
Changes Are Similar: Measuring
Similarity of Pull Requests That Change

the Same Code in GitHub

Ping Ma, Danni Xu, Xin Zhang, and Jifeng Xuan(B)

School of Computer Science, Wuhan University, Wuhan 430072, China
jxuan@whu.edu.cn

Abstract. Pull-based development is widely used in globally collabora-
tive platforms, such as GitHub and BitBucket. A pull request is a set of
changes to existing source code in a project. A developer submits a pull
request and tends to update the source code. Due to the parallel mecha-
nism, several developers may submit multiple pull requests to change the
same lines of code. This fact results in the conflict between changes, which
makes the project manager difficult to decide which pull request should
be merged. In this paper, we conducted a preliminary study on measur-
ing the similarity of pull requests that aim to change the same code in
GitHub. We proposed two methods, i.e., the cosine and the doc2vec, to
quantify the structural similarity and the semantic similarity between
pull requests and evaluated the similarity on four widely-studied open
source Java projects. Our study shows that there indeed exists high simi-
larity between competing pull requests and the similarity among projects
diversifies. This complicates the merging decision by project managers.

Keywords: Pull requests · GitHub · Similarity · Empirical study ·
Code changes

1 Introduction

GitHub is widely-used in collaborative software development. A developer who
is engaged in open-source projects tend to use GitHub to support their collab-
oration. According to the official website, up to June 2018, GitHub has over 28
million users and 57 million repositories, making it the largest host of source code
in the world [2]. GitHub achieves collaborative development via the mechanism
of pull requests. Once a developer wants to update a project, he can submit a
pull request which consists of one or more code changes to the target project. A
submitted pull request waits to be merged into the repository or discarded by
the manager of the target project.

Due to the parallel mechanism of GitHub, it often happens that developers
make different changes to the same lines of code during the same time period.
This makes pull requests potentially compete with each other, i.e., competing
pull requests [20]. Such pull requests may contain changes that have the same
c© Springer Nature Singapore Pte Ltd. 2019
Z. Li et al. (Eds.): NASAC 2017/2018, CCIS 861, pp. 115–128, 2019.
https://doi.org/10.1007/978-981-15-0310-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0310-8_8&domain=pdf
https://doi.org/10.1007/978-981-15-0310-8_8


116 P. Ma et al.

or different goals and may cause the conflicts on the structure or the semantics
of code. It is complicated and time-consuming for a project manager to decide
which pull request should be merged in high priority [7,8,23]. The existence of
conflicts between changes by these pull requests exacerbates the difficulty for the
merging decision. We speculate that the similarity between these pull requests
may have a great impact on the difficulty that project managers have to face
when they make decisions for merging pull requests.

In this paper, we conducted a preliminary study on measuring the similarity
between pull requests that aim to change the same code in GitHub. We used the
cosine and the doc2vec to measure the similarity of code structure and semantics,
respectively. We evaluated the similarity on four open source Java projects with
the most forks in GitHub. Our study contains 6,469 pairs of pull requests, each
pair of which has two pull requests that contain changes on overlapped code. We
explored the similarities between these pull requests via three research questions,
including the similarities between pull requests, the similarity distribution, and
the correlations between two measurement methods in use.

Our study shows that there indeed exists high similarity between pull requests
that change the same code. In the four Java projects we studied, the average
similarity between each pair of pull requests is over 0.9; the highest average
similarity among these four projects is up to 0.9976. In the pull requests we
measured, over 75% of the similarity between each pair of pull requests is above
0.8 and half of the similarity is 0.95 or higher. Our study shows that there is high
correlation between the two measurement methods; this indicates that both the
structural similarity and the semantic similarity exist between the pull requests
that aim to change the same code.

This paper makes the following contributions:

– We conducted a study of measuring the similarity between pull requests that
aim to change the same code. We proposed two methods to measure the
similarity of code structure and semantics on four open source Java projects
with the most forks in GitHub.

– We answered three research questions and found that there indeed exists high
similarity between competing pull requests. This provides the foundational
result for analyzing the conflicts between pull requests.

The remaining of this paper is organized as follows. Section 2 presents the
background and the motivation. Section 3 describes two measurement methods
of similarity. Section 4 presents the experimental setup, which includes data
preparation, two measurement methods, and three research questions. Section 5
details the results of our experiment. Section 6 explains the threats to the valid-
ity. Section 7 lists the related work and Sect. 8 concludes this paper.

2 Background and Motivation

We introduce the background of merging pull requests and the motivation of
exploring the similarity between pull requests.



Changes Are Similar 117

2.1 Background

Collaborative platforms, such as GitHub and BitBucket, have provided high
interaction between developers and code projects via pull requests. A project
manager can deploy the codebase in GitHub and allows other developers to
fork (i.e., clone) the project into their own account as a copy. Developers could
freely make code changes to the project that has been forked in their account.
Once several changes are made, a pull request that includes the changes can be
submitted to the target project. A submitted pull request waits for the decision
by the project manager, i.e., deciding merging this pull request into the project
or discarding it.

Pull requests are the key artifacts that make developers accomplish collabo-
rative development in GitHub. Technically, a pull request consists of one or more
commits, each of which contains edits to the original source code at a particular
time. Once these changes are accepted by the project manager, the pull request is
merged into the original repository. Conversely, the pull request would be closed
if the manager chooses not to accept these code changes. GitHub provides a free
and flexible platform for developers to submit pull requests; hence, the project
manager may receive multiple pull requests during a time period. In this case
of multiple pull requests, it is time-consuming for the manager to decide which
pull request should be merged.

2.2 Motivation

Due to the parallel mechanism of GitHub, several developers may submit differ-
ent pull requests to change the same lines of code, which cause the competing
pull requests [20]. This fact results in the conflict between changes because the
code changes that competing pull requests have made focus on the same target.
A project manager can choose one or zero among these competing pull requests
and merge it into the original project.

As a manager of an open-source project, he/she has to manually check all
competing pull requests to ensure the contribution of pull requests and to decide
merging which pull request. The existence of competing pull requests makes the
merging decision difficult. Do competing pull requests behave similar? – An intu-
itive speculation is that competing pull requests are similar since they aim to
update the same lines of code. Supposing the similarity between competing pull
requests is low, we can surmise that directly distinguish different competing pull
requests is possible; supposing the similarity is high, a semantical or further
detailed analysis could help for the merging decisions. Motivated by the explo-
ration on the similarity of pull requests, we conducted a preliminary study on
the similarity between pull requests that tend to change overlapped pieces of
code.

3 Measurement Methods of Similarity

There is no reliable and effective way to measure the similarity of code. In this
paper, we used two measurement methods to check the structural similarity and



118 P. Ma et al.

the semantic similarity between pull requests. For the structural similarity, we
employ the cosine that is designed to measure the textual similarity between
sentences; for the semantic similarity, we employ the doc2vec that is developed
to extract the semantics of paragraphs.

3.1 The cosine Method

The cosine similarity is usually used to measure the textual similarity of sen-
tences [21]. The key idea of the cosine is to count the number of co-appearance
of words to reveal potential semantics [17].

We used the cosine method to measure the similarity between pull requests.
The cosine similarity uses the cosine value of angles of two vectors in the vector
space. Given two n-dimension vectors X and Y , the cosine similarity of two
vectors is defined as follows,

Simcos(X,Y ) =
∑n

i=1(xi × yi)
√∑n

i=1 x
2
i ×

√∑n
i=1 y

2
i

where xi and yi denote the element value of the ith dimension in X and Y ,
respectively. The closer the cosine is to 1, the more similar two vectors are.

Given two pull requests, we treat them as two pieces of code. To utilize the
cosine to measure the similarity between pull requests, we convert the changed
code into textual sentences based on the following two steps. First, we filter out the
punctuation from the code and separate the code into tokens. For instance, giving
the code assertThat(processDefinitions.getBody().getContent().hasSize(4));,
we transfer the code into a sequence of assertThat, processDefinition, getBody,
getContent, hasSize, and 4.

Second, we collect the frequency of tokens in two pull requests and obtain
the word-frequency vectors. Then given two vectors, we leverage the cosine to
calculate the similarity.

3.2 The doc2vec Method

In addition to measuring the structural similarity between pull requests with
the cosine, we employ the doc2vec to reveal semantic similarity. The doc2vec,
or the paragraph2vec, is an unsupervised algorithm that can extract the vector
expression of sentences or documents [11]. This algorithm is an extension of a
widely-used method word2vec [12].

In the doc2vec, a large corpus is used to train a model by maximizing the con-
ditional likelihood between words and sentences with the hierarchical softmax
and negative sampling. Different from the cosine, the doc2vec generates word
vectors via an unsupervised learning process. Learned vector by the doc2vec can
be used to calculate the similarity between sentences or documents. The imple-
mentation of the doc2vec directly outputs the distances between two sentences
and can be converted into the similarity.



Changes Are Similar 119

Corpus collection

Model training

Sentence word 
segmentation

Sentence filtering

Sentence vector 
prediction

Calculation of sentence 
vector similarity

Model Sentence

Fig. 1. Framework of using doc2vec to measure the similarity between pull requests.

Figure 1 presents the framework of using the doc2vec to obtain the similarity.
To apply the doc2vec to calculate the semantic similarity of pull requests, we
train the model to get the approximated likelihood of words and sentences.
In each project, we extract the source code of a previous version before the
submitted timestamps of pull requests. During the training, we filter out the
punctuations in the source code and use all tokens in these processed source
code as a training corpus. Then we employ the doc2vec to build the model with
our training corpus. According to the implementation of the doc2vec, sentences
that only contain tokens inside the corpus can be measured by the learned model.
In each project, we use the learned model to infer the dependency of tokens in
the input pull requests and use these learned vectors to calculate the similarity.

Note that the doc2vec is not the only way to measure the semantic simi-
larity of two sentences or paragraphs. The Latent Semantic Analysis (LSA) by
Deerwester et al. [6] and the Latent Dirichlet Allocation (LDA) by Blei et al. [5]
are also widely used to detect the similarity in natural language processing. Our
work does not aim to find out an optimal similarity measurement; instead, the
goal of our work is to show the existence of similarity between pull requests.

4 Experimental Setup

We present the steps of data preparation and the design of three research questions.

4.1 Data Preparation

We conducted a preliminary study on four pairs of open-source Java projects
with the most forks in GitHub. Table 1 presents the data of four projects in
our study. There are 6,469 pairs of pull requests in total. We describe the data
preparation as follows.



120 P. Ma et al.

Table 1. Data collection of four Java projects with the most forks in GitHub

Project # of forks # of pairs of pull requests

spring-projects/spring-framework 14.7K 4799

spring-projects/spring-boot 20.0K 1178

apache/incubator-dubbo 14.4K 401

elastic/elasticsearch 11.5K 91

Total 60.6K 6469

First, we selected the top-5 Java projects with the most forks in GitHub.
We followed Zhang et al. [20] to collect all pull requests that are submitted from
January 1st to December 31st, 2017. Then we extracted all pairs of pull requests,
which contain changes on overlapped code. Among the five projects, we found
that one project iluwatar/java-design-patterns contains only four pairs of pull
requests that change the same code, then we kept all other four projects in our
study. These four are spring-projects/spring-framework,1 spring-projects/spring-
boot,2 apache/incubator-dubbo,3 and elastic/elasticsearch,4 respectively.

Second, we identified the pull requests that change the same code as follows.
We considered that a group of competing pull requests as all pull requests that
change the same lines during an overlapping time period. For instance, if Pull
request PrA and Pull request B PrB edit at-least one same line of code. We
consider that PrA and PrB belong to one pair of pull requests. In this paper, we
focus on the similarity between pull requests. Thus, we only identify all pairs of
pull requests that change the same code, rather than groups of competing pull
requests as shown in [20].

Third, we merged all changes in one pull request and collected the changed
code from the original codebase. The changed code can be viewed as a com-
bination of the added code and the deleted code. To evaluate the similarity of
pull requests, we only reserved the added lines of code as the new code in a
pull request. If a pull request has no added lines, we directly discarded this pull
request. After data preparation, we collected 6,469 pairs of pull requests from
four projects.

4.2 Research Questions

The aim of this paper is to explore the similarity between competing pull requests
and to understand whether the high similarity between competing pull requests
that complicates the merging decision by project managers. We designed three
Research Questions (RQs) and conducted a preliminary study to find out the
answers.
1 Project spring-framework, http://github.com/spring-projects/spring-framework/.
2 Project spring-boot, http://github.com/spring-projects/spring-boot/.
3 Project incubator-dubbo, http://github.com/apache/incubator-dubbo/.
4 Project elasticsearch, http://github.com/elastic/elasticsearch/.

http://github.com/spring-projects/spring-framework/
http://github.com/spring-projects/spring-boot/
http://github.com/apache/incubator-dubbo/
http://github.com/elastic/elasticsearch/


Changes Are Similar 121

RQ1. How does the similarity between competing pull requests
perform?

In our work, we tend to understand the structural similarity based on the
cosine and the semantical similarity based on the doc2vec. We give a numerical
result on the similarity between each pair of pull requests via evaluating the two
measurement methods in RQ1.

RQ2. What is the distribution of the similarity between competing
pull requests?

Besides the statistical values, we further study the similarity distributions
on each project. In RQ2, we show that the similarity between pull requests
diversifies and we could obtain a distribution of the similarity between competing
pull requests.

RQ3. Is there any correlation between the two measurement meth-
ods of similarity?

Our study showed the results of two measurement methods of similarity.
Thus, in RQ3, we evaluate the Pearson correlation coefficient to detect the cor-
relation between these methods. We also leveraged the Wilcoxon signed rank
test to figure out whether the two measurement behave different.

5 Experimental Results

We empirically examined the results of three RQs and presented the existence
of similarity between pull requests.

5.1 RQ1. How Does the Similarity Between Competing Pull
Requests Perform?

In RQ1, we present the numerical result of the study that measures the similarity
between pull requests that contain changes on overlapped code of four Java
projects in GitHub.

Table 2 shows the results of similarity between pull requests by measuring
the structural similarity with the cosine. The similarity between pull requests
measured by the cosine is high with the maximum value of 1.0. In three out of
four, the average similarity is over 0.9; the value of the exceptional project is
0.8963, which could be considered as 0.9.

Table 3 shows the results of similarity between pull requests by measur-
ing the semantic similarity with the doc2vec. In four Java projects we stud-
ied, the average similarity between pull requests of each project exceeded 0.9.
Project apache/incubator-dubbo has the highest similarity, whose average value
is 0.9976.

As shown in Tables 2 and 3, the maximum value of the similarity is 1.0
regardless of any project or method. This shows that there indeed exists high
similarity between pull requests that aim to change the same code. Meanwhile,
the average value behave similar. For instance, the project with the maximum
value of average similarity by the cosine and by the doc2vec is the same while



122 P. Ma et al.

Table 2. Structural similarity between pull requests measured by the cosine on four
projects

Project Min Median Max Average Std

spring-projects/spring-framework 0.2887 0.9591 1.0000 0.8963 0.1552

spring-projects/spring-boot 0.3780 0.9881 1.0000 0.9251 0.1294

apache/incubator-dubbo 0.5164 1.0000 1.0000 0.9904 0.0370

elastic/elasticsearch 0.0000 1.0000 1.0000 0.9450 0.1190

Table 3. Semantic similarity between pull requests measured by the doc2vec on four
projects

Project Min Median Max Average Std

spring-projects/spring-framework 0.6893 0.9952 1.0000 0.9613 0.0735

spring-projects/spring-boot 0.7471 0.9989 1.0000 0.9744 0.0520

apache/incubator-dubbo 0.8855 1.0000 1.0000 0.9976 0.0091

elastic/elasticsearch 0.3899 1.0000 1.0000 0.9855 0.0472

the project with the minimum value is the same. This leads to the guess on the
correlation between two measurement methods. We will further examine this
correlation in Sect. 5.3.

We notice that among four projects, the minimum similarity between pull
requests of several projects is relatively low, such as 0.0 in Project elas-
tic/elasticsearch when measured with the cosine and 0.3899 when measured
with the doc2vec.

Based on the above findings, we can conclude that the similarity between
pull requests is generally high, but there is still low similarity between several
pull requests. This results in the diversity of similarities. On the one hand,
RQ1 shows the evidence that it is difficult for project managers to decide which
pull request should be merged into the codebase because of the high degree of
similarity between pull requests. On the other hand, project managers need to
spend much time in figuring out the semantics of these pull requests because of
the diversity of similarity. This exacerbates the difficulty of the merging decision.

5.2 RQ2. What Is the Distribution of the Similarity Between
Competing Pull Requests?

In RQ2, we show the distribution of similarity between pull requests of four Java
projects. The similarity values are calculated by the cosine and the doc2vec.

Figure 2 presents the box-plots of similarity measured with the cosine
between pull requests from Table 2; Fig. 3 presents the box-plots of similarity
measured with the doc2vec between pull requests from Table 3.



Changes Are Similar 123

Fig. 2. Box-plots of similarity between pull requests measured by the cosine on four
projects

Fig. 3. Box-plots of similarity between pull requests measured by the doc2vec on four
projects.

For each of the four projects, no matter which method is used for mea-
surement, three-quarters of pairs of pull requests have a similarity of 0.8 or
higher; half of pairs have a similarity of 0.95 or higher. These results indicate
that between pull requests that contain changes on the overlapped code, both
structural similarity and semantic similarity exist.

To sum up, we find that the similarity between the majority of pull requests
is high. This fact undoubtedly adds the difficulty to project managers for the
merging decision in GitHub.



124 P. Ma et al.

Table 4. Pearson correlation coefficient and the Wilcoxon signed rank test between
the structural similarity and the semantic similarity

Project Pearson correlation coefficient The p-value

spring-projects/spring-framework 0.8179 9.6490e−11

spring-projects/spring-boot 0.8626 3.1635e−29

apache/incubator-dubbo 0.8347 7.4276e−37

elastic/elasticsearch 0.7683 0.0000

5.3 RQ3. Is There Any Correlation Between the Two Measurement
Methods of Similarity?

In RQ3, we show the correlation between the similarity by the two measurement
methods. To conduct the evaluation, we used the Pearson correlation coefficient
to detect the probability of correlation [14].

Table 4 shows the Pearson correlation coefficient and the p-value based on
the Wilcoxon signed rank test. The absolute value of the Pearson correlation
coefficient indicates the correlation. An absolute value over 0.7 could be consid-
ered as high correlation; We use the Wilcoxon signed rank test to explore how
different are two measurement methods [14]. If the p-value is less than 0.05, we
consider that there exists statistical significance between the similarities by the
cosine and the doc2vec.

As shown in Table 4, the result explores the effect of two measurement meth-
ods on the similarity values. The values of Pearson correlation coefficient show
that the two measurement methods reach high correlation with the maximum
value of 0.86. This indicates that the structural similarity by the cosine and
the semantic similarity by the doc2vec share many options on the similarity.
Although the cosine and the doc2vec estimate the similarity in different ways, it
is possible that many pieces of structural similarity are also contain the semantic
similarity.

All the p-values are less than 0.05. This fact shows that the two measurement
methods behave statistically significant differences on the pairs of pull requests
in all the four projects.

We conclude the answers to RQ3 as follows. The two measurement methods,
the cosine and the doc2vec, show statistically significant results. However, the
result by these two methods is different but similar. This fact may indicate the
overlap between the structural similarity and the semantic similarity.

6 Threats to Validity

We list the threats to the validity of our work in three categories.

Construct Validity. In our study, we only used pull requests of four open-
source Java projects with the most forks in GitHub, which contains 6,469 pairs



Changes Are Similar 125

of pull requests. A large study on more pull requests may reveal more find-
ings about the similarity between pull requests. Our experiment contains two
measurement methods for the calculation of structural similarity and semantic
similarity between pull requests; our result shows there exists diversity among
the similarity. Our study has not covered many typical methods of measuring
the similarity, such as the LDA method of topic models. The study in our work
can be viewed as a preliminary result for counting the similarity between pull
requests. The goal of our study is to motivate the exploration of solving merging
conflicts.

Internal Validity. We used doc2vec to calculate the similarity between com-
peting pull requests via learning a model from a corpus of previous source code.
However, a learned model is usually limited by the scale of the corpus. In gen-
eral, a corpus in natural language processing is much larger than the source code
used in our work. Thus, it is possible that the corpus in use has already hurt
the measurement in our work. A straightforward resolution is to involve more
projects to form a corpus.

External Validity. Our study has only explored the similarity between pull
requests in Java; meanwhile, the measurement of similarity is also conducted on
Java source code. There exists a threat that the Java code is naturally more
similar than code in other languages. In addition, is the detected similarity by
the cosine or the doc2vec really similar? This is a bias between automatic mea-
surement and program comprehension. A study on the opinions of developers
could help understand the bias.

7 Related Work

We presented the related work in two parts, change merging and text similarity
measurement.

7.1 Change Merging

In collaborative development, the modification of source code is implemented
via merging changes. The main methods for change merging can be divided
into three categories: unstructured merge, structured merge, and semi-structured
merge.

The unstructured merge mixes different versions by using the largest com-
mon subsequences matching of textual lines. This method is fast, but can result
in the disorder among changes [13]. The diff tool [1] is a typical technique using
unstructured merge. The structured merge transfers the code into abstract syn-
tax trees and combines the code among these trees. The process of combination is
limited by the grammar of programming languages. A tool of structured merge
is JDime, proposed by Apel et al. [3]. The semi-structured merge represents
programs as program trees and uses an abstraction of the structure of the doc-
ument to provide information on how the commits are merged, such as the tool
FSTMerge by Apel et al. [4].



126 P. Ma et al.

The process of merging changes into the codebase may be delayed by various
factors. Yu et al. [18,19] have explored the factors of evaluation latency for pull
requests and recommended reviewers for pull requests. Jiang et al. [10] have
conducted a study on the inactive yet available assignees in GitHub. Xuan et al.
[15] split test cases into small changes and refactored test cases to assist program
repair. Zhu et al. [22] have studied the patterns of using folders to understand
the project popularity. Xuan et al. [16] proposed a sampling strategy to learn
the configuration from changes. Jiang et al. [9] studied the content and reasons
of forking behaviors in GitHub.

7.2 Text Similarity Measurement

The measurement of text similarity has been widely studies. A typical approach
is the vector-based similarity method. These methods, such as the cosine in
this paper, transfer the original text objects that associates with a weight of
importance into term vectors and then use a function to measure these vectors
to calculate the final output similarity. The vector-based method is efficient, but
cannot recognize the semantics of the text. Many methods are proposed to solve
this problem. Blei et al. [5] proposed Latent Dirichlet Allocation (LDA), a typical
method using generative topic models. This method samples words of two textual
paragraphs and infers the similarity based on probability distributions of hidden
topics. Latent Semantic Analysis (LSA) by Deerwester et al. [6] is a method
based on linear projection, which identifies term-vectors from a low-dimensional
space of a learned matrix.

A word2vec method is a family of modeling algorithms for generating word
embeddings [12]. The word2vec model uses two-layer neural networks to train
from linguistic contexts of words. The doc2vec [11] used in this paper is an
extension version of word2vec and doc2vec supports the inference of document
embeddings.

In this paper, we leverage both the structural similarity (i.e., the cosine), and
the semantic similarity (i.e., the doc2vec) to identify the similarity between pull
requests. We aim to examine the similarity and then understand the collaborative
development behaviors.

8 Conclusion

In this paper, we conducted a study to find out whether there exist high similarity
between pull requests that contain changes on the same code. We employed
two measurement methods to calculate the similarity between pull requests and
evaluated these methods on four Java projects with the most forks in GitHub.
Our study has covered 6,469 of pull requests. We explored the similarity via
answers to three research questions. Experimental results show that there indeed
exist high similarity between pull requests, which may result in the difficulty of
merging pull requests to project managers. The results also indicate that there
exists shared opinions by two measurement methods, the cosine and the doc2vec.



Changes Are Similar 127

Our future work is to conduct a large study on the similarity between code
changes with the same target. We plan to examine and understand the reasons
behind the similarity in this study.

Acknowledgments. The work is supported by the National Key R&D Program of
China under Grant No. 2018YFB1003901, the National Natural Science Foundation
of China under Grant Nos. 61502345 and 61872273, the Young Elite Scientists Spon-
sorship Program by CAST under Grant No. 2015QNRC001, and the Technological
Innovation Projects of Hubei Province under Grant No. 2017AAA125.

References

1. Comparing and merging files (2016). http://www.gnu.org/software/diffutils/
manual/

2. GitHub Repository Search (2018). https://github.com/search?q=+&type=
3. Apel, S., Leßenich, O., Lengauer, C.: Structured merge with auto-tuning: balanc-

ing precision and performance. In: IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2012, Essen, Germany, 3–7 September 2012, pp.
120–129 (2012)

4. Apel, S., Liebig, J., Brandl, B., Lengauer, C., Kästner, C.: Semistructured merge:
rethinking merge in revision control systems. In: 19th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE) and 13th European Software
Engineering Conference (ESEC), Szeged, Hungary, 5–9 September 2011, pp. 190–
200 (2011)

5. Blei, D.M., Ng, A.Y., Jordan, M.I., Lafferty, J.: Latent Dirichlet allocation. J.
Mach. Learn. Res. 3, 993–1022 (2003)

6. Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: Indexing by
latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–401 (1990)

7. Gousios, G., Pinzger, M., van Deursen, A.: An exploratory study of the pull-based
software development model. In: 36th International Conference on Software Engi-
neering, ICSE 2014, Hyderabad, India, 31 May–07 June 2014, pp. 345–355 (2014)

8. Gu, Y., et al.: Does the fault reside in a stack trace? Assisting crash localization
by predicting crashing fault residence. J. Syst. Softw. 148, 88–104 (2019)

9. Jiang, J., Lo, D., He, J., Xia, X., Kochhar, P.S., Zhang, L.: Why and how developers
fork what from whom in GitHub. Empir. Softw. Eng. 22(1), 547–578 (2017)

10. Jiang, J., Lo, D., Ma, X., Feng, F., Zhang, L.: Understanding inactive yet available
assignees in GitHub. Inf. Softw. Technol. 91, 44–55 (2017)

11. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents.
In: Proceedings of the 31st International Conference on Machine Learning, ICML
2014, Beijing, China, 21–26 June 2014, pp. 1188–1196 (2014)

12. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word rep-
resentations in vector space. CoRR abs/1301.3781 (2013). http://arxiv.org/abs/
1301.3781

13. Perry, D.E., Siy, H.P., Votta, L.G.: Parallel changes in large-scale software devel-
opment: an observational case study. ACM Trans. Softw. Eng. Methodol. 10(3),
308–337 (2001)

14. Ross, S.M.: Introduction to Probability and Statistics for Engineers and Scientists,
2nd edn. Academic Press, London (2000)

http://www.gnu.org/software/diffutils/manual/
http://www.gnu.org/software/diffutils/manual/
https://github.com/search?q=+&type=
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781


128 P. Ma et al.

15. Xuan, J., Cornu, B., Martinez, M., Baudry, B., Seinturier, L., Monperrus, M.:
B-refactoring: automatic test code refactoring to improve dynamic analysis. Inf.
Softw. Technol. 76, 65–80 (2016)

16. Xuan, J., Gu, Y., Ren, Z., Jia, X., Fan, Q.: Genetic configuration sampling: learning
a sampling strategy for fault detection of configurable systems. In: Proceedings of
the Genetic and Evolutionary Computation Conference Companion, GECCO 2018,
Kyoto, Japan, 15–19 July 2018, pp. 1624–1631 (2018)

17. Xuan, J., et al.: Towards effective bug triage with software data reduction tech-
niques. IEEE Trans. Knowl. Data Eng. 27(1), 264–280 (2015)

18. Yu, Y., Wang, H., Filkov, V., Devanbu, P.T., Vasilescu, B.: Wait for it: determi-
nants of pull request evaluation latency on github. In: 12th IEEE/ACM Working
Conference on Mining Software Repositories, MSR 2015, Florence, Italy, 16–17
May 2015, pp. 367–371 (2015)

19. Yu, Y., Wang, H., Yin, G., Wang, T.: Reviewer recommendation for pull-requests
in GitHub: what can we learn from code review and bug assignment? Inf. Soft.
Technol. 74, 204–218 (2016)

20. Zhang, X., et al.: How do multiple pull requests change the same code: a study
of competing pull requests in GitHub. In: 2018 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2018, Madrid, Spain, 23–29 Septem-
ber 2018, pp. 228–239 (2018)

21. Zhou, J., Zhang, H., Lo, D.: Where should the bugs be fixed? More accurate infor-
mation retrieval-based bug localization based on bug reports. In: 34th Interna-
tional Conference on Software Engineering, ICSE 2012, Zurich, Switzerland, 2–9
June 2012, pp. 14–24 (2012)

22. Zhu, J., Zhou, M., Mockus, A.: Patterns of folder use and project popularity: a
case study of GitHub repositories. In: 2014 ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement, ESEM 2014, Torino, Italy,
18–19 September 2014, pp. 30:1–30:4 (2014)

23. Zhu, J., Zhou, M., Mockus, A.: Effectiveness of code contribution: from patch-based
to pull-request-based tools. In: Proceedings of the 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, FSE 2016, Seattle,
WA, USA, 13–18 November 2016, pp. 871–882 (2016)


	Changes Are Similar: Measuring Similarity of Pull Requests That Change the Same Code in GitHub
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivation

	3 Measurement Methods of Similarity
	3.1 The cosine Method
	3.2 The doc2vec Method

	4 Experimental Setup
	4.1 Data Preparation
	4.2 Research Questions

	5 Experimental Results
	5.1 RQ1. How Does the Similarity Between Competing Pull Requests Perform?
	5.2 RQ2. What Is the Distribution of the Similarity Between Competing Pull Requests?
	5.3 RQ3. Is There Any Correlation Between the Two Measurement Methods of Similarity?

	6 Threats to Validity
	7 Related Work
	7.1 Change Merging
	7.2 Text Similarity Measurement

	8 Conclusion
	References




