result.

Proposition 3.1 If R(ζ) < 1, then the disease-free equilibrium is locally asymp-
totically stable. If the reproduction numbers is larger than one, it is unstable.

Proof Consider λ with �λ ≥ 0. We have

|G1(λ)| ≤ |G1(�λ)| ≤ |G1(0)| = R(ζ) < 1.

Hence, the equations G1(λ) = 1 do not have a solution with non-negative real part.
Therefore, the stability of E0 depends on the eigenvalues of the following equation

λx̄ = −(μ + ζ)x̄ + ζ x̄
∫ ∞

0
α2(a)e

−λaπ4(a)da.

Canceling x̄ from both side, we obtain

λ = −(μ + ζ) + ζ

∫ ∞

0
α2(a)e

−λaπ4(a)da.

We rewrite the above characteristic equation in the form

λ + μ + ζ = ζ

∫ ∞

0
α2(a)e

−λaπ4(a)da. (3.6)

We set

LHS
def= λ + μ + ζ, RHS

def= ζ

∫ ∞

0
α2(a)e

−λaπ4(a)da. (3.7)

If λ is a root with �λ ≥ 0, it follows from (3.7) that
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∣
∣
∣
∣RHS

∣
∣
∣
∣ =

∣
∣
∣
∣ζ

∫ ∞

0
α2(a)e

−λaπ4(a)da

∣
∣
∣
∣ ≤

∣
∣
∣
∣ζ

∫ ∞

0
α2(a)π4(a)da

∣
∣
∣
∣

≤ ζ

∫ ∞

0
α2(a)e

− ∫ a
0 α2(s)dsdθ = ζ

(

− e− ∫ a
0 α2(s)ds

∣
∣
∣
∣

∞

0

)

= ζ,

∣
∣
∣
∣LHS

∣
∣
∣
∣ =

∣
∣
∣
∣λ + μ + ζ

∣
∣
∣
∣ > ζ =

∣
∣
∣
∣RHS

∣
∣
∣
∣.

It is a contradiction. Hence we conclude that the Eq. (3.6) cannot have any root with
a non-negative real part. Therefore, the disease-free equilibrium is locally asymptot-
ically stable.

Now assume R(ζ) > 1. For λ real we have G1(0) = R(ζ) > 1. Furthermore,
limλ→∞ G1(λ) = 0. Hence, the equation G1(λ) = 1 has a real positive root. There-
fore, the disease-free equilibrium is unstable. �

Now we turn to the local stability of the endemic equilibrium E1.
Proposition 3.2 Assume R(ζ) > 1. Then single-strain equilibrium E1 is locally
asymptotically stable.

Proof We introduce the following notation for the perturbations: S(t) = S∗ +
x(t), E(τ , t) = E∗(τ ) + y(τ , t), i(τ , t) = i∗(τ ) + z(τ , t), W (θ, t) = W ∗(θ) +
e(θ, t), V (a, t) = V ∗(a) + h(a, t). Then the perturbed system can be written as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)

dt
= −S∗

∫ ∞
0

β(τ )z(τ , t)dτ − x(t)
∫ ∞
0

β(τ )i∗(τ )dτ − S∗
∫ ∞
0

ξ(θ)e(θ, t)dθ

−x(t)
∫ ∞
0

ξ(θ)W∗(θ)dθ − (μ + ζ)x(t) +
∫ ∞
0

α2(a)h(a, t)da,

∂y(τ , t)

∂τ
+ ∂y(τ , t)

∂t
= −(μ + m(τ ))y(τ , t),

y(0, t) = S∗
∫ ∞
0

β(τ )z(τ , t)dτ + x(t)
∫ ∞
0

β(τ )i∗(τ )dτ + S∗
∫ ∞
0

ξ(θ)e(θ, t)dθ

+x(t)
∫ ∞
0

ξ(θ)W∗(θ)dθ,

∂z(τ , t)

∂τ
+ ∂z(τ , t)

∂t
= −(μ + α1(τ ) + r1(τ ))z(τ , t),

z(0, t) =
∫ ∞
0

m(τ )y(τ , t)dτ ,

∂e(θ, t)

∂θ
+ ∂e(θ, t)

∂t
= −δ(θ)e(θ, t),

e(0, t) =
∫ ∞
0

η(τ )z(τ , t)dτ ,

∂h(a, t)

∂a
+ ∂h(a, t)

∂t
= −(μ + α2(a) + r2(a))h(a, t),

h(0, t) = ζx.

(3.8)
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An approach similar to [16] (seeAppendixB in [16]) can show that the linear stability
of the system is in fact determined by the eigenvalues of the linearized system (3.8).
To investigate the point spectrum, we look for exponential solutions (see the case of
the disease-free equilibrium) and obtain the following linear eigenvalue problem.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λx = −S∗
∫ ∞

0
β(τ )z(τ )dτ − x

∫ ∞

0
β(τ )i∗(τ )dτ − S∗

∫ ∞

0
ξ(θ)e(θ)dθ

−x
∫ ∞

0
ξ(θ)W ∗(θ)dθ − (μ + ζ)x +

∫ ∞

0
α2(a)h(a)da,

dy(τ )

dτ
= −(λ + μ + m(τ ))y(τ ),

y(0) = S∗
∫ ∞

0
β(τ )z(τ )dτ + x

∫ ∞

0
β(τ )i∗(τ )dτ + S∗

∫ ∞

0
ξ(θ)e(θ)dθ

+x
∫ ∞

0
ξ(θ)W ∗(θ)dθ,

dz(τ )

dτ
= −(λ + μ + α1(τ ) + r1(τ ))z(τ ),

z(0) =
∫ ∞

0
m(τ )y(τ )dτ ,

de(θ)

dθ
= −(λ + δ(θ))e(θ),

e(0) =
∫ ∞

0
η(τ )z(τ )dτ ,

dh(a)

da
= −(λ + μ + α2(a) + r2(a))h(a),

h(0) = ζx.

(3.9)

Similar to the disease-free equilibrium, we obtain the following characteristic equa-
tion

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(

λ + μ + ζ +
∫ ∞
0

β(τ )i∗(τ )dτ +
∫ ∞
0

ξ(θ)W∗(θ)dθ − ζ

∫ ∞
0

α2(a)e
−λaπ4(a)da

)

x+

S∗
(∫ ∞

0
m(τ )e−λτ π1(τ )dτ

∫ ∞
0

β(τ )e−λτ π2(τ )dτ+
∫ ∞
0

m(τ )e−λτ π1(τ )dτ

∫ ∞
0

η(τ )e−λτ π2(τ )dτ

∫ ∞
0

ξ(θ)e−λθπ3(θ)dθ

)

y(0) = 0,

−
(∫ ∞

0
β(τ )i∗(τ )dτ +

∫ ∞
0

ξ(θ)W∗(θ)dθ

)

x+
(

1 − S∗
∫ ∞
0

m(τ )e−λτ π1(τ )dτ

∫ ∞
0

β(τ )e−λτ π2(τ )dτ−

S∗
∫ ∞
0

m(τ )e−λτ π1(τ )dτ

∫ ∞
0

η(τ )e−λτ π2(τ )dτ

∫ ∞
0

ξ(θ)e−λθπ3(θ)dθ

)

y(0) = 0.

(3.10)
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Thus, from (3.10), we obtain the following characteristic equation for the endemic
equilibrium E1.
(

λ + μ + ζ − ζ

∫ ∞

0
α2(a)e

−λaπ4(a)da

)

×
(

1 − S∗
∫ ∞

0
m(τ )e−λτπ1(τ )dτ

∫ ∞

0
β(τ )e−λτπ2(τ )dτ−

S∗
∫ ∞

0
m(τ )e−λτπ1(τ )dτ

∫ ∞

0
η(τ )e−λτπ2(τ )dτ

∫ ∞

0
ξ(θ)e−λθπ3(θ)dθ

)

+
∫ ∞

0
β(τ )i∗(τ )dτ +

∫ ∞

0
ξ(θ)W ∗(θ)dθ = 0.

(3.11)
Therefore, the stability ofE1 depends on the eigenvalues of the equation.We introduce
the following notations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1(λ) = λ + μ + ζ − ζ

∫ ∞
0

α2(a)e
−λaπ4(a)da,

F2(λ) = 1 − S∗
∫ ∞
0

m(τ )e−λτ π1(τ )dτ

∫ ∞
0

β(τ )e−λτ π2(τ )dτ−

S∗
∫ ∞
0

m(τ )e−λτ π1(τ )dτ

∫ ∞
0

η(τ )e−λτπ2(τ )dτ

∫ ∞
0

ξ(θ)e−λθπ3(θ)dθ,

F(λ) = F1(λ)F2(λ) +
∫ ∞
0

β(τ )i∗(τ )dτ +
∫ ∞
0

ξ(θ)W∗(θ)dθ.

(3.12)
Thus the Eq. (3.11) turns into the following equation

F(λ) = 0. (3.13)

Differentiating �λ derivative of F1(�λ),F2(�λ) with respective to �λ, we obtain

F ′
1(�λ) ≥ 0, F ′

2(�λ) ≥ 0.

We know

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

F1(0) = μ + ζ − ζ

∫ ∞

0
α2(a)π4(a)da ≥ 0,

F2(0) = 1 − S∗
∫ ∞

0
m(τ )π1(τ )dτ

∫ ∞

0
β(τ )π2(τ )dτ−

S∗
∫ ∞

0
m(τ )π1(τ )dτ

∫ ∞

0
η(τ )π2(τ )dτ

∫ ∞

0
ξ(θ)π3(θ)dθ = 0.
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Consider λ with �λ ≥ 0, we have

{
F1(�λ) ≥ F1(0) ≥ 0,

F2(�λ) ≥ F2(0) ≥ 0.

Then we can get

|F(λ)| =
∣
∣
∣
∣F1(λ)F2(λ) +

∫ ∞

0
β(τ )i∗(τ )dτ +

∫ ∞

0
ξ(θ)W ∗(θ)dθ

∣
∣
∣
∣

≥
∫ ∞

0
β(τ )i∗(τ )dτ +

∫ ∞

0
ξ(θ)W ∗(θ)dθ > 0.

So for λ with �λ ≥ 0, the characteristic equation (3.13) has solutions with negative
real parts. Thus, the endemic equilibrium E1 is locally asymptotically stable. This
completes the proof. �

4 The Uniform Strong Persistence of TB Bacteria

Weneed to integrate the differential equation along the characteristic lines.Denote the
initial condition by B(t): B1(t) = E(0, t), B2(t) = i(0, t), B3(t) = W (0, t), B4(t)
= V (0, t). Integrating along the characteristic lines, we obtain

E(τ , t) =

⎧
⎪⎨

⎪⎩

B1(t − τ )π1(τ ), t > τ ,

ϕ(τ − t)
π1(τ )

π1(τ − t)
, t < τ ,

i(τ , t) =

⎧
⎪⎨

⎪⎩

B2(t − τ )π2(τ ), t > τ ,

ψ(τ − t)
π2(τ )

π2(τ − t)
, t < τ ,

W (θ, t) =

⎧
⎪⎨

⎪⎩

B3(t − θ)π3(θ), t > θ,

φ(θ − t)
π3(θ)

π3(θ − t)
, t < θ,

V (a, t) =

⎧
⎪⎨

⎪⎩

ζS(t − a)π4(a), t > a,

V0(a − t)
π4(a)

π4(a − t)
, t < a.

(4.1)
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We define the following set

�̂1 =
{

ϕ ∈ L1+(0,∞)

∣
∣
∣
∣∃s ≥ 0 :

∫ ∞

0
m(τ + s)ϕ(τ )dτ > 0

}

,

�̂2 =
{

ψ ∈ L1+(0,∞)

∣
∣
∣
∣∃s ≥ 0 :

∫ ∞
0

β(τ + s)ψ(τ )dτ > 0 or
∫ ∞
0

η(τ + s)ψ(τ )dτ > 0

}

,

and

�̂3 =
{

φ ∈ L1+(0,∞)

∣
∣
∣
∣∃s ≥ 0 :

∫ ∞

0
ξ(θ + s)φ(θ)dθ > 0}.

Define
�0 = R+ × �̂1 × �̂2 × �̂3 × (L1+(0,∞)).

Finally, define X0 = � × �0. We notice that X0 is forward invariant. It is not hard to
see that � is a forward invariant. To see that �̂2 is forward invariant, let us assume
that the first inequality holds for the initial condition. The first inequality says that
the condition is such that if the support of β(τ ) is transferred s units to the right, it
will intersect the support of the initial condition. But if that happens for the initial
time, it will happen for any other time since the support of the initial condition only
moves to the right. Similarly, �̂1, �̂3 are also forward invariant.

We will show that whenR(ξ) > 1 the disease persists. Consequently, we identify
conditionswhich lead to the prevalence in individuals. There aremany different types
of persistence [17]. We identify here the two that we will be working on. We call TB
bacteria uniformly weakly persistent if there exists some γ > 0 independent of the
initial conditions such that

lim sup
t→∞

∫ ∞

0
E(τ , t)dτ > γ whenever

∫ ∞

0
ϕ(τ )dτ > 0,

lim sup
t→∞

∫ ∞

0
i(τ , t)dτ > γ whenever

∫ ∞

0
ψ(τ )dτ > 0,

lim sup
t→∞

∫ ∞

0
W (θ, t)dθ > γ whenever

∫ ∞

0
φ(θ)dθ > 0.

and

lim sup
t→∞

∫ ∞

0
V (a, t)da > γ whenever

∫ ∞

0
V0(a)da > 0,

for all solutions of model (2.2). One of the important implications of uniform weak
persistence of the disease is that the disease-free equilibrium is unstable. We call TB
bacteria uniformly strongly persistent if there exists some γ > 0 independent of the
initial conditions such that
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lim inf
t→∞

∫ ∞

0
E(τ , t)dτ > γ whenever

∫ ∞

0
ϕ(τ )dτ > 0,

lim inf
t→∞

∫ ∞

0
i(τ , t)dτ > γ whenever

∫ ∞

0
ψ(τ )dτ > 0,

lim inf
t→∞

∫ ∞

0
W (θ, t)dθ > γ whenever

∫ ∞

0
φ(θ)dθ > 0.

and

lim inf
t→∞

∫ ∞

0
V (a, t)da > γ whenever

∫ ∞

0
V0(a)da > 0,

for all solutions of model (2.2). It is evident from the definitions that, if the disease is
uniformly strongly persistent, it is also uniformlyweakly persistent. To showuniform
strong persistence for TB bacteria, we need to show two components.

1. We have to show that TB bacteria is uniformly weakly persistent.
2. We need to show that the solution semiflow of system (2.2) has a global compact

attractor T.

First, we show uniform weak persistence of TB bacteria. The following proposition
states that result.

Proposition 4.1 Assume R(ζ) > 1. Then, for all initial conditions that belong to
X0, TB bacteria is uniformly weakly persistent, i.e., there exists γ > 0 such that

lim sup
t

(∫ ∞

0
β(τ )i(τ , t)dτ +

∫ ∞

0
ξ(θ)W (θ, t)dθ

)

≥ γ.

Proof We argue by contradiction. Assume that TB bacteria dies out. In particular
assume that for every ε > 0 and an initial condition in X0 we have

lim sup
t

( ∫ ∞

0
β(τ )i(τ , t)dτ +

∫ ∞

0
ξ(θ)W (θ, t)dθ

)

< ε.

Hence, there exist T > 0 such that for all t > T , we have

∫ ∞

0
β(τ )i(τ , t)dτ +

∫ ∞

0
ξ(θ)W (θ, t)dθ < ε.

By shifting the dynamical system we may assume that the above inequality holds
for all t ≥ 0. From the first equation in (2.2), and taking into account the above
inequality, we have

S ′(t) ≥ � − (ε + μ + ζ)S + ζ

∫ t

0
α2(a)S(t − a)π4(a)da +

∫ ∞
t

α2(a)V0(a − t)
π4(a)

π4(a − t)
da.
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Therefore,

lim sup
t→∞

S(t) ≥ lim inf
t→∞ S(t) ≥ �

ε + μ + ζ − ζ
∫ ∞
0 α2(a)π4(a)da

.

Recall that we are using the following notation B1(t) = E(0, t), B2(t) = i(0, t),
B3(t) = W (0, t). Using the inequality above we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

B1(t) ≥ �

ε + μ + ζ − ζ
∫ ∞
0 α2(a)π4(a)da

( ∫ ∞

0
β(τ )i(τ , t)dτ +

∫ ∞

0
ξ(θ)W (θ, t)dθ

)

,

B2(t) =
∫ ∞

0
m(τ )E(τ , t)dτ ,

B3(t) =
∫ ∞

0
η(τ )i(τ , t)dτ .

(4.2)
Now, we apply expression (4.1) to obtain the following system of inequalities in
B1(t), B2(t) and B3(t):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B1(t) ≥ �

ε + μ + ζ − ζ
∫ ∞
0 α2(a)π4(a)da

( ∫ t

0
β(τ )B2(t − τ )π2(τ )dτ

+
∫ t

0
ξ(θ)B3(t − θ)π3(θ)dθ

)

,

B2(t) ≥
∫ t

0
m(τ )B1(t − τ )π1(τ )dτ ,

B3(t) ≥
∫ t

0
η(τ )B2(t − τ )π2(τ )dτ .

(4.3)
We will take the Laplace transform of both sides of inequalities (4.3). Since all
functions above are bounded, their Laplace transform exists for λ > 0. We denote
by B̂1(λ) the Laplace transform of B1(t), by B̂2(λ) the Laplace transform of B2(t),
and by B̂3(λ) the Laplace transform of B3(t). Furthermore,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K̂1(λ) =
∫ ∞

0
m(τ )π1(τ )e−λτdτ ,

K̂2(λ) =
∫ ∞

0
β(τ )π2(τ )e−λτdτ ,

K̂3(λ) =
∫ ∞

0
ξ(θ)π3(θ)e

−λθdθ,

K̂4(λ) =
∫ ∞

0
η(τ )π2(τ )e−λτdτ .

(4.4)
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Taking the Laplace transform of inequalities (4.3) and using the convolution prop-
erty of the Laplace transform, we obtain the following system of inequalities for
B̂1(λ), B̂2(λ), B̂3(λ).

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

B̂1(λ) ≥ �

ε + μ + ζ − ζ
∫ ∞
0 α2(a)π4(a)da

(

K̂2(λ)B̂2(λ) + K̂3(λ)B̂3(λ)

)

,

B̂2(λ) ≥ K̂1(λ)B̂1(λ),

B̂3(λ) ≥ K̂4(λ)B̂2(λ).

(4.5)
Eliminating B̂2(λ) and B̂3(λ) from the system above, we obtain

B̂1(λ) ≥ �

ε + μ + ζ − ζ
∫ ∞
0 α2(a)π4(a)da

(

K̂1(λ)K̂2(λ) + K̂1(λ)K̂3(λ)K̂4(λ)

)

B̂1(λ).

The inequality should hold for the given ε ≈ 0 and for any λ > 0. But this is impos-
sible since for ε ≈ 0 and λ ≈ 0, the coefficient of B̂(λ) on the right hand side is
approximately R(ζ) > 1, i.e.,

�

ε + μ + ζ − ζ
∫ ∞
0 α2(a)π4(a)da

(

K̂1(λ)K̂2(λ) + K̂1(λ)K̂3(λ)K̂4(λ)

)

≈ R(ζ) > 1.

This contradicts our assumption that

lim sup
t

( ∫ ∞

0
β(τ )i(τ , t)dτ +

∫ ∞

0
ξ(θ)W (θ, t)dθ

)

< ε.

Therefore, there exists ε0 > 0 such that for any initial condition in X0, we have

lim sup
t

(∫ ∞

0
β(τ )i(τ , t)dτ +

∫ ∞

0
ξ(θ)W (θ, t)dθ

)

> ε0.

It remains to be seen that each of the components is bounded below. The inequality
above implies that

lim sup
t→∞

B1(t) ≥ ε0
�

ε + μ + ζ − ζ
∫ ∞
0 α2(a)π4(a)da

,
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and

lim sup
t→∞

B2(t) ≥ lim sup
t→∞

∫ ∞

0
m(τ )E(τ , t)dτ

≥ �ε0

ε + μ + ζ − ζ
∫ ∞
0 α2(a)π4(a)da

∫ ∞

0
m(τ )π1(τ )dτ ≥ γ1,

lim sup
t→∞

B3(t) ≥ lim sup
t→∞

∫ ∞

0
η(τ )i(τ , t)dτ ≥ γ1

∫ ∞

0
η(τ )π2(τ )dτ ≥ γ2.

Hence,

lim sup
t→∞

∫ ∞

0
β(τ )i(τ , t)dτ ≥ γ1

∫ ∞

0
β(τ )π2(τ )dτ ≥ γ3.

Similarly,

lim sup
t→∞

∫ ∞

0
ξ(θ)W (θ, t)dθ > γ2

∫ ∞

0
ξ(θ)π3(θ)dθ ≥ γ4.

In addition,

∫ ∞

0
V (θ, t)dθ = ζ

∫ a

0
S(t − a)π4(a)da +

∫ ∞

t
V0(a − t)

π4(a)

π4(a − t)
da.

Thus we have

lim sup
t→∞

∫ ∞

0
V (a, t)da ≥ lim inf

t→∞

∫ ∞

0
V (a, t)da

≥ ζ�

ε + μ + ζ − ζ
∫ ∞
0 α2(a)π4(a)da

∫ ∞

0
π4(a)dθ ≥ γ5.

This completes the proof. �
Our next goal is to prove that system (2.2) has a global compact attractor T. As a

first step, we define the semiflow � of the solutions of system (2.2)

�

(

t : S0,ϕ(·),ψ(·),φ(·), V0(·)
)

=
(

S(t),E(τ , t), i(τ , t),W (θ, t), V (a, t)

)

.

The semiflow is amapping� : [0,∞) × X0 → X0. A setT inX0 is called a global
compact attractor for �, if T is a maximal compact invariant set and if for all open
sets U containing T and all bounded sets B of X0 there exists some T > 0 such that
�(t,B) ⊆ U, for all t > T . The following proposition establishes the presence of a
global compact attractor.

Proposition 4.2 Assume R(ζ) > 1. Then, there exists T, a compact subset of X0,
which is a global attractor for the solution semiflow � of (2.2) in X0. Moreover, T is
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invariant under the solution semiflow, i.e.,

�(t, x0) ⊆ T for every x0 ∈ T, ∀t ≥ 0.

Proof To establish this result, we will apply Lemma 3.1.3 and Theorem 3.4.6 in
[18]. To show the assumptions of Lemma 3.1.3 and Theorem 3.4.6 in [18], we split
the solution semiflow into two components. For an initial condition x0 ∈ X0 we have
�(t, x0) = �̂(t, x0) + �̃(t, x0). The splitting is done in such away that �̂(t, x0) → 0
as t → ∞ for every x0 ∈ X0, and for a fixed t and any bounded set B in X0, the set
{�̃(t, x0) : x0 ∈ B} is pre-compact. The two components of the semiflow are defined
as follows:

�̂

(

t : S0,ϕ(·),ψ(·),φ(·), V0(·)
)

=
(

0, Ê(τ , t), î(τ , t), Ŵ (θ, t), V̂ (a, t)

)

,

�̃

(

t : S0,ϕ(·),ψ(·),φ(·), V0(·)
)

=
(

S(t), Ẽ(τ , t), ĩ(τ , t), W̃ (θ, t), Ṽ (a, t)

)

,

(4.6)
where ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E(t,X 0) = Ê(t,X 0) + Ẽ(t,X 0),

i(t,X 0) = î(t,X 0) + ĩ(t,X 0),

W (t,X 0) = Ŵ (t,X 0) + W̃ (t,X 0),

V (t,X 0) = V̂ (t,X 0) + Ṽ (t,X 0),

and Ê(τ , t), î(τ , t), Ŵ (θ, t), V̂ (a, t), Ẽ(τ , t), ĩ(τ , t), W̃ (θ, t), Ṽ (a, t) are the solu-
tions of the following equations (the remaining equations are as in system (2.1))

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Ê

∂t
+ ∂Ê

∂τ
= −(μ + m(τ ))Ê(τ , t),

Ê(0, t) = 0,

Ê(τ , 0) = ϕ(τ ),

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ î

∂t
+ ∂ î

∂τ
= −(μ + α1(τ ) + r1(τ ))î(τ , t),

î(0, t) = 0,

î(τ , 0) = ψ(τ ),
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Ŵ

∂t
+ ∂Ŵ

∂θ
= −δ(θ)Ŵ (θ, t),

Ŵ (0, t) = 0,

Ŵ (θ, 0) = φ(θ),

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V̂

∂t
+ ∂V̂

∂a
= −(μ + α2(a) + r2(a))V̂ (a, t),

V̂ (0, t) = 0,

V̂ (a, 0) = V̂0(a).

(4.7)

And ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂Ẽ

∂t
+ ∂Ẽ

∂τ
= −(μ + m(τ ))Ẽ(τ , t),

Ẽ(0, t) = S

( ∫ ∞

0
β(τ )ĩ(τ , t)dτ +

∫ ∞

0
ξ(θ)W̃ (θ, t)dθ

)

,

Ẽ(τ , 0) = 0,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ ĩ

∂t
+ ∂ ĩ

∂τ
= −(μ + α1(τ ) + r1(τ ))î(τ , t),

ĩ(0, t) =
∫ ∞

0
m(τ )Ẽ(τ , t)dτ ,

ĩ(τ , 0) = 0,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂W̃

∂t
+ ∂W̃

∂θ
= −δ(θ)W̃ (θ, t),

W̃ (0, t) =
∫ ∞

0
η((τ ))ĩ(τ , t)dτ ,

W̃ (θ, 0) = 0,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Ṽ

∂t
+ ∂Ṽ

∂a
= −(μ + α2(a) + r2(a))Ṽ (a, t),

Ṽ (0, t) = ζS,

Ṽ (a, 0) = 0.

(4.8)

System (4.7) is decoupled from the remaining equations. Using the formula (4.1) to
integrate along the characteristic lines, we obtain



424 Y.-X. Dang et al.

Ê(τ , t) =

⎧
⎪⎨

⎪⎩

0, t > τ ,

ϕ(τ − t)
π1(τ )

π1(τ − t)
, t < τ ,

î(τ , t) =

⎧
⎪⎨

⎪⎩

0, t > τ ,

ψ(τ − t)
π2(τ )

π2(τ − t)
, t < τ ,

Ŵ (θ, t) =

⎧
⎪⎨

⎪⎩

0, t > θ,

φ(θ − t)
π3(θ)

π3(θ − t)
, t < θ,

V̂ (a, t) =

⎧
⎪⎨

⎪⎩

0, t > a,

V̂0(a − t)
π4(a)

π4(a − t)
, t < a.

(4.9)

Integrating Ê with respect to τ , we obtain:

∫ ∞

t
ϕ(τ − t)

π1(τ )

π1(τ − t)
dτ =

∫ ∞

0
ϕ(τ )

π1(t + τ )

π1(τ )
dτ ≤ e−μt

∫ ∞

0
ϕ(τ )dτ → 0,

as t → ∞. Similarly,

∫ ∞

t
ψ(τ − t)

π2(τ )

π2(τ − t)
dτ =

∫ ∞

0
ψ(τ )

π2(t + τ )

π2(τ )
dτ ≤ e−μt

∫ ∞

0
ψ(τ )dτ → 0,

∫ ∞

t
φ(θ − t)

π3(θ)

π3(θ − t)
dθ =

∫ ∞

0
φ(θ)

π3(t + θ)

π3(θ)
dθ ≤ e−μt

∫ ∞

0
φ(θ)dθ → 0,

∫ ∞

t
V̂0(a − t)

π4(a)

π4(a − t)
da =

∫ ∞

0
V̂0(a)

π4(t + a)

π4(a)
da ≤ e−μt

∫ ∞

0
V̂0(a)da → 0.

This shows the first claim, i.e., �̂(t, x0) → 0 as t → ∞ uniformly for every x0 ∈
B ⊆ X0, where B is a ball of a given radius.

To show the second claim, we need to show compactness.We fix t and let x0 ∈ X0.
Note that X0 is bounded. We have to show that for that fixed t the family of functions
defined by

�̃(t, x0) =
(

S(t), Ẽ(τ , t), ĩ(τ , t), W̃ (θ, t), Ṽ (a, t)

)
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obtained by taking different initial conditions in X0 is a compact family of functions.
The family

{�̃(t, x0)|x0 ∈ X0, t − fixed} ⊆ X0,

and, therefore, it is bounded. Thus, we have established the boundedness of the set.
To show compactness we first see that the third condition in the Frechét-Kolmogorov
Theorem [19] for compactness in L1 is trivially satisfied since Ẽ(τ , t) = 0, ĩ(τ , t) =
0, W̃ (θ, t) = 0, Ṽ (a, t) = 0 for min{θ, τ , a} > t. To see the second condition of
that Theorem, we have to find the bounds for the L1-norm of ∂E

∂τ
, ∂i

∂τ
, ∂W

∂θ
, ∂V

∂a . To
derive that bound, first notice that

Ẽ(τ , t) =
{
B̃1(t − τ )π1(τ ), t > τ ,

0, t < τ .

ĩ(τ , t) =
{
B̃2(t − τ )π2(τ ), t > τ ,

0, t < τ .

W̃ (θ, t) =
{
B̃3(t − θ)π3(θ), t > θ,

0, t < θ.

Ṽ (a, t) =
{

ζS(t − a)π4(a), t > a,

0, t < a

(4.10)

where

B̃1(t) = S(t)
∫ ∞

0
β(τ )ĩ(τ , t)dτ + S(t)

∫ ∞

0
ξ(θ)W̃ (θ, t)dθ

= S(t)
∫ t

0
β(τ )B̃2(t − τ )π2(τ )dτ + S(t)

∫ t

0
ξ(θ)B̃3(t − θ)π3(θ)dθ,

B̃2(t) =
∫ ∞

0
m(τ )Ẽ(τ , t)dτ =

∫ t

0
m(τ )B̃1(t − τ )π1(τ )dτ ,

B̃3(t) =
∫ ∞

0
η(τ )ĩ(τ , t)dτ =

∫ t

0
η(τ )B̃2(t − τ )π2(τ )dτ .

(4.11)

First, we notice that for x0 ∈ X0, B̃1(t) is bounded. We can see that by recalling that
S is bounded. Hence, the B̃1(t) satisfies the following inequality
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B̃1(t) = S(t)
∫ t

0
β(τ )B̃2(t − τ )π2(τ )dτ + S(t)

∫ t

0
ξ(θ)B̃3(t − θ)π3(θ)dθ

≤ k ′
1

∫ t

0
B̃2(t − τ )dτ + k ′′

1

∫ t

0
B̃3(t − θ)dθ

= k ′
1

∫ t

0
B̃2(τ )dτ + k ′′

1

∫ t

0
B̃3(θ)dθ

= k ′
1

∫ t

0

∫ τ

0
m(σ)B̃1(τ − σ)π1(σ)dσdτ

+k ′′
1

∫ t

0

∫ θ

0
η(τ )π2(τ )

∫ θ−τ

0
m(σ)B̃1(θ − τ − σ)π1(σ)dσdτdθ

= k ′
1

∫ t

0
m(σ)π1(σ)

∫ t

σ

B̃1(τ − σ)dτdσ

+k ′′
1

∫ t

0
m(σ)π1(σ)

∫ t−σ

0
η(τ )π2(τ )

∫ t

τ+σ

B̃1(θ − τ − σ)dθdτdσ

= k ′
1

∫ t

0
m(σ)π1(σ)

∫ t−σ

0
B̃1(τ )dτdσ

+k ′′
1

∫ t

0
m(σ)π1(σ)

∫ t−σ

0
η(τ )π2(τ )

∫ t−τ−σ

0
B̃1(θ)dθdτdσ

≤ k ′
1

∫ t

0
m(σ)π1(σ)

∫ t

0
B̃1(τ )dτdσ

+k ′′
1

∫ t

0
m(σ)π1(σ)

∫ t−σ

0
η(τ )π2(τ )

∫ t

0
B̃1(θ)dθdτdσ

≤ k ′′′
1

∫ t

0
B̃1(τ )dτ + k ′′′′

1

∫ t

0
B̃1(θ)dθ

= k1

∫ t

0
B̃1(τ )dτ ,

(4.12)

where k ′
1, k

′′
1 , k

′′′
1 , k ′′′′

1 and k1 are constants that depend on the bounds of the parameters
as well as the bounds of the solution. Gronwall’s inequality implies that

B̃1(t) ≤ B̃1(0)e
k1t .

In the following, we derive that for x0 ∈ X0 the sets B̃2(t), B̃3(t) are also bounded.
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B̃2(t) =
∫ ∞

0
m(τ )Ẽ(τ , t)dτ =

∫ t

0
m(τ )B̃1(t − τ )π1(τ )dτ

≤ K ′
2

∫ t

0
B̃1(t − τ )dτ = K ′

2

∫ t

0
B̃1(τ )dτ

≤ K ′
2

∫ t

0
B̃1(0)e

k1τdτ = K ′
2B̃1(0)

k1
(ek1t − 1)

≤ k2e
k1t,

B̃3(t) =
∫ ∞

0
η(τ )ĩ(τ , t)dτ =

∫ t

0
η(τ )B̃2(t − τ )π2(τ )dτ

≤ K ′
3

∫ t

0
B̃2(t − τ )dτ = K ′

3

∫ t

0
B̃2(τ )dτ

≤ K ′
3

∫ t

0
k2e

k1τdτ = K ′
3k2
k1

(ek1t − 1)

≤ k3e
k1t .

Next, we differentiate (4.10) with respect to (τ , θ, a):
∣
∣
∣
∣
∂Ẽ(τ , t)

∂τ

∣
∣
∣
∣ ≤

{ |(B̃1(t − τ ))′π1(τ ) + B̃1(t − τ )(π1(τ ))′|, t > τ ,

0, t < τ .

∣
∣
∣
∣
∂ ĩ(τ , t)

∂τ

∣
∣
∣
∣ ≤

{ |(B̃2(t − τ ))′π2(τ ) + B̃2(t − τ )(π2(τ ))′|, t > τ ,

0, t < τ .

∣
∣
∣
∣
∂W̃ (θ, t)

∂θ

∣
∣
∣
∣ ≤

{ |(B̃3(t − θ))′π3(θ) + B̃3(t − θ)(π3(θ))
′|, t > θ,

0, t < θ,

∣
∣
∣
∣
∂Ṽ (a, t)

∂a

∣
∣
∣
∣ ≤

{
ζ|(S ′(t − a))π4(a) + S(t − a)(π4(a))′|, t > a,

0, t < a.

We have to see that |(B̃1(t − τ ))′|, |(B̃2(t − τ ))′| and |(B̃3(t − θ))′| are bounded.
Differentiating (4.11), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B̃1(t))
′ = S ′

∫ t

0
β(τ )B̃2(t − τ )π2(τ )dτ + Sβ(t)B̃2(0)π2(t)

+S
∫ t

0
β(τ )(B̃2(t − τ ))′π2(τ )dτ + S ′(t)

∫ t

0
ξ(θ)B̃3(t − θ)π3(θ)dθ

+Sξ(t)B̃3(0)π3(t) + S
∫ t

0
ξ(θ)(B̃3(t − θ))′π3(θ)dθ,

(B̃2(t))
′ = m(t)B̃1(0)π1(t) +

∫ t

0
m(τ )(B̃1(t − τ ))′π1(τ )dτ ,

(B̃3(t))
′ = η(t)B̃2(0)π2(t) +

∫ t

0
η(τ )(B̃2(t − τ ))′π2(τ )dτ .
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Taking an absolute value and bounding all terms, we can rewrite the above equality
as the following inequality:

(B̃1(t))
′ ≤ k ′

4

∫ t

0
B̃2(t − τ )dτ + k ′′

4

∫ t

0
B̃3(t − θ)dθ + k5

= k ′
4

∫ t

0
B̃2(τ )dτ + k ′′

4

∫ t

0
B̃3(θ)dθ + k5

≤ k4

∫ t

0
B̃1(τ )dτ + k5.

The technique here is similar to the one used for B̃(t) in (4.12). Gronwall’s inequality
then implies that,

|(B̃1(t))
′| ≤ k5e

k4t .

It is evident that
|(B̃2(t))

′| ≤ k6, |(B̃3(t))
′| ≤ k7.

Putting all these bounds together, we have

‖ ∂τ Ẽ ‖ ≤ k5e
k4t

∫ ∞

0
π1(τ )dτ + B̃1(0)e

k1t(μ + m̄)

∫ ∞

0
π1(τ )dτ

< k8,

‖ ∂τ ĩ ‖ ≤ k6

∫ ∞

0
π2(τ )dτ + k2e

k1t(μ + ᾱ1 + r̄1)
∫ ∞

0
π2(τ )dτ

< k9,

‖ ∂θW̃ ‖ ≤ k7

∫ ∞

0
π3(θ)dθ + k3e

k1t δ̄

∫ ∞

0
π3(θ)dθ

< k10,

‖ ∂aṼ ‖ ≤ k11

∫ ∞

0
π4(a)da + k12(μ + ᾱ2 + r̄2)

∫ ∞

0
π4(a)da

< k0,

where r̄1 = supτ {r1(τ )}, r̄2 = supa{r2(a)}, ᾱ1 = supτ {α1(τ )}, ᾱ2 = supa{α2(a)}.
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To complete the proof, we notice that

∫ ∞

0
|Ẽ(τ + h, t) − Ẽ(τ , t)|dτ ≤‖ ∂τ Ẽ ‖ |h| ≤ k8|h|,

∫ ∞

0
|ĩ(τ + h, t) − ĩ(τ , t)|dτ ≤‖ ∂τ ĩ ‖ |h| ≤ k9|h|,

∫ ∞

0
|W̃ (θ + h, t) − W̃ (θ, t)|dθ ≤‖ ∂θW̃ ‖ |h| ≤ k10|h|,

∫ ∞

0
|Ṽ (a + h, t) − Ṽ (a, t)|da ≤‖ ∂aṼ ‖ |h| ≤ k0|h|.

Thus, the integral can be made arbitrary small uniformly in the family of functions.
That establishes the second requirement of the Frechét-Kolmogorov Theorem. We
conclude that the family is compact. �

Now we have all components to establish the uniform strong persistence. The
next proposition states the uniform strong persistence of E, i,W and V .

Proposition 4.3 Assume R(ζ) > 1. Then, for all initial conditions that belong to
X0, TB bacteria persists, i.e., there exists γ > 0 such that

lim inf
t

( ∫ ∞

0
β(τ )i(τ , t)dτ +

∫ ∞

0
ξ(θ)W (θ, t)dθ

)

≥ γ.

Proof We apply Theorem 2.6 introduced in [20]. We consider the solution semiflow
� on X0. We define a functional ρ : X0 →R+ as follows:

ρ(�(t, x0)) =
∫ ∞

0
β(τ )ĩ(τ , t)dτ +

∫ ∞

0
ξ(θ)W̃ (θ, t)dθ.

Proposition 4.1 implies that the semiflow is uniformly weakly ρ-persistent. Propo-
sition 4.2 shows that the solution semiflow has a global compact attractor T. Total
orbits are solutions to the system (2.2) defined for all times t ∈ R. Since the solution
semiflow is nonnegative, we have that for any s and any t > s
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∫ ∞

0
β(τ )ĩ(τ , t)dτ +

∫ ∞

0
ξ(θ)W̃ (θ, t)dθ

=
∫ t

0
β(τ )B̃2(t − τ )π2(τ )dτ +

∫ t

0
ξ(θ)B̃3(t − θ)π3(θ)dθ

≥ b1

∫ t

0
B̃2(t − τ )dτ + b2

∫ t

0
B̃3(t − θ)dθ

= b1

∫ t

0
B̃2(τ )dτ + b2

∫ t

0
B̃3(θ)dθ

= b1

∫ t

0

∫ τ

0
m(σ)B̃1(τ − σ)π1(σ)dσdτ

+b2

∫ t

0

∫ θ

0
η(τ )π2(τ )

∫ θ−τ

0
m(σ)B̃1(θ − τ − σ)π1(σ)dσdτdθ

= b1

∫ t

0
m(σ)π1(σ)

∫ t

σ

B̃1(τ − σ)dτdσ

+b2

∫ t

0
m(σ)π1(σ)

∫ t−σ

0
η(τ )π2(τ )

∫ t

τ+σ

B̃1(θ − τ − σ)dθdτdσ

= b1

∫ t

0
m(σ)π1(σ)

∫ t−σ

0
B̃1(τ )dτdσ

+b2

∫ t

0
m(σ)π1(σ)

∫ t−σ

0
η(τ )π2(τ )

∫ t−τ−σ

0
B̃1(θ)dθdτdσ

≥ b3

∫ t

0

∫ t−σ

0
B̃1(τ )dτdσ + b4

∫ t

0

∫ t−σ

0

∫ t−τ−σ

0
B̃1(θ)dθdτdσ

≥
(
1

2
b3t

2 + 1

6
b4t

3

)

B̃1(s)

Therefore,
∫ ∞
0 β(τ )ĩ(τ , t)dτ + ∫ ∞

0 ξ(θ)W̃ (θ, t)dθ > 0 for all t > s, provided
B̃1(s) > 0. Theorem 2.6 in [20] now implies that the semiflow is uniformly strongly
ρ-persistent. Hence, there exists ς such that

lim inf
t→∞

( ∫ ∞

0
β(τ )ĩ(τ , t)dτ +

∫ ∞

0
ξ(θ)W̃ (θ, t)dθ

)

≥ ς.

Corollary 4.1 AssumeR(ζ) > 1. There exists constants ς > 0 andM > 0 such that
for each orbit (S(t),E(τ , t), i(τ , t),W (θ, t), V (a, t) of � in T, we have

ς ≤
∫ ∞

0
β(τ )i(τ , t)dτ +

∫ ∞

0
ξ(θ)W (θ, t)dθ ≤ M ,

and



Global Dynamics of a TB Model with Classes Age Structure … 431

ς ≤
∫ ∞

0
m(τ )E(τ , t)dτ ≤ M , ς ≤

∫ ∞

0
η(τ )i(τ , t)dτ ≤ M , ∀t ∈ R.

Now, we will emphasize that through the change of variables given above, the
general form of system (2.2) is equivalent to the special case. For t ≥ 0, r ∈ R, we
have (see [7, 21])

∫ ∞

0
α2(a)V (t + r)(a)da

= ζ

∫ t

0
α2(a)S(t − a + r)π4(a)da +

∫ ∞

t
α2(a)V0(r)(a − t)

π4(a)

π4(a − t)
da.

Setting t̂ = t + r, it follows that for t ≥ r,

∫ ∞

0
α2(a)V (t)(a)dα

= ζ

∫ t−r

0
α2(a)S(t − a)π4(a)da +

∫ ∞

t−r
α2(a)V0(r)(a − (t − r))

π4(a)

π4(a − (t − r))
da,

and for t ≥ r,

∣
∣
∣
∣

∫ ∞

t−r
α2(a)V0(r)(a − (t − r))

π4(a)

π4(a − (t − r))
da

∣
∣
∣
∣ ≤ e−μ(t−r) ‖ V0(r) ‖L1(0,+∞) .

It follows that (as r → −∞) for t ∈ R.

∫ ∞

0
α2(a)V (a, t)dθ =

∫ ∞

0
α2(a)V (t)(a)da = ζ

∫ ∞

0
α2(a)S(t − a)π4(a)da.

The system (2.2) becomes
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= � − S

∫ ∞
0

β(τ )i(τ , t)dτ − S
∫ ∞
0

ξ(θ)W (θ, t)dθ − (μ + ζ)S

+ζ

∫ ∞
0

α2(a)π4(a)S(t − a)da,

∂E(τ , t)

∂τ
+ ∂E(τ , t)

∂t
= −(μ + m(τ ))E(τ , t),

E(0, t) = S
∫ ∞
0

β(τ )i(τ , t)dτ + S
∫ ∞
0

ξ(θ)W (θ, t)dθ,

∂i(τ , t)

∂τ
+ ∂i(τ , t)

∂t
= −(μ + α1(τ ) + r1(τ ))i(τ , t),

i(0, t) =
∫ ∞
0

m(τ )E(τ , t)dτ ,

∂W (θ, t)

∂θ
+ ∂W (θ, t)

∂t
= −δ(θ)W (θ, t),

W (0, t) =
∫ ∞
0

η(τ )i(τ , t)dτ .

(4.13)
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Once system (4.13) is solved, we can use (4.1) to obtain V (a, t). In the sequel, it
is system (4.13) to be considered. Once the stability of system (4.13) is obtained, it
then gives the stability of system (2.2)

5 Global Stability of the Disease-Free Equilibrium

In the previous section, we have established that equilibria are locally stable, i.e,
given the conditions on the parameters, if the initial conditions are close enough
to the equilibrium, the solution will converge to that equilibrium. In this section
our objective is to extend these results to global stability results. That is, given the
conditions on the parameters, convergence to the equilibrium occurs independent of
the initial conditions.

As a first step, we establish the global stability of the disease-free equilibrium.
We will use a Lyapunov function to approach the problem.

Theorem 5.1 Assume R(ζ) ≤ 1. Then the disease-free equilibrium E0 is globally
asymptotically stable.

Proof We will use a Lyapunov function. We adopt the logistic function used in [22,
23]. Define

f (x) = x − 1 − ln x.

We note that f (x) ≥ 0 for all x > 0. f (x) achieves its global minimum at one, with
f (1) = 0. Let

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

g(θ) =
∫ ∞

θ

ξ(s)e− ∫ s
θ δ(σ)dσds,

q(τ ) =
∫ ∞

τ

(

β(s) + g(0)η(s)

)

e− ∫ s
τ (μ+α1(σ)+r1(σ))dσds,

p(τ ) = q(0)
∫ ∞

τ

m(s)e− ∫ s
τ (μ+m(σ))dσds.

(5.1)

Noticing that

p(0) = R(ζ)

S∗
0

.

Differentiating (5.1) first, we obtain
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

g′(θ) = −ξ(θ) + δ(θ)g(θ),

q′(τ ) = −
(

β(τ ) + g(0)η(τ )

)

+
(

μ + α1(τ ) + r1(τ )

)

q(τ ),

p′
j(τ ) = −q(0)m(τ ) +

(

μ + m(τ )

)

p(τ ).

(5.2)
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We define the following Lyapunov function:

U1(t) = Us(t) +Ue(t) +Uii(t) +Uw(t) +Uv(t)

where ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Us(t) = S∗
0 f

(
S

S∗
0

)

,

Ue(t) = S∗
0

∫ ∞

0
p(τ )E(τ , t)dτ ,

Uii(t) = S∗
0

∫ ∞

0
q(τ )i(τ , t)dτ ,

Uw(t) = S∗
0

∫ ∞

0
g(θ)W (θ, t)dθ,

Uv(t) = ζS∗
0

∫ ∞

0
α2(a)π4(a)

∫ a

0
f

(
S(t − σ)

S∗
0

)

dσda.

Because of the complexity of the expressions, we take the derivative of each com-
ponent of the Lyapunov function separately

U ′
s(t) = S∗

0

(

1 − S∗
0

S

)
1

S∗
0
S ′

= (1 − S∗
0

S
)

[

� − E(0, t) − (μ + ζ)S + ζ

∫ ∞

0
α2(a)S(t − a)π4(a)da

]

= (1 − S∗
0

S
)

[

(μ + ζ)S∗
0 − ζS∗

0

∫ ∞

0
α2(a)π4(a)da − E(0, t)

−(μ + ζ)S + ζ

∫ ∞

0
α2(a)S(t − a)π4(a)da

]

= − (μ + ζ)(S − S∗
0 )2

S
− E(0, t) + S∗

0

∫ ∞

0
β(τ )i(τ , t)dτ + S∗

0

∫ ∞

0
ξ(θ)W (θ, t)dθ

+ζS∗
0

∫ ∞

0
α2(a)π4(a)

(
S(t − a)

S∗
0

− 1

)(

1 − S∗
0

S

)

da

= − (μ + ζ)(S − S∗
0 )2

S
− E(0, t) + S∗

0

∫ ∞

0
β(τ )i(τ , t)dτ + S∗

0

∫ ∞

0
ξ(θ)W (θ, t)dθ

+ζS∗
0

∫ ∞

0
α2(a)π4(a)

(
S(t − a)

S∗
0

− 1 − S(t − a)

S
+ S∗

0

S

)

da.

(5.3)
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U ′
v(t) = ζS∗

0

∫ ∞

0
α2(a)π4(a)

∫ a

0
f ′

(
S(t − σ)

S∗
0

)
1

S∗
0

dS(t − σ)

dt
dσda

= −ζS∗
0

[ ∫ ∞

0
α2(a)π4(a)

∫ a

0
f ′

(
S(t − σ)

S∗
0

)
1

S∗
0

dS(t − σ)

dσ
dσda

]

= −ζS∗
0

[ ∫ ∞

0
α2(a)π4(a)f

(
S(t − σ)

S∗
0

)∣
∣
∣
∣

a

0
da

]

= ζS∗
0

∫ ∞

0
α2(a)π4(a)

[

f

(
S(t)

S∗
0

)

− f

(
S(t − a)

S∗
0

)]

da

= ζS∗
0

∫ ∞

0
α2(a)π4(a)

[
S(t)

S∗
0

− S(t − a)

S∗
0

+ ln
S(t − a)

S(t)

]

da.

(5.4)

And

U ′
e(t) = S∗

0

∫ ∞

0
p(τ )

[

− ∂E(τ , t)

∂τ
−

(

μ + m(τ )

)

E(τ , t)

]

dτ

= −S∗
0

[ ∫ ∞

0
p(τ )dE(τ , t) +

∫ ∞

0

(

μ + m(τ )

)

p(τ )E(τ , t)dτ

]

= −S∗
0

[(

p(τ )E(τ , t)

∣
∣
∣
∣

∞

0
−

∫ ∞

0
E(τ , t)dp(τ )

)

+
∫ ∞

0

(

μ + m(τ )

)

p(τ )E(τ , t)dτ

]

= −S∗
0

{

− p(0)E(0, t) −
∫ ∞

0

[

− q(0)m(τ ) +
(

μ + m(τ )

)

p(τ )

]

E(τ , t)dτ

+
∫ ∞

0

(

μ + m(τ )

)

p(τ )E(τ , t)dτ

}

= S∗
0

[

p(0)E(0, t) −
∫ ∞

0
q(0)m(τ )E(τ , t)dτ

]

= S∗
0

[

p(0)E(0, t) − q(0)i(0, t)

]

= R(ζ)E(0, t) − S∗
0q(0)i(0, t).

(5.5)
Similarly, we have

U ′
ii(t) = −S∗

0

[ ∫ ∞

0
q(τ )di(τ , t) +

∫ ∞

0

(

μ + α1(τ ) + r1(τ )

)

q(τ )i(τ , t)dτ

]

= −S∗
0

{

− q(0)i(0, t) −
∫ ∞

0

[

−
(

β(τ ) + η(τ )g(0)

)

+
(

μ + α1(τ ) + r1(τ )

)

q(τ )

]

i(τ , t)dτ +
∫ ∞

0

(

μ + α1(τ ) + r1(τ )

)

q(τ )i(τ , t)dτ

}

= S∗
0q(0)i(0, t) − S∗

0

∫ ∞

0
β(τ )i(τ , t)dτ − S∗

0 g(0)W (0, t).

(5.6)



Global Dynamics of a TB Model with Classes Age Structure … 435

U ′
w(t) = −S∗

0

[ ∫ ∞

0
g(θ)dW (θ, t) +

∫ ∞

0
δ(θ)g(θ)W (θ, t)dθ

]

= −S∗
0

{

− g(0)W (0, t) −
∫ ∞

0

[

− ξ(θ) + δ(θ)g(θ)

]

W (θ, t)dθ

+
∫ ∞

0
δ(θ)g(θ)W (θ, t)dθ

}

= S∗
0 g(0)W (0, t) − S∗

0

∫ ∞

0
ξ(θ)W (θ, t)dθ.

(5.7)

It can be noted here that

i(0, t) =
∫ ∞

0
m(τ )E(τ , t)dτ , W (0, t) =

∫ ∞

0
η(τ )i(τ , t)dτ .

Now adding all the derivatives, we get

U ′
1(t) = − (μ + ζ)(S − S∗

0 )2

S
− E(0, t) + S∗

0

∫ ∞

0
β(τ )i(τ , t)dτ + S∗

0

∫ ∞

0
ξ(θ)W (θ, t)dθ

+ζS∗
0

∫ ∞

0
α2(a)π4(a)

(
S(t − a)

S∗
0

− 1 − S(t − a)

S
+ S∗

0

S
)

)

da

+ζS∗
0

∫ ∞

0
α2(a)π4(a)

[
S

S∗
0

− S(t − a)

S∗
0

+ ln
S(t − a)

S(t)

]

da

+R(ζ)E(0, t) − S∗
0q(0)i(0, t)

+S∗
0q(0)i(0, t) − S∗

0

∫ ∞

0
β(τ )i(τ , t)dτ − S∗

0 g(0)W (0, t)

+S∗
0 g(0)W (0, t) − S∗

0

∫ ∞

0
ξ(θ)W (θ, t)dθ

= − (μ + ξ)(S − S∗
0 )2

S
+

(

R(ζ) − 1

)

E(0, t)

+ζS∗
0

∫ ∞

0
α2(a)π4(a)

[(
S∗
0

S
+ S(t)

S∗
0

− 2

)

−
(
S(t − a)

S
− 1 − ln

S(t − a)

S(t)

)]

= −

(

μ + ζ − ζ
∫ ∞
0 α2(a)π4(a)da

)

(S − S∗
0 )2

S
+

(

R(ζ) − 1

)

E(0, t)

−ζS∗
0

∫ ∞

0
α2(a)π4(a)f

(
S(t − a)

S(t)

)

dθ ≤ 0.

(5.8)
The last inequality follows from the fact that R(ζ) ≤ 1. Notice that U ′

1 equals zero
if and only if the first term equals zero, i.e., S = S∗

0 , and if each of the terms in the
above sum is equal to zero, i.e.,
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E(0, t) = 0,
S(t − a)

S(t)
= 1.

We define a set

�1 =
{

(S,E, i,W, V ) ∈ �

∣
∣
∣
∣U

′
1(t) = 0

}

.

LaSalle’s Invariance Principle [24] implies that the bounded solutions of (2.2) con-
verge to the largest compact invariant set of�1.Wewill show that this largest compact
invariant set is the singleton given by the disease-free equilibrium. First, we notice
that equality in (5.8) occurs if and only if S(t) = S∗

0 , E(0, t) = 0, S(t − a)/S(t) = 1.
Thus, from the solutions for the equations along the characteristic lines (4.1), we have
that E(τ , t) = 0 for all t > τ . Hence, for t > τ we have

lim
t→∞ i(0, t) = lim

t→∞

∫ ∞

0
m(τ )E(τ , t)dτ = 0,

i(τ , t) = 0, for all t > τ .

Similarly, we also have

lim
t→∞ W (0, t) = lim

t→∞

∫ ∞

0
η(τ )i(τ , t)dτ = 0,

W (θ, t) = 0, for all t > θ.

We conclude that the disease-free equilibrium is globally stable. This completes the
proof. �

In the next section we show that the endemic equilibrium E1 is globally stable.

6 Global Stability of the Endemic Equilibrium

From Proposition 3.2 we know that the endemic E1 is locally asymptotically stable.
Now we are ready to establish the global stability of the equilibrium E1. To demon-
strate that with Lyapunov function U2(t) (say) we have to establish that U ′

2(t) ≤ 0
along the solution curves of system (2.2). With f (x) = x − 1 − ln x, we define the
following Lyapunov function

U2(t) = US(t) +UE(t) +Ui(t) +UW (t) +UV (t)
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where ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

US(t) = S∗f (
S

S∗ ),

UE(t) = S∗
∫ ∞

0
p(τ )E∗(τ )f

(
E(τ , t)

E∗(τ )

)

dτ ,

Ui(t) = S∗
∫ ∞

0
q(τ )i∗(τ )f

(
i(τ , t)

i∗(τ )

)

dτ ,

UW (t) = S∗
∫ ∞

0
g(θ)W ∗(θ)f

(
W (θ, t)

W ∗(θ)

)

dθ,

UV (t) = ζS∗
∫ ∞

0
α2(a)π4(a)

∫ a

0
f

(
S(t − σ)

S∗

)

dσda.

The following theorem summarizes the result.

Theorem 6.1 Assume R(ζ) > 1. Then, equilibrium E1 is globally asymptotically
stable, i.e., for any initial condition x0 ∈ X0 the solution semiflow converges to E1.
Proof Following the same approach as in Theorem 5.1, we differentiate U2(t).
Because of the complexity of the expressions, we take the derivative of each com-
ponent of the Lyapunov function separately.

U ′
S(t) =

(

1 − S∗

S

) [

� − E(0, t) − (μ + ζ)S + ζ

∫ ∞

0
α2(a)S(t − a)π4(a)da

]

=
(

1 − S∗

S

) [

E∗(0) + (μ + ζ)S∗ − ζS∗
∫ ∞

0
α2(a)π4(a)da

−E(0, t) − (μ + ζ)S + ζ

∫ ∞

0
α2(a)S(t − a)π4(a)da

]

= − (μ + ζ)(S − S∗)2

S
+ E∗(0) − S∗

S
E∗(0) − E(0, t)

+S∗
∫ ∞

0
β(τ )i(τ , t)dτ + S∗

∫ ∞

0
ξ(θ)W (θ, t)dθ

+ζS∗
∫ ∞

0
α2(a)π4(a)

(
S(t − a)

S∗ − 1 − S(t − a)

S
+ S∗

S

)

da.

(6.1)

U ′
V (t) = −ζS∗

[ ∫ ∞

0
α2(a)π4(a)f

(
S(t − σ)

S∗

)∣
∣
∣
∣

a

0

da

]

= ζS∗
∫ ∞

0
α2(a)π4(a)

[

f

(
S(t)

S∗

)

− f

(
S(t − a)

S∗

)]

da

= ζS∗
∫ ∞

0
α2(a)π4(a)

[
S(t)

S∗ − S(t − a)

S∗ + ln
S(t − a)

S(t)

]

da.

(6.2)
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Next, we need to take the time derivative of UE .

U ′
E(t) = S∗

∫ ∞

0
p(τ )E∗(τ )f ′

(
E(τ , t)

E∗(τ )

)
1

E∗(τ )

∂E(τ , t)

∂t
dτ

= S∗
∫ ∞

0
p(τ )E∗(τ )f ′

(
E(τ , t)

E∗(τ )

)
1

E∗(τ )

(

− ∂E(τ , t)

∂τ
− (μ + m(τ ))E(τ , t)

)

dτ

= −S∗
∫ ∞

0
p(τ )E∗(τ )df

(
E(τ , t)

E∗(τ )

)

= −S∗
[

p(τ )E∗(τ )f

(
E(τ , t)

E∗(τ )

)∣
∣
∣
∣

∞

0
−

∫ ∞

0
f

(
E(τ , t)

E∗(τ )

)

d

(

p(τ )E∗(τ )

)]

= −S∗
[

− p(0)E∗(0)f
(
E(0, t)

E∗(0)

)

−
∫ ∞

0
f

(
E(τ , t)

E∗(τ )

)(

− q(0)m(τ )E∗(τ )

)

dτ

]

= S∗p(0)E∗(0)f
(
E(0, t)

E∗(0)

)

− S∗
∫ ∞

0
q(0)m(τ )E∗(τ )f

(
E(τ , t)

E∗(τ )

)

dτ .

(6.3)

The above equality follows from (5.2) and the fact

p′(τ )E∗(τ ) + p(τ )E′∗(τ )

= E∗(τ )

[

− q(0)m(τ ) + (μ + m(τ ))p(τ )

]

− p(τ )E∗(τ )(μ + m(τ ))

= −q(0)m(τ )E∗(τ ).

Similarly, we have

q′(τ )i∗(τ ) + q(τ )i′∗(τ )

= i∗(τ )

[

−
(

β(τ ) + g(0)η(τ )

)

+ (μ + α1(τ ) + r1(τ ))q(τ )

]

− q(τ )i∗(τ )(μ + α1(τ ) + r1(τ ))

= −
(

β(τ ) + g(0)η(τ )

)

i∗(τ ),

g′(θ)W ∗(θ) + g(θ)W ′∗(θ)

= W ∗(θ)
[

− ξ(θ) + δ(θ)g(θ)

]

− g(θ)W ∗(θ)δ(θ)

= −ξ(θ)W ∗(θ).
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Differentiating Ui(t), we have

U ′
i (t) = −S∗

∫ ∞

0
q(τ )i∗(τ )df

(
i(τ , t)

i∗(τ )

)

= S∗q(0)i∗(0)f
(
i(0, t)

i∗(0)

)

− S∗
∫ ∞

0
β(τ )i∗(τ )f

(
i(τ , t)

i∗(τ )

)

dτ

−S∗g(0)
∫ ∞

0
η(τ )i∗(τ )f

(
i(τ , t)

i∗(τ )

)

dτ .

(6.4)

Now we turn to the derivative of the environmental component. Differentiating
UW (t), we have

U ′
W (t) = −S∗

∫ ∞

0
g(θ)W ∗(θ)df

(
W (θ, t)

W ∗(θ)

)

= S∗g(0)W ∗(0)f
(
W (0, t)

W ∗(0)

)

− S∗
∫ ∞

0
ξ(θ)W ∗(θ)f

(
W (θ, t)

W ∗(θ)

)

dθ.

(6.5)

Adding derivatives of all the five components of the Lyapunov function, we have

U ′
2(t) = − (μ + ζ)(S − S∗)2

S
+ E∗(0) − S∗

S
E∗(0) − E(0, t)

+S∗
0

∫ ∞

0
β(τ )i(τ , t)dτ + S∗

0

∫ ∞

0
ξ(θ)W (θ, t)dθ

+ζS∗
∫ ∞

0
α2(a)π4(a)

(
S(t − a)

S∗ − 1 − S(t − a)

S
+ S∗

S

)

da

+ζS∗
∫ ∞

0
α2(a)π4(a)

[
S

S∗ − S(t − a)

S∗ + ln
S(t − a)

S

]

da

+S∗p(0)E∗(0)f
(
E(0, t)

E∗(0)

)

− S∗q(0)
∫ ∞

0
m(τ )E∗(τ )f

(
E(τ , t)

E∗(τ )

)

dτ

+S∗q(0)i∗(0)f
(
i(0, t)

i∗(0)

)

− S∗
∫ ∞

0
β(τ )i∗(τ )f

(
i(τ , t)

i∗(τ )

)

dτ

−S∗g(0)
∫ ∞

0
η(τ )i∗(τ )f

(
i(τ , t)

i∗(τ )

)

dτ

+S∗g(0)W ∗(0)f
(
W (0, t)

W ∗(0)

)

− S∗
∫ ∞

0
ξ(θ)W ∗(θ)f

(
W (θ, t)

W ∗(θ)

)

dθ.

(6.6)
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It can be noticed that

E∗(0) = S∗
( ∫ ∞

0
β(τ )i∗(τ )dτ +

∫ ∞

0
ξ(θ)W ∗(θ)dθ

)

= S∗
(

i∗(0)
∫ ∞

0
β(τ )π2(τ )dτ + W ∗(0)

∫ ∞

0
ξ(θ)π3(θ)dθ

)

= S∗
(

i∗(0)
∫ ∞

0
β(τ )π2(τ )dτ +

∫ ∞

0
η(τ )i∗(τ )dτ

∫ ∞

0
ξ(θ)π3(θ)dθ

)

= S∗
( ∫ ∞

0
β(τ )π2(τ )dτ +

∫ ∞

0
η(τ )π2(τ )dτ

∫ ∞

0
ξ(θ)π3(θ)dθ

)

i∗(0)

= S∗i∗(0)
∫ ∞

0
(β(τ ) + g(0)η(τ ))π2(τ )dτ

= S∗i∗(0)q(0)

= S∗q(0)
∫ ∞

0
m(τ )E∗(τ )dτ

= S∗q(0)E∗(0)
∫ ∞

0
m(τ )π1(τ )dτ

= S∗p(0)E∗(0).
(6.7)

From Equation (6.7), we obtain

S∗p(0) = 1, S∗i∗(0)q(0) = E∗(0).

Using f (x) = x − 1 − ln x, we have
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U ′
2(t) = − (μ + ζ)(S − S∗)2

S
+ E∗(0) − S∗

S
E∗(0) − E(0, t)

+S∗
∫ ∞
0

β(τ )i(τ , t)dτ + S∗
∫ ∞
0

ξ(θ)W (θ, t)dθ

+ζS∗
∫ ∞
0

α2(a)π4(a)

[(
S∗
S

+ S

S∗ − 2

)

−
(
S(t − a)

S
− 1 − ln

S(t − a)

S

)]

+E∗(0)

(
E(0, t)

E∗(0)
− 1 − ln

E(0, t)

E∗(0)

)

−S∗q(0)
∫ ∞
0

m(τ )E∗(τ )

(
E(τ , t)

E∗(τ )
− 1 − ln

E(τ , t)

E∗(τ )

)

dτ

+S∗q(0)i∗(0)

(
i(0, t)

i∗(0)
− 1 − ln

i(0, t)

i∗(0)

)

−S∗
∫ ∞
0

β(τ )i∗(τ )

(
i(τ , t)

i∗(τ )
− 1 − ln

i(τ , t)

i∗(τ )

)

dτ

−S∗g(0)
∫ ∞
0

η(τ )i∗(τ )

(
i(τ , t)

i∗(τ )
− 1 − ln

i(τ , t)

i∗(τ )

)

dτ

+S∗g(0)W∗(0)

(
W (0, t)

W∗(0)
− 1 − ln

W (0, t)

W∗(0)

)

−S∗
∫ ∞
0

ξ(θ)W∗(θ)

(
W (θ, t)

W∗(θ)
− 1 − ln

W (θ, t)

W∗(θ)

)

dθ.

= − (μ + ζ)(S − S∗)2

S
+ E∗(0) − S∗

S
E∗(0) − E(0, t)

+S∗
∫ ∞
0

β(τ )i(τ , t)dτ + S∗
∫ ∞
0

ξ(θ)W (θ, t)dθ

+ζS∗
∫ ∞
0

α2(a)π4(a)

[(
S∗
S

+ S

S∗ − 2

)

−
(
S(t − a)

S
− 1 − ln

S(t − a)

S

)]

+E(0, t) − E∗(0) − E∗(0) ln
E(0, t)

E∗(0)
− S∗q(0)i(0, t) + S∗q(0)i∗(0)

+S∗q(0)
∫ ∞
0

m(τ )E∗(τ ) ln
E(τ , t)

E∗(τ )
dτ + S∗q(0)i(0, t) − S∗q(0)i∗(0)

−S∗q(0)i∗(0) ln
i(0, t)

i∗(0)
− S∗

∫ ∞
0

β(τ )i(τ , t))dτ

+S∗
∫ ∞
0

β(τ )i∗(τ )dτ + S∗
∫ ∞
0

β(τ )i∗(τ ) ln
i(τ , t)

i∗(τ )
dτ

−S∗g(0)W (0, t) + S∗g(0)W∗(0) + S∗g(0)
∫ ∞
0

η(τ )i∗(τ ) ln
i(τ , t)

i∗(τ )
dτ

+S∗g(0)W (0, t) − S∗g(0)W∗(0) − S∗g(0)W∗(0) ln
W (0, t)

W∗(0)

−S∗
∫ ∞
0

ξ(θ)W (θ, t))dθ + S∗
∫ ∞
0

ξ(θ)W∗(θ)dθ

+S∗
∫ ∞
0

ξ(θ)W∗(θ) ln
W (θ, t)

W∗(θ)
dθ.

(6.8)
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Simplifying (6.8), we obtain

U ′
2(t) = − (μ + ζ − ζ

∫ ∞
0 α2(a)π4(a)da)(S − S∗)2

S

−ζS∗
∫ ∞

0
α2(a)π4(a)f

(
S(t − a)

S

)

da

−S∗

S
E∗(0) + E∗(0) − E∗(0) ln

E(0, t)

E∗(0)

+S∗
∫ ∞

0
β(τ )i∗(τ ) ln

i(τ , t)

i∗(τ )
dτ + S∗

∫ ∞

0
ξ(θ)W ∗(θ) ln

W (θ, t)

W ∗(θ)
dθ

+S∗q(0)
∫ ∞

0
m(τ )E∗(τ ) ln

E(τ , t)

E∗(τ )
dτ − S∗q(0)i∗(0) ln

i(0, t)

i∗(0)
dτ

+S∗g(0)
∫ ∞

0
η(τ )i∗(τ ) ln

i(τ , t)

i∗(τ )
dτ − S∗g(0)W ∗(0) ln

W (0, t)

W ∗(0)
.

(6.9)
It is easy to visualize that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

E∗(0) = S∗
∫ ∞

0
β(τ )i∗(τ )dτ + S∗

∫ ∞

0
ξ(θ)W ∗(θ)dθ,

i∗(0) =
∫ ∞

0
m(τ )E∗(τ )dτ ,

W ∗(0) =
∫ ∞

0
η(τ )i∗(τ )dτ .

Thus we have

U ′
2(t) = − (μ + ζ − ζ

∫ ∞
0 α2(a)π4(a)da)(S − S∗)2

S

−ζS∗
∫ ∞

0
α2(a)π4(a)f

(
S(t − a)

S

)

da

+S∗
∫ ∞

0
β(τ )i∗(τ )

(

− S∗

S
+ 1 + ln

i(τ , t)

i∗(τ )

E∗(0)
E(0, t)

)

dτ

+S∗
∫ ∞

0
ξ(θ)W ∗(θ)

(

− S∗

S
+ 1 + ln

W (θ, t)

W ∗(θ)
E∗(0)
E(0, t)

)

dθ

+S∗q(0)
∫ ∞

0
m(τ )E∗(τ ) ln

E(τ , t)

E∗(τ )

i∗(0)
i(0, t)

dτ

+S∗g(0)
∫ ∞

0
η(τ )i∗(τ ) ln

i(τ , t)

i∗(τ )

W ∗(0)
W (0, t)

dτ .

(6.10)
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Next, we notice that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗
∫ ∞

0
β(τ )i∗(τ )

(

1 − S i(τ , t)E∗(0)
S∗i∗(τ )E(0, t)

)

dτ

+S∗
∫ ∞

0
ξ(θ)W ∗(θ)

(

1 − S W (θ, t)E∗(0)
S∗W ∗(θ)E(0, t)

)

dθ = 0,

∫ ∞

0
m(τ )E∗(τ )

(

1 − E(τ , t)i∗(0)
E∗(τ )i(0, t)

)

dτ = 0,

∫ ∞

0
η(τ )i∗(τ )

(

1 − i(τ , t)W ∗(0)
i∗(τ )W (0, t)

)

dτ = 0.

(6.11)

Indeed

S∗
∫ ∞

0
β(τ )i∗(τ )

(

1 − S i(τ , t)E∗(0)
S∗i∗(τ )E(0, t)

)

dτ

+S∗
∫ ∞

0
ξ(θ)W ∗(θ)

(

1 − S W (θ, t)E∗(0)
S∗W ∗(θ)E(0, t)

)

dθ

= S∗
∫ ∞

0
β(τ )i∗(τ )dτ − S

∫ ∞

0
β(τ )i(τ , t)dτ

E∗(0)
E(0, t)

+S∗
∫ ∞

0
ξ(θ)W ∗(θ)dθ − S

∫ ∞

0
ξ(θ)W (θ, t)dθ

E∗(0)
E(0, t)

= E∗(0) − E(0, t)
E∗(0)
E(0, t)

= 0.

(6.12)

∫ ∞

0
m(τ )E∗(τ )

(

1 − E(τ , t)i∗(0)
E∗(τ )i(0, t)

)

dτ

=
∫ ∞

0
m(τ )E∗(τ )dτ −

∫ ∞

0
m(τ )E(τ , t)dτ

i∗(0)
i(0, t)

= i∗(0) − i(0, t)
i∗(0)
i(0, t)

= 0,

(6.13)

and ∫ ∞

0
η(τ )i∗(τ )

(

1 − i(τ , t)W ∗(0)
i∗(τ )W (0, t)

)

dτ

=
∫ ∞

0
η(τ )i∗(τ )dτ −

∫ ∞

0
η(τ )i(τ , t)dτ

W ∗(0)
W (0, t)

= W ∗(0) − W (0, t)
W ∗(0)
W (0, t)

= 0.

(6.14)

Using (6.11) to simplify (6.10), we obtain
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U ′
2(t) = − (μ + ζ − ζ

∫ ∞
0 α2(a)π4(a)da)(S − S∗)2

S

−ζS∗
∫ ∞

0
α2(a)π4(a)f

(
S(t − a)

S

)

da

+S∗
∫ ∞

0
β(τ )i∗(τ )

(

2 − S∗

S
− S

S∗
i(τ , t)

i∗(τ )

E∗(0)
E(0, t)

+ ln
i(τ , t)

i∗(τ )

E∗(0)
E(0, t)

)

dτ

+S∗
∫ ∞

0
ξ(θ)W ∗(θ)

(

2 − S∗

S
− S

S∗
W (θ, t)

W ∗(θ)
E∗(0)
E(0, t)

+ ln
W (θ, t)

W ∗(θ)
E∗(0)
E(0, t)

)

dτ

+S∗q(0)
∫ ∞

0
m(τ )E∗(τ )

(

− E(τ , t)

E∗(τ )

i∗(0)
i(0, t)

+ 1 + ln
E(τ , t)

E∗(τ )

i∗(0)
i(0, t)

)

dτ

+S∗g(0)
∫ ∞

0
η(τ )i∗(τ )

(

− i(τ , t)

i∗(τ )

W ∗(0)
W (0, t)

+ 1 + ln
i(τ , t)

i∗(τ )

W ∗(0)
W (0, t)

)

dτ .

(6.15)

Finally, we have

U ′
2(t) = − (μ + ζ − ζ

∫ ∞
0 α2(a)π4(a)da)(S − S∗)2

S

−ζS∗
∫ ∞

0
α2(a)π4(a)f

(
S(t − a)

S

)

da

−S∗
∫ ∞

0
β(τ )i∗(τ )

[

f

(
S∗

S

)

+ f

(
S

S∗
i(τ , t)

i∗(τ )

E∗(0)
E(0, t)

)]

dτ

−S∗
∫ ∞

0
ξ(θ)W ∗(θ)

[

f

(
S∗

S

)

+ f

(
S

S∗
W (θ, t)

W ∗(θ)
E∗(0)
E(0, t)

)]

dτ

−S∗q(0)
∫ ∞

0
m(τ )E∗(τ )f

(
E(τ , t)

E∗(τ )

i∗(0)
i(0, t)

)

dτ

−S∗g(0)
∫ ∞

0
η(τ )i∗(τ )f

(
i(τ , t)

i∗(τ )

W ∗(0)
W (0, t)

)

dτ ≤ 0.

(6.16)

Define,

�2 =
{

(S,E, i,W, V ) ∈ X0

∣
∣
∣
∣U

′
2(t) = 0

}

.

We want to show that the largest invariant set in �2 is the singleton E1. First, we
notice that equality in (6.17) occurs if and only if

S = S∗,
S(t − a)

S(t)
= 1,

E(τ , t)

E∗(τ )

i∗(0)
i(0, t)

= 1,
i(τ , t)

i∗(τ )

W ∗(0)
W (0, t)

= 1,

S

S∗
i(τ , t)

i∗(τ )

E∗(0)
E(0, t)

= 1,
S

S∗
W (θ, t)

W ∗(θ)
E∗(0)
E(0, t)

= 1.

(6.17)
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From the conditions (6.17) we have

S(t − a) = S(t) = S∗, E(τ , t) = i(0, t)

i∗(0)
E∗(τ ),

i(τ , t) = E(0, t)

E∗(0)
i∗(τ ) = W (0, t)

W ∗(0)
i∗(τ ), W (θ, t) = E(0, t)

E∗(0)
W ∗(θ).

(6.18)

Furthermore, S = S∗, S(t − a)/S = 1 implies that dS/dt = 0. Consequently, using
(6.18), we have

0 = � − S∗
∫ ∞

0
β(τ )i(τ , t)dτ − S∗

∫ ∞

0
ξ(θ)W (θ, t)dθ − (μ + ζ)S∗

+ζS∗
∫ ∞

0
α2(a)π4(a)da

= S∗
∫ ∞

0
β(τ )i∗(τ )dτ − S∗

∫ ∞

0
β(τ )

(
E(0, t)

E∗(0)
i∗(τ )

)

dτ

+S∗
∫ ∞

0
ξ(θ)W ∗(θ)dθ − S∗

∫ ∞

0
ξ(θ)

(
E(0, t)

E∗(0)
W ∗(θ)

)

dθ

=
(

1 − E(0, t)

E∗(0)

)(

S∗
∫ ∞

0
β(τ )i∗(τ )dτ + S∗

∫ ∞

0
ξ(θ)W ∗(θ)dθ

)

.

(6.19)

Hence, we must have E(0, t) = E∗(0). Thus, using condition (6.18), we have
i(τ , t) = i∗(τ ),W (θ, t) = W ∗(θ). We conclude that the largest invariant set in �2 is
the singleton E1. Following the similar argument as in [22], one can conclude that
the compact global attractor T = {E1}. �

7 Discussion

Here an SVEIR model is proposed to describe the transmission of TB bacteria by
incorporating the age of latency, age of infection, age of vaccination and biological
age of pathogen in the environment. Under our assumptions, the global dynamics of
the proposed model is shown to be determined completely by the basic reproduction
number R(ζ). The disease dies out if R(ζ) < 1. If R(ζ) > 1, the disease persists.
The global stability results for the disease-free and the endemic equilibrium are
proved by constructing suitable Lyapunov functions as used in [22, 23, 25, 26].

The population level prevalence of TB bacteria is governed by the reproduc-
tion number R(ζ) > 1. R(ζ) is a decreasing function of the vaccination rate ζ, so
increasing the rate of vaccination reduces the infection prevalence of TB bacteria in
the population. This helps in controlling the transmission of TB bacteria. We also
note that
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−
∫ ∞
0

(

μ + α2(a) + r2(a)

)

e−
∫ a
0 (μ+α2(s)+r2(s))dsda = e−

∫ a
0 (μ+α2(s)+r2(s))ds|∞0 = −1.

(7.1)
From the Eq. (7.1), we get

−
∫ ∞

0
α2(a)π4(a)da =

∫ ∞

0
(μ + r2(a))π4(a)dθ − 1. (7.2)

Thus we can obtain

μ + ζ − ζ

∫ ∞

0
α2(a)π4(a)da = μ + ζ

∫ ∞

0
(μ + r2(a))π4(a)da. (7.3)

Hence, R(ζ) can be rewritten as

R(ζ) =
�

(
∫ ∞
0 m(τ )π1(τ )dτ

∫ ∞
0 β(τ )π2(τ )dτ + ∫ ∞

0 m(τ )π1(τ )dτ
∫ ∞
0 η(τ )π2(τ )dτ

∫ ∞
0 ξ(θ)π3(θ)dθ

)

μ + ζ
∫ ∞
0 (μ + r2(a))π4(a)da

.

(7.4)

Here it can be noted thatR(ζ) is an increasing function of age of the vaccination
a, and if the age of the vaccination a is large, the TB bacteria can persist. It may be
because of this that the TB bacteria still exist with high level of prevalence across the
world. From our presented results, one can observe that for a given set of parameters,
the sensitivity ofR(ζ) to the vaccination rate and age of the vaccination can be used
to guide disease control policies.

Indirect transmission affects the basic reproduction number and hence it leads
into an additional contribution to the final size relation of the epidemic model. Here
the basic reproduction numberR is a decreasing function of the clearance rate δ(τ ),
and it suggests that keeping the environment clean is an effective way to prevent the
transmission of TB disease to some extent in the long-term perspective. There are
some practical examples to support this observation. Also, the sensitivity of R to
contaminated environment can be used to guide the disease control strategies.
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Gravitational Waves: The Mathematical
Background

Subenoy Chakraborty

Abstract The geometrical construction of General Relativity which led Einstein to
the prediction of gravitational waves is discussed and formation of Cauchy problem
is shown. Due to complexity of the Cauchy problem, it is not possible to solve it
by the methods of analysis and geometry—approximation methods and numerical
algorithms are used. Finally, the consequences of detecting gravitational waves are
discussed.

Keywords Lorentzian manifold · Initial value problem · Gravitational waves

1 Introduction

The theoretical prediction of Einstein about the wave nature of gravity came imme-
diately [1] after the formulation of general relativity by himself. But 99 more years
have passed before gravitational waves (GW) became in reality. The LIGO-VIRGO
collaborators detected the GW for the first time in 2015. GW are considered as vibra-
tions in space-time, propagating at the speed of light away from the source. Research
onGW(radiation) is the common platform for interaction among astronomers, physi-
cists and mathematicians. The mathematical construction of GW are based on the
properties of the Einstein vacuum equations and the initial value problem (Cauchy
problem). Based on the theory of non-linear partial differential equations (PDE)
gravitational field dynamics is studied as a Cauchy problem of the Einstein field
equations. The basic differential geometry needed to define the universe as a ge-
ometric object is presented below in Sect. 2. Also the mathematical properties of
the Einstein vacuum equations are presented in this section. A detailed study about
the initial value formulation i.e. the Cauchy problem is presented in Sect. 3. Also a
discussion about gravitational radiation is included in this section. Both linearized
and post-Newtonian approximation of Einstein equations is studied in Sect. 4 in the
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context of gravitational waves. Numerical techniques and possible computer simu-
lation is discussed in Sect. 5. Finally, GW detection is summarized in Sect. 6.

2 Geometry of Space-Time

Our universe is considered as 4D space-time manifold (M) with a Lorentzian metric
gμν and the curvature tensor characterizes the properties of the gravitational field.
Usually, the manifold M is assumed to be oriented differentiable manifold and the
metric tensor is a non-degenerate quadratic form

g =
3∑

μ,ν=0

gμν dx
μ ⊗ dxν (1)

which is defined smoothly over the manifold (known as the tangent space) TqM

at every point q ∈ M . In TqM any four vector
−→
X can be classified as (a) time-

like if g
(−→
X ,

−→
X

)
< 0, (b) space-like if g

(−→
X ,

−→
X

)
> 0 and (c) null or light-like if

g
(−→
X ,

−→
X

)
= 0. In fact at each point q the collection of null vectors form a cone,

termed the null cone. So one can introduce the notion of causal curve as a differ-
entiable curve having time-like or null tangent vector at each point. Similarly, one
can introduce the notion of space-like hypersurface if the normal vector is time-like.
So the metric tensor restricted to the hypersurface should be positive definite (i.e.
the hypersurface is a Riemannian manifold). A space-like hypersurface (H ) can be
characterized as Cauchy hypersurface if every causal curve through any point x ∈ M
intersects H exactly at one point. In this context, a space-time manifold (M, g) is
said to be globally hyperbolic if it has a Cauchy hypersurface. Hence from the very
definition, a globally hyperbolic space-time manifold should be causal and it is pos-
sible to define a time function (t) at every point on the manifold so that its level
surfaces (i.e. t =constant) are Cauchy surfaces.

In a globally hyperbolic space-time a Cauchy hypersurface (H ) is a Riemannian
manifold equipped with a metric hab and there also exists a 2nd rank symmetric
tensor Kab (known as extrinsic curvature) which characterizes how the hypersurface
H is embedded in the space-time manifold M . These two (symmetric) 2nd rank
tensors are determined from the following first and second fundamental forms on the
hypersurface:

hab = gαβ e
α
a e

β

b (2)

Kab = nα;β eα
a e

β

b . (3)

Here eα
a = ∂xα

∂ya are tangent to curves contained in �, hypersurface of the 4D space-
time manifold and nα is normal to the hypersurface.
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The vacuum Einstein equations (i.e. Rμν = 0) can be written on the hypersurface
as the evolution equations of 3-metric hab and the extrinsic curvature Kab as

∂hab
∂t

= −2NKab + L−→
N
˜
hab (4)

and
∂Kab

∂t
= −∇a∇bN + L−→

N
˜
Kab + (

Rab + Kab Tr K
ab − 2KadK

d
b

)
N . (5)

Here N is the lapse function and
−→
N
˜

is the shift (three) vector which are essentially
the gtt and gta components of the metric. In fact this scalar and vector functions are
related to the evolution vector field

−→
T

(
i.e. ∂

∂t

)
as

−→
T = N−→n + −→

N (6)

with −→n , the unit normal to the t = constant hypersurface. Also in the above ∇a

and L at the covariant and Lie derivative on the hypersurface. However, it should
be noted hab and Kab can not evolve independently rather they are related to the
constraint equations:

∇aKab − ∇b tr K = 0 (7)

and R
˜

+ (tr K )2 − |K |2 = 0 (8)

These constraint equations play an important role in the following initial value for-
mulation.

3 Initial Value Formulation and Gravitational Radiation

In General Relativity (GR) an initial data set is a 3D manifold H equipped with
a Riemannian metric hab and the extrinsic curvature kab i.e. (H , hab, kab), which
satisfy the constraint Eqs. (7) and (8). Usually, it is assumed that initial data set
should be asymptotically flat i.e. outside a sufficiently large compact set C, H \ C
is diffeomorphic to the complement of a closed ball in R3 and hab → ηab, kab → 0
at infinity.

Although many mathematicians took interest in the beauty and challenges of GR
by the Cauchy problem was formulated properly much later because geometry and
partial differential equation theory were not so rich at the time. The pioneering result
was due to Choquet-Bruhat in 1952 [2] and it was local in nature. According to
them: “for an initial data set (H , h, k) satisfying vacuum constraint equations there
always exists a space-time (M, g) satisfying the Einstein vacuum equations and for
whichH is a spacelike hypersurface with induced metric ‘h’ and 2nd fundamental
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form ‘K ’.” They used a typical co-ordinate system (known as wave coordinates)
in which Einstein’s vacuum equations can be expressed as a system of hyperbolic
partial differential equations.

The above local Cauchy problem does not address the following questions: (i)
Will the local solutions of the Einstein equations exist for all time? (i i)Will the local
solutions form singularities and what type will it be? In 1969 Choquet-Bruhat and
Geroch [3] showed that it is possible to have a unique, globally hyperbolic maximal
spacetime (M, g) (corresponding to the solutions of the vacuum Einstein equations)
which is evolved from a Cauchy surface H . This 4D manifold M is called the
maximal future development of the initial data set (H , hab, kab).

A further generalization of the above result has been done by Christodoulou and
Klainerman [4] in 1993. They have proved that it is possible to construct a unique
causally geodesically complete and globally hyperbolic and globally asymptotically
flat 4D space-time manifold (M, g) which is evolved from a strong asymptotically
flat initial data set.

Mathematically, based on L2 curvature conjecture (by Klainerman et al. [5–10])
the time of existence of the solution depends only on the L2-norms of the Riemann
curvature tensor and on the gradient of the second fundamental form.

In the present talk, we are interested about the properties of radiation i.e. the
behaviour of curvature at large distances. As gravitational radiation propagates at
the speed of light so the asymptotic behaviour of gravitational waves near infinity
will be important and it is characterized by radiative space-times with asymptotic
structures. Due to propagation of gravitational radiation along null hypersurfaces in
the space-time so it is expected that the wave will reach to an observer at future null
infinity (I+). I+ is usually defined as the collection of all endpoints of future-directed
null geodesics along which r → ∞. Geometrically, I+ has the topologyR × S2 and
it intersects a null hypersurface in a 2-sphere (S2). The Trautman-Bondi mass on
a null hypersurface at I+ measures the amount of mass that remains in an isolated
gravitational system in that this mass measures the remaining mass after radiation
through I+.

From the geometry of the space-time at I+ it can be shown that a test mass will
go to rest after the gravitational wave has passed and consequently the geodesics
will not deviate anymore. But the question is, will the test masses be at the same
position as before the wave passed or will they be dislocated ? Mathematically, will
the geometry of space-time change permanently? The affirmative answer is known
as the memory effect of gravitational waves. This memory effect has been analyzed
in the linearized theory by Zel’dovich and Polnarev [11] and in the full non-linear
formulation by Christodoulou [12]. The linearized effect (also known as ordinary)
was not detectable (at that time due to its very small nature) while the non-linear
effect (also known as null) can in principle be measured. Later, Bieri and Garfinkle
[13] showed that these two memories are two different effects namely the difference
of a specific component of the Weyl tensor is the source for ordinary memory while
the null memory effect is due to fields that do reach null infinity I+. Mathematically,
the permanent displacement (i.e. memory) is related to [14]
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F = c
∫ ∞

−∞
|σ(u)|2 du

where F
4π measures the total energy radiated in a given direction per unit solid angle.

4 Linearized and Post-Newtonian Approximation of
Einstein Equations: Gravitational Waves

Gravitational waves become weaker and weaker as they propagate away from the
source. So it is reasonable to assume that the space-time metric far away from the
source to be very close to Minkowskian geometry i.e.

gμν = ημν + qμν

where ημν is the usual Minkowskian metric i.e. ημν = diag(−1,+1,+1,+1) and
qμν is considered to be the small deviation from the flat geometry. In the linearized
Einstein theory the field equations contain only linear power of q and its derivatives.
Due to general covariance of Einstein gravity there is gauge invariance in linearized
gravity. As a result any function A written as A = A0 + δA where A0 is its value
at the background Minkowskian geometry while δA is its first order perturbation.
Thus for an infinitesimal diffeomorphism along an vector field ξ , δA changes to
δA → δA + L−→

ξ
A0. Similar to harmonic co-ordinates, the vector field

−→
ξ is chosen

to satisfy the Lorentz gauge condition: ∂μq
μν = 0 with qμν = qμν − 1

2ημνq. Then
the linearized Einstein field equations reduces to the wave equation

� qμν = −16πGTμν

where � is the usual wave operator in Minkowski space-time.
Further, in vacuum the remaining freedom of choosing

−→
ξ imposes the conditions

that the deviation metric qμν has only spatial components and is tracefree but still it
satisfies the Lorentz gauge. Then it is termed TT gauge in which the only two prop-
agating degrees of freedom of the metric perturbation are transverse (i.e. ∂ i hi j = 0)
and spatially traceless (i.e. ηi j qi j = 0). In this (TT) gauge the linearized Rieman-
nian curvature tensor takes the form: Rit, j t = − 1

2 q̈
T T
i j and it can be considered as

the source for geodesic deviation. As a result, it shows how matter behaves in the
presence of GW.

Now using the above equation in the geodesic deviation equation one may be able
to calculate the change in distance between two free falling test particles

�di (t) = 1

2
hTT
i j (t)d j

0
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with d j
0 , the initial distance between the test masses.

Moreover, the gravitational wave perturbations have only two polarizations due to
the above TT gauge. So if the wave travelling along the z-direction such that qTT

i j (t −
z) is a solution of � qTT

i j = 0, then there are only two independent propagating
degrees of freedom:

q+(t − z) = qTT
xx = −qTT

yy

and q×(t − x) = qTT
xy = qTT

yx

where one has to take into account that the metric perturbation vanishes for larger
‘r ’ and its trace-free nature in addition to Lorentz condition. In the above q+ grav-
itational wave stretches the x-direction in space while it squeezes the y-direction
and vice-versa. Hence in aLIGO the interferometer used to detect GW has two long
perpendicular arms which measure this distortion.

The above linearized theory can be extended to higher order in the metric pertur-
bation, assuming the object producing gravitational field moves with non-relativistic
speed. Such formulation of Einstein theory is known as post-Newtonian approxima-
tion. This method was developed by Einstein, Will, Schaefer and others [15, 16].
Using harmonic gauge (i.e. ∂α

(√−ggαβ
) = 0) the Einstein field equations in PN

theory take the form

� qαβ = −16πG

c4
ταβ

where ταβ = −(g)T αβ + (16π)−1Nαβ

with Nαβ containing quadratic forms of the metric perturbation.
The above inhomogeneous wave equation in the post-Newtonian approximation

is normally solved order by order in the perturbation throughGreen functionmethods
with integral over the past light cone of Minkowski space. At each order, the previ-
ously calculated information is used in the expression for Nαβ and to find the motion
of the matter sources. Normally, at higher post-Newtonian order, the integrals appear
to be divergent. But these infinities can be overcome either by asymptotic matching
methods [17–19] or through regularization techniques [20, 21]. Thus the PN itera-
tive process provides an approximate perturbative solution to the Einstein equations
upto a given order restricting gravitational interaction and the speed of the objects
i.e. the speed of the body should not be comparable to the speed of light and the
object should not be highly gravitating namely black hole (BH) or neutron stars.
However, Damour [22] showed that even for significant self-gravitating object, PN
approximation can be described upto a given order in the perturbation. Recently, it
has been shown [23] that PN approximation can accurately describe the merger of
binary BHs the and neutron stars. Finally, it is to be noted that the accuracy of the
approximate solutions can be improved by using resummation techniques.
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5 Numerical Techniques

In numerical relativity, Einstein field equations are solved by the method of simula-
tion. In fact it is very useful when gravity is very strong and highly dynamical (for
example, the case of two BHmerger). Normally, for a differential equation, the most
common and widely used technique for simulation is finite difference method [24].
According to this method, a function f (x) can be approximated by its values on
equally spaced points

fi = f (iδ) , i ∈ N,

so that the derivatives can be approximated as

f ′
(i) ≈ ( fi+1 − fi−1) /(2δ)

f ′′
(i) ≈ ( fi+1 + fi−1 − 2 fi ) /δ2.

However, for a partial differential equation with an initial value formulation, one
replaces the fields by their values on a space-time lattice and the field equations by
finite difference equations which evaluate the fields at time step ‘n’. Thus the vacuum
Einstein equations can be written as difference equations with ‘0’ step information as
the initial data set. However, there are difficulties with the finite difference technique
as follows:

(a) Normally, the solution of the finite difference equation should converge to a
solution of the corresponding differential equation in the limit as δ → 0. But it is not
always the case. Due to coordinate invariance of general relativity, it is possible to
express the Einstein field equations inmany different formswhich are not all strongly
hyperbolic. These forms of the Einstein field equations do not converge in computer
simulations.
(b) Due to the constraint equations the initial data as well as its evolution should
satisfy the constraint equations. But in computer simulation the initial data only
satisfy the finite difference version of the constraints and hence they have a small
amount of constraint violation. So it is possible that initial data with small constraint
violationmay give rise to rapidly growing constraint violation and hence the accuracy
of the simulation is destroyed.
(c) The simulation using infinite difference method will not be applicable if the
space-time contains BH (i.e. singularity). The simulation cannot be continued to the
past if a time slice contains a space-time singularity. Even if the time slice advances
slowly inside the BH and rapidly outside it, then stretching of the slices may lead to
inaccuracies in the finite difference approximation.

In 2005, the above problems were resolved by Pretorius [25] showing fully suc-
cessful binary BH simulation. Subsequently, in other works [26, 27], these issues
were resolved for various BH masses and spins. The most efficient simulations are
done by the S × S (i.e. simulating extreme space-times) collaboration using spectral
methods instead of finite difference approaches [28]. In spectral methods the grid
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values fi are chosen as approximation to the function f (x) in the expansion with
a particular basis of orthogonal functions. Then the expansion coefficients and the
derivatives of the basis functions are used to compute the derivatives of f (x). A given
accuracy of the derivatives by spectral methods can be obtained with significantly
fewer grid points compared to finite difference methods.

6 Summary of GW Detection

The search for GW was started long back in 1960s using resonance bar detectors
[29]. Subsequently, in early 1970sWeiss et al. [30–32] used laser interferometers for
the detection of GW. In the interferometer a laser beam is split into two sub-beams
that travel down orthogonal arms, bounce off mirrors and then recombine on return.
So if the light travel time is the same then there will be constructive recombination
of light beams. But due to propagation of gravitational wave the light travel time will
not be identical in each arm and as a result interference will occur. Interferometer
measures this small time difference very accurately to get ideas about the GW and
in turn about the properties of the source of GW.

Initially, the Laser InterferometerGravitationalwaveObservatory (iLIGO) started
operation in the early 2000s. In fact there are two LIGO facilities in operation (one
at Hanford, Washington and the other at Livingstone and Louisiana). Recently, there
is Italian collaboration (Virgo) and a Japanese extension (KAGRA) both of which
will be in operation soon. India also joins in this group and LIGO-India will be
online in 2020s. The use of multiple detectors to obtain redundancy and to increase
the confidence of a detection by observing the signal through independent detectors
with uncorrelated noise. In spite of being four order more sensitive over a wide
frequency band than Weber’s original instrument, unfortunately iLIGO was not able
to detect GW.

In late 2000s iLIGO was upgraded as follows:
(a) an increase in the laser power to reduce quantum noise
(b) larger and heavier mirrors to reduce thermal and radiation pressure noise
(c) better suspension fibers for the mirrors to reduce suspension thermal noise.

And also there are other technological developments. This upgraded Laser Interfer-
ometer GW observatory is then termed the advanced LIGO (aLIGO) and it started
detection in 2015 with 3−4 times more sensitive then the previous one. Surprisingly,
within a few days of first scientific operation (on 14th September, 2015), aLIGO
detectors noted interference pattern related to GW produced due to merger of two
BHs far away at a distance 1.3 billion light years [33]. Amazingly, the signal was
so prominent (compared to the noise) that the probability that the recorded event
was a GW is much larger than 5σ (i.e. probability of false alarm 
10−7). GW was
detected second time in the same year on 26th December [14].

Thus the GW detection by aLIGO shows first direct evidence of the existence of
BH binaries and their coalescence. Also the observation shows that BHs truly merge
in nature within an amount of time smaller than the age of the universe.
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Finally, aLIGOobservations demonstrate thatGR is not only highly accurate in the
solar system but also in extreme gravity scenarios when gravitational interaction is
strong, highly non-linear, and highly dynamical. Consequently, any modified gravity
theory is ruled out in the context of formulation of quantum gravity theory. Further,
it is expected that future GW detection will help us to verify other predictions of
GR namely (i) gravitational interaction is parity invariant, (i i) GW propagates at
the speed of light and (i i i) GW is characterized by two transverse polarizations.
Therefore, GW detection is not only a remarkable confirmation of Einstein’s gravity
theory, it opens a new era in astrophysics.
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Current Trends in the Bifurcation
Methods of Solutions of Real World
Dynamical Systems

Jocirei D. Ferreira and V. Sree Hari Rao

Abstract In this survey paper we discuss a class of dynamical systems giving rise to
three types of bifurcations: Hopf bifurcation, Turing bifurcation and Zip bifurcation.
We present methods from dynamical systems theory that help to classify the studied
bifurcations. As application of the proposed methods, a class of predator-prey sys-
tems are analyzed. Special attention is bestowed to a class of models describing the
interactions of two predator species competing for one prey. Under certain natural
assumptions, it has been observed that the models admit a one dimensional contin-
uum of equilibria leading to, what is described as a zip bifurcation phenomenon.
The models presented in this survey research for these species exhibit rich dynamics
for varying values of the vital parameters involved. Conditions for the existence and
stability of equilibria of the model equations are established. The effort in the article
is to create an awareness among the researchers that certain real world dynamical
systems often give rise to the existence of non-isolated equilibria also known as a
continuous of equilibria. We propose to present methodologies that would help one
to analyze systems with a continuous of equilibria.
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bifurcation · Turing bifurcation · Zip bifurcation
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1 Introduction

Bifurcation theory is a subject with classical mathematical origin. Themodern devel-
opment of this subject dates back to the pioneering work of Poincaré, and over the
past four decades this theory has as witnessed rapid developments with new ideas
and methods from dynamical systems theory, singularity theory and many others.
This subject is the mathematical study of possible changes in the qualitative or topo-
logical structure of parameter-dependent systems (families). Bifurcations occur in
both continuous systems (described by ODEs, DDEs or PDEs), and discrete systems
(described by maps).

It is useful to divide bifurcations into two principal classes, local and global. A
local bifurcation occurs when a parameter variation causes the change in the stability
of an equilibrium (or fixed point). The topological changes in the phase portrait of the
system may be confined to arbitrarily small neighborhoods of the bifurcating fixed
points by moving the bifurcation parameter close to the bifurcation point (hence
“local”). Global bifurcations occur when “larger” invariant sets, such as periodic
orbits collide with equilibria. This causes changes in the topology of the trajectories
in the phase space which cannot be confined to a small neighborhood, as is the case
with local bifurcations. In fact, the changes in topology extend out to an arbitrarily
large distance (hence “global”). There are several important application areas of
bifurcation theory. Bifurcation theory has also been applied to the study of several
theoretical examples which are difficult to access experimentally.

In the recent years, many types of bifurcations have been studied and classified
including saddle node bifurcations, Hopf bifurcations, Bogdanov-Takens bifurca-
tions, umbilic bifurcations, cusp bifurcations, Turing bifurcations, zip bifurcations
and others. We plan to organize a survey of thoroughly reviewed original articles that
are of interest to the scientific community working in the area of bifurcation theory
and applications.

A model that describes the competition of two predator species for a single regen-
erating prey species was introduced by Hsu et al. [1, 2] (see also Koch [3, 4]) and has
been studied since then by several workers, e.g., Butler [5], Keener [6], Smith [7],
and Wilken [8]. In this model of a three-dimensional system of ordinary differential
equations the prey population is assumed to have a logistic growth rate in the absence
of predators, and the predator populations are assumed to obey a Holling-type func-
tional response (Michaelis-Menten kinetics). Butler [5] has shown that most of the
results concerning the model of Hsu et al. can be achieved for a whole class of two-
predator-one-prey models whose common feature is that the prey’s growth rate and
the predators’ functional response are arbitrary functions satisfying certain natural
conditions.

Finally, we would like to highlight that for the ODE system of three dimension
studied in [1–8], the authors have considered conditions under the parameters to get
and analyze isolated equilibria. Our purpose in this paper is to connect the other
types of bifurcations (Hopf, Turing, etc.) with the non isolated equilibria.
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2 Hopf Bifurcation

Some of the basic ideas that are used to study the existence and stability of periodic
solutions will be introduced in this section. We shall give a brief notion of what
is a Lyapunov coefficient and we will show its importance to conclude about the
existence and stability of periodic solutions. For this first part we follow basicaly
[9–11]. Furthermore, we present a summary of the projection method described in
[12–14] for the calculation of the first Lyapunov coefficient associated with the Hopf
bifurcation.

2.1 Poincaré Map and Displacement Function

Avery strong notion in the study of periodic orbits is the Poincarémap. It is the crucial
concept of the “geometric theory of differential equation”. To define the Poincaré
map, also called the return map, let φt be the flow of the differential equation

ẋ = f (x)

where x ∈ R
n , f is of class C∞ in R

n , and suppose that S ⊂ R
n is a (n − 1)-

dimensional submanifold.

Definition 1 If p ∈ S and (p, f (p)) /∈ Tp S, we say that the vector (p, f (p)) is
transverse to S at p. If (p, f (p)) is transverse to S at each p ∈ S, then S is a section
for φt .

Remark 1 If p ∈ S, then the curve t �→ φt (p) “passes through” S as t passes through
t = 0. It is possible to have a T = T (p) > 0 such that φT (p) ∈ S. In this case, we
say that p returns to S at time T .

Definition 2 If there exists an open set
∑ ⊆ S such that each point in

∑
returns to

S, then
∑

is called a Poincaré section.

Definition 3 Define the map P : ∑ → S by P(p) = φT (p)(p) where T (p) > 0 is
the time of first return to S. The map P is called Poincaré map (also known as return
map or succession function) on

∑
and T : ∑ → R is called the return time map. The

functions P and T are smooth functions on
∑

since the solution of the differential
equation is smoothly dependent on its initial value.

The crucial idea of Poincaré to determine periodic orbits is that fixed points of
the return map belong to periodic orbits. That is, periodic points of the return map
correspond to periodic solutions of the differential equation. If P denotes the return
map, then p is a fixed point of P if P(p) = p.

Definition 4 A periodic point of P with period k is a fixed point of the kth iterate
of P. It passes through the Poincaré section k − 1 time before closing. Thus, p ∈ ∑

is a periodic point of period k if Pk(p) = p.
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Instead of studying fixed points of Pk , it is more convenient to study the zeros of
the corresponding displacement function, which we will be defined in the following.

Definition 5 The map d : ∑ → R
n , defined by d(p) = Pk(p) − p is called dis-

placement function associatedwith P . The periodic points of period k for thePoincaré
map correspond to the roots of the map d(p).

Remark 2 An important stability theorem for periodic orbits, states that if Pk(p) =
p and D Pk(p) has all its eigenvalues inside the unit circle, then the periodic orbit
with initial point p is asymptotically stable.

2.2 Hopf Bifurcation and Lyapunov Coefficients

Themain purpose of this section is to present the properties of the succession function
and also define the concept of focal values and multiplicity of a multiple focus. Also,
we introduce the concept of Lyapunov coefficients.

Consider the family of differential equations

u̇ = f (u, ζ ), u ∈ R
n, ζ ∈ R

m, (1)

where ζ is a vector of parameters. Assume that f is of class C
∞
in Rn × R

m .

Definition 6 An equilibrium state (x0, ζ0) of the dynamical system (1) with pure
imaginary characteristic roots is called a focus (either stable or unstable), a center, or
a center-focus. An equilibrium state of a dynamical system wich has pure imaginary
characteristic roots and is a focus will be called a multiple focus (for more details
see [9] and [10] pp. 93).

Definition 7 An ordered pair (x0, ζ0) ∈ R
n × R

m is called a Hopf point for the
system (1) if there is a curve C in Rn × R

m , that is given by ε �→ (c1(ε), c2(ε)) and
satisfies the properties:

(i) C(0) = (x0, ζ0) and f (c1(ε), c2(ε)) = 0.
(ii) The linear transformation given by the derivative fu(c1(ε), c2(ε)) : Rn → R

n

has a pair of nonzero complex conjugate eigenvalues α(ζ ) ± iβ(ζ ), each with
algebraic (and geometric) multiplicity one. Also, α(0) = 0, α′(0) 	= 0 and
β(0) 	= 0.

(iii) Except for the eigenvalues ±iβ(0), all other eigenvalues of fu(x0, ζ0) have
nonzero real parts.

Remark 3 It is sufficient to consider the bifurcations for a planar family of differen-
tial equations associatedwith the family (1) since, as wewill show in the next section,
there exists a center manifold reduction method for the family (1) that produces a
family of planar differential equations
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u̇ = f (u, ζ ), u ∈ R
2, ζ ∈ R

m, (2)

with a corresponding Hopf point. Moreover, there is a neighborhoodU × V ⊂ R
n ×

R
m of the Hopf point (x0, ζ0) such that if ζ ∈ V and the corresponding member of

the family (2) has a bounded orbit in U , then this same orbit is an invariant set for
the corresponding member of the planar family (1).

Definition 8 The planar family (2) has a supercritical Hopf bifurcation at a Hopf
point with associated curve ε → (c1(ε), c2(ε)) if there are positive numbers ε0, K1

and K2 such that for each ε in the open interval (0, ε0) the differential equation
u̇ = f (u, c2(ε)) has a hyperbolic limit cycle with radii

(K1
√

ε + O(ε), K2
√

ε + O(ε))

relative to the rest point u = c1(ε). The bifurcation is called subcritical if there is a
similar limit cycle for the system with parameter values in the range −ε0 < ε < 0.
Also, we say that the family (1) has a supercritical (respectively, subcritical) Hopf
bifurcation at a Hopf point if the corresponding (center manifold) reduced system
(2) has a supercritical (respectively, subcritical) Hopf bifurcation.

Observe that, after the translation v = u − c1(ε), the differential equation (2)
becomes

v̇ = f (v + c1(ε), ζ )

with f (0 + c1(ε), c2(ε)) ≡ 0. In particular, in the new coordenates, the associated
rest points remain at the origin for all values of the parameter ε. Thus it suffices to
consider the family (2) to be of the form

u̇ = f (u, ζ ), u ∈ R
2, ζ ∈ R, (3)

only now with a Hopf point at (u, ζ ) = (0, 0) ∈ R
2 × R and with associated curve

c given by ζ → (0, ζ ).

Remark 4 If (u, ζ ) = (0, 0) ∈ R
2 × R is a Hopf point for the family (3) with eigen-

values α(ζ ) ± iβ(ζ ), there exists a smooth parameter-dependent linear change of
coordenates that transforms the system (3) into the form

⎧
⎨

⎩

ẋ = α(ζ )x − β(ζ )y + ϕ(x, y, ζ )

ẏ = β(ζ )x + α(ζ )y + ψ(x, y, ζ )

(4)

where the functions ϕ and ψ together with their first partial derivatives with respect
to the space variables vanishe at the origin, α(0) = 0, α′(0) 	= 0 and β(0) 	= 0 (for
details see [11]).
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Changing the family (4) to polar coordinates we obtain the family

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ̇ = F(ρ, θ, ζ )

= α(ζ )ρ + ϕ(ρ cos θ, ρ sin θ, ζ ) cos θ + ψ(ρ cos θ, ρ sin θ, ζ ) sin θ

θ̇ = β(ζ ) + �(ρ, θ, ζ )

= β(ζ ) + ψ(ρ cos θ, ρ sin θ, ζ )

ρ
cos θ − ϕ(ρ cos θ, ρ sin θ, ζ )

ρ
sin θ

(5)

and then the equation
dρ

dθ
= F(ρ, θ, ζ )

β(ζ ) + �(ρ, θ, ζ )
(6)

where it is assumed that �(0, θ, ζ ) = 0 for all θ which ensures the continuity of the
function �(ρ, θ, ζ ).

Definition 9 Let ρ = χ(θ, θ0, ρ0, ζ ) the solution of the differential equation (6)
with initial conditions

χ(θ0, θ0, ρ0, ζ ) = ρ0.

We define the succession function for system (6) as

ρ = χθ0(ρ0, ζ ) = χ(θ0 + 2π, θ0, ρ0, ζ ) (7)

on the ray θ = θ0. Also, we define the displacemente function for Eq. (6) as

dθ0(ρ0, ζ ) = χθ0(ρ0, ζ ) − ρ0. (8)

where for θ = 0 we denote the function χ(ρ0, ζ ) and d(ρ0) respectively, and

ρ = χ(ρ0, ζ ) = χ(2π, 0, ρ0, ζ ) (9)

d(ρ0, ζ ) = χ(ρ0, ζ ) − ρ0. (10)

Remark 5 The solution ρ = χ(θ, θ0, ρ0, ζ ) of Eq. (6) has continuous partial deriva-
tives with respect to ρ0 up to order N (for details see [9] and [10] pp. 243). Hence,
the functions χ(ρ0, ζ ) and d(ρ0, ζ ) are continuously differentiable N times.

Definition 10 Suppose that (u, λ) = (0, 0) = O is a Hopf point for the family (3),
that is, system (3) can be transformed in the form (4) and has pure imaginary charac-
teristic roots at (x, y, ζ ) = (0, 0, 0). The value of the i-th derivative of the function
d(ρ0) at the point O , that is, d(i)(0, 0), is called i-th focal value of the focus O .
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Theorem 1 If there exists k such that

d ′(0, 0) = d
′′
(0, 0) = · · · = d(k−1)(0, 0) = 0 and d(k)(0, 0) 	= 0, (11)

k is an odd number, where the derivative is with respect to ρ0.

Proof See [10]. �

Definition 11 If conditions (11) are satisfied, and k = 2m + 1,m ≥ 0 then the focus
O is a focus of multiplicity m.

Remark 6 It can be proved (see [10] pp. 93) that

d ′(0, 0) = e2π
α
β − 1. (12)

Then, ifm = 0 it implies that k = 1, d ′(0, 0) 	= 0 andα(0) 	= 0. But then the focus
O has complex, though not pure imaginary characteristic roots so it is a simple focus.
Conversely, if m > 0, then k ≥ 3, d ′(0, 0) = 0, α(0) = 0 and the caracteristic roots
are pure imaginary, that is the focus is multiple according with Definition 6. Note that
a multiple focus does not always have a defined multiplicity since, if system (4) is of
class N , but not of class N + 1, and if d ′(0, 0) = d

′′
(0, 0) = · · · = d(N )(0, 0) = 0,

Definition 6 is not applicable.

Definition 12 The first nonzero focal value of a multiple focus is called the first
Lyapunov value (or Lyapunov coefficient). In other words, the Lyapunov value is the
number dk(0, 0) provided that relations (11) holds and k ≥ 3. If k = 2m + 1, the
Lyapunov value will also be called the m-th Lyapunov value (m ≥ 1).

Remark 7 From now on, we denote the m-th Lyapunov value by lm(0), m ≥ 1.

Remark 8 Other equivalent definitions and algorithmic procedures to write the
expressions for the Lyapunov coefficients lm , for two dimensional systems can be
found in Gasull and Torregrosa [15] and Kuznetsov [14], among others. These proce-
dures apply also to the n-dimensional systems, what is our study in the next section.

2.3 Reduction to the Center Manifold and the Hopf
Bifurcation

In this section, we present a summary of the projection method described in [12–
14] for the calculation of the first Lyapunov coefficient associated with the Hopf
bifurcation. This helps to conclude that the equilibria of a studied dynamical system
undergoes a Hopf bifurcation. Other equivalent definitions and algorithmic proce-
dures to write the expressions of the Lyapunov coefficients for two-dimensional sys-
tems can be found in [10, 16], among others, and can be adapted to n-dimensional
systems with n ≥ 3, if it is restricted to the center manifold. We present the projec-
tion method for the case n = 4 since, as an application example, we analyze a four
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dimensional predator-prey model that undergoes a Hopf bifurcation. The procedure
can be generalized easily for the cases n > 4.

Consider the differential equation

x′ = f (x, ζ ), (13)

where x ∈ R
4 is a vector representing phase variables and ζ ∈ R is a parameter

representing control parameter. Assume that f is of class C∞ in R
4 × R. Suppose

that (13) has an equilibrium point x = x0 at ζ = ζ0 and, denoting the variable x − x0
also by x, we write

F(x) = f (x, ζ0) (14)

in the form

F(x) = Jx + 1

2
B(x, x) + 1

6
C(x, x, x) + O(‖x‖4), (15)

where J = fx(0, ζ0) and B(x, y),C(x, y, z) aremultilinear functions. In coordinates,
we have

Bi (x, y) =
4∑

j,k=1

∂2Fi (ξ)

∂ξ jξk

∣
∣
∣
∣
ξ=0

x j yk, Ci (x, y, z) =
4∑

j,k,l=1

∂3Fi (ξ)

∂ξ jξkξl

∣
∣
∣
∣
ξ=0

x j yk zl,

where i = 1, 2, 3, 4.
Suppose that (x, ζ0) is an equilibrium point of (13) where the Jacobian matrix J

has a pair of pure imaginary eigenvalues λ2,3 = ±iω0,ω0 > 0, and these eigenvalues
are the only pure imaginary eigenvalues. Let Tc be the generalized eigenspace of
J corresponding to λ2,3. By this it is meant the largest subspace invariant by J on
which the eigenvalues are λ2,3.

Let p,q ∈ C
4 be complex eigenvectors corresponding to −iω0 and +iω0 respec-

tively, such that

Jq = iω0q, JTp = −iω0p, 〈p,q〉 = 1, (16)

where JT is the transpose of the matrix J and 〈p,q〉 = ∑4
i=1 pi qi is the standard

scalar product in C
4 (linear with respect to the second argument). Thus, the critical

real eigenspace Tc corresponding to ±iω0 is now two-dimensional, is spanned by
{Re q, Im q} and any vector y ∈ Tc can be represented as y = wq + wq, where
w = 〈p, y〉 ∈ C.

The two-dimensional center manifold associated with the eigenvalues λ2,3 =
±iω0 can be parameterized by the variables w and w by means of an immersion
of the form x = H(w, w), where H : C2 → R

4 has a Taylor expansion of the form

H(w, w) = wq + wq +
∑

2≤ j+k≤3

h jk

j !k!w j wk + O(|w|4), (17)
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with h jk ∈ C
4 and h jk = hk j . Substituting this expression into (13) we obtain the

following differential equation

Hww′ + Hww′ = F(H(w, w)), (18)

where F is given by (14). The complex vectors hi j are obtained solving the system of
linear equations definedby the coefficients of (18), taking into account the coefficients
of F , so that system (18), on the chart w for a central manifold, can be written as
follows

w′ = iω0ω + 1

2
G21w|w|2 + O(|w|4),

with G21 ∈ C.

Definition 13 The first Lyapunov coefficient l1 is defined by

l1 = 1

2
Re G21, (19)

where G21 = 〈p,H21〉, H21 = C(q,q,q) + B(q,h20) + 2B(q,h11), h11 = −J−1

B(q,q), h20 = (2iω0I4 − J)−1B(q,q) and I4 is the unit 4 × 4 matrix.

Proposition 1 Consider system (13) where x ∈ R
4 is a vector representing phase

variables and ζ ∈ R is a parameter representing control parameter. Assume that f is
of class C∞ in R

4 × R. Suppose that (13) has an equilibrium point x = x0 at ζ = ζ0.
Then the following holds:

(i) Suppose that at (x0, ζ0) the Jacobian matrix J of (13) has a pair of pure imag-
inary eigenvalues λ2,3(ζ0) = ±iω0, ω > 0, and these eigenvalues are the only
eigenvalues with null real part. Then (x0, ζ0) is a Hopf point of (13).

(ii) At (x0, ζ0) a two-dimensional center manifold is well-defined, it is invariant
under the flow generated by (13) and can be continued with arbitrary high
class of differentiability to nearby parameter values.

(iii) If d
dζ
Re λ(ζ )|ζ=ζ0 	= 0 then (x0, ζ0) is a transversal Hopf point. In this case, if

l1 	= 0 then in a neighborhood of (x0, ζ0) the dynamic behavior of the system
(13), reduced to the family of parameter-dependent continuations of the center
manifold, is orbitally topologically equivalent to the following complex normal
form

w′ = (η + iω)w + l1w|w|2,

where w ∈ C, η, ω and l1 are real functions having derivatives of arbitrarily
higher order, which are continuations of 0, ω0 and the first Lyapunov coefficient
at the Hopf point. When l1 < 0 (l1 > 0) a family of stable (unstable) periodic
orbits can be found in these manifolds, shrinking to an equilibrium point at the
Hopf point.

Proof See [14]. �
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In the next example, we apply the projectionmethod discussed in this section to show
that a four dimensional predator-prey ODEmodel undergoes a Hopf bifurcation. For
a detailed study of the model we refer the readers to [17].

Example 1 Consider the system

Ṅ = 4ε
K N 2

(
1 − N

K

) − αN P

Ṗ = −γ P + β P
∫ t
−∞ N (τ ) G (t − τ) dτ,

(20)

that describes the dynamical interactions between a predator and a prey species with
a weak Allee effect in the prey population N (t) and a distributed delay G(t − τ) in
the predator population P(t), at time t . The parameters K , ε, α, γ and β are positive.
K represents the carrying capacity of the environment with respect to the prey, ε

is the intrinsic growth rate of the prey, α is the rate of predation, γ is the intrinsic
mortality of the predator and β is the conversion rate.

In order to determine the equilibria for the system (20), we rewrite (20) in the
following form

Ṅ (t) = 4ε

K
N 2 (t)

(

1 − N (t)

K

)

− αN (t) P (t)

Ṗ (t) = −γ P (t) + β P (t) Q (t)

Q̇ (t) = a (N (t) − Q (t))

Ṙ (t) = a (N (t) − R (t)) ,

(21)

where

Q (t) = a2
∫ t

−∞
(t − τ)N (τ ) exp (−a (t − τ)) dτ

R (t) = a
∫ t

−∞
N (τ ) exp (−a (t − τ)) dτ, t ≥ 0.

The equivalence of (20) and (21) on R+ is to be understood in the following

sense. Let C
0
(−∞, 0] denote the set of real valued functions that are continuous

and bounded on (−∞, 0]. Let (N , P) : [0,∞) → R
2 be the solution of (20) that

corresponds to the “initial function” Ñ ∈ C
0
(−∞, 0] and the initial value P0 = P(0)

that is, on (−∞, 0), N is considered to be equal to Ñ ; then (N , P, Q, R) : [0,∞) →
R

4 is the solution of (21) that satisfies the initial conditions N0 = Ñ , P0 = P(0) and

Q (0) = Q0 = a2
∫ 0

−∞
(−τ)Ñ (τ ) exp (−a (−τ)) dτ

R (0) = R0 = a
∫ 0

−∞
Ñ (τ ) exp (−a (−τ)) dτ.
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The change of variables,

N = K n, P = K p, Q = K q R = Kr and t = s

ε
,

transforms the system (21) into

x′ = f (x, K )

=
(

4n2 (1 − n) − αK

ε
np,−γ

ε
p + βK

ε
pq,

a

ε
(r − q) ,

a

ε
(n − r)

)

,
(22)

where the prime represents the derivative respect to s, x = (n, p, q, r) ∈ R
4 and

K ∈ (0,∞). It is easy to see that system (22) has the following equilibria

E0 = (0, 0, 0, 0) , E1 = (1, 0, 1, 1) and

E2 =
(

γ

βK
,
4εγ (βK − γ )

αβ2K 3
,

γ

βK
,

γ

βK

)

.

For the system (22) the equilibrium E0 is unstable for all K > 0. On the other
hand, the equilibrium E1 is locally asymptotically stable if

K <
γ

β
and unstable if K >

γ

β
. (23)

In the following, we study the stability of the equilibrium E2. In this case, the char-
acteristic polynomial associated with the Jacobian matrix of system (22) evaluated
at E2 is given by

p (λ) = λ4 +
[
2a

ε
+ 4γ

Kβ

(
2γ

Kβ
− 1

)]

λ3 +
[

a2

ε2
+ 8aγ

Kβε

(
2γ

Kβ
− 1

)]

λ2

+ 4a2γ

Kβε2

(
2γ

Kβ
− 1

)

λ + 4a2γ 2

Kβε3

(

1 − γ

Kβ

)

.

The critical point E2 is unstable for the system (22) if

a <
1

2

Kβ − γ

2γ − Kβ
γ (24)

and it is locally asymptotically stable if

a > 2
Kβ − γ

2γ − Kβ
γ. (25)
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Furthermore, if
1

2

Kβ − γ

2γ − Kβ
γ < a < 2

Kβ − γ

2γ − Kβ
γ, (26)

then there exist an ε0 > 0 such that E2 is asymptotically stable for ε > ε0 and unstable
for 0 < ε < ε0, where

ε0 = aK 2β2

2γ (2γ − Kβ)

√
2γ (Kβ − γ ) − √

a (2γ − Kβ)

2
√

a (2γ − Kβ) − √
2γ (Kβ − γ )

. (27)

To simplify the calculations we introduce the notation b = γ

Kβ
and rewrite con-

ditions (26) and (27) respectively, as

γ

2

1 − b

2b − 1
< a < 2γ

1 − b

2b − 1
, ε0 = a

2b (2b − 1)

√
2γ (1 − b) − √

a (2b − 1)

2
√

a (2b − 1) − √
2γ (1 − b) .

At ε = ε0 the eigenvalues of system (22) are given by

λ0 =
−A1 ±

√
A2
1 − 4A0

2
< 0, λ1,2 (ε0) = ±iω

in which

ω2 = 4γ 2 (2γ − Kβ)
3
2
[
2
√

a (2γ − Kβ) − √
2γ (Kβ − γ )

]2

(Kβ)4
√

a
[√

2γ (Kβ − γ ) − √
a (2γ − Kβ)

] > 0,

A1 = 4γ (2γ − Kβ)
√

a (2γ − Kβ)

K 2β2
[√

2γ (Kβ − γ ) − √
a (2γ − Kβ)

] > 0

(28)

A0 = 8γ 3 (2γ − Kβ)
3
2 (Kβ − γ )

[
2
√

a (2γ − Kβ) − √
2γ (Kβ − γ )

]

(Kβ)4
√

a
[√

2γ (Kβ − γ ) − √
a (2γ − Kβ)

]2 > 0. (29)

The inequalities given in (28) and (29) follow assuming that βK − γ > 0 and
2γ − βK > 0.

Now in accordance with (16) it is easy to check that the complex vectors



Current Trends in the Bifurcation Methods of Solutions … 471

q =

⎡

⎢
⎢
⎣

q1

q2

q3

q4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4b2Kβ (1 − b)

ε0
[
16b2 (2b − 1)2 + ω2

] + 16b3Kβ (1 − b) (2b − 1)

ε0ω
[
16b2 (2b − 1)2 + ω2

] i

−4bβ (1 − b)

αω
i

1

1 + ε0ω

a
i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

p̃ =

⎡

⎢
⎢
⎢
⎢
⎣

aε0ω

−abKαi

−4ab2Kβε0 (1 − b) [−ε0ω + ai]

a2 + ε20ω
2

ε20ω [4b (2b − 1) − ωi]

⎤

⎥
⎥
⎥
⎥
⎦

,

(30)

are proper eigenvectors of J and JT respectively. To achieve the necessary normal-
ization given in (16), we can take, for example,

p = 1

〈̃p,q〉 p̃. (31)

Using the notation of the previous section (see expression (15)) the multilinear
symmetric functions may be written as

B (x, y) =

⎡

⎢
⎢
⎣

8 (1 − 3b) x1y1 − Kα
ε0

x1y2 − Kα
ε0

x2y1
Kβ

ε0
x3y2 + Kβ

ε0
x2y3

0
0

⎤

⎥
⎥
⎦ ,

C (x, y, z) =

⎡

⎢
⎢
⎣

−24x1y1z1
0
0
0

⎤

⎥
⎥
⎦ .

(32)

The real part, η = η(ε), of the pair of complex eigenvalues at the critical parameter
ε = ε0 verifies

η′ (ε0) = − 1

ε20

ux + vy

x2 + y2
< 0 (33)

where

u = a
[
aε0ω

2 − 6abγ (1 − b) + 4bε20ω
2 (2b − 1)

]
,

v = aε0ω
[
ε0ω

2 − 4ab (2b − 1)
]

x = 2b (2b − 1)
(
a2 − 3ε20ω

2
) − 3aε0ω

2,

y = ω
[
a2 − 2ε20ω

2 + 8abε0 (2b − 1)
]
.
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Fig. 1 Bifurcation diagram
for 0.2 < ε < 0.5 in ε, n, p
space where H is the
bifurcation point

0.2
0.45 0.5

1.1

0

1.0  H H

n

p

ε

H

Accordingly, we have the following theorem.

Theorem 2 Consider the one-parameter family of differential equations (22) and
suppose that (26) holds. The first Lyapunov coefficient associated with the equilibrium
E2 is given by

l1 (ε0) = 1

2ω
Re

{

− 24 p̄1q1q1q̄1 − 2aε0

bH

[

ωq1 − bKβ

ε0

]

×
[

8(1 − 3b)q1q̄1 − Kα

ε0
(q1q̄2 + q̄1q2)

]

+ aε0ω

H

[

8(1 − 3b)q̄1r1 − Kα

ε0
(q̄1r2 + q̄2r1)

]

+ abK 2αβ

Hε0
[r2 + q̄2r3]

}

where r = (2iωI4 − J)−1 B (q,q) = [r1, r2, r3, r4]T , I4 is the unit 4 × 4 matrix and
J = J(E2) is the Jacobian matrix of system (22) evaluated at E2. If l1 (ε0) is dif-
ferent from zero then the one-parameter family of differential equations (22) has
a transversal Hopf point at E2 for ε = ε0, i.e a Hopf point of codimension 1 at
E2. If l1 (ε0) < 0 then for ε > ε0 the equilibrium point E2 is asymptotically stable
and for each 0 < ε < ε0, but close to ε0, there exists a asymptotically orbitally sta-
ble periodic orbit around the unstable equilibrium point E2. If l1 (ε0) > 0 then for
0 < ε < ε0 the equilibrium point E2 is unstable and for each ε > ε0, but close to ε0,
there exists an unstable periodic orbit around the asymptotically stable equilibrium
point E2.

Using the software MATCONT we illustrate the occurrence of Hopf bifurcation
for the equilibrium E2 = (

γ

βK ,
4εγ (βK−γ )

αβ2K 3 ,
γ

βK ,
γ

βK ). If we consider system (22) with
values of parameters: K = 1.0, α = 0.5, γ = 0.4, β = 0.6, a = 0.5, we get l1 ≈
−0.01735 which shows that the periodic orbit generated by the Hopf bifurcation is
supercritical. In this case, we obtain Fig. 1 (the projection on the ε, n, p-space of
the bifurcation diagram) illustrating the occurrence of stable periodic orbit around
the unstable equilibrium E2 when ε changes on the interval 0.2 < ε < 0.5. Note
that we have the presence of stable periodic orbit up to the bifurcation point ε0 ≈
0.4054270614 which is denoted by H in Fig. 1.
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3 Turing Bifurcation

The basic reaction-diffusion theory of morphogenesis has been put forward in the
classical article written by the English mathematician Turing [18] describing the
way in which non-uniformity (stripes, spots, spirals, etc.) may arise naturally out of
a homogeneous, uniform state. The theory (which can be called a reaction-diffusion
theory of morphogenesis), has served as a basic model in theoretical biology, and is
seen by some as the very beginning of chaos theory. Morphogenesis is a biological
process that causes an organism to formulate its shape in the development of pattern
and form. It is one of three fundamental aspects of developmental biology along with
the control of cell growth and cellular differentiation.

Spatial ecology addresses the fundamental effects of space on the dynamics of
individual species and on the structure, dynamics, diversity, and stability of multi-
species communities. Essentially, this subject is designed to highlight the importance
of space in the areas of stability, patterns of diversity, invasions, coexistence, and pat-
tern generation. The mathematical formulation of the ideas dealing with the spacial
aspect of species leads to reaction diffusion models. For more interesting account of
various aspects and examples in population ecology we refer the readers to [19].

Reaction-diffusion systems have attracted much interest as a prototype model for
pattern formation. The above-mentioned patterns (fronts, spirals, targets, hexagons,
stripes and dissipative solitons) can be found in various types of reaction-diffusion
systems in spite of large discrepancies e.g. in the local reaction terms. It has also
been argued that reaction-diffusion processes are an essential basis for processes
connected to animal coats and skin pigmentation [20, 21]. Another reason for the
interest in reaction-diffusion systems is that although they represent nonlinear partial
differential equation, there are often possibilities for an analytical treatment.

The science of pattern formation deals with the visible, (statistically) orderly
outcomes of self-organization and the common principles behind similar patterns
in nature. In developmental biology, pattern formation refers to the generation of
complex organizations of cell fates in space and time. Pattern formation is controlled
by genes. The role of genes in pattern formation is well seen in the anterior-posterior
patterning of embryos from the model organism Drosophila melanogaster (a fruit
fly). Animal markings, segmentation of animals, phyllotaxis, neuronal activation
patterns like tonotopy, and predator-prey equations’ trajectories are all examples
of how natural patterns are formed. In developmental biology, pattern formation
describes the mechanism by which initially equivalent cells in a developing tissue in
an embryo assume complex forms and functions.

One of the best understood examples of pattern formation is the patterning along
the future head to tail (antero-posterior) axis of the fruit fly Drosophila melanogaster.
The development of this fly is particularly well studied, and it is representative of
a major class of animals, the insects. Other multicellular organisms sometimes use
similar mechanisms for axis formation, although signal transfer between the earliest
cells of many developing organisms is often more important than in Drosophila.
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Vegetation patterns such as fir waves [22] and tiger bush [23] form for different
reasons. Fir waves occur in forests onmountain slopes after wind disturbance, during
regeneration. When trees fall, the trees that they had sheltered become exposed and
are in turn more likely to be damaged, so gaps tend to expand downwind. Mean-
while, on the windward side, young trees grow, protected by the wind shadow of the
remaining tall trees. In contrast, Tiger bush consists of stripes of bushes on arid slopes
in countries such as Niger where plant growth is limited by rainfall. Each roughly
horizontal stripe of vegetation absorbs rainwater from the bare zone immediately
above it [23].

Turing [18] suggested that under certain conditions systems of chemical sub-
stances, although it may originally be quite homogeneous, can react and diffuse in
such a way as to produce spatial patterns or structure due to an instability of the
homogeneous equilibrium. In this section we will be devoted to mechanisms which
can generate spatial pattern and form. We introduce and analyze reaction diffusion
pattern formation mechanisms mainly with developmental biology in mind.

The Turing instability [18] refers to “diffusion-driven instability”, i.e., the station-
ary solution stays stable with respect to a kinetic system (a system without diffusion)
but becomes unstable with respect to the system with diffusion. This phenomenon is
interesting because the general experience is that diffusion is a uniform phenomenon
that is, helps stability by evening out differences, and now the opposite happens,
and it is also of interest because Turing instability may go together with the occur-
rence of a spatially non-constant stationary solution, which is called a pattern. To
be more precise, suppose that the studied reaction diffusion system has a bifurcation
parameter denoted by b and let E∗ be an equilibrium point for the associated kinetic
system, that is, a homogeneous solution for the reaction diffusion system. Let b0 be
a fixed parameter and suppose that for b < b0 the equilibrium solution E∗ is asymp-
totically stable with respect of both the kinetic and the reaction diffusion system;
however, for b > b0 E∗ remains asymptotically stable with respect the kinetic while
it is unstable for the diffusion system; Finally, suppose that in a neighborhood of b0
the associated nonlinear reaction diffusion system has a spatially non-constant sta-
tionary solution, a pattern. Then, we say that at b0 the constant solution E∗ undergoes
a Turing bifurcation.

It is quite natural in many biological processes to consider Cross-diffusion. Note,
for example, that in a predator-prey iteraction we might expect the predators to
develop migratory strategies to take advantage of the preys defense switching behav-
ior. Such migratory behavior, which depends on the concentration of the predators,
constitutes a cross-diffusion which is in addition to each species a natural tendency to
diffuse to areas of smaller population concentration. As the predators cross diffuse,
and the prey switches its defense, we might expect such an ecosystem to exhibit a
rich dynamical interplay among the three species.

In the following, we present some results classifying the existence of Turing
bifurcation in two dimensional reaction diffusion mathematical models represented
by PDEs. We follow basically [24].

Consider the reaction diffusion system satisfying the Newman boundary condi-
tions as follows
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Ut = DUxx + F(U ) (34)

Ux (t, 0) = Ux (t, l) = 0. (35)

Clearly, a spatially constant solution U (t) = (N (t), P(t)) of (34) satisfies the
boundary conditions (35) and the kinetic system

Ut = F(U ). (36)

The equilibriumU ∗ = (N ∗, P∗) of system (36) is at the same time a constant solution
of (34).

Definition 14 The equilibrium U ∗ = (N ∗, P∗) of (34) is Turing (diffusionally)
unstable if it is an asymptotically stable equilibrium of the kinetic system (36) but
is unstable with respect to solutions of (34)–(35).

Remark 9 The latter requirement in Definition 14 means that there are solutions of
(34)–(35) that have initial values U (0, x) arbitrarily close to U ∗ (in the supremum
norm) but do not tend to U ∗ as t tends to infinity.

In the following, we perform some calculations to find a criterion for the Tur-
ing instability. Without loss of generality, we can assume that U ∗ = (0, 0) and the
linearized system of (34) at U ∗ assumes the form

Vt = DVxx + J V (37)

Vx (t, 0) = Vx (t, l) = 0 (38)

where
J = FU (U ∗) (39)

We solve the linear boundary value problem by Fourier’s method. Let 0 = μ0 <

μ1 < μ2 < · · · → ∞ and {φ j }∞j=0 be the eigenvalues and eigenfunctions of the
Laplacian operator in (0, l) with Neumann boundary i.e.,

φ′′
j (x) = μ jφ j (x) on (0, l), φ′

j (x) = 0 at x = 0, l. (40)

We can assume that {ψ j }∞j=0 is an orthonormal basis of L2(�).
So, the solution of (37) with initial condition V (·, 0) = V0 is given by

V (x, t) =
∞∑

k=0

e(J−μ j D)t 〈V0, φk〉φk(x), (41)

where 〈V0, φ j 〉 = ∫ l
0 V0(x)φ j (x) dx .
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It follows from the linearization principle that a ‘non-trivial’ homogeneous solu-
tion of (34–35) is asymptotically stable if the eigenvalues of all matrix J − μ j D
have negative real part; if there exists a k ≥ 1 such that J − μ j D has an eigenvalue
with positive real part then the solution is unstable.

Definition 15 We say that U ∗ undergoes a Turing bifurcation at λ0 ∈ (0,∞) if for
0 < λ < λ0 the solutionU ∗ is asymptotically stable, for λ0 < λ it is unstable (or vice
versa), and in some neighbourhood of λ0 the problem (34)–(35) has non-constant
stationary solutions (i.e. solutions which do not depend on time t but are not constant
in space, are varying with x).

In the following example, we present a two dimensional reaction-diffusion
predator-prey model that exhibits a Turing bifurcation. For a detailed study of this
model, we refer the readers to [25].

Example 2 We consider the following predator-prey system

∂ N

∂t
= DN ∇2N + r N

(

1 − N

K

)

− β(1 − m)N P

K1 + δ(1 − m)N + αηA + θ P
,

∂ P

∂t
= DP∇2P + c[β(1 − m)N + ηA]P

K1 + δ(1 − m)N + αηA + θ P
− γ P,

(42)

where ∇2 ≡ ∂2/∂x2 + ∂2/∂y2 is the Laplacian Operator in the two dimensional
space � = [0, R] × [0, R]; DN , DP are the self-diffusion coefficients for prey and
predator, respectively. If h1 and e1 represents the handling time of the predator per
prey item and the ability of the predator to detect the prey, respectively, then β =
1/h1 and K1 = 1/e1h1 represent the maximum rate of predation and half saturation
value of prey uptake by the predator, respectively. Let h2 and e2, respectively, be
the handling time of the predator per unit quantity of additional food and ability
for the predator to detect the additional food. Thus, introduce the parameters η =
e2/e1 and α = h2/h1. The term ηA designates effectual additional food level and
the constant θ scales the impact of predator interference. The description of the
parameters composing the model (42) is given as follows: r is the maximum growth
rate of prey; K is the carrying capacity of prey; δ is the proportionality constant;
m represents the proportion of refuge protecting the prey; α is the relative handling
time for additional food to prey item; η represents the relative ability of the predator
to detect additional food to prey; A is the amount of additional food to the predators;
c represents the maximum growth rate of the predator; γ is the death rate of predator.

Model (42) is to be analyzed under the following non-zero initial condition and
zero-flux (or Neumann) boundary conditions:

N (x, y, 0) > 0, P(x, y, 0) > 0, (x, y) ∈ � = [0, R] × [0, R], (43)
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∂ N

∂ν
= ∂ P

∂ν
= 0, (x, y) ∈ ∂�. (44)

where ν = �ν(x) denotes the outer unit normal to ∂�.
The constant solutions of system (42)–(44) are the same as the constant solution

of the kinetic system. Following the ideas in [25], the constant solutions of (42)–(44)

are: E0 = (0, 0); E1 = (K , 0); E2 = (0, P2); where P2 = cηA − γ (K1 + αηA)

θγ
,

which is feasible if cηA − γ (K1 + αηA) > 0; and E∗(N ∗, P∗), where P∗ =
(1 − m)(cβ − γ δ)N ∗ + cηA − γ (K1 + αηA)

γ θ
and N ∗ is the positive root of the fol-

lowingquadratic equation: a0N 2 + a1N + a2 = 0, where a0 = rcθβ(1 − m), a1 =
rcθηA + βK (1 − m)2(cβ − γ δ) − rcθ Kβ(1 − m) and a2 = βK (1 − m)[cηA −
γ (K1 + αηA)] − rcθηAK . The previous quadratic equation in N , has exactly one
positive root if a2 < 0.

We will focus our attention on the effect of diffusion on the system (42)–(44)
around the equilibrium point E∗. To this purpose, we consider the variational system
of (42)–(44) corresponding to E∗ which is given by

∂n

∂t
= a11n + a12 p + DN

(
∂2n

∂x2
+ ∂2n

∂y2

)

,

∂p

∂t
= a21n + a22 p + DP

(
∂2 p

∂x2
+ ∂2 p

∂y2

)

, (45)

where N = N ∗ + n, P = P∗ + p. Here, (n, p) are small perturbation of (N , P)

around the interior equilibrium point E∗(N ∗, P∗). We observe that the Jacobian
matrix corresponding to the interior equilibrium E∗ of the kinetic system associated
with (42) can be written as

J (E∗) =
[

a11 a12

a21 a22

]

where

a11 = −
(

r

K
− βδ(1 − m)2P∗

[K1 + δ(1 − m)N ∗ + αηA + θ P∗]2
)

N ∗,

a12 = −β(1 − m)N ∗[K1 + δ(1 − m)N ∗ + αηA]
[K1 + δ(1 − m)N ∗ + αηA + θ P∗]2 ,
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a21 = c(1 − m)P∗[β(K1 + αηA + θ P∗) − δηA]
[K1 + δ(1 − m)N ∗ + αηA + θ P∗]2 ,

a22 = − cθ P∗[β(1 − m)N ∗ + ηA]
[K1 + δ(1 − m)N ∗ + αηA + θ P∗]2 .

The corresponding characteristic equation of J is

λ2 + Aλ + B = 0, (46)

where A = −(a11 + a22) and B = a11a22 − a12a21.
Let us consider the solution of system (45) in the form

(
n
p

)

=
(

nk

pk

)

eξ t+i(κx x+κy y)

where ξ is the growth rate of perturbation in time t , κx and κy represent the wave
numbers of the solutions. The Jacobian matrix of the linearized system (45) can be
written as

J̃ =
(

a11 − DN (κ2
x + κ2

y ) a12

a21 a22 − DP(κ2
x + κ2

y )

)

.

In the spatial model, the value of ξ depends on the sum of the square of wave
numbers κ2

x + κ2
y [26]. As a result, both wave numbers affect the eigenvalues. This

makes it clear that some Fourier modes will vanish in the long-term limit whereas
others will amplify. For the sake of simplicity, we can make use of ξ being rotational
symmetric function on the κxκy-plane and substitute κ2 = κ2

x + κ2
y and obtain the

results for the two-dimensional case from the one-dimensional formulation. The
corresponding characteristic equation is given by

ξ 2 + Ãξ + B̃ = 0, (47)

where

Ã = A + κ2(DN + DP),

B̃ = B − (a11DP + a22DN )κ2 + DN DPκ4.

By the Routh-Hurwitz criterion together with Eq. (47), we conclude that the equilib-
rium point E∗ is locally asymptotically stable in the presence of diffusion if and only
if Ã > 0 and B̃ > 0. Clearly, A > 0 implies Ã > 0. Therefore, Turing instability
occurs only in the case when B > 0, but B̃ < 0. Hence, the condition for Turing
instability is given by

DN DPκ4 − (a11DP + a22DN )κ2 + B < 0. (48)
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The minimum of DN DPκ4 − (a11DP + a22DN )κ2 + B = 0 is reached at κ2 = κ2
c ,

where κ2
c is given by

κ2
c = a11DP + a22DN

2DN DP
> 0. (49)

As a11 + a22 < 0 and κc is real then we must have a11a22 < 0. Thus, a sufficient
condition for instability is that inequality (48) be satisfied. Therefore, with the above
value of κ2

c , the condition for Turing instability given by inequality (48) can be
written as

(a11DP + a22DN )2 > 4DN DP B. (50)

The critical wave number κc of the growing perturbation is given by Eq. (49). It is
not difficult to find that a change of sign in inequality (48) occurs when κ2 enters or
leaves the interval (κ2−, κ2+) where

κ2
± = a11DP + a22DN ± √

(a11DP + a22DN )2 − 4DN DP B

2DN DP
.

In particular, inequality (48) is satisfied (i.e., instability is present) for κ2− < κ2 < κ2+.
Note that the Turing instability cannot occur unless the diffusivity ratio is suffi-

ciently away from unity. Indeed, recall that a11 + a22 < 0 and therefore a11 < −a22

(where a22 < 0). Then, from the condition (49), we obtain:

DP

DN
> −a22

a11
> 1. (51)

Condition (51) is a general necessary condition of Turing instability applicable to
any two-species system. In particular, it means that the diffusive instability cannot
occur for DP = DN .

Looking at the above analytic conditions, it is not clear how the local asymp-
totic stability and the Turing instability depend on the prey refuge and the additional
food parameters. Therefore, in the following we present some numerical simulation
to verify the occurrence of Turing instability. We consider system (42) with val-
ues of parameters: r = 0.5, K = 3, β = 0.6, δ = 1, m = 0.1, α = 0.01, η = 0.01,
A = 0.04 c = 1, γ = 0.25, θ = 0.4, K1 = 0.4, DN = 0.01, DP = 1.We investigate
different Turing patterns of system (42). To explore the spatio-temporal dynamics of
the system (42) in two dimensional spatial domain, the system of partial differential
equations is numerically solved using a finite difference method. During numeri-
cal simulation different types of dynamics have been observed and it is found that
the distributions of predator and prey are always of the same type. Thus, we have
restricted our analysis of pattern formation to one distribution and only shown the
distribution of prey for instance. We look at different situations by varying one of
the parameters between m and A and keeping the other one fixed.
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Fig. 2 Stationary Turing patterns developed by prey at a–c A = 14 and different values of m,
d–f m = 0.15 and different values of A at time t = 20,000. Variations in m results in the pattern
sequence spots to stripes to holes, whereas variations in A results in the opposite pattern sequence
holes to stripes to spots

Different spatial patterns of the prey population emerge aswe vary prey refuge (m)
by keeping the value of additional food (A) fixed at A = 14 (Fig. 2a–c). The absence
of prey refuge (m = 0) results in spot patterns, i.e., where the prey abundance is
higher in isolated zones (Fig. 2a). In view of population dynamics, “spots” pattern
means that the prey population is driven by the predator to a very low level inmajority
of the spatial region and the final result is the formation of patches of high prey density
surrounded by areas of low prey densities. At m = 0.34, there is regular peaks and
troughs of prey density, hence the stripe pattern emerges (Fig. 2b). However, for large
prey refuge (m = 0.351), themodel dynamics exhibits a transition from stripes-holes
growth to holes replication, where the prey population is in the isolated zone with
low density and the remaining region is of high density (Fig. 2c). Therefore, by
increasing the value of m, the pattern sequence “spots → stripe-spot mixture →
stripes → stripe-hole mixtures → holes” is observed.

Next, we look at different pattern formations by varying additional food A by
keeping prey refuge as constant (m = 0.15) (Fig. 2d–f). In the absence of additional
food supply (A = 0), we observe holes patterns (Fig. 2d). As we reach the value
A = 5, the whole space is dominated by stripe patterns (Fig. 2e). For larger values
of additional food (A = 10), spot pattern dominates the space (Fig. 2f). Therefore,
in this case, an increase in additional food results in the pattern sequence “holes →
stripe-hole mixture → stripes → stripe-spot mixtures → spots”. Thus, it is inferred
that by increasing the level of additional food to the predator, there is a transition
from the prey predominant state to predator predominant state when prey refuge is
present in the system.
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4 Zip Bifurcation for ODE Systems Without Delay

In a recent study on a model describing the interactions of two predator species
competing for one prey [27, 28], it is assumed that the threshold quantities of prey at
which predator growth rate becomes positive are equal. As a consequence, it has been
observed that the model system admits a one dimensional continuum of equilibria
leading to, what is described as a zip bifurcation phenomenon. The zip bifurcation
concept was introduced by Farkas [27] in connection with the study of the following
ordinary differential system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ṡ = γ S

(

1 − S

K

)

− m1S

a1 + S
u1 − m2S

a2 + S
u2

u̇1 = m1S

a1 + S
u1 − d1u1

u̇2 = m2S

a2 + S
x2 − d2u2.

(52)

modeling the interaction between two predator species competing for a single prey
with theHolling type-II functional response mS

a+S . In system (52), S denotes the density
of the prey population and u1, u2 represent the densities of the predator populations.
The constants γ and K are positive and respectively, denote the intrinsic growth rate
and carrying capacity of the environment with respect to prey. The parameters mi ,
di and ai , for i = 1, 2, correspond to the maximal growth rates, mortality rates and
saturation constants of the respective predator populations. Also the parameters α

and β are positive and satisfy the inequality 0 < α ≤ β < 1. The functional response
of the predator i is given by p(S, ai ) = mi S

ai +S , i = 1, 2. One of the predators could
be identified as a k-strategist and the other as an r -strategist. Roughly speaking, a
species is said to be a k-strategist if it has a relatively low growth rate and may
survive with low carrying capacity K , while the other predator, which exhibits high
growth rate, is identified as a r -strategist (for details see [27–29]). It was establish
that this model is not structurally stable, however, it illustrates the intuitively evident
fact that at low values of the carrying capacity K , both predators might survive but
as K grows, the k-strategist loses ground and only the r -strategist survives with the
prey.

It is interesting to note that competition in predator-prey models differs from
that of competition in microbial populations more popularly known as chemostat
models. Evidently in the case of predator models, the predators have to put effort
in securing prey, while in microbes the predator is not required to put any effort as
they grow in cultured medium and the nutrients reach the microbes. For this reason,
though competition occurs in microbes, the study will yield different dynamics. The
basic response law in microbial populations is expressed in terms of Michaelis-
Menten type formulation (For more details and relevant models we refer the readers
to Nisbet and Gurney [30], Sree Hari Rao and Rajasekhara Rao [31–33], Smith
and Waltman [34]). The mathematical representation of the Holling type-II type
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response function resembles the Holling type II response function used largely for
predator-prey competition systems. This often leads to confusion among the readers
who expect that the dynamics induced by the two respective competition systems
be alike. We wish to state clearly that the present study restricts our considerations
solely to predator-prey systems.

In the following we present a very brief summary of the results in [27] for sys-
tem (52). The system (52) admits the following equilibria: (S, x1, x2) = (0, 0, 0);
(S, x1, x2) = (K , 0, 0) and the points on the straight line

L K =
{
(
S, u1, u2

) ∈ R3; S = λ, u1 ≥ 0, u2 ≥ 0 and

m1
S

a1 + S
u1 + m2

S

a2 + S
u2 = γ (1 − λ

K
)

} (53)

in the positive octant of the S, u1, u2-space, provided we assume that

mi > di for i = 1, 2, and λ = a1d1
m1 − d1

= a2d2
m2 − d2

. (54)

The equilibria on L K will be denoted by u∗ = (λ, ξ1, ξ2). Hence u∗ ∈ L K . The
end points of the line segment, i.e. the equilibria in the u1 = 0 and u2 = 0 planes,
respectively are

P2 = (λ, 0, ξ2) =
(
λ, 0,

γ (a2 + λ)(K − λ)

m2K

)
and

P1 = (λ, 0, ξ1) =
(
λ,

γ (a1 + λ)(K − λ)

m1K
, 0

)
.

It is easy to see that the trivial equilibria (0, 0, 0) and (K , 0, 0) are unstable provided
0 < λ < K (see [27, 29] for details). Also, all equilibria on L K are stable for all K
that satisfy the inequalityλ < K ≤ a2 + 2λ. Thismeans that if food is scarce both the
r and k-strategists may live together in the long run in a steady state that depends on
the initial values of the species. When a2 + 2λ < K < a1 + 2λ (i.e, when a1 > a2)
the family of equilibria on the line L K undergoes a split and a part of L K is unstable;
that is, there exists a point (λ, ξ1(K ), ξ2(K )) on L K such that the equilibria on

LU = {
(λ, ξ1, ξ2) ∈ L K : ξ1 < ξ1(K )

}

are unstable for the flow of (52) and the equilibria on

L S = {
(λ, ξ1, ξ2) ∈ L K : ξ1 > ξ1(K )

}

are stable. The point (ξ1(K ), ξ2(K )) is obtained solving the system



Current Trends in the Bifurcation Methods of Solutions … 483

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m1ξ1

a1 + λ
+ m2ξ2

a2 + λ
= γ (K − λ)

K

m1ξ1

(a1 + λ)2
+ m2ξ2

(a2 + λ)2
= γ

K
.

(55)

As K takes on the value a1 + 2λ the equilibrium that exists in (S, x1)-plane is stable
while all other equilibria on L K lose stability. When K > a1 + 2λ all equilibria on
L K become unstable.

Note that as K increases from a2 + 2λ to a1 + 2λ the point (λ, ξ1(K ), ξ2(K ))

moves along L K continuously from (λ, 0, ξ2(K )) to (λ, ξ1(K ), 0) so that the points
left behind become unstable. This phenomenon has been termed as zip bifurcation
(see [27, 29]). From the point of view of the competition, as the quantity of available
food increases the k-strategist loses ground and those equilibria where the relative
growth of k-strategist is high compared to the growth of r -strategist, are the first to
be destabilized. When K reaches the value a1 + 2λ all interior equilibria become
destabilized and the only stable equilibrium remaining is the endpoint of L in the
(S, x1)-plane. This means that at this value of the carrying capacity the k-strategist
dies out. Onemay prove that if K is increased further then even the equilibrium in the
(S, x1)-plane gets destabilized but the prey and the r -strategist continue to coexist
in a periodic manner due to the occurrence of Andronov-Hopf bifurcation.

It is interesting to observe that the line L K (blue line in Fig. 3) represents the line
of nonisolated equilibria in the positive octant of R3. This line connects points PK

in the (S, x2)-plane and QK in the (S, x1)-plane. Note that there exists a point MK

on L K with the property that the equilibria on L K between PK and MK are unstable,
while those between MK and QK are stable in the case where a1 > a2 or vice-versa

Fig. 3 a Zip bifurcation: the part of L K between PK and MK is unstable and that between MK
and QK is stable if a1 > a2 or vice-versa (if a1 < a2); b degenerate zip bifurcation: in this case
a + 2λ < K < a + 2λ + δ and all equilibria on L K are unstable with an invariant topological
cylinder around L K which is a local attractor for system (52)
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in the case where a1 < a2 (see Fig. 3a). We present in the following the main result
obtained in [27] related to the zip bifurcartion phenomenon.

Theorem 3 For any k satisfying a2 + 2λ < K < a1 + 2λ the point (λ, ξ1(K ),

ξ2(K )) divides L K into two segments; the equilibria of system (52) in the set

LU = {(λ, ξ1(K ), ξ2(K )) ∈ L K : ξ1 < ξ1(K )}

are unstable, the equilibria in the set

L S = {(λ, ξ1(K ), ξ2(K )) ∈ L K : ξ1 > ξ1(K )}

are stable in the Lyapunov sense (L S stands for the “stable part of L K ”).

Also, when a1 = a2 it is clear that all equilibria on L K are stable for all K that
satisfies the inequality λ < K ≤ a2 + 2λ. Furthermore, when K crosses a + 2λ all
equilibria on L K lose stability and at K = a + 2λ the segment L K bifurcates into a
cylinder, that is there exists a δ > 0 such that for a + 2λ < K < a + 2λ + δ system
(52) has an invariant topological cylinder C which is the union of closed paths and
is an attractor of the system. Further it has a neighbourhood in which the trajectories
with initial condition in this neighbourhood tend to C as t tends to infinity (See
Fig. 3b). In other words, we observe that the zip bifurcation that shows up for all
a1 	= a2, vanishes when a1 = a2. This is an interesting scenario in the dynamics
of the system (52) and henceforth, we term this phenomenon as a degenerate zip
bifurcation.

We simulate the system (52)with the following values of the parametersm1 = 0.6,
m2 = 0.7, d1 = 0.3, d2 = 0.2, β1 = 0.3, β2 = 0.5, γ = 0.8, a1 = 0.16, a2 = 0.4,
λ = 0.16 and K = 0.6 (see Fig. 4). Clearly Fig. 4 explains the occurrence of zip bifur-
cation of the equilibria on the line L K with unstable part initiating near the (S, x1)-
plane and also on the line L K (the brown line) and directed towards the (S, x2)-plane
with the stable part lying near this plane. We note that the transition from instabil-
ity to stability occurs at (λ, ξ1(K ), ξ2(K )) = (0.16, 0.1137777778, 0.2986666667)
on L K .

In the study ofmathematical models of real world problems usually conditions are
placed on the parameters of the model equations to yield isolated equilibrium points.
Local stability analysis of an isolated equilibrium would explain the circumstances
under which such an equilibrium would lose or gain stability when the parameters
pass through certain critical values. Also it may be established under certain addi-
tional assumptions that the change in the stability behavior may lead to the presence
of small amplitude periodic solutions when the parameters pass through these critical
values. In such a situation we say that the equilibrium bifurcates into small amplitude
periodic solutions. Now in the models presented in this survey, following the ideas
developed in [27, 28], we observe that a continuum of equilibrium points or a line of
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Fig. 4 Phase portrait: The
red curve is an unstable orbit
initiating near the (S,
x1)-plane and the line L K ,
directed towards the (S,
x2)-plane with the stable part
lying in it; the black curve is
a stable orbit initiating near
the (S, x2)-plane and the line
L K , directed towards the (S,
x1)-plane with the unstable
part lying in it

non isolated equilibrium points exists when the carrying capacity K is varied. The
stability analysis of this continuum in many situations is very complicated.

There aremany studieswherein the researchers have studied predator prey systems
of the type described by system (52), by placing appropriate conditions that yield
isolated equilibria. The feature of our work is to analyze systems that posses non
isolated (a continuum of equilibria) for predator prey models described by system
(52). Thus, themodels presented in this survey is different from thework that appears
in the literature.We have not provided the complete bibliography of the results related
to the study of isolated equilibria. We refer the readers to the work in the following
references in which the non isolated equilibria situation has been studied [35–41].

5 Zip Bifurcation for ODE Systems with Delay

Timedelays are natural in any biological process therefore, in this section a delay term
modeling the delayed logistic growth of the prey is included in the prey equation of
system (52). Fixed points of the system are identified, and the main result concerning
the linearized stability analysis of the nonisolated equilibria is presented. Accord-
ingly, in this survey paper we consider the following system of ordinary differential
equations involving a discrete time delay
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′(t) = γ
(
1 − S(t−τ)

K

)
S(t) − m1

S(t)

a1 + S(t)
u1(t) − m2

S(t)

a2 + S(t)
u2(t)

u′
1(t) = m1S(t)

a1 + S(t)
u1(t) − d1u1(t)

u′
2(t) = m2S(t)

a2 + S(t)
u2(t) − d2u2(t).

(56)

The meaning of the parameters composing model (56) are the same as in model (52).
The equilibria of (56) satisfy the equations

γ
(
1 − S(t − τ)

K

)
S(t) − m1

S(t)

a1 + S(t)
u1(t) − m2

S(t)

a2 + S(t)
u2(t) = 0

m1S(t)

a1 + S(t)
u1(t) − d1u1(t) = 0

m2S(t)

a2 + S(t)
u2(t) − d2u2(t) = 0.

Following the arguments given in [27, 28, 37, 38] we conclude that the equilibria
of (56) are

(S, u1, u2) = (0, 0, 0), (S, u1, u2) = (K , 0, 0)

and the points on the straight line segment

L K =
{
(
S, u1, u2

) ∈ R3; S = λ, u1 ≥ 0, u2 ≥ 0 and

m1
S

a1 + S
u1 + m2

S

a2 + S
u2 = γ

(
1 − λ

K

)
}

in the positive octant of (S, u1, u2)-space, provided we assume that

mi > di for i = 1, 2, and λ = a1d1
m1 − d1

= a2d2
m2 − d2

. (57)

The characteristic equation associated with the variational system of system (52)
at (λ, ξ1, ξ2) ∈ L K is given by

μ

[

μ2 − aμ + c + be−μτμ

]

= 0 (58)

where a = λ
∑2

i=1
mi

(ai +λ)2
ξi ; b = λγ

K and c = λ
∑2

i=1
mi βi

(ai +λ)2
ξi .

We now discuss the stability of the equilibria (λ, ξ1, ξ2) on L K for a fixed K in the
interval (a2 + 2λ, a2 + 2λ). In this case, the family of equilibria on L K undergoes
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a split and there exists a point (λ, ξ1(K ), ξ2(K )) on L K such that the equilibria on
LU are unstable for the flow of (52) and the equilibria on L S are stable in view of
the case when τ = 0. For details we refer the readers to [39].

Theorem 4 The number of different imaginary roots with positive (negative) imag-
inary parts of (58) can be zero, one, or two only.

(I) If there are no such roots, then the stability of each equilibrium (λ, ξ1, ξ2) ∈ L K

does not switch for any τ ≥ 0.
(II) If there is one imaginary root of (58) with positive imaginary part, an unstable

solution (λ, ξ1, ξ2) on L K never becomes stable for any τ ≥ 0. If the solution is
asymptotically stable for τ = 0, then there exists a τ0 > 0 such that for all τ <

τ0 this solution is uniformly asymptotically stable, and is unstable for all τ > τ0.
(III) If there are two imaginary roots with positive imaginary part, ω+, ω−, such

that 0 < ω− < ω+, then the stability of each equilibrium (λ, ξ1, ξ2) on L K can
change at most a finite number of times, as τ increases, and eventually becomes
unstable.

Corollary 1 Suppose that E = (λ, ξ1, ξ2) ∈ L K is an equilibrium point of system
(56) or equivalently of system (52). Then the following statement holds.

(i) If E is stable (or unstable) for system (56) when τ = 0, then stability switches
may not occur for all τ ≥ 0.

(ii) If E is stable for system (56) when τ = 0, we may have a τ0 > 0 such that E
loses its stability when τ passes through τ0.

(iii) If E is stable (or unstable) for system (56) when τ = 0, we may have a finite
number of stability switches for E as τ increases.

Corollary 2 For any fixed K satisfying a2 + 2λ ≤ K ≤ a1 + 2λ, there exists an
equilibrium point (λ, ξ1(K ), ξ2(K )) which splits L K in two parts Lu

K and Ls
K (one

of which may be empty); for τ = 0, the equilibria of (56) on the set

Lu
K = {

(λ, ξ1, ξ2) ∈ L K : ξ1 < ξ1(K )
}

are unstable and the equilibria on the set

Ls
K = {

(λ, ξ1, ξ2) ∈ L K : ξ1 > ξ1(K )
}

are stable. Furthermore, depending of the values of the parameters of the system
(56) the zip bifurcation phenomenon may or may not be preserved. In other words
the zip bifurcation is unsustainable.

Remark 10 The above result is surprising since it shows that the zip bifurcation
phenomenon cannot be sustained in the presence of a discrete delay in system (52).
In the section we consider a delay-free system and conclude taht the sustainability
of the zip bifurcation is achieved even in the presence of diffusion.
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Fig. 5 Unsustainable zip bifurcation

In the Fig. 5, we present the simulation illustrating the dynamics of the time delay
system (56). We choose the following values for the parameters in system (56) given
by m1 = 0.6, m2 = 0.3, d1 = 0.3, d2 = 0.2, β1 = 0.3, β2 = 0.1, γ = 46, a2 = 1,
a1 = 2, λ = 2 and K = 5.5. We find that the equilibria (λ, ξ1, ξ2) on the line L K

is stable for all values of τ satisfying 0 ≤ τ ≤ τ1 = 0.04163939054 and is unstable
for τ > τ1 (see Fig. 5). This confirms the unsustainability of the zip bifurcation
when τ > τ1. It is clear from Fig. 5 that τ = 0.03 (blue curve) represents the stable
behaviour of S and for τ = 0.04 (pink curve) S loses stability since this value of
τ is nearer to τ1. Also, for τ = 0.05 and 0.06, S exhibits more instability tendency
(brickred and green curves respectively).

6 Zip Bifurcation for Reaction Diffusion Systems Without
Delay

The model to be discussed is described by the partial differential equation system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
(x, t) = δ0�S + γ (1 − S

K
)S −

2∑

i=1

mi
S

ai + S
ui in � × (0,∞)

∂u1

∂t
(x, t) = δ1�u1 + (m1

S

a1 + S
− d1)u1,

∂u2

∂t
(x, t) = δ2�u2 + (m2

S

a2 + S
− d2)u2

(59)
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where � ⊂ R
N (N = 1, 2, 3) is an open connected bounded domain with smooth

boundary ∂�. We will assume that the functions S and ui satisfies the Neumann
boundary conditions

∂S

∂ν
(x, t) = 0,

∂ui

∂ν
(x, t) = 0, i = 1, 2, on ∂� × (0,∞), (60)

where ν = �ν(x) denotes the outer unit normal to ∂� and� = ∑N
j=1

∂
∂x j

is the Lapla-
cian operator. The meaning of the parameters composing model (59) are the same as
in model (52). Positivity and global existence of the solutions for system (59)–(60),
have been studied in [38].

The homogeneous solutions of system (59)–(60) are the same as the constant
solutions of system (52). To study the stability of these equilibria, let E = (S∗, u∗

1, u∗
2)

be a homogeneous solution of system (59)–(60). Thus the variational system of (59)–
(60) corresponding to E is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S(x, t)

∂t
= δ0�S +

[

γ
(
1 − S∗

K

) −
n∑

i=1

mi
ai

(ai + S∗)2
u∗

i

]

S(t, x)

−
2∑

i=1

mi S∗

ai + S∗ ui (t, x) − γ λ

K
S(t − τ, x)

∂ui (x, t)

∂t
= δi�ui + βi u∗

i

ai + S∗ ui (t, x), i = 1, 2, on � × (0,∞).

(61)

Let 0 = μ0 < μ1 < μ2 < . . . → ∞ and {ψk}∞k=0 be the eigenvalues and eigen-
functions of the Laplacian operator in�with Neumann boundary conditions on ∂�:

⎧
⎨

⎩

�ψk = λkψk in �

∂ψk

∂ν
= 0 on ∂�.

(62)

Without loss of generality,we suppose that {ψk}∞k=0 is anorthonormal basis for L2(�).
Let w = (S, u1, u2), D = diag(δ0, δ1, δ2) and J be the matrix

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ

2∑

i=1

mi

(ai + S∗)2
u∗

i − γ S∗

K
e−τν − m1S∗

a1 + S∗ − m2S∗

a2 + S∗

β1u∗
1

a1 + S∗ 0 0

β2u∗
2

a2 + S∗ 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Then, (61) can be written as

∂w

∂t
= D�w + Jw,

hence, the solution of (60), (61) with initial condition w(·, 0) = w0 is given by

w(x, t) =
∞∑

k=0

e(J−μk D)t 〈w0, ψk〉ψk(x), (63)

where 〈w0, ψk〉 = ∫
�

w0(x)ψk(x) dx .
It follows from the linearization principle that a ‘non-trivial’ homogeneous solu-

tion of (59)–(60) is asymptotically stable if all the eigenvalues of thematrix J − μk D
have negative real parts and if there exists a k ≥ 0 such that J − μk D has an eigen-
value with positive real part then the solution is unstable. In the following, we present
the mains results obtained in [39] concerning the stability of the equilibria on L K of
the system (59)–(60).

Theorem 5 Suppose that E is an equilibrium of (59)–(60) independent of x. If E is
stable for the flow of (52), then E is stable for the flow of (59)–(60) independently
of D = diag(δ0, δ1, δ2).

Theorem 6 For any K satisfying a2 + 2λ ≤ K ≤ a1 + 2λ, the point (λ, ξ1(K ),

ξ2(K )) splits L K into two parts Lu
K and Ls

K ; the equilibria of (59)–(60) in the set

Lu
K = {(λ, ξ1, ξ2) ∈ L K : ξ1 < ξ1(K )}

are unstable and those in the set

Ls
K = {(λ, ξ1, ξ2) ∈ L K : ξ1 > ξ1(K )}

are stable, independently of the diffusion matrix D = diag(δ0, δ1, δ2).

So, the result given in Theorem 5 shows that the zip bifurcation phenomenon may
be preserved by the introduction of a diagonal diffusion matrix D in the model (59),
independent of the domain �.

7 Zip Bifurcation for Reaction Diffusion Systems with
Delay

Together with the diffusion of the species, the reaction-diffusion model studied in
this section is represented by the following PDE system
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
(x, t) = δ0�S(t, x) + γ

(
1 − S(t − τ, x)

K

)
S(t, x) −

2∑

i=1

mi
S

ai + S
ui (t, x)

∂u1

∂t
(x, t) = δ1�u1(t, x) + (

m1
S

a1 + S
u1(t, x) − d1

)
u1(t, x)

∂u2

∂t
(x, t) = δ2�u2(t, x) + (

m2
S

a2 + S
u2(t, x) − d2

)
u2(t, x), on � × (0,∞)

(64)

where we assume that the functions S and ui satisfy the Neumann boundary condi-
tions

∂S

∂ν
= 0,

∂ui

∂ν
= 0, i = 1, 2, on ∂� × (0,∞), (65)

ν = �ν(x) denotes the outer unit normal to ∂� and� = ∑N
j=1 ∂/∂x j is the Laplacian

operator.
We are interested on the stability of the equilibria of the system (64)–(65) on L K .

If E ∈ L K , following the results presented in [39] we have the following theorem.

Theorem 7 (i) Assume that conditions (H1) given in [39] pp. 1231 hold. If the
equilibrium E is stable (unstable) at τ = 0 then E remains stable (unstable)
for all τ ≥ 0.

(ii) Assume that conditions (H2) given in [39] pp. 1231 hold. Then E is unstable
for all τ ≥ 0.

(iii) Assume that either (H3) or (H4) given in [39] pp. 1232 holds. As τ increases,
stability switches may occur.

Remark 11 Note that if part (i) of Theorem 7 holds, then the zip bifurcation phe-
nomenon sustains. On the other hand, if (i i i) holds the phenomenonmay not sustain.

8 Zip Bifurcation for Reaction Diffusion Systems with
Cross-Diffusion

We are analyzing an ecosystem consisting of two predators competing for one single
prey. In such a system, we might expect the prey to develop two separate sets of
defensive capabilities, one effective against each of the predators, and would switch
from one set to the other depending on the relative abundance of the two preda-
tor species. Such defense switching behavior has been described, for example, for
a fish species in the Lake Tanganyika against two phenotypes of the scale-eating
cichlid P. microlepis [42]. On the other hand, we might also expect the predators to
develop migratory strategies to take advantage of the defense switching behavior of
the prey. In the present work this is indeed the case. The purpose of this paper is
to investigate such a migration which involves cross-diffusion process. In particular,
we will demonstrate the emergence of Turing instability. For a detailed discussion
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and examples on cross-diffusion models describing real world phenomena, we refer
the readers to [18, 20, 21, 43–45].

Accordingly, noting that the relationship between the two predators in (52) is
competitive, we shall introduce the cross-diffusion terms as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div (δ0∇S) = γ (1 − S
K )S − m1

S
a1+S u1 − m2

S
a2+S u2

−div

[
(
δ1 + k1

a1+u2

)∇u1 − k1u1
(a1+u2)2

∇u2

]

= (m1
S

a1+S − d1)u1

−div

[
(
δ2 + k2

a2+u1

)∇u2 − k2u2
(a2+u1)2

∇u1

]

= (m2
S

a2+S − d2)u2 on � × [0,∞)

(66)

with Neumann boundary conditions

∂S

∂ν
(x, t) = 0,

∂ui

∂ν
(x, t) = 0, i = 1, 2, on ∂� × [0,∞). (67)

As a starting point in this exposition, we consider the one dimensional form of
the system (66)–(67) by letting � = [0, l], l a fixed constant.

Remark 12 In the system (66), k1 and k2 denote the cross-diffusion coefficients.
The predators u1, and u2 diffuse with flux

J1 = −
(

δ1 + k1
a1 + u2

)

∇u1 + k1u1

(a1 + u2)2
∇u2.

We observe that, as k1u1
(a1+u2)2

≥ 0, the part k1u1
(a1+u2)2

∇u2 of the flux of u1 is directed
towards the increasing population density of the predator u2. In this way, the first
predator moves in anticipation of the predator u2 and of the defense switching behav-
ior of the prey. Similarly, we can observe that the flux of u2 is directed towards the
increasing population density of the predator u1 so that the second predator also
moves in anticipation of predator u1 and of the defense switching behavior of the
prey, which shows the competition between the two predators.

Keeping � = [0, l] and l fixed, we also consider a study of the one dimensional
form of the system (52) given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

St = �
(
k11S + k12u1 + k13u2

) + γ (1 − S

K
)S − m1

S

a1 + S
u1 − m2

S

a2 + S
u2

u1t = �
(
k21S + k22u1 + k23u2

) + (m1
S

a1 + S
− d1)u1

u2t = �
(
k31S + k32u1 + k33u2

) + (m2
S

a2 + S
− d2)u2,

Sx = u1x = u2x = 0, on [0, l] × [0,∞),

(68)
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where ki j , i, j = 1, 2, 3 are constants.
We notice that the homogeneous solutions for systems (66) and (68) are (S, u1, u2)

= (0, 0, 0), (S, u1, u2) = (K , 0, 0) and those described in equation of L K given
in (53).

8.1 Analysis of Equilibria for Model (66) on the Line L K

In the following, we consider the cross-diffusion model (66) and present the results
concerning the stability properties of the equilibriau∗ = (λ, ξ1, ξ2) ∈ L K . The results
presented here were submitted for publication and shall appear in the future.

Proposition 2 If K > a1 + 2λ, then all equilibria on L K are unstable.

The following result presents the conditions under which the PDE system (66)
and its corresponding ODE system (52) share the same stability behavior.

Theorem 8 Suppose that u∗ is an equilibrium of (66) independent of x. If u∗ is
stable for the flow of (52), then u∗ will be stable for the flow of (66).

Theorem 8 may be viewed as a result on the preservation of stability under self-
diffusion for prey population and cross-diffusion for both predator populations for
model (66). As a consequence, if λ < K < a2 + 2λ, the line of equilibrium points
L K of (52) is locally asymptotically stable for the flow of (66). If K > a1 + 2λ, then
L K is unstable. We have the following corollary.

Corollary 3 For any K satisfying a2 + 2λ ≤ K ≤ a1 + 2λ, the point (λ, ξ1(K ),

ξ2(K )) splits L K in two parts Lu
K and Ls

K ; the equilibria of (66) on the set

Lu
K = {(λ, ξ1, ξ2) ∈ L K : ξ1 < ξ1(K )}

are unstable and those on the set

Ls
K = {(λ, ξ1, ξ2) ∈ L K : ξ1 > ξ1(K )}

are stable, regardless the cross-diffusion coefficients given in the system (66).

Remark 13 The result in Corollary 3 shows that the zip bifurcation phenomenon is
sustainable even by the introduction of cross-diffusion in the model (52).

8.2 Analysis of Equilibria for Model (68) on the Line L K

TheTuring instability [18] refers to “diffusion-driven instability, that is the stability of
the constant equilibrium u∗ = (λ, ξ1, ξ2) changing from stability for the ODE system
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(52), to instability for the PDE system (68). In what follows, we discuss the Turing
instability for the model (68) which depends on the cross-diffusion coefficients.

Consider the linearized system of (68) at u∗

⎧
⎨

⎩

ψt = K (u∗)ψxx + Gu(u∗)ψ, 0 < x < l, t ≥ 0

ψx = 0, x = 0, l, t ≥ 0,
(69)

where ψ = (ψ1, ψ2, ψ3)
T ,

K(u∗) =
⎛

⎝
k11 k12 k13
k21 k22 k23
k31 k32 k33

⎞

⎠

and

Fu(u
∗, 0) = Gu(u

∗) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−γ λ

K
+ λ

2∑

i=1

mi

(ai + λ)2
ξi − m1λ

a1 + λ
− m2λ

a2 + λ

β1ξ1

a1 + λ
0 0

β2ξ2

a2 + λ
0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

with βi = mi − di , i = 1, 2 and ki j are constants with k11, k22, k33, k12, k13 ≥ 0 and
k21, k31, k23, k32 ≤ 0.

We denote by Pk(ν) the characteristic polynomial of Gu(u∗) − μ j K (u∗). For
each k ≥ 0, the eigenvalues of Gu − μ j K are the roots of the polynomial

Pj (ν) = ν3 + A jν
2 + B jν + C j , (70)

We will omit the complete expressions for A j , B j and C j since they are too long.
It is easy to see that the inequalities

A j > 0, B j > 0, C j > 0 and A j B j − C j > 0 (71)

ensure the stability of u∗ while the equilibrium u∗ is unstable if either of (72) or (73)
holds for j = 1, 2, . . .

A j > 0, C j > 0 and B j < 0 (72)

A j > 0, B j < 0 and C j < 0. (73)

The next theorem shows that if u∗ is stable for the flow of (52) then u∗ may not
be stable for the flow of (68).
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Theorem 9 Suppose that u∗ is an equilibrium of (68) independent of x. Then, if u∗
is stable for the flow of (52), u∗ will be stable for the flow of (68) provided (71) holds
for all j = 1, 2, . . .. Further, the equilibrium u∗ is unstable, if any of the mentioned
inequalities (72) or (73) holds for some j = 1, 2, . . .

9 Discussion

The dynamical systems modeling real world phenomena discussed in this survey,
exhibit three types of bifurcations:Hopf bifurcation, Turing bifurcation andZip bifur-
cation. Special attention is bestowed on model (52) and its generalizations. Under
certain natural assumptions, it has been observed that model (52) and its general-
izations admit a one dimensional continuum of equilibria leading to Zip bifurcation.
The effort in this exposition is to create an awareness among the researchers that
certain real world dynamical systems often give rise to the existence of nonisolated
equilibria also known as a continuum of equilibria. In this article we have presented
methodologies that would help one to analyze such systems.

It is our belief that in the years to come the bifurcation theory plays a more
important role in almost all application domains of science and technology. Our
thoughts and efforts along these lines have culminated in the organization of the
current survey of thoroughly reviewed original articles that are of interest to the
scientific community working in the area of bifurcation theory and applications. The
models presented in this survey research exhibit rich dynamics for varying values of
the vital parameters involved.

Acknowledgements The authors wish to thank the anonymous reviewers for their constructive
suggestions, which have led to the improvement of our earlier presentation.
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AModified Coordinate Search Method
Based on Axes Rotation

Suvra Kanti Chakraborty and Geetanjali Panda

Abstract In this paper, a traditional coordinate search method is modified through
rotation of axes and an expansion of square-stencil to capture the solution in a better
and fasterway. The scheme remains derivative freewith global convergence property.
The iterative process is explained for two-dimensional function in detail, which is
followed by its extension to higher dimensions. Numerical illustrations and graphical
representations for the sequential progress of the proposed scheme are provided. The
comparison with the traditional coordinate search schemes through performance
profiles are also provided to coin the advantages of the proposed scheme.

Keywords Derivative free optimization · Coordinate search · Forward-track line
search · Stencil expansion

1 Introduction

In the context of solving optimization problems from real life, derivative of functions
often turns out to be unavailable, unreliable or impossible to obtain. Such situation
invokes several methods of derivative-free optimization, which involves computation
of the functional values at some sample points.A study on these schemes can be found
in [4, 10, 11, 14], amongwhich, GPS (generalized pattern search) is an efficient class
of methods that moves to an improving point following a specific pattern. One of its
ancestors, the basic coordinate search method has two variants: non-opportunistic
and opportunistic search. Non-opportunistic search, alternatively called complete
search, finds the sample points in all possible directions of the coordinates, whereas
opportunistic search tries to find an improving point by fixing an ordering in the set
of coordinate directions.
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Several natural improvements to the coordinate search methods exist in the
literature of derivative-free optimization. Adaptive search method [8] adapts the
transformation of axes, Hookes-Jeeves method [7] creates a set of linearly indepen-
dent directions and proposes an exploratory step. In the primitive stage, the con-
vergence of coordinate search method was not established. Later on, exploiting the
idea and structure of positive bases, the convergence of coordinate search method
was proposed (see [12]). Under some assumptions, the theory of convergence to the
stationary points was also proposed except for some exceptional cases (see [15]).
Due to the simplicity of inherent framework, coordinate search method never failed
to draw the attention of the researchers. The ease of its implementation has been
exploited, and several hybrid structures are proposed by the researchers during the
last few decades (see [6, 9]).

In this paper, the existing coordinate searchmethod ismodified. Initially, the points
are selected as coordinate directions, each at equal distance. The convex combina-
tion of these points completes an n-dimensional structure (viz, CXn). For example,
it provides a square in two-dimension and an octahedron in three-dimension, respec-
tively. The initial set of coordinate directions eventually forms a maximal positive
basis. This paper accepts some logic of existing GPS methods but differs in several
contexts. Like the other GPS methods, the progress of its iterative points depends
on the success of obtaining an improving point at some vertex of the above men-
tioned n-dimensional structure (CXn). In addition to the success step, we propose a
line search that tracks forward in the improving direction and an expansion of CXn,
which puts the current iteration point in its centre. The failure step contracts CXn,
which halves all its diagonals. However, this hybridization of line-search technique
along with its direct search structure, does not employ any change in the simplicity of
its framework. Rather, this adds a new efficient path to the existing coordinate search
methods in a significant way. The most interesting fact in the proposed scheme is that
the geometrical concept of expansion of CXn automatically generates another new
set of positive basis, which is used in the next search-step. The number of maximum
possible bases, however, remains to be finite. This fact is used to prove the global
convergence of the proposed scheme.

Theproposed scheme, alongwith its necessary algorithms, are described inSect. 2,
which is followed by its execution in two-dimensions. Section3 proposes the higher
dimensional extension of the proposed scheme, whereas Sect. 4 provides the global
convergence of the scheme. In Sect. 5, the numerical experiences on test functions
for the proposed and existing schemes are summarized. Finally some concluding
remarks are provided in Sect. 6.
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2 Proposed Scheme in Two Dimensions

We first refer to the algorithm written in the book of [11]. It is known that the clas-
sical coordinate search method is designed for unconstrained optimization problem.
It starts with computing the functional value at an initial point and 2n points in the
stencil, which is the set S(x, h) = {z|z = x + hei } centred at x , where ei is the unit
vector in i-th coordinate direction. This set of points forms a maximal positive basis
at the initial point. In non-opportunistic search for minimization problem, the entire
stencil is sampled and the centre x is replaced with xmin if f (xmin) < f (x), where
xmin = argminz∈S(x,h) f (z). If f (xmin) ≥ f (x), the stencil is shrunk by preferably a
factor of 2. On the contrary to non-opportunistic search, opportunistic search main-
tains an order of the unit vectors and shifts the centre once it gets a better point. We
refer to Algorithm 4.1 and 4.2 of the book [11] for the detailed algorithms of non-
opportunistic and opportunistic coordinate searchmethod. Both of thesemethods can
be divided into two parts: poll step and search step. In the poll step, the functional
value at the points on the stencils are computed and compared. In the search step,
the shifting of the centre of the stencil or the contraction occurs.

In this paper, a forward track line search in the improving direction is introduced
along with a possible rotation and expansion of the stencil square under specified
condition. The scheme in 2-Dimension for minx∈R2 f (x) is explained first, which
will be extended to n-dimension in the next sections. First, in the poll step, 2n stencil
points are found keeping the initial point at its centre and the functional values at those
points are computed. Next, the search step is divided into two parts. If the stencil-
failure occurs, that is, if none of the stencil points provides improving functional
value, we contract the stencil, otherwise stencil-success occurs, that is, if any of the
points provides improving functional value, we choose that direction and perform a
forward tracking line search until we fail to capture a better point. The centre of the
stencil is shifted to this point, and the squared stencil is expanded with a factor

√
2

in the next step by its construction. In this process, the stencil-square gets rotated by
45◦ angle. The iterative scheme is stopped once the length of the square becomes
less than a preassigned small positive real number.

The following color picture explains the idea of forward-track along improving
direction, contraction, and expansion of square-stencil. The yellow vertices form the
initial square-stencil with the red point as its centre. The smaller square with blue
vertices forms the new square-stencil in case of stencil-failure. On the other hand, in
case of stencil-success, an arrow is assigned to the yellow vertex to demonstrate the
forward-tracking at the vertex of success. With the assumption that no other green
vertex comes out to be an improving point, the current green point becomes the centre
of new square-stencil, and the corresponding expanded square is formed by adding
two sky-blue points to the exiting structure (Fig. 1).
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Fig. 1 Forward-tracking along improving direction, contraction and expansion of square-stencil

The scheme for 2-Dimension is described in the following algorithms. Algorithm
1 will be used to perform the main algorithm.

Algorithm 1: Forming a square-stencil with centre x and two vertices x1 and x2
1. Input x, x1, x2;
2. Initialize Y , a matrix of order 5-by-2;
3. Y (1, :) = x ;
4. Y (2, :) = x1;
5. Y (3, :) = x2;
6. Y (4, :) = 2x − x1;
7. Y (5, :) = 2x − x2;
8. Output Y

2.1 Numerical Illustration in Two Dimension

In this subsection, the proposed scheme is justified with a well-known test problem,
minimizing Rosenbrock’s function with the standard initial guess at (−1.2, 1). The
code for the Algorithm 2 is written and executed in Matlab-R2015a. It is observed
that the stencil square is sometimes contracted, expanded, or rotated as well. Figure2
gives a clear view to this idea. Finally, the length of the square gets reduced, andwhen
it shrinks to less than 0.00001, the execution of the code gets stopped. The scheme
accepts the solution point as (0.99998, 0.99999), which is within the ε tolerance
limit to the ideal solution of the function at (1, 1).
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Algorithm 2: Scheme for two dimension

1. Input x (0), ε > 0;
2. β = .1, h = 1;
3. Initialize matrix Y of order 5-by-2;
4. x1 = x + he1, x2 = x + he2, e1, e2 are standard bases in 2D;

for k = 0, 1, 2, . . .
5. k=k+1;
6. Use Algorithm 1 with input x (k−1), x1, x2 to obtain Y;
7. Find functional values at the 2 dimensional points Y (i, :), i = 1(1)5;
8. If stencil failure occurs, h = h

2 , x1 = (x + Y (2, :))/2,
x2 = (x + Y (3, :))/2; else go to step 10;

9. if h > ε : go to Step 5; else break ;
10. xmin is one of the vertices of the stencil square, d = xmin − x (k), xold = x (k).
11. Along d, perform forward-track line search with factor β.

If f (xmin + βd) > f (xmin), go to Step 15.
12. Continue Step 11 until the forward-track does not produce an improving point.

The current iterating point is x (new).
13. Treat xold as the centre of a square-stencil and x (new) as a vertex;

Find the two adjacent vertices V1 and V2 of x (new);
14. x (k) = x (new), x1 = V1, x2 = V2,

Go to step 5;
15. Square Expansion: x (k) = xmin , x1 = Y (2, :), x2 = Y (4, :), h = √

2h, and go to
step 5.

16. Output: x (k);
end;
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Fig. 2 The sequential progress of the proposed scheme of Rosenbrock function in two dimension
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3 Extension to n-Dimension

In the previous section, the proposed scheme has been illustrated along with an
algorithm and a numerical example in two-dimensions. In this section, the scheme
is extended to higher dimensional problems.

Consider an initial point, say x (0) in R
n and n points along n basis vectors of the

n-dimensional plane. Take the reflection of these chosen n points with respect to the
initial point. Now, these 2n points form a maximal positive basis of n-dimensional
plane at x (0). Figure3 shows 2n number of basis vectors at the initial red point. On
joining these points, the required n-dimensional stencil is obtained. At any of these
points, n − 1 number of square can be drawn. In Fig. 3, since the maximal positive
basis is drawn for three dimensions, at any of its verticds, two squares pass by.

An ordering of 2n basis elements is maintained as [e1, e2, e3, . . . , en, en+1(=
−e1), en+2(= −e2), en+2(= −e3), . . . , e2n(= −en)]. Suppose in the first search step,
we successfully found an improving point and the point is x (0) + emh, 1 ≤ m ≤
2n. Then, we take the (m − 1)-th or (m + 1)-th basis element and consider the
corresponding square formedby them-th basis element and anyof these two.Oncewe
get the square, we apply Algorithm 2, for expansion on contraction on this particular
square. If expanded, the distance of any vertex of the expanded square from its centre
is computed, and remaining basis vectors are expanded to the same length. It helps
the n-dimensional structure to keep its geometry as intact. If the search step leads
to failure, the basis elements are halved as to contract the structure as a whole. This
idea is briefed in Algorithm 3.

Fig. 3 Maximal positive basis and squares at the vertices
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Algorithm 3: Scheme for n-dimension

1. Input x (0), ε > 0, dimension: n;
2. Known data : β = .1, h = 1;
3. Find n dimensional 2n stencil points;

for k = 0, 1, 2, . . .
4. k=k+1;
5. Perform search-step to check if any vertex of the n-dimensional stencil
comes out to be an improving point than x (0).

6. If stencil failure occurs, h = h
2 ;

7. if h > ε : go to Step 4; else break ;
8. If stencil success occurs at some vertex, identify any of its adjacent

vertex,
and complete a square;

9. Use Algorithm 2 on this square (2-D structure),
and impose forward-track or expansion of square as applicable;

10. Compute the length of the diagonal of the expanded square and treat its
half as h;

11. At the centre of the square, extend the other basis vectors with the
length h;

12. The current iterating point is x (k).
13. Go to Step 4;
14. Output: x (k);

end;

Advantages of the proposed scheme: The primary advantages of the scheme are
as follows.

1. The scheme retains the simplicity of the basic coordinate search scheme.
2. The construction in search-step invokes the rotation of the stencil-square, which

helps to justify the nature of the function concerning another set of maximal
positive bases.

3. This scheme provides a scope of progress further to get an improving point in the
success-direction by a forward tracking line search.

4. The expansion of the stencil-square by its construction can capture the domain in
a shorter time than the other methods. Even if the initial point is chosen far from
the solution, this property helps to reach its vicinity very fast. This provides the
global convergence property of the proposed scheme.

4 Convergence Analysis of the Proposed Scheme

The scheme starts with an initial point and a set of maximal positive bases. The
process of finding a new iterate x (k) passes through two successive stages. One is
search step that finds the functional values at some finite number of points. Next,
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depending on success or failure of the search step, the forward track and stencil
expansion is introduced or it is determined whether the stencil structure would get
contracted. So, the search step is optional for the proof of convergence. Rather, one
must concentrate on failure, that introduces the poll step, which polls the points along
with the positive basis with reduced size from current iterate.

Unless the current iterate point is a stationary one, the poll step gives a successful
step that finds an improving point after a finite number of reduction in step size
parameter.With this notion,we take somemild assumptions and state the convergence
proof of the scheme following the results from (Chap.7, [4]).

Since the iterates f (x (k)) corresponding to x (k) is monotonically decreasing, a
convenient way of imposing this assumption is as following

Assumption 1 The level set L(x (0)) = {x ∈ R
n : f (x) ≤ f (x (0))} is compact.

Since we are interested in global convergence of the scheme, it relies on proving
first that there exists a subsequence of step size parameters converging to 0. For this,
we must guarantee the following assumption. Here hk is the step length h at k-th
iteration.

Assumption 2 If there exists h0 > 0 such that hk > h0 for each iteration, then the
algorithm visits only a finite number of points.

Based on Assumption 2, the following theorem and corollary can be proved [4].

Theorem 1 If Assumption 2 holds, then the sequence of step size parameters satisfies
limk→∞in f hk = 0.

Corollary 1 Let the above assumptions hold. There exists a point x∗ and a subse-
quence {ki } of unsuccessful iterates for which limi→∞hki = 0 and limi→∞xki = x∗.

If the function is differentiable, this scheme stops at a stationary point. To prove
this, we need to assume the following. This assumption is admissible since for n-
dimensional problem, the proposed algorithmuses atmost n number of positive bases.

Assumption 3 The set of positive bases used by the algorithm is finite.

Another assumption of differentiability becomes necessary to take to show that the
solution point is a stationary one, which is as follows.

Assumption 4 f is continuously differentiable in an open set containing L(x (0)).

Theorem 2 Let Assumptions 1–4 hold. Then the sequence of iterates {x (k)} has a
limit point x∗ for which ∇ f (x∗) = 0.

The proof of the above theorem follows from (Chap.7, [4]).
Regarding the convergence of the scheme, wemust conclude that the assumptions

stated in this section are admissible to our proposed scheme. Hence, without taking
differentiability condition by successive stencil failure, a stencil gets contracted to a
point.Moreover, under the continuously differentiability condition and finite positive
basis set, it may be proved that a stationary point is reached,which eventually satisfies
the first order necessary condition for optimality of unconstrained minimization
problem.
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5 Numerical Illustration

For numerical illustration, we run the proposed algorithm on a set of functions from
[1] in MATLAB-R2015a platform with 8 GB RAM. This test set includes convex,
non-convex as well as non-differentiable functions. The three schemes are abbrevi-
ated as follows.

CSO: Coordinate Search (Opportunistic);
CSNO: Coordinate Search (Non-opportunistic);
PM: Proposed Method.

The schemes mentioned above are all derivative free search schemes and ensures
global convergence. So, the initial guesses for their respective algorithms are chosen
usually very far from the solution point, except for some functions that are steep and
valley shaped at the solution point. First, the number of iteration for each function
from the test set is observed. In the context of computational experience, the number
of times they are called for each scheme is counted. The algorithm for each scheme
gets stopped once the n-dimensional structure becomes small as desired. The centre
of this final structure is considered to be the solution of the minimization problem.
However, one may also include the budgets for the stopping criteria. To be more
specific, the barrier of function count and run-time may be included. As per the
computational experience, it is seen that run-time is not a suitable measure since it is
not platform independent. This fact motivates us to restrict on counting the number
of function evaluation, which is platform independent and put a comparison of the
proposed scheme with the traditional methods on this aspect.

With afine introspection into the algorithm, it is observed that the proposed scheme
identifies two basis elements at the current iteration point and with the points at
distance ‘h’ on these two orthogonal basis element, completes a square.On that plane,
it performs the algorithm that is mentioned for two-dimension. The algorithm for
two-dimension clearly defines whether the square gets expanded or contracted. Next,
according to that, the other basis elements at the centre of n-dimensional structure are
expanded or contracted to keep the geometrical shape of the n-dimensional stencil
as intact.

For these three solvers- CSO, CSNO, and PM, one can observe the computational
results in Table1. The comparative study of the results of different solvers through
the study of performance profiles are an area of interest for current researchers [2,
3]. We also present and discuss the numerical findings in the same approach. The
initial guesses for each test are taken as two n-dimensional vectors fn and gn , which
are defined as mentioned below.

fn = [1,−1, 1, . . . ,−1], gn = [−1.2, 1,−1.2, 1, . . . ,−1.2, 1].

Besides putting the computational detail in Table1, we further study the perfor-
mance profiles on the test set for the three schemes. The performance ratio defined
in [5, 13] is ρ(p,s) = r(p,s)

min{r(p,s):1≤r≤ns } , where r(p,s) refers to the iteration (or, num-
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Table 1 Numerical comparisons among the proposed method and traditional methods

S. no Function Dim Initial guess Iteration Function count

OCS NOCS PM OCS NOCS PM

1 Almost
perturbed
quadratic

10 100 f10 1017 1017 221 10840 20341 4226

2 Bartei 2 100 f2 217 217 60 568 869 256

3 BIGGSB1 10 100 f10 2879 1990 739 35290 39801 13930

4 Broyden
Tridiagonal

10 100 f10 1542 1536 885 16651 30721 16716

5 CURLY 20 10 100 f10 1082 1082 232 11500 21641 4436

6 DIXON3DQ 10 100 f10 1017 1990 739 10840 39801 13930

7 Extended BD1 10 f10 132 132 169 1530 2641 3231

8 Extended Beale 10 f10 922 922 986 5075 18441 18511

9 Extended
DENSCHNB

10 50 f10 512 502 178 5520 10041 3420

10 Extended
Penalty

10 100 f10 1071 1071 2111 11335 214021 4046

11 Extended PSC1 10 100 f10 1097 1087 221 11625 21741 4227

12 Extended
Rosenbrock

10 g10 27247 27367 8878 171060 547347 165011

13 Extended TET 10 100 f10 1777 1067 274 24160 21341 5397

14 Extended
Tridiagonal1

10 100 f10 1962 1022 1629 21165 20441 30708

15 Extended
Trigonometric

10 f10 109 109 153 1270 2181 2901

16 Full Hessian
FH1

10 100 f10 3233 1640 1648 37876 32801 32801

17 HIMMELBG 10 100 f10 1087 1087 204 21741 11570 3922

18 LIARWHD 10 10 f10 443 456 262 3091 9121 4972

19 Price 1 2 100 f2 207 207 67 543 829 265

20 Quartic 10 20 f10 217 217 173 2395 4341 3314

ber of function evaluation) for solver s spent on problem p and ns refers to the
number of problems in the model test set. In order to obtain an overall assess-
ment of a solver on the given model test set, the cumulative distribution function
is Ps(τ ) = 1

np
si ze{p ∈ T : ρ(p,s) ≤ τ }. In other words, Ps(τ ) is the probability that

a performance ratio of ρ(p,s) is within a factor of τ of the best possible ratio. We
present the performance profiles on the number of iteration, and the number of
objective function evaluation on the test set T for the three schemes CSO, CSNO
and PM in Figs. 4 and 5 respectively. The figures on performance profiles express
the advantage of developing proposed scheme PM over the other traditional two
methods.
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Fig. 4 Performance profile for iteration
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Fig. 5 Performance profile for objective function evaluation
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6 Conclusion

The basic two coordinate search methods are very simple and easy to implement. In
this paper, keeping their basic structure as intact, an idea of expansion of stencil and
rotation of maximal positive basis vectors at the iteration point has been introduced.
The global convergence of the proposed scheme is proved, and the advantage of its
implementation is justified with numerical illustration on a test set of benchmark
problems. The scope of future modification of the scheme is possible by imposing a
further restriction on the conditions of expansion of the n-dimensional stencil.
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Dynamics of the Logistic Prey Predator
Model in Crisp and Fuzzy Environment

S. Tudu, N. Mondal and S. Alam

Abstract Recently the study of fuzzy dynamical system is growing rapidly in vari-
ous field specially in biological system dynamics. In this article a dynamical model
of two species population has been studied taking intrinsic growth rate, natural mor-
tality rate and rate of conversion as triangular fuzzy number. Here the dynamics
of the model system was discussed both in fuzzy and crisp environment. Also the
analytical finding has been supported through numerical simulations.

Keywords Prey-predator · Stability · Graded mean value · Fuzzy set

1 Introduction

In the year 1838, a very realistic logistic model was developed by Belgian mathe-
maticianVerhulst [1] where logistic growthwas projected as appropriate growth term
for biological species. This Logistic model is applicable and more appropriate when
overcrowding and many competition resources are in the population. In the area of
theoretical biology two species prey predator model was firstly initiated by Lotka [2]
andVolterra [3]. For the improvement of human society, it is verymuch essential how
to utilise the biological resources. In the last decades, ordinary differential equation
is used to modelling this type of problems and provided some mathematical answers
and explanations [4–7] in this regard. It may be noted that biological parameters
used in the differential equations are not always fixed. In ecosystem many parame-
ters oscillates simultaneously with the periodically varying environments. They are
also varying due to both human society and nature, such as earthquake, fire, financial
crisis, climate warming etc. In real world periodical environmental cycle is vary com-
mon. Furthermore, there are other common influence to varies the model parameters,
for example temperature variations highly influenced the reproduction rate of bacteria
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during the day time. Also, the interaction between the species and consequently the
dynamics of thewhole system are highly influenced by this environmental variations.
Many researches made an attempt to explain the system dynamics incorporating the
concept of stochastical fluctuation arguing the fact that the environmental change
is more or less stochastical in nature. In real world problems, some parameters of
model system can be roughly estimated incorporating the said stochastical concept.
But there is a question arise the choice of suitable probability distribution function
for all imprecise parameters and it makes the model very complicated, to overcome
this difficulty there is need of fuzzy set theory [8]. In view of behaviour of population
communities and varies environmental factors, it is natural to consider the biological
parameters in emphasize environment. The fuzzy prey-predator model may be more
meaningful than the deterministic prey-predator model. There are some literature
present in the field of biomathematics under emphasise environment. Bassanezi et
al. [9] considered the variables and parameters of fuzzy dynamical system as impre-
cise in nature and used fuzzy differential equation to study the stability of the system.
Barros et al. [10] used environmental fuzziness of a life expectancy model by taking
the parameters as fuzzy in nature. Guo et al. [11] studied logistic model and gom-
pertz model under fuzziness. Mizukoshi et al. [12] considered the fuzzy initial value
problemwith parameters or initial conditions under fuzziness. Peixoto et al. [13] and
Pal et al. [14] represented prey predator model under fuzziness.

In this articlewe consider a simple prey-predatormodelwith one prey and predator
species under imprecise environment where biological parameters are taken as fuzzy
parameters. We analyse the model system both in crisp environment as well as fuzzy
environment. In fuzzymodel, for simplicity,we consider all the biological parameters
as triangle fuzzy numbers. We also introduce a noble concept of Graded Mean Value
technique to defuzzify the parameters and the system dynamics is interpreted in
different optimistic level.

2 Preliminaries

For the development of the model in fuzzy environment we need some preliminary
definition and concepts which will be used later on. Zadeh [8] first introduced fuzzy
sets as a mathematical way of representing vagueness in everyday life.

Definition 1 Fuzzy set: Let X be a non empty set. A fuzzy set A inX is characterised
by itsmembership functionμA : X → [0, 1] andμA(x) is interpreted as the degree of
membership of element x in fuzzy set A for each xεX . The fuzzy set A is completely
determined by the set tuples A = {(x,μA(x)) : xεX}.
Definition 2 α-cut and strong α-cut of a fuzzy set: Let A be a given fuzzy set
defined on a non empty set X and μ be its membership function. Then for any
αε[0, 1] the α-cut and strong α-cut are denoted by μα and μα+ and defined by
μα = {x | μA(x) ≥ α,∀xεX} and μα+ = {x | μA(x) α,∀xεX}.
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Definition 3 Fuzzy Number: A fuzzy number u is a pair (u, ū) of functions
u(α), ū(α); 0 � α � 1 which satisfy the following requirements:

1. u(α) is bounded monotonic increasing left continuous function.
2. ū(α) is bounded monotonic increasing left continuous function.
3. u(α) � ū(α), 0 � α � 1.

Definition 4 Triangular fuzzy number: A triangular fuzzy number (TFN) is rep-
resented by Ã = (a, b, c) and its membership function is defined as bellow

μ Ã(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if x � a
x−a
b−a , if a � x � b
c−x
c−b , if b � x � c

0, if x � c

(1)

Definition 5 Graded mean value: Let λε[0, 1] be a pre-assigned parameter called
the degree of optimism. The Graded mean Value Chen (1985), Mahapatra and Roy
(2003) or total λ integral value of ã is defined as convex combination of the right
and left integral values through the degree of optimism and it is denoted by

Iλ(ã) = λIr (ã) + (1 − λ)Il(ã) (2)

where Il(a) and Ir (a) are the left and right integral values of ã defined as

Il(ã) =
∫ 1

0
(μlã)

−1αdα and Ir (ã) =
∫ 1

0
(μr ã)

−1αdα (3)

For a triangular fuzzy number ã = (a1, a2, a3)

(μlã)
−1α = a1 + α(a2 − a1) and (μr ã)

−1α = a3 − α(a3 − a2) (4)

Therefore the left and right integral values are

Il(ã) = a1 + a2
2

and Ir (ã) = a3 + a2
2

(5)

Hence the total λ-integral values of ã is

Iλ(ã) =
[

λ

(
a3 + a2

2

)

+ (1 − λ)

(
a1 + a2

2

)]

(6)

The pessimistic viewpoint of a decision maker is reflected by left integral value
and optimistic viewpoint is reflected by the right integral value. The highest degree
of optimism is specified by a large value of λ. As for example when λ = 1, the
total integral value Il(ã) = ( a2+a3

2 ) = Ir (ã) represents an optimistic standpoint on
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the contrary, when λ = 0 the total integral is Il(ã) = ( a1+a2
2 ) = Ir (ã) represents an

optimistic viewpoint when λ = 0.5 the total integral value reflects a moderately opti-
mistic decision maker’s standpoint. Similarly λ = 0.5 and λ = 0.7 represents about
optimistic and about pessimistic standpoints of the decision maker’s respectively.

2.1 Crisp Logistic Prey-Predator Model

The mathematical expression of the logistic prey-predator model with two species
precise biological parameters is given by

dx

dt
= r x

(
1 − x

k

)
− axy

dy

dt
= axy − dy (7)

where x , and y denotes the population density of the prey and predator species
respectively at time t . In this model r(> 0) denotes the intrinsic growth rate of
the prey species in the absence of predator and d(> 0) is natural death rate of the
predator in the absence of the prey. Finally a denotes the conversion coefficient of
prey biomass into predator biomass.

2.2 Fuzzy Logistic Prey-Predator Model

Due to the imprecise nature of the intrinsic growth rate (r) of the prey species in
the absence of predator we consider r as a triangular fuzzy number. Similarly for
the imprecise nature of the natural mortality rate (d) of the predator species in the
absence of prey population and finally due to the imprecise nature of the conversion
coefficient (a) of prey biomass into predator biomass we consider both a and d
as triangular fuzzy number. Consequently the crisp logistic prey-predator model
becomes the Fuzzy logistic prey-predator model and is given by

d̃x

dt
= r̃ x

(
1 − x

k

)
− ãxy

d̃y

dt
= ãxy − d̃ y (8)
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3 Positive Invariance of the System

Let Y =
(
x
y

)

, where Y ∈ IR2 Y =
(
F1(Y )
F2(y)

)

, i.e Y =
(
r x

(
1 − x

k

) − axy
axy − dy

)

where F : C+ → IR2 and F ∈ C∞(IR2) and C∞ stands for continuously differen-
tiable function.The above systembecomes, Ẏ = F(Y )withY (θ) = (φ1(θ),φ2(θ)) ∈
C+ andφi (θ) > 0 for i = 1, 2. It is easy to check in the above equation that whenever
choosing Y (θ) = 0 such that Yi = 0, then Fi (Y )|yi (t) ∈ C+ ≥ 0 for i = 1, 2. Due
to Lemma (Yang et al. [2, 4]) any solution of the above equation with Y (θ) ∈ C+,
say Y (t) = Y (t,Y (θ)) such that Y (θ) ∈ IR2∀t > 0.

4 Boundedness of the System

Theorem 1 The solutions of the above system is bounded.

Proof Let us define W = x + y. The time derivatives

dW

dt
= dx

dt
+ dy

dt
= r x

(
1 − x

k

)
− dy

Now

dW

dt
+ qW = r x

(
1 − x

k

)
− dy + q(x + y) (9)

= k(r + q)2

4r
− r

k

(

x − k(r + q)

2r

)2

+ (q − d)y (10)

if q ≤ d, Then dW
dt + qW ≤ M where M = k(r+q)2

4r (say). Therefore, dW
dt + qW ≤

M(constant), which is a linear differential equation inW . After solvingwe get,W ≤
M
q + Ce−qt , where C is an integrating constant. At t = 0,W = 0, we haveC ≥ −M

q .

Therefore, W ≤ M
q (1 − e−qt ) and W ≥ 0, since W = x + y, x and y both are ≥ 0

So, 0 ≤ W (x(t), y(t)) ≤ M
q (1 − e−qt ), which implies that 0 ≤ W (x(t), y(t)) ≤ M

q
as t → ∞. Hence all the solution of the above system are bounded and so we can
now analyze the stability of the system.

5 Dimensionless of the Logistic Model

dx

dt
= r x

(
1 − x

k

)
− axy

dy

dt
= axy − dy (11)
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Let U = x
k , V = ay. The Dimensionless system becomes

dU

dt
= rU (1 −U ) −UV

dV

dt
= (cU − d)V (12)

where ak = c (say), r , d all are positive constants.

6 Logistic Prey-predator Model in Different Environment

In this section we will discuss the logistic prey-predator model in crisp and fuzzy
environment.

Equilibrium points and Existence Criteria:
The equilibrium points of (12) are given by E0(0, 0), E1(1, 0), and E2

(
d
c , r(1 − d

c )
)
.

E0(0, 0) is called trivial equilibrium point while E1(1, 0) are called axial equilibrium
point and E2

(
d
c , r(1 − d

c )
)
is called interior as well as planer equilibrium point.

E0(0, 0) and E1(1, 0) exists with out any restriction. But E2
(
d
c , r(1 − d

c )
)
exists if

c > d.

6.1 Stability Analysis of System in Crisp Environment

dU

dt
= rU (1 −U ) −UV = F(U, V )

dV

dt
= (cU − d)V = G(U, V ) (13)

Theorem 2 The equilibrium point E0(0, 0) is unstable.

Proof The proof is obvious.

Theorem 3 The equilibriumpoint E1(1, 0) is stable if c < d otherwise it is unstable.

Proof From the variational matrix the eigen values are −r , and c − d. Again, Since
−r is negative constant and if c − d < 0 then the point E1(1, 0) is stable and other-
wise it is unstable.

Theorem 4 The Interior Equilibrium Point E∗ (
d
c , r(1 − d

c )
)
is always asyamptot-

ically stable.
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Proof The characteristic equation at E∗ (
d
c , r(1 − d

c )
)
is given by ⇒ λ2 + rd

c λ +
rd(1 − d

c ) = 0 ⇒ λ = − rd
2c ± 1

2c

√
(rd)2 − 4cdr(c − d)

There may arise three cases:
Case I: When rd = 4c(c − d), T hen λ = − rd

2c (of multiplicity 2), The two eigen
value are negative. So the interior point E∗ (

d
c , r(1 − d

c )
)
is stable.

Case II: Clearly, from theTheorem4we can conclude that one eigen value is negative
and other is negative if

√
(rd)2 − 4cdr(c − d) < rd, so two eigen value is negative

and hence the interior point E∗ (
d
c , r(1 − d

c )
)
is stable otherwise it is unstable.

Case III: Finally, when rd < 4c(c − d), Then the eigen values reduces to in the

form λ = − rd
2c ± i

(
1
2c

√
4cdr(c − d) − (rd)2

)
, which is complex number (eigen

value) but real part of the complex eigen value is negative, so the interior point
E∗ (

d
c , r(1 − d

c )
)
is Asymptotically Stable.

6.2 Logistic Prey-Predator Model in Fuzzy Environment

In this section wewill discuss the logistic prey-predator model in fuzzy environment.

Theorem 5 The fuzzy differential equations

dŨ

dt
= r̃0U (1 −U ) −UV (14)

dṼ

dt
= (c̃0U − d̃0)V (15)

where r̃0 = (r01, r02, r03), c̃0 = (c01, c02, c03) and d̃0 = (d01, d02, d03) for positive
real numbers r0i , c0i and d0i , i = 1, 2, 3 is provided by the differential equation

dU

dt
= Iλ(r̃0)U (1 −U ) −UV (16)

dv

dt
= (Iλ(c̃0)U − Iλ(d̃0))V (17)

where Iλ(r̃0) = (1 − λ) r01+r02
2 + λ r02+r03

2 , Iλ(c̃0) = (1 − λ) c01+c02
2 + λ c02+c03

2 ,
Iλ(d̃0) = (1 − λ) d01+d02

2 + λ d02+d03
2 , ∀λε[0, 1].

Proof The given fuzzy differential equation can be written as

˜dU
dt

= (r01, r02, r03)U (1 −U ) −UV (18)

˜dV
dt

= (c01, c02, c03)U − (d01, d02, d03)V (19)
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Taking the α-cut of the triangular fuzzy numbers r̃0, c̃0 and d̃0 Eqs. (14) and (15) can
be written as

[(μL
˜dU
dt

)−1α, (μR
˜dU
dt

)−1α] = [(μL
r̃0)

−1α, (μR
r̃0)

−1α]U (1 −U ) −UV (20)

[(μL
˜dV
dt

)−1α, (μR
˜dV
dt

)−1α] = [(μL
c̃0)

−1α, (μR
c̃0)

−1α]U − [(μL
d̃0
)−1α, (μR

d̃0
)−1α]V (21)

where (μL
r̃0
)−1α = r01 + α(r02 − r01), (μR

r̃0
)−1α = r03 − α(r03 − r02), (μL

c̃0
)−1α =

c01 + α(c02 − c01), (μR
c̃0
)−1α = c03 − α(c03 − c02), (μL

d̃0
)−1α = d01 + α(d02 − d01)

and (μR
d̃0
)−1α = d03 + α(d03 − d02).

Now following the properties of GradedMeanValue Technique the differential equa-
tions (16) and (17) can be written as

dU

dt
= [(1 − λ)IL(r̃0) + λIR(r̃0)]U (1 −U ) −UV

dV

dt
= [(1 − λ)IL(c̃0) + λIR(c̃0)]U − ([(1 − λ)IL(d̃0) + λIR(d̃0)])V

where IL(r̃0) = ∫ 1
0 (μ

L
r̃0
)−1αdα = ( r01+r02

2 )

IR(r̃0) = ∫ 1
0 (μ

R
r̃0
)−1αdα = ( r02+r03

2 ), similarly IL(c̃0) = ( c01+c02
2 ), IR(c̃0) = ( c02+c03

2 ),

IL(d̃0) = ( d01+d02
2 ) and IR(d̃0) = ( d02+d03

2 ).
Therefore the crisp form of the fuzzy differential equation is given by

dU

dt
= Iλ(r̃0)U (1 −U ) −UV (22)

dv

dt
= (Iλ(c̃0)U − Iλ(d̃0))V (23)

and finally the theorem is proved.

Equilibrium points and Existence Criteria: The equilibrium points of the above

system are given by E0(0, 0), E1(1, 0) and E∗
(

Iλ(d̃0)
Iλ(c̃0)

, Iλ(r̃0)

(1 − Iλ(d̃0)
Iλ(c̃0)

)
)
. E0(0, 0) and E1(1, 0) exists without any conditions but the interior

point E∗
(

Iλ(d̃0)
Iλ(c̃0)

, Iλ(r̃0)(1 − Iλ(d̃0)
Iλ(c̃0)

)
)
exits if Iλ(c̃0) > Iλ(d̃0). Stability conditions of

the equilibrium points of system (22) and (23) are stated in the following theorems.

Theorem 6 The trivial equilibrium point E0(0, 0) is always unstable.

Proof The proof is obvious.

Theorem 7 The axial equilibrium point E1(1, 0) is stable if Iλ(c̃0) < Iλ(d̃0) and
otherwise it is unstable.
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Proof Calculating the Jacobianmatrix at E1(1, 0)wehave the eigenvalues−Iλ(r̃0) <
0 and Iλ(c̃0) − Iλ(d̃0). Now if Iλ(c̃0) < Iλ(d̃0) then the equilibrium point E1(1, 0)
is stable and otherwise it is unstable.

Theorem 8 The interior equilibrium point E2

(
Iλ(d̃0)
Iλ(c̃0)

, Iλ(r̃0)(1 − Iλ(d̃0)
Iλ(c̃0)

)
)

(i) Stable if Iλ(r̃0)Iλ(d̃0) = 4Iλ(c̃0)
(
Iλ(c̃0) − Iλ(d̃0)

)

(ii) Stable but not asymptotically stable if Iλ(c̃0) = Iλ(d̃0)
(iii) Stable if Iλ(c̃0) > Iλ(d̃0)

(iv) Asymptotically stable if Iλ(r̃0)Iλ(d̃0) < 4Iλ(c̃0)
(
Iλ(c̃0) − Iλ(d̃0)

)
.

Proof The characteristic equation at E2

(
Iλ(d̃0)
Iλ(c̃0)

, Iλ(r̃0)(1 − Iλ(d̃0)
Iλ(c̃0)

)
)
corresponding to

the jacobian matrix is given by

λ2 + Iλ(r̃0)Iλ(d̃0)

Iλ(c̃0)
λ + Iλ(r̃0)Iλ(d̃0)

Iλ(c̃0)

(
Iλ(c̃0) − Iλ(d̃0)

)
= 0 (24)

(i) From the characteristic equation it is clear that when Iλ(r̃0)Iλ(d̃0) = 4Iλ(c̃0)(
Iλ(c̃0) − Iλ(d̃0)

)
then λ = − Iλ(r̃0)Iλ(d̃0)

2Iλ(c̃0)
(two times), which is negative so the

interior equilibrium point is stable.
(ii) Again, from the above characteristic equation when Iλ(c̃0) = Iλ(d̃0) then the

two eigenvalues are 0 and− Iλ(r̃0)Iλ(d̃0)
Iλ(c̃0)

since one eigenvalue is zero (0) and other
is negative, so the equilibrium point is stable but not Asymptotically stable.

(iii) To prove the stability condition Iλ(c̃0) > Iλ(d̃0, from the characteristic equation
we have

−Iλ(r̃0)Iλ(d̃0) ±
√(

Iλ(r̃0)Iλ(d̃0)
)2 − 4Iλ(r̃0)Iλ(d̃0)Iλ(c̃0)

(
Iλ(c̃0) − Iλ(d̃0)

)
,

this shows that one eigenvalue is always negative and other is negative if

4Iλ(r̃0)Iλ(d̃0)Iλ(c̃0)
(
Iλ(c̃0) − Iλ(d̃0)

)
> 0, i.e. Iλ(c̃0) > Iλ(d̃0).

(iv) Finally, to prove the stability condition from Eq. (24) we see that the two
eigenvalues are complex with negative real part if Iλ(r̃0)Iλ(d̃0) < 4Iλ(c̃0)(
Iλ(c̃0) − Iλ(d̃0)

)
. Since the real part of the eigenvalues are negative so the

interior equilibrium point is asymptotically stable and otherwise it is unstable.
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7 Numerical Example

For a numerical example let us take the intrinsic growth rate, the conversion rate
and the mortality rate as triangular fuzzy numbers given by r̃0 = (0.9, 1.2, 1.5),
c̃0 = (0.3, 0.4, 0.5) and d̃0 = (0.2, 0.3, 0.5) then their λ-integrals are

Iλ(r̃0) = 1.05(1 − λ) + 1.35λ (25)

Iλ(c̃0) = 0.35(1 − λ) + 0.45λ (26)

and Iλ(d̃0) = 0.25(1 − λ) + 0.4λ (27)

For λ = 0, Iλ(r̃0) = 1.05, Iλ(c̃0) = 0.35 and Iλ(d̃0) = 0.25.
Now from the Theorem 6 we see that the trivial equilibrium point E0(0, 0) is

always unstable as one of the eigen values Iλ(r̃0) > 0 and the another eigen value
Iλ(d̃0) < 0,Here Iλ(c̃0) > Iλ(d̃0) and hence fromTheorem7we can say that the axial
equilibrium point E1(1, 0) is unstable equilibrium point. Similarly using the condi-
tion (iii) of Theorem 8 we can conclude that the interior equilibrium point E2(

5
7 , 3)

is stable equilibrium point. To represent the stability of the predator prey system here
we give a graphical representation of the system taking the above mentioned integral
values of r̃0, c̃0 and d̃0 for λ = 0.

Taking the particular values for the parameter of the logistic prey predator model
we have simulate predator-prey verses time solution graph in MATLAB. Here
the values of the parameter are taken as r = 0.5, k = 12, a = 0.3, d = 0.4, ts =
[0, 200], z0 = [0.4, 0.8] for Fig. 1. It is clear from Fig. 1 the prey-predator popula-
tions becomes stable after a certain stage of time period.

Fig. 1 a and b depicts the fact that the model system will reach to stable coexistence point E∗
while a shows the system is stable for 0 to 200 and b is also stable for long time of period varies
from 0 to 800
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8 Conclusion

Prey-Predator model has different development in theoretical and practical appli-
cations in the field of biomathematics. Most of the researchers have developed
the prey-predator model based on the assumption that the biological parameters
are precisely known but the scenario is different in real life situation. In this arti-
cle, we have developed a method to find the biological equilibrium points, when
some biological parameters are imprecise in nature. In this article we have con-
sidered the biological parameters as triangular fuzzy number and have analysed
the system dynamics of the predator prey model taking the defuzzification value
of the triangular fuzzy numbers. Here for defuzzification we have used graded
mean integral value technique. Again from Fig. 1b we can see that the interior

equilibrium point E2

(
Iλ(d̃0)
Iλ(c̃0)

, Iλ(r̃0)(1 − Iλ(d̃0)
Iλ(c̃0)

)
)
remains stable for long time period

where Iλ(r̃0) = (1 − λ)( r01+r02
2 ) + λ( r02+r03

2 ), Iλ(c̃0) = (1 − λ)( c01+c02
2 ) + λ( c02+c03

2 )
and Iλ(d̃0) = (1 − λ)( d01+d02

2 ) + λ( d02+d03
2 ), ∀λε[0, 1]. Iλ(r̃0), Iλ(c̃0) and Iλ(d̃0) all

are the total λ integral of r̃0, c̃0 and d̃0. The pessimistic viewpoint of a decision
maker is reflected by left integral value and optimistic viewpoint is reflected by the
right integral value. The highest degree of optimism is specified by a large value of
λ. As for example when λ = 1, the total integral value Il(r̃0) = ( r02+r03

2 ) = Ir (r̃0)
represents an optimistic standpoint on the contrary, when λ = 0 the total integral is
Il(r̃0) = ( r01+r02

2 ) = Ir (r̃0)represents an optimistic viewpoint when λ = 0.5 the total
integral value reflects a moderately optimistic decisionmaker’s standpoint. Similarly
λ = 0.5 and λ = 0.7 represents about optimistic and about pessimistic standpoints
of the decision maker’s respectively. Similarly, this concept is applicable for Iλ(c̃0)
and Iλ(d̃0). Form Fig. 2 shows that the prey versus predator population is stable and

Fig. 2 Figure shows that the
model system will goes to
stable focus. Here, predator
versus prey solution in crisp
environment
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depicts the fact that the population will reach to stable focus. From Fig. 3a–f we
draw the graph for different value of λ, such as λ = 0, λ = 0.3, λ = 0.5, λ = 0.7,
λ = 0.85 and λ = 1 and see that there is no change of stability for different value
of λ that is the system is always stable. Here in this article we try to project how
the dynamics is changing from crisp to Fuzzy environment taking various level of
optimistic view.

Fig. 3 Depicts the stability of the system for different values of λ
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