
Zheng Li · He Jiang ·
Ge Li · Minghui Zhou ·
Ming Li (Eds.)

16th National Conference, NASAC 2017
Harbin, China, November 4–5, 2017
and 17th National Conference, NASAC 2018
Shenzhen, China, November 23–25, 2018, Revised Selected Papers

Software Engineering
and Methodology
for Emerging Domains

Communications in Computer and Information Science 861

Communications
in Computer and Information Science 861

Commenced Publication in 2007
Founding and Former Series Editors:
Phoebe Chen, Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu,
Krishna M. Sivalingam, Dominik Ślęzak, Takashi Washio, and Xiaokang Yang

Editorial Board Members

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Junsong Yuan
University at Buffalo, The State University of New York, Buffalo, NY, USA

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-0044-503X
https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0001-6859-7120

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Zheng Li • He Jiang • Ge Li •

Minghui Zhou • Ming Li (Eds.)

Software Engineering
and Methodology
for Emerging Domains
16th National Conference, NASAC 2017
Harbin, China, November 4–5, 2017
and 17th National Conference, NASAC 2018
Shenzhen, China, November 23–25, 2018
Revised Selected Papers

123

Editors
Zheng Li
Beijing University of Chemical Technology
Beijing, China

He Jiang
Beijing Institute of Technology
Beijing, China

Ge Li
Peking University
Beijing, China

Minghui Zhou
Peking University
Beijing, China

Ming Li
Nanjing University
Nanjing, China

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-981-15-0309-2 ISBN 978-981-15-0310-8 (eBook)
https://doi.org/10.1007/978-981-15-0310-8

© Springer Nature Singapore Pte Ltd. 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://orcid.org/0000-0002-3938-7033
https://orcid.org/0000-0001-8674-4948
https://doi.org/10.1007/978-981-15-0310-8

Preface

The National Software Application Conference (NASAC) is the annual conference
of the CCF Technical Committees of Software Engineering and System Software.

NASAC 2017, the 16th event in the series, had a special theme on “Intelligent
Software Engineering,” which focused on the application of Artificial Intelligence
(AI) techniques to Software Engineering (SE) problems. The work is typified by recent
advances in SBSE, but also by long established work in probabilistic reasoning and
machine learning for SE. As a result of this area, the SE community has adopted,
adapted, and exploited many of the practical algorithms, methods, and techniques that
have emerged from the AI community. In the other aspect, software repositories are
growing exponentially, and new datacenters hosting tens of thousands of open source
software projects are being developed around the world. SE has truly entered the era of
big data, which demands further more AI techniques.

NASAC 2018, the 17th event in the series, had a special theme on “Software
Mining,” since software systems have been playing important roles in business, sci-
entific research, and our everyday lives. It is critical to improve both software pro-
ductivity and quality, which are major challenges to SE researchers and practitioners.
In recent years, software mining has emerged as a promising means to address these
challenges. It has been successfully applied to discover knowledge from software
artifacts (e.g., specifications, source code, documentations, execution logs, and bug
reports) to improve software quality and development process (e.g., to obtain the
insights for the causes leading to poor software quality, to help software engineers
locate and identify problems quickly, and to help the managers optimize the resources
for better productivity). Software mining has attracted much attention in both SE and
data mining communities.

Both NASAC 2017 and NASAC 2018 called for high-quality submissions
describing original and significant work. The submissions must not have been previ-
ously published or considered for publication elsewhere.

NASAC 2017 received 11 submissions (English track only, Chinese track not
counted). After a thorough reviewing process, four papers were selected for presen-
tation as full papers. We further called for submissions with the same theme, and
received six submissions. Two more full papers were accepted after reviewing.

NASAC 2018 received 20 submissions and all of these submissions went through a
rigorous reviewing process. Most submissions received three reviews. The track chairs
examined all the reviews to further guarantee the reliability and integrity of the
reviewing process. Finally, five papers were accepted.

The high-quality program would not have been possible without the authors who
chose NASAC 2017 and 2018 as a venue for their publications. We are also very
grateful to the Program Committee members and Organizing Committee members,
who put a tremendous amount of effort into soliciting and selecting research papers

with a balance of high quality and new ideas. Last but not least, we also want to thank
all authors for their contributions and support.

We hope that you enjoy reading and benefit from the proceedings of NASAC 2017
and 2018.

August 2019 Zheng Li
He Jiang

Ge Li
Minghui Zhou

Ming Li

vi Preface

Organization

NASAC 2017 (16th National Software Application Conference) was organized by the
CCF Technical Committees of Software Engineering and System Software and hosted
by Harbin Institute of Technology. The conference comprises both an English Track
and a Chinese Track. The following lists only the program chairs and Program
Committee for the English Track.

Organizing Committee

English Track Program Chairs

Zheng Li Beijing University of Chemical Technology, China
He Jiang Dalian University of Technology, China
Ge Li Peking University, China

English Track Program Members

Xiaoying Bai Tsinghua University, China
Yan Cai Chinese Academy of Sciences, China
Yuting Chen Shanghai Jiao Tong University, China
Lin Chen Nanjing University, China
Wei Dong National University of Defence Technology, China
Dunwei Gong China University of Mining and Technology, China
Dan Hao Peking University, China
Jiang He Dalian University of Technology, China
Yue Jia University College London, UK
Bo Jiang Beihang University, China
Ge Li Peking University, China
Yang Liu Nanyang Technological University, Singapore
Changhai Nie Nanjing University, China
Xin Peng Fudan University, China
Ju Qian Nanjing University of Aeronautics and Astronautics,

China
Xiaokang Qiu Purdue University, USA
Chang-Ai Sun University of Science and Technology Beijing, China
Jun Sun Singapore University of Technology and Design,

Singapore
Xin Xia University of British Columbia, Canada
Xiaoyuan Xie Wuhan University, China

Chang Xu Nanjing University, China
Jifeng Xuan Wuhan University, China
Jun Yan Chinese Academy of Sciences, China
Zijiang Yang Western Michigan University, USA
Hongyu Zhang Microsoft Research Asia, China
Jian Zhang Chinese Academy of Sciences, China
Lu Zhang Peking University, China
Tao Zhang Harbin Engineering University, China
Jianjun Zhao Kyushu University, Japan

NASAC 2018 (17th National Software Application Conference) was organized by the
CCF Technical Committees of Software Engineering and System Software and hosted
by Shenzhen University. The conference comprises both an English Track and a
Chinese Track. The following lists only the program chairs and Program Committee for
the English Track.

Track Chairs

Minghui Zhou Peking University, China
Ming Li Nanjing University, China

Program Committee

Yan Cai Institute of Software, Chinese Academy of Sciences,
China

Jeff Huang Texas A&M University, USA
Liguo Huang Southern Methodist University
Xuan Huo Nanjing University, China
He Jiang Dalian University of Technology, China
Jing Jiang Beihang University, China
Zheng Li Beijing University of Chemical Technology, China
Lin Liu Tsinghua University, China
David Lo Singapore Management University, Singapore
Xinjun Mao National University of Defense Technology, China
Xin Peng Fudan University, China
Xiaokang Qiu Purdue University, USA
Tao Wang National University of Defense Technology, China
Xin Xia Monash University, Australia
Xiaoyuan Xie Wuhan University, China
Chang Xu Nanjing University, China
Jifeng Xuan Wuhan University, China
Hongyu Zhang The University of Newcastle, Australia
Yuming Zhou Nanjing University, China
Jiaxin Zhu Institute of Software, Chinese Academy of Sciences,

China

viii Organization

Organizers

Organized by

China Computer Federation (CCF), China

Hosted by
CCF Technical Committees of Software Engineering and System Software, and

Harbin Institute of Technology Shenzhen University

Organization ix

Contents

Intelligent Software Engineering
(NASAC 2017 English Track/CSBSE 2017)

Learning to Generate Comments for API-Based Code Snippets 3
Yangyang Lu, Zelong Zhao, Ge Li, and Zhi Jin

Test Oracle Prediction for Mutation Based Fault Localization 15
Zheng Li, Yonghao Wu, Haifeng Wang, and Yong Liu

Parallel Evolutionary Algorithm in Scheduling Work Packages to Minimize
Duration of Software Project Management . 35

Jinghui Hu, Xu Wang, Jian Ren, and Chao Liu

Multi-gene Genetic Programming Based Defect-Ranking
Software Modules . 52

Junxia Guo, Yingying Duan, and Ying Shang

Call Graph Based Android Malware Detection with CNN 72
Yuxuan Liu, Ge Li, and Zhi Jin

Software Requirements Elicitation Based on Ontology Learning 83
Jie Zhang, Min Yuan, and Zhiqiu Huang

Software Mining (NASAC 2018 English Track)

An Empirical Study of Link Sharing in Review Comments 101
Jing Jiang, Jin Cao, and Li Zhang

Changes Are Similar: Measuring Similarity of Pull Requests That Change
the Same Code in GitHub . 115

Ping Ma, Danni Xu, Xin Zhang, and Jifeng Xuan

Contiguous Sequence Mining Approach for Program Procedure Pattern 129
Jianbin Liu, Jingjing Zhao, and Liwei Zheng

Mining the Contributions Along the Lifecycles of Open-Source Projects 145
Hang Zhou, Lei Xu, and Yanhui Li

Issue Workflow Explorer . 161
Jiaxin Zhu, Zhen Zhong, and Minghui Zhou

Author Index . 173

Intelligent Software Engineering
(NASAC 2017 English Track/CSBSE

2017)

Learning to Generate Comments
for API-Based Code Snippets

Yangyang Lu1,2, Zelong Zhao1,2, Ge Li1,2(B), and Zhi Jin1,2(B)

1 Key Lab of High-Confidence Software Technology (Peking University),
Ministry of Education, Beijing 100871, China
{luyy,zhaozl,lige,zhijin}@pku.edu.cn

2 School of Electronics Engineering and Computer Science,
Peking University, Beijing 100871, China

Abstract. Comments play an important role in software developments.
They can not only improve the readability and maintainability of source
code, but also provide significant resource for software reuse. However,
it is common that lots of code in software projects lacks of comments.
Automatic comment generation is proposed to address this issue. In this
paper, we present an end-to-end approach to generate comments for API-
based code snippets automatically. It takes API sequences as the core
semantic representations of method-level API-based code snippets and
generates comments from API sequences with sequence-to-sequence neu-
ral models. In our evaluation, we extract 217K pairs of code snippets
and comments from Java projects to construct the dataset. Finally, our
approach gains 36.48% BLEU-4 score and 9.90% accuracy on the test
set. We also do case studies on generated comments, which presents that
our approach generates reasonable and effective comments for API-based
code snippets.

Keywords: API sequences · Comment generation ·
Deep neural networks

1 Introduction

Code comments are an important part of software projects. Previous research has
shown that adding comments to code snippets could help developers understand
the functionality of code more effectively, and improve the readability and main-
tainability of software projects [21,22,26]. Furthermore, comments are usually
viewed as significant resource for software reuse tasks, such as code retrieval and
bug report generation [14,18]. However, writing comments is a labor-intensive
operation which is often delayed or ignored by developers [12,19]. Therefore, the
lack of code comments is a common problem in software development.

To address the absence problem of comments, lots of work has been
done to generate code comments automatically. Early research uses rule-based
approaches [1,5,10,20,27], which usually define heuristic rules to extract the
c© Springer Nature Singapore Pte Ltd. 2019
Z. Li et al. (Eds.): NASAC 2017/2018, CCIS 861, pp. 3–14, 2019.
https://doi.org/10.1007/978-981-15-0310-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0310-8_1&domain=pdf
https://doi.org/10.1007/978-981-15-0310-8_1

4 Y. Lu et al.

content from code snippets and combine them with predefined templates to gain
comments. They often require additional domain knowledge and can only gen-
erate restricted comments with templates. Then researchers proposed keyword-
based approaches [8,13] which leverage latent semantic analysis techniques to
extract keywords from code snippets. But the final outputs of these approaches
are actually key-word lists rather than common comment sentences. After that,
retrieval-based approaches [24,25] leverage existed code snippets and comments
in Q&A web-sites and open source projects, then use code clone and informa-
tion retrieval to retrieve comments of code snippets that implementing similar
functions as final comments. However, they heavily rely on the efficiency and
accuracy of code clone detection.

To avoid the above issues of previous approaches, language model based
approaches are proposed. They learn language models from corpora of code
snippets and corresponding comments by probabilistic models [15] or deep neu-
ral networks [2,3,11], then predict comments word by word based on the learnt
language models. On this basis, machine translation models are further intro-
duced into automatic comment generation recently, which take comment gener-
ation as a translation task from code snippets to comment sentences. Related
preliminary work [9,16] has been done to generate pseudo-code from code snip-
pets. They show that end-to-end comment generation approaches of machine
translation ideas are feasible and effective.

In this paper, we focus on the task of comment generation for API-based code
snippets. With the growth of software projects’ scale, more and more developers
rely on API libraries to implement expected requirements [23]. Generating com-
ments for API-based code snippets could help developers understand, modify
and reuse existed code resource, which is beneficial to development activities
relied on API libraries.

We propose an end-to-end approach to generate comments for API-based
code snippets, which extracts method-level API sequences and applies machine
translation neural networks. Research work on API reuse [18,28], like API
usage recommendation, treats API sequences as abstract functionality repre-
sentations of method-level API-based code snippets. Our approach follows this
assumption and generates comments for API-based code snippets by translating
API sequences to comment sentences with deep neural networks. We leverage
open source Java projects data from Github, extract pairs of method-level API
sequences and comments as training and test datasets, and learn end-to-end neu-
ral networks of comment generation for API-based code snippets. The evaluation
result of 36.48% BLEU-4 score and the case study on 24K generated comments
show the effectiveness of our approach. To the best of our knowledge, our work
is the first to generate comments for API-based code snippets with extracted
API sequences via end-to-end neural networks.

The rest of this paper is organized as follows: Sect. 2 illustrates our app-
roach of comment generation for API-based code snippets with API sequences.
Section 3 introduces the dataset information, quantitative evaluation results and
qualitative case studies. Section 4 gives the conclusion and discusses future work.

Learning to Generate Comments for API-Based Code Snippets 5

2 Approach

2.1 Overview

In this paper, we extract API sequences from API-based code snippets and train
generative translation models to encode functional semantics implicated in API
sequences and translate them for predicting corresponding comments word by
word. Thus our approach contains two stages: the offline training stage and
online test stage.

Fig. 1. Overview of our approach.

Figure 1 shows the overview of our approach. The offline training stage is
composed of corpus crawling, data preprocessing and model training. We first
crawl Java software projects updated before April 2016 from Github1 and keep
source code files from projects of which stars are at top-5K ranking. Then we
use AST toolkits to extract API sequences and comments from method-level
code snippets of crawled projects. After text preprocessing on comments and
filtering operations based on statistical information of corpus, we finally get
the parallel corpus of API sequences and comments (Details are presented in
Sect. 3.1). Table 1 shows a pair of API sequence and comment extracted from
a method-level API-based code snippet. It can be seen that the extracted API
sequence keeps the core functional semantics of this code snippet.

With the parallel corpus of API sequences and comments, we build and train
generative neural models based on the idea of machine translation. Figure 1
shows the basic components - an encoder and a decoder. The encoder accepts
API sequences as inputs and learn to understand their implicated semantics.
The decoder predicts comments word by word based on context information
provided by the encoder. With the trained encoder and decoder, comments can
be generated word by word from API sequences of API-based code snippets in
the online test stage.

2.2 Models of Generating Comments from API Sequences

In this paper, we treat comment generation from API-based code snippets
as a translation task from API sequences to comment sentences, and lever-
age two sequence-to-sequence neural networks to generate comments from API
1 https://github.com.

https://github.com

6 Y. Lu et al.

Table 1. An Example of The Extracted API Sequence and Comment

sequences. Sequence-to-sequence neural networks remove the aligning process in
traditional statistical machine translation models and implement the end-to-end
translation.

We first apply the sequence-to-sequence neural network in the literature
[7] on comment generation from API sequences (annotated as “seq2seq”). As
shown in Fig. 2(a), the seq2seq model consists of two recurrent neural networks
as the encoder and decoder separately. Given an API sequence (x1, x2, ..., xm),
the encoder accepts it as the input and encodes the whole sequence into a fix-
sized context vector c. The decoder accepts c and predicts the comment output
(y1, y2, ..., yn) word by word from the empty symbol “〈 GO 〉” to the termi-
nal symbol “〈 EOS 〉”. The prediction objective is to maximize the conditional
probability P (y1, y2, ..., yn|x1, x2, ..., xm). According to the predicting process in
seq2seq, it can be computed as follows:

P (y1, y2, ..., yn|x1, x2, ..., xm) =
n∏

t=1

p(yt|y1, y2, ..., yt−1) (1)

To train the seq2seq model on the whole corpus D, the objective function is
to maximize the average log-likelihood of generating the correct comment Scom

from the API sequence Sapi:

J =
1

|D|
∑

(Sapi,Scom)∈D

log p(Scom|Sapi) (2)

Furthermore, we find that words in comments show latent alignment relations
with API methods in the API sequences. For example, “display” aligns to the
API method “android.view.WindowManager.getDefaultDisplay” and “size” to
“android.view.Display.getSize” in Table 1. Besides, we find that API sequences
in the corpus may be long (detailed in Sect. 3.1). Existed experimental study
on machine translation using seq2seq models shows that evaluation results will
decrease with the growth of input length when the length of the test set is larger

Learning to Generate Comments for API-Based Code Snippets 7

Fig. 2. Comment generation from API sequences.

than the length of the training set [6]. To capture the latent alignment relations
between API sequences and comments and improve the encoding effect on long
sequences, we further introduce the attention-based sequence-to-sequence model
in the literature [4] into our task (annotated as “seq2seq-at”).

As shown in Fig. 2(b), the seq2seq-att model adds an “Attention” module
between the encoder and the decoder. The encoder transfers the input API
sequence (x1, x2, ..., xm) into an intermediate sequence (e1, e2, ..., em) rather than
a context vector in the seq2seq model. When the decoder predicts the word at
i-th position of the comment, the corresponding hidden state si is computed by
the previous hidden state si−1, the previous predicted word yi−1 and a specific
context vector ci as follows:

si = f(si−1, yi−1, ci) (3)

The specific context vector ci is gained from the attention module based
on the intermediate sequence (e1, e2, ..., em) of the encoder and the predicted
sequence of the decoder. The process can be described by the following equations.

ci =
m∑

j=1

αijej (4)

αij =
exp(vij)∑m
k=1 exp(vik)

(5)

vij = a(si−1, ej) (6)

In the above equations, the function a plays the role of aligning API methods
in the API sequence and words in the comment. The weight αij can be seen as
the probability of translating the comment word yj from the API method xi. The
attention module is usually implemented with a multilayer perceptron so that
the whole seq2seq-att model could be trained by stochastic gradient descent.

8 Y. Lu et al.

Finally, the objective function of the seq2seq-att model is the same as the one
of seq2seq model (Eq. 2).

3 Evaluation

3.1 Dataset

We build our dataset of parallel API sequences and comments according to the
following steps:

First we crawl open source Java projects until April 2016 from Github. Based
on the star ranking of projects, we keep source code files of the top-5K projects
as the preliminary dataset.

Then we use Eclipse JDT to parse method-level code snippets into AST
trees and extract API sequences and corresponding comments. First sentences
under “JavaDoc Comment” nodes of AST trees are used as comments. We ignore
method code without comments. As for API sequences, we mainly extract APIs
in JDK and Android libraries. Because we do statistics on projects’ tags and
API library frequency with “import” statements, then find that most crawled
projects are related to mobile developement and API libraries of high frequencies
are JDK and Android. Eclipse JDT could extract JDK APIs from code snippets
directly from AST trees, but fail on Android APIs. Thus we combine “import”
statements and the package list of Android library to identify Android method
calls in AST trees. Then API sequences of JDK and Android APIs are extracted
as the order of method calls in code snippets.

As for extracted comments, we filter JavaDoc marks such as “@link” and
“@code”, remove HTML tags, split sentences into word sequences by whites-
paces, decompose words in the CamelCase format and finally do the lowercase
transformation.

Fig. 3. Distribution of length on API sequences and comments.

After that, we do statistics on the length of API sequences and comments.
The longest length of API sequences and comments is 6, 325 and 389 respectively,

Learning to Generate Comments for API-Based Code Snippets 9

and the average lengths are 4.42 and 9.81 respectively. The distributions of their
lengths are shown in Fig. 3. So we set the length scopes of API sequences and
comments both as [3,20], then we remove samples with too long or too short
lengths from the dataset.

Finally, we get 217, 156 pairwise samples of API sequences and comments
after the length filtering operation. The 217K samples are split as the ratio of 8
: 1 : 1 for training, validation and test. According to the training set, we get the
vocabularies of API methods and words in comments, of which the size is 24,
511 and 22, 491 respectively. We cut 24K API methods and 22K words of high
frequencies as the final vocabularies.

3.2 Experimental Settings

We implement the two generative models by tensorflow 1.0.12. All the encoders
and decoders use LSTM as hidden layers. The unit number of LSTM is 512.
We make experiments of 2 and 3 layers for each model. The iterative number
of training epochs is set to 50 for all the experiments. We train the models on
servers with NVIDIA GeForce GTX 1080 GPU and 16 GB DDR4 memory. It
takes about 7 to 8 h to train each model. The attention-based models need more
training time than models without attention under the same epoch number.

3.3 Results

Here we use two metrics, BLEU and Accuracy, to evaluate generated comments
in the test set.

BLEU is the specific metric proposed for machine translation [17], which
reflects how close the generated translation are in words and length to human-
expected references. The computation of BLEU is fast and independent of spe-
cific languages. BLEU is effected by the n-gram overlap ratio and a penalty
weight of length differences between candidate translations and reference trans-
lations. Here we use the nltk 3.2.13 toolkit to compute BLEU scores under 1-gram
to 4-gram (annotated as BLEU-1 to BLEU-4).

We also want to know how many comments could be generated correctly,
that is the same as the original sentences. Then accuracy is used to evaluate
this aspect, computed by the ratio of correctly generated comments in the whole
test set.

To the best of our knowledge, we are the first to generate comments for API-
based snippets with API sequences. Currently we haven’t found appropriate
baselines from previous work. So we first compare results between groups of
different experimental settings. Table 2 shows the BLEU and accuracy scores.

It can been seen that the attention mechanism could improve the scores of
both BLEU and accuracy under the same number of hidden units and layers.
The growth of hidden layers is also beneficial to the results. Then we take the

2 https://www.tensorflow.org.
3 https://www.versioneye.com/python/nltk/3.2.1.

https://www.tensorflow.org
https://www.versioneye.com/python/nltk/3.2.1

10 Y. Lu et al.

Table 2. Comment Generation Results: BLEU and Accuracy(%)

Model Settings BLEU-1 BLEU-2 BLEU-3 BLEU-4 Accuracy

seq2seq 2 * 512 20.75 25.64 30.01 34.90 8.13

seq2seq 3 * 512 22.45 27.18 31.44 36.21 8.86

seq2seq-att 2 * 512 20.88 25.83 30.22 34.41 9.19

seq2seq-att 3 * 512 22.68 27.54 31.57 36.48 9.90

BLEU scores in natural language machine translation [4,7] as an indirect refer-
ence. The 34.90% ∼ 36.48% BLEU-4 scores have achieved the numerical level of
current machine translation tasks, which shows the feasibility and effectiveness
of generating comments from API sequences with our approach.

What’s more, we do case studies on generated comments of the test set. We
split generated results into three groups: (1) totally correct, that is as same as
the original comments; (2) with high BLEU scores: results of which BLEU-1
scores are higher than 50%, that is sharing more than half of words with original
comments; (3) with low BLEU scores: results left after filtering by (1) and (2).
Table 3 shows partial cases of the above three groups. For each case, the lines
present the API sequence, the original comment and the generated comment (in
bold). By analyzing cases of generated results, we can find the that:

– Our approach could generate exactly correct comments from API sequences
of different lengths (Case 1–2), which validates the capability of our approach
to encode API sequences and decode comments.

– As for the results of high BLEU scores, they are different from original com-
ments mainly in three aspects: word absence, word redundancy and word
substitution.
Case 3 shows an example of word absence. The generated comment loses
the word “negative”. After observing the corresponding API sequence, we
can find that the generated comment captures the correct functionality. The
word “negative” is not reflected by the API sequence. We find that missing
words are usually attributive nouns or adjectives. We think the reason of word
absence is the semantic abstraction of API sequences, which may lose some
words related to specific variables.
Case 4 shows an example of word redundancy, which predict “views” twice.
When the decoder is confused about prediction, it seems to prefer words of
high frequency or words related to the generated history part and predict
existed words repeatedly. The reason may relate to the low co-occurrence of
some words in the corpus, which makes it hard to capture their semantic
relationship by our approach.
Case 4 also shows an example of word substitution. The word “puts” is
replaced by its synonym “inserts” in the generated comment. Interestingly,
we find that our approach may replace words in original comments with
antonyms. In Case 5 , the word “close” is replaced by “open” and “hide”
by “show” since API methods in its corresponding API sequence could also

Learning to Generate Comments for API-Based Code Snippets 11

Table 3. Generation comment from API sequences in the test set

12 Y. Lu et al.

be used to implement the opposite operations. Furthermore, our approach
could generate comments with similar meaning of original comments by para-
phrasing (Case 6). The above phenomenons present that our approach could
understand semantics of API sequences mostly, learn the language model of
comments and predict the comment effectively.

– The results of low BLEU scores could be divided into meaningless sentences
and ones with clear semantics. The former mainly contains empty sentences
and results with too many repetitive words. We think the problems may come
from continuously repetitive APIs of API sequences, out-of-vocabulary words
in original comments or the mismatching relations of semantics between API
sequences and comments.
Then in the latter ones, most of them are irrelevant to original comments
in the functional semantics. There are also some interesting results that hold
relevant semantics but gain low BLEU scores. They may describe similar func-
tionality of the original comments but with different words and order (Case
7–8). Furthermore, they may present more general meaning than original
comments, but match the corresponding API sequences, since API sequences
hold abstract semantics of the code snippets.

4 Conclusion

In this paper, we propose an end-to-end approach to generate comments for
API-based code snippets automatically. It leverages API sequences to represent
the core semantics of code snippets and generates comments from API sequences
with sequence-to-sequence neural networks. Our approach trains generative neu-
ral models by parallel API sequences and comments extracted from open source
Java projects. The experiments achieve 36.48% BLEU-4 score (machine trans-
lation metric) and 9.90% accuracy (exactly correct generation). Further case
studies on results of correct, high and low BLEU scores show the feasibility and
effectiveness of our approach. To the best of our knowledge, we are the first to
generate comments for API-based code snippets from API sequences in a way of
translation. To improve the results of comment generation for API-based code
snippet-s, the following aspects can be explored in future work: (1) Make fine-
grained filtering on the corpus, such as refining comments with POS tagging and
removing continuously repetitive APIs in API sequences; (2) Leverage informa-
tion of AST trees. We discard the structural information and other identifiers
here. If we could combine them with current API sequences and use a recursive
neural network in the encoder, comment generation results may be improved
with more context.

References

1. Abid, N.J., Dragan, N., Collard, M.L., Maletic, J.I.: Using stereotypes in the auto-
matic generation of natural language summaries for C++ methods. In: 2015 IEEE
International Conference on Software Maintenance and Evolution (ICSME), pp.
561–565. IEEE (2015)

Learning to Generate Comments for API-Based Code Snippets 13

2. Allamanis, M., Barr, E.T., Bird, C., Sutton, C.: Suggesting accurate method and
class names. In: Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, pp. 38–49. ACM (2015)

3. Allamanis, M., Peng, H., Sutton, C.: A convolutional attention network for extreme
summarization of source code. In: International Conference on Machine Learning,
pp. 2091–2100 (2016)

4. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

5. Buse, R.P., Weimer, W.R.: Automatic documentation inference for exceptions.
In: Proceedings of the 2008 International Symposium on Software Testing and
Analysis, pp. 273–282. Citeseer (2008)

6. Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the proper-
ties of neural machine translation: encoder-decoder approaches. arXiv preprint
arXiv:1409.1259 (2014)

7. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

8. Haiduc, S., Aponte, J., Marcus, A.: Supporting program comprehension with source
code summarization. In: Proceedings of the 32nd ACM/IEEE International Con-
ference on Software Engineering, vol. 2, pp. 223–226. ACM (2010)

9. Haije, T., Intelligentie, B.O.K., Gavves, E., Heuer, H.: Automatic comment gener-
ation using a neural translation model. Inf. Softw. Technol. 55(3), 258–268 (2016)

10. Hill, E., Pollock, L., Vijay-Shanker, K.: Automatically capturing source code con-
text of NL-queries for software maintenance and reuse. In: Proceedings of the 31st
International Conference on Software Engineering, pp. 232–242. IEEE Computer
Society (2009)

11. Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L.: Summarizing source code using
a neural attention model. In: Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics. Long Papers, vol. 1, pp. 2073–2083 (2016)

12. Kajko-Mattsson, M.: A survey of documentation practice within corrective main-
tenance. Empirical Softw. Eng. 10(1), 31–55 (2005)

13. McBurney, P.W., McMillan, C.: Automatic documentation generation via source
code summarization of method context. In: Proceedings of the 22nd International
Conference on Program Comprehension, pp. 279–290. ACM (2014)

14. Montandon, J.E., Borges, H., Felix, D., Valente, M.T.: Documenting APIs with
examples: lessons learned with the apiminer platform. In: 2013 20th Working Con-
ference on Reverse Engineering (WCRE), pp. 401–408. IEEE (2013)

15. Movshovitz-Attias, D., Cohen, W.W.: Natural language models for predicting pro-
gramming comments. In: Proceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics. Short Papers, vol. 2, vol. 2, pp. 35–40 (2013)

16. Oda, Y., et al.: Learning to generate pseudo-code from source code using statistical
machine translation (t). In: 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 574–584. IEEE (2015)

17. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic
evaluation of machine translation. In: Proceedings of the 40th annual meeting on
association for computational linguistics, pp. 311–318. Association for Computa-
tional Linguistics (2002)

18. Raghothaman, M., Wei, Y., Hamadi, Y.: Swim: synthesizing what i mean-code
search and idiomatic snippet synthesis. In: 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pp. 357–367. IEEE (2016)

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1406.1078

14 Y. Lu et al.

19. de Souza, S.C.B., Anquetil, N., de Oliveira, K.M.: A study of the documentation
essential to software maintenance. In: Proceedings of the 23rd Annual International
Conference on Design of Communication: Documenting & Designing for Pervasive
Information, pp. 68–75. ACM (2005)

20. Sridhara, G., Hill, E., Muppaneni, D., Pollock, L., Vijay-Shanker, K.: Towards
automatically generating summary comments for java methods. In: Proceedings
of the IEEE/ACM International Conference on Automated Software Engineering,
pp. 43–52. ACM (2010)

21. Takang, A.A., Grubb, P.A., Macredie, R.D.: The effects of comments and identifier
names on program comprehensibility: an experimental investigation. J. Prog. Lang.
4(3), 143–167 (1996)

22. Tenny, T.: Program readability: procedures versus comments. IEEE Trans. Soft-
ware Eng. 14(9), 1271–1279 (1988)

23. Thung, F., Lo, D., Lawall, J.: Automated library recommendation. In: 2013 20th
Working Conference on Reverse Engineering (WCRE), pp. 182–191. IEEE (2013)

24. Wong, E., Liu, T., Tan, L.: Clocom: mining existing source code for automatic
comment generation. In: 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), pp. 380–389. IEEE (2015)

25. Wong, E., Yang, J., Tan, L.: Autocomment: mining question and answer sites for
automatic comment generation. In: 2013 28th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pp. 562–567. IEEE (2013)

26. Woodfield, S.N., Dunsmore, H.E., Shen, V.Y.: The effect of modularization and
comments on program comprehension. In: Proceedings of the 5th International
Conference on Software Engineering, pp. 215–223. IEEE Press (1981)

27. Zhang, S., Zhang, C., Ernst, M.D.: Automated documentation inference to explain
failed tests. In: 2011 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011), pp. 63–72. IEEE (2011)

28. Zhong, H., Xie, T., Zhang, L., Pei, J., Mei, H.: MAPO: mining and recommending
API usage patterns. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp.
318–343. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03013-
0 15

https://doi.org/10.1007/978-3-642-03013-0_15
https://doi.org/10.1007/978-3-642-03013-0_15

Test Oracle Prediction for Mutation
Based Fault Localization

Zheng Li , Yonghao Wu, Haifeng Wang, and Yong Liu(B)

College of Information Science and Technology, Beijing University of Chemical
Technology, Beijing, People’s Republic of China

lyong@mail.buct.edu.cn

Abstract. In the process of software debugging, it is very critical and
difficult to identify the locations of faults in an effective and accurate
manner. Mutation-based fault localization (MBFL) is one of the most
effective automated fault localization techniques that have been recently
proposed, and it requires the execution results (passed or failed) of test
cases to locate faults. One problem preventing MBFL from becoming a
practical testing technique is the large amount of human effort involved,
i.e., the test oracle problem, which refers to the process of checking an
original program’s output of each test case. To mitigate the impact of this
problem, we use mutant coverage information and learning algorithms to
predict the oracle of the test cases in this paper. Empirical results show
that the proposed method can reduce 80% of the human cost required
to check the test oracles and achieve almost the same fault localization
accuracy as compared to the original MBFL.

Keywords: Software debugging · Mutation-based fault localization ·
Test oracle prediction

1 Introduction

Software debugging is an important part of software development, including
software checking, fault locating, and bug fixing. Various studies have shown that
it is expensive to inspect and locate faults in software systems [6,17,22,37]. To
reduce the time consumption and resource costs required in fault finding, many
researchers have studied automated software fault localization techniques [2]
over the past few decades, and various fault localization techniques have been
proposed.

Coverage-based fault localization (CBFL) is one of the most popular fault
localization techniques [20,24,30,36,44]. CBFL is a dynamic fault localization
method that executes test cases on the program under test, and collects the cov-
erage information, which includes call sequences [7], branches, du-pairs [28], and
statement frequency [42]. CBFL calculates the degree of suspiciousness of each
program element being faulty based on the frequency spectrum of the test cases,
and element with a higher degree of suspiciousness is more likely to be faulty.
c© Springer Nature Singapore Pte Ltd. 2019
Z. Li et al. (Eds.): NASAC 2017/2018, CCIS 861, pp. 15–34, 2019.
https://doi.org/10.1007/978-981-15-0310-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0310-8_2&domain=pdf
http://orcid.org/0000-0002-3938-7033
http://orcid.org/0000-0003-1754-3039
https://doi.org/10.1007/978-981-15-0310-8_2

16 Z. Li et al.

Therefore, CBFL can provide information on the probability of each element
as a faulty element, and assist developers at examining the elements one by
one according to the probability from high to low. CBFL has been recognized
as an effective and helpful technique, and can diminish the developers’ debug-
ging effort. However, CBFL has a limitation in terms of an impractical fault
localization accuracy where all statements share the same spectrum and same
ranking.

Mutation-based fault localization (MBFL) is another fault localization tech-
nique [21,35], which uses the information of test cases executed on mutants
to calculate the degree of suspiciousness of the program elements. MBFL con-
sists of three steps: executing the program under test, generating and executing
mutants, and calculating the fault suspiciousness of each statement to generate
a check list. A mutant is a program that is seeded with an artificial defect by
using mutation operators. The mutation operator refers to a series of mapping
programs that automatically generate mutants. A mutant is killed if the out-
puts of the program under test and this mutant are different, and the mutant
is not killed if the two outputs are the same. An empirical study shows that
the fault localization accuracy of MBFL is higher than that of CBFL, even in
multiple-faulty program scenarios [35].

Although the accuracy of MBFL has been significantly improved compared
with CBFL, there still are two major challenges to MBFL. One is the huge
execution time required by a large amount of test cases and mutants, and the
other is the human cost required to check whether each test case is passed or
failed.

The execution information of the test cases on each mutant is required for
MBFL to finish fault localization. Because the numbers of test cases and mutants
are large for large-sized programs, the execution cost of MBFL is very high. Var-
ious techniques have been proposed to reduce the cost of a mutation execution,
including mutant reduction methods [25,29,46] and mutation execution dynamic
optimization method [13,26]. Empirical studies showed that these techniques can
save many mutation executions and maintain almost the same fault localization
accuracy as the original MBFL.

The other problem of MBFL is caused by the test oracle problem, because
MBFL requires the execution results of the test cases to calculate the suspi-
ciousness of each statement. Checking the execution results of all test cases will
incur a large time cost [31]. In general, the output is passed or failed for each
test case must be obtained by software testing engineers, and thus determining
the output for a large number of test cases can result in a significant amount
of human labor. For the current study, a method for predicting the test oracle
based on the code coverage [45] was proposed; however, the prediction accuracy
of this method is low and the fault localization precision is affected compared to
the original fault localization techniques with test oracles.

To reduce the human cost of MBFL caused by test oracle, this paper employs
mutant coverage information and learning-based algorithms to predict the exe-
cution results of test cases. The motivation of the study described in this paper

Test Oracle Prediction for Mutation Based Fault Localization 17

includes the following: Compared with the code coverage, because each statement
can generate a few mutants, mutant coverage can provide more information,
and mutant coverage information can be generated during the MBFL process
because MBFL is a type of mutation-testing based fault-localization technique;
in addition, learning-based techniques can use the labels of partial test cases and
construct a binary-classification model to classify other test cases as passed or
failed. To validate the effectiveness of the method proposed in this paper, we
conducted an empirical study on 31 single-fault versions and 114 multiple-fault
versions from three subject programs, the results of which show that the pro-
posed method can save about 80% of human time, and can achieve almost the
same fault localization precision as the original MBFL.

The main contributions of this paper can be summarized as follows:

– This paper uses the mutant coverage to construct a coverage vector of test
cases. Compared with statement coverage, mutant coverage can provide more
information to precisely predict the test oracle. Empirical results show that
the classification accuracy of mutant coverage is much better than statement
coverage when using the same classification algorithm.

– This paper employs various learning-based algorithms to classify test cases as
passed or failed, and the empirical results show that a neural-network based
algorithm can provide the best classification accuracy.

– This paper constructs a framework of MBFL using a predicted test oracle, and
the experimental results show that the fault localization accuracy is almost
the same as the original MBFL with the test oracle.

The remainder of this paper is organized as follows. Section 2 introduces the
background and related studies, including the test oracle problem, mutation-
based fault localization, and learning-based algorithms. Section 3 describes the
framework of mutation-based fault localization with predicted test oracle. The
experimental design and results analysis are presented in Sects. 4 and 5, respec-
tively. Section 6 discusses the threats of this paper. Finally, Sect. 7 provides some
concluding remarks and areas of future work.

2 Background and Related Work

In this section, we describe the background and related studies on test oracle
and MBFL, provide an example illustrating how MBFL operates, and introduce
neural networks and other learning-based algorithms.

2.1 Test Oracle

In the field of software engineering and software testing, a test oracle is a mecha-
nism used to determine whether a test case has passed or failed. To determine the
test oracle of a given test case, the output of the test case is compared with the
output the program should achieve, which is always found through human effort.

18 Z. Li et al.

The term “test oracle” was first proposed by Howden [18], and Elaine Weyuker
conducted additional work on different types of test oracles [1], which have been
widely studied and applied [4,23].

However, there is a human oracle problem with regard to a test oracle [47],
which can result in huge labor costs, namely, the output of each test case needs
to be manually checked. When the number of test cases and the input data reach
a certain scale, a significant human cost will be incurred, which is a problem that
is not limited to fault localization techniques.

Current studies have attempted to reduce the cost of test oracle or use other
less expensive methods to replace test oracle, and such studies can reduce the
cost of software testing. Jingxuan Tu et al. applied metamorphic testing to code-
coverage based failure proximity without test oracle [10]. Zhang et al. proposed
an approach based on test classification to enable the use of unlabeled test cases
in localizing faults [49]. Alessandro et al. proposed a static and dynamic source-
code analysis method to generate test oracle [3]. The purpose of these studies is
to reduce labor costs, thereby avoiding the human oracle problem.

In this study, we tried to reduce the cost of test oracle by using learning-based
methods to improve the efficiency of MBFL.

2.2 Mutation Based Fault Localization

With MBFL, the test case suite achieves similar results on a faulty program
and mutant, and reflects the similarity of behavior between the two [12,25]. The
results of each test case executed on the program under testing can be recorded
as R, and the value of R may be P or F. A value of P indicates that the output
of such test cases executed on a faulty program is the same as expected, and an
F indicates that the output of the test case executed on a faulty program does
not match the expected result. The execution result of the same set of test cases
on a mutant and on the program under testing refers to whether the test case
kills the mutant. Here, K means the test case killed the corresponding mutant,
where the output of the test case executed on the mutant differs from that on the
program under testing. In addition, N indicates that the test case did not kill
the corresponding mutant, where the output of test case executed on the mutant
is the same as that on the program under testing. The following four parameters
of each mutant can be generated according to the above rules: akp, which is the
number of passed test cases that killed the mutant; anp, which indicates the
number of passed test cases that did not kill the mutant; akf , indicating the
number of failed test cases that killed the mutant; and anf , which shows the
number of failed test cases that did not kill the mutant. The suspiciousness of
each mutant can be calculated by formulas using these four parameters, and
the commonly used MBFL suspiciousness formulas are shown in Table 1. Recent
studies have suggested that the accuracy of fault localization can be improved
using MBFL, which is combined with a mutation analysis and fault localization
approaches [33–35].

Test Oracle Prediction for Mutation Based Fault Localization 19

Table 2 shows an illustrative example of MBFL with three transformed sus-
piciousness formulas shown in Table 1. The program mid shown in this example
has 13 statements with a test suite t of six test cases t1, ..., t6, and the third state-
ment is a faulty statement, which should be if(y < z). The bottom row refers
to the execution results of all test cases, namely P (passed) and F (failed). In
Table 2, 1 is used to indicate that the mutant has been killed by the correspond-
ing test case. The Suspiciousness column notes the suspiciousness value of each
mutant calculated using the Ochiai [39], Jaccard [19], and OP2 [30] formulas,
as shown in Table 2. The suspiciousness value of each statement, which is shown
in bold face, is the maximum suspiciousness value of all mutants generated by
this statement.

Table 1. Commonly used MBFL suspiciousness formula

Name Method

Ochiai Sus(s) =
akf√

(akf+anf)∗(akf+akp)

Jaccard Sus(s) =
akf

akf+anf+akp

Op2 Sus(s) = akf − akp
akf+anf+1

2.3 Neural Network and Machine Learning Algorithms

Figure 1 shows the neural network model, and the original goal of the artificial
neural network approach was to solve a problem in the same way as the human
brain [27,32]. Over time, attention became focused on matching specific intelli-
gence, leading to biological deviations. Artificial neural networks have been used
for a variety of areas, including computer vision, speech recognition, machine
translation, social network filtering, board and video games, and medical diag-
nostics [9,41,43].

Learning is an important part of neural network research, and its adaptabil-
ity is realized through learning. According to changes in the environment, the
weights are adjusted to improve the system’s behavior. The learning rule of a
neural network is to use the steepest descent method to continuously adjust the
weights and thresholds of the network through back propagation, and to finally
minimize the global error coefficient.

In this paper, a neural network algorithm is used as a classifier to predict
test oracle. First, we need to manually derive the output of a small number of
test cases as passed or failed, and use this part of test case as the training data
to train the neural network. After training is completed, the neural network can
be used to determine whether the output of all remaining test cases as passed or
failed. The neural network used in this paper has an ReLU activation function,
and a momentum factor of 0.99. The training samples was randomly selected in
this study.

20 Z. Li et al.

Table 2. Example of relative information from calculating suspiciousness using MBFL

Test Oracle Prediction for Mutation Based Fault Localization 21

To verify the effectiveness of neural network algorithm, we also com-
pared the experimental results between neural network and other classical
machine-learning algorithms, including Bayesian [5,15], support vector machine
(SVM) [16], and k-nearest neighbor (KNN) [14] algorithms.

Input
Hidden

Output

I1

I2

I3

IX

O

.
Fig. 1. Model of neural network algorithm

3 MBFL with Predicted Test Oracle

The framework of MBFL with predicted test oracle used in this paper is shown
in Fig. 2, and can be divided into four steps: execute the program under testing,
test oracle prediction, generate and execute mutants, and finally, calculate the
suspiciousness value of mutants and statements.

(1) Executing the program under test: The main task of this step is to use the
test suite to execute the program under test, obtain the output data and
coverage information of all test cases. The output data refer to the results
printed out after the program is executed for each test case.

(2) Generating and executing mutants: The main task of this step is to gener-
ate and execute the mutants. First, the mutation operator is used to seed
artificial defects on selected statements; we then execute the test suite on
all mutants to obtain the results, that is, the information regarding whether
the mutant is killed by the corresponding test case.

(3) Test oracle prediction: The main task of this step is to predict the test oracle
for all test cases. First, we select a small portion of test cases and manually
determine their output data as failed or passed. The execution results of
these test cases and the mutant coverage vector of each test case are used
as training data to train the neural network. The remaining test cases are
then used as test samples, and the neural network model is used to predict
the results of these test samples.

22 Z. Li et al.

step 1: Executing the Program Under Test

program
under test

test case suit
execute coverage

information

output data
select
part

output data of
some test cases

execution result
of these test cases

(Fail/Pass)

training Neural
Network

Neural Network
model

predict the
execution result
of all test cases

execution result
of all test cases

(Fail/Pass)

calculate
suspiciousness

suspiciousness
of mutants

suspiciousness and ranking
of each statements

sort from
largest to
smallest

step 3: Test Oracle Prediction

step 4: Calculating Suspiciousness

step 2: Generating and Executing Mutants

seed artificial
defects by

mutation operator
mutants

output data of
mutantsexecute

manually
determine the

execution result
(Fail/Pass)

compare

select
part

this part of mutants
are killed or not

(Killed/NoKilled)
mutants are killed

or not
(Killed/NoKilled)

Fig. 2. Framework of MBFL with predicted test oracle

The mutant coverage vector of each test case refers to the information regard-
ing whether the test case kills all mutants. For example, we use the program in
Table 2 as the program under testing, and test case t1 as the training sample. We
already know that the execution result of t1 is passed. We use the information
that the mutants were killed by test case t1 as input to train the neural net-
work, and use the result of test case t1 as the expected output. The number of
input nodes is equal to the number of mutants, and there are 35 mutants in the
program in Table 2, and thus X = 35 in Fig. 1. Because only mutants numbered
2, 3, 4, 7, 16, 17, 18, and 21 are killed by test case t1, when training the neural
network using I2, I3, I4, I7, I16, I17, I18, and I121 the value is 1, and the
value of the remaining input nodes is 0. Because the execution result of test case
t1 is passed, the value of the true output O is 0.

Afterward, the predicted data are propagated forward, that is, after the data
are input from the input layer, the predicted value is obtained through a cal-
culation of the hidden layer and output layer, and the predicted value is the
output result of the output layer. The weight of the update is reversely prop-
agated, and the error between the predicted output and the real output of the
model is calculated according to the real output of the sample. The error is then
propagated back to each hidden layer. The error of each layer is calculated, and
then according to the error of each layer, the weight is updated. When the error
between the predicted output and the real output reaches the allowable range,
we finish the neural network training and obtain the neural network model.

Finally, we use the trained neural network model to predict the output of all
other test cases.

For instance, the mutants numbered 1, 2, 3, 5, 6, 23, 24, 25, and 28 in Table 2
are killed by test case t3. Then, the value of I1, I2, I3, I5, I6, I23, I24, I25,

Test Oracle Prediction for Mutation Based Fault Localization 23

and I28 in the node is 1, and the remaining input nodes have a value of zero.
Afterward, the prediction data are spread forward, and the prediction data are
the prediction output result of test case t3. In the ideal case, the prediction result
should be the same as the result of the t3 execution in Table 2, which is 0.

(4) Calculating the suspiciousness: The main task of this step is to calculate the
suspiciousness of each statement in the program under test. For the method
using MBFL, the results of the execution of the test cases and the results of
the execution of the mutants are first used to calculate the suspiciousness of
all mutants based on the formulas in Table 1. Afterward, the suspiciousness
value of each statement is set to maximum among its generated mutants.

4 Experiment Design

4.1 Research Questions

The empirical study is conducted with two main goals. The first is to evaluate the
precision of test oracle prediction. The second is to evaluate the fault localization
accuracy of MBFL with predicted test oracle. Specifically, this paper aims to
answer the following research questions:

RQ1: Compared with the statement coverage based test case information, how
does the mutant coverage based test case information perform in terms of the
prediction of test oracle with the same neural network algorithm?

RQ2: Among neural network, Bayes, SVM, and KNN, which classification algo-
rithm is the best at predicting test oracle?

RQ3: Compared with original MBFL, how good is the fault localization of
MBFL with the predicted test oracle?

RQ1 and RQ2 concern the accuracies of different methods with regard to their
test oracle predictions, and RQ3 compares the fault localization between MBFL
with predicted test oracle and original MBFL with all test oracles.

All experiments were performed on an HP server with 24 Intel Xeon(R) E5-
2620 cores and 16 GB of memory.

4.2 Subject Programs

To address the above research questions, three subject programs with 114
versions were selected from the Software artifact Infrastructure Repository
(SIR) [10] as benchmarks. The first two programs come from Siemens Suite,
and the last program, sed, is a real-world program. They are all open-source C
programs with faulty versions and corresponding test suites. Table 3 shows the
detailed information on all subject programs, including the number of single-
fault and multiple-fault versions, the line of code, the number of test cases, and
the fault type of each subject program.

24 Z. Li et al.

Table 3. Subject programs

Programs #Faulty versions #LOC #Tests Fault type

Single-fault Multiple-fault

tot info 10 35 412 1052 Seeded

tcas 12 28 173 1608 Seeded

sed 9 50 12062 360 Real/Seeded

In this study, the GNU gcov [48] tool was employed to collect coverage
information of test cases. For every statement, the mutation analysis tool Pro-
teum/IM [8], which is a well-known tool and is widely used in mutation testing
studies, is leveraged to generate mutants.

4.3 Evaluation Metrics

Evaluation Metrics for Test Oracle Prediction. In this paper, the test
oracle prediction problem is constructed as a binary classification problem, and
commonly used evaluation metrics of the binary classification problem include
Precision, Recall, F -measure, and FalsePositive (FP) rate. These metrics are
calculated based on the confusion matrix shown in Table 4. For the test oracle
prediction problem, TruePositive (TP) indicates the number of passed test cases
correctly predicted as passed, FalsePositive(FP) denotes the number of passed
test cases incorrectly predicted as failed, FalseNegative (FN) indicates the num-
ber of failed test cases incorrectly predicted as passed, and TrueNegatives (TN)
is the number of failed test cases correctly predicted as failed. All of these above
evaluation metrics range from zero to 1, and higher values of Precision, Recall,
and F -measure, and lower values of the FPrate indicate a better prediction
technology.

Table 4. Confusion matrix and evaluation metrics for binary classification algorithm

Evaluation Metrics for Fault Localization. In this paper, a widely used
method, EXAMscore, is employed to evaluate the fault localization precision

Test Oracle Prediction for Mutation Based Fault Localization 25

of MBFL. The EXAMscore uses the percentage of located faults by examining
certain percentage statements, and a higher EXAMscore indicates a better fault
localization technique [38]. The EXAMscore is defined through the following
formula:

EXAM score =
% of located faults

% of examined code

T-Test for Evaluating Data Differences. A t-test is a statistical hypothesis
test that follows a Student t-distribution under the null hypothesis [11,40]. A
t-test can be used to determine if two sets of data are significantly different from
each other. In our study, we calculate the P-value to test the differences in fault
localization accuracy between different MBFL techniques.

5 Experiment Results and Analyses

5.1 Comparison Between Mutant Coverage and Statement
Coverage

In this study, we leverage mutant coverage to construct test case information
for test oracle prediction. To validate its effectiveness, an empirical comparison
of test oracle prediction accuracy between two types of test case information,
namely, mutant coverage and statement coverage, is conducted on all subject
program versions shown in Table 3.

We selected 20%, 40%, 60%, and 80% of the cases as training set and the
remaining cases as the predicted set, and employed the same classification algo-
rithm, neural network, to predict the test oracle. We calculated the value of
metrics under these different configurations, and visually compare these two
types of test case information through the violin plots shown in Figs. 3 and 4. In
the violin plot, the X-axis represents different proportions of a training set using
different techniques, and the Y-axis indicates the Precision, Recall, F -measure,
and FPrate. “MC20%” or “SC20%” indicate the results of the mutant cover-
age or statement coverage test case information, respectively, with 20% of the
training test cases. Each block in the violin plot indicates the distribution of one
evaluation metric and the corresponding formula. The breadth of the block rep-
resents the data density of the corresponding value of the Y-axis for all subject
program versions.

Because the subject programs shown in Table 3 contain single-fault and
multiple-fault versions, and the number of faults certainly has an impact on
test oracle prediction results. In this study, we made the same comparison under
single-fault and multiple-fault versions separately. Specifically, Figs. 3 and 4 show
a comparison of the Precision, Recall, F -measure, and FPrate in single-fault
and multiple-fault scenarios.

As shown in Fig. 3(a), the distribution of the Precision of the mutant cov-
erage is centered at approximately 1.0, and has a much higher Precision in
all training sets. Similarly, the mutant coverage has a much higher Recall and

26 Z. Li et al.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
re

ci
si

on

SC20% MC20% SC40% MC40% SC60% MC60% SC80% MC80%

(a)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R
ec

al
l

SC20% MC20% SC40% MC40% SC60% MC60% SC80% MC80%

(b)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F-
m

ea
su

re

SC20% MC20% SC40% MC40% SC60% MC60% SC80% MC80%

(c)
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

FP
 ra

te
SC20% MC20% SC40% MC40% SC60% MC60% SC80% MC80%

(d)

Fig. 3. Comparison of test oracle prediction results for single-fault versions

F -measure, as shown in Figs. 3(b) and (c). The experimental results show that
the mutant coverage is 28.65% more precise than the statement coverage, and the
mutant coverage has increased by 10.19% and 19.91% in Recall and F -measure
on average, respectively.

As shown in Fig. 3(d), The record mutant coverage has a much lower FPrate
than the statement coverage in different training sets, with a decrease of 91.43%
over the statement coverage on average.

Simultaneously, we studied in multiple-fault cases, the results of which are
shown in Fig. 4.

Figures 4(a)–(d) show a comparison of the two types combining neural net-
work algorithm with regard to Precision, Recall, F -measure, and FPrate in
the multiple-fault cases, respectively.

Compared with single-fault situation, although the statement coverage and
mutant coverage have a more scattered distribution, the mutant coverage also
has a higher Precision relatively with an improvement of 137.54%, as shown
in Fig. 4(a). In addition, in the case of multiple faults, the mutant coverage is
55.33% and 99.57% higher in Recall and F -measure on average. In addition, it
is 68.97% lower in FPrate.

In conclusion, we can claim that mutant coverage with the neural network
algorithm can be much better than statement coverage, and the former has a
much better prediction effect with different proportions of training sets.

Test Oracle Prediction for Mutation Based Fault Localization 27

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
re

ci
si

on

SC20% MC20% SC40% MC40% SC60% MC60% SC80% MC80%

(a)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R
ec

al
l

SC20% MC20% SC40% MC40% SC60% MC60% SC80% MC80%

(b)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F-
m

ea
su

re

SC20% MC20% SC40% MC40% SC60% MC60% SC80% MC80%

(c)
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

FP
 ra

te

SC20% MC20% SC40% MC40% SC60% MC60% SC80% MC80%

(d)

Fig. 4. Comparison of CBFL and MBFL with regard to Precision, Recall, F -measure,
and FPrate in the case of multiple faults

5.2 Comparison Between Different Learning Algorithms

In this section, we mainly compare the neural network algorithm and machine-
learning algorithm by calculating the Precision, Recall, F -measure, and
FPrate separately under the MBFL technique. Meanwhile, we selected 20%,
40%, 60%, and 80% of the test cases as the training set. The comparison is
shown in 8 line charts, where the X-axis represents the different program ver-
sions, and the Y-axis indicates the Precision, Recall, F -measure, and FPrate.
We studied both single-fault and multiple-fault cases, and Fig. 5 shows the case
of a single fault.

Figures 5(a)–(p) show a comparison of the machine-learning and neural net-
work algorithms with regard to the Precision, Recall, F -measure, and FPrate
in a single fault case, respectively.

From Fig. 5(a), we can see that the Bayes algorithm is visually higher than
the other three lines with regard to the Precision metric, and we can draw the
same conclusion from Figs. 5(c) and (d). In Fig. 5(b), the neural network (NN)
algorithm is better than the others. The results shown in Figs. 5(e), (g), and (h)
indicate that the Bayes algorithm has a lower Recall in the 20%, 60%, and 80%
training test cases. In addition, the Bayes algorithm has a higher F -measure and
lower FPrate, whereas the SVM shows the worst performance in Fig. 5(i)–(p).
In this case, the Bayes algorithm has a better performance than the other three
algorithms in a single fault case.

The results of multiple-fault comparisons are shown in Fig. 6.
Figures 6(a)–(p) show a comparison of the machine-learning and neural net-

work algorithms with regard to the Precision, Recall, F -measure, and FPrate
in the multiple-fault case, respectively.

28 Z. Li et al.

●

● ●

● ● ●
● ●

●
● ●

●

●

● ●

●

● ● ●
●

● ●

●

●

● ●
●

● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

●

● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
● ●

●

● ●

●

● ●
● ●

●

●
● ●

●

●

● ●

● ● ●
● ●

● ●

●

●

● ●
●

● ● ● ●
● ●

●

●

● ●
●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ● ●
●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

●

●

●
●

● ● ● ● ●

●

● ●

●

●

●
● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ●
●

● ●
● ●

● ●

● ●

●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●

● ● ● ● ● ● ● ● ● ●

●

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 20% of Test Cases

Algorithms
NN
Bayes
KNN
SVM

Pr
ec

is
io

n

(a)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 40% of Test Cases

Algorithms
NN
Bayes
KNN
SVM

Pr
ec

is
io

n
(b)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 60% of Test Cases

Algorithms
NN
Bayes
KNN
SVM

Pr
ec

is
io

n

(c)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 80% of Test Cases

Algorithms
NN
Bayes
KNN
SVM

Pr
ec

is
io

n

(d)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 20% of Test Cases

Algorithms
NN
Bayes
KNN
SVM

R
ec

al
l

(e)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 40% of Test Cases

Algorithms
NN
Bayes
KNN
SVM

R
ec

al
l

(f)

0 5 10 15 20 25 30
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Training Set: 60% of Test Cases

Algorithms
NN
Bayes
KNN
SVM

R
ec

al
l

(g)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 80% of Test Cases

Algorithms
NN
Bayes
KNN
SVM

R
ec

al
l

(h)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 20% of Test Cases

Algorithms
NN
Bayes
KNN
SVM

F−
m

ea
su

re

(i)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 40% of Test Cases

Algorithms
NN
Bayes
KNN
SVM

F−
m

ea
su

re

(j)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 60% of Test Cases

Algorithms
NN
Bayes
KNN
SVM

F−
m

ea
su

re

(k)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 80% of Test Cases

Algorithms
NN
Bayes
KNN
SVM

F−
m

ea
su

re

(l)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 20% of Test Cases

Algorithms
NN
Bayes
KNN
SVMFP

 ra
te

(m)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 40% of Test Cases

Algorithms
NN
Bayes
KNN
SVMFP

 ra
te

(n)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 60% of Test Cases

Algorithms
NN
Bayes
KNN
SVMFP

 ra
te

(o)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 80% of Test Cases

Algorithms
NN
Bayes
KNN
SVMFP

 ra
te

(p)

Fig. 5. Combining machine-learning and neural network algorithms for versions with
a single fault

We can see from Figs. 6(a)–(l) that the neural network algorithm achieves a
higher Precision, Recall, and F -measure in different proportions of the training
test cases. Similarly, from Figs. 6(m)–(p), the Bayes algorithm achieves the lowest
FPrate. Therefore, we can conclude that the neural network algorithm achieves
a better prediction in a multiple-fault situation.

Test Oracle Prediction for Mutation Based Fault Localization 29

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 20% of Test Cases

Algorithms
NN
Bayes
KNN
SVM

Pr
ec

is
io

n

(a)

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 40% of Test Cases

Algorithms
NN
Bayes
KNN
SVM

Pr
ec

is
io

n

(b)

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 60% of Test Cases

Algorithms
NN
Bayes
KNN
SVM

Pr
ec

is
io

n

(c)

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 80% of Test Cases

Algorithms
NN
Bayes
KNN
SVM

Pr
ec

is
io

n

(d)

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 20% of Test Cases

Algorithms
NN
Bayes
KNN
SVM

R
ec

al
l

(e)

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 40% of Test Cases

Algorithms
NN
Bayes
KNN
SVM

R
ec

al
l

(f)

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 60% of Test Cases

Algorithms
NN
Bayes
KNN
SVM

R
ec

al
l

(g)

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 80% of Test Cases

Algorithms
NN
Bayes
KNN
SVM

R
ec

al
l

(h)

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 20% of Test Cases

Algorithms
NN
Bayes
KNN
SVM

F−
m

ea
su

re

(i)

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 40% of Test Cases

Algorithms
NN
Bayes
KNN
SVM

F−
m

ea
su

re

(j)

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 60% of Test Cases

Algorithms
NN
Bayes
KNN
SVM

F−
m

ea
su

re

(k)

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 80% of Test Cases

Algorithms
NN
Bayes
KNN
SVM

F−
m

ea
su

re

(l)

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 20% of Test Cases

Algorithms
NN
Bayes
KNN
SVMFP

 ra
te

(m)

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 40% of Test Cases

Algorithms
NN
Bayes
KNN
SVMFP

 ra
te

(n)

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 60% of Test Cases

Algorithms
NN
Bayes
KNN
SVMFP

 ra
te

(o)

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Training Set: 80% of Test Cases

Algorithms
NN
Bayes
KNN
SVMFP

 ra
te

(p)

Fig. 6. Combining machine-learning and neural network algorithms for versions with
multiple faults

In summary, we can conclude that the Bayes algorithm is suitable for test
oracle prediction in a single-fault case, and the neural network algorithm is
suitable for a multiple-fault case.

5.3 Performance of MBFL with and Without Test Oracle Prediction

In this section, we compare the performance of MBFL with and without using the
neural network algorithm for fault localization prediction by choosing 20% of the

30 Z. Li et al.

0.
0

0.
1

0.
2

0.
3

0.
4

Origin single Predict single Origin multiple Predict multipleEX
A

M
 sc

or
e

by
 O

ch
ia

i

(a)

0.
0

0.
1

0.
2

0.
3

0.
4

EX
A

M
 sc

or
e

by
 Ja

cc
ar

d

Origin single Predict single Origin multiple Predict multiple

(b)
0.

0
0.

1
0.

2
0.

3
0.

4

Origin single Predict single Origin multiple Predict multipleEX
A

M
 sc

or
e

by
 O

p2

(c)

Fig. 7. Performance of MBFL with and without use of neural network algorithm

test cases as training sets and the rest for the prediction. Single and multiple fault
cases were studied to predict the rank of a faulty statement, and we calculated
the EXAMscore of the faulty statements using three MBFL formulas (Jaccard,
Ochiai, and Op2). The results are shown graphically through the violin plots,
where the X-axis represents the MBFL without (Origin) and with (Predict) the
use of the neural network algorithm in single and multiple-fault cases, and Y-axis
represents the EXAMscore.

Figures 7(a)–(c) show a comparison of the MBFL technique, Jaccard, Ochiai,
and Op2, with and without the use of the neural network algorithm, respectively.

The results in Fig. 7 show the distribution of EXAMscore with the different
MBFL formulas, which indicates that there no significant difference was found
with regard to the effect of the MBFL between with and without combining the
neural network algorithm. Therefore, the test oracle prediction can be used in
MBFL to reduce the significant expense of a mutation execution.

To further investigate the differences between MBFL without (Origin) and
with (Predict) the use of the neural network algorithm, a statistical analysis was
conducted. Table 5 summarizes the results of an independent sample t-test on
the EXAMscore of MBFL with and without the use of the neural network algo-
rithm. These results are based on the three MBFL formulas. Suppose that the
EXAMscore using the neural network algorithm is A, and the EXAMscore
without the use of the neural network algorithm is B, for H0, the data dis-
tribution of A is the same across B, whereas for H1, the data distribution of
A is not the same across B. Table 5 shows the different degrees of significance

Test Oracle Prediction for Mutation Based Fault Localization 31

Table 5. Statistical comparison (P-values)of MBFL with and without neural network
algorithm

Programs Fault type Jaccard Ochiai Op2

sed Single fault 0.993 0.990 0.956

Multiple faults 0.974 0.949 0.968

tcas Single fault 1.000 1.000 1.000

Multiple faults 0.990 0.981 0.960

tot info Single fault 0.969 0.969 0.975

Multiple faults 0.970 0.977 0.957

all Single fault 0.975 0.980 0.955

Multiple faults 0.968 0.958 0.991

between Origin and Predict. It can be seen that there is no statistically signifi-
cant difference between Origin and Predict in the different program versions at
a statistically significant level, namely, α = 0.05.

In conclusion, we determined that MBFL combining neural network algo-
rithm did not achieve similar performance in fault localization, and we achieved
almost the same fault localization effect by reducing 80% of the cost of the
human oracle.

6 Threats to Validity

This paper uses the following threat of validity: The number of experiments
and the number of versions used in the experiment were limited. Experimental
selection of the program was also limited. For the experiment, a representative
procedure that is widely used in the field of fault localization was chosen. How-
ever, there are many unknowns in reality debugging, and thus our experiments
cannot cover or apply to all situations in reality. Therefore, the focus of future
work will be to use more large real-world programs.

Although MBFL is a highly accurate fault localization technique, it can be
costly because traditional methods require a manual output expected by each
test case.

7 Conclusion and Future Work

This paper presented a neural-network based prediction method that uses the
execution path of a few test cases and their tag information to train the output
tags of most of the remaining test cases. Based on the experiments and a com-
parison, mutant coverage using the neural network algorithm can be much better
than statement coverage. Further, this paper compared a neural network algo-
rithm with a machine-learning algorithm for test oracle prediction, the results of

32 Z. Li et al.

which show that MBFL combining the neural network algorithm achieves better
test oracle prediction than when combined with other algorithms for a multiple-
fault case. Finally, we achieved almost the same prediction and fault localization
accuracies when using the neural network algorithm with MBFL, with an 80%
test oracle reduction compared with MBFL without using the algorithm.

As future work, we intend to use more complex and larger experimental
procedures. We also intend to use more real-world and larger programs to render
our results more universal as well as realistic.

Acknowledgment. The work describes in this paper is supported by the National
Natural Science Foundation of China under Grant No.61872026, 61672085 and
61702029.

References

1. Weyuker, E.J.: The oracle assumption of program testing. In: 13th International
Conference on System Sciences, pp. 44–49 (1980)

2. Agrawal, H., Horgan, J.R., London, S., Wong, W.E.: Fault localization using execu-
tion slices and dataflow tests. In: International Symposium on Software Reliability
Engineering. Proceedings, pp. 143–151 (1995)

3. Arantes, A.O., de Santiago, V.A., Vijaykumar, N.L.: On proposing a test ora-
cle generator based on static and dynamic source code analysis. In: 2015 IEEE
International Conference on Software Quality, Reliability and Security-Companion
(QRS-C), pp. 144–152. IEEE (2015)

4. Barr, E.T., Harman, M., Mcminn, P., Shahbaz, M., Yoo, S.: The oracle problem
in software testing: a survey. IEEE Trans. Software Eng. 41(5), 507–525 (2015)

5. Cheeseman, P., Stutz, J.: Bayesian classification (autoclass): theory and results.
In: Fayyad, U.M., et al. (eds.) Advances in Knowledge Discovery and Data Mining
AAAI, pp. 153–180 (1996)

6. Chen, X., Chen, J.H., Ju, X.L., Gu, Q.: Survey of test case prioritization techniques
for regression testing. J. Software 24(8), 1695–1712 (2013)

7. Dallmeier, V., Lindig, C., Zeller, A.: Lightweight bug localization with ample (2005)
8. Delamaro, M.E., Maldonado, J.C., Vincenzi, A.M.R.: Proteum/IM 2.0: an inte-

grated mutation testing environment. In: Wong, W.E. (ed.) Mutation Testing for
the New Century, pp. 91–101. Springer, Boston (2001). https://doi.org/10.1007/
978-1-4757-5939-6 17

9. Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R., Makhoul, J.: Fast and
robust neural network joint models for statistical machine translation. In: Meeting
of the Association for Computational Linguistics, pp. 1370–1380 (2014)

10. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with
testing techniques: an infrastructure and its potential impact. Empirical Software
Eng. 10(4), 405–435 (2005)

11. Efron, B.: Student’s t test under symmetry conditions. Publ. Am. Stat. Assoc.
64(328), 1278–1302 (1969)

12. Gong, P., Geng, C.Y., Guo, J.X., Zhao, R.L.: Dynamic mutation execution strategy
for mutation-based fault localization. Comput. Sci. 43(2), 199–203 (2016)

13. Gong, P., Zhao, R., Li, Z.: Faster mutation-based fault localization with a novel
mutation execution strategy. In: IEEE Eighth International Conference on Software
Testing, Verification and Validation Workshops, pp. 1–10 (2015)

https://doi.org/10.1007/978-1-4757-5939-6_17
https://doi.org/10.1007/978-1-4757-5939-6_17

Test Oracle Prediction for Mutation Based Fault Localization 33

14. Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K.: KNN model-based approach in
classification. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) OTM 2003. LNCS,
vol. 2888, pp. 986–996. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-39964-3 62

15. Habib, M.T., Shuvo, S.B., Uddin, M.S., Ahmed, F.: Automated textile defect clas-
sification by bayesian classifier based on statistical features. In: International Work-
shop on Computational Intelligence, pp. 101–105 (2017)

16. Hao, P.Y., Chiang, J.H., Tu, Y.K.: Hierarchically svm classification based on sup-
port vector clustering method and its application to document categorization.
Expert Syst. Appl. 33(3), 627–635 (2007)

17. Harrold, M.J., Gupta, R., Soffa, M.L.: A methodology for controlling the size of a
test suite. ACM Trans. Software Eng. Methodol. (TOSEM) 2(3), 270–285 (1993)

18. Howden, W.E.: Theoretical and empirical studies of program testing. IEEE Trans.
Softw. Eng 4(4), 305–311 (1978)

19. Jaccard, P.: Etude de la distribution florale dans une portion des alpes et du jura.
Bulletin De La Societe Vaudoise Des Sciences Naturelles 37(142), 547–579 (1901)

20. Jones, J.A.: Empirical evaluation of the tarantula automatic fault-localization tech-
nique. In: IEEE/ACM International Conference on Automated Software Engineer-
ing, pp. 273–282 (2005)

21. Kooli, M., Kaddachi, F., Natale, G.D., Bosio, A., Benoit, P., Torres, L.: Computing
reliability: on the differences between software testing and software fault injection
techniques. Microprocess. Microsyst. 50, 102–112 (2017)

22. Leon, D., Podgurski, A.: A comparison of coverage-based and distribution-based
techniques for filtering and prioritizing test cases. In: International Symposium on
Software Reliability Engineering, p. 442 (2003)

23. Li, N., Offutt, J.: Test oracle strategies for model-based testing. IEEE Trans. Softw.
Eng. PP(99), 1 (2017)

24. Liu, X., Liu, Y., Li, Z., Zhao, R.: Fault classification oriented spectrum based
fault localization. In: IEEE Computer Software and Applications Conference, pp.
256–261 (2017)

25. Liu, Y., Li, Z., Wang, L., Hu, Z., Zhao, R.: Statement-oriented mutant reduction
strategy for mutation based fault localization. In: IEEE International Conference
on Software Quality, Reliability and Security (2017)

26. Liu, Y., Li, Z., Zhao, R., Gong, P.: An optimal mutation execution strategy for
cost reduction of mutation-based fault localization. Inf. Sci. 422(January 2018),
572–596 (2017)

27. Major, T.C., Conrad, J.M.: The effects of pre-filtering and individualizing compo-
nents for electroencephalography neural network classification. In: Southeastcon,
pp. 1–6 (2017)

28. Masri, W.: Fault localization based on information flow coverage. Software Testing
Verification Reliab. 20(2), 121–147 (2010)

29. Masri, W., Abouassi, R., Elghali, M., Alfatairi, N.: An empirical study of the
factors that reduce the effectiveness of coverage-based fault localization. Environ.
Health Perspect. 114(11), 142–143 (2009)

30. Naish, L., Lee, H.J., Ramamohanarao, K.: A model for spectra-based software
diagnosis. ACM Tran. Software Eng. Methodol. (TOSEM) 20(3), 1–32 (2011)

31. Noor, T.B., Hemmati, H.: Studying test case failure prediction for test case prior-
itization. In: The International Conference, pp. 2–11 (2017)

32. Palmer-Brown, D., Jayne, C.: Hypercube neural network algorithm for classifica-
tion. In: Iliadis, L., Jayne, C. (eds.) AIAI/EANN -2011. IAICT, vol. 363, pp. 41–51.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23957-1 5

https://doi.org/10.1007/978-3-540-39964-3_62
https://doi.org/10.1007/978-3-540-39964-3_62
https://doi.org/10.1007/978-3-642-23957-1_5

34 Z. Li et al.

33. Papadakis, M., Traon, Y.L.: Using mutants to locate unknown faults. In: IEEE
Fifth International Conference on Software Testing, Verification and Validation,
pp. 691–700 (2012)

34. Papadakis, M., Traon, Y.L.: Effective fault localization via mutation analysis: a
selective mutation approach. In: ACM Symposium on Applied Computing, pp.
1293–1300 (2014)

35. Papadakis, M., Traon, Y.L.: Metallaxis-FL: Mutation-Based Fault Localization.
Wiley, Chichester (2015)

36. Perez, A., Rui, A., Deursen, A.V.: A test-suite diagnosability metric for spectrum-
based fault localization approaches. In: International Conference on Software Engi-
neering, pp. 654–664 (2017)

37. Pressman, R.S.: Software engineering: a practitioner’s approach, 2nd edn. (1992)
38. Renieres, M., Reiss, S.P.: Fault localization with nearest neighbor queries. In: IEEE

International Conference on Automated Software Engineering. Proceedings, pp.
30–39 (2003)

39. Rui, A., Zoeteweij, P., Gemund, A.J.C.V.: An evaluation of similarity coefficients
for software fault localization. In: Pacific Rim International Symposium on Depend-
able Computing, pp. 39–46 (2006)

40. Ruxton, G.D.: The unequal variance T test is an underused alternative to student’s
T test and the mann whitney U test. Behav. Ecol. 17(4), 688–690 (2006)

41. Seki, H., Yamamoto, K., Nakagawa, S.: A deep neural network integrated with
filterbank learning for speech recognition. In: IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 5480–5484 (2017)

42. Shu, T., Ye, T., Ding, Z., Xia, J.: Fault localization based on statement frequency.
Inf. Sci. 360(C), 43–56 (2016)

43. Storbeck, F., Daan, B.: Fish species recognition using computer vision and a neural
network. Fish. Res. 51(1), 11–15 (2001)

44. Tip, F.: A Survey of Program Slicing Techniques. CWI (Centre for Mathematics
and Computer Science) (1994)

45. Tu, J., Xie, X., Xu, B.: Code coverage-based failure proximity without test oracles.
In: Computer Software and Applications Conference, pp. 133–142 (2016)

46. Wang, X., Jiang, S., Gao, P., Xiaolin, J.U., Wang, R., Zhang, Y.: Cost-effective
testing based fault localization with distance based test-suite reduction. Sci. China
60(9), 092112 (2017)

47. Weyuker, E.J.: On testing non-testable programs. Comput. J. 25(4), 465–470
(1982)

48. Yang, Q., Li, J.J., Weiss, D.M.: A survey of coverage-based testing tools. Comput.
J. 52(5), 589–597 (2009)

49. Zhang, X.Y., Zheng, Z., Cai, K.Y.: Exploring the usefulness of unlabelled test cases
in software fault localization. J. Syst. Softw. 136, 278–290 (2018)

Parallel Evolutionary Algorithm
in Scheduling Work Packages to Minimize

Duration of Software Project
Management

Jinghui Hu1,2, Xu Wang3, Jian Ren3(B), and Chao Liu3

1 AVIC Manufacturing Technology Institute, Beijing 100024, China
2 Aeronautical Key Laboratory for Digital Manufacturing Technology,

Beijing 100024, China
3 State Key Laboratory of Software Development Environment,

School of Computer Science and Engineering, Beihang University,
Beijing 100191, China
renjian@buaa.edu.cn

Abstract. Software project management problem mainly includes
resources allocation and work packages scheduling. This paper presents
an approach to Search Based Software Project Management based
on parallel implementation of evolutionary algorithm on GPU. We
redesigned evolutionary algorithm to cater for the purpose of parallel
programming. Our approach aims to parallelize the genetic operators
including: crossover, mutation and evaluation in the evolution process
to achieve faster execution. To evaluate our approach, we conducted a
“proof of concept” empirical study, using data from three real-world
software projects. Both sequential and parallel version of a conventional
single objective evolutionary algorithm are implemented. The sequen-
tial version is based on common programming approach using C++,
and the parallel version is based on GPGPU programming approach
using CUDA. Results indicate that even a relatively cheap graphic card
(GeForce GTX 970) can speed up the optimization process significantly.
We believe that deploy parallel evolutionary algorithm based on GPU
may fit many applications for other software project management prob-
lems, since software projects often have complex inter-related work pack-
ages and resources, and are typically characterized by large scale prob-
lems which optimization process ought to be accelerated by parallelism.

Keywords: Software project management · Evolutionary algorithm ·
NVidia CUDA · Parallel computing · GPGPU

1 Introduction

In an actual development process of software project, the project manager’s
responsibility is to properly schedule the tasks of software project development,
c© Springer Nature Singapore Pte Ltd. 2019
Z. Li et al. (Eds.): NASAC 2017/2018, CCIS 861, pp. 35–51, 2019.
https://doi.org/10.1007/978-981-15-0310-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0310-8_3&domain=pdf
https://doi.org/10.1007/978-981-15-0310-8_3

36 J. Hu et al.

supervise the programming work of the software engineer and arrange the whole
development progress of the software to ensure that the software can be delivered
before the deadline [1]. Therefore, the project management problem is not only
a very fundamental problem in software engineering, but also a very difficult
problem in the actual work for the project manager.

In fact, software project management is an art of staff management and task
scheduling in software engineering. It requires an overall understanding of the
lifecycle of software development, such as planning tasks, staff organization and
so on. Through a survey on the practice of software project management [2–5],
we found that the different task management designed by the project manager,
such as the arrangement order of the work packages in a project, or the different
resource allocation in the same human resources team, will have a great impact
on the project’s overall duration. Excellent project managers can shorten the
overall duration by arranging the order of tasks, making full use of the team’s
resources or allocating human resources properly. However, at the beginning of
a software project, the project managers need to spend a lot of time on the dis-
cussion that what kind of difficulties will be faced in the process of development
and the detail of resources allocation in software engineering phase [6], such as
requirements analysis, system design, system development, system testing etc.

However, an automatic method to properly arrange the entire software
project management process is still lacking. We target at two typical difficul-
ties preventing automatic techniques to be realized into a real world project:
(1) the complexity of the problem model causes difficulties when a project man-
ager is formalizing the problem he/she is facing, (2) the execution time of the
optimization process is quite often unbearable comparing to the result it yields.

In this paper, we introduce a framework to deploy a conventional evolutionary
algorithm to solve the work package scheduling problem as a single objective
optimization problem. And by catering the most computation intensive portion
of algorithm to run on a parallel manner, this framework speeds up the execution
of optimization process significantly. With an empirical study on three real world
software project data, we show how this framework can ease above mentioned
two typical problems that most of the existing optimization techniques to project
management are facing. We claim that heuristics provides mangers with intuitive
features towards “simple-to-deploy”, and parallel computation running on GPU
provides faster execution time.

The main purpose of this paper is to push forward the automated software
project management powered by the search-based approach, which is an impor-
tant component of search-based software engineering (SBSE) and also a future
development trend of software engineering project management in the era of big
data and parallel computing.

The rest of this paper is organized as follows. First, we give a brief background
of evolutionary algorithm and software project management problem in Sects. 2
and 3. Then we introduce the design of algorithm implemented in a parallel
manner in Sect. 4. Section 5 presents the results of empirical study. In Sect. 6, we
provide a brief overview of related work before concluding in Sect. 7.

Parallel Evolutionary Algorithm in Scheduling Work Packages 37

2 Evolutionary Algorithm

2.1 Meta-heuristic Algorithms

In the development process of computer science, the design of program algorithm
provides much power to promote the advancement of computer science and tech-
nology. We know that in solving the similar kind of problem, the computational
efficiency of different algorithms is completely different.

Algorithm has become the soul to solve practical problems using computer.
In addition to the classical algorithm that can be used to calculate a certain
problem at a given time, a class of algorithms is found with different performance.
The nature of this algorithm is that no performance guaranteed can be given
in theory but is often possible to give the solution of the problem efficiently in
practice. This class of algorithms is called meta-heuristic algorithm.

Unlike the traditional algorithm, the meta-heuristic algorithm tries to provide
one or more disaggregation in one calculation, and the corresponding optimal
solution can be found in the process of searching. The meta-heuristic algorithm
can often find a good solution, but there is no way to prove that it will not get
a worse solution, or cannot even find solution. The evolutionary algorithm used
in this paper usually gives an approximate optimal solution within a given time,
but can not to ensure that this solution is best at a given time.

In reality, there are some extreme situations in the process of implementing
the heuristic algorithm, that is, some solutions that the meta-heuristic algo-
rithms need are difficult to find or they cannot be found at all. The heuristic
algorithm is often used to solve some Non-Deterministic Polynomial complete
problems (NPC) because the calculative requirement of NPC is very large so
some deterministic algorithms cannot be used to find the optimal solution. How-
ever, the meta-heuristic algorithm can get a good answer in a reasonable time
when dealing with NPC, so the meta-heuristic algorithm is also a hot field for
academic community.

The thought of the meta-heuristic algorithm has been formed for a long
time and since its formation, the research on it has not been interrupted. As
a result, there are many ways to achieve it. In recent decades, the research of
meta-heuristic algorithm has developed rapidly, and there have been many more
mature and specific subalgorithms. In the 1970s, Professor Holland [7] proposed
genetic algorithm. Genetic algorithm simulates the evolutionary method of bio-
logical population to find the optimal solution of some problems, which opens up
a new upsurge in research on meta-heuristic algorithm. Ever since the 1980s, a
number of new meta-heuristic algorithms emerged [8], such as Simulated Anneal-
ing Algorithm, Artificial Neural Network, Tabu Search and etc.

2.2 Evolutionary Algorithm

Evolutionary algorithm [9] origins from Darwin’s theory of evolution and
Mendel’s theory of genetic gene. Its essence is an efficient global search algorithm
that imitates the biological evolution of nature. In the process of searching for

38 J. Hu et al.

the optimal solution, it can automatically acquire and accumulate the more opti-
mal individual in the large population, and control search process adaptively. It
can converge to the better solution oriented according to the natural law of the
strong stronger and the weak weaker. As is known to all, the difficulty of software
project management problem is to find the right order of the work package under
the precondition of satisfying the constraint of the resource. However, there are
numberless constitute of the work package. Traversal is the easiest approach but
it requires too much computing resources and results to lower effectiveness. So
we need an approach which consumes less time with a perfect solution.

The core of the evolutionary algorithm is the design of encoding of candi-
date solutions and the fitness function. The evolutionary algorithm first encodes
the solutions according to the different requirements of problem. Each individ-
ual in the population represents a solution to the problem. At the same time,
for each solution of the problem, we also need to design the fitness function.
The fitness value of different solutions is used to measure the adaptability of
different individuals. Individuals with high adaptability are more likely to sur-
vive in the evolution process of population. After encoding, there are four steps
including initialized population, crossover, mutation and selection. The specific
operation of initialized population is to generate the first generation of popu-
lation randomly; The cross is to product new offspring population by the indi-
vidual hybridization between parents then the mutation is to mutate certain
genes in the individuals and mutated individuals will be involved in population
hybridization to maintain the species diversity of the population. As a result,
the operation above will bring some novel solutions; Finally, the selection is to
choose better individuals in the whole population according to the natural law
of winning. In a word, the evolutionary algorithm obtains the optimal solution
by the evolution of the population.

3 Project Management Problem

3.1 Project Plan

The core of project management problem is work package scheduling and
resource allocation. Figure 1 is a Gantt chart of typical software project man-
agement, which illustrates work package arrangement of a real industry software
engineering. Generally, all the important phases in software engineering, such as
project planning, requirements analysis, design, development, testing, deploy-
ment etc., are inseparable from the allocation of work packages. These work
packages have a mutually restrictive relationship. Some work packages must be
started when other work packages are completed. For instance, the analysis of
software requirements is often to take place after the completion of project plan-
ning while some work packages can be done at the same time, and there is
no impact on each other, such as software development and software testing can
often be synchronized. The goal of project manager is using the shortest possible
time to complete all work packages within the software project duration.

Parallel Evolutionary Algorithm in Scheduling Work Packages 39

Fig. 1. Software project plan in a Microsoft Project file (.mpp)

Fig. 2. Project plan of software development

In the process of project management, the work packages in the project are
allocated by simulation. See Fig. 2, Firstly, the whole project is decomposed into
several work packages by work breakdown structure, and those work packages
are arranged into a corresponding work package sequence. Secondly, according
to the dependencies of the work packages and the restriction of resource, each
kinds of resources is allocated to the corresponding work package by first-come-
first-served algorithm. Finally, the project’s overall duration is yielded from the
simulation.

40 J. Hu et al.

3.2 Definition and Assumptions

The goal of this paper is to find an optimal solution or near optimal solution for
the project management problem described as follows:

For a software project with N work packages and M kinds of resources, there
is a directed acyclic dependencies between these work packages, and each resource
can only be assigned to the specified work package. It is necessary to arrange the
order of the work package reasonably and make the overall construction duration
as short as possible under the condition of satisfying the work package dependency
and the resource allocation restriction.

There are three assumptions for our project management problem.
Assumption I: The software project plan can be decomposed into a set of

work packages containing N elements T = {t1, t2, ..., tN}. Each work package in
set T is indivisible (i.e., The work package cannot be split to other work package
in the schedule), the set of work packages have a pre-estimated workload, the
composition of the workload is the collection E = {e1, e2, ..., eN}. The function
TE : T → E, the mean of this function is that for a given work package ti,
produces an estimated workload ei = TE(ti) for a work package ti, where ei is
the estimated workload of ti.

Assumption II: The work packages in the software project can be processed
with M kinds of resources, which constitute a resource set R = {r1, r2, ..., rM},
for each project’s work package set T and the resource set R, There exists a
function TR : T × R → {0, 1}, for the given work package ti and the resource
rj , TR(ti, rj) = 1 means the resource rj can be allocated to the work package
ti, while TR(ti, rj) = 0 means cannot.

Assumption III: All work packages in the set T of the software project plan
have dependencies. These dependencies form a set Dep = {ti → tj | ti, tj ∈
T, tj depends on ti}. As the assumption of this paper, ti → tj means that tj
depends on ti, that is the work package tj must be arranged after the work
package ti, and satisfy the formula tj .start ≤ ti.end (where t.start and t.end
respectively indicate the start time and the end time of the work package t).
And assume that there is no direct or indirect “loop” dependency between work
packages.

3.3 The Objective of Problem

The objective of project management is to find an optimal work package sequence
under the three assumptions above. The notation of work package sequence
(WPS) is as follows:

S = {(tp1 , rq1)... → (tpj
, rqj) → ...(tpN

, rqN) | tpi
∈ T, rqj ∈ R} (1)

where every (tp, rq) means resource rq is allocated to work package tp. The WPS
needs to meet the following two restrictions:

1. �i < j, tj → ti ∈ Dep. (The WPS must satisfy the dependencies)
2. �i, k, TR(ti, rk) = 0. (All work packages must have at least one resource)

Parallel Evolutionary Algorithm in Scheduling Work Packages 41

For the work package arrangement sequence S, each work package t is given
t.start (the start time) and t.end (the end time). The total cost duration function
of the project is defined as f(S) = max{t.end | t ∈ T}. That is, the overall
duration represents the maximum value of the end time of all work packages
in a work package arrangement sequence S, which also means when the last
work package of the project is completed, the entire project ends. The objective
function is defined as following:

Objective: min(f(S)) = min(max{t.end | t ∈ T}) (2)

The objective of the project management problem is to find a work package
sequence S to arrange the whole project under the condition of satisfying the
restriction of dependencies and resources, so that the overall duration is mini-
mized.

4 Design of Algorithm

This section introduces the two important steps in using the evolutionary algo-
rithm. One is to choose the representation of the problem’s solution, the other
is to define a appropriate fitness function.

4.1 The Representation of Solution

For the above-mentioned problem, the representation of solution is defined as
follows. This paper uses work package sequence (hereinafter referred to as WPS)
to represent a solution of project management problem. The representation of
such a solution is actually a priority arrangement sequence of the work packages
in the whole project, and the number of solutions for a project containing the
N work packages is N !, which is large enough to do random search.

T1 → T5 → T6 → T4 → T8 → T3 → T9 → T2 → T7 (3)

For example, Eq. (3) is solution, the solution represents the work package
sequence in the priority of T1, T5, T6, T4, T8, T3, T9, T2, T7, while arranging
the work packages. This representation is beneficial and intuitive to program-
ming.

4.2 Fitness Evaluation

The above-mentioned representation of solution make each individual encoded
as WPS. The fitness value of WPS is the project’s overall duration, which is
calculated by simulating the assignment of work packages in the set of package
sequence, see Eq. (1).

The Algorithm 1 illustrates how to calculate corresponding project overall
duration. Firstly, according to first-come-first-served rule, the front work pack-
ages in a WPS have high priority to get resources, the back work packages has

42 J. Hu et al.

low priority. Secondly, the TR function defines which work package can get which
resources, if two work packages that require the same resources, the higher prior-
ity one will use the resources firstly, the lower priority one will use the resources
after the higher one releases the resources. Finally, the project’s overall duration
is the last end time after all work packages are allocated the resources. As we
can see from the Algorithm 1, to calculate the overall duration, the algorithm
must traverse all N work packages and M kinds of resources, so the average
complexity of fitness evolution is O(N × M).

Algorithm 1. Fitness Evaluation Algorithm
input: WPS,R, TE, TR
output: duration

for i from 1 to WPS.length do
t ← WPS[i]
effort ← TE(i)
for r in R do

r.occupy ← 0
end for
for r in R do

if TR(t, r) = true then
t.start ← r.occupy
t.end ← r.occupy + effort
r.occupy ← t.end
break

end if
end for

end for
duration ← 0
for t in WPS do

if t.end > duration then
duration ← t.end

end if
end for

4.3 Genetic Operators

There are two main types of operators in evolutionary algorithms: crossover and
mutation. Crossover In evolutionary algorithms, crossover is a genetic opera-
tor used to vary the programming of a chromosome or chromosomes from one
generation to the next. In this paper, we use a two-point crossover, that is,
two points are selected randomly on the parent organism strings. Everything
between the two points is swapped between the parent organisms, rendering two
child organisms then exchange corresponding part of chromosomes to get off-
spring individual. Mutation In evolutionary algorithms, Mutation is a genetic
operator used to maintain genetic diversity from one generation of a population
of genetic algorithm chromosomes to the next. In this paper, we use two-point
exchange mutation, that is, two points is selected randomly on individual organ-
isms strings, and then exchange the two points.

Parallel Evolutionary Algorithm in Scheduling Work Packages 43

4.4 Parallel Evolutionary Algorithm

Figure 3 summarizes the basic process of the evolutionary algorithm. Figure 3(a)
is common sequential evolutionary algorithm, the algorithm has several steps,
such as initialization, crossover, mutation, and selection. Candidate solutions to
the optimization problem play the role of individuals in a population, and the
fitness function determines the convergence of the solutions. Evolution of the
population then takes place after the repeated application of the above operators.
Figure 3(b) illustrates a parallel evolutionary algorithm. The parallel one follows
most steps in sequential one, but put the top time-consuming work on GPU.
The steps of crossover, mutation and evolution runs in different cores in GPU
so that the speed of calculation can be improved a lot.

4.5 Runtime Environment

The hardware environment of algorithm implementation is as follows: the run-
time processor that executes the sequential evolutionary algorithm is the Intel i7
series CPU (abbreviated as CPU). The runtime processor of the parallel evolu-
tionary algorithm is the NVidia GeForce GTX 970 (abbreviated as GPU). The
major difference between CPU and GPU is that they have different number of
computation cores. Normally, the computation speed of a GPU core is lower
than a CPU core. But GPU has far more than the number of CPU cores. In this
paper, The CPU we used has 8 cores and the GPU has 1664 cores.

The software environment that runs application is as follows: the sequential
programs runs on Microsoft Visual Studio 2012 C++ Compiler environment, the

Fig. 3. Sequential and parallel evolutionary algorithm

44 J. Hu et al.

parallel one runs on CUDA 7.0.28 Runtime environment. Both sequential and
parallel application is evaluated in the same computer.

5 Experimental Results

To assess the evolutionary algorithm proposed in this paper, two separated eval-
uation experiments are made for the effectiveness of evolutionary algorithm and
the efficiency of parallel evolutionary algorithm in project management problem.
The purpose of the experiment is to address the following two research questions:

RQ1: Does the evolutionary algorithm effectively optimize project manage-
ment problem, and get an optimized solution?

RQ2: Is the parallel evolutionary algorithm able to improve the efficiency in
the project management problem?

5.1 Industrial Project Data

Three industrial project plans have been used in the experimental studies for this
paper, which are named as A-Input , B-DBUpgrade and C-SmartPrice. These
data come from real world projects and have fundamental details, such as work
packages, resources and dependencies. Table 1 shows the number of each project.

Table 1. Three project’s parameters

work packages # resources # dependencies

A-Input 33 4 33

B-DBUpgrade 106 8 105

C-SmartPrice 74 14 73

A-Input is a simulated small-scale project planning. it is a team work plan for
finishing class assignments. B-DBUpgrade is a real software development plan,
which’s goal is to upgrade the Oracle database from the 9g version to the 10g
version. B-DBUpgrade is Oracle’s non-public version of the project planning.
There were different layers of the organisation involved including DBAs, BSAs,
developers and users. Furthermore, the project also included the training of the
staff for the new features of the system. C-SmartPrice consists of a supply chain
enhancement of medium size affecting mostly the website as well as a few internal
applications [10].

Figure 4 illustrates the relationship between work packages and resources.
In each sub-figure, the rectangle represents a work package in the project plan,
the content in the rectangle is the work packages’ ID and duration; the arrows
between work packages suggest dependencies, notice that some redundant depen-
dencies is removed; the folders in the bottom are some certain types of resources
that can be allocated to work packages.

Parallel Evolutionary Algorithm in Scheduling Work Packages 45

5.2 Effectiveness Experiment for Algorithm

In order to answer RQ1, this section designs an effectiveness experiment for
evolutionary algorithm. The basic configuration used in the experiment is that
100 individuals runs in 50 generations. For each generation in the evolutionary
algorithm, we evaluate each individuals’ fitness value in the whole population,
and then plot the statistical data into a boxplot diagram.

R1
Default

R2
Resource1

R3
Resource2

R4
Resource3

T33
5.0d

T32
5.0d

T31
6.0d

T30
3.0d

T29
1.0d

T28
7.0d

T27
3.0d

T26
3.0d

T25
3.0d

T24
3.0d

T23
6.0d

T22
5.0d

T21
5.0d

T20
7.0d

T19
3.0dT18

1.0dT17
3.0d

T16
9.0d

T15
3.0d

T14
6.0d

T13
5.0d

T12
5.0d

T11
7.0d

T10
3.0dT9

1.0d

T8
3.0d

T7
9.0d

T6
3.0d

T5
3.0d

T4
3.0d

T3
3.0d

T2
9.0d

T1
3.0d

(a) A-Input , 33 work packages, 4 resources and 33 dependencies

R1
Default

R2
Project Manager

R3
Dev 1

R4
Dev 2

R5
DBA 1

R6
Business Owner 1

R7
Business Owner 2

R8
Users

T103
1.0d

T104
3.0d

T105
1.0d

T106
1.0d

T98
1.0d

T99
1.0d

T100
1.0d

T101
1.0d

T73
2.0d

T74
10.0d

T75
5.0d

T76
20.0d

T102
5.0d

T37
15.0d

T38
10.0d

T39
4.0d

T25
15.0d

T28
3.0d

T35
18.0d

T26
10.0d

T40
4.0d

T41
4.0d

T42
4.0d

T43
4.0d

T44
2.0d

T45
4.0d

T46
4.0d

T47
4.0d

T48
4.0d

T49
1.0d

T50
1.0d

T51
4.0d

T63
7.0d

T29
10.0d

T30
5.0d

T33
5.0d

T31
5.0d

T34
5.0d

T32
10.0d

T36
21.0d

T52
4.0d

T53
4.0d

T54
4.0d

T55
4.0d

T56
4.0d

T57
4.0d

T58
4.0d

T59
4.0d

T60
4.0d

T61
1.0d

T62
1.0d

T64
1.0d

T65
1.0d

T66
1.0d

T67
1.0d

T68
1.0d

T69
1.0d

T70
1.0d

T71
1.0d

T72
1.0d

T2
0.1d

T3
0.1d

T4
0.1d

T5
0.1d

T6
0.1d

T7
0.1d

T8
0.1d

T9
0.1d

T10
0.1d

T11
0.1d

T12
0.1d

T13
0.1d

T20
1.0d

T19
1.0d

T18
1.0d

T17
1.0d

T14
1.0d

T21
20.0d

T22
8.3d

T23
20.0d

T24
20.0d

T15
4.0d

T16
1.7d

T77
10.0d

T96
30.0d

T27
10.0d

T78
10.0d

T79
5.0d

T80
5.0d

T95
20.0d T81

5.0d

T82
2.5d

T83
2.5d

T84
5.0d

T94
20.0d

T85
20.0d

T97
20.0d

T86
10.0d

T87
20.0d

T88
20.0d

T89
10.0d

T90
10.0d

T91
10.0d

T92
10.0d

T93
10.0d

T1
10.0d

(b) B-DBUpgrade: 106 work packages, 8 resources and 105 dependencies

R1
BSA

R2
App Dev 1

R3
App Dev 1

R4
QA 1

R5
App Dev 3

R6
App Dev 4

R7
Business Owner

R8
project Manger

R9
Web Dev 1

R10
Web Dev 2

R11
QA 2

R12
DBA 1

R13
BSA

R14
App Dev 5

T40
8.0d

T41
6.0d

T37
4.0d

T38
4.0d

T39
3.0d

T36
2.0d

T73
1.0d

T35
3.5d

T42
1.0d

T43
1.0d

T44
1.0d

T47
5.0d

T45
2.0d

T46
4.0d

T20
1.0h

T21
1.0h

T22
1.0h T23

1.0h T24
2.0d

T25
2.0d

T48
2.0d

T15
7.0d

T16
1.0d

T18
2.0d

T19
1.0d

T17
2.0d

T26
0.5d

T13
4.0d

T14
2.0d

T1
8.0d

T2
2.0d

T3
2.0d

T4
2.0d

T12
2.0d

T5
2.0d

T6
2.0d

T7
2.0d

T8
2.0d

T9
4.0d

T49
8.0d

T50
0.5d

T51
0.5d

T52
0.5d

T53
0.5d

T54
0.5d

T55
1.0d

T56
10.0d

T66
4.0d

T57
2.0d

T58
0.5d

T67
5.0d

T68
1.0d

T69
1.0d

T10
4.0d

T11
2.0d

T59
0.5d

T60
0.5d

T61
4.0d

T65
1.0d

T62
1.0d

T27
0.5d

T28
0.5d

T29
0.5d

T30
0.5d

T31
0.5d

T32
0.5d

T33
4.0d

T34
1.0d

T63
2.0d T64

2.0d

T70
4.0d

T71
5.0d

T72
2.0d

T74
1.0d

(c) C-SmartPrice:, 74 work packages, 14 resources and 73 dependencies

Fig. 4. Three Projects’ work packages, resources and dependencies

46 J. Hu et al.

The boxplot diagram shows the five kinds of statistical data of all individuals’
fitness value in each generation. The data are the minimum, the lower quartile,
the median, the upper quartile and the maximum values of the whole population.
Figure 5 shows the results of the above-mentioned three industrial projects. In
each sub-figure, the tick labels on the horizontal axis indicate the total number
of internal generations that have been carried out, and also indicates the point

5 10 15 20 25 30 35 40 45 50
Generation Number

50

51

52

53

54

55

56

O
ve

ra
ll

D
ur

at
io

n
(D

ay
)

(a) A-Input ’s solution converges on 19th generation

5 10 15 20 25 30 35 40 45 50
Generation Number

198

199

200

201

202

203

O
ve

ra
ll

D
ur

at
io

n
(D

ay
)

(b) B-DBUpgrade’s solution converges on 22rd generation

5 10 15 20 25 30 35 40 45 50
Generation Number

28

29

30

31

32

33

34

O
ve

ra
ll

D
ur

at
io

n
(D

ay
)

(c) C-SmartPrice’s solution converges on 15th generation

Fig. 5. Statistics of fitness value in each generation

Parallel Evolutionary Algorithm in Scheduling Work Packages 47

at which the algorithm updated the population used for fitness computation.
At each point on the horizontal axis, the entire population is depicted using a
boxplot to give both a sense of the values obtained for completion time as the
evolution progresses and the distribution of the fitness values in the population.
From the trend of three projects in the figures, it can be seen that the population
is diversified when the population is initialized and as the number of generation
increase, all the fitness value begins to decrease, and finally converges to an
optimized result.

The convergence of solutions is quite fast and stable. Figure 5(a) shows the
solution of A-Input converges on 19th generation. Figure 5(b) shows the solution
of B-DBUpgrade converges on 22rd generation. Figure 5(c) shows the solution of
C-SmartPrice converges on 15th generation. Those results show us evolutionary
algorithm will find an optimized overall duration for specific project plan.

Through the above analysis results of experimental data, we can accurately
answer RQ1. In the project management problems, the evolutionary algorithm
does have a good optimization and improvement.

5.3 Efficiency Experiment for Algorithm

In order to answer RQ2, this section conducts an efficiency experiment that
compares the efficiency between the parallel evolutionary algorithm and the
sequential one.

Table 2. The comparison of sequential and parallel implementation

Time (ms) A-Input B-DBUpgrade C-SmartPrice

CPU GPU CPU GPU CPU GPU

1 7991.8 4102.5 45225.1 21217.5 29642.9 14844.3

2 8431.8 4279.7 44832.1 21377.9 28733.7 14543.6

3 7504.1 3947.9 44934.9 21227.2 28657.9 15003.4

4 7442.1 4642.5 44197.1 21340.3 29489.5 14882.8

5 7376.9 4263.8 45233.7 22448.2 29379.5 14921.5

6 7385.4 4188.6 45197.5 20956.1 28687.9 14723.3

7 8238.8 4540.2 45305.4 21777.2 29786.3 13978.8

8 7470.7 4226.4 45322.8 21147.1 31231.7 14811.1

9 7604.8 3778.2 45040.7 21004.7 28319.7 14292.0

10 7451.9 4712.4 45970.6 21500.9 28322.1 14429.7

Avg. 7689.8 4268.2 45126.0 21399.7 29225.1 14643.1

The initial configuration of the two algorithms is the identical, which the
number of population is 1000 and the number of generation is 100. Each gener-
ation runs several steps including crossover, mutation and selection etc. A timer
is set to record the total executing time of the experiments. The timer starts
after loading initial data and ends after the result is calculated. This operation

48 J. Hu et al.

allows us to count the real executing time both in the sequential environment
and the parallel environment under the same criteria. The efficiency experiments
are repeated 10 times. Table 2 shows the comparison of sequential and parallel
implementation executing time on all three industrial projects. By the compar-
ison of average executing time of 10 times results, the average executing time
of A-Input on CPU is 1.80 times than GPU, the average executing time of B-
DBUpgrade on CPU is 2.10 times than GPU and the average executing time of
C-SmartPrice on CPU is 2.00 times than GPU.

In summary, the executing time of sequential algorithm on CPU is roughly
twice as long as the parallel algorithm on GPU. So it can be a good answer to
RQ2 that parallel evolutionary algorithm can improve the efficiency on comput-
ing the project management problems.

6 Related Works

In 1993, Chang et al. [2] first proposed the project management problem. The
view of Chang is that software project management net (SPM-Net) can be used
to schedule tasks and manage the resources of software development. In his arti-
cle, Chang’s project management problem is based on the simulative data, the
reason leading to this is the real industrial data of software project management
is very scanty. In 2007, Alba and Chicano [3] optimized the search algorithms for
project management, and solve the project management problem using genetic
algorithm. Their goal is using a search-based approach to reduce the final com-
pletion duration of a project. In 2009, Ren et al. [4] first applied co-evolutionary
algorithms to solve project management problem. Recently, Sarro et al. [11] pro-
posed a multi-objective decision support approach to help balance project risks
and duration against overtime, so that software engineers can better plan over-
time. At present, the search space of the work package based on the project
management is more and more huge, the sequential algorithm is not so effective
to solve such problems. Thus, finding a parallel algorithm has become a hot topic
on research [6].

In recent years, search-based project management problem has become an
important branch of search-based software engineering, and has become a new
field of research. At the same time, the number of papers related to search- based
project management problem is also rising, which makes many researchers will-
ing to engage in search-based project management problem, so in turn provides
a new platform for practice and innovation of the search-based project man-
agement problem [5]. In 2011, Thomas [12] proposed an approach to describe
software project problems with a set of multi-objective criteria for portfolio man-
agers using the COCOMO II model and introduce a multi-objective evolution-
ary approach. In 2014, Samanta [13] gone through a very brief idea on Genetic
Algorithm and implemented the algorithm using MATLAB. The search-based
algorithm is a compute-intensive method, which means the computer’s CPU will
be used usually consumed a lot. Therefore, the traditional sequential comput-
ing model cannot meet the requirement of increasing calculation speed. In 2007,

Parallel Evolutionary Algorithm in Scheduling Work Packages 49

Alba and Chicano [14] began using search-based methods to improve the opti-
mal solution of problems, and for the first time using a parallel code model to
test the efficiency of search-based methods. In 2013, Jing [15] began solving soft-
ware project scheduling problems with ant colony optimization. In recent years,
more search-based software engineering methods (such as simulated annealing,
climbing algorithms, evolutionary algorithms, tabu search, etc.) have been used
to solve project management problem, and these methods are usually able to
get good convergence solution on project management problem.

As the development of the algorithm, how to speed up the calculation of
the algorithm has become a hot spot in academic community. In 2012, Zhang
et al. [16] apply GPGPU to simulation for complex scenes and later on they
proposed a GPU-based parallel MOEAs [17]. CUDA is a generic parallel com-
puting architecture developed by NVIDIA, which can be used to improve the
performance of GPGPU [18] and also can be optimized by meta-heuristic algo-
rithms [19,20]. In 2014, Jianmei [21] proposed five novel parallel algorithms for
solving multi-objective combinatorial optimization problems exactly and effi-
cient. Compared to our work, those algorithms are different in solved questions,
but there is the same thought of parallelization to gain the faster speed. They
apply the algorithm to the case of software-system designs and get great solu-
tion, which illustrate the great characteristic of parallelization in the domain of
software engineering. In general, the parallel evolution algorithm can be imple-
mented on the GPU platform using the CUDA [22]. With the development of the
technology of parallelism, a general-purpose GPU (GPGPU) is used to improve
the speed of calculation in software engineering.

Furthermore, a common project management tool which deal with the math-
ematical models have not been implemented, so it is difficult to apply the
theory to the industrial project management process. In 2012, Stylianou [23]
and Gerasimou first developed a tool for project management, which they
named IntelliSPM. The tool uses Matlab and Java programming language and
supports staffing arrangement and resource allocation optimization. In their
work, Stylianou uses the fitness function to dynamic calculate the dependencies
between work packages, so the real project’s dependencies may be broken during
the calculation. So in current software engineering practice, the tool supporting
project management is still lacking.

7 Conclusions and Future Work

This paper introduces a framework to solve the work package scheduling prob-
lem as a single objective optimization problem. The framework accelerates the
optimization process by parallelizing the evolving of solutions on a graphic card.
We conducted a “proof of concept” empirical study using data from three indus-
trial software projects, aimed at demonstrate the effectiveness and efficiency
of proposed framework. Results show that the population converge around 20
generations and the parallel version of single objective evolutionary algorithm
spend half of the execution time compared to the sequential version, even with

50 J. Hu et al.

only one relative cheap hardware. Therefore, we claim that heuristics provides
manager with intuitive features towards “simple-to-deploy”, and parallel com-
putation running on GPU provides shorter execution time.

Future work aims at extending the study reported in this paper with further
data sets and accelerating hardware with more cores, above all, at considering a
more sophisticated project model, which accounts for further factors not consid-
ered in this study, such as group configuration of staff and the interaction among
staffing and scheduling. As the development of the scale of the software project,
there are more than one objectives in the problem define. So we will increase
the complexity of the model of the software project management problem and
improved our algorithm to solve multi-objective problem. Future work will also
include developing a set of automation tools and techniques. We believe that a
optimization tool can automatically parsing a Microsoft Project file (.mpp) can
be made useful to provide optimized solutions to aid the managers in practice.

Acknowledgements. This work was supported by the National Natural Science
Foundation of China (61602021) and the State Key Laboratory of Software Devel-
opment Environment (SKLSDE-2017ZX-20).

References

1. Stellman,A.,Greene,J.:AppliedSoftwareProjectManagement.O’Reilly,Sebastopol
(2005)

2. Chang, C.K., Jiang, H., Di, Y., Zhu, D., Ge, Y.: Time-line based model for software
project scheduling with genetic algorithms. Info. Softw. Tech. 50, 1142–1154 (2008)

3. Alba, E., Francisco, C.J.: Software project management with GA. Inf. Sci. 177,
2380–2401 (2007)

4. Ren, J., Harman, M., Penta, M.D.: Cooperative co-evolutionary optimization of
software project staff assignments and job scheduling. In: GECCO, pp. 495–519
(2011)

5. Penta, M.D., Harman, M., Antoniol, G.: The use of search-based optimization
techniques to schedule and staff software projects: an approach and an empirical
study. Softw. Pract. Exp. 41, 495–519 (2011)

6. Pentico, D.W.: Assignment problems: a golden anniversary survey. Eur. J. Oper.
Res. 176, 774–793 (2007)

7. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. U Michi-
gan Press, Oxford (1975)

8. Harman, M., McMinn, P., de Souza, J.T., Yoo, S.: Search based software engi-
neering: techniques, taxonomy, tutorial. In: Meyer, B., Nordio, M. (eds.) LASER
2008-2010. LNCS, vol. 7007, pp. 1–59. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-25231-0 1

9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE TEC 6, 182–197 (2002)

10. Ren, J.: Search Based Software Project Management. University of London, pp.
1–178 (2013)

11. Sarro, F., Ferrucci, F., Harman, M., Manna, A., Ren, J.: Adaptive multi-objective
evolutionary algorithms for overtime planning in software projects. TSE 43(10),
898–917 (2017)

https://doi.org/10.1007/978-3-642-25231-0_1
https://doi.org/10.1007/978-3-642-25231-0_1

Parallel Evolutionary Algorithm in Scheduling Work Packages 51

12. Thomas, K., Jiri, K., Stefan, B.: Software project portfolio optimization with
advanced multiobjective evolutionary algorithms. Appl. Soft Comput. 11(1), 1416–
1426 (2011)

13. Samanta, S.: Genetic algorithm: an approach for optimization (Using MATLAB).
Int. J. Latest Trends Eng. Technol. 3, 261–267 (2014)

14. Pospichal, P., Jaros, J., Schwarz, J.: Parallel genetic algorithm on the CUDA archi-
tecture. In: Di Chio, C., et al. (eds.) EvoApplications 2010. LNCS, vol. 6024, pp.
442–451. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12239-
2 46

15. Jing, X., Xian-Ting, A., Yong, T.: Solving software project scheduling problems
with ant colony optimization. Comput. OR 40(1), 33–46 (2013)

16. Zhang, F., Li, Z., Wang, B., Xiang, M., Hong, W.: Hybrid general-purpose com-
putation on GPU (GPGPU) and computer graphics synthetic aperture radar sim-
ulation for complex scenes. Int. J. Phys. Sci. 7, 1224–1234 (2012)

17. Li, Z., Bian, Y., Zhao, R., Cheng, J.: A fine-grained parallel multi-objective test
case prioritization on GPU. In: Ruhe, G., Zhang, Y. (eds.) SSBSE 2013. LNCS,
vol. 8084, pp. 111–125. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39742-4 10

18. Langdon, W. B., Lam, B. Y. H., Petke, J., Harman, M.: Improving CUDA DNA
analysis software with genetic programming. In: GECCO 2015, pp. 1063–1070
(2015)

19. Langdon, W.B., Lam, B.H.Y., Modat, M., Petke, J., Harman, M.: Genetic improve-
ment of GPU software. GPEM 18(1), 5–44 (2017)

20. Langdon, W.B., Harman, M.: Optimizing existing software with genetic program-
ming. IEEE Trans. Evol. Comput. 19(1), 118–135 (2015)

21. Jianmei, G., et al.: Scaling exact multi-objective combinatorial optimization by
parallelization. In: ASE 2014, pp. 409–420 (2014)

22. Vidal, P., Alba, E.: A multi-GPU implementation of a cellular genetic algorithm.
In: 2010 IEEE World Congress on Computational Intelligence, pp. 1–7 (2010)

23. Stylianou, C., Gerasimou, S., Andreou, A.S.: A novel prototype tool for intelligent
software project scheduling and staffing enhanced with personality factors. In:
International Conference on Tools with Artificial Intelligence, pp. 277–284 (2012)

https://doi.org/10.1007/978-3-642-12239-2_46
https://doi.org/10.1007/978-3-642-12239-2_46
https://doi.org/10.1007/978-3-642-39742-4_10
https://doi.org/10.1007/978-3-642-39742-4_10

Multi-gene Genetic Programming Based
Defect-Ranking Software Modules

Junxia Guo , Yingying Duan, and Ying Shang(B)

College of Information Science and Technology,
Beijing University of Chemical Technology, Beijing, China

{gjxia,shangy}@mail.buct.edu.cn

Abstract. Most software defect prediction models aim at predicting the
number of defects in a given software. However, it is very difficult to pre-
dict the precise number of defects in a module because of the presence
of noise data. Another type of frequently used approach is ranking the
software modules according to the relative number of defects, accord-
ing to which software defect prediction can guide the testers to allocate
the limited resources preferentially to modules with a greater number
of defects. Owing to the redundant metrics in software defect data-sets,
researchers always need to reduce the dimensions of the metrics before
constructing defect prediction models. However a reduction in the num-
ber of dimensions may lead to some useful information being deleted
too early, and consequently, the performance of the prediction model
will decrease. In this paper, we propose an approach using multi-gene
genetic programming (MGGP) to build a defect rank model. We com-
pared the MGGP-based model with other optimized methods over 11
publicly available defect data-sets consisting of several software systems.
The fault-percentile-average (FPA) is used to evaluate the performance
of the MGGP and other methods. The results show that the models for
different test objects that are built based on the MGGP approach per-
form better those based on other nonlinear prediction approaches when
constructing the defect rank. In addition, the correlation between the
software metrics will not affect the prediction performance. This means
that, by using the MGGP method, we can use the original features to
construct a prediction model without considering the influence of the
correlation between the software module features.

Keywords: Software defect prediction ·
Multi-gene genetic programming · Defect rank model

1 Introduction

Software defect prediction has become one of the most active research areas
in software engineering over the past few decades. The defects in software not
only worsen the quality of the software but also increase the cost of software
maintenance. The fixing of defects usually costs about 80% of the total bud-
get of the software project [24]. The target of software defect prediction is to
predict the defects in new software modules before the testing stage by mining
historical software repositories and then utilizing the software characteristics to
c© Springer Nature Singapore Pte Ltd. 2019
Z. Li et al. (Eds.): NASAC 2017/2018, CCIS 861, pp. 52–71, 2019.
https://doi.org/10.1007/978-981-15-0310-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0310-8_4&domain=pdf
http://orcid.org/0000-0003-4905-1290
https://doi.org/10.1007/978-981-15-0310-8_4

Multi-gene Genetic Programming Based Defect-Ranking Software Modules 53

build prediction models. Using the prediction results of potential defect modules
in a given software, testers can allocate assurance resources of limited quality
in an efficient manner, and preferentially detect those modules that have more
defects [14].

Many statistics and machine learning methods such as Logistic Regression
(LR), Neural Network (NN), Naive Bayes (NB), Classification Trees (CT), Deci-
sion trees (DT), Ensemble learners (EL), Bagging, Boosting and Support Vec-
tor Machine (SVM) etc. have been proposed and applied to defect prediction
for classification or regression task [7,19]. Most of the previous software defect
prediction studies have adopted a defect proneness model, i.e., a binary class
classification model, to classify the software modules into defect and non-defect
modules [20,29,31]. Although this type of model has reported an excellent per-
formance, it cannot identify the number of defects per module for the given
software. A defect proneness model cannot provide sufficient guidance to the
testers when they need to know an approximate number of defects per module.

More researchers have begun to focus on predicting the number of defects.
There are mainly two kinds of models, defect count models and defect rank mod-
els. Defect count models estimate the exact number of defects for every mod-
ule [21,28,30]. Some performance measures such as the average absolute errors
(AAE), average relative errors (ARE), and root mean square error (RMSE),
which reflect the degree of predicted values deviating from real values, are used
to evaluate such prediction models. Thus, a smaller value indicates higher predic-
tion accuracy. Defect rank models are different from defect count models, which
do not focus on predicting the exact numbers of defects, but rather the relative
number per module [21,32]. Therefore, testers can distribute test resources to
software modules that have a relatively higher number of defects.

M1

M2

M3

defect count
model

defect rank
model

defect count
model

defect rank
model

M1(6) M2(4) M3(2)

M1(6) M2(4) M3(2)

26 3

3 2 1

predict

predict

prediction result

prediction result
software modules

Fig. 1. Difference between a defect count model and a defect rank model.

Figure 1 depicts the difference between a defect count model and a defect
rank model. Suppose the given software has three modules M1, M2, and M3.
The actual numbers of defects corresponding to these three modules are 6, 4,
and 2, and the prediction results obtained using the defect count model are 6, 2,
and 3, respectively. The prediction results obtained using the defect rank model
are 3, 2, and 1. It can be seen that the prediction accuracy (according to AAE

54 J. Guo et al.

and ARE) of the count model is higher than that of the rank model. However,
the rank model gives a perfect module ranking because the software modules
with larger numbers of defects will receive prior attention.

Hence, even if defect count models can provide more detailed information, it
remains too difficult to predict the exact number of defects of a module. Yang
et al. [27] pointed out that for the ranking task of software defect prediction,
models with higher prediction accuracy (smaller AAE or ARE) might not pro-
vide a good ranking. Thus, they proposed an optimization prediction model,
called the learning-to-rank (LTR) approach. This approach can provide better
module ranking than prediction models obtained by minimizing the loss func-
tion based on each sample. However, issues found during their experiments still
remain: (1) when the number of software metrics is large, the LTR linear model
performs worse than the Random Forest (RF) model, and (2) the authors did
not investigate the LTR nonlinear model to verify the generality of the approach.

The Genetic Programming (GP) algorithm, as a new type of nonlinear model-
ing method, does not need to predefine the function form of a model. It can auto-
matically evolve the structure and parameters of the model. This provides the GP
algorithm with strong flexibility in terms of modeling. The GP algorithm has been
widely applied to various types of nonlinear predictionmodels.Garg et al. [11] com-
pared a traditional regression analysis, an artificial neural network, and genetic
programming in handling multi-collinearity problems (input variables having a
strong correlation), and discovered that genetic programming is not affected by
related input variables during treatment and is able to evolve more accurate pre-
diction models. A multi-gene genetic programming approach has the capabilities
of both standard genetic programming methods for modeling the structure selec-
tion and traditional regression methods for a parameter evaluation.

Based on the idea of found in the above approaches, in this paper, we consider
to taking the advantages of the GP algorithm in handling the multi-collinearity
problems into the prediction of the a relative number of defects in a given soft-
ware system by using applying Multi-Gene Genetic Programming (MGGP). We
construct defect prediction models using MGGP over 11 publicly available soft-
ware defect data-sets and evaluate their performance and other methods based
on the fault-percentile-average (FPA). Our results indicate that models based
on MGGP can achieve more significant results than other types of models. In
addition, we compare the optimized models and un-optimized models, and find
that the optimized nonlinear models, by directly optimizing the ranking per-
formance, are better than the un-optimized models i.e., the original nonlinear
models with default parameters.

The main contributions of this paper are as follows.
(1) The MGGP algorithm is applied to construct software defect ranking

models, and to design the details of the function sets, terminator sets, running
control parameters, fitness functions, and termination rules.

(2) In this paper, we compare the experimental results of the MGGP pre-
diction model constructed using all features of the defect data-set and partial
features. It is found that the correlation between software features does not affect
the prediction performance of the MGGP approach, which indicates that MGGP
is robust even with redundant data.

Multi-gene Genetic Programming Based Defect-Ranking Software Modules 55

The rest of this paper is organized as follows. Section 2 presents previous
related studies and the background of this research. In Sect. 3, we describe the
details of our MGGP-based defect prediction model. Section 4 details the soft-
ware defect data-sets, metrics, and evaluation measures used. The experiments
and results are presented in Sect. 5. We discuss the threats to the validity of our
work in Sect. 6. Finally, Sect. 7 provides some concluding remarks and areas of
future work.

2 Background

In this section, we firstly present the related work on software defect prediction.
Then we describe essential background on MGGP.

Khoshgoftaar et al. [16] pointed out that models that have good prediction
accuracy do not necessarily require good module-sorting through the adoption
of two generalized linear regression models, namely, Poisson regression (PR) and
zero-inflated Poisson regression (ZIPR). PR and ZIRP both have advantages in
terms of the different cutoff points of the percentage of defects, which means
there is no one model for all cutoff points that is better than any other model.
Later, Khoshgoftaar et al. [15] defined a module-order model as a quantitative
software quality model used to predict the rank-order of modules according to
quality factors, such as the number of faults. Gao et al. [9] compared eight types
of generalized linear regression models used to predict the numbers of faults in
the software modules. The experimental results indicate that applying different
measures can result in different conclusions.

Weyuker et al. [26] claimed that FPA is suitable for evaluating the perfor-
mance of defect count models. Yang et al. [27] introduced a learning-to-rank
approach to construct software defect prediction models by directly optimizing
the ranking performance. Their empirical studies demonstrate the effectiveness
of their approach for constructing defect prediction models in ranking tasks.

Afzal et al. [1] presented empirical results when using genetic programming
for predicting the number of defects over three different industrial projects. They
concluded that the GP evolved model achieves a statistically significant goodness
of fit, as well as predictive accuracy. Rathore et al. [23] presented an approach to
predicting the numbers of defects through genetic programming. They used the
error rate, recall, and completeness for an evaluation on ten fault data-sets. Their
results show that GP-based models can produce good accuracy and completeness
in predicting the number of faults. Later, Rathore et al. [22] further presented
an experimental study to evaluate and compare the capability of six fault pre-
diction techniques, namely, genetic programming, multilayer perception, linear
regression, decision tree regression, zero-inflated Poisson regression (ZIPR), and
negative binomial regression (NBR), for the prediction of the number of defects.
AAE and ARE were used to measure the performance of completeness, and
applied a prediction for level l measures. They observed that the count models
(NBR and ZIPR) generally underperformed the other models used.

The MGGP algorithm, developed based on the GP algorithm, was put for-
ward by Hinchliffe and Hiden [13]. The GP algorithm is a type of biologically

56 J. Guo et al.

inspired machine-learning tool and is an extension of the genetic algorithm
(GA) [18]. Unlike the GA, the individual encoding in the GP algorithm is usually
denoted in a tree form, which makes the evolution process more flexible. Differ-
ing from a traditional regression analysis, which requires the user to specify the
model structure, the GP algorithm can automatically evolve the structure and
parameters of a mathematical model. Thus, it has been widely applied to various
types of nonlinear modeling problems. However, it has yet to be applied to the
construction of defect rank models.

Differing from the standard GP algorithm, an individual of MGGP contains
one or more genes. Each gene is a standard GP tree. A mathematical model is
obtained by combining all weighted genes [10]. MGGP can be expressed as Eq. 1,
where gi denotes the ith gene, n denotes the number of genes, α0 denotes the
bias terms, and αi denotes the weight of the ith gene, which can be calculated
based on the least squares.

y = α0 + α1g1 + α2g2 + · · · + αngn (1)

When applying the MGGP algorithm to a practical problem, we need to
consider the following five aspects [5]:

– Specify the set of functions
– Specify the set of terminals
– Specify the fitness function
– Specify the parameters for controlling the evolution process
– Specify the termination criterion and design the result of the evolution.

Among them, the set of functions correspond to the root nodes of the GP
trees, which include the basic mathematical operators, such as plus, minus, mul-
tiply, divide, and boolean algebra operators. The set of terminals correspond
to leaf nodes of GP trees, which generally include the input variables and ran-
dom constants. In the evolution process, the genetic operations such as selection,
crossover, and mutation are similar to those with the GA.

3 MGGP-Based Defect Prediction Model

Assume that there are m modules of the given software, and n metrics for defect
prediction per module, which can be denoted as the matrix, X = (xij)m×n, where
i = 1. . . m, j = 1. . . n, and xij is the value of the jth metric on the ith software
module. When counting the numbers of defects in the software modules, we can
expand X into X ′ = (xij)m×(n+1), and thus Yi = (yi)m×1 represents the real
number of defects of the ith module. The goal of the software defect rank model
is to predict the relative number of defects, which is denoted as f(x). In this
paper, a prediction model is constructed by analyzing the relationship between
software metrics and the number of real defects in the training set.

The relationship between the number of defects and the software metrics can
be described as follows:

f(x) = y = f(x1, x2, . . . , xn, C)(i = 1 . . . n)

Multi-gene Genetic Programming Based Defect-Ranking Software Modules 57

where y denotes the number of defects per module, xi denotes the software
metrics, C is a random constant, and f is the map relation of the number of
defects and the corresponding software metrics. This is an individual expression
that is linearly weighted by genes that do not exceed MaxGene, which is the
maximum number of genes. Each gene is made up by the set of functions and
set of terminals randomly. By controlling the maximum depth of the gene trees
and the maximum number of genes, we can control the depth and length of the
function f , which stands for the complexity of the MGGP prediction model. The
details in using MGGP to construct a model are as follows:

1. Input: modules: xi = (xi1, xi2, . . . , xin), where i = 1. . . m, which is the
matrix of the defect numbers, and X ′ = (xij)m×(n+1), where i = 1. . . m,
j = 1. . . n, which are the corresponding software metrics.

2. Set the parameters of MGGP, such as the population size, number of gener-
ations to run, maximum depth of the trees, maximum number of genes per
individual, and termination threshold value. Define the functions of MGGP.
More details are provided in Sect. 5.1.

3. Initialize the population. Generate genes randomly, and individuals through
combining genes using the least squares. Calculate the individual fitness func-
tion values. Set the generation number to t = 0.

4. Repeat the following steps:
(1) Combine no more than Maxgene genes using the least squares to obtain

the individual expression, and calculate the individual fitness.
(2) Choose certain numbers of individuals and genes for a genetic operation

according to the genetic probability.
(3) Generate a new population through a genetic operation such as copy,

crossover, or mutation.
(4) t++.

Until t < tmax (the maximum of iterations) or, the termination threshold
value equals the preset fitness.

5. Output: the corresponding defect number of every module f(x) = Y ′
i =

(yi)m×1, where i = 1. . . m, and the best fitness value.

The details of the fitness function, i.e., the evaluation measure, are described
in Sect. 4.3, and the parameters for MGGP are discussed in Sect. 5.1.

4 Experimental Methodology

In this section, we present a brief overview of the software defect data-sets used
for the experimental study, using information of the software metrics. We also
provide a description of the evaluation measure used in the experiments.

Figure 2 shows an overview of our experimental method. First, we divide
all software defect data-sets into training data and testing data through a
10-fold cross-validation. We then set the parameters and define the functions
of MGGP for each training data-set, and construct the MGGP training mod-
els. The trained MGGP model is then applied over the testing data. Finally, we
evaluate and validate the results using the FPA measure.

58 J. Guo et al.

4.1 Software Defect Data-Sets

We use two sets of publicly available data provided in paper [27] as experi-
mental data-sets. One of the data-sets includes the information of five open-
source software systems which is also used in paper [6]. The five software
systems1 are Eclipse JDT Core (eclipse), Eclipse PDE UI (pde), Equinox
framework (equinox), Mylyn, and Apache Lucene (lucene). The other data-
set is called Eclipse data-set2 which is provided by Zimmermann et al. [32].
To avoid any ambiguity, we denote the latter Eclipse as Eclipse II. Eclipse II
includes two kinds of data. One kind is based on files and another is based
on packages. Each kind of data involves three releases. We denote them as
Eclipse II File2.0 as Files2.0, Eclipse II File2.1 as Files2.1, Eclipse II File3.0
as Files3.0, Eclipse II Package2.0 as Package2.0, Eclipse II Package2.1 as Pack-
age2.1, Eclipse II Package3.0 as Package3.0 for convenience.

Defect
Datasets

Divide the defect data sets into training data and testing
data by 10-fold cross-validation

Set parameters and define functions of MGGP for each
training data set

Construct MGGP training models

Apply the trained MGGP to each testing data set

Evaluation the results using FPA

Fig. 2. The overview of our experimental method.

1 http://bug.inf.usi.ch/.
2 http://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/.

http://bug.inf.usi.ch/
http://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/

Multi-gene Genetic Programming Based Defect-Ranking Software Modules 59

Table 1. Defect data-sets used in the experiments

Data-set name Module
number

Metric
number

Faulty
modules

% of
faulty
modules

Defect
range

Total
defects

eclipse 997 212 206 20.7% [0, 9] 374

equinox 324 212 129 39.8% [0, 13] 244

lucene 691 212 64 9.3% [0, 9] 97

mylyn 1862 212 245 13.2% [0, 12] 340

pde 1497 212 209 14.0% [0, 28] 341

Eclipse II File2.0 6729 198 975 14.5% [0, 31] 1692

Eclipse II File2.1 7888 198 854 10.8% [0, 9] 1182

Eclipse II File3.0 10593 198 1568 14.8% [0, 17] 2679

Eclipse II Package2.0 377 207 190 50.4% [0, 88] 917

Eclipse II Package2.1 434 207 194 44.7% [0, 71] 662

Eclipse II Package3.0 661 207 313 47.4% [0, 65] 1534

The details of the data-sets are shown in Table 1. The column Module Number
denotes the number of modules. The column Metric Number denotes the numbers
of features of each data-set. The column Faulty Modules represents the number
of modules whose defects are greater than zero. The column Total Defects repre-
sents the total number of defects of all modules in each data-set. The percentage
of faulty (i.e., defective) modules varies by approximately 9%–55%, which makes
the data-sets good candidates for the experimental study.

The data-sets have certain redundant metrics. For example, Wang et al. [25]
and Menzies et al. [20] pointed out that a prediction model constructed using
three metrics performs as good as one using all metrics. In fact, other features
are calculated from the basic features extracted directly from the source code. As
a result, the correlation between the same types of software features is high, and
there are more redundant features. Thus we also select both three basic metrics
and all metrics when conducting our experiments, and evaluate the results. The
metric selection uses the information gain (InfoGain [20]) method. In information
gain measures, the importance is based on how much information a feature can
bring to the classification system. The more information it brings, the more
important the feature is.

4.2 Software Metrics

The data in the first data-set, which is presented in paper [6], include six sets
of metrics: process metrics, previous defects, source code metrics, entropy of
changes, churn of source code metrics, and entropy of source code metrics.
Eclipse II includes two kinds of metrics: complexity metrics, and metrics based
on the structure of abstract syntax trees. The former is collected at the file-
level. The latter is collected at the package-level. The numbers of these data-set
metrics can be found in Table 1.

60 J. Guo et al.

4.3 Evaluation Measure

AAE and ARE are often used in existing software-defect ranking prediction
models [17]. However, the purpose of a defect-ranking prediction model is to
help testers allocate limited resources preferentially for those modules that have
more defects. Usually, a few software modules contain most of the defects. There-
fore, the Fault of Percentage (FP), the percentage of defects in the top m pre-
dicted modules, has become a commonly used evaluation measure. However, as
Weyuker [26] pointed out, FP is sensitive to the value of m, which means a
different m may provide completely different conclusions. Thus, Weyuker et al.
proposed the Fault-Percentile-Average (FPA), which can overcome the short-
coming of FP being sensitive to the value of m.

Considering the k modules listed in increasing order of predicted number of
defects as f1, f2, f3, · · · , fk, and the actual number of defects of the k modules
as n1, n2, n3, · · · , nk, respectively, the top m predicted modules should have∑k

i=k−m+1 ni defects. The proportion of actual defects in the top m predicted
modules to all defects is

1
n

k∑

i=k−m+1

ni,

where n = n1 + n2 + · · · + nk. The FPA is then defined as follows:

FPA =
1
k

k∑

m=1

1
n

k∑

i=k−m+1

ni

In practice, FPA is the average of the FPs when m takes different values. A
higher FPA indicates a better ranking.

4.4 Wilcoxon Rank Sum Test

In statistics, a Wilcoxon rank-sum test [12] is also called a Mann-Whitney U
test or Wilcoxon-Mann-Whitney test. This is a non-parametric test of a null
hypothesis in which two sets of measurements are drawn from the same distri-
bution. This test can be used to determine whether two independent samples
were selected from a population having the same distribution3.

In this study, to compare the difference in performance between the defect
prediction techniques over the 11 data-sets, we apply a Wilcoxon rank-sum test
using a 95% confidence level (α = 0.05). We establish null hypothesis H0: the
prediction results of the two defect prediction techniques come from the same
distribution (there is no difference between them). Therefore, when the level of
significance is 0.05, if the level of significance detected is greater than 0.05, the
hypothesis is true and H0 is accepted; otherwise, the hypothesis is not true and
H0 is rejected.

3 https://en.wikipedia.org/wiki/MannWhitney U test.

https://en.wikipedia.org/wiki/MannWhitney_U_test

Multi-gene Genetic Programming Based Defect-Ranking Software Modules 61

5 Experiments and Results

In this section, we describe the parameters set for MGGP and other defect
prediction models for comparison. We then present our research questions, along
with our motivation, approach, and findings.

5.1 Set Parameters for MGGP

1. Function sets
Because MGGP has an independent evolution, theoretically, sets of functions
can contain a variety of functions. In addition to the basic mathematical
operations, namely, +,−, ∗, /, and so on, we join the commonly used nonlinear
functions such as exp, log, and tanh. Here, / indicates protective division, Exp
denotes an exponential function, Log is a natural logarithmic function, and
tanh is a hyperbolic tangent function.

2. Terminal sets
Generally, the terminal sets include input variables and random constants. In
this paper, the input variables represent the specific values of the metrics.

3. Fitness function
We use the FPA as a fitness function. If an individual’s fitness value is bigger,
the individual obtained is more optimal.

4. Parameters for controlling the evolution
The population size, number of generations to run, maximum depth of the
trees, maximum number of genes per individual, and parameters such as
the crossover and mutation probabilities have a significant influence on the
efficiency of the MGGP algorithm. In this paper, we adjust these parameters
according to the experimental results, based on the experience value, in order
to speed up the convergence of the algorithm.

5. Termination criterion
The termination condition can be either the individual fitness value reaching
the set threshold, or the number of MGGP iterations reaching the maximum
number. For this study, we chose both situations as the termination criteria.
After meeting any one of the two criteria, the MGGP stops.

5.2 Defect Prediction Models for Comparison

Bootstrap aggregating (Bagging) [3] is an ensemble learning technique. Bagging
takes N times the Bootstrap sampling on the training data-set to obtain N
training data subsets. Each subset uses the same algorithm to establish a decision
tree. The final classification (or regression) result is the majority vote of the
results of N decision trees (or average). Bagging can reduce the variance of the
model and help avoid overfitting.

RF [4] consists of many Classification And Regression Tree (CART) decision
trees. Each decision tree is based on a subset of training samples. During the
training phase, features are filtered through node splitting of the decision tree.

62 J. Guo et al.

The samples are subdivided until each training sample subset is correctly classi-
fied. During the test phase, sample classification is applied directly based on the
trained features, which can increase the test speed (although slow the training
speed). RF can handle a very large number of input attributes, and can be used
for both classification and regression.

Gradient Boosting Regression (GBR) [8] constructs M weak classifiers first,
and finally combines them into a strong classifier after many iterations. Each
iteration is applied to improve the previous result and reduce the residual error
of the previous generation model. A new combination model is established in the
gradient direction with the residual error descent to ensure that the final result
is the best.

Support Vector Regression (SVR) [2] is applied to find a regression plane
such that all data of a set are closest to the plane, that is, to minimize the total
deviation of all sample points from the hyperplane. At this time, the sample
points are between the two boundary lines.

In this paper, we apply the idea of directly optimizing the ranking perfor-
mance to existing nonlinear algorithms, including RF, bagging, GBR, and SVR.
We denote the optimized methods as IRF, IBagging, IGBR, and ISVR, respec-
tively, and compare these optimized methods with MGGP and LTR. These algo-
rithms are carried out based on the Sklearn Python package. We adopt the GA
algorithm to optimize the ranking performance.

5.3 Results

In this subsection, we show the research questions and experimental results in
detail.

RQ1. How does our MGGP-based approach perform compared with
other optimization methods?

Motivation. Yang et al. [27] indicated that the proposed LTR approach based
on directly optimizing the ranking performance measure of the prediction models
can provide better results than optimizing the individual-based loss functions.
However, when the number of metrics is large, the LTR linear model performs
even worse than nonlinear models, such as RF. In addition, there are many
redundant metrics in the software data-sets. Although a dimensionality reduction
improves the efficiency, it may cause information loss, which may affect the
performance of the prediction model. In this paper, we apply the advantage of
the MGGP algorithm in multi-collinearity system modeling and the forecasting
field to the defect prediction field. An evaluation of its performance is necessary.

Approach. To answer this question, we compare the MGGP approach with five
optimized methods (LTR, IRF, IBagging, IGBR, and ISVR), and investigate the
performance of the MGGP-based model together with other optimized models.
We conduct experiments on 11 data-sets when applying both all metrics, and
three metrics selected using InfoGain. To prevent a sample error, we conduct 10-
fold cross-validation of the experiments ten times. Therefore, the last records of

Multi-gene Genetic Programming Based Defect-Ranking Software Modules 63

the experimental results are the mean FPAs and the standard deviations of 10-
fold cross-validation applied ten times. The results are shown in Tables 2 and 3.
We provide the values of ideal FPA corresponding to each data-set in Table 2 for
a convenient comparison. The ideal value is the result of the perfect ordering of
the modules.

To compare the differences in performance between all models on the 11
data-sets, we apply the Wilcoxon rank-sum test at a significance of 0.05. The
better results (significantly different by s) are shown in boldface.

Findings. Our MGGP-based prediction model achieves good results
whatever using three or all metrics. In general, our MGGP-based prediction
significantly outperforms the LTR and other optimization techniques for most of
the data-sets. From Tables 2 and 3, we can see that the MGGP model performs
significantly better (by s) than the other compared methods over eight out of
the 11 data-sets (the ideal values are given as a reference). When using three
metrics, MGGP performs better than LTR over all data-sets, better than ISVR
over ten data-sets, better than IRF and IGBR over nine data-sets, and better
than IBagging over eight data-sets. When using all metrics, MGGP performs
better than LTR and ISVR over all data-sets, better than IGBR over ten data-
sets, better than IBagging over eight data-sets, and better than IRF over nine
data-sets, and is equal to IRF over one data-set (mylyn, whose p-value is 0.082
> 0.05). Therefore, regardless of using three or all metrics, we can conclude
that MGGP can achieve better FPA results than the other compared methods
over most of the data-sets. Nevertheless, compared with ideal models, further
improvements are still needed. To summarize, the MGGP-based model is better
than the other linear or nonlinear models. In addition, the MGGP approach
performs better than the other existing methods in most cases.

To look at the difference in performance between the MGGP-based and other
models more intuitively, the results are shown through box-plot diagrams of
the FPA measures, as shown in Figs. 3 and 4. The x-axis indicates the defect
prediction models, and the y-axis indicates the FPA values produced by the

Table 2. Means and Standard Deviations of FPA values over 11 defect data-sets with
three metrics (with the exception of the LTR, the standard deviations of MGGP, IRF,
IBagging, IGBR, and ISVR models times 0.01)

Data-set MGGP LTR IRF IBagging IGBR ISVR Ideal

eclipse 0.896 ± 0.65 0.822 ± 0.047 0.886 ± 0.11 0.878 ± 0.35 0.885 ± 0.31 0.817 ± 0.37 0.934

equinox 0.858 ± 0.30 0.805 ± 0.039 0.754 ± 1.00 0.867 ± 0.51 0.791 ± 0.26 0.777 ± 0.31 0.875

lucene 0.940 ± 1.57 0.842 ± 0.063 0.878 ± 0.45 0.885 ± 0.37 0.876 ± 0.21 0.788 ± 0.36 0.968

mylyn 0.808 ± 0.61 0.735 ± 0.055 0.821 ± 0.25 0.827 ± 0.48 0.823 ± 0.39 0.633 ± 0.78 0.950

pde 0.823 ± 2.37 0.779 ± 0.051 0.901 ± 0.20 0.916 ± 0.37 0.901 ± 0.33 0.874 ± 0.44 0.953

Files2.0 0.845 ± 0.45 0.805 ± 0.021 0.825 ± 0.18 0.801 ± 0.50 0.824 ± 0.29 0.819 ± 0.73 0.952

Files2.1 0.817 ± 0.52 0.765 ± 0.022 0.631 ± 0.23 0.566 ± 0.60 0.627 ± 0.21 0.576 ± 0.43 0.959

Files3.0 0.812 ± 0.50 0.788 ± 0.016 0.774 ± 0.24 0.709 ± 0.43 0.766 ± 0.21 0.711 ± 0.82 0.951

Package2.0 0.827 ± 0.64 0.769 ± 0.063 0.764 ± 0.32 0.775 ± 1.88 0.681 ± 0.29 0.631 ± 0.64 0.886

Package2.1 0.848 ± 0.60 0.776 ± 0.062 0.743 ± 0.35 0.772 ± 0.63 0.709 ± 0.40 0.664 ± 0.65 0.887

Package3.0 0.852 ± 0.55 0.815 ± 0.031 0.756 ± 1.32 0.797 ± 0.43 0.779 ± 0.32 0.658 ± 0.50 0.894

64 J. Guo et al.

defect prediction models over all data-sets. The box-plot includes six different
parts, namely, the minimum, first quartile, median, third quartile, maximum,
and outliers of the measures. The red line in the middle of the box represents
the median of the measures.

Table 3. Means and Standard Deviations of FPA values over 11 defect data-sets with
all metrics (with the exception of the LTR, the standard deviations of MGGP, IRF,
IBagging, IGBR, and ISVR models times 0.01)

Data-set MGGP LTR IRF IBagging IGBR ISVR

eclipse 0.908 ± 0.41 0.823 ± 0.036 0.904 ± 0.15 0.898 ± 0.25 0.896 ± 0.35 0.796 ± 0.40

equinox 0.859 ± 0.42 0.802 ± 0.039 0.801 ± 0.97 0.880 ± 0.33 0.823 ± 0.29 0.688 ± 0.61

lucene 0.950 ± 0.74 0.816 ± 0.090 0.893 ± 0.42 0.888 ± 0.25 0.888 ± 0.26 0.739 ± 0.41

mylyn 0.881 ± 0.83 0.795 ± 0.037 0.874 ± 0.49 0.901 ± 0.38 0.867 ± 0.33 0.587 ± 0.29

pde 0.885 ± 1.13 0.763 ± 0.054 0.904 ± 0.32 0.922 ± 0.43 0.914 ± 0.28 0.858 ± 0.48

Files2.0 0.866 ± 0.29 0.825 ± 0.018 0.835 ± 0.22 0.816 ± 0.26 0.776 ± 0.35 0.789 ± 0.31

Files2.1 0.820 ± 1.18 0.779 ± 0.022 0.645 ± 0.37 0.585 ± 0.40 0.624 ± 0.40 0.545 ± 0.34

Files3.0 0.815 ± 0.44 0.795 ± 0.019 0.774 ± 0.26 0.727 ± 0.39 0.747 ± 0.30 0.689 ± 0.34

Package2.0 0.860 ± 0.45 0.785 ± 0.064 0.774 ± 0.33 0.832 ± 0.33 0.767 ± 0.29 0.641 ± 0.45

Package2.1 0.846 ± 1.01 0.772 ± 0.058 0.725 ± 0.20 0.760 ± 0.31 0.716 ± 0.25 0.628 ± 0.38

Package3.0 0.859 ± 0.41 0.814 ± 0.033 0.795 ± 0.26 0.792 ± 0.53 0.748 ± 0.30 0.641 ± 0.39

Figure 3 shows the box-plot results when using three metrics in the exper-
iments. We can see that the ISVR model produces the lowest median value,
and MGGP produces the highest. In addition, IBagging produces the lowest
outlier value, ISVR produces the lowest minimum value, and MGGP produces
the highest minimum value. For the maximum value, LTR produces the lowest
maximum value, whereas IBagging produces the highest maximum value, and
MGGP produces the highest outlier value.

Similarly, Fig. 4 shows the box-plot results of all data-sets with all metrics.
We can see that the ISVR model produces the lowest median value, and MGGP
produces the highest median value. ISVR produces the lowest minimum value.
MGGP produces the highest minimum value. For the maximum value, LTR
produces the lowest maximum value, whereas IBagging produces the highest
maximum value, and MGGP produces the highest outlier value.

In general, we can conclude from Figs. 3 and 4 that when using either three
metrics or all metrics together, MGGP performs better than the other optimized
defect prediction models. In addition, LTR, IRF, IBagging, and IGBR achieve
a moderate performance, and ISVR performs relatively poorly compared to the
other defect prediction models.

Comparing the results of the MGGP-based model when applying all met-
rics and only three metrics, we observed that the multi-collinearity of
the metrics does not affect the performance of the MGGP-based
defect prediction model. The experimental results are shown in detail in
Table 4, where the p-value is indicated in the corresponding brackets, and the
s-significantly better results are in boldface. We can see that, when using all
metrics, better results are obtained than when using three metrics over six of
the data-sets, and comparable results are achieved over the other five data-sets.

Multi-gene Genetic Programming Based Defect-Ranking Software Modules 65

MGGP LTR IRF IBagging IGBR ISVR
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Fig. 3. Box-plot analysis for FPA values for all the data-sets with three metrics.

MGGP LTR IRF IBagging IGBR ISVR

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Fig. 4. Box-plot analysis for FPA values for all the data-sets with all metrics.

66 J. Guo et al.

Table 4. Means and Standard Deviations of FPA results over 11 defect data-sets when
applying all metrics and three metrics (the standard deviations times 0.01)

Data-set MGGP all MGGP three

eclipse 0.908± 0.41(.002) 0.898 ± 0.65

equinox 0.859 ± 0.42(.650) 0.858 ± 0.30

lucene 0.950 ± 0.74(.112) 0.940 ± 1.57

mylyn 0.881± 0.83(.0) 0.808 ± 0.61

pde 0.885± 1.13(.0) 0.823 ± 2.37

Files2.0 0.866± 0.29(.0) 0.845 ± 0.45

Files2.1 0.820 ± 1.18(.406) 0.817 ± 0.52

Files3.0 0.815 ± 0.44(.364) 0.812 ± 0.50

Package2.0 0.860± 0.45(.0) 0.827 ± 0.64

Package2.1 0.846 ± 1.01(.406) 0.848 ± 0.60

Package3.0 0.859± 0.41(.008) 0.852 ± 0.55

Hence, we can conclude that the MGGP-based model does not need to con-
sider the multi-collinearity between the metrics in the context of software defect
prediction. The correlation will not affect the prediction performance of the
model, that is, the prediction model based on the MGGP method can directly
employ the original features when constructing the software defect prediction
model.

Answer to RQ1:Our MGGP-based prediction model performs bet-
ter than the other optimized models over most of the defect data-sets
regardless of whether three metrics or all metrics are applied. The
multi-collinearity of the metrics does not affect the performance of
the MGGP-based defect prediction model. Hence, applying the MGGP
method to construct a defect prediction model is an appropriate direc-
tion.

RQ2. Is the idea of directly optimizing the model performance mea-
sure effective for nonlinear models?

Motivation. Yang et al. [27] pointed out that directly optimizing the model
performance measure is useful for constructing better software defect-ranking
models. They applied this idea to just one simple linear regression model. How-
ever, they did not verify the idea for nonlinear models applied to a defect-ranking
task. To explore whether this idea can be applied to a nonlinear software defect
prediction model, we compared the performance of the original nonlinear pre-
diction models with the improved models used in the experiments for RQ1.

Approach. We conduct the experiments using the original algorithms with
default parameters implemented based on the Sklearn Python package. We apply

Multi-gene Genetic Programming Based Defect-Ranking Software Modules 67

Table 5. Means and Standard Deviations of FPA values of original models over 11
defect data-sets using three metrics (the standard deviations times 0.01)

Data-set RF Bagging GBR SVR

eclipse 0.805 ± 0.65 0.807 ± 0.76 0.802 ± 0.29 0.791 ± 0.52

equinox 0.786± 0.42 0.782 ± 0.43 0.778 ± 0.09 0.750 ± 0.60

lucene 0.743 ± 1.39 0.744 ± 1.71 0.744 ± 0.25 0.830± 0.39

mylyn 0.688 ± 0.98 0.687 ± 0.98 0.750 ± 0.14 0.580 ± 0.36

pde 0.737 ± 0.84 0.738 ± 0.52 0.764 ± 0.05 0.706 ± 0.54

Files2.0 0.741 ± 0.34 0.740 ± 0.53 0.809 ± 0.05 0.729 ± 0.30

Files2.1 0.667± 0.66 0.669± 0.79 0.781± 0.04 0.710± 0.41

Files3.0 0.691 ± 0.48 0.692 ± 0.35 0.787± 0.06 0.701 ± 0.51

Package2.0 0.711 ± 0.61 0.713 ± 0.44 0.722± 0.06 0.606 ± 0.34

Package2.1 0.725 ± 0.90 0.721 ± 0.82 0.729± 0.06 0.607 ± 0.35

Package3.0 0.758 ± 0.36 0.756 ± 0.49 0.784± 0.05 0.592 ± 0.45

10-fold cross-validation ten times over the 11 data-sets using all metrics, and
three metrics selected by InfoGain.

The Wilcoxon rank-sum test at a significance level of 0.05 was used to test
whether the four optimized models are s-significantly different from the original
models when using only three metrics or all metrics. The results are shown in
Tables 5 and 6. If the FPA values are s-significantly different, the results that
are better than those of the optimized models (Tables 2 and 3) are denoted in
boldface. The worse results are underlined.

Findings. The optimized models based on the idea of directly optimiz-
ing the model performance measure perform better than the original
models with the default parameters as a whole. As shown in Table 5,
when using three metrics, RF with the default parameters achieves worse results
than the optimized IRF over eight of the data-sets, comparable results over one
data-set, and better results over only two data-sets. Bagging using the default
parameters achieves worse results than optimized IBagging over ten data-sets,
and better results over only one data-set. GBR with the default parameters
achieves worse results than the optimized IGBR over six of the data-sets, and
better results over the other five. Finally, the SVR with the default parameters
achieves worse results than the optimized ISVR over nine of the data-sets, and
better results over only two.

Table 6 shows the results when using all metrics. RF with the default param-
eters achieves worse results than optimized IRF over eight of the data-sets, com-
parable results over one data-set, and better results over only two data-sets. Bag-
ging using the default parameters achieves worse results than optimized IBagging
over ten of the data-sets, and better results over only one data-set. GBR with
the default parameters achieves worse results than the optimized IGBR over

68 J. Guo et al.

Table 6. Means and Standard Deviations of FPA values of original models over eleven
defect data-sets with all metrics (the standard deviations of RF, Bagging, GBR, SVR
models times 0.01)

Data-set RF Bagging GBR SVR

eclipse 0.843 ± 0.41 0.841 ± 0.49 0.835 ± 0.26 0.725 ± 0.45

equinox 0.794 ± 0.51 0.797 ± 0.47 0.798 ± 0.36 0.692 ± 0.28

lucene 0.799 ± 1.91 0.792 ± 2.20 0.762 ± 0.48 0.748± 0.43

mylyn 0.777 ± 0.66 0.780 ± 0.50 0.791 ± 0.11 0.707± 0.40

pde 0.769 ± 0.84 0.775 ± 0.84 0.805 ± 0.20 0.690 ± 0.34

Files2.0 0.769 ± 0.50 0.767 ± 0.64 0.803± 0.39 0.750 ± 0.33

Files2.1 0.734± 0.92 0.730± 0.63 0.777± 0.17 0.721± 0.36

Files3.0 0.721 ± 0.46 0.722 ± 0.54 0.783± 0.05 0.629 ± 0.34

Package2.0 0.753 ± 0.64 0.750 ± 0.66 0.741 ± 0.28 0.550 ± 0.54

Package2.1 0.739± 0.75 0.734 ± 1.00 0.757± 0.15 0.562 ± 0.49

Package3.0 0.772 ± 0.84 0.774 ± 0.39 0.776± 0.05 0.569 ± 0.60

six of the data-sets, and better results over the other five. The SVR with the
default parameters achieves worse results than the optimized ISVR over seven
of the data-sets, comparable results over one data-set, and better results over
the remaining three.

Although the results of GBR shown in Tables 5 and 6 are average, we still
believe that the idea of directly optimizing the model performance measure is
more valuable for constructing better nonlinear defect ranking models.

Answer to RQ2:The idea of directly optimizing the model perfor-
mance measure can be used in other nonlinear models, enhancing the
prediction performance of the models as a whole. Therefore, this idea is
more valuable for constructing better nonlinear defect ranking models.

6 Threats to Validity

In this section, we discuss the threats to the validity of our study on software
defect prediction.

6.1 Threats to Internal Validity

In this study, MGGP and other methods were used to construct software defect
prediction models. These models require the appropriate parameters to be chosen
for the model construction methods applied. We tried to optimize the parameters
according to existing studies. However, the results may vary when using different
data-sets or different numbers of metrics.

Multi-gene Genetic Programming Based Defect-Ranking Software Modules 69

We choose the FPA as a performance evaluation measure for software defect-
ranking models because it overcomes the shortcoming of the percentage of the
defects found in the top m modules. However, when the goals of the software
defect model change, the FPA measure might not be suitable. Thus, we should
choose suitable measures to conduct further research on fitting different software
defect prediction tasks.

6.2 Threats to External Validity

To compare our experiments with existing studies, the data-sets we used are
from publicly available sources. There are many data-sets based on industrial
software systems that are not publicly available. Owing to a wide difference
between public and industrial development environments, when using different
data-sets or different metrics, the results may differ.

7 Conclusions and Future Work

A software defect prediction model for a ranking task helps in allocating lim-
ited testing resources more efficiently, and preferentially detecting modules with
more defects. The existence of multi-collinearity between software metrics may
reduce the predictive performance of the model. Although a reduction in the
dimensions of the data can improve the efficiency, such a reduction may cause
some useful information to be prematurely deleted. In this study, we adopted the
idea of MGGP to build defect-ranking models. In addition, we conducted a com-
prehensive evaluation and comparison of the proposed MGGP-based approach
with other methods. We used 11 publicly available defect data-sets consisting
of a wide range of real-world software projects to evaluate the performance dif-
ference between them. The results show that the MGGP-based models perform
better in most of the defect data-sets regardless of using only three metrics
or all metrics. Furthermore, we concluded that the optimized nonlinear models
for directly optimizing the ranking performance work better than the original
nonlinear models with default parameters as a whole.

The main findings of our study can be summarized as follows.

– The MGGP-based model performs well in software defect-ranking
prediction. The experiments show that MGGP-based models can achieve a
better performance than LTR and other optimized models. Thus, applying
MGGP to defect-ranking prediction is valuable.

– The optimized nonlinear model achieved by directly optimizing the
ranking performance is better than the original nonlinear models
with the default parameters. This finding also verifies that researchers
should adjust the parameters when conducting their experiments because
doing so can achieve better results.

– The multi-collinearity between software metrics does not influence
the performance of the MGGP-based model, which means MGGP

70 J. Guo et al.

is more robust against noisy data for software defect prediction.
We believe that using the original defect data directly can help construct a
MGGP-based model that works well.

As future work, to validate the generality of the conclusions obtained in this
paper, we will further analyze the method on more data-sets. In addition, we will
apply more optimization algorithms to adjust the prediction models and make
them perform better for software defect-ranking prediction.

Acknowledgment. The work describes in this paper is supported by the National
Natural Science Foundation of China under Grant No. 61702029, 61872026 and
61672085.

References

1. Afzal, W., Torkar, R., Feldt, R.: Prediction of fault count data using genetic pro-
gramming. In: Multitopic Conference, INMIC 2008. IEEE International, pp. 349–
356 (2009)

2. Awad, M., Khanna, R.: Support vector regression. Neural Inf. Process. Lett. Rev.
11(10), 203–224 (2007)

3. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
5. Burke, E., Kendall, G.: Search methodologies: introductory tutorials in optimiza-

tion and decision support techniques. Sci. Bus. 58(3), 409–410 (2005)
6. D’Ambros, M., Lanza, M., Robbes, R.: Evaluating defect prediction approaches:

a benchmark and an extensive comparison. Empir. Softw. Eng. 17(4–5), 531–577
(2012)

7. Elish, K.O., Elish, M.O.: Predicting defect-prone software modules using support
vector machines. J. Syst. Softw. 81(5), 649–660 (2008)

8. Elith, J., Leathwick, J.R., Hastie, T.: A working guide to boosted regression trees.
J. Anim. Ecol. 77(4), 802–813 (2008)

9. Gao, K., Khoshgoftaar, T.M.: A comprehensive empirical study of count models
for software fault prediction. IEEE Trans. Reliab. 56(2), 223–236 (2007)

10. Garg, A.: Review of genetic programming in modeling of machining processes. In:
Proceedings of International Conference on Modelling, Identification & Control,
pp. 653–658 (2012)

11. Garg, A., Tai, K.: Comparison of regression analysis, artificial neural network and
genetic programming in handling the multicollinearity problem. In: Proceedings
of International Conference on Modelling, Identification & Control, pp. 353–358
(2012)

12. Haynes, W.: Wilcoxon rank sum test. In: Dubitzky, W., Wolkenhauer, O., Cho,
K.H., Yokota, H. (eds.) Encyclopedia of Systems Biology, pp. 2354–2355. Springer,
New York (2013). https://doi.org/10.1007/978-1-4419-9863-7

13. Hinchliffe, M., Hiden, H., Mckay, B., Willis, M., Tham, M., Barton, G.: Modelling
chemical process systems using a multi-gene genetic programming algorithm. In:
Genetic Programming (1996)

14. Jiang, Y., Cukic, B., Ma, Y.: Techniques for evaluating fault prediction models.
Empir. Softw. Eng. 13(5), 561–595 (2008)

https://doi.org/10.1007/978-1-4419-9863-7

Multi-gene Genetic Programming Based Defect-Ranking Software Modules 71

15. Khoshgoftaar, T.M., Allen, E.B.: Ordering fault-prone software modules. Softw.
Qual. J. 11(1), 19–37 (2003)

16. Khoshgoftaar, T.M., Geleyn, E., Gao, K.: An empirical study of the impact of
count models predictions on module-order models. In: Eighth IEEE Symposium
on Software Metrics. Proceedings, pp. 161–172 (2002)

17. Khoshgoftaar, T.M., Seliya, N.: Fault prediction modeling for software quality
estimation: comparing commonly used techniques. Empir. Softw. Eng. 8(3), 255–
283 (2003)

18. Koza, J.R.: Survey of genetic algorithms and genetic programming. In:
Wescon/1995. Conference Record. Microelectronics Communications Technology
Producing Quality Products Mobile and Portable Power Emerging Technologies,
p. 589 (1995)

19. Malhotra, R.: A Systematic Review of Machine Learning Techniques for Software
Fault Prediction. Elsevier Science Publishers B.V, Amsterdam (2015)

20. Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn
defect predictors. IEEE Trans. Softw. Eng. 33(1), 2–13 (2006)

21. Nagappan, N., Ball, T.: Use of relative code churn measures to predict system
defect density. In: International Conference on Software Engineering, pp. 284–292
(2005)

22. Rathore, S.S., Kumar, S.: An empirical study of some software fault prediction
techniques for the number of faults prediction. Soft Comput. 21(24), 1–18 (2017)

23. Rathore, S.S., Kumar, S.: Predicting number of faults in software system using
genetic programming. In: International Conference on Soft Computing and Soft-
ware Engineering, pp. 303–311 (2015)

24. Tassey, G.: The economic impacts of inadequate infrastructure for software testing.
Natl. Inst. Stand. Technol. 15(3), 125 (2002)

25. Wang, H., Khoshgoftaar, T.M., Seliya, N.: How many software metrics should be
selected for defect prediction? In: Twenty-Fourth International Florida Artificial
Intelligence Research Society Conference, Palm Beach, Florida, USA, 18–20 May
2011 (2005)

26. Weyuker, E.J., Ostrand, T.J., Bell, R.M.: Comparing the effectiveness of several
modeling methods for fault prediction. Empir. Softw. Eng. 15(3), 277–295 (2013)

27. Yang, X., Tang, K., Yao, X.: A learning-to-rank approach to software defect pre-
diction. IEEE Trans. Reliab. 64(1), 234–246 (2015)

28. Zhang, F., Hassan, A.E., Mcintosh, S., Zou, Y.: The use of summation to aggregate
software metrics hinders the performance of defect prediction models. IEEE Trans.
Softw. Eng. 43(5), 476–491 (2017)

29. Zhang, F., Mockus, A., Keivanloo, I., Zou, Y.: Towards building a universal defect
prediction model, pp. 182–191 (2014)

30. Zimmermann, T., Nagappan, N.: Predicting defects using network analysis on
dependency graphs. In: ACM/IEEE International Conference on Software Engi-
neering, pp. 531–540 (2008)

31. Zimmermann, T., Nagappan, N., Gall, H., Giger, E., Murphy, B.: Cross-project
defect prediction: a large scale experiment on data vs. domain vs. process. In: Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, Amsterdam, the
Netherlands, August, pp. 91–100 (2009)

32. Zimmermann, T., Premraj, R., Zeller, A.: Predicting defects for eclipse. In: Inter-
national Workshop on Predictor MODELS in Software Engineering, Promise 2007:
ICSE Workshops, p. 9 (2007)

Call Graph Based Android Malware
Detection with CNN

Yuxuan Liu1,2, Ge Li1,2(B), and Zhi Jin1,2(B)

1 Key Lab of High Confidence Software Technologies,
Ministry of Education, Peking University, Beijing, China

{liuyuxuan,lige,zhijin}@pku.edu.cn
2 Software Institute, Peking University, Beijing, China

Abstract. With the increasing shipment of Android malware, malicious
APK detection becomes more important. Based on static analysis, we
propose a new perspective to detect malicious behaviors. In particular,
we extract the patterns of suspicious APIs which are invoked together.
We call these patterns local features. We propose a convolutional neural
network(CNN) model based on APK’s call graph to extract local fea-
tures. With the comparison of detection experiments, we demonstrate
that the local features indeed help to detect malicious APKs and our
model is effective in extracting local features.

Keywords: Android malware · Call graph · Neural networks

1 Introduction

Android malware detection is increasingly concernful in recent years. The world-
wide shipment of Android smart phones has reached 1.7 billion in 2014, and 2.3
billion in 2015 [1]. As mobile phones become popular, the attacks on Android sys-
tem also become more frequent. A report shows that Android comprises 11.25%
of all the mobile malwares in 2010 but 79% in 2012 [2]. This trend is growing last
few years. 1.19 million new Android malwares come out in 2013 and 1.55 million
in 2014, and 440 thousand in the first three months in 2015, “which means that
a new mobile malware strain for Android was discovered every 18 s” [3]. Huge
amount of Android malwares bring not only disturbing advertisement but also
real benefits loss, such as personal privacy leakage and huge property damage. An
investigation in 2013 indicates that Android attackers can earn twelve thousand
of dollars every month [4]. Besides, Android allows users to download appli-
cations from thirdparty markets as well as unidentified websites. Applications
from unknown sources have higher possibility to contain malicious behaviors.
Furthermore, Android applications request permissions during installation and
Android system grants all the permissions by default. Although users have the
authority to cancel some permissions, most of them just click agree without
thinking about why the applications need the permissions. After the application

c© Springer Nature Singapore Pte Ltd. 2019
Z. Li et al. (Eds.): NASAC 2017/2018, CCIS 861, pp. 72–82, 2019.
https://doi.org/10.1007/978-981-15-0310-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0310-8_5&domain=pdf
https://doi.org/10.1007/978-981-15-0310-8_5

Call Graph Based Android Malware Detection with CNN 73

is installed, there will be no more prompt about the use of permissions. These
factors raise the risk of being attacked by Android malwares.

To protect users from malicious attacks and benefits loss, a lot of researches
have been done on Android malware detection and Android APK analysis. APK
is the short name of Android Package, which is downloaded onto mobile phones
to install the application. According to an investigation in 2015, there are mainly
four kinds of feature analysis to detect Android malware: static feature analysis,
dynamic feature analysis, hybrid feature analysis, and application metadata fea-
ture analysis [11]. Hybrid feature is a combination of static features and dynamic
features. However, only 10% of researches choose to use hybrid features, and only
3% choose application metadata. Thus static analysis and dynamic analysis are
the mainline of Android malware detection.

This paper focuses on static analysis. Since APK detection is complex and the
data set is abundant, researches always choose machine learning to help solve
the problem. The mainline static analysis usually includes two steps: extract
feature vectors and put the vectors into SVM [5,6]. Features usually contain
requested permissions, filtered intents, suspicious calls and many security sen-
sitive characteristics of the whole APK. Then, SVM will mine the malicious
patterns and detect malware by the feature vector of an APK. However, they
do not pay enough attention to local malicious features, which can sometimes
determine whether an APK is malicious or benign. For example, intend to hide
its malicious behaviors from users, some malware send premium messages dur-
ing the early morning hours. If we extract the features of whole APK, we can
just find it will get system time and send messages, which is quite normal for
benign applications. Relatively, if we focus on the local features, we will find that
the application calls get system time API and send messages API(Application
Programming Interface) together, probably in a method, which is abnormal and
can give us an alert that it may be a malicious behavior.

Analyzing APK file is a time-consuming work. To fetch the local features of
an APK, we need to find a balance between information and the time it costs.
Call graph is a proper choice. After we decompile the APK file, we can easily get
the call graph of application by Soot. It takes about one minute to get the call
graph on average, which is efficient in APK analysis. Besides, call graph contains
the invoke relationship between methods and the APIs called by every method,
from which we can extract local features. Convolutional neural networks is a
suitable method to draw local information and it has significant effect in image
progressing [12]. Thus we propose a convolutional neural network model based
on the call graph of Android APK.

To evaluate our model, we carry several experiments on a data set of 1000
applications. Our model is 11.8% higher in recall and 6.9% higher in F-measure
than the feature extracted from the whole APK angle. The result demonstrates
that the local feature is effective for Android malware detection and indeed
decrease the possibility of false labeling benign applications. It is worth men-
tioning that all the training and detecting process is automated without manual
work.

74 Y. Liu et al.

There are mainly three contributions of this paper:
First, We propose a new angle to detect Android malwares in static APK

analysis, which is to extract local features. Secondly, we give a convolutional
neural networks model based on the call graph to extract the local features.
Thirdly, we validate the effect of local features by several experiments.

In the rest of this paper, we first present the detailed convolutional neural
network model in Sect. 2. Then we evaluate the model and illustrate the local
feature’s efficiency in Sect. 3. Afterwards we discuss some related works in Sect. 4
and make a conclusion in Sect. 5.

2 Approach

In this section, we will introduce our neural network model in detail. Figure 1
shows the architecture of the entire model from APK file to the output: APK
file, method representation layer, convolution layer, pooling layer, hidden layer
and output layer. We will present them in this order.

2.1 Method Representation Layer

After we decompile an APK file, we can easily extract its call graph by tool
Soot. Each node on the call graph represents a method and every edge repre-
sents an invoke between methods. The call graph is a directed acyclic graph,
which means we do not need to consider circle edges. There are usually a huge
amount of methods in an APK. For some complicated applications, the total
number can reach hundreds of thousands. Thus it’s not sensible to feed all of the
method nodes into neural networks, otherwise the model will be too slow and
hard to train. So we must focus on some special methods which are suspicious
for malware detection.

We choose a subset of “security sensitive methods” from [8] as suspicious
methods:

1. Permission protected methods. Android have a permission management to
prevent from applications’ intrusion. If an application wants to invoke certain
sensitive methods, for example take a picture, it need to get corresponding
permission granted by users. These methods are highly suspicious for malware
detection. Detailed information can be found in [9].

2. Source or sink methods. Source methods are those methods which may get
sensitive data, like personal contacts. Sink methods are the methods which
may leak the data out, for example send them through email. Rasthofer et al.
specify those methods in [10].

3. Java reflection methods. Java reflection system is a dynamic system which
enables executing java program to identify a class by its object, invoke an
object’s method, create an object of a class, and get the variables or methods
of a class. These methods are also suspicious and may give us an alert at
malware detection.

Call Graph Based Android Malware Detection with CNN 75

Fig. 1. The Architecture of convolutional neural network model(from APK to output).

There are 10029 suspicious methods in our final method set chosen from
[8]. Since all suspicious methods are API calls, they will not invoke any other
methods, which means they are all leaf nodes on the call graph. Fortunately,
only 3% to 4% methods on the call graph are suspicious methods according to
our statistics. In other words, this measure cuts down the scale of input greatly.
So we can handle most of the APKs with the time and memory limit.

Like word to vector in the natural language model, we initialize the repre-
sentations of suspicious methods randomly and optimize them through training
process. We will discuss the dimension of representations in Sect. 3.

2.2 Convolution Layer

Local features are the patterns of the suspicious methods invoked together. From
another view, we need to find the methods which invoke several suspicious meth-
ods. Invocation is divided into direct invocation and indirect invocation. For indi-
rect invocation, we consider two-step invocation preliminarily. In other words,
when we do convolution on a method, we only care about the suspicious methods
called by it and by the methods it called. Convolution fits well in this situation.
Like convolution on a picture, we can easily do the convolution on this call
graph. Figure 2 gives an example of convolution. Suspicious methods are labeled
blue and purple. As we do the convolution on the yellow node, we consider the
three suspicious methods in the dotted line circle. Finally we get the brown node
which contains the local features around the origin yellow one. Experiments in
Sect. 3 shows the convolution helps to contract the local features efficiently in
our model.

Another point is that we initialize the representation of suspicious methods.
Every suspicious node in the call graph has its corresponding representation
now. For the unsuspicious nodes, since they do not represent any suspicious
information, we do not need to do convolution on them.

Besides, since a method may be more doubtful if it calls many suspicious
methods indirectly. We have to distinguish the direct invocations and indirect

76 Y. Liu et al.

Fig. 2. Convolution on a node. We do the convolution on the yellow node and we get
the brown node. The blue node in dotted line circle is a direct invocation, while the
purple ones are indirect. (Color figure online)

invocations. So we use different weights for directly invoked suspicious methods
and indirectly invoked suspicious methods:

y = tanh

⎛
⎝

n1∑
i=1

Wconv1·xder,i +
n2∑
j=1

Wconv2·xind,j + bconv

⎞
⎠

where n1 is the number of direct invocations to suspicious methods, n2 is the
number of indirect ones, x refers the representation of the suspicious methods,
Wconv refers weights, and bconv refers biases.

2.3 Pooling Layer, Hidden Layer and Output Layer

Pooling is a common and effective choice after convolution [12]. The are many
kinds of pooling: sum pooling, average pooling, max pooling etc. In this paper,
we test sum pooling and max pooling. Sum pooling gets a better performance.
Thus the experiment result showed in Sect. 3 all use sum pooling. Hidden layer
and output layer are ordinary neural network settings.

3 Evaluation

In this section, we specify our experiment in detail, including the data set, the
tool implementation, the parameter settings, and the result analysis. With the
comparison of the result given by the local feature model and the whole-APK
feature model, we demonstrate the efficiency of local features, as well as the
model we designed to contract them.

Call Graph Based Android Malware Detection with CNN 77

m3 = Join Table

nn.View
nn.Join Table

Split Table

······

··· ···

n
n
.
V
i
e
w

m2a

Split Table
m2a

m4 = sequential(hidden layer and output)

··· ··· ···
m0=sequential

m1=parallel table

m2=sequential

m2b=parallel table

m2b-L1=sequential

m2a=lookup Table

sequential

parallel table

n
n.
L
i
n
e
a
r

nn.Max

Fig. 3. The implementation of convolutional neural network model in torch.

3.1 Data Set and Tool Implementation

we choose 500 malicious APKs from Drebin’s collection [6]. They spend two
years to collect the malicious APKs from various sources, including the Google-
Play Store, Chinese markets, Russian markets, and many others sources. The
malicious data set is reliable and abundant. However, they do not disclose the
benign data set. So we collect 500 benign APKs from GooglePlay. Together the
data set contains 1000 APKs.

We use SOOT to decompile an APK to Jimple code, and then extract the
call graph. Soot is a useful tool to get Jimple code, which is an easy language.
After we get the call graph, we search the suspicious APIs on it. This step may
take much time, especially for the benign apps. At first it takes more than 2 min,
then we improve our algorithm for searching and recursion. Finally the average
analysis time descends to 48.45 s. For the whole classification processing, which
means to get the classification result from the very beginning, it takes about one
minute. It is acceptable in malicious APK detection.

To construct convolutional neural networks, we use Torch, a common plat-
form for deep neural networks. Torch is convenient and efficient when we need
only regular models, for example the convolution model for picture classifica-
tion. However, the size of the convolution window is changing all the time in our
model. The size differs from different APKs and also from different locations on
the call graph. Thus the architecture becomes complicated. Figure 3 shows the
whole architecture of the Torch implementation. In Torch, we can use parallel
table to handle many layers at the same time. Thus we use two parallel tables
for uncertain number of convolution window and uncertain number of nodes in

78 Y. Liu et al.

one window. Sequential is the normal feed forward structure in Torch. Pooling
can be done by two layers: join table and max for max pooling, or join table and
sum for sum pooling.

3.2 Detection Performance

To demonstrate the efficiency of local features, we carry the experiments using
local features and features extracted from the whole-apk perspective. We also
feed the whole-APK features to deep neural networks in order to control vari-
able. Since the whole-APK feature doesn’t have any structure, so we use a feed-
forward neural network model. The result shows local features indeed help to
detect malicious APKs. Following subsections will show the detect performance
of whole-APK feature model first, and then the local feature model, finally the
comparison and analysis.

3.2.1 Whole-APK Features

Whole-APK feature means the suspicious APIs invoked in the whole APK.
Unlike local features, whole-APK features can not tell how many times an sus-
picious API is invoked or which APIs are invoked together. It can only tell the
suspicious APIs that have been invoked by this APK.

To represent the API set, we try one hot model and API set model. In one hot
model, the length of feature is fixed. The feature is a 01 sequence in which every
digit represents an unique API. If this APK invokes the API, the corresponding
digit is 1, otherwise is 0. In API set model, the feature is a set of API numbers.
Every number represents an API and the size of the set differs from APKs. We
feed the features to a deep neural network for both models.

The detect performance is evaluated in precision, recall and F1-value. Table 1
shows the experiments’ result. One hot model is sensitive to find malicious APKs,
which gives it a high recall but also low precision. The reason is possibly that
fixed length and digits make it easy to mine patterns among suspicious APIs. API
set model gets better F1-value because of its balanced performance in precision
and recall.

3.2.2 Local Features

Local features can tell the APIs invoked together and the times they are invoked.
Table 2 shows the detection performance of local features extracted by convolu-
tional neural networks.

We change the dimension of embedding from 30 to 150. It comes out that
long dimension contributes to precision but sometimes has a negative effect on
recall. The balanced point is 80 on which the F1-value is 86.5%. We will compare
this result with the whole-APK feature’s performance in the next subsection. We
also test some other parameter settings such as pooling, which will be discussed
in detail in Sect. 3.3.

Call Graph Based Android Malware Detection with CNN 79

Table 1. Detection results using whole-APK features

Model Precision(%) Recall(%) F1(%)

One hot 50.8 95.0 66.2

API set 81.1 78.2 79.6

3.2.3 Comparison of Detection Result

The best performance of whole-APK features and local features are displayed
in Table 3. Model using local features detect more malicious APKs while mak-
ing fewer mistakes. The F1-value of local feature model is 6.9% higher than
the whole-APK feature model, which indicates the local feature can identify
the malicious behaviors. The result also indicates that our convolutional neural
network model is efficient in extracting local features.

3.3 Parameter Setting

During the cross validation, we try different parameters. For learning rate, we
test 0.01, 0.03, 0.1, 0.3, 1.0. For batch size, we test 5, 10, 20, 50. We get best
results when learning rate is 0.3 and batch size is 5. For pooling layer, we test
sum pooling and 3-way pooling. Sum Pooling gets better performance. For the
dimension of convolution layer and hidden layer, we set them to 512. To enlarge
the capacity of the neural networks, the dimension can be changed, like the
dimension of API embedding.

When we search for suspicious APIs in call graph, there are a huge amount
of methods that only invoke one or two suspicious APIs. In such cases, the local
feature is not strong and worth extracting. So we set a threshold to determine
the minimum of suspicious API number in a convolution window, which means
we do the convolution to a node only when it invokes suspicious APIs more than
the threshold. With the limit to time and memory, the threshold is set to 5.

4 Related Work

Malicious APK detection has been a hot topic for many years. There are a lot
of works about the different methods, models, or features used in the detection.
We will focus on the static analysis and also mention some dynamic analysis
works.

Many of the static analysis papers extract the feature out and then feed the
feature to SVM [5,13,14]. Ma compares the description of an APK and its truly
behaviours to identify the malicious APKs, using SVM as the final classcification
[5]. Schmidt extracts function calls from binaries to detect milicous apps. One
of his advantages is he can detect an installed app in the mobile [14]. There
are many ways to detect malicious behaviours. Wang uses the context to infer
the purpose of permission use in an APK. He also extracts the features from

80 Y. Liu et al.

Table 2. Detection results using local features

Embedding Precision(%) Recall(%) F1(%)

30 85.6 80.1 83.2

80 83.2 90.0 86.5

100 76.6 89.1 82.4

150 77.4 87.3 82.1

Table 3. Detection results using different features

Features Precision(%) Recall(%) F1(%)

Whole-APK 81.1 78.2 79.6

Local 83.2 90.0 86.5

decompiled code and then feed it to SVM [13]. To our best knowledge, our work
is the first to use convolutional neural networks on the call graph.

There also many dynamic analysis for malicious APK detection [15,17].
Carter proposes a system which tests Android application user interfaces auto-
matically and intelligently [16]. Enck tracks the information-flow to detect the
misuse of users’ private data [18]. Zhu does similar work but focus on tracking
taint for real and interactive apps accurately and efficiently [19].

5 Conclusion

The increasing number of Android malwares makes it important to detect mali-
cious applications. We propose a novel idea that use local features for malicious
APK detection. Local features include the suspicious APIs invoked together and
the times they are invoked. Then we design the convolution neural networks
based on the call graph to extract the local features. We construct the networks
in Torch and solve the problem of unfixed size of convolution window. Finally
we carry experiments to compare the detection performance of local features
and whole-APK features. Local feature model is 11.8% higher in recall and 6.9%
higher in F1-score than whole-APK feature model, which indicates the efficiency
of the local feature idea and our convolutional neural networks.

We can also improve our model by enlarge the convolution window or decrease
the threshold. The local feature model needs to be tested in larger data set and
various malicious APK families. Since the suspicious APIs remain nearly the
same, our model may get good performance in detecting new malicious APK
families.

Call Graph Based Android Malware Detection with CNN 81

References

1. Global cumulative shipments of smartphones using the Android operating sys-
tem. https://www.statista.com/statistics/241943/forecast-of-global-cumulative-
shipments-of-smartphones-using-android-os/ (2017)

2. Techcrunch: Android accounted For 79% of all mobile Malware In 2012, 96% In Q4
Alone. http://techcrunch.com/2013/03/07/fsecure-android-/accounted-for-79-of-
all-mobile-malware-in-201296-in-q4-alone/ (2013)

3. Mirko Zorz: 4,900 new Android malware strains discovered every day.
From www.helpnetsecurity.com, https://www.helpnetsecurity.com/2015/07/01/
4900-new-android-malware-strains-discovered-every-day/ (2015)

4. The Register. Earn 8,000 a month with bogus apps from Russian malware factories.
http://www.theregister.co.uk/2013/08/05/mobile malware lookout/ (2013)

5. Ma, S., Wang, S., Lo, D., Deng, R.H., Sun, C.: Active semi-supervised approach
for checking app behavior against its description. In: 2015 IEEE 39th Annual
Computer Software and Applications Conference (COMPSAC), vol. 2, pp. 179–
184. IEEE (2015)

6. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.: DREBIN: effective
and explainable detection of android malware in your pocket. In: NDSS (2014)

7. Zhao, M., Ge, F., Zhang, T., Yuan, Z.: AntiMalDroid: an efficient SVM-based
malware detection framework for Android. In: Liu, C., Chang, J., Yang, A. (eds.)
ICICA 2011. CCIS, vol. 243, pp. 158–166. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-27503-6 22

8. Yang, W., Xiao, X., Andow, B., Li, S., Xie, T., Enck, W.: Appcontext: differentiat-
ing malicious and benign mobile app behaviors using context. In: 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, vol. 1, pp. 303–313.
IEEE (2015)

9. Au, K.W.Y., Zhou, Y.F., Huang, Z., Lie, D.: Pscout: analyzing the Android per-
mission specification. In: Proceedings of the 2012 ACM Conference on Computer
and Communications Security, pp. 217–228. ACM (2012)

10. Rasthofer, S., Arzt, S., Bodden, E.: A Machine-learning approach for classifying
and categorizing android sources and sinks. In: NDSS (2014)

11. Feizollah, A., Anuar, N.B., Salleh, R., Wahab, A.W.A.: A review on feature selec-
tion in mobile malware detection. Digital Invest. 13, 22–37 (2015)

12. Ciresan, D.C., Meier, U., Masci, J., Maria Gambardella, L., Schmidhuber, J.: Flex-
ible, high performance convolutional neural networks for image classification. In:
IJCAI Proceedings-International Joint Conference on Artificial Intelligence, vol.
22(1), p. 1237 (2011)

13. Wang, H., Hong, J., Guo, Y.: Using text mining to infer the purpose of permission
use in mobile apps. In: ACM International Joint Conference on Pervasive and
Ubiquitous Computing, pp. 1107–1118. ACM (2015)

14. Schmidt, A.D., Clausen, J.H., Camtepe, A., Albayrak, S.: Detecting symbian OS
malware through static function call analysis. In: International Conference on Mali-
cious and Unwanted Software, vol. 23, pp. 15–22. IEEE (2010)

15. Zhao, M., Ge, F., Zhang, T., Yuan, Z.: AntiMalDroid: an efficient SVM-Based
malware detection framework for Android. In: Liu, C., Chang, J., Yang, A. (eds.)
ICICA 2011. CCIS, vol. 243, pp. 158–166. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-27503-6 22

https://www.statista.com/statistics/241943/forecast-of-global-cumulative-shipments-of-smartphones-using-android-os/
https://www.statista.com/statistics/241943/forecast-of-global-cumulative-shipments-of-smartphones-using-android-os/
http://techcrunch.com/2013/03/07/fsecure-android-/accounted-for-79-of-all-mobile-malware-in-201296-in-q4-alone/
http://techcrunch.com/2013/03/07/fsecure-android-/accounted-for-79-of-all-mobile-malware-in-201296-in-q4-alone/
http://www.helpnetsecurity.com
https://www.helpnetsecurity.com/2015/07/01/4900-new-android-malware-strains-discovered-every-day/
https://www.helpnetsecurity.com/2015/07/01/4900-new-android-malware-strains-discovered-every-day/
http://www.theregister.co.uk/2013/08/05/mobile_malware_lookout/
https://doi.org/10.1007/978-3-642-27503-6_22
https://doi.org/10.1007/978-3-642-27503-6_22
https://doi.org/10.1007/978-3-642-27503-6_22
https://doi.org/10.1007/978-3-642-27503-6_22

82 Y. Liu et al.

16. Carter, P., Mulliner, C., Lindorfer, M., Robertson, W., Kirda, E.: CuriousDroid:
automated user interface interaction for Android application analysis sandboxes.
In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 231–249.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 13

17. Dash, S.K., Suarez-Tangil, G., Khan, S., Tam, K., Ahmadi, M., Kinder, J., et al.:
DroidScribe: classifying Android malware based on runtime behavior. In: Security
and Privacy Workshops, pp. 252–261. IEEE (2016)

18. Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.G., Cox, L.P., et al.:
Taintdroid:an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Trans. Comput. Syst. 32(2), 1–29 (2014)

19. Zhu, D., Jung, J., Song, D., Kohno, T., Wetherall, D.: Tainteraser: protecting
sensitive data leaks using application-level taint tracking. ACM Sigops Oper. Syst.
Rev. 45(1), 142–154 (2011)

https://doi.org/10.1007/978-3-662-54970-4_13

Software Requirements Elicitation Based
on Ontology Learning

Jie Zhang1, Min Yuan1(&), and Zhiqiu Huang2

1 College of Computer Science and Technology,
Nanjing Normal University, Nanjing, Jiangsu 210023, China

jzhnnu@gmail.com, yuanmn@gmail.com
2 College of Computer Science and Technology, Nanjing University
of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China

zqhuang@nuaa.edu.cn

Abstract. User demand is the key to software development. The domain
ontology established by artificial intelligence can be used to describe the rela-
tionship between concepts and concepts in a specific domain, which can enable
users to agree on conceptual understanding with developers. This paper uses the
ontology learning method to extract the concept, and the ontology is constructed
semi-automatically or automatically. Because the traditional weight calculation
method ignores the distribution of feature items, the concept of information
entropy is introduced and the CCM method is further integrated. This method
can improve the automation degree of ontology construction, and also make the
user requirements of software more accurate and complete.

Keywords: Requirements engineering � Domain ontology �
Ontology learning � Concept extraction

1 Introduction

1.1 Background

With the development of software engineering technology, the focus of software
development has been changed from code writing to demand acquisition, and the
understanding of requirements and software concepts by users and developers is also
becoming more important even if it is difficult to maintain consistency. This bias may
be overlooked in the early stages of software development, but when the software
system design is completed, users will find that there is a difference in functionality,
which can be costly for developers. Therefore, it is particularly important to identify the
needs of users in software development. For users, they cannot provide accurate
demand information at once, and do not know how to express their needs in terms. On
the other hand, developers can only wait for users to provide information due to lack of
domain knowledge, and the information provided by the user may be inconsistent with
the terminology, which will make the developed software differently than the user
expected. The main reason for this phenomenon is that the background knowledge of
users and developers is inconsistent with the conceptual understanding. In semantics,

© Springer Nature Singapore Pte Ltd. 2019
Z. Li et al. (Eds.): NASAC 2017/2018, CCIS 861, pp. 83–98, 2019.
https://doi.org/10.1007/978-981-15-0310-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0310-8_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0310-8_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0310-8_6&domain=pdf
https://doi.org/10.1007/978-981-15-0310-8_6

the meaning of ontology can be used to solve the inconsistency problem, and domain
ontology [1] can describe domain knowledge to express the semantic relationships
between concepts. Based on domain ontologies, it can enable users and developers to
reach a conceptual understanding and communicate better, which can make the
extraction of user requirements more accurate.

1.2 Related Work

At present, the ontology has been widely used in software requirements engineering.
For instance, Yuan and Tripathi put forward a method that use ontology to deal with
the problem of requirements elicitation [2]. Bhatia, Beniwal and Kumar used ontology
to detect automatic and update of requirement specifications [3]. Karatas, Iyidir and
Birtu proposed a method that ontology-based software requirements reuse and use this
case in fire control software product line domain [4]. Also, Sitthithanasakul and
Choosri used ontology to enhance requirement engineering in agile software process
[5]. And in many literature, ontology plays an important role in software requirements.
For example, Tatiana Avdeenko and Natalia Pustovalova used ontology to support the
completeness and consistency of the requirements specification [6]. Saito, Iimura and
Mikio Anyama proposed a requirements software ontology [7]. At the same time, Yang
and Zhang used domain ontology as the basis of feature modeling [8]. Djilani, Khiat
and Khouri explained ontology in requirements software through graph and ontology
matching [9]. However, in ontology construction, the degree of automation of ontology
acquisition is not high. It still rely on domain experts to extract. Therefore, this paper
mainly focuses on the analysis of ontology construction, exploring the concept
extraction method to make the software requirements more accurate. At present, the
common concept acquisition methods are: rule-based methods, statistical methods and
hybrid methods, among which the most important is based on statistics. Sometimes, the
method based on rule is used to solve the problem of conceptual similarity.

Ontology can solve the semantic problems well and can be used to improve the
ability of software requirements extraction, so the ontology construction becomes more
important. There are two ways to build ontology: the manual construction of ontology
and ontology learning. The main application is to use ontology learning methods to
build ontology without the problems of domain experts to build ontology and updating
in time. The purpose of ontology construction through automatic or semi-automatic
way is to realize the sharing and reuse of information, spread the knowledge, and
expand the field of influence.

However, the current ontology learning method still has many defects:

(1) Lack of a unified ontology learning method. Although it has been developed, the
ontological learning methods provided by the system are difficult to be reused by
other systems because of the different data sources, learning methods and learning
objectives of each system.

(2) The semantic extraction is not accurate enough. Since all kinds of extraction
algorithm have their own advantages and disadvantages, and no algorithm can be
done in linear time, these algorithms are constantly optimized, which makes the
ex-traction semantics can be further accurate.

84 J. Zhang et al.

(3) The current system lacks the processing of Chinese text. Most of the current
popular systems are based on English. In the current system based on Chinese, the
extraction algorithm is still not mature enough and the Chinese input has a variety,
which makes it more difficult to deal with Chinese.

This paper presents a method to construct software requirement ontology [10]
based on ontology learning. Through building ontology, it can create connections
between users and developers, and also guide users to provide more accurate
requirements [11].

2 Ontology Learning

2.1 Ontology Construction

Ontology [12] is the concept of philosophy category that can be used to express the
subject or oneself of things. Since the development of computer science, it is defined
as: “ontology is a clear specification of conceptualization.” In a certain filed, ontology
is only an indirect description of information. And the representation of information in
the form of the model makes the domain concept more intuitive. Therefore, ontology
has four characteristics [13], as shown in Table 1:

The modeling primitives commonly used in ontology construction are:

(1) Terminology: it is used to refer to concepts in a professional field. When used in a
particular field, the representation of knowledge is conducive to the conceptual-
ization of the text.

(2) Concept: it is used to reflect the unique properties of things.
(3) Axiom: it is used to model sentences that always true.
(4) Instance: represents the existing element.
(5) Relationships: it can be used to express a concept or to associate two concepts,

representing the hidden connections between them.

The process of ontology construction is actually to obtain domain knowledge, and
the main idea is to abstract the concepts and concepts in the domain to get the model of
the field. There are several rules for constructing ontologies, as shown in Table 2:

These rules are just a simple abstract constraint. In practice, the rules are typically
instances of these rules, so we do not necessarily follow it.

Table 1. Ontology feature

Features Description

Conceptualization An abstract representation of the objective world phenomenon
Explicit Precisely define concepts and their relationships
Formal Describe things accurately
Share The knowledge defined in ontology can be used together

Software Requirements Elicitation Based on Ontology Learning 85

2.2 Ontology Learning

Ontology learning [14] is used to solve the problems created by the manual con-
struction of ontology. It is mainly based on the different data of learning, which can
implicitly reflect the general flow of ontology learning. At present, most of the
ontology learning systems at home and abroad are based on this process, as shown in
Fig. 1:

3 Acquisition of Ontology

Ontology acquisition is an important step in ontology construction, which is the core
concept of domain extraction. Firstly, this section analyzes concept extraction methods,
mainly introduces the CCM (Character Combine Method) and TFIDF (Term

Table 2. Constructing ontology rules

Rules for construct ontology:

(1)
Objectivity: the relationship between concepts and concepts defined in the ontology should exist
objectively
(2)
Completeness: the semantic description in ontology is as complete as possible
(3)
Consistency: the concept of a predefined concept should be consistent with the concept of
inference
(4)
Extensibility: attributes can be added directly to the constructed ontology
(5)
Minimum ontology commitment: the concept of ontology contained less is better, and the target
should be given the smallest constraint modeling object

Fig. 1. Ontology learning flow chart

86 J. Zhang et al.

Frequency Inverted Document Frequency) method. Then the concept of information
entropy is introduced and the concept of information entropy is added to the TFIDF
method. Finally, the algorithm of CCM and TFIDFE will be proposed.

3.1 Concept Extraction Method

(1) Rule-based methods: On the basis of linguistics, we analyze the text set, sum-
marize the rules and establish a rule base, and then the concept of domain can be
obtained by comparison. By comparing rules, it can be clear whether the concept
is a domain concept.

(2) Statistical methods: the concept of domain concept is extracted from the difference
in the information by using common concepts and domain concepts, which are
mainly two kinds of domain relevance and domain consensus.

(3) Mixed methods: it generally can be divided into two kinds [15]. One is to sum-
marize the rules, establish the rule base, and then to extract the domain concept by
means of statistics; another is to extract conceptual by using statistics, and then
establish rules for the concept of extraction.

3.2 The Common Approach

3.2.1 Domain Relevance and Domain Consensus
Domain consensus is used to represent the distribution of concepts in part of the realm,
and the more evenly distributed, the more likely the concept is to be a domain concept.
In the field of Dk , the calculation formula for calculating the degree of the concept t
distribution is:

DC t;Dkð Þ ¼ H p t; dð Þð Þ ¼
X

p t; dð Þ log 1
p t; dð Þ

� �
ð1Þ

Where d represents a randomly selected document in the domain, and p(t,d) can be
used to estimate probability.

p t; dð Þ � ft;jP
d2Dk

ft;j
ð2Þ

Where ft;j represents the frequency that the concept t appears in the first j document,
and use H p t; dð Þð Þ to represents the information entropy.

Domain relevance is used to describe the relevance of the concepts and specific
areas. And the closer the concept is to the field, the more likely the concept is to be a
domain concept. In this field of Dk, the calculation formula of concept t is:

DRt;k ¼ p tjDkð Þ
p1� j� n tjDj

� � ð3Þ

Software Requirements Elicitation Based on Ontology Learning 87

Where ft;j means the frequency of the concept t in the domain Dk and pðtjDkÞ can
be calculated using formula 4:

E p tjDkð Þð Þ ¼ ft:kP
ft;k

ð4Þ

3.2.2 CCM+TFIDF

1. CCM

When preprocessing in the field, the problem of tool recognition or the meaning of the
word itself may produce a single concept. So we can use the CCM method to deal with
these individual concepts with practical significance. Specific steps can be performed in
the following ways, as shown in Table 3:

2. TFIDF
(1) TF

In general, the keyword is a simple expression of the views in the file, which can be
displayed in many parts of the document, and so the frequency will be higher.
Moreover, the number of words is also related to the length of the document. Though
using the keyword or the number of the words cannot accurately express the word
itself, the TF is presented, using the frequency of the word in the concentration to
replace the word itself make more accurate. The formula in the concept set j is:

tfij ¼ nijP
k
nkj

ð5Þ

In this formula, ni;j represents the number of words that appear in the concept set j,
and

P
k
nk;j represents the sum of the occurrences of all the words in the concept set.

Table 3. CCM processing steps

CCM processing steps:

(1)
After a sentence is preprocessed, if there are adjacent words, you can combine these words into a
single word
(2)
If only it is produced in a sentence, the word is merged with the front word and the back word
into a new word
(3)
Filter the merged files to remove meaningless words. By calculating the frequency of all words,
we can set a threshold to select all words with a frequency greater than the threshold

88 J. Zhang et al.

(2) IDF

This concept is mainly based on the frequency of words in the concept concentration to
give the corresponding weight to the word, which can also be interpreted as the
distribution of a word in a concept under certain conditions. So the frequency of a word
in the concept is higher, the less information entropy is contained. When calculate the
IDF value of a word, we use N to represent the number of the words that appear in the
document, and use n to represent the total number of documents, so the formula is:

IDF ¼ lbN � lbðnþ 1Þ ð6Þ

(3) TFIDF

TFIDF is formed by the concept of TF and IDF. It means that the frequency of a word
appears in a document, making the TF value is high and having the stronger ability to
express the content of the document, so it should be given a higher weighting. If a word
appears in a set of documents and the calculated IDF value are smaller, we can know
that the more ability to distinguish the content of a document and the higher weight
should be given.

TFIDF ¼ TF � IDF ð7Þ

The general steps of using the TFIDF algorithm to extract concepts are shown in
Table 4:

3.2.3 Information Entropy
Entropy is used to indicate the degree of confusion in the system, it has its application
in different fields; specifically, it can be used to describe the degree of uncertainty of the
system in the domain of information technology. In other words, it is used to express
certain states.

Table 4. TFIDF processing step

TFIDF processing step:

(1)
Statistics the frequency of each word appearing in the field text;
(2)
Statistics the number of each word appears in the set of background corpus (a set of texts);
(3)
Calculate the TFIDF value of each word according to the formula;
(4)
Sorting according to the obtained TFIDF value;
(5)
Set the threshold value for TFIDF to be selected as a candidate set

Software Requirements Elicitation Based on Ontology Learning 89

Information entropy [16] is a concrete application of the concept of entropy, which
refers to the average amount of information after excluding from the information. In
other words, because of the uncertainty of information, it is not clear what is going to
be sent, and then we need to use an indicator to measure the probability of the
occurrence of parameters. When the probability is greater, the uncertainty becomes
smaller. Given an x, and use p(x) to represent the probability of x, and the uncertainty
in space can be calculated using the following formula:

H xð Þ ¼ �
Xn

i¼1

p xið Þ log2 p xið Þ ð8Þ

3.3 CCM+TFIDFE

3.3.1 TFIDFE
There are some shortcomings when using the TFIDF method to extract the concept. For
example, IDF is not the only criteria for the word in a text, only calculating this will
produce a large errors; When determining the IDF parameters, we only calculate the
number of words in the document but the distribution is not considered, which will lead
to the calculation of the IDF parameters are not accurate. Because of the uncertainty of
the information entropy in the whole space, this uncertainty can also be used to rep-
resent the distribution. When the uncertainty is higher, the distribution is more uniform
in the whole space. In order to solve the problem of IDF parameters, the concept of
information entropy can be introduced into TFIDF method to get TFIDFE method. At
this time, the calculation formula of information entropy is changed to:

E tð Þ ¼ �
Xn

1

pt dið Þ log2 pt dið Þ ð9Þ

Where pt dð Þ represents the probability that the concept t is in the document di, and
use n to represent the total number of documents, and then the calculation method of
pt dð Þ is shown in formula 10.

pt dð Þ ¼ ft;i
Pn

j¼1
ft;j

ð10Þ

Where ft;j represents the number of times that the concept t appears in the document

di, and
Pn

j¼1
ft;j represents the total number of words that appear in all domain documents.

At this time, the calculation method of TFIDFE is:

TFIDFE ¼ TFIDFðiÞ � EðiÞ ð11Þ

90 J. Zhang et al.

3.3.2 CCM+TFIDFE
When dealing with the document sets, we find some stop words in the document, and it
only have the effect of connection and no practical significance. So we use the special
characters to replace the stop words in this paper to reduce the complexity of the
document.

First of all, preprocessing the acquired domain text sets. However, the retrieved data
may be incomplete or dirty, so we need to clean up it, including deleting the text that
contains the scrambled code, deleting duplicated documents, deleting a large number of
duplicates in content and deleting documents containing a large number of tags. After
the field text set is ready, the word segmentation and the word labeling should be carried
out. And then using the special characters to replace the stop words, followed by the
CCM method, however the candidate words cannot be directly used as the domain
concept, mainly because the words that are written in a single word are not necessarily
domain words. So in order to make the concept of capture more accurate, the result of
the CCM method extraction is put into the user’s dictionary, and then uses the TFIDFE
method to handle it. Finally, the concept of domain is obtained through manual
screening. At this point, the concept extraction process should be as shown in Fig. 2:

3.4 A Sample for Computation Process

It is assumed that there are 10 sets of texts, which are described in the fields of
automobile, finance, sports, computer and painting. Among the document 1,3,7 are
described on automobile filed, the document 2,10 are described in painting field, the
document 4 is described in financial field, the document 5 and 6 are described for sports
field, and the document 8 and 9 are described in computer field. If the concept of
“series” is calculated in the text, the probability of the occurrence of the text is counted
firstly, and then calculates the total number of the concepts in the text. Lastly, we
calculate the value of DC, DR and TFIDFE according to the formula.

Fig. 2. Concept extraction process

Software Requirements Elicitation Based on Ontology Learning 91

The computational concept “series” focuses on the first text in the automotive field is:

p t; jð Þ ¼ 20
20þ 23þ 21

¼ 0:3125

The concept “series” is in the automotive field:

p tjDkð Þ ¼ 20þ 23þ 21
120þ 235þ 560

¼ 0:069945

TF ¼ 20þ 23þ 21
120þ 235þ 560

¼ 0:069945

IDF ¼ ln 120þ 235þ 560ð Þ � ln 20þ 23þ 21þ 1ð Þ ¼ 2:644537

The following text is resolved in this way, as shown in Tables 5 and 6.

4 Examples of Requirements Elicitation

In order to better guide users to provide more accurate demands in the software
development, this paper proposes a software requirements acquisition method based on
ontology learning, which can be used to get the domain concept through the processing
of relevant documents of user requirements in the domain. For example, employees at

Table 5. Training dataset

J f t;j Total P(t, j) −P(t, j)*log(t, j)

1 20 120 03125 0.157859
2 34 245 0.53125 0.145935
3 23 235 0.593 0.159725
4 45 123 1 0
5 62 452 0.446043 0.156393
6 77 178 0.553957 0.142103
7 21 560 0.328125 0.1588
8 12 450 0.66667 0.117394
9 6 348 0.33333 0.15904
10 30 569 0.46875 0.154246

Table 6. Calculating result dataset

Domain(K) Number Total DC DR TF IDF E(K) TFI-DFE

Automobile (1,3,7) 64 915 0.45 0.19 0.069 2.644 0.4763 0.088
Painting (2,10) 64 814 0.3 0.22 0.078 2.527 0.3001 0.059
Finance (4) 45 123 0 1 0.365 0.983 0 0
Sports (5,6) 139 630 0.29 0.60 0.220 1.504 0.2984 0.099
Computer (8,9) 12 798 0.12 0.06 0.022 3.737 0.2764 0.023

92 J. Zhang et al.

the company process impact presently spend an average of 65 min per day going to the
cafeteria to select, purchase and eat lunch. Also, employees don’t always get the
selections they want because the cafeteria runs out of certain items, making the cafe-
teria wastes a significant quantity of food that is not purchased and must be thrown
away. So many employees have requested a system that would permit a cafeteria user
to order meals (defined as a set of one or more food items selected from the cafeteria
menu) on line, to be picked up at the cafeteria or delivered to a company location at a
specified time and date. The user requirements are obtained after the software
designer’s analysis of the system, but this may lead to extract less demand. Therefore,
when using ontology learning method to extract the requirements, users will only need
to deliver the requirements document to the system to get the user’s demand without
excessive human involvement. So the user demand will be more objective. In order to
verify the feasibility of using the CCM+TFIDFE method to extract user requirements,
this paper divides the Cafeteria Ordering System into several scenes based on the
document 17, and then puts the description of each scene into the document. Then use
this method to search the document to extract the user requirements.

4.1 Experimental Data

The acquisition of user requirements is to find out all possible concepts in the Cafeteria
Ordering System [17]. According to the requirements of the system, it can be seen that
the users include Patron, Cafeteria Staff, Menu Manager and Meal Deliverer, which
will produce a series of relationships, and also lead to a lot of information and questions
that need to be managed and answered. So we can answer and solve problems by
creating ontology methods. We can separate the system into several scenarios
depending on the user’s differences, which can be searched in the scene, and the scenes
described in the process including the place, deliver, menu, units, confirm, pay, and
done. Last add a description of these types of scenes to the document. As shown in
Table 7:

Table 7. The main description of the scene

Scene Description

Place Placing a meal order
Deliver The patron shall specify whether the order is to be picked up or delivered
Menu The COS shall display a menu for the date that the Patron specified
Units The COS shall permit the user to order multiple meals and multiple food items
Confirm The COS shall prompt the Patron to confirm the meal order
Pay When the Patron indicates that he is done placing orders, the COS shall ask the

user to select a payment method
Done When the Patron has confirmed the order, it shall do the transaction as store,

inventory, menu, times, patron, cafeteria and failure

Software Requirements Elicitation Based on Ontology Learning 93

4.2 CCM+TFIDFE

After preprocessing the documents, they are divided into words and its parts, and the
words are removed from the list. Then use the CCM method to merge the documents
and set the threshold to 4. After artificial screening, the concept of domain is gained
and adds it to the user’s dictionary. As shown in Table 8:

Then, using the TFIDFE method to handle the words in the user dictionary, cal-
culating the value of each words and setting the threshold to 0.35. After a manual test,
you can get a collection of concepts. As shown in Table 9:

4.3 Analysis of Results

The experimental results are analyzed, and the index [15] is precision and recall rate.

Recall ¼ N
A

ð12Þ

Pr ecision ¼ N
M

ð13Þ

Where N is the correct number of concepts obtained, and M is the number of
concepts extracted while A is the number of concepts that exist in the document.

In order to verify the feasibility and validity of the CCM+TFIDFE method, we use
three methods: TFIDF, CCM+TFIDF and CCM+TFIDFE to extract concepts. After
artificial calculation, the correct concept number can be obtained, then compare it, and
the method adopted in this paper can be obtained.

Table 8. Collection of concepts obtained by part of CCM

Concept Word frequency Concept Word frequency

Deliver location 50 Employee ID 72
Food item price 59 Meal date 43
Meal order 42 Menu 24
Order date 10 Patron 79
Payment method 34 Transaction 20

Table 9. Concept of part of domain

The concept of part of domain

Deliver Location Time Pay Buy Transaction Employee
Food items Price Meal order Menu Order Patron Payment

94 J. Zhang et al.

There are three methods to deal with any document, and using the X-axis to rep-
resent the number of the correct concepts, and the Y-axis is the way to extract the
concepts, then the correct number of concepts is obtained as shown in Fig. 3:

It is easy to see that using CCM+TFIDFE method can improve the correct number
of concepts extracted. Also the combination of CCM and TFIDF is higher than the
correct concept number extracted by using any one method. When the number of
documents to be selected is 1, 3, 5, 7, the number of concepts extracted by the above
method are compared with the number of concepts extracted by the domain experts,
and the comparison of the precision rate and the recall rate are shown in the figure
below. In the figure, using the X-axis to show the number of different documents and
the Y-axis is the difference in the concept of extraction, the precision rate and the recall
rate (Figs. 4, 5 and 6).

Fig. 3. The correct number of concepts extracted

Fig. 4. The number of concepts extracted

Software Requirements Elicitation Based on Ontology Learning 95

The following conclusions can be drawn from the above diagram:

(1) The number of requirements extracted by CCM+TFIDFE method is more than the
number of software developer, and the precision rate and recall rate are high. It is
proved that CCM+TFIDFE method can improve the accuracy of extraction
requirements.

(2) The method of CCM+TFIDF is more superior to the TFIDF method, which shows
that the error caused by participle tool can be solved by the domain dictionary,
and the method of using special characters to replace the stop words can also
improve the accuracy of concept extraction. It is also possible to add more fre-
quent concepts to the domain dictionary by manual checking, to increase the
scope of the domain dictionary, and to improve the accuracy of the concept of
TFIDF method extraction.

(3) It can be seen from the above chart that the method of CCM+TFIDFE is feasible
regardless of the number of scenes chosen. And the accuracy of the number of
experts extracted from the number of documents will decrease.

5 Conclusion

As a modeling tool that can describe the system at the semantic and knowledge level,
ontology has been widely concerned and applied since it was put forward, and the
ontology learning has also received great attention. In software development, demand
acquisition is an important first step. Due to the difficulty of communication between
users and developers, ontology can be used to solve semantic problems, so we pro-
posed a software requirement acquisition method based on ontology learning. It mainly
analyzes the concept extraction method, which can not only improve the automation
degree of ontology construction, but also be more accurate and complete.

In the other aspects of ontology construction and application, ontology learning
remains to be further studied. The extraction of concept relationship and the learning of
axioms will also be the focus of future research in the domain of ontology learning, and
the changing concept will also be a challenge for concept extraction.

Fig. 5. Precision of concepts extracted Fig. 6. Recalling of concepts extracted

96 J. Zhang et al.

Acknowledgement. This work is partially funded under The main of our work is supported by
the National Key R&D Program of China (2018YFB1003902), the key Project of 13th Five-Year
Plan of Education Science in Jiangsu Province (C-b/2016/01/24), the Postgraduate Research &
Practice Innovation Program of Jiangsu Province (SJCX19_0201), the Key Project of Education
Reform Research in 2018 and the Research Foundation for Advanced Talents at Nanjing Normal
University.

References

1. Jin, Y., Zhang, P.: An approach to analyzing and verifying aspect-oriented requirements
model. Chin. J. Comput. 36(1), 63–72 (2013)

2. Yuan, X., Tripathi, S.: Combining ontologies for requirements elicitation. In: 5th
International Proceedings on IEEE International Model-Driven Requirements Engineering
(MoDRE), Ottawa, Canada (2015)

3. Bhatia, M.P.S., Beniwal, R., Kumar, A.: An ontology based framework for automatic
detection and updation of requirement specifications. In: 1st International Proceedings on
International Conference on Contemporary Computing and Informatics (IC3I), Mysore,
India (2014)

4. Karatas, E.K., Iyidir, B., Birturk, A.: Ontology-based software requirements reuse: case
study in fire control software product line domain. In: 14th International Proceedings on
IEEE International Conference on Data Mining Workshop (ICDMW), Shenzhen, China
(2014)

5. Sitthithanasakul, S., Choosri, N.: Using ontology to enhance requirement engineering in
agile software process. In: 10th International Proceedings on International Conference on
Software, Knowledge, Information Management & Application (SKIMA), Chengdu, China
(2016)

6. Avdeenko, T., Pustovalova, N.: The ontology-based approach to support the completeness
and consistency of the requirements specification. In: 11th International Proceedings on
International Siberian Conference on Control and Communications (SIBCON), Omsk State
Technical University Mira Ave, 11 Omsk, Russia (2015)

7. Saito, S., Iimura, Y., Anyama, M.: REO: requirements engineering ontology. In: 39th
International Proceedings on IEEE Annual International Computers, Software & Applica-
tions Conference (COMPSAC), Taichung, Taiwan (2015)

8. Yang, G., Zhang, Y.: A feature-oriented modeling approach for embedded product line
engineering. In: 12th International Proceedings on International Conference on Fuzzy
Systems and Knowledge Discovery (FSKD), Zhangjiajie, China (2015)

9. Djilani, Z., Khiat, A., Khouri, S.: MURGROOM: multi-site requirement reuse through graph
and ontology matching. In: 18th International Proceedings on International Conference on
Information Integration and Web-based Applications and Services (iiWAS 2016), Singa-
pore, Singapore (2016)

10. Baisong L.: A Study on Web-Based Domain Independent Ontology Learning. Zhejiang
University, Hangzhou (2005)

11. Wang, C., Zhao, W., Wang, J., Chen, L.: Multidimensional customer requirements
acquisition based on ontology. Comput. Integr. Manuf. Syst. 22(4), 908–916 (2016)

12. Wang, X., Xu, J., Liu, M., Wei, Z., Bu, W., Hong, T.: An ontology-based approach for
marine geochemical data interoperation. IEEE Access 5(8), 13364–13370 (2017)

13. Ma, C.: Research on key technologies of ontology learning. Xi’an University of Posts and
Telecommunications, Xian (2016)

Software Requirements Elicitation Based on Ontology Learning 97

14. Lu, R., Jin, Z., Chen, G.: Ontology-oriented requirements analysis. J. Softw. 11(8),
1009–1017 (2000)

15. Jin, Z.: Ontology-based requirements elicitation. Chin. J. Comput. 23(5), 192–486 (2000)
16. Qi, H., Guan, Y., Liu, Y.: Learning ontology of maize pets and diseases from Chinese text.

Comput. Eng. Appl. 47(20), 206–210 (2011)
17. Wiegers, K.E.: Software Requirements, 3rd edn. Microsoft Press, USA (2013)

98 J. Zhang et al.

Software Mining
(NASAC 2018 English Track)

An Empirical Study of Link Sharing
in Review Comments

Jing Jiang, Jin Cao, and Li Zhang(B)

State Key Laboratory of Software Development Environment, Beihang University,
Beijing, China

{jiangjing,CaoJin,lily}@buaa.edu.cn

Abstract. In the pull-based development, developers sometimes
exchange review comments and share links, namely Uniform Resource
Locators (URLs). Links are used to refer to related information from
different websites, which may be beneficial to pull request evaluation.
Nevertheless, little effort has been done on analyzing how links are shared
and whether sharing links has any impacts on code review in GitHub. In
this paper, we conduct a study of link sharing in review comments. We
collect 114,810 pull requests and 251,487 review comments from 10 pop-
ular projects in GitHub. We find that 5.25% of pull requests have links
in review comments on average. We divide links into two types: inter-
nal links which point to context in the same project, and external links
which point to context outside of the project. We observe that 51.49%
of links are internal, while 48.51% of links are external. The majority
of internal links point to pull requests or blobs inside projects. We fur-
ther study impacts of links. Results show that pull requests with links
in review comments have more comments, more commenters and longer
evaluation time than pull requests without links. These findings show
that developers indeed share links and refer to related information in
review comments. These results inspire future studies which enable more
effective information sharing in the open source community, and improve
information accessibility and navigability for software developers.

Keywords: Link sharing · Review comment · Pull request · Github

1 Introduction

Various open source software hosting sites, notably Github, provide support
for pull-based development and allow developers to make contributions flexibly
and efficiently [1,2]. In GitHub, contributors fork repositories and make changes
without asking for permission. Contributors submit pull requests when they
want to merge their changes into the repositories they fork from. Any developers
can provide review comments and exchange opinions about pull requests [3–5].
Members of the project’s core team (from here on, integrators) are responsible
to inspect submitted code changes, identify issues (e.g., vulnerabilities), and
decide whether to accept pull requests and merge these code changes into main
repository [1].

c© Springer Nature Singapore Pte Ltd. 2019
Z. Li et al. (Eds.): NASAC 2017/2018, CCIS 861, pp. 101–114, 2019.
https://doi.org/10.1007/978-981-15-0310-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0310-8_7&domain=pdf
https://doi.org/10.1007/978-981-15-0310-8_7

102 J. Jiang et al.

In the pull-based development, developers sometimes exchange review com-
ments and share links, namely Uniform Resource Locators (URLs). Links are
used to refer to related information from different websites, which may be ben-
eficial to pull request evaluation. Link sharing is an important way of informa-
tion diffusion [6,7]. Nevertheless, little effort has been done on analyzing how
links are shared in a population of pull requests and on whether sharing links
has any impacts on code review in GitHub. The understanding of link sharing
in review comments can enable more effective information sharing in the open
source community, and improve information accessibility and navigability for
software developers.

In this paper, we conduct a study of link sharing in review comments. We
collect 114,810 pull requests and 251,487 review comments from 10 popular
projects in GitHub (Sect. 3). We first study the percentage of pull requests with
links (Sect. 4). Then we divide links into two types: internal links which point to
context in the same project, and external links which point to context outside
of the project. We study the distribution of internal links and external links
(Sect. 5). Finally, we explore impacts of links on pull request evaluation (Sect. 6).

The main findings of this paper are as follows:

– On average, 5.25% of pull requests have links in review comments.
– 51.49% of links are internal, while 48.51% of links are external. The majority

of internal links point to pull requests or blobs inside projects.
– In comparison with pull requests without links, pull requests with links in

review comments have more comments, more commenters and longer evalu-
ation time.

2 Background and Research Questions

In this section, we first introduce background, and then introduce research ques-
tions.

2.1 Links in Pull Requests

Github provides support for pull-based development and allows developers to
make contributions flexibly and efficiently [1,2]. In GitHub, contributors fork
repositories, and make their code changes independent of one another. When
a set of changes is ready, contributors create and submit pull requests to main
repositories. Any developers can leave comments and exchange opinions about
pull requests. Developers freely discuss whether code style meets the standard [8],
whether repositories require modification, or whether submitted codes have good
quality [3]. According to comments, contributors may modify codes. Integrators
inspect submitted code changes, and decide whether to accept pull requests and
integrate these code changes into main repositories or not [9,10].

An Empirical Study of Link Sharing in Review Comments 103

Fig. 1. A link example in a review comment

Link sharing is an important way of information diffusion [6,7]. During dis-
cussion of code review, developers may share some links in comments, and refer
to related information from different websites. In GitHub, pull requests have
three types of comments [11]: First, review comments are comments on a portion
of the unified diff1. Second, commit comments are applied directly to commits,
outside of the pull request view. Third, issue comments are general comments
posted in code review pages. Due to data collection, we mainly study review
comments and describe detailed reasons in Sect. 3.

Figure 1 shows an example of the pull request ID 13638 in the project sym-
fony2. In order to make the figure clear, we mainly show the review comment with
a link. In this figure, a developer hason writes that “In require-dev section is sym-
fony/security which replaces symfony/security-csrf. The symfony/security-csrf is
optional dependency for Form component, see https://packagist.org/packages/
symfony/form.” In this review comment, the developer hason mentions a link
which describes Symfony form component in PHP Package Repository. This link
provides useful information in pull request evaluation.

1 https://developer.github.com/v3/pulls/comments/.
2 https://github.com/symfony/symfony/pull/13638.

https://packagist.org/packages/symfony/form
https://packagist.org/packages/symfony/form
https://developer.github.com/v3/pulls/comments/
https://github.com/symfony/symfony/pull/13638

104 J. Jiang et al.

2.2 Research Questions

The main motivation of this study is to make an empirical analysis on link
sharing in GitHub. To achieve our goal, we would like to address the following
research questions.

RQ1. What is the percentage of pull requests with links in GitHub?
In GitHub, no previous work has studied pull requests with links in com-

ments. Based on our datasets, we compute the percentage of pull requests with
links for each individual project. We explore to what extent are links used in
pull requests of GitHub.

RQ2. What context does links point to?
In this question, we want to explore context of websites links point to. We

divide links into two types: internal links which point to context in the same
project, and external links which point to context outside of the project. Then
we study categories of internal links.

RQ3. What kind of differences are between the pull requests with and with-
out link? Does link sharing influence the evaluation of pull requests?

In order to answer this question, we mainly compare pull requests with links
and without links on the basis of the following characteristics of pull requests: the
number of comments, the number of commenters, evaluation time and acceptance.
Then we use the statistical tests to verify the significance of these differences.

3 Data Collection

There are two ways to get data of open source projects in GitHub. First, GitHub
provides access to its internal data through API3. Second, GHTorrent4 creates a
scalable, queriable, offline mirror of data offered through GitHub API. Consider-
ing the convenience and time cost, we use both methods to collect our datasets.

In data collection, we choose popular projects, because they receive many
pull requests and provide enough information for experiments. We obtain a list
of projects from previous work [12], which made their research projects public5.
We sort their projects by the number of pull requests, and obtain 100 projects
with the most number of pull requests. According to pull requests information,
integrators assign tags to some pull requests from tag library. Tags are a sim-
ple and effective way to attach additional information (e.g., metadata) to pull
requests [13]. According to our previous work6, we select projects with more
than 3,000 tagged pull requests and more than 30 tags in their tag libraries.
Finally, we obtain 10 popular open source projects. Table 1 shows owner names
and project names of these 10 projects.
3 https://developer.github.com/.
4 http://ghtorrent.org/.
5 https://github.com/Yuyue/pullreq ci/blob/master/all projects.csv.
6 Jing Jiang, Jin Cao, Xin Xia, Li Zhang. Exploring and Recommending Tags for Pull

Requests in GitHub. In submission.

https://developer.github.com/
http://ghtorrent.org/
https://github.com/Yuyue/pullreq_ci/blob/master/all_projects.csv

An Empirical Study of Link Sharing in Review Comments 105

Table 1. Basic Statistics of projects.

Owner Project # Pull requests # Review comments

angular angular.js 7, 722 10, 909

bitcoin bitcoin 8, 852 24, 216

ceph ceph 20, 554 34, 097

owncloud core 13, 681 40, 113

elasticsearch elasticsearch 3, 472 8, 989

pydata pandas 5, 354 16, 180

rails rails 20, 842 26, 147

RIOT-OS RIOT 7, 009 29, 779

symfony symfony 16, 492 41, 716

tgstation tgstation 10, 832 19, 341

Total 114, 810 251, 487

Due to the large number of comments in 10 projects, comment collection
through GitHub API is time-consuming. GHTorrent monitors the Github public
event time line, and provides an offline mirror of datasets. We download the
database dumps “mysql-2018-04-01” from GHTorrent, and extract review com-
ments in above 10 projects. For each pull request, we collect its identifiers, the
creation time, the close time, and code review decision. For each review com-
ment, we collect its identifiers, commenter, context and the pull request identifier
which this review comment belongs to. In order to extract links from review com-
ment context, we extract strings which begin with http or https. We study link
sharing in review comments in this paper. In future work, we will collect datasets
though GitHub API, and study commit comments and general comments.

Table 1 presents statistics of 10 projects. The columns correspond to owner
name (Owner), project name (Project), the number of pull requests (# Pull
requests), and the number of review comments (# Review comments). In total,
our datasets include 114,810 pull requests and 251,487 review comments.

4 Link Frequency

In this section, we want to investigate usage frequency of links, and know the
proportion of pull requests which have links in review comments. Table 2 shows
the number of pull requests, the number of links, the number of pull requests
with links, and the percentage of pull requests with links. Since a pull request
may have several links in review comments, the number of links is larger than
the number of pull requests with links. The project angular.js has 7,722 pull
requests, and 321 (4.16%) pull requests have links. On average, 5.25% of pull
requests have links in review comments of 10 projects. When developers discuss
pull requests on a portion of the unified diff, they indeed share links and refer
to related information.

106 J. Jiang et al.

Table 2. Basic Statistics of link frequency in each projects.

Project #Pull requests #links #/% Pull requests with links

angular.js 7, 722 517 321/4.16 %

bitcoin 8, 852 914 519/5.86 %

ceph 20, 554 1, 323 829/4.03 %

core 13, 681 2, 586 865/6.32 %

elasticsearch 3, 472 114 94/2.71 %

pydata 5, 354 486 305/5.7 %

rails 20, 842 1, 631 973/4.67 %

RIOT 7, 009 1, 202 702/10.02 %

symfony 16, 492 2, 175 1,227/7.44 %

tgstation 10, 832 219 192/1.77 %

Total 114, 810 11, 167 6,027/5.25 %

RQ1: On average, 5.25% of pull requests have links in review comments.

5 Context of Links

In this section, we mainly explore context of websites links point to. We divide
links into two types: internal links which point to context in the same project, and
external links which point to context outside the project. We use string matching
to decide whether a link is internal or external. For example, all context in
project symfony has links with prefix “https://github.com/symfony/symfony/”.
Therefore, the link in review comment in Fig. 1 is considered as an external link.
Note that we study project context in GitHub. Some projects may have websites
outside GitHub, which are still considered as external links.

Table 3 shows the number of internal links and external links in each project.
In all projects, the average percentages of internal links and external links are
similar. On average, 51.49% of links are internal, while 48.51% of links are exter-
nal. In review comments, developers use links pointing to context inside the
project as well as outside the project.

We take a further step and study categories of internal links. We consider
6 categories, including pull request, issue, blob, commit, wiki and other. Devel-
opers submit pull requests when they want to merge code changes into main
repositories [1]. In OSS projects, developers write issue reports to identify bugs,
and document feature requests [14]. A Git blob (binary large object) is the object
type used to store the contents of each file in a repository7. For example, a link8

points to the line 81 in the code file ‘config.sample.php’. Satisfactory codes are

7 https://developer.github.com/v3/git/blobs/.
8 https://github.com/owncloud/core/blob/master/config/config.sample.php#L81.

https://github.com/symfony/symfony/
https://developer.github.com/v3/git/blobs/
https://github.com/owncloud/core/blob/master/config/config.sample.php#L81

An Empirical Study of Link Sharing in Review Comments 107

Table 3. Statistics of internal links and external links.

Project #/% Internal links #/% External links

angular.js 225/43.52 % 292/56.48 %

bitcoin 504/55.14 % 410/44.86 %

ceph 617/46.64 % 706/53.36 %

core 1,468/56.77 % 1,118/43.23 %

elasticsearch 59/51.75 % 55/48.25 %

pandas 253/52.06 % 233/47.94 %

rails 865/53.03 % 766/46.97 %

RIOT 671/55.82 % 531/44.18 %

symfony 988/45.43 % 1,187/54.57 %

tgstation 100/45.66 % 119/54.34 %

Total 5,750/51.49 % 5,417/48.51 %

Table 4. Percentage of internal links in different categories.

Project Pull request Issue Blob Commit Wiki Other

angular.js 51.11 8 28 9.33 0.89 2.67

bitcoin 65.67 0.99 27.98 1.59 0 3.77

ceph 57.7 0 38.74 2.59 0 0.97

core 41.83 12.67 39.1 5.52 0.27 0.61

elasticsearch 27.12 16.95 35.59 16.95 0 3.39

pandas 34.39 15.02 44.66 4.74 0.4 0.79

rails 38.5 3.01 43.93 11.79 0 2.77

RIOT 56.04 2.83 27.87 0.75 10.43 2.08

symfony 47.47 6.38 40.89 2.94 0 2.32

tgstation 51 1 42 2 0 4

Average 47.79 6.37 37.63 4.97 1.34 1.9

committed to repositories [12]. Some projects use wiki to write documentation
which helps others use and extend projects9. If internal links do not belong to
above categories, they are classified as other.

In GitHub, the four-level domain name in a link shows its category. For
example, Fig. 1 shows an example of the pull request with link “https://github.
com/symfony/symfony/pull/13638”. In this link, the four-level domain name is
“pull”, which means that this link points to a pull request. We use the four-level
domain name to classify internal links, and describe results in Table 4. Developers
mainly use internal links which point to pull requests or blobs. In 7 projects,
the majority of links point to the category ‘pull request’. In review comments,

9 https://help.github.com/articles/about-github-wikis/.

https://github.com/symfony/symfony/pull/13638
https://github.com/symfony/symfony/pull/13638
https://help.github.com/articles/about-github-wikis/

108 J. Jiang et al.

developers often mention some other related pull requests. In other 3 projects,
the majority of links point to the category ‘blob’, and developers use internal
links and refer to some specific locations of codes. Developers sometime write
links pointing to issues or commits which are related to pull requests. In project
RIOT, 10.43% of internal links point to documents in its wiki.

RQ2: 51.49% of links are internal, while 48.51% of links are external. The
majority of internal links point to pull requests or blobs inside projects.

6 Impacts of Links

In order to answer RQ3, we mainly compare pull requests with links and without
links, and explore impacts of links on pull request evaluation.

6.1 Review Comments and Commenters

We compute the number of review comments for each pull request. Then we
calculate the average number of review comments for pull requests with links and
without links. The Mann- Whitney-Wilcoxon (MWW) test is a non-parametric
statistical test that assesses the statistical significance of the difference between
two distributions [15]. Hence, we perform the MWW Test to test and confirm
the significance of comment difference between pull requests with and without
links.

Table 5. Average number of review comments in pull requests with links and without
links.

Project With links Without links P-value

angular.js 14.07 0.86 <1.00e−05

bitcoin 19.62 1.68 <1.00e−05

ceph 13.55 0.99 <1.00e−05

core 11.81 0.89 <1.00e−05

elasticsearch 23.3 1.94 <1.00e−05

pandas 20.14 1.98 <1.00e−05

rails 10.73 0.76 <1.00e−05

RIOT 21.75 2.3 <1.00e−05

symfony 15.93 1.44 <1.00e−05

tgstation 12.99 1.58 <1.00e−05

Average 16.389 1.442

Table 5 presents average number of review comments for pull requests. We
noticed that the average number of review comments for pull request with links

An Empirical Study of Link Sharing in Review Comments 109

are many more than these of pull requests without links. For example, in project
symfony, the average number of review comments for pull request with links and
without links are 15.93 and 1.44, respectively. The Mann-Wilcoxon-Whitney Test
shows that the differences in review comments of pull requests with and without
links are statistically significant at 0.05 significance level. For all the 10 projects,
the P −values are <1.00e−05. This result indicates that pull requests with links
are likely to have more review comments than pull requests without links. Links
point to related information, and may promote code review discussion.

Table 6. Average number of commenters in pull requests with links and without links.

Project With links Without links P-value

angular.js 2.68 0.34 <1.00e−05

bitcoin 4.06 0.73 <1.00e−05

ceph 2.56 0.38 <1.00e−05

core 2.87 0.41 <1.00e−05

elasticsearch 2.8 0.55 <1.00e−05

pandas 2.74 0.59 <1.00e−05

rails 3.09 0.37 <1.00e−05

RIOT 3.08 0.74 <1.00e−05

symfony 4.04 0.66 <1.00e−05

tgstation 4.48 0.76 <1.00e−05

Average 3.24 0.553

We take a further step and study the number of commenters. Several review
comments may belong to the same commenter. We compare the average number
of commenters for pull requests with and without links, and describe results in
Table 6. The average number of commenters is 0.553 for pull requests without
links, while the value is raised to 3.24 for pull requests with links. Results on the
number of commenters are similar as results on the number of review comments.

6.2 Evaluation Time

For each pull request, we compute evaluation time as time interval between the
pull request’s creation time and the pull request’s close time. Then, we compute
the average value of evaluation time for pull requests with links and without
links, respectively. We also perform a Mann-Wilcoxon-Whitney Test to evaluate
the difference significance of evaluation time between these two groups.

Table 7 presents the average evaluation time for pull requests with links and
without links. Except project elasticsearch, the average evaluation time of pull
requests with links is much longer than that of pull requests without links. The
Mann-Wilcoxon-Whitney Test shows that the differences in evaluation time of

110 J. Jiang et al.

Table 7. Average evaluation time (days) of pull requests with links and without links.

Project With links Without links P-value

angular.js 60.86 42.73 <1.00e−05

bitcoin 60.19 23.08 <1.00e−05

ceph 42.83 17.47 <1.00e−05

core 40.98 13.63 <1.00e−05

elasticsearch 23.77 24.98 <1.00e−05

pandas 35.78 15.35 <1.00e−05

rails 68.38 28.58 <1.00e−05

RIOT 73.32 28.54 <1.00e−05

symfony 60.31 17.2 <1.00e−05

tgstation 9.27 5.97 <1.00e−05

Average 47.569 21.753

pull requests with links and without links are statistically significant at 0.05
significance level. Hence, we conclude that pull requests with links in review
comments require more time to get closed than pull requests without links.

Table 8. The accept rate (%) of pull requests with links and without links.

Project With links Without links

angular.js 16.23 11.75

bitcoin 53.04 48.51

ceph 59.48 53.9

core 33.17 44.7

elasticsearch 7.59 11.18

pandas 18.25 37.09

rails 40.51 48.97

RIOT 42.41 46.93

symfony 31.46 45.79

tgstation 17.3 21.88

Average 31.944 37.07

6.3 Acceptance

In GitHub, integrators inspect submitted code changes, and decide whether to
accept or reject pull requests [9,10]. The acceptance rate is defined as the num-
ber of accepted pull requests, divided by the total number of pull requests.

An Empirical Study of Link Sharing in Review Comments 111

Table 8 shows acceptance rate of pull requests with links and without links. In
the majority of projects, pull requests with links have lower acceptance rate
than pull requests without links. In projects angular.js, bitcoin and ceph, pull
requests with links have higher acceptance rate than pull requests without links.
Since different projects have various results, impacts of links on acceptance are
uncertain.

RQ3: In comparison with pull requests without links, pull requests with
links in review comments have more comments, more commenters and longer
evaluation time.

7 Discussion

7.1 Implications

In this paper, we make an initial study of link sharing in review comments.
Results show that developers indeed share some links which point to context
inside and outside projects. Future works may further explore categories of exter-
nal links, and understand why developers share links. Researchers may inves-
tigate methods for assisting developers discover related information and share
links in review comments. Ye et al. understood the structure and dynamics of the
knowledge network formed by URL sharing in Stack Overflow [7]. Future works
may explore knowledge network formed by link sharing, and study knowledge
diffusion process in GitHub.

7.2 Threats to Validity

In this subsection we introduce threats to the validity of our work and how we
minimize their impacts.

Threats to conclusion validity relate to issues that affect the ability to draw
the correct conclusion. In this paper, we study link sharing in review comments.
Besides review comments, commit comments and general comments are also used
in the discussion of pull requests. In future work, we will collect more datasets,
and study commit comments and general comments.

Threats to external validity relate to the generalizability of our study. Our
empirical results are based on projects in GitHub and it is unknown whether
our results can be generalized to other open source software platforms such as
Bitbucket. In future, we plan to use projects from other open source software
platforms and compare the results with our findings in GitHub.

8 Related Work

Related work to this study could be divided into two main categories, including
link sharing and pull requests evaluation.

112 J. Jiang et al.

Some previous works studied links in GitHub or Stack Overflow. Zhang et al.
made a qualitative study of issue linking in GitHub [16]. Their results showed
that developers tend to link more cross-project or cross-ecosystem issues over
time. Ye et al. understood the structure and dynamics of the knowledge network
formed by URL sharing in programming-specific Q&A sites [7]. Gomez et al.
found that link sharing was a significant phenomenon in Stack Overflow [6].
Different from these works, we mainly study link sharing in pull requests of
GitHub.

There have been several studies about pull request evaluation in GitHub [1–
3,8,17–22]. Gousios et al. investigated the reasons for which some pull requests
were rejected [1]. Dabbish et al. analyzed the association of various technical
and social measures with the likelihood of contribution acceptance [2]. Dabbish
et al. conducted a study of how developers in open work environments evaluated
and discussed pull requests [3]. Hellendoorn et al. evaluated the existence and
effects of code contributions in GitHub [8]. Yu et al. proposed a reviewer recom-
mendation approach by mining each project’s comment networks [23]. Jing et al.
analyzed developers’ activeness to recommend commenters for pull requests [5].
Li et al. designed automatic classification of review comments in pull-based devel-
opment model [21]. In our work, we address a problem different from the above
mentioned studies. In our study we mainly investigate link sharing in pull request
evaluation.

9 Conclusion

In this paper, we study link sharing in review comments of GitHub. We find
that 5.25% of pull requests have links in review comments on average. We divide
links into two types: internal links which point to context in the same project,
and external links which point to context outside the project. We observe that
51.49% of links are internal, while 48.51% of links are external. The majority of
internal links point to pull requests or blobs inside projects. We further study
impacts of links. Results show that pull requests with links in review comments
have more comments, more commenters and longer evaluation time than pull
requests without links. Our findings show that developers indeed share links and
refer to related information in review comments. These results inspire future
studies to build tools and services that help developers find related links in code
review.

Acknowledgment. This work is supported by the National Key Research and Devel-
opment Program of China No. 2018YFB1004202, National Natural Science Foundation
of China under Grant No. 61732019 and the State Key Laboratory of Software Devel-
opment Environment under Grant No. SKLSDE-2018ZX-12.

References

1. Gousios, G., Pinzger, M., van Deursen, A.: An exploratory study of the pull-based
software development model. In: Proceedings of the 36th International Conference
on Software Engineering, pp. 345–355. ACM (2014)

An Empirical Study of Link Sharing in Review Comments 113

2. Tsay, J., Dabbish, L., Herbsleb, J.: Influence of social and technical factors for
evaluating contribution in GitHub. In: Proceedings of the 36th International Con-
ference on Software Engineering, pp. 356–366. ACM (2014)

3. Tsay, J., Dabbish, L., Herbsleb, J.: Let’s talk about it: evaluating contributions
through discussion in GitHub. In: Proceedings of the 22nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering - FSE 2014, pp. 144–154
(2014)

4. Rahman, M.M., Roy, C.K., Kula, R.G.: Predicting usefulness of code review com-
ments using textual features and developer experience. In: Proceedings of MSR,
Buenos Aires, Argentina, pp. 215–226, May 2017

5. Jiang, J., Yang, Y., He, J., Blanc, X., Zhang, L.: Who should comment on this
pull request? Analyzing attributes for more accurate commenter recommendation
in pull-based development. Inf. Softw. Technol. 84, 48–62 (2017)

6. Gomez, C., Cleary, B., Singer, L.: A study of innovation diffusion through link
sharing on stack overflow. In: Proceedings of MSR, San Francisco, USA, May 2013

7. Ye, D., Xing, Z., Kapre, N.: The structure and dynamics of knowledge network in
domain-specific qa sites: a case study of stack overflow. Empir. Softw. Eng. 22,
375–406 (2017)

8. Hellendoorn, V.J., Devanbu, P.T., Bacchelli, A.: Will they like this?: evaluating
code contributions with language models. In: Proceedings of the 12th Working
Conference on Mining Software Repositories, pp. 157–167. IEEE Press (2015)

9. Gousios, G., Zaidman, A., Storey, M.-A., Van Deursen, A.: Work practices and
challenges in pull-based development: the integrator’s perspective. In: Proceedings
of the 37th International Conference on Software Engineering-Volume 1, pp. 358–
368. IEEE Press (2015)

10. Bacchelli, A., Bird, C.: Expectations, outcomes, and challenges of modern code
review. In: Proceedings of ICSE, San Francisco, USA, May 2013

11. Zhang, Y., Wang, H., Yin, G., Wang, T., Yue, Y.: Social media in github the role of
@-mention in assisting software development. Sci. China Inf. Sci. 60, 1–18 (2017)

12. Vasilescu, B., Yu, Y., Wang, H., Devanbu, P., Filkov, V.: Quality and productivity
outcomes relating to continuous integration in GitHub. In: Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, pp. 805–816. ACM
(2015)

13. Cabot, J., Izquierdo, J.L.C., Cosentino, V., Rolandi, B.: Exploring the use of labels
to categorize issues in open-source software projects. In: 2015 IEEE 22nd Interna-
tional Conference on Software Analysis, Evolution and Reengineering (SANER),
pp. 550–554. IEEE (2015)

14. Bissyande, T.F., Lo, D., Jiang, L., Reveillere, L., Klein, J., Le Traon, Y.: Got issues?
Who cares about it? A large scale investigation of issue trackers from GitHub. In:
Proceedings of ISSRE, Washington DC, USA, November 2013

15. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is
stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947)

16. Zhang, Y., Yu, Y., Wang, H., Vasilescu, B., Filkov, V.: Within-ecosystem issue
linking: a large-scale study of rails. In: The 7th International Workshop on Mining
Software Repositories, Montpellier, France, September 2018

17. Gousios, G., Storey, M.-A., Bacchelli, A.: Work practices and challenges in pull-
based development: the contributor’s perspective. In: Proceedings of ICSE, Austin,
USA, pp. 285–296, May 2016

18. Coelho, J., Valente, M.T.: Why modern open source projects fail. In: Proceedings
of FSE, Paderborn, Germany, pp. 186–196, September 2017

114 J. Jiang et al.

19. Zhu, J., Zhou, M., Mockus, A.: Effectiveness of code contribution: from patch-
based to pull-request-based tools. In: Effectiveness of Code Contribution: From
Patch-Based to Pull-Request-Based Tools, Seattle, USA, pp. 871–882, November
2016

20. Jiang, J., Lo, D., Ma, X., Feng, F., Zhang, L.: Understanding inactive yet available
assignees in GitHub. Inf. Softw. Technol. 91, 44–55 (2017)

21. Li, Z., Yue, Y., Yin, G., Wang, T., Fan, Q., Wang, H.: Automatic classification
of review comments in pull-based development model. In: Proceedings of SEKE,
Pittsburgh, USA, July 2017

22. Yue, Y., Yin, G., Wang, T., Yang, C., Wang, H.: Determinants of pull-based devel-
opment in the context of continuous integration. Sci. China Inf. Sci. 59(8), 1–14
(2016)

23. Yue, Y., Wang, H., Yin, G., Wang, T.: Reviewer recommendation for pull-requests
in GitHub: what can we learn from code review and bug assignment? Inf. Softw.
Technol. 74, 204–218 (2016)

Changes Are Similar: Measuring
Similarity of Pull Requests That Change

the Same Code in GitHub

Ping Ma, Danni Xu, Xin Zhang, and Jifeng Xuan(B)

School of Computer Science, Wuhan University, Wuhan 430072, China
jxuan@whu.edu.cn

Abstract. Pull-based development is widely used in globally collabora-
tive platforms, such as GitHub and BitBucket. A pull request is a set of
changes to existing source code in a project. A developer submits a pull
request and tends to update the source code. Due to the parallel mecha-
nism, several developers may submit multiple pull requests to change the
same lines of code. This fact results in the conflict between changes, which
makes the project manager difficult to decide which pull request should
be merged. In this paper, we conducted a preliminary study on measur-
ing the similarity of pull requests that aim to change the same code in
GitHub. We proposed two methods, i.e., the cosine and the doc2vec, to
quantify the structural similarity and the semantic similarity between
pull requests and evaluated the similarity on four widely-studied open
source Java projects. Our study shows that there indeed exists high simi-
larity between competing pull requests and the similarity among projects
diversifies. This complicates the merging decision by project managers.

Keywords: Pull requests · GitHub · Similarity · Empirical study ·
Code changes

1 Introduction

GitHub is widely-used in collaborative software development. A developer who
is engaged in open-source projects tend to use GitHub to support their collab-
oration. According to the official website, up to June 2018, GitHub has over 28
million users and 57 million repositories, making it the largest host of source code
in the world [2]. GitHub achieves collaborative development via the mechanism
of pull requests. Once a developer wants to update a project, he can submit a
pull request which consists of one or more code changes to the target project. A
submitted pull request waits to be merged into the repository or discarded by
the manager of the target project.

Due to the parallel mechanism of GitHub, it often happens that developers
make different changes to the same lines of code during the same time period.
This makes pull requests potentially compete with each other, i.e., competing
pull requests [20]. Such pull requests may contain changes that have the same
c© Springer Nature Singapore Pte Ltd. 2019
Z. Li et al. (Eds.): NASAC 2017/2018, CCIS 861, pp. 115–128, 2019.
https://doi.org/10.1007/978-981-15-0310-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0310-8_8&domain=pdf
https://doi.org/10.1007/978-981-15-0310-8_8

116 P. Ma et al.

or different goals and may cause the conflicts on the structure or the semantics
of code. It is complicated and time-consuming for a project manager to decide
which pull request should be merged in high priority [7,8,23]. The existence of
conflicts between changes by these pull requests exacerbates the difficulty for the
merging decision. We speculate that the similarity between these pull requests
may have a great impact on the difficulty that project managers have to face
when they make decisions for merging pull requests.

In this paper, we conducted a preliminary study on measuring the similarity
between pull requests that aim to change the same code in GitHub. We used the
cosine and the doc2vec to measure the similarity of code structure and semantics,
respectively. We evaluated the similarity on four open source Java projects with
the most forks in GitHub. Our study contains 6,469 pairs of pull requests, each
pair of which has two pull requests that contain changes on overlapped code. We
explored the similarities between these pull requests via three research questions,
including the similarities between pull requests, the similarity distribution, and
the correlations between two measurement methods in use.

Our study shows that there indeed exists high similarity between pull requests
that change the same code. In the four Java projects we studied, the average
similarity between each pair of pull requests is over 0.9; the highest average
similarity among these four projects is up to 0.9976. In the pull requests we
measured, over 75% of the similarity between each pair of pull requests is above
0.8 and half of the similarity is 0.95 or higher. Our study shows that there is high
correlation between the two measurement methods; this indicates that both the
structural similarity and the semantic similarity exist between the pull requests
that aim to change the same code.

This paper makes the following contributions:

– We conducted a study of measuring the similarity between pull requests that
aim to change the same code. We proposed two methods to measure the
similarity of code structure and semantics on four open source Java projects
with the most forks in GitHub.

– We answered three research questions and found that there indeed exists high
similarity between competing pull requests. This provides the foundational
result for analyzing the conflicts between pull requests.

The remaining of this paper is organized as follows. Section 2 presents the
background and the motivation. Section 3 describes two measurement methods
of similarity. Section 4 presents the experimental setup, which includes data
preparation, two measurement methods, and three research questions. Section 5
details the results of our experiment. Section 6 explains the threats to the valid-
ity. Section 7 lists the related work and Sect. 8 concludes this paper.

2 Background and Motivation

We introduce the background of merging pull requests and the motivation of
exploring the similarity between pull requests.

Changes Are Similar 117

2.1 Background

Collaborative platforms, such as GitHub and BitBucket, have provided high
interaction between developers and code projects via pull requests. A project
manager can deploy the codebase in GitHub and allows other developers to
fork (i.e., clone) the project into their own account as a copy. Developers could
freely make code changes to the project that has been forked in their account.
Once several changes are made, a pull request that includes the changes can be
submitted to the target project. A submitted pull request waits for the decision
by the project manager, i.e., deciding merging this pull request into the project
or discarding it.

Pull requests are the key artifacts that make developers accomplish collabo-
rative development in GitHub. Technically, a pull request consists of one or more
commits, each of which contains edits to the original source code at a particular
time. Once these changes are accepted by the project manager, the pull request is
merged into the original repository. Conversely, the pull request would be closed
if the manager chooses not to accept these code changes. GitHub provides a free
and flexible platform for developers to submit pull requests; hence, the project
manager may receive multiple pull requests during a time period. In this case
of multiple pull requests, it is time-consuming for the manager to decide which
pull request should be merged.

2.2 Motivation

Due to the parallel mechanism of GitHub, several developers may submit differ-
ent pull requests to change the same lines of code, which cause the competing
pull requests [20]. This fact results in the conflict between changes because the
code changes that competing pull requests have made focus on the same target.
A project manager can choose one or zero among these competing pull requests
and merge it into the original project.

As a manager of an open-source project, he/she has to manually check all
competing pull requests to ensure the contribution of pull requests and to decide
merging which pull request. The existence of competing pull requests makes the
merging decision difficult. Do competing pull requests behave similar? – An intu-
itive speculation is that competing pull requests are similar since they aim to
update the same lines of code. Supposing the similarity between competing pull
requests is low, we can surmise that directly distinguish different competing pull
requests is possible; supposing the similarity is high, a semantical or further
detailed analysis could help for the merging decisions. Motivated by the explo-
ration on the similarity of pull requests, we conducted a preliminary study on
the similarity between pull requests that tend to change overlapped pieces of
code.

3 Measurement Methods of Similarity

There is no reliable and effective way to measure the similarity of code. In this
paper, we used two measurement methods to check the structural similarity and

118 P. Ma et al.

the semantic similarity between pull requests. For the structural similarity, we
employ the cosine that is designed to measure the textual similarity between
sentences; for the semantic similarity, we employ the doc2vec that is developed
to extract the semantics of paragraphs.

3.1 The cosine Method

The cosine similarity is usually used to measure the textual similarity of sen-
tences [21]. The key idea of the cosine is to count the number of co-appearance
of words to reveal potential semantics [17].

We used the cosine method to measure the similarity between pull requests.
The cosine similarity uses the cosine value of angles of two vectors in the vector
space. Given two n-dimension vectors X and Y , the cosine similarity of two
vectors is defined as follows,

Simcos(X,Y) =
∑n

i=1(xi × yi)
√∑n

i=1 x
2
i ×

√∑n
i=1 y

2
i

where xi and yi denote the element value of the ith dimension in X and Y ,
respectively. The closer the cosine is to 1, the more similar two vectors are.

Given two pull requests, we treat them as two pieces of code. To utilize the
cosine to measure the similarity between pull requests, we convert the changed
code into textual sentences based on the following two steps. First, we filter out the
punctuation from the code and separate the code into tokens. For instance, giving
the code assertThat(processDefinitions.getBody().getContent().hasSize(4));,
we transfer the code into a sequence of assertThat, processDefinition, getBody,
getContent, hasSize, and 4.

Second, we collect the frequency of tokens in two pull requests and obtain
the word-frequency vectors. Then given two vectors, we leverage the cosine to
calculate the similarity.

3.2 The doc2vec Method

In addition to measuring the structural similarity between pull requests with
the cosine, we employ the doc2vec to reveal semantic similarity. The doc2vec,
or the paragraph2vec, is an unsupervised algorithm that can extract the vector
expression of sentences or documents [11]. This algorithm is an extension of a
widely-used method word2vec [12].

In the doc2vec, a large corpus is used to train a model by maximizing the con-
ditional likelihood between words and sentences with the hierarchical softmax
and negative sampling. Different from the cosine, the doc2vec generates word
vectors via an unsupervised learning process. Learned vector by the doc2vec can
be used to calculate the similarity between sentences or documents. The imple-
mentation of the doc2vec directly outputs the distances between two sentences
and can be converted into the similarity.

Changes Are Similar 119

Corpus collection

Model training

Sentence word
segmentation

Sentence filtering

Sentence vector
prediction

Calculation of sentence
vector similarity

Model Sentence

Fig. 1. Framework of using doc2vec to measure the similarity between pull requests.

Figure 1 presents the framework of using the doc2vec to obtain the similarity.
To apply the doc2vec to calculate the semantic similarity of pull requests, we
train the model to get the approximated likelihood of words and sentences.
In each project, we extract the source code of a previous version before the
submitted timestamps of pull requests. During the training, we filter out the
punctuations in the source code and use all tokens in these processed source
code as a training corpus. Then we employ the doc2vec to build the model with
our training corpus. According to the implementation of the doc2vec, sentences
that only contain tokens inside the corpus can be measured by the learned model.
In each project, we use the learned model to infer the dependency of tokens in
the input pull requests and use these learned vectors to calculate the similarity.

Note that the doc2vec is not the only way to measure the semantic simi-
larity of two sentences or paragraphs. The Latent Semantic Analysis (LSA) by
Deerwester et al. [6] and the Latent Dirichlet Allocation (LDA) by Blei et al. [5]
are also widely used to detect the similarity in natural language processing. Our
work does not aim to find out an optimal similarity measurement; instead, the
goal of our work is to show the existence of similarity between pull requests.

4 Experimental Setup

We present the steps of data preparation and the design of three research questions.

4.1 Data Preparation

We conducted a preliminary study on four pairs of open-source Java projects
with the most forks in GitHub. Table 1 presents the data of four projects in
our study. There are 6,469 pairs of pull requests in total. We describe the data
preparation as follows.

120 P. Ma et al.

Table 1. Data collection of four Java projects with the most forks in GitHub

Project # of forks # of pairs of pull requests

spring-projects/spring-framework 14.7K 4799

spring-projects/spring-boot 20.0K 1178

apache/incubator-dubbo 14.4K 401

elastic/elasticsearch 11.5K 91

Total 60.6K 6469

First, we selected the top-5 Java projects with the most forks in GitHub.
We followed Zhang et al. [20] to collect all pull requests that are submitted from
January 1st to December 31st, 2017. Then we extracted all pairs of pull requests,
which contain changes on overlapped code. Among the five projects, we found
that one project iluwatar/java-design-patterns contains only four pairs of pull
requests that change the same code, then we kept all other four projects in our
study. These four are spring-projects/spring-framework,1 spring-projects/spring-
boot,2 apache/incubator-dubbo,3 and elastic/elasticsearch,4 respectively.

Second, we identified the pull requests that change the same code as follows.
We considered that a group of competing pull requests as all pull requests that
change the same lines during an overlapping time period. For instance, if Pull
request PrA and Pull request B PrB edit at-least one same line of code. We
consider that PrA and PrB belong to one pair of pull requests. In this paper, we
focus on the similarity between pull requests. Thus, we only identify all pairs of
pull requests that change the same code, rather than groups of competing pull
requests as shown in [20].

Third, we merged all changes in one pull request and collected the changed
code from the original codebase. The changed code can be viewed as a com-
bination of the added code and the deleted code. To evaluate the similarity of
pull requests, we only reserved the added lines of code as the new code in a
pull request. If a pull request has no added lines, we directly discarded this pull
request. After data preparation, we collected 6,469 pairs of pull requests from
four projects.

4.2 Research Questions

The aim of this paper is to explore the similarity between competing pull requests
and to understand whether the high similarity between competing pull requests
that complicates the merging decision by project managers. We designed three
Research Questions (RQs) and conducted a preliminary study to find out the
answers.
1 Project spring-framework, http://github.com/spring-projects/spring-framework/.
2 Project spring-boot, http://github.com/spring-projects/spring-boot/.
3 Project incubator-dubbo, http://github.com/apache/incubator-dubbo/.
4 Project elasticsearch, http://github.com/elastic/elasticsearch/.

http://github.com/spring-projects/spring-framework/
http://github.com/spring-projects/spring-boot/
http://github.com/apache/incubator-dubbo/
http://github.com/elastic/elasticsearch/

Changes Are Similar 121

RQ1. How does the similarity between competing pull requests
perform?

In our work, we tend to understand the structural similarity based on the
cosine and the semantical similarity based on the doc2vec. We give a numerical
result on the similarity between each pair of pull requests via evaluating the two
measurement methods in RQ1.

RQ2. What is the distribution of the similarity between competing
pull requests?

Besides the statistical values, we further study the similarity distributions
on each project. In RQ2, we show that the similarity between pull requests
diversifies and we could obtain a distribution of the similarity between competing
pull requests.

RQ3. Is there any correlation between the two measurement meth-
ods of similarity?

Our study showed the results of two measurement methods of similarity.
Thus, in RQ3, we evaluate the Pearson correlation coefficient to detect the cor-
relation between these methods. We also leveraged the Wilcoxon signed rank
test to figure out whether the two measurement behave different.

5 Experimental Results

We empirically examined the results of three RQs and presented the existence
of similarity between pull requests.

5.1 RQ1. How Does the Similarity Between Competing Pull
Requests Perform?

In RQ1, we present the numerical result of the study that measures the similarity
between pull requests that contain changes on overlapped code of four Java
projects in GitHub.

Table 2 shows the results of similarity between pull requests by measuring
the structural similarity with the cosine. The similarity between pull requests
measured by the cosine is high with the maximum value of 1.0. In three out of
four, the average similarity is over 0.9; the value of the exceptional project is
0.8963, which could be considered as 0.9.

Table 3 shows the results of similarity between pull requests by measur-
ing the semantic similarity with the doc2vec. In four Java projects we stud-
ied, the average similarity between pull requests of each project exceeded 0.9.
Project apache/incubator-dubbo has the highest similarity, whose average value
is 0.9976.

As shown in Tables 2 and 3, the maximum value of the similarity is 1.0
regardless of any project or method. This shows that there indeed exists high
similarity between pull requests that aim to change the same code. Meanwhile,
the average value behave similar. For instance, the project with the maximum
value of average similarity by the cosine and by the doc2vec is the same while

122 P. Ma et al.

Table 2. Structural similarity between pull requests measured by the cosine on four
projects

Project Min Median Max Average Std

spring-projects/spring-framework 0.2887 0.9591 1.0000 0.8963 0.1552

spring-projects/spring-boot 0.3780 0.9881 1.0000 0.9251 0.1294

apache/incubator-dubbo 0.5164 1.0000 1.0000 0.9904 0.0370

elastic/elasticsearch 0.0000 1.0000 1.0000 0.9450 0.1190

Table 3. Semantic similarity between pull requests measured by the doc2vec on four
projects

Project Min Median Max Average Std

spring-projects/spring-framework 0.6893 0.9952 1.0000 0.9613 0.0735

spring-projects/spring-boot 0.7471 0.9989 1.0000 0.9744 0.0520

apache/incubator-dubbo 0.8855 1.0000 1.0000 0.9976 0.0091

elastic/elasticsearch 0.3899 1.0000 1.0000 0.9855 0.0472

the project with the minimum value is the same. This leads to the guess on the
correlation between two measurement methods. We will further examine this
correlation in Sect. 5.3.

We notice that among four projects, the minimum similarity between pull
requests of several projects is relatively low, such as 0.0 in Project elas-
tic/elasticsearch when measured with the cosine and 0.3899 when measured
with the doc2vec.

Based on the above findings, we can conclude that the similarity between
pull requests is generally high, but there is still low similarity between several
pull requests. This results in the diversity of similarities. On the one hand,
RQ1 shows the evidence that it is difficult for project managers to decide which
pull request should be merged into the codebase because of the high degree of
similarity between pull requests. On the other hand, project managers need to
spend much time in figuring out the semantics of these pull requests because of
the diversity of similarity. This exacerbates the difficulty of the merging decision.

5.2 RQ2. What Is the Distribution of the Similarity Between
Competing Pull Requests?

In RQ2, we show the distribution of similarity between pull requests of four Java
projects. The similarity values are calculated by the cosine and the doc2vec.

Figure 2 presents the box-plots of similarity measured with the cosine
between pull requests from Table 2; Fig. 3 presents the box-plots of similarity
measured with the doc2vec between pull requests from Table 3.

Changes Are Similar 123

Fig. 2. Box-plots of similarity between pull requests measured by the cosine on four
projects

Fig. 3. Box-plots of similarity between pull requests measured by the doc2vec on four
projects.

For each of the four projects, no matter which method is used for mea-
surement, three-quarters of pairs of pull requests have a similarity of 0.8 or
higher; half of pairs have a similarity of 0.95 or higher. These results indicate
that between pull requests that contain changes on the overlapped code, both
structural similarity and semantic similarity exist.

To sum up, we find that the similarity between the majority of pull requests
is high. This fact undoubtedly adds the difficulty to project managers for the
merging decision in GitHub.

124 P. Ma et al.

Table 4. Pearson correlation coefficient and the Wilcoxon signed rank test between
the structural similarity and the semantic similarity

Project Pearson correlation coefficient The p-value

spring-projects/spring-framework 0.8179 9.6490e−11

spring-projects/spring-boot 0.8626 3.1635e−29

apache/incubator-dubbo 0.8347 7.4276e−37

elastic/elasticsearch 0.7683 0.0000

5.3 RQ3. Is There Any Correlation Between the Two Measurement
Methods of Similarity?

In RQ3, we show the correlation between the similarity by the two measurement
methods. To conduct the evaluation, we used the Pearson correlation coefficient
to detect the probability of correlation [14].

Table 4 shows the Pearson correlation coefficient and the p-value based on
the Wilcoxon signed rank test. The absolute value of the Pearson correlation
coefficient indicates the correlation. An absolute value over 0.7 could be consid-
ered as high correlation; We use the Wilcoxon signed rank test to explore how
different are two measurement methods [14]. If the p-value is less than 0.05, we
consider that there exists statistical significance between the similarities by the
cosine and the doc2vec.

As shown in Table 4, the result explores the effect of two measurement meth-
ods on the similarity values. The values of Pearson correlation coefficient show
that the two measurement methods reach high correlation with the maximum
value of 0.86. This indicates that the structural similarity by the cosine and
the semantic similarity by the doc2vec share many options on the similarity.
Although the cosine and the doc2vec estimate the similarity in different ways, it
is possible that many pieces of structural similarity are also contain the semantic
similarity.

All the p-values are less than 0.05. This fact shows that the two measurement
methods behave statistically significant differences on the pairs of pull requests
in all the four projects.

We conclude the answers to RQ3 as follows. The two measurement methods,
the cosine and the doc2vec, show statistically significant results. However, the
result by these two methods is different but similar. This fact may indicate the
overlap between the structural similarity and the semantic similarity.

6 Threats to Validity

We list the threats to the validity of our work in three categories.

Construct Validity. In our study, we only used pull requests of four open-
source Java projects with the most forks in GitHub, which contains 6,469 pairs

Changes Are Similar 125

of pull requests. A large study on more pull requests may reveal more find-
ings about the similarity between pull requests. Our experiment contains two
measurement methods for the calculation of structural similarity and semantic
similarity between pull requests; our result shows there exists diversity among
the similarity. Our study has not covered many typical methods of measuring
the similarity, such as the LDA method of topic models. The study in our work
can be viewed as a preliminary result for counting the similarity between pull
requests. The goal of our study is to motivate the exploration of solving merging
conflicts.

Internal Validity. We used doc2vec to calculate the similarity between com-
peting pull requests via learning a model from a corpus of previous source code.
However, a learned model is usually limited by the scale of the corpus. In gen-
eral, a corpus in natural language processing is much larger than the source code
used in our work. Thus, it is possible that the corpus in use has already hurt
the measurement in our work. A straightforward resolution is to involve more
projects to form a corpus.

External Validity. Our study has only explored the similarity between pull
requests in Java; meanwhile, the measurement of similarity is also conducted on
Java source code. There exists a threat that the Java code is naturally more
similar than code in other languages. In addition, is the detected similarity by
the cosine or the doc2vec really similar? This is a bias between automatic mea-
surement and program comprehension. A study on the opinions of developers
could help understand the bias.

7 Related Work

We presented the related work in two parts, change merging and text similarity
measurement.

7.1 Change Merging

In collaborative development, the modification of source code is implemented
via merging changes. The main methods for change merging can be divided
into three categories: unstructured merge, structured merge, and semi-structured
merge.

The unstructured merge mixes different versions by using the largest com-
mon subsequences matching of textual lines. This method is fast, but can result
in the disorder among changes [13]. The diff tool [1] is a typical technique using
unstructured merge. The structured merge transfers the code into abstract syn-
tax trees and combines the code among these trees. The process of combination is
limited by the grammar of programming languages. A tool of structured merge
is JDime, proposed by Apel et al. [3]. The semi-structured merge represents
programs as program trees and uses an abstraction of the structure of the doc-
ument to provide information on how the commits are merged, such as the tool
FSTMerge by Apel et al. [4].

126 P. Ma et al.

The process of merging changes into the codebase may be delayed by various
factors. Yu et al. [18,19] have explored the factors of evaluation latency for pull
requests and recommended reviewers for pull requests. Jiang et al. [10] have
conducted a study on the inactive yet available assignees in GitHub. Xuan et al.
[15] split test cases into small changes and refactored test cases to assist program
repair. Zhu et al. [22] have studied the patterns of using folders to understand
the project popularity. Xuan et al. [16] proposed a sampling strategy to learn
the configuration from changes. Jiang et al. [9] studied the content and reasons
of forking behaviors in GitHub.

7.2 Text Similarity Measurement

The measurement of text similarity has been widely studies. A typical approach
is the vector-based similarity method. These methods, such as the cosine in
this paper, transfer the original text objects that associates with a weight of
importance into term vectors and then use a function to measure these vectors
to calculate the final output similarity. The vector-based method is efficient, but
cannot recognize the semantics of the text. Many methods are proposed to solve
this problem. Blei et al. [5] proposed Latent Dirichlet Allocation (LDA), a typical
method using generative topic models. This method samples words of two textual
paragraphs and infers the similarity based on probability distributions of hidden
topics. Latent Semantic Analysis (LSA) by Deerwester et al. [6] is a method
based on linear projection, which identifies term-vectors from a low-dimensional
space of a learned matrix.

A word2vec method is a family of modeling algorithms for generating word
embeddings [12]. The word2vec model uses two-layer neural networks to train
from linguistic contexts of words. The doc2vec [11] used in this paper is an
extension version of word2vec and doc2vec supports the inference of document
embeddings.

In this paper, we leverage both the structural similarity (i.e., the cosine), and
the semantic similarity (i.e., the doc2vec) to identify the similarity between pull
requests. We aim to examine the similarity and then understand the collaborative
development behaviors.

8 Conclusion

In this paper, we conducted a study to find out whether there exist high similarity
between pull requests that contain changes on the same code. We employed
two measurement methods to calculate the similarity between pull requests and
evaluated these methods on four Java projects with the most forks in GitHub.
Our study has covered 6,469 of pull requests. We explored the similarity via
answers to three research questions. Experimental results show that there indeed
exist high similarity between pull requests, which may result in the difficulty of
merging pull requests to project managers. The results also indicate that there
exists shared opinions by two measurement methods, the cosine and the doc2vec.

Changes Are Similar 127

Our future work is to conduct a large study on the similarity between code
changes with the same target. We plan to examine and understand the reasons
behind the similarity in this study.

Acknowledgments. The work is supported by the National Key R&D Program of
China under Grant No. 2018YFB1003901, the National Natural Science Foundation
of China under Grant Nos. 61502345 and 61872273, the Young Elite Scientists Spon-
sorship Program by CAST under Grant No. 2015QNRC001, and the Technological
Innovation Projects of Hubei Province under Grant No. 2017AAA125.

References

1. Comparing and merging files (2016). http://www.gnu.org/software/diffutils/
manual/

2. GitHub Repository Search (2018). https://github.com/search?q=+&type=
3. Apel, S., Leßenich, O., Lengauer, C.: Structured merge with auto-tuning: balanc-

ing precision and performance. In: IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2012, Essen, Germany, 3–7 September 2012, pp.
120–129 (2012)

4. Apel, S., Liebig, J., Brandl, B., Lengauer, C., Kästner, C.: Semistructured merge:
rethinking merge in revision control systems. In: 19th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE) and 13th European Software
Engineering Conference (ESEC), Szeged, Hungary, 5–9 September 2011, pp. 190–
200 (2011)

5. Blei, D.M., Ng, A.Y., Jordan, M.I., Lafferty, J.: Latent Dirichlet allocation. J.
Mach. Learn. Res. 3, 993–1022 (2003)

6. Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: Indexing by
latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–401 (1990)

7. Gousios, G., Pinzger, M., van Deursen, A.: An exploratory study of the pull-based
software development model. In: 36th International Conference on Software Engi-
neering, ICSE 2014, Hyderabad, India, 31 May–07 June 2014, pp. 345–355 (2014)

8. Gu, Y., et al.: Does the fault reside in a stack trace? Assisting crash localization
by predicting crashing fault residence. J. Syst. Softw. 148, 88–104 (2019)

9. Jiang, J., Lo, D., He, J., Xia, X., Kochhar, P.S., Zhang, L.: Why and how developers
fork what from whom in GitHub. Empir. Softw. Eng. 22(1), 547–578 (2017)

10. Jiang, J., Lo, D., Ma, X., Feng, F., Zhang, L.: Understanding inactive yet available
assignees in GitHub. Inf. Softw. Technol. 91, 44–55 (2017)

11. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents.
In: Proceedings of the 31st International Conference on Machine Learning, ICML
2014, Beijing, China, 21–26 June 2014, pp. 1188–1196 (2014)

12. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word rep-
resentations in vector space. CoRR abs/1301.3781 (2013). http://arxiv.org/abs/
1301.3781

13. Perry, D.E., Siy, H.P., Votta, L.G.: Parallel changes in large-scale software devel-
opment: an observational case study. ACM Trans. Softw. Eng. Methodol. 10(3),
308–337 (2001)

14. Ross, S.M.: Introduction to Probability and Statistics for Engineers and Scientists,
2nd edn. Academic Press, London (2000)

http://www.gnu.org/software/diffutils/manual/
http://www.gnu.org/software/diffutils/manual/
https://github.com/search?q=+&type=
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781

128 P. Ma et al.

15. Xuan, J., Cornu, B., Martinez, M., Baudry, B., Seinturier, L., Monperrus, M.:
B-refactoring: automatic test code refactoring to improve dynamic analysis. Inf.
Softw. Technol. 76, 65–80 (2016)

16. Xuan, J., Gu, Y., Ren, Z., Jia, X., Fan, Q.: Genetic configuration sampling: learning
a sampling strategy for fault detection of configurable systems. In: Proceedings of
the Genetic and Evolutionary Computation Conference Companion, GECCO 2018,
Kyoto, Japan, 15–19 July 2018, pp. 1624–1631 (2018)

17. Xuan, J., et al.: Towards effective bug triage with software data reduction tech-
niques. IEEE Trans. Knowl. Data Eng. 27(1), 264–280 (2015)

18. Yu, Y., Wang, H., Filkov, V., Devanbu, P.T., Vasilescu, B.: Wait for it: determi-
nants of pull request evaluation latency on github. In: 12th IEEE/ACM Working
Conference on Mining Software Repositories, MSR 2015, Florence, Italy, 16–17
May 2015, pp. 367–371 (2015)

19. Yu, Y., Wang, H., Yin, G., Wang, T.: Reviewer recommendation for pull-requests
in GitHub: what can we learn from code review and bug assignment? Inf. Soft.
Technol. 74, 204–218 (2016)

20. Zhang, X., et al.: How do multiple pull requests change the same code: a study
of competing pull requests in GitHub. In: 2018 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2018, Madrid, Spain, 23–29 Septem-
ber 2018, pp. 228–239 (2018)

21. Zhou, J., Zhang, H., Lo, D.: Where should the bugs be fixed? More accurate infor-
mation retrieval-based bug localization based on bug reports. In: 34th Interna-
tional Conference on Software Engineering, ICSE 2012, Zurich, Switzerland, 2–9
June 2012, pp. 14–24 (2012)

22. Zhu, J., Zhou, M., Mockus, A.: Patterns of folder use and project popularity: a
case study of GitHub repositories. In: 2014 ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement, ESEM 2014, Torino, Italy,
18–19 September 2014, pp. 30:1–30:4 (2014)

23. Zhu, J., Zhou, M., Mockus, A.: Effectiveness of code contribution: from patch-based
to pull-request-based tools. In: Proceedings of the 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, FSE 2016, Seattle,
WA, USA, 13–18 November 2016, pp. 871–882 (2016)

Contiguous Sequence Mining Approach
for Program Procedure Pattern

Jianbin Liu1,2(&), Jingjing Zhao1,2(&), and Liwei Zheng1,2

1 School of Computer, Beijing Information Science and Technology University,
Beijing 100101, China

13126707629@163.com, struggle_jjz@mail.bistu.edu.cn
2 Software Engineering Research Center, Beijing Information Science

& Technology University, Beijing 100101, China

Abstract. The program procedure patterns exist in the software development
process. This paper gives a program procedure pattern mining approach based
on MCSPAN (Maximal Contiguous Sequential pattern mining). First the pro-
gram structure features are mined. Structure feature mining is transformed into a
frequent sequence mining problem with contiguous constrains and maximal
constrains and an algorithm: MCSPAN is given to obtain the program structure
candidate patterns as follows. Then a filtering algorithm with the constraint of
the data flow feature is given to filter the structure candidate patterns and then
the program structure relationship candidate patterns are obtained which have
the program procedure pattern form. For clarifying the function semantics, some
heuristic rules are applied in the structure relation candidate patterns filtering
and finally the program procedure patterns are obtained. Through mining more
than 100,100 lines of java code, about 180 kinds of program procedure patterns
are discovered. This mining approach is effective through analyzing the recall
and precision rate in the experiment. And the availability of the mined program
procedure patterns is analyzed.

Keywords: Code mining � Program procedure pattern �
Sequential pattern mining

1 Introduction

In the software development process, software reuse technology is an important way to
improve the efficiency of software production. Software reuse is based on code frag-
ments which have the similar or identical functions from the existing code repositories
to assist the development of new software systems. Software component is the carrier
of the software reuse technology. It is the abstraction of the code fragment with
independent function and reusable value. The program procedure pattern [1] is a
description form of software components that abstracts reusable code fragments for
data streams and control streams.

The extraction of program procedure pattern is the focus of the current research.
Although the research has made some progress, the main extraction method still stays
in the stage of manual induction and summary which has higher requirements for the

© Springer Nature Singapore Pte Ltd. 2019
Z. Li et al. (Eds.): NASAC 2017/2018, CCIS 861, pp. 129–144, 2019.
https://doi.org/10.1007/978-981-15-0310-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0310-8_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0310-8_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0310-8_9&domain=pdf
https://doi.org/10.1007/978-981-15-0310-8_9

operator’s knowledge reserve and lower expansion efficiency. And the increase in the
amount of code will lead to the lack of the procedure pattern. How to achieve automatic
mining of procedure patterns from source code is the key to solving the problem.

The program procedure pattern is summarized from the code source. The devel-
opment of the open source movement has produced a wealth of code information, which
contains many meaningful program procedure patterns. Based on legacy codes, data
mining technology can be integrated into the program procedure pattern finding. For this
reason, a program procedure pattern discovery method based on contiguous sequence
mining is given. Firstly, define and extract the features of the program process pattern
from source code. Then an improved contiguous sequence pattern mining algorithm and
a filtering algorithm with the constraint of the data flow feature are given to obtain the
candidate patterns. Then use heuristic rules to filter these patterns according to the
semantic information. Finally, obtain and abstract the program process pattern instances
as program procedure patterns and add them into the library. The mining method can
reduce the cost of finding the procedure pattern from the source code.

This paper is organized as follows. Section 2 gives the related work. In Sect. 3, the
contiguous sequence mining process model for program procedure pattern is given. In
Sect. 3, we describe the structure candidate pattern mining phase in detail. An
improved contiguous sequence pattern mining algorithm with maximal constraints is
given and applied in structure feature mining. Section 4 describes the structure relation
candidate pattern mining phase. Section 5 represents about 180 kinds of program
process pattern mined from over 100,100 lines of code and shows the effectiveness of
the proposed method. The last section is the summary and future work.

2 Related Work

The carrier of the program procedure pattern is the frequently occurring reusable code
fragment with certain functions. The mining of the program procedure pattern depends
on the mining of the reusable code fragments. Current researches on reusable code
extraction are as follows. Allamanis [2] used nonparametric Bayesian probabilistic tree
substitution grammars based on statistical natural language processing to mine the
idioms which are code fragments that recurs frequently and have the single semantic
role. Chen [3] proposed a method of automatic plan extraction based on suffix trees.
Transform the source code into the token string then construct a suffix tree to get the
candidates of software plans. Bian [4] analyzed the program structure and used the
program dependency graph and the abstract syntax tree to preserve the relationship
between the nodes, and then performed the amorphous transformation on the syntactic
structure to extract the continuous cloned code fragments suitable for reconstruction.
Zhao [5] used the informal information such as the demand document to establish the
mapping relationship between the function and the code entity, and calculated the
cluster of the recovered code entity in combination with the hierarchical structure of the
function to extract the reusable code segments. Qiao [6] proposed a fast extraction
method for similar modules based on key functions. The key function call graphs are
constructed and then extract the common subgraphs between these call graphs. These
similar modules are abstracted into reusable components. Li [7] proposed software

130 J. Liu et al.

knowledge entity extraction for software source code. The Visitor design pattern was
used to traverse all nodes in the abstract syntax tree, and the method software
knowledge entities were extracted and stored in the code entity pool. The above mining
methods lack the analysis of the program procedure. And the tree and graph structure
cannot describe the procedure well. Therefore, the continuous sequence pattern mining
method [8] is used to make up for the lack of description of the program procedure in
the abstract syntax tree and program dependency graph.

3 Contiguous Sequence Mining for Program Procedure
Pattern

3.1 Prepared Knowledge

For the study of the program procedure pattern, Hu [1] proposed the program procedure
pattern definition model based on the java process blueprint and elaborated the
structure and content features of three-layer view of procedure pattern. The three-layer
includes ACSD, ALSD, and AISD [9]. Some instances are given to describe the
procedure pattern. For an example, the service obtain pattern are shown in Table 1.

According to the definition of the program procedure pattern, the control flow and
data flow of a code fragment can describe its procedure features. The definition of the
structure candidate pattern and the structure relation candidate pattern and the rela-
tionship between these two patterns and program procedure pattern (Prop) are given.

Table 1. The service obtain pattern.

ACSD @ obtain an service named <service: ″\w + (\ \ d \) ?″ >
ALSD SEQ obtain an service named <service: ″\w + (\ \ d \) ?″ >

├─ IFT whether servicename <service: ″\w + (\ \ d \) ?″ > is in StringUtils
│ └─ THR create an instance RuntimeException with <E: ″\w + (\ \ d \) ?″ >
├─ DCL an Object <obj: ″\w + (\ \ d \) ?″ > is null
├─ IFT whether the static ApplicationContext ac: ″\w + (\ \ d \) ?″ of the ServiceProvider

Cord instance spc: ″\w + (\ \ d \) ?″ has the bean service: ″\w + (\ \ d \)
│ └─ OPE get the bean service: ″\w + (\ \ d \) from the static ApplicationContext ac:

″\w + (\ \ d \) ?″ of the ServiceProviderCord instance spc: ″\w + (\ \ d \) ?″
the Object < obj: ″\w + (\ \ d \) ?″

├─ IFT the Object < obj: ″\w + (\ \ d \) ?″ is null
│ └─ THR create an instance RuntimeException with <E: ″\w + (\ \ d \) ?″ >
└─ RET return the Object obj: ″\w + (\ \ d \) ?″

AISD SEQ getService(String <service: ″\w + (\ \ d \) ?″ >)
├─ IFT StringUtils.isBlank(<service: ″\w + (\ \ d \) ?″ >)
│ └─ THR new RuntimeException(<E: ″\w + (\ \ d \) ?″ >)
├─ DCL Object <obj: ″\w + (\ \ d \) ?″ >=null
├─ IFT spc: ″\w + (\ \ d \) ?″ . ac: ″\w + (\ \ d \) ?″ .containsBean(<service: ″\w

+ (\ \ d \) ?″ >)
│ └─ OPE <obj: ″\w + (\ \ d \) ?″ >= spc: ″\w + (\ \ d \) ?″ . ac: ″\w + (\ \ d \

) ?″ .getBean(<service: ″\w + (\ \ d \) ?″ >)
├─ IFT <obj: ″\w + (\ \ d \) ?″ >==null
│ └─ THR new RuntimeException(<E1: ″\w + (\ \ d \) ?″ >)
└─ RET obj

Contiguous Sequence Mining Approach for Program Procedure Pattern 131

Definition 3.1 (Program Structure Candidate Pattern, PSCP). PSCP is a combination
of program structures which are ordered and frequently occurring. And “ordered”
means the sequential dependency of source code action execution.

Definition 3.2 (Program Structure Relation Candidate Pattern, PSRCP). PSRCP refers
to the code fragments mapped when the program structure and data flow features are
frequently appearing.

The relationship between these three patterns is as follows. The PSCP is the result
of mining the program structure. The PSRCP is obtained by adding the data flow
constraints to filter the PSCP. The PSRCP has the same formal characteristics as the
program procedure pattern but still has uncertainty in the Functional semantics. These
three patterns are gradually refined in the way of describing the process. Thus we can
add constraints to reduce the scope of the target pattern. This paper gives a program
procedure pattern mining method for legacy code, which is described in detail below.

3.2 Contiguous Sequence Mining Process Model for Program Procedure
Pattern

The program procedure pattern is an abstraction of the reusable code fragment. It is the
discovery of frequently occurring functional code sub-segments from a large number of
legacy code fragments. This paper gives a contiguous sequence mining process model
for program procedure pattern shown in Fig. 1 including four phase: preprocessing,
structure candidate pattern mining, structure relation candidate pattern mining, and
manual filtering.

The preprocessing phase is to format the source code including slicing and deleting
annotation and to model the source code to obtain the abstract implementation structure
diagrams (AISD). By directly analyzing the node type and the expression with the data
flow node, the program procedure pattern features can be obtained [10]. The detailed
modeling process is given in the literature [11].

Source Code Formatting and
Modelling

Structure
Feature

Extraction
Serialization

Contiguous Sequence Pattern
Mining

Pattern
matching

Identifier Position
Feature Extraction

Identifier Position
Feature Filtration

Manual FilteringProp

Structure Feature
Sequence Database

Code
Fragment

preprocessing

Structure Candidate
Pattern Mining

Structure Relationship Candidate Pattern Mining

Fig. 1. Contiguous sequence mining process model for program procedure pattern

132 J. Liu et al.

The structure candidate pattern mining phase is to mine the frequent program
structure. Considering that the program procedure pattern mainly expresses the logic
process of the code which emphasizes the order of the control flow and is frequently
appearing in legacy codes, the mining of structure candidate patterns can be regarded as
a frequent sequential pattern mining. Therefore, this paper presents a contiguous fre-
quent sequential pattern mining method: the maximum contiguous frequent sequential
pattern mining (MCSPAN). Firstly abstract the program structure feature from source
code and then serialize them to form a program structure feature sequence database.
Finally, execute the mining algorithm to obtain the structure candidate pattern.

In the structure relation candidate pattern mining phase, the structure relation
candidate pattern is obtained by filtering structure candidate patterns with the con-
straints of the data flow. The program identifier location feature is selected as the
constraint condition. Firstly obtain the code fragments that matches the structure
candidate pattern from source code. Then abstract and compare the location features of
different code segments with the same structure to obtain the structure relation can-
didate pattern.

The manual filtering phase further filters the structure relation candidate pattern
according to the function semantic. Three heuristic rules are put forward as follows:

Heuristic Rule 1: Filter simple repeated basic operation statements, such as vari-
able declarations, console output, etc. As shown in the Fig. 2(a).
Heuristic Rule 2: Filter the code fragments in which elements are independent of
each other, as shown in Fig. 2(b).
Heuristic Rule 3: Filter the code fragments in which operand is unknown or the
function name may from the different source, that is, the third-party or user-defined.
For example, the method “.add” may be a user-defined method or a method in the
List class provided in the JAVA API as shown in Fig. 2(c).

Through the above process, the obtained result can be regarded as the code frag-
ment instances of the program procedure pattern. Abstract these instances into program
procedure patterns. The following shows detailed descriptions of two main phases: the
structure candidate pattern mining and the structure relation candidate pattern mining.

3.3 Structure Candidate Pattern Mining

The program procedure pattern structure features include control structure features and
grammar structure features. The definitions of them are given below.

System.out.print(“a”);
System.out.print(“b”);
System.out.print(“c”);

(a)

setBounds(100,100,317,95);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
final JLable label=new JLabel();

(b)

root.add(male);
root.add(female);

(c)

Fig. 2. The examples of heuristic rules

Contiguous Sequence Mining Approach for Program Procedure Pattern 133

Definition 3.3 (Program Control Feature, PCF). The program control feature PCF is
represented by a two-tuple:

PCFðprogram control featureÞ ¼ ðLayer ¼ fL1; L2; . . .; Lng; Ac

¼ fac1; ac2; . . .; acngÞ ðn� 2Þ

where Layer represents the ordered set of the hierarchical relationship of program
actions. The hierarchical relationship is embodied in the nested structure of the pro-
gram, and is reflected in the process blueprint tree structure as parent-child relationship
and brother relationship, and Ac represents the ordered set of program logic control
structure [9], and n represents the number of code line in a program procedure pattern.

The program logic control structure is mainly a description of the program control
flow. The procedure blueprint uniquely abstracts the logic control structure of specific
programming language. Taking JAVA language as an example, the control structure is
shown as following:

aci 2 fSEQ;DCL;OPE; LAB;FOR;DOW ;WHL; IFT ; IFE; SWH;CAS; TRY ;CAH;FNY ;

BRK;RET ; SYN;DFT ; THR;UND; SYNg

Definition 3.4 (Program Grammar Feature, PGF). The program grammar feature is
a description of the type and order of program elements in a program statement. The
program grammar feature is represented as:

PGFðprogram grammer featureÞ ¼ fpgf1; pgf2; . . .; pgfng ðn� 2Þ

where pgfi represents the grammar structure of a code line, and n represents the number
of code lines.

The program elements mainly include identifiers and operators. One of the pur-
poses of defining this structure is to eliminate the difference of identifier name and
location due to different habits of developers. In order to facilitate the extraction of
various identifiers, identifiers are classified into variables and constants. Variables
represented by “VAR” include the package name, parameter name, method name,
interface name, local variable names, class names, enumeration names, and attribute
names. Constants contain string constants and numeric constants, which are repre-
sented by “CHS” and “NUM” respectively. Take the java program as an example:
System.out.println(student.getAge(10+“a”)). The process pattern grammar feature is
described as: PGF ¼ fpgf1g, pgf1 = VAR:VAR:VAR(VAR:VAR(NUMþCHS)).

Generating program procedure pattern structure feature sequence database includes
features extraction and serialization.

Step 1: Establish the variable dictionary IdeDic to storage the variables.
Step 2: Model the source code to obtain the AISD and perform depth-first traversal
in AISD to avoid losing the hierarchical relationships of source code.
Step 3: Get the control features and grammar features from AISD.

134 J. Liu et al.

Step 4: Use a limited-length digital mapping method to encode the control features
and use the ELFhash algorithm to encode grammar features and add them into
database.

The generation algorithm is shown in Algorithm 1.

Algorithm 1. Structure Feature Sequence Database Generation Algorithm
Input: 1 2{ , ,..., }nC m m m= :The source code
Output: 1 2{ , ,..., }nPS ps ps ps= :The database of pro-
gram structure feature sequence
1: IdeDic=GetAllIDE(C)
2: for all im in C do
3: iAISD =create(im)
4: for all jnode in iAISD do
5: cja =getAc(jnode)
6: jcode =getData(jnode)
7: for all kele in jnode do

8: if kele in IdeDic then
9: jcode .replace(kele ,VAR)
10: if kele is CHA then
11: jcode .replace(kele ,CHA)
12: if kele is NUM then

13: jcode .replace(kele ,NUM)

14: ips .add(mapCode(cja),ELFHash(jcode))

15: PS .add(ips)

The program procedure pattern is a description of the program process logic, which
reflects a certain continuity. Therefore, the mining of the structure candidate pattern
should focus on the continuity of frequent sequences before the procedure feature of the
program procedure pattern can be preserved. CCSPAN [12] adds continuity constraint
into frequent sequence mining and the closed test is used to simplify the mining result
set to obtain closed contiguous sequence pattern. This paper adopts CCSPAN to mine
structure candidate patterns. After the closed check, the candidate set may still contain
redundant sequences, of which the support degree is different from super sequence, but
the code fragment represented by the super sequence is more complete. We need to
filter these sequences. Therefore, this paper enhances the closed test in CCSPAN to the
maximum test and gives Maximal Contiguous Sequential pattern mining (MCSPAN).

Definition 3.5. Item is the smallest unit in sequential pattern mining. In the feature
sequence, an item represents the control and grammar feature of a program statement.

Definition 3.6. A sequence is a set of items. K-sequence is a sequence with k items.
A program process pattern structure feature sequence sa represents the structure fea-
tures of all the code lines in a fragment.

Definition 3.7. A sequence database SDB is a list of sequences SDB ¼ sa1; sa2; . . .;h
sani, where n represents the number of sequences. The structure feature sequences of
all function units in the source code build up the procedure pattern feature sequence
database.

Definition 3.8. The maximum sequential pattern is a sequence that does not have
frequent super sequences, that is MS ¼ fsj

��sj 2 FS ^ 8sk 2 FS; sj 6� skg, where FS
represents all frequent sequences. It ensures the functional integrity of frequent
sequences and reduces the size of the candidate set without the loss of frequent
sequences.

Contiguous Sequence Mining Approach for Program Procedure Pattern 135

Definition 3.9. Given sequence s ¼ a1a2. . .aih i and s0 ¼ b1b2. . .bj
� �

, s t s0 means s
concatenates s0, i.e., s t s0 ¼ a1a2. . .aib1b2. . .bj

� �
. The pre-subsequence spre and post-

subsequence spost of sequence s are given by

spre ¼ f
preðsÞ ¼

GlðsÞ�2

i¼0
si spost ¼ f

postðsÞ ¼
GlðsÞ�1

i¼1
si

Where i is the index of an item in s.

Algorithm 2. MCSPAN
Input: 1 2{ , ,..., }mPS ps ps ps= :The database of
program structure feature sequences . n is the
number of sequence in PS .
Output: PSCP : The program structure candi-
date patterns. kPSCP :The patterns with k-
sequence. kP :The patterns checked
1: PSCP φ ; kPSCP φ ; kP φ

2: for all ips in PS do
3: for all 1-sequence s in ips do
4: if s in iP then
5: continue;
6: else
7: s .count=calculate(s)
8: if . /s count n δ≥ then
9: 1 1PSCP s∪

14: if(s not in kP && 1pre ks PSCP −∈ && 1post ks PSCP −∈)

15: s .count=calculate(s)
16: if . /s count n δ≥ then
17: k kPSCP s

18: k kP s

19: 1kPSCP − .remove(pres)

20: 1kPSCP − .remove(posts)
21: else
22: k kP s

23: else
24: k kP s

25: 1 1k kPSCP PSCP− −

26: k kPSCP PSCP

∪

∪

∪

∪

∪

∪

10: 1 1P s∪

11: for(2k = ; 1kPSCP φ− ≠ ; k + +)
12: for all ips in PS do
13: for all js ps⊆ and ()l s k= do

To avoid the generation of candidate sets that do not exist in the source database,
MCSPAN uses the fragment growth strategy to generate candidate sets, each of which
is obtained by splitting the sequence in the source database according to the sequence
length increasing order. The three pruning strategies for the candidate set are as
follows:

Strategy 1: Prune the split snippet which already exists and add the new snippets
into traversed snippet set Pk .
Strategy 2: Prune the snippet whose pre-subsequence or post-subsequence is
infrequent.
Strategy 3: Prune the sequences whose support is less than the minimum support.

The candidate sets obtained need to be examined for maximum. According to the
theorem 2 proposed in [12], two single-length candidate subsets with a length differ-
ence of 1 are examined. The complexity is reduced to some extent relative to com-
paring each sequence to all sequences in the candidate set. The maximal contiguous
sequential pattern mining algorithm is shown in Algorithm 2.

136 J. Liu et al.

The structure candidate patterns obtained reflects the frequentness of the program
structure features. However, the program structure is still not sufficient to fully describe
the program procedure pattern as is shown in Fig. 3

The control structure and grammar structure of the three code fragments are the
same. The program shown in Fig. 3(a) represents the two-digit exchange process which
is used frequently by developers in actual software projects while the other two pro-
grams in Fig. 3(b) and (c) have no functional significance. Therefore, only the program
in Fig. 3(a) can be regarded as a program procedure pattern. The data flow feature can
distinguish these programs with the same structure but different meanings. So we select
program identifier location feature to filter the structure candidate patterns.

3.4 Structure Relation Candidate Pattern Mining

Definition 3.10. The program procedure pattern identifier location feature is
expressed as:

PILðprogram identifier locationÞ ¼ fLOC1; LOC2; � � � ; LOCng

where LOC represents a collection of location in which the identifier appears in the
code fragment, n indicates the number of different operand identifiers.

The identifier location feature extraction algorithm is shown in Algorithm 3. First,
the identifier dictionary IDESet is established; then all the identifiers appearing in the
code fragment are written into an array IDEArray in the order of appearance, including
duplicate identifiers. Then traverse IDESet and determine whether the same identifier
pair exists in IDEArray, if it exists, add the array subscript of the identifier pair to the
location set LOCi. Finally, determine whether the size of LOCi is greater than 1. If yes,
it indicates that there exists an identifier dependency, the LOCi is meaningful to the
filtration, and add LOCi into PIL.

Algorithm 3. getPIL(CodeFragment)
Input: CF :The fragment of code
Output: 1 2{ , , , }nPIL LOC LOC LOC= L

1: IDESet =getIDE(CF)

2: IDEArray =getIDEArray(CF)

3: for all iide in IDESet do

4: for all _ide array in IDEArray do

5: if(_iide ide array==) then

6: iLOC .add(. _su tpiryarra csbedi)

7: if(. 2iLOC length ≥) then

8: PIL .add(iLOC)

The program procedure pattern not only requires specific structure features to
appear frequently but also the specific identifier location features. Therefore, the

int a,b,temp,c;
temp = a;
a = b;
b = temp;

(a)

int a,b,temp,c;
a = b;
a = temp;
b = temp;

(b)

int a,b,temp,c;
a = temp;
a = b;
b = c;

(c)

Fig. 3. The code fragments with same structure

Contiguous Sequence Mining Approach for Program Procedure Pattern 137

filtering condition is that the program identifier location feature appears more fre-
quently than a threshold. The threshold is defined as follow:

Definition 3.11. The identifier location support sup l indicates the number of code
fragments with the same identifier location and program structure feature. The mini-
mum identifier location support min sup l is the minimum threshold for determining
the structural relation candidate pattern. If the sup l of a structure candidate pattern is
greater than or equal to min sup l, then it is a structure relation candidate pattern.

Algorithm 4 describes the filtration process. Firstly match each structure candidate
pattern with AISD to obtain a code fragment set CFList. Then traverse each code
fragment and perform getPIL (CodeFragment) to get the code-location set. Compare
the identifier location features of the code fragments with the same structure feature to
find the fragments whose appearance frequency is greater than or equal to min sup l.
Finally, add these fragments to structure relation candidate pattern set PSRCP.

Algorithm 4. Program Identifier Position Feature Filtration Algorithm
Input: PSCP , AISDs ;

θ: _ _min sup l

Output: PSRCP
1: _CF PIL φ
2: for all ipscp in PSCP do
3: CFList =PatternMatch(ipscp , AISDs)
4: for all iCF in CFList do
5: iPIL =getPIL(iCF)

6: _ iCF PIL .add(iCF , iPIL)
7: _CF PIL .add(_ iCF PIL)
8: for all _ iCF PIL in _CF PIL do
9: _ iCF PIL . iPIL .count = Count(_ iCF PIL . iPIL)
10: if(_ . .i iCF PIL PIL count θ≥) then
11: PSRCP .add(_ iCF PIL . iCF)

4 Experiment and Result Analysis

4.1 Experiment Design

In order to verify the effectiveness of the mining method, a program procedure pattern
mining system is realized. The experimental object is derived from the source code in
books on Java, ranging from basic teaching code to large-scale development projects.
The details are shown in Table 2.

Table 2. The experiment projects codes.

Book name Java files Lines of code Methods

The 150 cases of Java [14] 166 7061 705
Java example [15] 230 15405 1368
Java programming practical tutorial [17] 385 11359 1564
One hundred cases of Java utility design [18] 116 4306 423
Computer programming (Java) [19] 121 2580 358
JDKDemo (java.sun.com) 297 27135 2796
Java development combat [16] 1190 9610 1069
Course design case [20–22] 760 36083 2884
Total 3265 113539 11167

138 J. Liu et al.

http://java.sun.com

4.2 Experiment Process

• Procedure blueprint conversion
Split the source program by method and remove the comment line and convert it
into a procedure blueprint through the blueprint conversion tool. The abstract
implementation structure diagram of the procedure blueprint is shown in Fig. 4.

• Structural features extraction
Perform deep traversal of the procedure blueprint, and extract the control structure
of each node, and obtain the implementation layer code of each node. Then replace
the different types of identifiers in the code with different characters (M, N, K), and
delete unnecessary spaces to get the syntax structure. Finally, retain the source code
to get an ordered collection of structural features for each method. The result of
processing the abstract structure diagram of Fig. 4 is as follows:

\SEQ M MMð Þ½ � IFT M MMð Þ½ � THR MM Nð Þ½ �DCL MM ¼ M½ �
IFT M:M:M Mð Þ½ � IFT M ¼¼ M½ � THR MM Nð Þ½ �RET M½ �[

• Coding structural features
• The structure control construct of each code statement is encoded using a number in

a custom canonical format. The syntax structure is encoded using the ELFhash
algorithm and normalized to the spmf format [13]. Then the process pattern
structure feature sequence is obtained. The result of coding the above structural
features is as follows:

<-130 -1 83686649 -1 -150 -1 83686649 -1 -330 -1 83164425 -1 -240 -1 5198109 -1 -150 -1 50526713 -1 -150 -1 332061 -1 -
330 -1 83164425 -340 77 -2>

• Contiguous sequence pattern mining
Obtain all the procedure pattern structure feature sequences to construct the
sequence database to be used as the input of the MCSPAN algorithm to obtain the
structure candidate pattern. An example pattern is as follows:

-200 128536269 -360 84081913

SEQ getService(String servicename)
├─ IFT StringUtils.isBlank(servicename)
│ └─ THR new RuntimeException("E")
├─ DCL Object obj=null
├─ IFT spc.ac.containsBean(servicename)
│ └─ OPE obj=spc.ac.getBean(servicename)
├─ IFT obj==null
│ └─ THR new RuntimeException("E")
└─ RET obj

Fig. 4. The AISD of getService

Contiguous Sequence Mining Approach for Program Procedure Pattern 139

• Source code matching
Traverse the structure candidate patterns and source code to get the corresponding
code fragments. An example is obtained in Fig. 5 according to the pattern:
-200 128536269 -360 84081913.

• Identifier location feature filtering
Get the identifier location for each code with the same structural feature, and
calculate its identifier location support. If the support is less than min sup l, the
corresponding code fragment is filtered. The result after filtering the example in
Fig. 5 is shown in Fig. 6.

• Manual Filtering
The code fragments filtered by the identifier location feature are manually filtered
according to heuristic rules, and the result is shown in Fig. 7.

The code fragments processed by the above steps are examples of possible program
process pattern, which satisfy the characteristics of the program procedure pattern and
have a certain functional significance.

4.3 Analysis of Mining Results

The parameter of contiguous sequence pattern mining in this paper is sup l ¼ 0:0004,
and the parameter of identifier location feature filtering is min sup l ¼ 3. Through the
abstract analysis of the program procedure pattern instances obtained by mining, there
are 179 kinds of available program process patterns.

Table 3 gives the statistical results of the program procedure pattern function and
granularity. By classifying the functional meaning of the program process patterns, six
categories are obtained. The code line number of the program process pattern instance
is greater than or equal to 5, which can be regarded as a large granularity pattern, and
less than 5 is regarded as a small granularity pattern.

[-200 -1 128536269 -1 (c=in.read())!=-1 -1 -360 -1 84081913 -1 out.write(c) -1 ,
-200 -1 128536269 -1 (a=b.judge())!=-1 -1 -360 -1 84081913 -1 out.write(1) -1 ,

-200 -1 128536269 -1 (c=bin.read())!=-1 -1 -360 -1 84081913 -1 bout.write(c) -1 ,
-200 -1 128536269 -1 (a=user.getAge())!=10 -1 -360 -1 84081913 -1 user.setAge(age) -1]

Fig. 5. The code fragments with the program structure candidate pattern

[-200 -1 128536269 -1 (c=in.read())!=-1 -1 -360 -1 84081913 -1 out.write(c) -1 ,
-200 -1 128536269 -1 (c=bin.read())!=-1 -1 -360 -1 84081913 -1 bout.write(c) -1 ,

Fig. 6. The program structure relation candidate pattern

[-200 -1 128536269 -1 (c=in.read())!=-1 -1 -360 -1 84081913 -1 out.write(c) -1]

Fig. 7. An example of program process pattern

140 J. Liu et al.

As can be seen from the Table 3, the number of graphical user interface design
process patterns is the largest, because the graphical user interface design functions are
varied and the combination of components is flexible. The smallest procedure pattern is
the Java security model pattern which has less application in project development or
basic teaching. The number of database operation process patterns is small, mainly
because the corresponding APIs are used in a single way and have fewer types of
functions. On the other hand, the size of the large-grain pattern is much smaller than
that of the small- grain pattern. With the increase of the code lines, the user’s coding
habits have an increased influence on the code style, and the frequency of the program
structure features is greatly reduced.

Table 4 presents the number of the phase product. Using the identifier location
feature, about 1000 redundant and wrong pattern candidates were filtered to obtain the
PSRCPs. By manual filtration using the heuristic rules, about 600 candidates are fil-
tered to obtain the Props. Therefore, the program identifier location feature plays an
important role in filtering the program procedure patterns with saving time and effort.

Table 3. List of program process patterns.

Function type Program
process
patterns

Small
granularity
pattern

Large
granularity
pattern

Instances

Java based
method

53 51 2 Thread sleeps for a few seconds;
Instantiate the timer and start

Graphical user
interface design

64 49 15 Customize component size and
join panels;
Draw a login form

File and stream
process

25 21 4 Read files by line using
BufferedReader;
Close the file input and output
streams and handle exceptions

Network
communication

15 15 0 Socket disconnects from the
server;
Send data using DatagramPacket
and socket

Database
operation

20 14 6 JDBC connection database;
Get the number of columns from
the database metadata

Java security
model

2 2 0 Generate a key using the RSA
algorithm

Table 4. The number of the PSCP, PSRCP and Prop.

PSCP PSRCP Prop

1822 828 179

Contiguous Sequence Mining Approach for Program Procedure Pattern 141

4.4 Evaluation of Experiment Results

In this paper, the recall and precision of the mining method and the availability of the
program process pattern are evaluated to verify the effectiveness of the method. This
paper defines the precision P and recall R as follows:

P =
PropR
PropM

� 100% R =
PropR
Prop

� 100%

where Prop represents the total number of program procedure patterns actually pre-
senting in the training set, PropM represents the total number of program procedure
patterns obtained by mining the training set, PropR represents the number of correct
patterns in the obtained program procedure patterns.

The 20 cases were selected as the training set from the source code in Table 2. By
the recall manual induction and summary, we found the 12 kinds of Prop. Then use the
method this paper proposed to mine the experiment cases. The recall and precision
results are shown in Table 5.

The program procedure pattern has certain functional semantics. But the patterns
obtained by mining the code structure features and identifier location features and the
heuristic rules are functionally semantically redundant and fuzzy, and the functional
meaning of some program procedure patterns is incomplete. Moreover, there are highly
targeted patterns due to the repeated requirements of specific functions in one project
but not involved in other projects, which are not in the scope of the program procedure
pattern. Moreover, due to the different development styles of developers, the code of
the same function is implemented in various ways, and some patterns cannot be directly
represented. Based on the above reasons, the precision is low in Table 5, but the design
idea of this paper is to rich the program procedure pattern library, which greatly saves
the time and effort consumed by the manual to summarize the program procedure
pattern according to experience, so the lower precision is acceptable.

The factors affecting the recall rate mainly include the following points: First, the
distance between the variable declaration definition statement and the variable use
statement is relatively uncertain, resulting in the lack of functional meaning. Second,
the implementation of some functions is flexible in code execution order resulting in
the lack of hierarchical structure frequency. Third, there is a functional equivalence
method in the Java language, that is, the same function can be realized by using
different method names. In the manual analysis, such methods can be summarized in
the same program procedure pattern. For these reasons, in the future research, it is
necessary to focus on the improvement of the recall rate.

Table 5. The recall and precision.

Prop PropM PropR P R

12 16 10 62.50% 83.33%

142 J. Liu et al.

5 Summary and Future Work

In this paper, a contiguous sequence mining approach for program procedure pattern
algorithm is presented. The algorithm uses the frequent sequence pattern mining
method to mine the program structure candidate pattern, and the candidate pattern of
the structure relationship is obtained according to the constraint of the location char-
acteristics of the program identifier, and the heuristic rules are used to filter to get the
program procedure pattern instance. Finally, the instance is abstractly defined to get the
program procedure pattern.

The contributions of this paper mainly include:

• an effective method of mining program procedure patterns is presented;
• define the control structure feature, the grammar structure feature, the identifier

location feature and the formal representation, and propose a program procedure
pattern feature extraction method based on process blueprint;

• give an improved closed contiguous sequence mining algorithm called MCSPAN
with maximum checking, and apply it to source code mining.

The program procedure pattern can be applied to the fields of program modeling,
program understanding, program automatic generation, etc. And the corresponding
code instances can be used as materials for code recommendation, code completion,
code defect detection and other fields to accelerate the program development proce-
dure. In this paper, the contiguous frequent sequence mining algorithm ignores the
relationship between variable definition declarations and calls, and the operand vari-
ables in most program process patterns lack definitions and declarations. Therefore, it is
a direction for improvement in the future to establish parameter definition declaration
dependency in the mining process. An incremental procedure pattern discovery algo-
rithm should also be developed to adapt to the need of code database to expand and
update contiguously.

Acknowledgment. This research is sponsored by the Science Research Level Improvement
Project (5211823406) and the Information+ Discipline Construction Project of Beijing Infor-
mation Science & Technology University.

References

1. Hu, W.Q., Liu, J.B.: Formalised definition framework of procedure pattern based on java
blueprint. Comput. Appl. Softw. 32(5), 24–29 (2015)

2. Allamanis M., Sutton C.: Mining idioms from source code. In: Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pp. 472–483. ACM (2014)

3. Chen, H., Chen, C., Tang, W.B., Qian, J.F., Liu, K.M.: Automatic extraction of software
plans for program comprehension based on suffix trees. Zhejiang Daxue Xuebao (Gongxue
Ban)/J. Zhejiang Univ. 42(8), 1340–1344 (2008)

4. Bian, Y.X., Wang, T.T., Su, X.H.: A semantics preserving amorphous procedure extraction
method code. J. Comput. Res. Dev. 50(7), 1534–1541 (2013)

Contiguous Sequence Mining Approach for Program Procedure Pattern 143

5. Zhao, W., Zhang, L., Mei, H., Sun, J.S.: A functional requirement based hierarchical
agglomerative approach to program clustering. J. Softw. 17(8), 1661–1668 (2006)

6. Qiao, Y.C., Jiang, Q.S., Gu, L.: A fast similar module extraction method based on API
sequence (2017)

7. Li, W.P., Zhao, J.F., Xie, B.: Summary extraction method for code topic based on LDA,
44(4), 35–38 (2017)

8. Fournier-Viger, P., Lin, J.C.-W., Kiran, R., Koh, Y., Thomas, R.: A survey of sequential
pattern mining. Data Sci. Pattern Recognit. 1(1), 54–77 (2017)

9. Liu, J.B.: Procedure Blueprint Design Methodology. Science Press, Beijing (2005)
10. Liu, J.B., Li, J.Z., Yu, C.Y.: A software cyclomatic complexity metrics method based on

procedure blueprint. Comput. Sci. 33(6), 267–269 (2006)
11. Liu, J.B.: Program representation model and view derivation approach for procedure

blueprint. Comput. Eng. 31(13), 3017–3021 (2010)
12. Zhang, J., Wang, Y., Yang, D.: CCSpan: mining closed contiguous sequential patterns.

Knowl.-Based Syst. 89, 1–13 (2015)
13. Fournier-Viger, P., Gomariz, Gueniche, T., Soltani, A., Wu, C., Tseng, V.S.: SPMF: a Java

open-source pattern mining library. J. Mach. Learn. Res. (JMLR) 15, 3389–3393 (2014)
14. Zhang, H.Q.: The 150 Cases of Java. Metallurgical Industry Press, Beijing (2005)
15. Yin, J.P., Zhang, F.: Java Example. China Machine Press, Beijing (2009)
16. Java development combat: Tsinghua University Press, Beijing (2013)
17. Ye, H.Y.: Java Programming Practical Tutorial. Tsinghua University Press, Beijing (2010)
18. Yuan, H.Y.: One Hundred Cases of Java Utility Design. Posts and Telecom Press, Beijing

(2005)
19. Wang, X.P.: Computer Programming (Java). Publishing House of Electronics Industry,

Beijing (2016)
20. Zhang, G.B.: Java Course Design Case Editing. Tsinghua University Press, Beijing (2011)
21. Zheng, L.: Java Course Design. Tsinghua University Press, Beijing (2007)
22. Li, Z.X.: Java Programming Experiment and Course Design Tutorial. Tsinghua University

Press, Beijing (2011)

144 J. Liu et al.

Mining the Contributions Along
the Lifecycles of Open-Source Projects

Hang Zhou1,2, Lei Xu1,2(B), and Yanhui Li1,2

1 State Key Laboratory for Novel Software Technology, Nanjing, China
2 Department of Computer Science and Technology,

Nanjing University, Nanjing, China
xlei@nju.edu.cn

Abstract. Recently the impact of developers’ behavior on the evolu-
tion of open-source software (OSS) has become a hot topic. When does
the developer commit his/her code? Is there any regularity of the time
distribution of commit along the lifecycles of open-source project? Will
the change of the core member in a development team has an impact
on software evolution process? We are quite interested in these above
questions so we conducted an empirical study in this paper. We collect
more than 50,000 commits from 6 open-source software in Github and
design a formula to measure the contributor’s contribution value. We
then take four major experiments to analyze some issues about inert
intervals and the impact of the change of main contributors on software
evolution. To make the result visible, we also design an automatic mining
tool which can automatically mine the metadata from specified repos-
itory and make it graphically presented. Through the experiments we
gained some interesting findings such as there is no inevitable statistical
connection between a contributor’s inert interval and his contribution
value, and main contributors’ change has a huge impact on the soft-
ware evolution. We believe that these findings will have deeper research
significance in the future.

Keywords: Code repository mining · Open source software · Github

1 Introduction

Software has become a major part of the economic and civilized life of mankind.
Over the past decades, the software development environment has gradually
been open sourced and cooperated, and the distributed version control system
Git borned at the same time. A software process is a collection of activities that
are implemented during the software lifecycle. Activities are collections of tasks,
and tasks act to process inputs into outputs. The software evolution process,
as a branch of the software process, is also a software process that attempts
to establish a unified process framework for the software evolution process by
managing some of the more difficult activities in the software evolution process.

c© Springer Nature Singapore Pte Ltd. 2019
Z. Li et al. (Eds.): NASAC 2017/2018, CCIS 861, pp. 145–160, 2019.
https://doi.org/10.1007/978-981-15-0310-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0310-8_10&domain=pdf
https://doi.org/10.1007/978-981-15-0310-8_10

146 H. Zhou et al.

The goal of the software evolution process is to manage the evolution process
of the software system without violating the constraints of the system [10], so
that the evolved software system can meet the user’s needs in function, and at
the same time, the quality attributes it shows are maintained at a satisfactory
level. So how to guide software to evolve in a positive and correct direction has
always been a major issue for researchers nowadays [2].

We are quite interested about the behavioral characteristics that developers
shows when they contribute in an open-source software. We believe that this fea-
ture will directly affect the software development process. So specifically, what
is the behavioral characteristics of contributors? For instance, the commit time
distribution of contributors in the open-source software life cycle is not com-
pletely continuous. We define a inert interval as the max time period for each
contributor to be inactive during the life cycle of open-source software. And we
designed a measure of a contributor’s contribution value which will be detailed in
Sect. 2.4. Does the contribution value of contributors has a certain relationship
with the time gap of leaving the project? From an intuitive point of view, the
inert interval and the contributor’s contribution value may have a certain rela-
tionship, that is, we can easily think that contributors with large contribution
values seem to be more diligent, which make the inert interval smaller than the
contributor who get a lower contribution value. On the other hand, we define the
main contributors as contributors who have contributed more than half of the
time to participate in project development for a certain period of time. What
will happen in the open-source software project evolution when the main con-
tributors have changed? With these questions above we conduct an empirical
study on the impact of contributors’ behavioral characteristics on open-source
software and the experimental result will benefit future research in this filed:

Benefit 1. The experimental results analyze the contribution characteristics
of contributors from the time distribution of contributor contribution, the inert
interval and the changes of the main contributors for the first time, so as to
analyze its influence on the software evolution process. The results will play an
important role in future software maintenance, improving development efficiency,
and planning evolution routes.

Benefit 2. The experimental results will provide insights on the software
development team configuration. We can get the contributor’s basic contribution
information such as the number of commits, the commit time, the number of
lines of additions and deletions, etc. Then we can draw some chart to analyze
the commit trend and calculate the contribution value of every contributor, so
that we can get some insights on the main contributors of the project.

Despite the previous benefits, conducting such an empirical study perfectly
is difficult, because it is challenging to implement the automatic tool. Checking
thousands of commits and carrying out some statistical work manually is infeasi-
ble and time- consuming, so it is desirable to implement a support tool for min-
ing the code repository automatically. To address the challenge, we implement
a tool, called MCSV (Mining Contribution’s Statistic information and Visual-
izing), which can automatically mine commits in an open-source project and

Mining the Contributions Along the Lifecycles of Open-Source Projects 147

preprocess it to get some statistical data and finally visualize it as the form of
chart. With the support of MCSV, we conduct the empirical study to investigate
the behavioral characteristics of the contributor.

The remainder of this paper is organized as follows. In Sect. 2 we describe our
experimental methodology. Section 3 presents the results of our empirical study,
including some key findings and implications. In Sect. 4 we discuss the threats to
validity. We review the related work in Sect. 5 and finalize with our conclusions
in Sect. 6.

2 Research Methodology

In this section, we first highlight our four research questions in Sect. 2.1. Then the
automatic mining tool MCSV is introduced in Sect. 2.2. In Sect. 2.3 and Sect. 2.4,
we describe the dataset and analysis methods used in our study respectively.

2.1 Research Questions

The development habits of contributors in different domains are different [22]
and we believe that the inert intervals of contributors in a project can reflect
the health of the project in some ways, in addition, we are interested in the
emergence of inert intervals and the impact of changes in major contributors on
project evolution. So we summarize four research questions as follows:

RQ1. What is the distribution of the inert intervals of contributors for dif-
ferent software development teams?

RQ2. What is the relationship between a contributor’s inert interval and his
contribution value?

RQ3. Are there any other factors that may affect inert interval besides the
contribution value of contributor?

RQ4. What is the impact of changes in the main contributors in the first
half and the second half of the project’s lifecycle on project evolution?

2.2 MCSV

To reduce the manual effort for mining commit and collection of statistical data,
and at the same time in order to accurately locate the distribution and length
of inert intervals of contributors in a given period of time, and to rank contrib-
utors directly according to our definition of contribution degree, we implement
an automatic mining and visualizing tool called MCSV based on a Java web
framework called Wicket [6].

The framework of MCSV is shown in Fig. 1. For each project under Git con-
trol, we mine all commits from the source code repository by using the Java
library function called JGit, which is the java implementation of the version
control software Git. Faced with massive commit data, the server system per-
forms data sorting and composing, what’s more, we use some Java serialization
techniques to maintain data persistence. Note that we choose Xodus database,

148 H. Zhou et al.

Fig. 1. Framework oF MCSV.

a pure Java-written, modeless embedded high-performance database to store
the data. We chooses the Xodus database not only because its modeless can
avoid the trouble of mode reconstruction, but also its zero deployment features
are easy to manage. Then MCSV abstracts the data into components defined
in Wicket, combining some JavaScript libraries and Ajax operations to draw a
variable-precision contribution graph in a webpage. And the user interface of
MCSV is shown in Fig. 2.

When the Git project is pushed in our system, the MCSV will catch the every
single commit information including the commit time, commit author, commit
content, the number of lines of additions and deletions automatically and rapidly,
then it will draw a contribution overview graph and a contribution trend graph
for each contributor respectively. We have added a lot of practical and operable
functions. In the ten boxes in the Fig. 2, Box A is the name of the project, Box B
is a navigation bar, notice that we implemented a drop-down selection box in Box
C to draw three different contribution graphs ordered by commits, additions and
deletions, Box D shows the commit information, we implement a slidable time
interval which can be shown in Box E and Box J, users can choose the specific
period and the variable-precision contribution trend graph are shown the next
seconds after choosing the interval. Besides, the interval chosen in overview graph
will have a direct impact on every contributor contribution graph, which is very
convenient to examine the contributions of all contributors over a certain period
of time. In addition, the time interval text, contributor’s name, the numbers of
commits, additions and deleitions, and the rank of the contributors are shown
in Box F, G, H, I.

Mining the Contributions Along the Lifecycles of Open-Source Projects 149

Table 1. Descriptive information of the studied projects

Project LOC Years Commits Contributors Files Language

RxJava 405804 6.2 5346 200 1626 Java

Guava 770706 8.9 4698 141 3239 Java

Caffe 100556 4.3 4128 267 697 C++, Python

tensorflow 2547749 2.7 32625 1453 11131 C++, Python

D3 53982 7.3 4138 122 43 JavaScript

Leaflet 164847 7.3 6553 567 449 JavaScript

Fig. 2. User interface of MCSV

2.3 Dataset

To mining the code repository and investigate the behavioral characteristics of
contributor, we selects 6 of the top 10 on Github’s 2017 popularity projects in
different domains including RxJava and Guava (Java project), Caffe and ten-
sorflow (deep learning project), D3 and Leaflet (data visualization project). The
selection of data sets is mainly selected from three different fields: integrated Java
library, Deep Learning framework and data visualization library, and the main

150 H. Zhou et al.

programming languages used are also different, mainly considering eliminating
the impact of some extent the particularity of the results and of different fields
and different programming languages on software evolution. Besides, the years
and domains of these projects make a big difference in their evolutionary trends.
We collect the lines of code, project time, the number of commits, contributors
and files, which are shown in Table 1.

2.4 Research Methods

Before answering 4 research questions listed before, we first need to specify
a unified measure of contribution value of each contributor. The contributor’s
contribution value measure mainly uses the project’s commit data, which refers
to the information submitted by the project from the beginning of the evolution
so far, that is, from the first commit of the project to the time of the experiment.
Each commit that is fetched includes the submitted version number, submitter
information, submission time, modified file and content, and modified file line
count (addition and delete). Gousios et al. [7] combined the research of code and
non-code contribution and proposed a complex measurement system, which is
different from the traditional simplest and most intuitive contribution measure
value of the contributor that only use the LOC (Lines Of Code). Combined with
the actual research situation of this paper, we mainly consider the measure of
the number of commits and the number of modified lines of code. Note that the
number of modified lines is the accumulation of addition lines and deletion lines.
Considering the weight α, β of the two factors above, and the contribution from
the i-th contributor (C value) we designed as follows:

C value(i) = α
LOC(i)

∑
LOC(n)

+ β
Commit(i)

∑
Commit(n)

(1)

Where n is the total number of contributors, and in this paper the weight is
considered the same, which means both α and β are 0.5. It is worth mentioning
that for a project, the sum of the contributions values of all contributor is 1.

To answer RQ1, we need collect every contributor’s inert interval in the 6
open-source projects. We add some appropriate calculation code to the tool
implementation to calculate the contribution value for each contributor and
record the longest time they left the project. Although we can get the lazy
range for each contributor in different projects, it is still not feasible to get
some objective laws from such a pair of data manually. Since the contributors in
each project are inconsistent, considering the universality and credibility of the
results, we use the a random sample method to calculate the sample capacity
[13]. And then we randomly select samples of size calculated from the 6 projects.
To observe the distribution of these samples carefully, we plot boxplot and scat-
ter plots in the same rectangular coordinate system and the results will be shown
in Sect. 3.

In RQ2, we want to study the relationship between contributors’ contribution
values and their inertia intervals, so a very intuitive way is to count each con-
tributor’s contribution value and inertia interval in each project and draw them

Mining the Contributions Along the Lifecycles of Open-Source Projects 151

in the same coordinate system, then observe the direction of the two curves. It is
well known that there are a large number of one time contributors(OTC) in each
project, so our approach is to select the top 100 contributors in each project, if
there is an OTC, then filter it out. And the graph and the result will be shown
in Sect. 3.

In RQ3, we want to study what factors are possible for the occurrence of
inertia intervals besides the contribution values of contributors. First of all, we
want to know the relationship between the rest period of the whole project and
the inert interval distribution of the contributors. The rest period is the time
when the project does not receive any contributor’s commit. This problem is
very easy to solve, just counting the number of contributors who get an inert
interval in the project’s rest period. At the same time, we are more interested in
the way each contributor returns to the project after the end of the inert interval.
For this, we have designed a semi-automated approach. We counted the commit
log information when each contributor returned to the project, then partitioned
the every words and counted the frequency of each word. Finally, we conducted
a manual review to find some key words to infer the reasons for the occurrence
of inert intervals. Our results and findings will be shown in Sect. 3.

To investigate the impact of change of the main contributors on software
evolution in RQ4, we use a new graphical form [21] in which we equally divide
the time, and draw a vertical line in the time of receiving a commit in the
project. The vertical line in the graph represents the contribution in the project,
and the blank area between the lines is the period in which the project receive
no commits from any contributors at the same time. We can represent different
contributors’s contribution at a certain time with dots in different colors in the
graph at the same time, the advantage of which is that we can use the density of
these dots to explore changes in the main contributors of the project. Since we
investigate the main contributors, contributors with lower contribution values
are almost impossible to be main contributors to the project, and OTCs who
even doesn’t have a inert interval, is common in every project, so we can just
draw the top 10 contributors’ commit dot on their project commit graph so that
we can judge the main contributors and their changes according to the intensity
of the points and time distribution of the points. The new graph and the result
will be shown in Sect. 3.

3 Experimental Results

In this section, we present the experimental results in detail for each research
question. For each of the four research questions, we decompose the results
through a series of findings and implications.

3.1 RQ1

To investigate the similarities that distribution of contributors’ inert intervals
shows across different software development teams, we randomly sample from

152 H. Zhou et al.

thousands of contributor inert intervals and plot the box plots and scatter plots
of the six samples in the same coordinate system and the result is shown in
Fig. 3. Observing and analyzing distributions of the points in Fig. 3, we can get
some interesting findings:

Fig. 3. Inert interval box-plot graph.

Finding 1: There are some contributors who have left the project for more
than 100 days in each project may return to the project again.

Finding 2: There are short-term development contributors for each project,
making the inert interval very small.

Finding 3: The median of the inertia of the project is basically concentrated
in the region of 20–40 days.

Finding 4: The inert interval distribution is related to the field of the project.

3.2 RQ2

To investigate the issues about the distribution of inert intervals and the rela-
tionship between the inert intervals and contribution value, We calculated the
contribution value and inert intervals of top 100 contributors ranked by contri-
bution value from studied projects, and screened out OTCs of every project.
And the graph is shown in Fig. 4.

Observing from the trend of the two curves of the studied projects in the
above graph, we can get the followings findings in common:

Different from our previous speculation that the greater the contributor’s
contribution value, the smaller the lazy range. Of course, for the core members
of the team, the Top 3 contributors of the project have a relatively small inert
interval, but unexpectedly, there are some contributors with lower contribution
value also have smaller inert intervals, which proves our incorrect inference talked
in Sect. 2. Besides, we also take the contribution values of the contributor and

Mining the Contributions Along the Lifecycles of Open-Source Projects 153

Fig. 4. Inert interval and C-Value graph.

their inert intervals into calculation of Spearman’s correlation coefficient [14],
the result of which turn out very low generally. What’s more, we find that the
trends of the c-value curve are very similar among the 6 projects and satisfy the
long tail effect. So we can conclude the following findings to answer the RQ2.

Finding 5: There is no necessary connection between the contribution value
and the inert interval of a specific contributor.

Finding 6: The c-value curve of each project shows a long tail effect. The
contribution value of the main contributors and other contributors differs signif-
icantly, while it of other contributors is not significant.

Implication 1: The contribution value of the contributor is not necessarily
related to his inert interval. For a contributor who get high contribution value,
he may have been diligent in his contribution cycle so he may get a smaller inert
interval, or he may get a larger inert interval resting for a period of time after the
end of an engineering cycle. For a contributor with a small contribution value,
he may be a less diligent person leading to a larger inert interval, or he may get
a small interval for his hardworking in a very small commit period.

3.3 RQ3

We first study the relationship between the distribution of contributors’ inert
intervals and project inert intervals by simply count the times they overlap. And
we found that most top 10 contributors’ inert interval lie in the longest project’s
inert interval. Then we extracted the commit submission information from each
contributor which is just after their inert interval and we then performed a
semi-automatic detection. We have an automated word frequency count for each
word in the commit information, and then manually review the commit and
word frequency. We found a high frequency of words like “ADD”, “FIX” and
“REMOVE” in the commits information of contributors returning to projects in
each project. So we conclude the following findings to answer the RQ3.

154 H. Zhou et al.

Finding 7: The project’s inert interval is often the inert interval of the
contributor, and the contribution of the core members of the team is important
to the project.

Finding 8: A large proportion of contributors return to the project with
Bug Fix operation, and ADD and REMOVE act second.

Implication 2: We speculate that there may be two reasons for this team
member and project’s inert interval overlap: one is that the current branch task is
completed and the next branch task has not been developed, causing the current
project to appear stagnant; the second is that the current branch bug has not
been found yet which cause that there is currently no work to be done, and once
a certain point in time is discovered, each member is required to participate in
the modification of multiple codes.

3.4 RQ4

To investigate the impact of the main contributor’s change on software evolu-
tion we designed a graph on which we draw contributor’ commits. Like we have
discussed in Sect. 2, we draw 6 graphs to analyze the change of the main con-
tributor. Take RxJava as an example, we first collect the top 10 contributors
ranked by the contribution value and the basic information of them are shown
in Table 2 And the barcode graph are drawn for these 10 contributors which is
shown in Fig. 5.

Table 2. Information of the contributors in RxJava

Contributor Total commits Earliest commit C-value

benjchristensen 1046 2013/1/9 0.19566

akarnokd 815 2013/11/19 0.15245

zsxwing 275 2013/9/16 0.05144

DavidMGross 170 2013/5/29 0.031799

samuelgruetter 154 2013/9/6 0.028807

jmhofer 130 2013/3/26 0.024317

AppliedDuality 107 2013/11/20 0.020015

davidmoten 102 2014/2/14 0.01908

JakeWharton 73 2015/10/16 0.013655

mairbek 72 2013/2/7 0.013468

Observing Fig. 5, we can see that the project is divided into two phases
based on the inert interval of the project. According to the intensity and dis-
tribution of the observation points, we can judge that the main contributors
in the first half of the project are mainly Benjchristensen (#1), akarnokd (#2),
zsxwing (#3), DavidMGross (#4) these four contributors. It is worth mentioning

Mining the Contributions Along the Lifecycles of Open-Source Projects 155

Fig. 5. Top 10 contributors’s commit in Rxjava.

that these four are also the top four contributors of the entire project. Subse-
quently, the project experienced a period of almost half a year of contribution to
the cold period, during which only akarnokd (#2) contributed a small amount.
Since then, in the second half of the project, main contributors have undergone
important changes, from the original four to akarnokd (#2) only, and the main
contributors who contributed the most in the first half did not even participate
in the development of second half of the project. Caffe and Leaflet is similar
to RxJava that the main contributors have also changed. We found that the
contribution values of several main contributors to RxJava and Caffe are very
close, which indicates that the relationship between them may be a collaborative
relationship rather than a management relationship. In Leaflet there is only a
main contributor in the first phrase and another one in the latter phrase.

Unlike RxJava, the main contributors to the Guava project and the D3
project didn’t change in the whole lifecycle. The three main contributors of
the Guava contribution developed throughout the entire project development
process, while the D3 project has only one main contributor from start to the
end. It is worth mentioning that the Top 1 contributor of the Guava project not
only participated in the whole process development, but also had a small inert
interval and contributed more than the sum of the other two main contributors,
which is a “leading phenomenon”. In addition, from the contribution trend of the
project, we found three different types of contribution evolution trends, which
are stable type, increasing type and decline type. The three evolution trends are
shown in Fig. 6.

The project with stable evolution characteristics is Guava. And the contri-
bution trends in the whole period are basically the same. We speculate it may
result from the fact that the main contributors of Guava’s remain unchanged and
no significant changes happen in configuration of the team. While Tensorflow is
a typical increasing type mainly because the current stage is the hot period of
deep learning, and the commit numbers has been on the rise. The remaining
4 projects’ contribution trends show some decline characteristics. Among Caffe

156 H. Zhou et al.

Fig. 6. Three types of contribution trends.

and RxJava, most contributors are only involved in the first half of the develop-
ment. We speculate that the result of this phenomenon may due to significant
changes in the internal structure of the team. However, this phenomenon in
D3 and Leaflet can be related to the project background, since the age of the
projects is relatively long, and most basic development is completed in the first
half of the period, which cause the latter half tends to be stable. So we finally
got the finding and implication as follows:

Finding 9: Changes in the main contributors of the team will change the
evolution of the entire project

Implication 3: The change of core member configuration and the age of
the project as well as the domain of the project will play an important role in
software evolution together. A positive change may lead the software to evolve
in a healthier direction.

4 Threats to Validity

In this section, we discuss the main threats to the construct, internal, and exter-
nal validity of our study.

4.1 Threats to Construct Validity

The most important threat to construct validity in our experiments is the accu-
racy of the calculation of the inert interval. We choose the longest time that the
contributor leave the project as his inert interval, however, for that contribu-
tors who commit just once in the project lifecycle, the length of the interval we
get is 0. So we just eliminate all one time contributor in the 6 projects in our
experiments.

4.2 Threats to Internal Validity

The internal threat mainly comes from that we did not select the data of each
project in the same time period considering the impact of different eras on the

Mining the Contributions Along the Lifecycles of Open-Source Projects 157

experimental results, but we just select the data of their entire life cycle. This
may affect the conclusions of the experiment in some respects but since we are
studying some behavioral characteristics of contributors during the life cycle of
each project, we just ignore this factor. Besides, in the measurement of con-
tributor’s contribution value, without considering the subjective factors such as
contributors’ impact on the project, we only consider the number of commit
and the number of modified lines of code of them, which may also have a certain
influence on the experimental results. We use the longest commit-free time inter-
val to represent the inert interval and to study the behavioral characteristics of
contributors, which in some respects exists some certain randomness.

4.3 Threats to External Validity

Threats to external validity mainly concern the possibility to generalize our
findings. In this study, we studied six widely used projects and exhausted our
ability to cover various domains. Although we believe our results can reveal the
characteristics of contributor’s behavioral characteristics in many projects, we do
not intend to draw general conclusions on all software, because of all the projects
we studied are open source. Consequently, our findings may not be generalized
to commercial software. More comprehensive and general results still require
further case studies and a more wide variety of projects in the future works.

5 Related Work

5.1 Data Mining && Visualization Technology

As the size and amount of information of software projects continue to increase,
complex data structures and multi-level algorithm design make the complexity
of information increase, the intermediate results and final result data generated
by software also increase exponentially. There comes a new problem: how do
we get useful data quickly and correctly from massive data? And visualization
technology is a very effective solution to this type of problem. Jonardo R, who
have found a hidden model that can be used as a preventive measure by min-
ing, analyzing and visualizing road traffic accident data: there is no significant
correlation between the location of the accident and the mortality of the victim.
On the other hand, the researchers also found that time and date play a crucial
role in the fatality or severity of road traffic accidents, especially car crashes [1].
Yiran Shan et al. proposed a visualization method, which based on tree-layered
interactive user interface when faced with the increasing number of biomedical
data and how to use this large-scale data set to achieve the query of the relation-
ship among goals, compounds and diseases. Basing on the correlation between
them, the path width between the two biological entities is shown. So biomedi-
cal scientists can further study the potential relationship between the extended
results [17].

158 H. Zhou et al.

5.2 Mining Software Repository

The mining software repositories (MSR) field analyzes and cross-links the rich
data available in repositories to uncover interesting and actionable information
about software systems. We can guide decision processes in modern software
projects by transforming these repositories from static record-keeping ones into
active repositories [9]. Leibzon et al. visualized the collaboration between core
members into a more intuitive graph through the mining of the Github open
source code repository, and combined with social network analysis methods to
find core members of the team [12]. Williams et al. use the source code change
history of a software project to drive and help to refine the search for bugs [20].
Ralph Peters et al. evaluate the lifespan of code smells using software repository
mining [15]. Ariel Rodriguez analyzes the working habits of software developers
and the effects these habits have on efficiency based on a large amount of data
extracted from the actions of developers in the IDE [16]. Vladimir Kovalenko et
al. who analyze over 1,400 Git repositories, evaluate the importance of proper
handling of branches when calculating file modification histories, and they find
that considering full file histories leads to an increase in the techniques’ perfor-
mance that is rather modest [11].

5.3 Software Evolution

Godfrey et al. explore the evolution of the Linux kernel both at the system level
and within the major subsystems, and they discuss why they think Linux con-
tinues to exhibit such strong growth [19]. Emitza et al. used machine learning
methods to automatically classify and rank 68,108 tweets on Twitter social net-
works, finding tweets related to software evolution, and combining short-term
informal user feedback with social components into software evolution process
[8]. Sneed et al. designed a tool for measuring software evolution, which is based
on data analysis, and analyzed a series of data such as error report, defect loca-
tion and bug repair report to describe the trend of software evolution [18].

For contributors, their abilities, willingness, and opportunities are considered
to be three dimensions of interaction [3]. Curtis claims that individual differences
between project personnel are the largest source of change in project performance
[5]. Couger and Zawacki determined how the differences between programmers’
motivational structures interacted with the types of work they assigned [4]. They
found that programmers’ demand for personal growth and personal development
was higher than any other job category. Minghui Zhou et al. conducted a statis-
tical analysis of the positive degree and community-oriented attitude of the team
contributors in the first month of the project, and found that whether the team
contributors can become long-term contributors (LTCs) relates to their wishes
and surroundings [23]. It has been found that contributors who start partici-
pating in development with comments rather than reporting problems are more
than twice as likely to become LTCs. These findings may provide the basis for
empirical methods for designing better community architectures and improving
the experience of contributors.

Mining the Contributions Along the Lifecycles of Open-Source Projects 159

6 Conclusion

The impact of contributor’s behavioral characteristics on software evolution is an
innovative study. In this paper, we implement an automatic mining tool called
MCSV, with the help of which we conduct an empirical study mainly on the
issues about inert intervals and the change of main contributors. And finally
we gained some valuable findings. We believe our observations will improve the
understanding of the contributor’s behavioral characteristics and software evolu-
tion and hence improve the efficiency and maintenance of software. In addition,
the tool we introduced in this paper can be used as an aid to deeper research in
the future.

Acknowledgement. This work is partially supported by the Natural Science Founda-
tion of Jiangsu Province of China (Grant No. BK20140611), the Natural Science Foun-
dation of China (Grant Nos. 61272080,61403187). All support is gratefully acknowl-
edged.

References

1. Asor, J.R., Catedrilla, G.M.B., Estrada, J.E.: A study on the road accidents using
data investigation and visualization in los baños, laguna, philippines

2. Bird, C., Rigby, P.C., Barr, E.T., Hamilton, D.J., German, D.M., Devanbu, P.: The
promises and perils of mining Git. In: 6th IEEE International Working Conference
on Mining Software Repositories, MSR 2009, pp. 1–10. IEEE (2009)

3. Blumberg, M., Pringle, C.D.: The missing opportunity in organizational research:
some implications for a theory of work performance. Acad. Manag. Rev. 7(4),
560–569 (1982)

4. Couger, J.D., Zawacki, R.A.: Motivating and Managing Computer Personnel.
Wiley, New York (1980)

5. Curtis, B.: Fifteen years of psychology in software engineering: individual differ-
ences and cognitive science. In: Proceedings of the 7th International Conference
on Software Engineering, pp. 97–106. IEEE Press (1984)

6. Dashorst, M., Hillenius, E.: Wicket in Action. Dreamtech Press (2008)
7. Gousios, G., Kalliamvakou, E., Spinellis, D.: Measuring developer contribution

from software repository data. In: Proceedings of the 2008 International Working
Conference on Mining Software Repositories, pp. 129–132. ACM (2008)

8. Guzman, E., Ibrahim, M., Glinz, M.: Mining twitter messages for software evolu-
tion. In: Proceedings of the 39th International Conference on Software Engineering
Companion, pp. 283–284. IEEE Press (2017)

9. Hassan, A.E.: The road ahead for mining software repositories. In: Frontiers of
Software Maintenance, FoSM 2008, pp. 48–57. IEEE (2008)

10. Honsel, V.: Statistical learning and software mining for agent based simulation
of software evolution. In: Proceedings of the 37th International Conference on
Software Engineering-Volume 2, pp. 863–866. IEEE Press (2015)

11. Kovalenko, V., Palomba, F., Bacchelli, A.: Mining file histories: should we consider
branches? In: Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, pp. 202–213. ACM (2018)

160 H. Zhou et al.

12. Leibzon, W.: Social network of software development at GitHub. In: Proceedings
of the 2016 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining, pp. 1374–1376. IEEE Press (2016)

13. McIntyre, G.: A method for unbiased selective sampling, using ranked sets. Aust.
J. Agric. Res. 3(4), 385–390 (1952)

14. Mukaka, M.M.: A guide to appropriate use of correlation coefficient in medical
research. Malawi Med. J. 24(3), 69–71 (2012)

15. Peters, R., Zaidman, A.: Evaluating the lifespan of code smells using software
repository mining. In: 2012 16th European Conference on Software Maintenance
and Reengineering (CSMR), pp. 411–416. IEEE (2012)

16. Rodriguez, A., Tanaka, F., Kamei, Y.: Empirical study on the relationship between
developer’ s working habits and efficiency (2018)

17. Shan, Y., Wang, X.: Visualization of linked biomedical data using cluster chart.
In: 2017 14th Web Information Systems and Applications Conference (WISA), pp.
293–296. IEEE (2017)

18. Sneed, H.M., Prentner, W.: Analyzing data on software evolution processes. In:
2016 Joint Conference of the International Workshop on Software Measurement
and the International Conference on Software Process and Product Measurement
(IWSM-MENSURA), pp. 1–10. IEEE (2016)

19. Tu, Q., et al.: Evolution in open source software: a case study. In: Proceedings of
the International Conference on Software Maintenance, 2000, pp. 131–142. IEEE
(2000)

20. Williams, C.C., Hollingsworth, J.K.: Automatic mining of source code repositories
to improve bug finding techniques. IEEE Trans. Softw. Eng. 31(6), 466–480 (2005)

21. Xu, B.: Visual mining of behavior characteristics of open source software develop-
ers. Ph.D. thesis, Shanghai Jiao Tong University (2013)

22. Ying, A.T., Wright, J.L., Abrams, S.: Source code that talks: an exploration of
eclipse task comments and their implication to repository mining. ACM SIGSOFT
Softw. Eng. Notes 30, 1–5 (2005)

23. Zhou, M., Mockus, A.: What make long term contributors: willingness and oppor-
tunity in OSS community. In: Proceedings of the 34th International Conference on
Software Engineering, pp. 518–528. IEEE Press (2012)

Issue Workflow Explorer

Jiaxin Zhu1,2, Zhen Zhong3,4, and Minghui Zhou3,4(B)

1 State Key Lab of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

zhujiaxin@otcaix.iscas.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China
3 School of Electronics Engineering and Computer Science,

Peking University, Beijing, China
{johnzz,zhmh}@pku.edu.cn

4 Key Laboratory of High Confidence Software Technologies,
Ministry of Education, Beijing, China

Abstract. Resolving issues is an essential part of Free/Libre and Open
Source Software (FLOSS) development. For large and active projects,
there could be hundreds of new issues reported every month, which
have mixed quality. To deal with this complexity, the projects devel-
oped different protocols of resolving issues (i.e., issue workflows). To
help understand existing practice and develop best practice, it’s impor-
tant to explore how the workflow evolves in the history, e.g., under what
circumstances a particular workflow emerges, how efficient and effec-
tive it is and whether it can be improved. We build Issue Workflow
Explorer (IWE) to help practitioners seek answers. Based on ubiquitous
records in issue tracking system, IWE provides functionalities of discov-
ering workflows, quantifying, visualizing and comparing their efficiency
and effectiveness. We demonstrate IWE’s effectiveness with two large
OSS projects, Mozilla and GNOME. We explore what workflows there
are for issue triaging and handling of incomplete issues. We obtain help-
ful insights for future development, e.g., triage conducted by reporters
themselves should be restricted and it is not cost-effective to keep incom-
plete issue reports open.

The source code of IWE is available at https://github.com/
johnarseal/IWE.

Keywords: Issue tracking · Issue workflow ·
Mining software repositories

1 Introduction

To maintain high product quality, participants in Free/Libre and Open Source
Software (FLOSS) projects constantly report and resolve issues of bugs, fea-
ture requests, etc. [12]. A number of facts make issue resolution a sophisticated
task. In large and active projects, e.g., Gnome1 and Mozilla2, there are more
1 https://www.gnome.org/.
2 https://www.mozilla.org/en-US/.

c© Springer Nature Singapore Pte Ltd. 2019
Z. Li et al. (Eds.): NASAC 2017/2018, CCIS 861, pp. 161–171, 2019.
https://doi.org/10.1007/978-981-15-0310-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0310-8_11&domain=pdf
https://github.com/johnarseal/IWE
https://github.com/johnarseal/IWE
https://www.gnome.org/
https://www.mozilla.org/en-US/
https://doi.org/10.1007/978-981-15-0310-8_11

162 J. Zhu et al.

than one thousand new issue reports per month filed by various participants,
including users and developers with diverse experience and skills, which lead
to mixed report quality. Meanwhile, many of the reporters and developers in
FLOSS projects voluntarily and some even occasionally participate, which brings
more difficulties like unstable communications, lack of time and effort [12,13].
To address the complexities and difficulties and get issues properly resolved in
time, projects develop issue workflow, i.e., the sequence of issue resolution steps,
that allows participants to communicate with each other and to coordinate the
tasks. The workflow has to evolve to stay efficient. For example, the Mozilla
bugmaster meeting discussed how to adjust the strategy of issue triage to scale
as more Mozilla teams and community members were engaging in triage3. This
suggests the importance of understanding issue workflow.

However, the knowledge of issue workflow in practice is typically tacit. It is
often neither known explicitly nor is accurately reflected in the meager docu-
mentation even when such documentation exists. For example, in Mozilla, the
issue workflow easily confused a junior developer4 even though it was posted
on-line. While GNOME also defines standard triage steps on its website5, they
are not consistent with how triage is done in practice as illustrated in this paper.

Issue tracking systems such as Bugzilla6, record history of how issue reports
were resolved [5]. These data can be used by practitioners to review actual work-
flow they practiced in the past or to learn from others. It’s always complicated
to conduct such exploration with raw issue repositories. Effort of data collection,
cleaning, sorting, aggregation, measurement and visualization is required [8]. To
facilitate the investigations, we propose Issue Workflow Explorer (IWE). Based
on issue tracking data, IWE offers functionalities of discovering, measuring and
visualizing the issue workflows, and it quantifies how various workflows affect the
lead time, complexity and output of the resolution process. By applying IWE
to GNOME and Mozilla, we study two major concerns about issue workflow,
issue triaging and handling of incomplete issue reports. Workflows with private
triage vs. public triage, and leaving incomplete issue open vs. closing them, are
discovered and evaluated. We obtain insights that triage conducted by reporters
themselves should be restricted and it is not cost-effective to keep incomplete
issue reports open. These studies demonstrate the ability of IWE to discover and
evaluate different types of issue workflows.

The paper is organized as follows: Sect. 2 introduces the concept of issue
workflow, Sect. 3 describes the design of IWE, Sect. 4 presents the empirical
evaluation, and Sect. 5 demonstrates the detailed operations of IWE.

3 https://old.etherpad-mozilla.org/bugmasters-meeting-20121220.
4 https://groups.google.com/forum/?hl=de#!topic/mozilla.dev.platform/

3DAYBckD2C4.
5 http://live.gnome.org/Bugsquad/TriageGuide.
6 https://www.bugzilla.org/.

https://old.etherpad-mozilla.org/bugmasters-meeting-20121220
https://groups.google.com/forum/?hl=de#!topic/mozilla.dev.platform/3DAYBckD2C4
https://groups.google.com/forum/?hl=de#!topic/mozilla.dev.platform/3DAYBckD2C4
http://live.gnome.org/Bugsquad/TriageGuide
https://www.bugzilla.org/

Issue Workflow Explorer 163

2 Issue Workflow

In an issue workflow, issue reports transfer through a sequence of steps, e.g.,
submission, triaging, fixing, etc. Results of these steps are shown with status
label in issue tracking systems. For example, in the standard workflow defined
by GNOME (see Footnote 1), new filed issues should be labelled as UNCON-
FIRMED. When a triager confirms it is a valid issue, its status changes to NEW.
Alternatively, if it is, for example, a duplicate report, it may be immediately
closed and its status changes to RESOLVED. When the report does not con-
tain sufficient information for developers to reproduce and fix, the status would
change to NEEDINFO waiting for the reporter or others to complete it. Issue
reports in status NEW are to be assigned and resolved. The assignee may accept
the report (status ASSIGNED), or pass it to someone else (remains in the sta-
tus NEW), or resolve it (status RESOLVED). Finally, each RESOLVED report
results in a resolution of FIXED, DUPLICATE, INCOMPLETE, or INVALID.
In IWE, the issue workflows are described through transitions of these status.

3 Design of IWE

The basic goal of IWE is to simplify query and evaluation of issue workflows
with the power of visualization [1,6] assisting practitioners to analyse previous
issue resolution practices. We introduce four types of measures to evaluate issue
workflows and design selectors and interactive views to conduct and visualize
the measurements. The overview of the tool is shown in Fig. 1.

3.1 Measurements

Based on literature and our experience on investigating issue workflow (e.g.,
[16,17]), we introduce five measures to characterize issue workflows and quantify
their efficiency and effectiveness.

The number of issue reports within a defined scope, e.g, modules, time span,
is a basic metric to indicate the project workload, software quality [2,7], etc. We
use it to measure the population trend of investigated issues, i.e., the number of
reports with properties Ps, submitted or resolved during time span T (M1).

Status transitions tells what workflow practitioners follow to resolve the
reports, and a number of studies have tried to model and present the transi-
tions [2,14,16]. We measure the occurrence of a workflow through the number
of selected issue reports that were transferred through status sequence Ss (M2).

People have shown great interest on the efficiency of time spent to resolve
issue reports [7]. To address this concern, we calculate time spent on transition
from the beginning to status Se (M3).

Finally, the results and complexity of issue resolution process, e.g., whether
they are fixed, determine the effectiveness of effort cost, which have also been
paid attention to [3]. To address this concern, we calculate the fraction of reports
with resolution result R (M4) and number of transitions a report experienced
(M5).

164 J. Zhu et al.

Fig. 1. Overview of IWE.

3.2 Selectors

We propose eight selectors for querying workflows. Users can customize the input
of the views (introduced in Sect. 3.3) to direct or narrow down their exploration.
Issue tracking systems, e.g., Bugzilla, define a number of fields7 to describe the
issue properties. We focus on the commonly used fields [11,15] and build the
products, severity and priority selector to specify issue reports in which
product with which severity and priority to investigate. The transition selec-
tors, i.e., starts with and includes, pick out issue reports starting with or includ-
ing the selected status for further investigation. Since workflow effectiveness is
related to the issue resolution result, we make resolution selector to screen out
issue reports ending with a specific result. The other two time span selector,
i.e., report time and resolve time, are built to set the time span for choosing issue
reports submitted or resolved within it.

3.3 Views

We design three views, which receive the input from selectors, for users to con-
duct the measurements and observe the results.

The Workflow View visualizes the measurements of issue population (M1),
status transitions (M2), efficiency (M3) and effectiveness (M4). We present issue
workflows, i.e., status transitions, in forms of trees. Thickness and length of the
edges visually indicates the number of issue reports experiencing the transitions

7 https://bugzilla.mozilla.org/page.cgi?id=fields.html.

https://bugzilla.mozilla.org/page.cgi?id=fields.html

Issue Workflow Explorer 165

and time cost respectively. The level of a leaf means the number of transitions
that reports in this workflow experienced. Quantitative measures are shown in
tips where time spent of each workflow is given by the first quartile, median and
third quantile in addition to the mean in consideration of distribution bias. To
support investigation of single workflow or part of it, we add selectors to pick it
out as the input for the Investigation View and Time Trend View.

The Investigation View is built for studying the efficiency and effectiveness
of selected workflows. It has two parts, Resolution View and Resolve Time View,
to present measures of efficiency (M3) and effectiveness (M4) respectively. The
Resolution View is a bar chart showing the fraction of issue reports with each
result. The Resolve Time View is a line chart describing the fraction of reports
resolved within the time indicated by X axis.

We design the Time Trend View to adjust measurements in Workflow
View and Investigation View by time slots (e.g., days, weeks or months) on time
line for investigating trends of those measures. The report time or resolution
time option is used to decide which time slot a issue report belongs to, e.g., for
a report which was submitted in day d1 and resolved in day d2, if report time
is selected and time slot is day, the number of issue reports in day d1 plus one,
otherwise, the number of reports in day d2 plus one. The indication of y axis
differs when triggered by different views. It is number of reports of the selected
workflow for Workflow View, fraction of fixed issued for Resolution View and
number of days spent within 90% reports for Resolve Time View.

For comparing the efficiency, effectiveness and trend of different workflows,
we remain recent measurement results in Investigation and Time Trend views.

4 Emprical Evaluation

To demonstrate IWE’s value of helping practitioners understand issue workflows,
we study the following research questions.

RQ0: Can IWE help users discover and evaluate previous workflows in prac-
tice and get insights for future development? This is the over all question about
effectiveness of the tool. We answer it by studying two major concerns of issue
workflow, issue triaging and handling of incomplete issues.

RQ1: What manners are there for issue triage and what are their strength
and weakness on efficiency and effectiveness? Issue triage has got wide attention
from both practitioners (see Footnote 1) and researchers [9,17]. We expect to dis-
cover and evaluate workflows with different triage manners and get implications.

RQ2: What strategies are there for handling incomplete issue reports and
what are their advantages and disadvantages? It is well known that many
reporters voluntarily or occasionally participate in FLOSS projects. Therefore,
the issue resolution process often stops and waits for responses from reporters
or developers for a long time [16]. Similar with RQ1, we want to discover and
evaluate workflows with different strategies for incomplete reports and obtain
insights for improvement.

We use the issue tracking data of GNOME and Mozilla, two famous large
scale FLOSS projects, from our previous study [18]. Both of them uses Bugzilla,

166 J. Zhu et al.

and the issue repositories have 432K and 679K reports submitted in over 10 years.
In the following, we study the above questions through IWE.

4.1 Issue Triage

Since issue tracking systems of FLOSS projects are open to everyone, a reporter
may be the one who has little experience to properly file issues. As mentioned
in Sect. 2, an inspection process is conducted by the community to filter the
irrelevant reports, screen out reports needing additional information and assign
remained ones to right product. Usually, projects set the status of UNCON-
FIRMED for new reports, and after public triage, valid reports are transferred
to NEW waiting for developers to fix the issues.

Workflow Discovery: Among the workflows of Mozilla and GNOME (Fig. 2(a)
and (b)) presented by IWE, we find that not all the reports began with UNCON-
FIRMED. It implies that trusted reporters were granted privilege to directly file
a NEW or ASSIGNED report. Different from public triage, such triage is self-
conducted by the reporters (private triage) who may be skilled developers. In
the Time Trend View, we can see that private triage was periodically popular,
which means these two projects have attempted and adjusted this manner for a
long time. We speculate that Hypothesis 1: workflows with private triage could
shorten the lead time of the resolution process when the triages are correct but
increase the time and effort cost on the contrary.

(a)

(b)

Fig. 2. Workflows of Mozilla and GNOME.

Efficiency and Effectiveness Exploring: To test Hypothesis 1, first, we
study the Mozilla project. Selecting issue reports that started with NEW or
ASSIGNED and those began with UNCONFIRMED, we evaluate these two
types of workflows respectively through Investigation View. Figure 3 (a) shows
the results, and we can see that reports through private triage were processed
faster than those through public triage. However, when we restrict selection
to reports that are judged as duplicated, i.e., we only include incorrect pri-
vate triages, the results (see Fig. 3(b)) become opposite. Through looking at the

Issue Workflow Explorer 167

Workflow View, we find the reason that when the private triage was incorrect
and the reports were assigned to developers, the resolution was delayed. This
may also waste effort of those assigned developers. When we apply the same
investigation on GNOME project8, we get similar results. All the evidences sup-
port Hypothesis 1.

(a) (b)

Fig. 3. Efficiency of different triage manners.

Insights: Through investigating the workflows and testing H1, we have answered
RQ1. When properly applied, private issue triage could help community save
effort and time in resolving issues, but it will bring side effect when the triage
is wrong. Therefore, the privilege to conduct private triage should be strictly
restrict to experienced developers. Meanwhile, developers should carefully do
that.

4.2 Handling of Incomplete Reports

Less experienced reporters may file issue reports without enough information
for developers to understand or reproduce the bug. Therefore, the resolution
process must stop and wait for the reporters to come back and complete it. Too
many stuck reports may overwhelm other reports, and projects need strategies
to address this problem.

Workflow Discovery: In the workflows of GNOME presented by IWE, we find
a status, NEEDINFO, which is used to label incomplete issue reports. However,
workflows of Mozilla does not have this status. In Mozilla, incomplete reports
are directly closed with the resolution of INCOMPLETE. If reporters come back
and find the resolution, they may reopen it and provide additional information.
8 GNOME has workflows with the specific status NEEDINFO, and they are not con-

sidered here because of the different strategies discussed in Sect. 4.2, which strongly
impact the resolution time and may introduce bias.

168 J. Zhu et al.

In the Time Trend View of GNOME (Fig. 4), we observe that from October 2006
to November 2007, there were a great deal of reports resolved as INCOMPLETE,
in particular, majority of the reports submitted before April 2007 experienced
NEEDINFO while most of reports filed after that time did not. This suggests
that the GNOME community decreased their use of NEEDINFO when there
were too many incomplete reports. We searched the mailing list of GNOME and
found an email which confirms this observation9. We propose Hypothesis 2:
skipping NEEDINFO status and closing incomplete issues directly would reduce
the resolve time and avoid retention of too many unresolved issues, while using
NEEDINFO would make incomplete issues get sufficient information later.

Fig. 4. Trend of incomplete issue reports.

Efficiency and Effectiveness Exploring: To inspect Hypothesis 2, we study
the GNOME project which applied both of the strategies for incomplete reports.
Targeting at reports resolved as incomplete, we select those went through NEED-
INFO and those did not in Workflow View. Conducting measurement in Inves-
tigation View, we get the result that issue reports processed with the latter
strategy were resolved much faster than the former (Fig. 5(a)). It offers evidence
for the first half of H2. When no criteria are given, in Investigation View we can
see that 14.3% of all the 432k issue reports, i.e., 62k reports, were finally incom-
plete (Fig. 5(b)). When we select issue reports that experienced NEEDINFO, we
can see that 45.7% of the 71k reports were finally incomplete (Fig. 5(b)), i.e.,
only 54.3% of them got enough information. This evidence does not strongly
support the second half of H2.

Insights: By exploring the workflows and testing H2, we have got answers for
RQ2. To avoid blocking the resolution process and overwhelming other issues,
skipping the NEEDINFO status would be the first choice. Using the NEED-
INFO status cannot ensure that majority of the incomplete issues get sufficient
information.

Through studying RQ1 and RQ2, the answer for RQ0 is clear, i.e., IWE can
help users discover previous workflows in practice, evaluate their efficiency and
effectiveness and get insights for future development.
9 https://mail.gnome.org/archives/gnome-bugsquad/2007-April/thread.html.

https://mail.gnome.org/archives/gnome-bugsquad/2007-April/thread.html

Issue Workflow Explorer 169

(a) (b)

Fig. 5. Efficiency and effectiveness of strategies for incomplete reports.

5 Operations of IWE

We walk through the detailed operations of IWE to show its usability. We take
the analysis conducted in Sect. 4.2 as an example.

First, we select the GNOME project through the drop-down list of Project.
Second, to measure the resolve time, we start from Selectors to specify the

issue reports resolved as INCOMPLETE in the drop-down lists of Resolution.
Through clicking the “Redraw” button in the Workflow View, IWE draws a
workflow tree shown in Fig. 6 where there are two workflows, one has the NEED-
INFO status, and the other one does not. On the workflow tree, we pick out the
workflow with NEEDINFO status using the Select button. In the bottom half
of investigation View, we click the Draw button to see time spent within this
workflow. We measure resolve time using workflow without NEEDINFO status
through similar steps. These results are presented in Fig. 5(a).

Fig. 6. Workflows end with INCOMPLETE.

170 J. Zhu et al.

Finally, to measure the output of the workflow with NEEDINFO status, we
select with drop-down lists of Include Status and click Draw button in the top
half of Investigation View to obtain the result, which is shown in Fig. 5(b).

Analysis of the result has been elaborated in Sect. 4.2.

6 Related Work

There has been substantial amount of work on developing approaches or tools to
investigate issue tracking repositories in order to understand bug life-cycle and
properties. Data visualization is a popular topic in this field and the approach
proposed by D’Ambros et al. [2] was one of the early attempts. They proposed
system level view which visualizes the distribution of open bugs in the com-
ponents over time and bug level view for the status changing of a single bug.
Similarly, Knab et al. visualized the effort measures, the sequence of issue resolv-
ing steps and the duration of each step [10]. Hora et al. proposed a tool to present
the bugs in each class/package of a software system [7]. Different from [2], they
detailed the change of number of bugs with version iteration and bug lifetime
in each class. Gong and Zhang visualized the location of bugs in the system
in a topographic map, where contour lines depict the number of bugs in each
component/file [4]. Besides the visualization, Ripoche et al. proposed a gener-
alized probabilistic network model in form of Markov model and probabilistic
finite state automata (FSA) as a statistical and computational foundation for
understanding bug fix process [14].

In this paper, we focus on issue workflow discovery and evaluation in a quan-
titative and visualized way to help practitioners make their decisions.

7 Conclusions

We build IWE to support exploring issue workflow. Providing practitioners with
visualized measurements, IWE makes it easy to find out unsatisfactory workflows
to improve. Empirical studies show that IWE achieves our goal. In future, we are
going to make IWE compatible with more issue tracking systems and introduce
it to both commercial and FLOSS projects to collect feedbacks for improvement.

Acknowledgements. This work is supported by the National Key R&D Program
of China Grant 2018YFB1004201, the National Natural Science Foundation of China
Grants 61802378, 61432001 and 61825201.

References

1. Ciani, A., Minelli, R., Mocci, A., Lanza, M.: Urbanit: visualizing repositories every-
where. In: 2015 IEEE International Conference on Software Maintenance and Evo-
lution (ICSME), pp. 324–326 (2015)

2. D’Ambros, M., Lanza, M., Pinzger, M.: “A bug’s life” visualizing a bug database.
In: Visualizing Software for Understanding and Analysis, pp. 113–120. IEEE (2007)

Issue Workflow Explorer 171

3. Davies, S., Roper, M.: What’s in a bug report? In: ESEM, p. 26. ACM (2014)
4. Gong, J., Zhang, H.: BugMap: a topographic map of bugs. In: FSE, pp. 647–650.

ACM (2013)
5. Herzig, K., Zeller, A.: Mining bug data. In: Robillard, M.P., Maalej, W., Walker,

R.J., Zimmermann, T. (eds.) Recommendation Systems in Software Engineer-
ing, pp. 131–171. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
45135-5 6

6. Hollan, J., Hutchins, E., Kirsh, D.: Distributed cognition: toward a new foundation
for human-computer interaction research. ACM Trans. Comput. Human Interact.
7(2), 174–196 (2000)

7. Hora, A., et al.: Bug maps: a tool for the visual exploration and analysis of bugs.
In: Software Maintenance and Reengineering, pp. 523–526. IEEE (2012)

8. Howison, J., Conklin, M., Crowston, K.: FLOSSmole: a collaborative repository
for floss research data and analyses. Int. J. Inf. Technol. Web. Eng. 1(3), 17–26
(2008)

9. Jeong, G., Kim, S., Zimmermann, T.: Improving bug triage with bug tossing
graphs. In: Proceedings of the the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pp. 111–120. ACM (2009)

10. Knab, P., Pinzger, M., Gall, H.C.: Visual patterns in issue tracking data. In: Münch,
J., Yang, Y., Schäfer, W. (eds.) ICSP 2010. LNCS, vol. 6195, pp. 222–233. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14347-2 20

11. Lamkanfi, A., Demeyer, S., Giger, E., Goethals, B.: Predicting the severity of a
reported bug. In: 2010 7th IEEE Working Conference on Mining Software Repos-
itories (MSR), pp. 1–10. IEEE (2010)

12. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source soft-
ware development: Apache and mozilla. ACM Trans. Soft. Eng. Methodol. 11(3),
309–346 (2002)

13. Rigby, P.C., Storey, M.A.: Understanding broadcast based peer review in OSS. In:
International Conference on Software Engineering (2011)

14. Ripoche, G., Gasser, L.: Scalable automatic extraction of process models for under-
standing F/OSS bug repair. In: ICSSEA (2003)

15. Tian, Y., Lo, D., Xia, X., Sun, C.: Automated prediction of bug report priority
using multi-factor analysis. Empirical Soft. Eng. 20(5), 1354–1383 (2015)

16. Xie, J., Zheng, Q., Zhou, M., Mockus, A.: Product assignment recom-
mender. In: ICSE Formal Demonstrations. pp. 556–559. ACM, New York,
NY, USA (2014). https://doi.org/10.1145/2591062.2591073, http://doi.acm.org/
10.1145/2591062.2591073

17. Xie, J., Zhou, M., Mockus, A.: Impact of triage: a study of Mozilla and gnome. In:
ESEM, Baltimore, Maryland, USA, pp. 247–250, 10–11 October 2013

18. Zhou, M., Mockus, A.: Who will stay in the FLOSS community? Modeling partic-
ipant’s initial behavior. IEEE Trans. Softw. Eng. 41(1), 82–99 (2015)

https://doi.org/10.1007/978-3-642-45135-5_6
https://doi.org/10.1007/978-3-642-45135-5_6
https://doi.org/10.1007/978-3-642-14347-2_20
https://doi.org/10.1145/2591062.2591073
http://doi.acm.org/10.1145/2591062.2591073
http://doi.acm.org/10.1145/2591062.2591073

Author Index

Cao, Jin 101

Duan, Yingying 52

Guo, Junxia 52

Hu, Jinghui 35
Huang, Zhiqiu 83

Jiang, Jing 101
Jin, Zhi 3, 72

Li, Ge 3, 72
Li, Yanhui 145
Li, Zheng 15
Liu, Chao 35
Liu, Jianbin 129
Liu, Yong 15
Liu, Yuxuan 72
Lu, Yangyang 3

Ma, Ping 115

Ren, Jian 35

Shang, Ying 52

Wang, Haifeng 15
Wang, Xu 35
Wu, Yonghao 15

Xu, Danni 115
Xu, Lei 145
Xuan, Jifeng 115

Yuan, Min 83

Zhang, Jie 83
Zhang, Li 101
Zhang, Xin 115
Zhao, Jingjing 129
Zhao, Zelong 3
Zheng, Liwei 129
Zhong, Zhen 161
Zhou, Hang 145
Zhou, Minghui 161
Zhu, Jiaxin 161

	Preface
	Organization
	Contents
	Intelligent Software Engineering (NASAC 2017 English Track/CSBSE 2017)
	Learning to Generate Comments for API-Based Code Snippets
	1 Introduction
	2 Approach
	2.1 Overview
	2.2 Models of Generating Comments from API Sequences

	3 Evaluation
	3.1 Dataset
	3.2 Experimental Settings
	3.3 Results

	4 Conclusion
	References

	Test Oracle Prediction for Mutation Based Fault Localization
	1 Introduction
	2 Background and Related Work
	2.1 Test Oracle
	2.2 Mutation Based Fault Localization
	2.3 Neural Network and Machine Learning Algorithms

	3 MBFL with Predicted Test Oracle
	4 Experiment Design
	4.1 Research Questions
	4.2 Subject Programs
	4.3 Evaluation Metrics

	5 Experiment Results and Analyses
	5.1 Comparison Between Mutant Coverage and Statement Coverage
	5.2 Comparison Between Different Learning Algorithms
	5.3 Performance of MBFL with and Without Test Oracle Prediction

	6 Threats to Validity
	7 Conclusion and Future Work
	References

	Parallel Evolutionary Algorithm in Scheduling Work Packages to Minimize Duration of Software Project Management
	1 Introduction
	2 Evolutionary Algorithm
	2.1 Meta-heuristic Algorithms
	2.2 Evolutionary Algorithm

	3 Project Management Problem
	3.1 Project Plan
	3.2 Definition and Assumptions
	3.3 The Objective of Problem

	4 Design of Algorithm
	4.1 The Representation of Solution
	4.2 Fitness Evaluation
	4.3 Genetic Operators
	4.4 Parallel Evolutionary Algorithm
	4.5 Runtime Environment

	5 Experimental Results
	5.1 Industrial Project Data
	5.2 Effectiveness Experiment for Algorithm
	5.3 Efficiency Experiment for Algorithm

	6 Related Works
	7 Conclusions and Future Work
	References

	Multi-gene Genetic Programming Based Defect-Ranking Software Modules*-10pt
	1 Introduction
	2 Background
	3 MGGP-Based Defect Prediction Model
	4 Experimental Methodology
	4.1 Software Defect Data-Sets
	4.2 Software Metrics
	4.3 Evaluation Measure
	4.4 Wilcoxon Rank Sum Test

	5 Experiments and Results
	5.1 Set Parameters for MGGP
	5.2 Defect Prediction Models for Comparison
	5.3 Results

	6 Threats to Validity
	6.1 Threats to Internal Validity
	6.2 Threats to External Validity

	7 Conclusions and Future Work
	References

	Call Graph Based Android Malware Detection with CNN
	1 Introduction
	2 Approach
	2.1 Method Representation Layer
	2.2 Convolution Layer
	2.3 Pooling Layer, Hidden Layer and Output Layer

	3 Evaluation
	3.1 Data Set and Tool Implementation
	3.2 Detection Performance
	3.3 Parameter Setting

	4 Related Work
	5 Conclusion
	References

	Software Requirements Elicitation Based on Ontology Learning
	Abstract
	1 Introduction
	1.1 Background
	1.2 Related Work

	2 Ontology Learning
	2.1 Ontology Construction
	2.2 Ontology Learning

	3 Acquisition of Ontology
	3.1 Concept Extraction Method
	3.2 The Common Approach
	3.2.1 Domain Relevance and Domain Consensus
	3.2.2 CCM+TFIDF
	3.2.3 Information Entropy

	3.3 CCM+TFIDFE
	3.3.1 TFIDFE
	3.3.2 CCM+TFIDFE

	3.4 A Sample for Computation Process

	4 Examples of Requirements Elicitation
	4.1 Experimental Data
	4.2 CCM+TFIDFE
	4.3 Analysis of Results

	5 Conclusion
	Acknowledgement
	References

	Software Mining (NASAC 2018 English Track)
	An Empirical Study of Link Sharing in Review Comments*-10pt
	1 Introduction
	2 Background and Research Questions
	2.1 Links in Pull Requests
	2.2 Research Questions

	3 Data Collection
	4 Link Frequency
	5 Context of Links
	6 Impacts of Links
	6.1 Review Comments and Commenters
	6.2 Evaluation Time
	6.3 Acceptance

	7 Discussion
	7.1 Implications
	7.2 Threats to Validity

	8 Related Work
	9 Conclusion
	References

	Changes Are Similar: Measuring Similarity of Pull Requests That Change the Same Code in GitHub
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivation

	3 Measurement Methods of Similarity
	3.1 The cosine Method
	3.2 The doc2vec Method

	4 Experimental Setup
	4.1 Data Preparation
	4.2 Research Questions

	5 Experimental Results
	5.1 RQ1. How Does the Similarity Between Competing Pull Requests Perform?
	5.2 RQ2. What Is the Distribution of the Similarity Between Competing Pull Requests?
	5.3 RQ3. Is There Any Correlation Between the Two Measurement Methods of Similarity?

	6 Threats to Validity
	7 Related Work
	7.1 Change Merging
	7.2 Text Similarity Measurement

	8 Conclusion
	References

	Contiguous Sequence Mining Approach for Program Procedure Pattern
	Abstract
	1 Introduction
	2 Related Work
	3 Contiguous Sequence Mining for Program Procedure Pattern
	3.1 Prepared Knowledge
	3.2 Contiguous Sequence Mining Process Model for Program Procedure Pattern
	3.3 Structure Candidate Pattern Mining
	3.4 Structure Relation Candidate Pattern Mining

	4 Experiment and Result Analysis
	4.1 Experiment Design
	4.2 Experiment Process
	4.3 Analysis of Mining Results
	4.4 Evaluation of Experiment Results

	5 Summary and Future Work
	Acknowledgment
	References

	Mining the Contributions Along the Lifecycles of Open-Source Projects
	1 Introduction
	2 Research Methodology
	2.1 Research Questions
	2.2 MCSV
	2.3 Dataset
	2.4 Research Methods

	3 Experimental Results
	3.1 RQ1
	3.2 RQ2
	3.3 RQ3
	3.4 RQ4

	4 Threats to Validity
	4.1 Threats to Construct Validity
	4.2 Threats to Internal Validity
	4.3 Threats to External Validity

	5 Related Work
	5.1 Data Mining && Visualization Technology
	5.2 Mining Software Repository
	5.3 Software Evolution

	6 Conclusion
	References

	Issue Workflow Explorer
	1 Introduction
	2 Issue Workflow
	3 Design of IWE
	3.1 Measurements
	3.2 Selectors
	3.3 Views

	4 Emprical Evaluation
	4.1 Issue Triage
	4.2 Handling of Incomplete Reports

	5 Operations of IWE
	6 Related Work
	7 Conclusions
	References

	Author Index

