
27© Springer Nature Singapore Pte Ltd. 2020
Y. S. Malik et al. (eds.), Emerging and Transboundary Animal Viruses, Livestock 
Diseases and Management, https://doi.org/10.1007/978-981-15-0402-0_2

Chapter 2
African Swine Fever Virus

Alexander Malogolovkin, Alexey Sereda, and Denis Kolbasov

Abstract African swine fever virus introduction to naïve swine population leads to 
high mortality and losses among susceptible animals. ASF epidemic in Russia 
(2007–to date) and lately in Eastern Europe highlights severe socio-economic con-
sequences of this disease. The disease epidemiology is rather complex in endemic 
territories since many factors are involved in virus transmission. The disease control 
is only based on stamping-out policy and rapid virus diagnostics, since no effective 
and safe vaccine is available. This chapter focuses on African swine fever epidemi-
ology, immunopathobiology and diagnostics with a brief overview of recent 
advances of ASF vaccine development.

Keywords African swine fever · Epidemiology · Prevention · Diagnostics and 
control

2.1  Prologue

African swine fever (ASF) is arguably the most dangerous swine disease, which 
threatens wild boar and domestic population worldwide. The mortality rate is 
approaching 100%, once the disease is introduced into the new territory. Many 
African countries, the Caucasus Republics, the Russian Federation and lately 
Eastern European countries are experiencing ASF outbreaks in swine farms and 
wildlife. Recent reports on the epidemiological situation with ASF in South-East 
Asia worryingly suggest that this disease may have reached the pandemic range. In 
2019, devastating ASF outbreaks were documented in China, Cambodia, Myanmar, 
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Vietnam, and Laos, where millions of pigs were culled with the desperate attempt 
to stop the disease transmission. In China, 440 million pigs (50% of the world’s 
pigs) have either died from AFSV or been killed to stamp out the virus (Gogin et al. 
2013; Nurmoja et al. 2017a; Oganesyan et al. 2013; Okoth et al. 2013; Owolodun 
et al. 2010; Pejsak et al. 2014).

African swine fever has been first observed in Africa by Montgomery (De Kock 
et  al. 1940; Edgar et  al. 1952). The disease has been identified in domestic pigs, 
which were demonstrating the clinical signs similar to hog cholera (classical swine 
fever). Several following experiments carried out by Hess, Hay, DeTray, Plowright 
and Malmquist have described virus isolation and the main fundamental concepts of 
ASF virus biology, transmission and pathogenesis (Anderson 1986; Bool et al. 1970; 
Hammond and Detray 1955; Pan and Hess 1985; Pan et al. 1980; Parker et al. 1969).

African swine fever is an emerging transboundary disease. ASF outbreaks were 
registered in many countries around the world outside Africa: Portugal, Spain, 
France, the Netherlands, Italy, USSR, Brazil, Cuba and Haiti (Boinas et al. 2011; 
Caporale et al. 1988; Costard et al. 2013; Korennoy et al. 2017; Lyra 2006; Terpstra 
and Wensvoort 1986). ASF outbreaks can be registered very far from endemic ter-
ritories, a 1000 km away from the outbreaks. In Spain ASF lasted for more than 
30 years that seriously affected national swine production industry, but the disease 
was successfully eradicated due to strict control policy, effective surveillance pro-
gramme and thorough research of virus diagnostics and epidemiology (Arias et al. 
2001; Pastor et al. 1989; Sanchez-Vizcaino et al. 1981).

Since 1978, ASF has been registered in Sardinia (Italy) and remains an issue for 
local pig producers and veterinary authorities (Jurado et al. 2018; Mur et al. 2018). 
The modern history of ASF has been started in 2007 (Fig. 2.1) when the disease 
outbreaks have been notified in Georgia (Costard et al. 2009; Onashvili et al. 2012). 
Since then, ASF rapidly affected the Caucasus republics and the Russian Federation. 
The virus was introduced in the wild boar population and then subsequently trans-
mitted to domestic pigs. In Russia, in 2017, the Federal Service for Veterinary and 
Phytosanitary Surveillance (Rosselkhoznadzor) reported that during 2007–2017, 
>1000 ASF outbreaks resulted in deaths of >800,000 pigs in 46 regions across 
Russia. Production of backyard swine industry decreased by almost half, from 1119 
tons of pork in 2007 to 608 tons of pork in 2017 (Kovalev 2017). However, highly 
industrialised pig farms showed increased production every year during this same 
period, despite the ASF epidemic.

The disease epidemiology in Russia and the lessons learned from 10 years of ASF 
endemicity will be presented in the respective section. African swine fever virus 
(ASFV) is an aetiological agent of the disease. ASFV is the only DNA arbovirus that 
can infect and replicate in both soft ticks and pigs (Alonso et al. 2018). Such extreme 
host range together with complex virus genome organisation makes ASFV the unique 
and sole member of the Asfarviridae family so far. In the following sections, we dis-
cuss the peculiarity of ASFV transmission and immunopathogenesis in differ-
ent hosts.

ASFV in infected hosts replicates in mononuclear cells (monocytes/macro-
phages) and has a sophisticated and multifunctional system of immune evasion 
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(Reis et al. 2017a), which makes the virus a “perfect killer” and still undefeated 
pathogen. The effective and safe vaccine is not available against ASFV, but some 
research groups presented encouraging and very promising results of future ASFV 
vaccine (Arias et al. 2018; Dixon et al. 2013; Rock 2017). The recent advances and 
knowledge gaps of ASFV vaccine development are summarised in the vaccine sec-
tion of this chapter.

Here, we guide the readers through the recent challenges and solutions in African 
swine fever epidemiology and control, and discuss outstanding questions for ASFV 
vaccine research. The readers will also find the updated references for specific top-
ics of ASFV biology, prevention, control and pathogenesis. The reference list is not 
complete, and we would like to thank all researchers for their valuable contribution 
to the ASF research summarised in this chapter.

2.2  Virus

African swine fever virus is a sole member of Asfarviridae family, genus Asfivirus. 
ASFV is a large and complex dsDNA arbovirus (Alonso et al. 2018). The genome 
length varies between 165 and 194  kbp from the isolates. Virions have multiple 
membrane layers and nucleoprotein core structure. Surface membrane (envelope) 
consists of different lipid forms and glycosylated proteins. The virion diameter is 
around 170–190  nm. ASFV genome structure is like the other members of 
 nucleocytoplasmic large DNA viruses (NCLDV) and consists of a single molecule 
of double- stranded linear DNA. The ASFV genome on two termini spanned by ter-
minal inverted repeats covalently closed in flip-flop form. Only 21 ASFV whole- 
genome sequences are publicly available in GenBank. More information about 
ASFV genome organisation and replication is available on the ICTV website.

ASFV replicates efficiently in mononuclear-phagocytic cells, resident macro-
phages and specific reticular cells of natural hosts. In vitro, ASFV grows in mono-
cyte/macrophages and can be adapted to endothelial cell lines. Some studies indicate 
that adaptation of ASFV to endothelial cells may lead to attenuated phenotype 
(Carlson et al. 2016; O’Donnell et al. 2016).

Antigenic diversity of ASFV is the most represented in Eastern Africa, where 
different transmission cycles are involved in disease transmission. Based on nucleo-
tide sequencing of core capsid protein P72 (B646L) of ASFV, 23 genotypes have 
been identified so far (Achenbach et al. 2017). Historical ASF outbreaks in Europe, 
USSR and the Caribbean were caused by genotype I ASFV strains. Recent ASF 
epidemic in the Caucasus republics, Russia and Eastern Europe has started from the 
introduction of ASFV genotype II into Georgia in 2007.

Additional markers of ASFV typing have been proposed for tracing back virus 
origin and distribution in endemic areas (Gallardo et al. 2014; Goller et al. 2015). 
Central variable region (CVR, B602L) and intergenic region (I73R-I329R) allow 
complement ASFV genotyping. Several ASFV IGR variants have been identified 
among the ASFV isolates isolated in Russia and Eastern Europe from 2012 to 2018.

A. Malogolovkin et al.
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Alternatively, ASFV isolates have been divided into serotypes based on haemad-
sorption inhibition assay (HAI) and cross-protection in vivo experiments. So far, 
eight serotypes have been identified, but more likely exist (Malogolovkin et  al. 
2015a; Sereda et al. 1994; Sereda and Balyshev 2011). Recently, genetic signatures 
of serotype specificity have been identified in CD2v (EP420R, haemagglutinin) and 
C-type lectin-like proteins (EP153R) (Malogolovkin et al. 2015b). This approach 
may fill the knowledge gap between ASFV genetic and antigenic diversity.

ASFV strains may cause acute, moderate and chronic disease forms. Several 
virulence factors have been identified in ASFV genome. The ASFV isolates may 
lose some members of multigene families MGF360/530 (Borca et  al. 2018; 
O’Donnell et al. 2016) or MGF110 that lead to an attenuated phenotype (Zani et al. 
2018). The recombinant ASFV strains with deleted interferon inhibitor genes or 
CD2v (Abrams et al. 2013; Monteagudo et al. 2017; Neilan et al. 2002) also had 
decreased virulence for domestic pigs. Some controversial results have been 
obtained about the role of CD2v protein in virulence and protection using different 
virus models (Burmakina et al. 2016; Monteagudo et al. 2017).

ASFV has unique characteristic by haemadsorbing red blood cells around 
infected macrophages (Fig. 2.2). Initially, this phenomenon was used for differen-
tial diagnostics of CSF and ASF. Later, ASFV CD2v protein was identified as a 
virus haemagglutinin (Galindo et  al. 2000; Rodríguez et  al. 1993). Interestingly, 
some ASFV have truncated or interrupted CD2v (EP402R) and as a result have not 
demonstrated haemadsorbing ability. Some non-haemadsorbing ASFV strains have 

Fig. 2.2 Macrophage infected by ASFV surrounded by red blood cells (E) and attached by cyto-
toxic T-lymphocyte, VP - viroplasm (electron microscopy of an ultrathin section)
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attenuated phenotype and have been used as a model for vaccine research (King 
et al. 2011; Sanchez-Cordon et al. 2017).

2.3  Epidemiology of Disease

The thorough and updated reviews about ASF epidemiology in Europe and Africa 
have been published recently (Bosch et al. 2017; Brown et al. 2018; Cisek et al. 
2016; Gogin et  al. 2013; Mur et  al. 2012). We would highlight some additional 
aspects of ASF epidemiology in Russia and emphasise on the main risk factors that 
have been identified over 10 years of the epidemic.

ASF is present in Russia since December 2007 when it was first introduced in the 
North Caucasus regions, and over the past 10 years it spread from Russia through-
out Eastern Europe, affecting domestic and wild boar, reached the Baltic countries 
and became endemic (Gogin et al. 2013). The epidemic was caused by the genotype 
II ASFV virus which caused up to 100% mortality in domestic and wild boar and 
could be considered as a self-limiting disease (Malogolovkin et al. 2012). Earliest 
data with ASFV Armenia/2008 strain revealed high mortality among domestic pigs 
and wild boar, but moderate contagiousness of the virus (Gabriel et  al. 2011; 
Pietschmann et al. 2015). Nevertheless, recent reports from the Baltic states demon-
strate the increased number of survived seropositive wild boar in some areas 
(Nurmoja et al. 2017a, b).

The Russian Federation consists of 85 federal subjects, and by veterinary legisla-
tion every federal subject is responsible for African swine fever control and preven-
tion. The situation with the disease depends on the capacity and resources of regional 
authorities. Every federal subject has a different structure of pig production sector, and 
if the proportion of backyard production is high it puts the region into the group of 
high risks in terms of ASF introduction and makes it much more difficult to control it.

During the 10 years period, since the first ASFV introduction into the territory of 
the Russian Federation (from December 2007 to 2017), 1274 outbreaks of ASF 
have been reported. More than 50% of them were observed among domestic pigs in 
small private holdings or backyard farms, 7% from a total number of outbreaks 
originated from industrial pig farms and around 40% of cases in wild boars 
(Fig. 2.3). Despite the increasing number of ASF cases almost every year, in the last 
12 years pig census has raised on 7 million heads in Russia (Karaulov et al. 2018).

After 10 years of disease circulation in the territory of Russia, it is still compli-
cated to collect accurate and up-to-date information about the pig population in 
backyard farms. Due to this limitation, uncontrolled animal movements play a cru-
cial role in disease distribution (Sánchez-Vizcaíno et al. 2012). The unknown num-
ber of animals in backyards does not allow veterinary services to control pig health 
on backyard farms. Some cases of ASF were detected only after reporting about 
disease suspicion by pig owners; in many times it happened too late after the first 
virus introduction and did not allow to define index case and apply control measures 
on time. The weakness of veterinary service in one region and late application to the 
outbreaks lead to disease spreading to the neighbour territories.

A. Malogolovkin et al.
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By acting national regulation, after ASF notification, all movements of pigs must 
be banned on the suspected farm. If ASF is confirmed by laboratory tests, stamping- 
out must be applied by regional authorities as soon as possible in radius from 5 up 
to 100 km. Regional authorities define control and surveillance zones. The weak-
ness of this eradication strategy is a high possibility of the late report by the owner 
and low motivation for regional authorities to expand the control zone because of 
high expenses for the stamping-out compensations.

The main risk factors of disease spreading are still the same after 10 years: move-
ment of the infected/sick pigs to the new territory and pork products contaminated 
by ASFV, late reports about the disease and weak cooperation between pig owners, 
veterinarians and hunters (Kolbasov et al. 2018b).

The role of wild boars in disease introduction to the new regions is controversial. 
It’s clear that white boar is responsible for short-distance spread of the disease 
among wild boar, but “ASF jumps” on thousands of kilometres in a very short period 
cannot be explained by this mechanism. The wild boar population can be divided 
into two parts—wild boar in native habitats and wild boar in-game grounds for 
hunting purposes. Unfortunately, hunters and managers of gaming grounds have no 
responsibility for animal health (Kolbasov et al. 2018b). In case ASF is detected in 
dead wild boar, carcasses of the dead animals are incinerated in place, under the 
supervision of regional veterinary service, and passive surveillance is applied in this 
territory. From the very beginning, there are two main driving forces of ASFV epi-
demic: the socio-economical aspects and human behaviour, whereas the role of wild 
boar is still not completely understood. There are many examples demonstrating the 
spatial pattern of the disease characterised by “jumping” spread caused by the ille-
gal movement of pigs and pork products (Kolbasov et al. 2018a).

One of the main factors for ASFV introduction into domestic pig herds is low or 
unappropriate biosecurity: about 80% of ASF outbreaks have been registered in the 
backyard sector. Most of them are linked to illegal trade and uncontrolled move-
ments of infected pigs. It is known that wild boar plays a critical role in the introduc-
tion of the virus into the new territories through administrative borders. Meanwhile, 
the involvement of ASF-affected wild boar in the virus distribution into the com-
mercial farms has never been confirmed. Moreover, there are many pieces of evi-
dence of illegal disposal of domestic pigs’ carcasses in the forest, following by 
detections of ASFV in the wild boar population. ASF can be relatively easily con-
trolled in domestic pigs. It is also worth noting that the ticks are not involved in the 
current ASF epidemic in Eastern Europe and Russia.

It’s interesting to compare the results of the epidemiological investigation of 
African swine fever outbreaks in 1977 in USSR with the data collected from current 
ASF outbreaks in Russia (Korennoy et al. 2017). The main risk factors remain the 
same after almost 40 years.

Here are some risk factors that have been identified in 1977 (Jurkov et al. 2014):

 – Infected food waste
 – Sales of infected meat products
 – Trade of infected animals
 – Economic ties of farms and enterprises located in non-affected areas to ASF- 

affected zones

A. Malogolovkin et al.
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2.4  Transmission

2.4.1  Sylvatic Cycle

ASF is endemic in most African countries from the Sahara desert to the south. In 
Europe, the island of Sardinia has the longest history of ASF epidemic so far (Mur 
et al. 2018; Sánchez-Vizcaíno et al. 2012). The major route of ASFV transmission 
is a contact of susceptible animals (domestic pigs or wild boar) with either infected 
animals or fomites or contaminated pig products or via tick bites.

Historically, warthogs (Phacochoerus africanus) and indigenous African pigs 
(Phacochoerus africanus, Potamochoerus porcus, Potamochoerus larvatus, 
Hylochoerus meinertzhageni) were considered as the main reservoirs of ASFV in 
nature in Africa. Later studies have demonstrated no horizontal or vertical transmis-
sion of ASFV in wild African pigs. Several unsuccessful attempts have been made 
to confirm the direct transmission of ASFV from seropositive warthogs to domestic 
pigs (Anderson et  al. 1998). Therefore, soft ticks were considered as a potential 
player of the sylvatic cycle of ASFV transmission. The warthogs live in the barrows, 
where soft ticks are frequent neighbours (Ornithodoros porcinus porcinus, O. por-
cinus moubata, O. moubata).

ASFV-infected ticks bite young warthogs, which easily recover the disease, but 
ASFV titre in the blood may reach 2–3 lg HAU/mL, which is enough to initiate a 
new round of sylvatic cycle in the soft ticks (Burrage 2013; Plowright et al. 2002).

In the Iberian Peninsula, another species of soft ticks (Ornithodoros erraticus) as 
an ASFV competent vector was found (Bastos et al. 2006a). There is no doubt that 
O. erraticus was involved in ASF epidemic in Spain. ASFV-infected soft ticks may 
survive up to 5 years that may lead to serious concerns in ASF endemic countries 
(Boinas et al. 2004). Recent studies have shown that ASFV strain Georgia 2007/1, 
which is currently circulating in Europe, replicates efficiently in O. erraticus, col-
lected in Southern Portugal (Diaz et al. 2012).

Several other soft tick species may also be competent for ASFV replication. 
Thus, in the USA O. puertoricensis, O. turicata, O. talaje, O. dugesi and O. сoriaceus 
(Hess et al. 1987) are potential ASFV vectors as well (Hess et al. 1987). It has been 
proven that in O. coriaceus, ASFV may persist after 4 months. However, a trans-
ovarial transmission has not been demonstrated (Sánchez-Vizcaíno et al. 2009).

In African tick O. moubata, ASFV may be transmitted transovarially and trans-
stadially and by sexual contact (Hess et al. 1989; Plowright et al. 1970; Rennie et al. 
2001). These data support the hypothesis of a long-term ASFV persistence in tick 
populations without pig’s involvement. It is most likely that evolutionarily ASFV is 
an arthropod virus taking into account the taxonomic relationship and sylvatic cycle 
(Makarov et al. 2016). Some data suggest that ASFV and soft ticks have coherent 
evolution, and several virus host-range genes are involved in this process. However 
domestic pigs are unnatural hosts, and the virus may lose some host-range genes 
during replication in domestic pigs (Afonso et al. 2004; Burrage et al. 2004; Dixon 
and Wilkinson 1988). Hopefully, new genetic data of the soft tick’s genome sequenc-
ing will help to dissect the ASFV evolution and origin.

2 African Swine Fever Virus
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Wild African pigs and soft tick form a sylvatic cycle of ASFV transmission 
(Parker et al. 1969). However, the soft ticks transmit ASFV to domestic pigs as well. 
The efficiency of virus transmission correlates with virus titre in ticks’ salivary 
glands and coxal gland that may reach 4–6 lg HAU/mg (Bastos et al. 2006b).

Around 100 species of Ornithodoros are known, and 7 species have been identi-
fied in the territory of former USSR. Among them, О. papillipes in middle Asia and 
О. verrucosus in the Caucasus republics are vectors of the relapsing fever as well as 
O. moubata in Africa and O. erraticus in Iberian Peninsula (Fillipova 1966). 
Therefore, these species of ticks are of interest for ASFV epidemiology.

In eastern European countries, several swine farms with high biosecurity level 
have been affected by ASFV. To estimate the role of other haematophagy, several 
studies have been carried out. In experimental settings, the stable fly (Stomoxys 
calcitrans) fed with blood from ASFV-infected animal caused ASF in domestic 
pigs. These data suggest that other blood-sucking insects may play a role in ASFV 
transmission at least within a herd (Olesen et al. 2018). In another study, blood from 
rodents and birds was tested for ASFV without positive results (EFSA AHAW Panel 
(EFSA Panel on Animal Health and Welfare) 2014).

2.4.2  Fomite Transmission

One of the most important questions of virus transmission in natural settings is its 
tenacity in different environments. This is a crucial issue for studying disease distri-
bution, modelling and risk assessment. The minimum infectious dose for ASFV 
Georgia 2007/1 for the oronasal route of inoculation is 10 HAU/mL according to 
Kovalenko and Sidorov (1973).

ASFV in infected and sick animals is shed via saliva, nasal excretes, faeces, 
urine, genital excretes and blood. All these ASFV-contained excretes may contami-
nate ground, feed and water. ASFV shedding in faeces coincides with fever (Greig 
and Plowright 1970). After primary fever onset in 2–3 days, ASFV titre in nasal 
swabs may approach 4–5 lg HAU50/mL.  In some studies, ASFV was isolated in 
faeces and oral swabs after 70 days of infection (de Carvalho Ferreira et al. 2012).

At low temperature (4–6 °С) in faeces and urine from sick animals, ASFV was 
isolated in 159–253 days and 60–87 days, respectively (EFSA AHAW Panel (EFSA 
Panel on Animal Health and Welfare) 2014). In hot climate environment, the stables 
where sick animals have been housed, ASFV has been found from 5 to 14 days, and 
in Spain—up to 3 months (Kovalenko and Sidorov 1973). In mild and cold climate 
environment of central Russia in contaminated forest sandy ground with pH 4.5–4.6, 
ASFV survived for 112 days (Smirnov and Butko 2011).

Based on the previous data where the minimal infectious dose of 10 HAU/mL 
was identified, ASFV remains infective in faeces and urine up to 8–15 days at 4 °C 
and up to 3–4 days at 37 °C (Davies et al. 2017).

In wintertime, frozen excretes from sick wild boar and virus-contaminated envi-
ronments may be a potential source of infection after thawing. Several approaches 

A. Malogolovkin et al.
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have been developed for ASFV surveillance in wild boar population. One of the 
most promising is a rope with feed attractants (Chichikin et al. 2012). An alternative 
approach for ASFV surveillance in wild boar is a faeces sampling, since ASFV may 
survive in faeces for quite a long time. Faeces samples might be used for ASFV 
genome detection using PCR (de Carvalho Ferreira et al. 2012). According to de 
Carvalho Ferreira et al. (2014), ASFV DNA has been identified in faeces till 98 days 
at 4–12 °C and 35 days at 37 °C, in urine—126 days at 4–37 °C and in saliva—35 days 
at 4 °C and 14 days at 12–21 °C.

2.5  Immunopathobiology

The pathogenesis and immunopathology of ASF are similar to the most human and 
animal haemorrhagic fevers. ASFV infects predominantly mononuclear cells 
(monocytes/macrophages)—the most prominent component of T-cell-mediated 
immunity. Infected monocytes/macrophages release a wide range of cytokines, 
which severely affect different cell types (lymphocytes, endothelial cells) leading to 
apoptosis and cell damage (Penrith 2009; Penrith et al. 2004). An increase of pro-
duction of proinflammatory cytokines such as IL-1α, IL-6α and TNF-α coincides 
with haemorrhagic fever symptoms (e.g. fever, vascular damage) (Salguero et al. 
2002; Sánchez-Cordón et al. 2005). ASFV replication in monocytes/macrophages 
leads to its damage and apoptosis. The components of damaged and disrupted 
mononuclear cells also activate endothelial cells and slow down the coagulation 
system (Salguero et al. 2008).

Initially entered to mononuclear cells, ASFV is able to infect several other cell 
types (i.e. neutrophils, megakaryocytes, tonsillar epithelial cells, hepatocytes, kid-
ney cells, granulocytes, presumable dendritic cells) especially in the later disease 
state (Greig et al. 1967; Sierra et al. 1990). In acute ASF, severe pathomorphological 
changes and haemorrhages are found in lymphoid organs (spleen, lymph nodes, 
thymus) and kidney (Kleiboeker 2002; Ramiro-Ibáñez et al. 1997).

The clinical course of ASF varies from unapparent to chronic forms and mostly 
depends on the ASFV isolate (EFSA AHAW Panel (EFSA Panel on Animal Health 
and Welfare 2014). First haemorrhagic lesions may appear at 3 days postinfection 
with virulent ASFV and coincide with monocyte/macrophage destruction. The aver-
age incubation period following infection with ASFV virulent strain lasts for 
2–7 days, and rarely longer. The mortality rate of ASF may approach 100% but 
ranges between ASFV isolates (Mebus 1988). Typical clinical signs of acute ASF 
may include high fever, bloody diarrhoea, respiratory discharges, cyanosis and 
haemorrhagic lesions. Often, central nervous system symptoms, such as ataxia and 
convulsion, may be observed in the late stage of infection. ASFV causes the same 
clinical symptoms in wild boar regardless of their age and sex (Blome et al. 2013; 
Gabriel et al. 2011). The readers may find some pathological pictures of ASF on the 
EFSA photo portal (https://efsa.maps.arcgis.com/apps/PublicGallery/index.html?a
ppid=dfbeac92aea944599ed1eb754aa5e6d1).

2 African Swine Fever Virus
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ASF epidemic in Russia and Europe initially was caused by highly virulent 
ASFV strain (genotype II). In experimental settings, the animals died within 10 days 
postinfection with no survivors. However, since 2012 more reports notify moderate 
ASFV variant in Eastern Europe and Russia with an increasing number of survivors, 
especially among wild boar (Arias et al. 2018; Gallardo et al. 2018). Several ASFV 
genetic variants have been identified in Russia and Eastern Europe. Nevertheless, 
the link between genetic changes and disease course is not fully understood.

ASFV strictly impairs innate immune system (e.g. IFN response, TLR, MHC). 
ASFV modulates different stages of host immune response and has sophisticated 
mechanisms of immune evasion. Several ASFV genes have been identified as virus 
virulence factors and IFN inhibitors (Afonso et al. 2004; Reis et al. 2017b). Recent 
advances in gene-editing approaches may help to design and produce safe and 
immunogenic recombinant ASFV strain, lacking virulence factors that might be a 
very promising vaccine candidate in future.

2.6  Diagnostics

Since no vaccine is available to prevent ASF infection, quarantine measures for 
liquidation and prevention of the disease are carried out. It is necessary to carry out 
a laboratory diagnostic for obtaining the information for surveillance and eradica-
tion programmes. Positive diagnosis means the identification of animals, which are 
or earlier were infected with ASFV. It includes detection and identification of the 
infectious virus, DNA, specific antigens and antibodies (Agüero et al. 2004; Oura 
et al. 2013).

For ASF diagnostic, a wide range of methods are used. Infectious virus is deter-
mined with a biological assay on pigs and using haemadsorption test (HAD) in 
swine macrophages (Orfei et al. 1968). Virus-specific antigens are identified using 
primary (direct) immunofluorescence, immunoperoxidase method and 
ELISA. ASFV DNA is identified using PCR (Fernández-Pinero et al. 2013; James 
et al. 2010; King et al. 2003). For virus-specific antibody detection, OIE recom-
mends indirect ELISA and for confirmation indirect immunofluorescence or 
Western blot (World Organisation for Animal Health (OIE) 2012).

From the end of 2015, epizootic, serological and genetic research showed a 
prominent increase of seropositive animal incidence, which is especially visible in 
wild boar population in unfavourable EU countries. These results suggest that some 
animals may have a chronic form of the disease (Olsevskis et al. 2016; Smietanka 
et al. 2016; Wozniakowski et al. 2016).

Gallardo et al. (2015) evaluated methods of ASF diagnostic of viral DNA detec-
tion, antigens and antibodies for experimental and field samples (Gallardo et  al. 
2015). The authors in parallel investigated 785 field and experimental samples, 
obtained from pigs, infected with genotype II using three PCR assays for ASF virus 
genome detection (Agüero et al. 2003; Fernández-Pinero et al. 2013). It was shown 
that several DNA-positive samples were more for 3.3% in UPL (Universal Probe 
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Library)–PCR than in PCR assays, recommended by OIE. DNA was easily detected 
using both PCR assays when high virus levels were found in blood and tissues in the 
clinical phase of infection.

The results of diagnostic efficacy comparison of ELISA (ELISA Ingezim K2; 
Ingenasa, Madrid, Spain) and three PCR assays are summarised in Gallardo et al. 
(2013) and Oura et al. (2013). The authors notify that field samples with bad sam-
pling and storage conditions can dramatically decrease ELISA sensitivity.

It may be denoted by the antigen-antibody complex formation in seropositive 
animals’ tissues and blocking of the interaction between antigen ASFV and specific 
conjugate to it. In most cases in EU countries, ASF has an acute form and causes 
deaths with a high level of virus accumulation in all the tissues (Gabriel et al. 2011; 
Gimenez-Lirola et al. 2016; Guinat et al. 2016). That is because it is rational to use 
other diagnostic methods in parallel with ELISA.

Immunoperoxidase method (IPT) showed greater sensitivity than indirect ELISA 
in studying serum samples, obtained in dynamics from experimentally infected 30 
domestic pigs by ASFV genotype II. Immunoperoxidase method allowed detecting 
ASFV antibodies at an earlier stage of infection than using indirect ELISA. Diagnostic 
sensitivity of indirect ELISA varied from 22% to 50% in comparison of the IPT 
depending on the assays. Low sensitivity of indirect ELISA can be associated with 
the fact that samples were selected from the animals with an acute form of ASF 
before the accumulation of antibodies, which was determined using indirect ELISA.

Nevertheless, it is necessary to search for antibodies from the trophy and fallen 
animals for understanding a complete epizootic situation. Positive results using 
indirect ELISA should always be confirmed by alternative methods as secondary 
(indirect) immunofluorescence and Western blot, according to OIE recommenda-
tions (World Organisation for Animal Health 2012). In the authors’ opinion, even 
though there are a lot of good verified methods of ASF diagnostic, obtained results 
show that UPL-PCR in combination with IPT is the most reliable method for early 
ASF virus genome and antibody detection.

Interesting results were obtained by evaluating an epidemic situation of ASF and 
the warthogs in Serengeti nature park in Tanzania (Misinzo 2012). The authors 
investigated serum samples using indirect ELISA (OIE-ELISA) and Western blot 
(OIE-IB) for ASFV antibody detection, and blood and organ samples for genome 
virus detection. According to indirect ELISA results, 100% (34/34) of warthogs 
were seropositive. Analysis of organ samples using PCR showed that only 8.8% 
(3/34) were weakly positive. However, the authors could not isolate the infectious 
virus in any samples. Results correlated with other information that most of the 
warthogs were seropositive (Heuschele and Coggins 1969).

It should be noted that during the ASF epidemic in Russia in 2007–2012, both 
PCR and direct immunofluorescence were used that guaranteed 100% of diagnostic 
accuracy. Specific antibodies in organ tissues from infected pigs were not prominent 
as they were detected only from 45% of animals (33% from wild boars and 49% 
from domestic pigs). The levels of specific antibodies varied from 4.3 to 9.0 log2 in 
domestic pigs and wild boar. It was noticed that antibodies, even in high concentra-
tions, did not block intracellular antigens and did not prevent from detecting them 
using direct immunofluorescence and ELISA (Strizhakova et al. 2016).
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While choosing a diagnostic test, it is important to consider the phase of the 
infection and what form of the disease is caused by circulated ASFV. In acute and 
subacute forms, infectious virus and DNA can be detected before the manifestation 
of clinical signs. Serological conversion intervenes from the 7th to the 11th day 
postinfection and antibodies can be detected in the course in the rest of an animal’s 
life. Positive test on the infectious virus (or antigens) presence and DNA indicated 
that during sampling tested animals were already infected. On the other hand, a 
positive test for antibodies to ASFV pointed out that animals were infected more 
than a week ago and/or survived after ASFV infection.

2.7  Prevention and Control

Control over African swine fever (ASF) is complicated due to the lack of specific 
prevention measures. Only rapid diagnostics and strict stamping-out of the strategy 
of infected animals may help to eradicate the disease and stop virus transmission. 
The safe and efficacious vaccine against ASF is not available now, but recent 
advances of vaccine research demonstrate very encouraging results. Below the read-
ers may find the short historical overview and current approaches about ASF vac-
cine research.

2.7.1  Inactivated Vaccines

Many attempts have been made to produce traditional inactivated vaccines from 
ASF using infected macrophages fixed with glutaraldehyde, lysates of primary and 
passage cell culture treated with ultraviolet radiation, freon, and ionic and nonionic 
detergents, inactivated with β-propiolactone of purified virions fixed on bovine 
erythrocytes, mycobacteria and γ-globulin (Blome et  al. 2014; Kovalenko and 
Sidorov 1973; Makarov et al. 2016; Mebus 1988; Petrov et al. 2018). Others and we 
have not observed any protective effect of inactivated virus formulations. On the 
contrary, in several cases, the enhancement of disease of immunised pigs is 
 compared with the control group after their infection with virulent isolates of the 
ASFV (Hess 1981; Mebus 1988; Stone et al. 1968).

2.7.2  Subunit Vaccines

Studies on the development of subunit vaccines have facilitated the search for 
potentially protective proteins. The effects of pig immunisation made by purified 
infected cells or recombinant proteins p30, p54, p72 and CD2v were considered to 
be potentially protective (Barderas et al. 2001; Gómez-Puertas et al. 1996; Gutiérrez- 
Castañeda et al. 2008; Kollnberger et al. 2002).
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Pig immunisation by recombinant proteins p30 and p54 expressed in baculovirus 
led to a delay in the onset of clinical symptoms of the disease after animal challenge 
with a virulent isolate (Gómez-Puertas et al. 1998). Pigs’ immunisation with a pool 
of glycoproteins of the ASFV in liposomes induced the antibody titre formation but 
led to an acceleration of the animal deaths after challenge. As a result of pig immun-
isation with serotype-specific major glycoprotein CD2v (gp 110–140) of ASFV 
purified from macrophages infected with ASF, in liposomes, 67% of the animals 
were protected after infection from death, but not from the reinfection (Sereda et al. 
1994). ASFV CD2v is directly involved in the process of haemadsorption in the 
infection of sensitive cells with ASFV (Rodríguez et al. 1993). It is determined that 
the results of genotyping at the locus encoding CD2v correspond to the distribution 
of isolates and strains of ASFV over seroimmunotypes (Malogolovkin et al. 2015a). 
Immunisation with recombinant baculovirus carrying the CD2v gene of the ASFV 
protected from subsequent challenge with a virulent strain (Argilaguet et al. 2013). 
Presumably, this protein can be the main inducer of CTL.

So, most researchers consider the proteins p30, p54 and CD2v required for the 
immunological defence induction against ASF, but none of them correlates with 
protection.

2.7.3  Live Vaccines

Live attenuated vaccines against ASFV are a promising tool to dissect the mecha-
nism of protection and find hidden signatures of immune correlates. Several elegant 
and thorough reviews have been published recently with an emphasis on live attenu-
ated vaccine characteristics (Arias et al. 2018; Rock 2017; Souto et al. 2016).

In the Pokrov Institute, we attenuated, created, selected and isolated a number of 
strains and ASFV variants that do not cause the death of domestic pigs and are able 
to form protection from subsequent infection with homologous virulent isolates 
(Vishnjakov et al. 1991).

The research on the development of protection against ASF leads to the discovery 
of attenuated strains of eight serotypes. The attenuated candidate vaccine strain was 
able to protect 75–90% of the animals after 10–14 days post-challenge with virulent 
ASFV homologous in the serotype (Sereda and Balyshev 2011). Despite the fact 
that the selected attenuated strains met the established requirements for protection 
and harmlessness, they had some differences in several biological  characteristics: 
the duration and level of viremia and the timing of the formation of virus-specific 
protection. Thus, an attenuated FK-135 strain (serotype 4) at a dose of 104.0 HAU50 
creates protection on the 7th–10th days in 92–100% of pigs, and the strain of 
MK-200 (serotype 3) in 50% of animals, and only on the 14th day—in 82–92%.

The disadvantages of live vaccines are the attenuated virus carriage to different 
extents, the probability of subsequent partial restoration of its virulence, the devel-
opment of subclinical infection sometimes changing into a chronic form, and insuf-
ficient protection in immunocompromised animals, for example pregnant sows.
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It is known about the isolation of naturally attenuated strains of the ASFV, for 
example OURT88/3 or NH/P68. Immunised pigs were protected from infection 
with homologous virulent strains (Boinas et al. 2004; Leitão et al. 2001; Mulumba- 
Mfumu et al. 2017). Protection levels varied from 66% to 100%, depending on the 
pigs and the way and dose of injection. Attempts to use natural attenuated strains of 
the ASFV as vaccines have shown side effects. Some of the vaccinated pigs devel-
oped unfavourable reactions, including pneumonia, locomotor disorders, necrotic 
foci, abortions and death (Gallardo et al. 2015).

Recombinant ASF viruses with gene deletions involved in immune evasion, such 
as thymidine kinase (TK), 9GL (B119L) gene, NL (DP71L) gene and several mem-
bers of the 360 and 505 multigene families (MGF360/505), cause total attenuation 
of initially virulent isolates and induce the development of protection against 
homologous virulent isolates (Afonso et al. 1998; Neilan et al. 2002; O’Donnell 
et al. 2017).

Multiple deletions of the six members of MGF360 and 505 in combination with 
the 9GL gene resulted in the virulence strain loss of the ASFV Georgia07/01, but 
did not protect animals after subsequent infection with a virulent homologous virus 
(O’Donnell et al. 2016). In contrast, the Georgia07/01 virulent isolate, modified by 
removing the virulence factors 9GL and UK, in contrast to the 9GL modified only 
by removal, acquired protective properties. These results indicate that the succes-
sive removal of the second virulence factor can make recombinant live attenuated 
ASF viruses much safer. So far, gene-edited recombinant ASFV strains are the most 
promising candidates for a vaccine against ASF.

2.7.4  DNA Vaccines

It is conceptually important that DNA vaccines are potentially safe for animals and 
induce antigen-specific cellular immunity. A significant problem of candidate DNA 
vaccines is the relatively low acquisition of DNA by the cells in vivo, especially in 
large mammals. Several approaches have been proposed to overcome this problem 
(Leifert et al. 2004; van Drunen Littel-van den Hurk et al. 2004).

The similarity between the HA haemagglutinin of HA virus (or CD2v) and the 
leukocyte CD2 molecule suggested that it can target lymphocytes expressing CD2 
receptors (CD48 and CD58) to viral antigens in antigen-presenting cells (Borca 
et al. 1994; Rodríguez et al. 1993). The addition of HA enhanced both the humoral 
and cellular responses against the chimeric PQ protein (p54 and p30), after three 
intramuscular injections of the corresponding DNA construct. The enhancement of 
the immune response to sHA injection may also be due to the presence of T-helper 
cell epitopes in this molecule.

Another strategy is based on targeting the encoded viral antigens to the places of 
antigen presentation using the variable fragments of single-chain (ScFv) antibodies 
that specifically recognise cell antigens on the surface of antigen-presenting cells 
(Grossmann et al. 2009). The efficacy of the invariant epitope of class II hypogly-
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caemia (APCH1) as a genetic adjuvant in vivo was confirmed by pig immunisation 
with plasmid pCMV-APCH1PQ in which the APCH1 gene is fused to the chimera 
open reading frame for PQ. DNA constructs encoding only PQ did not induce the 
formation of antibodies in pigs, while immunisation with pCMVAPCH1PQ caused 
both the synthesis of PQ-specific antibodies and the activity of T-helpers targeted 
for class II histocompatibility antigen, indicating an adjuvant effect of the APCH1 
molecule. However, this candidate DNA vaccine did not protect pigs from subse-
quent infection with ASFV (Barderas et al. 2001).

Despite the notified humoral response to the immunisation of pCMV-sHAPQ, 
the pigs were not protected from challenge. To avoid unfavourable induction of 
antibodies and to enhance specific CD8+ T-cell responses, a pCMV-UbsHAPQ 
construct was developed that codes for the antigenic determinants p30, p54 and 
sHA fused to cellular ubiquitin. As expected, immunisation with pMVV-UbsHAPQ 
did not induce a humoral response in pigs, but provided partial protection against 
ASFV challenge, confirming the importance of the T-cell response in protecting 
against this virus. The achieved protection was not enhanced by an increase in the 
multiplicity of administration of the DNA vaccine, which may reflect a lack of 
boost effect for the T-cell response induced after the first administration. With 
twofold immunisation of pCMV-UbsHAPQ, 2 out of 6 pigs survived, while only 4 
of them survived. Presumably, boost strategy negatively affects in terms of provid-
ing protection. According to the authors, fourfold immunisation with pCMV-
UbsHAPQ could lead to weak induction of antibodies exacerbating the disease, 
which in turn can suppress the protective effect of induced CD8+ T cells (Argilaguet 
et al. 2012).

Immunisation with DNA expression library is considered as a promising trend in 
the development of protection against emerging diseases (Talaat and Stemke-Hale 
2005). The protection of the ASFVUblib DNA library, represented by short frag-
ments of the ASFV genome combined with the ubiquitin gene in the plasmid 
pCMV-Ub, was studied to enhance the induction of specific CTL (Lacasta et  al. 
2014). The obtained 4029 clones (total 130,000  bp) covered about 76% of the 
viral genome.

Vaccination capabilities based on the use of BacMam viruses, which are baculo-
virus vectors encoding virus proteins under the control of vertebrate promoters, are 
established, which provides the high expression of the transgene in mammalian 
cells (Argilaguet et al. 2013).

Immunogenicity of BacMam-sHAPQ was determined after a threefold adminis-
tration of 107 pfu with a 15-day interval. Then, all animals were infected with a 
homologous isolate E75 at a dose of 102 HAU50. As expected, there were no such 
responses before infection in a control group, and in four out of six pigs immunised 
with BacMam-sHAPQ specific T-cell responses appeared. Therefore, with the vac-
cination of BacMam-sHAPQ, the pigs’ protection against sublethal homologous 
infection with ASFV is possible in the absence of antibody induction. Besides, the 
induced defence and stimulation of T cells are directly related.
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2.7.5  Antiviral Formulations

Antiviral drugs and approach are of interest to study ASFV reproduction and poten-
tially might be used in vivo to inhibit virus replication. A “specific” target for sev-
eral antiviral agents is viral DNA polymerase. With the ASFV, phosphonoacetic 
acid (PTC) was tested, which is an effective inhibitor of the activity of this enzyme. 
PTC was equally effective both in experiments on cell cultures and in animals.

Based on the data analysis of the synthesis efficiency, reproducibility and thera-
peutic activity with ASF, three compounds were selected: PTC, PTC complex with 
7-amino-1,3,5-triazaadamantane (A-14) and potassium pyridine salt of PTC-230, 
which prevented the death of more than 80% of infected animals at 100% death in 
the control group. The use of PTC in combination with metisazone, an inhibitor of 
the synthesis of “late” virus-specific proteins, under conditions of micro-epizootic, 
prevented the death of all gilts that were in contact with patients, with 100% death 
of animals to which the compound was not administered. The possibility (doses, 
terms and multiplicity of administration of chemotherapy drugs) of reducing the 
virus level carrying in ASF was shown. The possibility of obtaining type-specific 
sera is established bypassing the attenuation of virulent strains. This allows reduc-
ing the time of obtaining serum 3–12 times, which is important for serotyping the 
virus (Zubairov et al. 2017).

It has been shown that fluoroquinolones are capable of inhibition of ASFV repli-
cation in vitro (Freitas et al. 2016). Particularly, genistein may block ASFV infec-
tion in Vero cells and swine macrophage (Arabyan et al. 2018).

Small interfering RNA, targeted ASFV topoisomerase II, decreases virus yield 
(up to 99.7%) and several infected cells (75.5%) (Freitas et al. 2016).

Promising results have been demonstrated using CRISPR-Cas9 technology- 
targeted ASFV DNA. Cas-9 and guided RNA aimed at 71–78 codons of p30 virus 
protein (CP204L) were able to decrease virus titre up to fourfold in wild boar lung 
cell (WSL). This alternative approach may help to design and create naturally resis-
tant swine in future (Hubner et al. 2018).

2.7.6  Control of ASF

The main risk factors of ASF in Russia are uncontrolled animal movement and con-
taminated pig products (raw meat, ham, fat and skin); waste and transport; corpse of 
infected animals (wild boar either domestic pigs); improper herd vaccination using 
“one needle”; and infected wild boar. The range of sanitary measures in response to 
outbreaks is exhaustive and listed in national contingency plan according to OIE 
recommendations. In case of ASF outbreak, based on national legislation and our 
experience, three steps of disinfection are recommended: cleaning and washing 
using alkaline solutions, regular disinfection using bactericidal foam and final dis-
infection with fine aerosols of disinfectants (Sereda et al. 2015).
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To shorten the herd replenishment after ASF outbreak, the farmers may initiate 
biological control of disinfection. Sentinel pigs may be introduced into the farm 
(10% out of total herd population) for controlling the efficiency of disinfection. The 
testing period lasts for 60 days; after that, blood and serum samples from sentinel 
pigs are tested by PCR and ELISA, respectively. Moreover, ground and sewage 
samples from farm-associated territories are collected. The samples are sent to ASF 
reference laboratories for biological assay. In case of negative results in PCR and 
ELISA, and negative biological assay, the disinfection should be well completed, 
and herd should be ready for replenishment (Sereda et al. 2016). If some positive 
results are received from sentinel pigs, either ground samples, the disinfection 
should be repeated.

ASF epidemic in the wild boar population is more complicated. ASFV is trans-
mitted from one animal to another many times that may lead to severe changes in 
virus virulence. Also, the corpse of dead wild boar is the source of ASF in wild 
fauna, since ASFV may survive for several months in autumn-winter seasons.

Therefore, despite the fact that there is no vaccine available against ASF, history 
knows many positive examples of the disease eradication in several continents (Lyra 
2006; Peritz 1981; Sánchez-Vizcaíno et  al. 2009; Wilkinson 1986). Nowadays, 
understanding of the disease transmission, pathogenesis and rational biosecurity 
measurements is crucial for risk mitigation of ASF introduction.
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