
Stochastic Duality and Orthogonal
Polynomials

Chiara Franceschini1 and Cristian Giardinà2(B)
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Abstract. For a series of Markov processes we prove stochastic duality
relations with duality functions given by orthogonal polynomials. This
means that expectations with respect to the original process (which
evolves the variable of the orthogonal polynomial) can be studied via
expectations with respect to the dual process (which evolves the index
of the polynomial). The set of processes include interacting particle sys-
tems, such as the exclusion process, the inclusion process and indepen-
dent random walkers, as well as interacting diffusions and redistribution
models of Kipnis–Marchioro–Presutti type. Duality functions are given
in terms of classical orthogonal polynomials, both of discrete and con-
tinuous variable, and the measure in the orthogonality relation coincides
with the process stationary measure.

Keywords: Interacting particle systems · Duality · Orthogonal
polynomials · Exclusion process

1 Motivations and Main Results

1.1 Introduction

Duality theory is a powerful tool to deal with stochastic Markov processes by
which information on a given process can be extracted from another process, its
dual. The link between the two processes is provided by a set of so-called duality
functions, i.e. a set of observables that are functions of both processes and whose
expectations, with respect to the two randomness, can be placed in a precise
relation (see Definition 1 below). It is the aim of this paper to enlarge the space
of duality functions for a series of Markov processes that enjoy the stochastic
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duality property. These novel duality functions are in turn connected to the
polynomials that are orthogonal with respect to the inner product provided
by the stationary measure of those processes. Thus the paper develops, via a
series of examples, a connection between probabilistic objects (duality functions)
and orthogonal polynomials. See [4] for a previous example of a process with
duality functions in terms of Hermite polynomials. Moreover, in [10,21,41] it is
shown how stochastic duality and orthogonal polynomials are connected from
an algebraic perspective.

Before going to the statement of the results, it is worth to stress the impor-
tance of a duality relation. Duality theory has been used in several different
contexts. Originally introduced for interacting particle systems in [45] and fur-
ther developed in [36], the literature on stochastic duality covers nowadays a host
of examples. Duality has been applied – among the others – to boundary driven
and/or bulk driven models of transport [5,27,40,46], Fourier’s law [23,29], dif-
fusive particle systems and their hydrodynamic limit [20,36], asymmetric inter-
acting particle systems scaling to KPZ equation [1,6,8,9,17,19,26], six vertex
models [7,18], multispecies particle models [2,3,33–35], correlation inequalities
[25], mathematical population genetics [12,38]. In all such different contexts it is
used, in a way or another, the core simplification that duality provides. Namely,
in the presence of a dual process, computation of k-point correlation functions
of the original process is mapped into the study of the evolution of only k dual
particles, thus substantially reducing the difficulty of the problem.

Besides applications, it is interesting to understand the mathematical struc-
ture behind duality. This goes back to classical works by Schütz and collabora-
tors [43,44], where the connection between stochastic duality and symmetries of
quantum spin chains was pointed out. More recently, the works [13,14,24,34,35]
further investigate this framework and provide an algebraic approach to Markov
processes with duality starting from a Lie algebra in the symmetric case, and its
quantum deformation in the asymmetric one. In this approach duality functions
emerge as the intertwiners between two different representations. Therefore one
has a constructive theory, in which duality functions arise from representation
theory.

An interesting problem is to fully characterize the set of all duality func-
tions. This question was first asked in [38] where it was defined the concept of
duality space, i.e. the subspace of all measurable functions on the configura-
tion product space of two Markov processes for which the duality relation (see
Definition 1 below) holds. In [38] the dimension of this space is computed for
some simple systems and, as far as we know, a general answer is not available in
the general case. Although the algebraic approach recalled above yields a duality
function from two representations of a (Lie) algebra, it is not clear a-priori if
every duality function can be derived from this approach. In this paper we follow
a different route. We shall show that duality functions can be placed in relation
to orthogonal polynomials.
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1.2 Results

We recall the classical definition of stochastic duality.

Definition 1 (Duality of processes). Let X = (Xt)t≥0 and N = (Nt)t≥0 be
two continuous time Markov processes with state spaces Ω and Ωdual , respec-
tively. We say that N is dual to X with duality function D : Ω × Ωdual �−→ R

if
Ex[D(Xt, n)] = En[D(x,Nt)], (1)

for all x ∈ Ω, n ∈ Ωdual and t ≥ 0. In (1) Ex (respectively En) is the expecta-
tion w.r.t. the law of the X process initialized at x (respectively the N process
initialized at n). If X and N are the same process, we say that X is self-dual
with self-duality function D.

Under suitable hypothesis (see [28]), the above definition is equivalent to the
definition of duality between Markov generators.

Definition 2 (Duality of generators). Let L and Ldual be generators of the
two Markov processes X = (Xt)t≥0 and N = (Nt)t≥0, respectively. We say that
Ldual is dual to L with duality function D : Ω × Ωdual −→ R if

[LD(·, n)](x) = [LdualD(x, ·)](n) (2)

where we assume that both sides are well defined. In the case L = Ldual we shall
say that the process is self-dual and the self-duality relation becomes

[LD(·, n)](x) = [LD(x, ·)](n). (3)

In (2) (resp. (3)) it is understood that L on the lhs acts on D as a function of
the first variable x, while Ldual (resp. L) on the rhs acts on D as a function of
the second variable n. The Definition 2 is easier to work with, so we will always
work under the assumption that the notion of duality (resp. self-duality) is the
one in Eq. (2) (resp. (3)).

Remark 1. If D(x, n) is duality function between two processes and

c : Ω × Ωdual −→ R

is constant under the dynamics of the two processes then c(x, n)D(x, n) is also
duality function. We will always consider duality functions modulo the quantity
c(x, n). For instance, the interacting particle systems studied in Sect. 3 conserve
the total number of particles and thus c is an arbitrary function of such conserved
quantity.

In this paper we shall prove that several Markov processes, for which a duality
function is known from the algebraic approach, also admit a different duality
function given in terms of polynomials that are orthogonal with respect to the
process stationary measure.
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The processes that we consider include discrete interacting particle systems
(exclusion process, inclusion process and independent random walkers process)
as well as interacting diffusions (Brownian momentum process, Brownian energy
process) and redistribution models that are obtained via a thermalization limit
(Kipnis–Marchioro–Presutti processes). Their generators, that are defined in
Sects. 3 and 4, have an algebraic structure from which duality functions have
been previously derived [24].

The orthogonal polynomials we use are some of those with hypergeomet-
ric structure. More precisely we consider classical orthogonal polynomials, both
discrete and continuous, with the exception of discrete Hahn polynomials and
continuous Jacobi polynomials. Through this paper we follow the definitions of
orthogonal polynomials given in [39].

The added value of linking duality functions to orthogonal polynomials lies on
the fact that they constitute an orthogonal basis of the associated Hilbert space.
Often in applications [9,13,27] some quantity of interest are expressed in terms
of duality functions, for instance the current in interacting particle systems.
This is then used in the study of the asymptotic properties and relevant scaling
limits. For these reasons it seems reasonable that having an orthogonal basis of
polynomials should be useful in those analysis.

The following theorem collects the results of this paper, details and rigorous
proofs can be found in Sect. 3 for self-duality and Sect. 4 for duality.

Theorem 1. For the processes listed below, the following duality relations hold
true

(i) Self-duality

Process Stationary measure Duality function
D(x, n): product of

Exclusion Process Binomial(2j, p) Kn(x)/
(
2j
n

)

with up to 2j particles,
SEP(j)

Inclusion Process Negative Binomial (2k, p) Mn(x) Γ(2k)
Γ(2k+n)

with parameter k, SIP(k)

Independent Random Poisson(λ) Cn(x)
Walkers, IRW

where Kn(x) stands for Krawtchouk polynomials, Mn(x) for Meixner
polynomials, Cn(x) for Charlier polynomials.
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(ii) Duality

Process Stationary Duality function Dual Process

measure D(x, n): product of

Brownian Momentum Gaussian(0, σ2) 1
(2n−1)!!

H2n(x) Inclusion process

Process, BMP with k = 1/4

Brownian Energy Process Gamma(2k, θ)
n!Γ(2k)
Γ(2k+n)

L
(2k−1)
n (x) Inclusion process

with parameter k, with parameter k
BEP(k)

Kipnis–Marchioro–Presutti Gamma(2k, θ)
n!Γ(2k)
Γ(2k+n)

L
(2k−1)
n (x) dual-KMP(k)

with parameter k, process with
KMP(k) parameter k

where Hn(x) stands for Hermite polynomials and L
(2k−1)
n (x) for generalized Laguerre

polynomials.

Remark 2. As can be inferred from the table, the duality function is not, in
general, the orthogonal polynomial itself, but a suitable normalization. Moreover,
for the process defined on multiple sites the duality functions exhibit a product
structure where each factor is in terms of the relevant orthogonal polynomial.

1.3 Comments

Old and New Dualities. It is known that the six processes we consider sat-
isfy the same (self-)duality relation described by the chart above with different
(self-)duality functions. New and old (self-)duality functions can be related using
the explicit form of the polynomial that appears in the new one via a relation
of the following type:

Dnew(x, n) =
n∑

k=0

d(k, n)Dold(x, k)

where d(k, n) also depends on the parameter of the stationary measure. If, for
example, we consider the self-duality of the Independent Random Walker, where
the new self-duality functions are given by the Charlier polynomials and the old
self-duality functions are given by the falling factorial, then we have

Dnew(x, n) =
n∑

k=0

(
n

k

)
(−λ)n−k x!

(x − k)!
Dold(x, n) =

x!
(x − n)!

so that

Dnew(x, n) =
n∑

k=0

(
n

k

)
(−λ)n−kDold(x, k)

where λ is the Poisson distribution parameter.
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The Norm Choice. A sequence of orthogonal polynomials {pn(x) : n ∈ N} on
the interval (a, b) is defined by the choice of a measure μ to be used in the scalar
product and a choice of a norm d2

n > 0

〈pn, pm〉 :=
∫ b

a

pn(x)pm(x)dμ(x) = δn,md2
n.

The main result of this paper states that orthogonal polynomials with a properly
chosen normalization furnish duality functions for the processes we consider. In
our setting the probability measure μ to be used is provided by the marginal
stationary measure of the process. The appropriate norm has been found by
making the ansatz that new duality functions can be obtained by the Gram–
Schmidt orthogonalization procedure initialized with the old duality functions
derived from the algebraic approach [24]. Namely, if one starts from a sequence
pn(x) of orthogonal polynomials with norm d2

n and claims that Dnew(x, n) =
bnpn(x), where bn is the appropriate normalization, then the previous ansatz
yields

bn =
〈Dold(·, n), pn〉

d2
n

. (4)

General Strategy of the Proof. Once a properly normalized orthogonal polyno-
mial is identified as a candidate duality function, then the proof of the duality
statement is obtained via explicit computations. Each proof heavily relies on
the hypergeometric structure of the polynomials involved. The idea is to use
three structural properties of the polynomials family pn(x), i.e. the differential
or difference hypergeometric equation they satisfy, their three terms recurrence
relation and the expression for the raising ladder operator. Those properties are
then transported to the duality function using the proper rescaling bnpn(x). This
yields three identities for the duality function, that can be used in the expression
of the process generator. Finally, algebraic manipulation allows to verify relation
(2) for duality and (3) for self-duality.

Stochastic Duality and Polynomials Duality. Last, we point out that there
exists a notion of duality within the context of orthogonal polynomials, see
Definition 3.1 in [30]. For example, in case of discrete orthogonal polynomials, the
polynomials self-duality can be described by the identity pn(x) = px(n) where x
and n take values in the same discrete set. It turns out that Charlier polynomials
are self-dual, whereas Krawtchouk and Meixner polynomials, defined as in [39]
see also Sect. 3, are not. However, it is possible to rescale them by a constant bn

so that they become self-dual. The constant bn is indeed provided by (4). It is
not clear if the two notions of stochastic duality and polynomials duality are in
some relation one to the other. This will be investigated in a future work.

1.4 Paper Organization

The paper is organized as follows. Section 2 is devoted to a (non exhaustive)
review of hypergeometric orthogonal polynomials, we recall their key properties
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that are crucial in proving our results. We closely follow [39] and the expert
reader might skip this part without being affected. The original results are pre-
sented in Sects. 3 and 4. In Sect. 3 we describe three interacting particle systems
that are self-dual and prove the statement of Theorem1, part (i). Section 4 is
dedicated to the duality relations of two diffusion processes and a jump process
obtained as thermalization limit of the previous ones and it contains the proof
of Theorem 1, part (ii).

2 Preliminaries: Hypergeometric Orthogonal Polynomials

In this section we give a quick overview of the continuous and the discrete hyper-
geometric polynomials (see [16,30,39,42]) by reviewing some of their structural
properties that will be used in the following.

We start by recalling that the hypergeometric orthogonal polynomials arise
from an hypergeometric equation, whose solution can be written in terms of an
hypergeometric function rFs.

Definition 3 (Hypergeometric function). The hypergeometric function is
defined by the series

rFs

(
a1, . . . , ar

b1, . . . , bs

∣
∣
∣
∣ x

)
=

∞∑

k=0

(a1)k · · · (ar)k

(b1)k · · · (bs)k

xk

k!
(5)

where (a)k denotes the Pochhammer symbol defined in terms of the Gamma
function as

(a)k =
Γ(a + k)

Γ(a)
.

Remark 3. Whenever one of the numerator parameter aj is a negative integer
−n, the hypergeometric function rFs is a finite sum up to n, i.e. a polynomial
in x of degree n.

The Continuous Case. Consider the hypergeometric differential equation

σ(x)y
′′
(x) + τ(x)y

′
(x) + λy(x) = 0 (6)

where σ(x) and τ(x) are polynomials of at most second and first degree respec-
tively and λ is a constant. A peculiarity of the hypergeometric equation is that,
for all n, y(n)(x), i.e. the nth derivative of a solution y(x), also solves an hyper-
geometric equation, namely

σ(x)y(n+2)(x) + τn(x)y(n+1)(x) + μny(n)(x) = 0 (7)

with
τn(x) = τ(x) + nσ

′
(x) (8)

and
μn = λ + nτ

′
+

1
2
n(n − 1)σ

′′
.
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We concentrate on a specific family of solutions: for each n ∈ N, let μn = 0, so
that

λ = λn = −nτ
′ − 1

2
n(n − 1)σ

′′

and Eq. (7) has a particular solution given by y(n)(x) constant. This implies that
y(x) is a polynomial of degree n, called polynomial of hypergeometric type (see
Remark 3) and denoted by pn(x). In the following we will assume that those
polynomials are of the form

pn(x) = anxn + bnxn−1 + . . . an �= 0. (9)

It is well known [39] that polynomials of hypergeometric type satisfy the orthog-
onality relation ∫ b

a

pn(x)pm(x)ρ(x)dx = δn,md2
n(x) (10)

for some (possibly infinite) constants a and b and where the function ρ(x) satisfies
the differential equation

(σρ)
′
= τρ. (11)

The sequence d2
n can be written in terms of σ(x), ρ(x) and an as

d2
n =

(ann!)2
∏n−1

k=0(λn − λk)

∫ b

a

(σ(x))nρ(x)dx.

As a consequence of the orthogonal property the polynomials of hypergeometric
type satisfy a three terms recurrence relation

xpn(x) = αnpn+1(x) + βnpn(x) + γnpn−1(x) (12)

where
αn = cn+1,n βn = cn,n γn = cn−1,n

with

ck,n =
1
d2

k

∫ b

a

pk(x)xpn(x)ρ(x)dx.

The coefficients αn, βn, γn can be expressed in terms of the squared norm d2
n and

the leading coefficients an, bn in (9) as [39]

αn =
an

an+1
βn =

bn

an
− bn+1

an+1
γn =

an−1

an

d2
n

d2
n−1

.

Finally, we will use the raising operator R that, acting on the polynomials pn(x),
provides the polynomials of degree n + 1. Such an operator is obtained from the
Rodriguez formula, which provides an explicit form for polynomials of hyperge-
ometric type

pn(x) =
Bn(σn(x)ρ(x))(n)

ρ(x)
with Bn =

an
∏n−1

k=0

(
τ ′ + n+k−1

2 σ′′) . (13)
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The expression of the raising operator (see Eq. 1.2.13 in [39]) reads

Rpn(x) = rnpn+1(x) (14)

where

Rpn(x) = λnτn(x)pn(x) − nσ(x)τ
′
np

′
n(x) and rn = λn

Bn

Bn+1
.

Remark that the raising operator increases the degree of the polynomial by
one, similarly to the so-called backward shift operator [30]. However the raising
operator in (14) does not change the parameters involved in the function ρ,
whereas the backward operator increases the degree and lowers the parameters
[31].

The Discrete Case. Everything discussed for the continuous case has a discrete
analog, where the derivatives are replaced by the discrete difference derivatives.
In particular it is worth mentioning that

Δf(x) = f(x + 1) − f(x) and ∇f(x) = f(x) − f(x − 1).

The corresponding hypergeometric differential Eq. (6) is the discrete hypergeo-
metric difference equation

σ(x)Δ∇y(x) + τ(x)Δy(x) + λy(x) = 0 (15)

where σ(x) and τ(x) are polynomials of second and first degree respectively,
λ is a constant. The differential equation solved by the nth discrete derivative
of y(x), y(n)(x) := Δny(x), is the solution of another difference equation of
hypergeometric type

σ(x)Δ∇y(n)(x) + τnΔy(n)(x) + μny(n)(x) = 0 (16)

with
τn(x) = τ(x + n) + σ(x + n) − σ(x)

and
μn = λ + nτ

′
+

1
2
n(n − 1)σ

′′
.

If we impose μn = 0, then

λ = λn = −nτ
′ − 1

2
n(n − 1)σ

′′

and y(n)(x) is a constant solution of Eq. (16). Under these conditions, y(x),
solution of (15), is a polynomial of degree n, called discrete polynomial of hyper-
geometric type (see Remark 3) and denoted by pn(x).
The derivation of the orthogonal property is done in a similar way than the one
for the continuous case where the integral is replaced by a sum

b−1∑

x=a

pn(x)pm(x)ρ(x) = δn,md2
n
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constants a and b can be either finite or infinite and the function ρ(x) is solution
of

Δ[σ(x)ρ(x)] = τ(x)ρ(x).

The sequence d2
n can be written in terms of σ(x), ρ(x) and an as

d2
n =

(ann!)2
∏n−1

k=0(λn − λk)

b−n−1∑

x=a

(

ρ(x + n)
n∏

k=1

σ(x + k)

)

As a consequence of the orthogonal property, the discrete polynomials of hyper-
geometric type satisfy a three terms recurrence relation

xpn(x) = αnpn+1(x) + βnpn(x) + γnpn−1(x) (17)

where
αn = cn+1,n βn = cn,n γn = cn−1,n

with

ck,n =
1
d2

k

b∑

x=a

pk(x)xpn(x).

The coefficients αn, βn, γn can be expressed in terms of the squared norm d2
n and

the leading coefficients an, bn in (9) as [39]

αn =
an

an+1
βn =

bn

an
− bn+1

an+1
γn =

an−1

an

d2
n

d2
n−1

.

The discrete Rodriguez formula

pn(x) =
Bn

ρ(x)
∇n

[

ρ(x + n)
n∏

k=1

σ(x + k)

]

with Bn =
an

∏n−1
k=0

(
τ ′ + n+k−1

2 σ′′)

leads to an expression for the discrete raising operator R (see Eq. 2.2.10 in [39])

Rpn(x) = rnpn+1(x) (18)

where
Rpn(x) =

[
λnτn(x) − nτ

′
nσ(x)∇

]
pn(x) rn = λn

Bn

Bn+1
.

We remark again that the raising operator shouldn’t be confused with the back-
ward shift operator in [31] which changes the value of parameters of the distri-
bution ρ.

3 Self-duality: Proof of Theorem 1 Part (i)

We consider first self-duality relations for some discrete interacting particle sys-
tems. In this case the dual process is an independent copy of the original one.
Notice that, even if the original process and its dual are the same, a massive sim-
plification occurs, namely the n-point correlation function of the original process
can be expressed by duality in terms of only n dual particles. Thus a problem for
many particles, possibly infinitely many in the infinite volume, may be studied
via a finite number of dual walkers.
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3.1 The Symmetric Exclusion Process, SEP(j)

In the Symmetric Exclusion Process with parameter j ∈ N/2, denoted by
SEP(j), each site can have at most 2j particles, jumps occur at rate propor-
tional to the number of particles in the departure site times the number of holes
in the arrival site. The special case j = 1/2 corresponds to the standard exclu-
sion process with hard core exclusion, i.e. each site can be either full or empty
[36]. We consider the setting where the spacial structure is given by the undi-
rected connected graph G = (V,E) with N vertices and edge set E. A particle
configuration is denoted by x = (xi)i∈V where xi ∈ {0, . . . , 2j} is interpreted as
the particle number at vertex i. The process generator reads

LSEP (j)f(x) =
∑

1≤i<l≤N
(i,l)∈E

xi(2j −xl)
[
f(xi,l) − f(x)

]
+(2j −xi)xl

[
f(xl,i) − f(x)

]

where xi,l denotes the particle configuration obtained from the configuration x by
moving one particle from vertex i to vertex l and where f : {0, 1, . . . , 2j}N → R

is a function in the domain of the generator.
It is easy to verify that the reversible (and thus stationary) measure of the

process for every p ∈ (0, 1) is given by the homogeneous product measure with
marginals the Binomial distribution with parameters 2j > 0 and p ∈ (0, 1), i.e.
with probability mass function

ρ(x) =
(

2j

x

)
px(1 − p)2j−x, x ∈ {0, 1, . . . , 2j}. (19)

The orthogonal polynomials with respect to the Binomial distribution are the
Krawtchouk polynomials Kn(x) with parameter 2j [32]. These polynomials are
obtained by choosing in Eq. (15)

σ(x) = x τ(x) =
2jp − x

1 − p
λn =

n

1 − p
.

Equivalently, Krawtchouk polynomials are polynomial solutions of the finite dif-
ference equation

x[Kn(x + 1) − 2Kn(x) + Kn(x − 1)] +
2jp − x

1 − p
[Kn(x + 1) − Kn(x)]

+
n

1 − p
Kn(x) = 0. (20)

They satisfy the orthogonality relation

2j∑

x=0

Kn(x)Km(x)ρ(x) = δn,md2
n

with ρ as in (19) and norm in 
2({0, 1, . . . , 2j}, ρ) given by

d2
n =

(
2j

n

)
pn(1 − p)n.
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As a consequence of the orthogonality they satisfy the recurrence relation (17)
with

αn = n + 1 βn = n + 2jp − 2np γn = p(1 − p)(2j − n + 1)

and the three-point recurrence then becomes

xKn(x) = (n+1)Kn+1(x)+(n+2jp−2np)Kn(x)+p(1−p)(2j −n+1)Kn−1(x).
(21)

Furthermore, the raising operator in (18) provides the relation

xKn(x − 1) +
p

1 − p
(n + x − 2j)Kn(x) =

n − 1
1 − p

Kn+1(x). (22)

Self-Duality for SEP(j). The Krawtchouk polynomials Kn(x) do not satisfy a
self-duality relation in the sense of Definition 2. However, the following theorem
shows that, with a proper normalization, it is possible to find a duality function
related to them.

Theorem 2. The SEP(j) is a self-dual Markov process with self-duality function

Dn(x) =
N∏

i=1

ni!(2j − ni)!
2j!

Kni
(xi) (23)

where Kn(x) denotes the Krawtchouk polynomial of degree n.

Remark 4. Since the Krawtchouk polynomials can be rewritten in terms of
hypergeometric functions, the self-duality function turns out to be

Dn(x) =
N∏

i=1

2F1

( −ni,−xi

−2j

∣
∣
∣
∣
1
p

)

where 2F0 is the hypergeometric function defined in (5).

Proof. We need to verify the self-duality relation in Eq. (3). Since the generator
of the process is a sum of terms acting on two variables only, we shall verify the
self-duality relation for two sites, say 1 and 2. We start by writing the action of
the SEP(j) generator working on the duality function for these two sites:

LSEP (j)Dn1(x1)Dn2(x2) = x1(2j − x2)
[
Dn1(x1 − 1)Dn2(x2 + 1)

− Dn1(x1)Dn2(x2)
]

+ (2j − x1)x2

[
Dn1(x1 + 1)Dn2(x2 − 1)

− Dn1(x1)Dn2(x2)
]

rewriting this by factorizing site 1 and 2, i.e.

LSEP (j)Dn1(x1)Dn2(x2) = x1Dn1(x1 − 1)(2j − x2)Dn2(x2 + 1)
− x1Dn1(x1)(2j − x2)Dn2(x2)
+ (2j − x1)Dn1(x1 + 1)x2Dn2(x2 − 1)
− (2j − x1)Dn1(x1)x2Dn2(x2) (24)
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we see that we need an expression for the following terms:

xDn(x), xDn(x − 1), (2j − x)Dn(x + 1). (25)

To get those we first write the difference Eq. (20), the recurrence relation (21) and
the raising operator Eq. (22) in terms of Dn(x). This is possible using Eq. (23)
that provides Dn(x) as a suitable normalization of Kn(x), i.e.

Dn(x) =
n!(2j − n)!

2j!
Kn(x).

Then the first term in (25) is simply obtained from the normalized recurrence
relation, whereas the second and third terms are provided by simple algebraic
manipulation of the normalized raising operator equation and the normalized
difference equation. We get

xDn(x) = −p(2j − n)Dn+1(x) + (n + 2pj − 2pn)Dn(x)
− n(1 − p)Dn−1(x)

xDn(x − 1) = −p(2j − n)Dn+1(x) + p(2j − 2n)Dn(x)
+ npDn−1(x)

(2j − x)Dn(x + 1) = p(2j − n)Dn+1(x) + (1 − p)(2j − 2n)Dn(x)

− n

p
(1 − p)2Dn−1(x).

These expressions can now be inserted into (24), which then reads:

LSEP (j)Dn1(x1)Dn2(x2)

=
[
p(n1 − 2j)Dn1+1(x1) + p(2j − 2n1)Dn1(x1) + pn1Dn1−1(x1)

]

×
[
p(2j − n2)Dn2+1(x2) + (1 − p)(2j − 2n2)Dn2(x2)

− n2

p
(1 − p)2Dn2−1(x2)

]

+
[
p(2j − n1)Dn1+1(x1) − (n1 + 2jp − 2pn1)Dn1(x1)

+ (1 − p)n1Dn1−1(x1)
]

× [
p(2j − n2)Dn2+1(x2) − (n2 + 2pj − 2pn2)Dn2(x2)

+ n2(1 − p)Dn2−1(x2) + 2jDn2(x2)
]

+ [p(n2 − 2j)Dn2+1(x2) + p(2j − 2n2)Dn2(x2) + pn2Dn2−1(x2)]

×
[
p(2j − n1)Dn1+1(x1) + (1 − p)(2j − 2n1)Dn1(x1)

− n1

p
(1 − p)2Dn1−1(x1)

]

+ [p(2j − n2)Dn2+1(x2) − (n2 + 2pj − 2pn2)Dn2(x2) + (1 − p)n2Dn2−1(x2)]

× [
p(2j − n1)Dn1+1(x1) − (n1 + 2pj − 2pn1)Dn1(x1)

+ n1(1 − p)Dn1−1(x1) + 2jDn1(x1)
]
.
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Working out the algebra, substantial simplifications are revealed in the above
expression. A long but straightforward computation shows that only products
of polynomials with degree n1 + n2 survive. In particular, after simplifications,
one is left with

LSEP (j)Dn1(x1)Dn2(x2)
= n1(2j − n2) [Dn1−1(x1)Dn2+1(x2) − Dn1(x1)Dn2(x2)]

+ (2j − n1)n2 [Dn1+1(x1)Dn2−1(x2) − Dn1(x1)Dn2(x2)]

and the theorem is proved. 
�

3.2 The Symmetric Inclusion Process, SIP(k)

The Symmetric Inclusion Process with parameter k > 0, denoted by SIP(k), is
a Markov jump process with unbounded state space where each site can have an
arbitrary number of particles. Again, we define the process on an undirected con-
nected G = (V,E) with |V | = N . Jumps occur at rate proportional to the num-
ber of particles in the departure and the arrival sites, as the generator describes:

LSIP (k)f(x) =
∑

1≤i<l≤N
(i,l)∈E

xi(2k+xl)
[
f(xi,l) − f(x)

]
+xl(2k+xi)

[
f(xl,i) − f(x)

]
.

Detailed balance is satisfied by a product measure with marginals given by iden-
tical Negative Binomial distributions with parameters 2k > 0 and 0 < p < 1,
i.e. with probability mass function

ρ(x) =
(

2k + x − 1
x

)
px(1 − p)2k, x ∈ {0, 1, . . .}. (26)

The polynomials that are orthogonal with respect to the Negative Binomial dis-
tribution are the Meixner polynomials Mn(x) with parameter 2k, first introduced
in [37]. Choosing in (15)

σ(x) = x τ(x) = 2kp − x(1 − p) λn = n(1 − p)

we have that the Meixner polynomials are solution of the difference equation

x [Mn(x + 1) − 2Mn(x) + Mn(x − 1)]
+ (2kp − x + xp) [Mn(x + 1) − Mn(x)] + n(1 − p)Mn(x) = 0. (27)

They satisfy the orthogonal relation
∞∑

x=0

Mn(x)Mm(x)ρ(x) = δm,nd2
n

with ρ as in (26) and norm in 
2(N0, ρ) given by

d2
n =

n!Γ(2k + n)
pnΓ(2k)
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where Γ(x) is the Gamma function. As consequence of the orthogonality they
satisfy the recurrence relation (17) with

αn =
p

p − 1
βn =

n + pn + 2kp

1 − p
γn =

n(n − 1 + 2k)
p − 1

which then becomes

xMn(x) =
p

p − 1
Mn+1(x)+

n + pn + 2kp

1 − p
Mn(x)+

n(n − 1 + 2k)
p − 1

Mn−1(x). (28)

Furthermore the raising operator in Eq. (18) provides the identity

[p(n + 2k + x)]Mn(x) − xMn(x − 1) = pMn+1(x). (29)

Self-duality for SIP(k). In analogy with the result for the Exclusion process
it is possible to find a duality function for the Symmetric Inclusion Process in
terms of the Meixner polynomials.

Theorem 3. The SIP(k) is a self-dual Markov process with self-duality function

Dn(x) =
N∏

i=1

Γ(2k)
Γ(2k + ni)

Mni
(xi)

where Mn(x) is the Meixner polynomial of degree n.

Remark 5. The self-duality function can be rewritten in terms of hypergeometric
function as

Dn(x) =
N∏

i=1

2F1

( −ni,−xi

2k

∣
∣
∣
∣ 1 − 1

p

)
.

Proof. As was done for the Exclusion Process we verify the self-duality relation
in Eq. (3) for two sites, say 1 and 2. The action of the SIP (k) generator working
on the self-duality function for two sites is given by

LSIP (k)Dn1(x1)Dn2(x2)
= x1(2k + x2) [Dn1(x1 − 1)Dn2(x2 + 1) − Dn1(x1)Dn2(x2)]

+ (2k + x1)x2 [Dn1(x1 + 1)Dn2(x2 − 1) − Dn1(x1)Dn2(x2)] .

We rewrite this by factorizing site 1 and 2, i.e.

LSIP (k)Dn1(x1)Dn2(x2) = x1Dn1(x1 − 1)(2k + x2)Dn2(x2 + 1)
− x1Dn1(x1)(2k + x2)Dn2(x2)
+ (2k + x1)Dn1(x1 + 1)x2Dn2(x2 − 1)
− (2k + x1)Dn1(x1)x2Dn2(x2) (30)
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so that we now need an expression for the following terms:

xDn(x), xDn(x − 1), (2k + x)Dn(x + 1). (31)

To get those, we first write the difference Eq. (27), the recurrence relation (28)
and the raising operator Eq. (29) in terms of Dn(x) using

Dn(x) =
Γ(2k)

Γ(2k + n)
Mn(x).

Then the first term in (31) is simply obtained from the normalized recurrence
relation, whereas the second and third terms are provided by simple algebraic
manipulation of the normalized raising operator equation and the normalized
difference equation. We have,

xDn(x) =
p

p − 1
(2k + n)Dn+1(x) − n + p(n + 2k)

p − 1
Dn(x)

+
n

p − 1
Dn−1(x)

xDn(x − 1) =
p

p − 1
(2k + n)Dn+1(x) − p

p − 1
(2k + 2n)Dn(x)

+
p

p − 1
nDn−1(x)

(2k + x)Dn(x + 1) =
p

p − 1
(2k + n)Dn+1(x) − 1

p − 1
(2k + 2n)Dn(x)

+
1

p − 1
nDn−1(x).

These relations allow us to expand the SIP(k) generator in Eq. (30) as

LSIP Dn1(x1)Dn2(x2)

=
[
p(2k + n1)

p − 1
Dn1+1(x1) − p(2k + 2n1)

p − 1
Dn1(x1) +

pn1

p − 1
Dn1−1(x1)

]

×
[
p(2k + n2)

p − 1
Dn2+1(x2) − 2k + 2n2

p − 1
Dn2(x2) +

n2

p − 1
Dn2−1(x2)

]

−
[
p(2k + n1)

p − 1
Dn1+1(x1) − n1 + p(n1 + 2k)

p − 1
Dn1(x1) +

n1

p − 1
Dn1−1(x1)

]

×
[
p(2k + n2)

p − 1
Dn2+1(x2) − n2 + p(n2 + 2k)

p − 1
Dn2(x2)

+
n2

p − 1
Dn2−1(x2) + 2kDn2(x2)

]

+
[
p(2k + n2)

p − 1
Dn2+1(x2) − p(2k + 2n2)

p − 1
Dn2(x2) +

pn2

p − 1
Dn2−1(x2)

]



Stochastic Duality and Orthogonal Polynomials 203

×
[
p(2k + n1)

p − 1
Dn1+1(x1) − 2k + 2n1

p − 1
Dn1(x1) +

n1

p − 1
Dn1−1(x1)

]

−
[
p(2k + n2)

p − 1
Dn2+1(x2) − n2 + p(n2 + 2k)

p − 1
Dn2(x2) +

n2

p − 1
Dn2−1(x2)

]

×
[
p(2k + n1)

p − 1
Dn1+1(x1) − n1 + p(n1 + 2k)

p − 1
Dn1(x1)

+
n1

p − 1
Dn1−1(x1) + 2kDn1(x1)

]
.

At this point it is sufficient to notice that the coefficients of products of
polynomials with degree different than n1 + n2 are all zero, so that we are left
with

LSIP (k)Dn1(x1)Dn2(x2)
= n1(2k + n2) [Dn1−1(x1)Dn2+1(x2) − Dn1(x1)Dn2(x2)]
+ (2k + n1)n2 [Dn1+1(x1)Dn2−1(x2) − Dn1(x1)Dn2(x2)]

and the theorem is proved. 
�

3.3 The Independent Random Walker, IRW

The Symmetric Independent Random Walkers, denoted IRW, is one of the sim-
plest, yet non-trivial particle system studied in the literature. It consists of inde-
pendent particles that perform a symmetric continuous time random walk at
rate 1. The generator, defined on the undirected connected graph G = (V,E)
with N vertices and edge set E, is given by

LIRW f(x) =
∑

1≤i<l≤N
(i,l)∈E

xi

[
f(xi,l) − f(x)

]
+ xl

[
f(xl,i) − f(x)

]
. (32)

The reversible invariant measure is provided by a product of Poisson distribu-
tions with parameter λ > 0, i.e. with probability mass function

ρ(x) =
e−λλx

x!
, x ∈ N0. (33)

The orthogonal polynomials with respect the Poisson distribution are the Char-
lier polynomials Cn(x) [15] with parameter λ. Choosing in Eq. (15)

σ(x) = x τ(x) = λ − x λn = n

we obtain the difference equation whose solution is Cn(x)

x [Cn(x + 1) − 2Cn(x) + Cn(x − 1)]+(λ − x) [Cn(x + 1) − Cn(x)]+nCn(x) = 0.
(34)
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The orthogonal relation satisfied by Charlier polynomials is

∞∑

x=0

Cn(x)Cm(x)ρ(x) = δm,nd2
n

where ρ is given in (33) and the norm in 
2(N0, ρ) is

d2
n = n!λ−n

As consequence of the orthogonality they satisfy the recurrence relation (17)
with

αn = −λ βn = n + λ γn = −n

which then becomes

xCn(x) = −λCn+1(x) + (n + λ)Cn(x) − nCn−1(x). (35)

Furthermore, the raising operator in Eq. (18) provides

λCn(x) − xCn(x − 1) = λCn+1(x). (36)

Self-duality of IRW. As the following theorem shows, the self-duality relation
is given by the Charlier polynomials themselves.

Theorem 4. The IRW is a self-dual Markov process with self-duality function

Dn(x) =
N∏

i=1

Cni
(xi) (37)

where Cn(x) is the Charlier polynomial of degree n.

Remark 6. Reading the Charlier polynomial as hypergeometric function, the
duality function then becomes

Dn(x) =
N∏

i=1

2F0

( −ni,−xi

−
∣
∣
∣
∣ − 1

λ

)
.

Proof. It is clear from (37) that the difference equations, the recurrence relations
and the raising operator for Dn(x) are respectively (34), (35) and (36), that we
rewrite as:

Dn(x + 1) = Dn(x) − n

λ
Dn−1(x)

xDn(x) = −λDn+1(x) + (n + λ)Dn(x) − nDn−1(x)
xDn(x − 1) = λDn(x) − λDn+1(x).
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As done before, we use the two particles IRW generator in (32) and the three
equations above to check that the self-duality relation holds. We have

LIRW Dn1(x1)Dn2(x2)
= x1Dn1(x1 − 1)Dn2(x2 + 1) − x1Dn1(x1)Dn2(x2)

+ Dn1(x1 + 1)x2Dn2(x2 − 1) − Dn1(x1)x2Dn2(x2)

= [λDn1(x1) − λDn1+1(x1)]
[
Dn2(x2) − n2

λ
Dn2−1(x2)

]

− [−λDn1+1(x1) + (n1 + λ)Dn1(x1) − n1Dn1−1(x1)] [Dn2(x2)]

+
[
Dn1(x1) − n1

λ
Dn1+1(x2)

]
[λDn2(x2) − λDn2+1(x2)]

− [Dn1(x1)] [−λDn2+1(x2) + (n2 + λ)Dn2(x2) − n2Dn2−1(x2)] .

After computing the products and suitable simplifications we get

LIRW Dn1(x1)Dn2(x2) = n1[Dn1−1(x1)Dn2+1(x2) − Dn1(x1)Dn2(x2)]
+ n2[Dn1+1(x1)Dn2−1(x2) − Dn1(x1)Dn2(x2)].


�

4 Duality: Proof of Theorem 1 Part (ii)

In this last section we show two examples of duality: the initial process is an
interacting diffusion, while the dual one is a jump process, which, in particular,
turns out to be the SIP process introduced in Sect. 3.2. We also show an example
of duality for a redistribution model of Kipnis–Marchioro–Presutti type.

4.1 The Brownian Momentum Proces, BMP

The Brownian Momentum Process (BMP) is a Markov diffusion process intro-
duced in [22]. On the undirected connected graph G = (V,E) with N vertices
and edge set E, the generator reads

LBMP f(x) =
∑

1≤i<l≤N
(i,l)∈E

(
xi

∂f

∂xl
(x) − xl

∂f

∂xi
(x)

)2

(38)

where f : RN → R is a function in the domain of the generator. A configuration
is denoted by x = (xi)i∈V where xi ∈ R has to be interpreted as a particle
momentum. A peculiarity of this process regards its conservation law: if the
process is started from the configuration x then ||x||22 =

∑N
i=1 x2

i is constant
during the evolution, i.e. the total kinetic energy is conserved.

The stationary reversible measure of the BMP process is given by a family
of product measures with marginals given by independent centered Gaussian
random variables with variance σ2 > 0. Without loss of generality we will identify
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a duality function related to Hermite polynomials in the case the variance equals
1/2. The case with a generic value of the variance would be treated in a similar
way by using generalized Hermite polynomials. Choosing in (6)

σ(x) = 1 τ(x) = −2x λn = 2n

we acquire the differential equation satisfied by the Hermite polynomials Hn(x)
[39]

H
′′
n (x) − 2xH

′
n(x) + 2nHn(x) = 0. (39)

The orthogonal relation they satisfy is
∫ +∞

−∞
Hn(x)Hm(x)ρ(x)dx = δm,nd2

n

with density function

ρ(x) =
e−x2

√
π

and norm in L2(R, ρ) given by

d2
n = 2nn!

As consequence of the orthogonality they satisfy the recurrence relation (12)
with

αn =
1
2

βn = 0 γn = n

which then can be written as

Hn+1(x) − 2xHn(x) + 2nHn−1(x) = 0. (40)

Furthermore the raising operator in Eq. (14) provides

2xHn(x) − H
′
n(x) = Hn+1(x). (41)

Duality Between BMP and SIP(1
4
). The following theorem has a similar

version in [4] and it states the duality result involving the Hermite polynomials.

Theorem 5. The BMP process is dual to the SIP(1
4) process through duality

function

Dn(x) =
N∏

i=1

1
(2ni − 1)!!

H2ni
(xi)

where H2n(x) is the Hermite polynomial of degree 2n.

Remark 7. Reading the Hermite polynomial as hypergeometric function, the
duality function then becomes

Dn(x) =
N∏

i=1

1
(2ni − 1)!!

(2xi)2ni
2F0

( −ni, (−2ni + 1)/2
−

∣
∣
∣
∣ − 1

x2
i

)
.
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Proof. Although the proof in [4] can be easily adapted to our case, we show here
an alternative proof that follows our general strategy of using the structural
properties of Hermite polynomials. It is sufficient, as before, to show the duality
relation in Eq. (1) for sites 1 and 2. The action of the BMP generator on duality
function reads

LBMP Dn1(x1)Dn2(x2)

= (x1∂x2 − x2∂x1)
2Dn1(x1)Dn2(x2)

= x2
1Dn1(x1)D′′

n2
(x2) + D′′

n1
(x1)x2

2Dn2(x2) − x1D
′
n1

(x1)Dn2(x2)
− Dn1(x1)x2D

′
n2

(x2) − 2x1D
′
n1

(x1)x2D
′
n2

(x2)

where we use ∂xi
= ∂

∂xi
. We now need the recurrence relation and the raising

operator appropriately rewritten in term of the duality function in order to get
suitable expression for

x2Dn(x), D′′
n(x), xD′

n(x).

This can be done using

Dn(x) =
1

(2n − 1)!!
H2n(x)

so that

x2Dn(x) =
1
4
(2n + 1)Dn+1(x) +

(
2n +

1
2

)
Dn(x) + 2nDn−1(x) (42)

D
′′
n(x) = 8nDn−1(x) (43)

xD
′
n(x) = 2nDn(x) + 4nDn−1(x) (44)

where (42) is obtained from iterating twice the recurrence relation in (40), for
Eq. (44) we combined (40) and (41) and then (43) is found from the differential
Eq. (39) using (44). Proceeding with the substitution into the generator we find

LBMP Dn1(x1)Dn2(x2)

=
(

1
4
(2n1 + 1)Dn1+1(x1) +

(
2n1 +

1
2

)
Dn1(x1) + 2n1Dn1−1(x1)

)

× 8n2Dn2−1(x2)
+ 8n1Dn1−1(x1)

×
(

1
4
(2n2 + 1)Dn2+1(x2) +

(
2n2 +

1
2

)
Dn2(x2) + 2n2Dn2−1(x2)

)

− (2n1Dn1(x1) + 4n1Dn1−1(x1)) Dn2(x2)
− Dn1(x1) (2n1Dn2(x2) + 4n2Dn2−1(x2))

− 2 (2n1Dn1(x1) + 4n1Dn1−1(x1)) (2n2Dn2(x2) + 4n2Dn2−1(x2))
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Finally, after appropriate simplification of the terms whose degree is different
from n1 + n2, we get

LBMP Dn1(x1)Dn2(x2)
= (2n1 + 1)2n2 [Dn1+1(x1)Dn2−1(x2) − Dn1(x1)Dn2(x2)]

+ 2n1(2n2 + 1) [Dn1−1(x1)Dn2+1(x2) − D2n1(x1)Dn2(x2)]

= LSIP Dn1(x1)Dn2(x2)

which proves the theorem. 
�

4.2 The Brownian Energy Process, BEP(k)

We now introduce a process, known as Brownian Energy Process with parameter
k, BEP(k) in short notation, whose generator is

LBEP (k)f(x) =
∑

1≤i<l≤N(i,l)∈E

[
xixj

(
∂

∂xi
f(x) − ∂

∂xj
f(x)

)2

+ 2k(xi − xj)
(

∂

∂xi
f(x) − ∂

∂xj
f(x)

) ]
. (45)

where f : RN → R is in the domain of the generator and x = (xi)i∈V denotes a
configuration of the process with xi ∈ R

+ interpreted as a particle energy. The
generator in (45) describes the evolution of particle system that exchange their
(kinetic) energies. It is easy to verify that the total energy of the system

∑N
i=1 xi

is conserved by the dynamic.
In [24] it was shown that the BEP(k) can be obtained from the BMP pro-

cess once 4k ∈ N vertical copies of the graph G are introduced. Under these
circumstances denoting zi,α the momentum of the ith particle at the αth level,
the kinetic energy per (vertical) site is

xi =
4k∑

α=1

z2
i,α.

If we use the above change of variable in the generator of such BMP process on
the ladder graph with 4k layers, the generator of the BEP(k) is revealed.

The stationary measure of the BEP(k) process is given by a product of inde-
pendent Gamma distribution with shape parameter 2k and scale parameter θ,
i.e. with Lebesgue probability mass function

ρ(x) =
x2k−1e− x

θ

Γ(2k)θk
. (46)

Without loss of generality we can set θ = 1 so that the polynomials orthogonal
with respect to the Gamma distribution are the generalized Laguerre polynomi-
als L

(2k−1)
n (x) [39].

Choosing
σ(x) = x τ(x) = 2k − x λn = n
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the differential equation whose generalized Laguerre polynomials are solution
becomes

x
d2

dx2
L(2k−1)

n (x) + (2k − x)
d

dx
L(2k−1)

n (x) + nL(2k−1)
n (x) = 0 (47)

The orthogonal relation they satisfy is
∫ +∞

0

L(2k−1)
n (x)L(2k−1)

m (x)ρ(x)dx = δm,nd2
n

with mass function as in (46) with θ = 1 and norm in L2(R+, ρ) given by

d2
n =

Γ(n + 2k)
n!Γ(2k)

.

As consequence of the orthogonality, they satisfy the recurrence relation (12)
with

αn = −(n + 1) βn = 2n + 2k γn = −(n + 2k − 1)

which then can be written as

xL(2k−1)
n (x) = −(n+1)L(2k−1)

n+1 (x)+(2n+2k)L(2k−1)
n (x)−(n+2k−1)L(2k−1)

n−1 (x)
(48)

Furthermore, the raising operator in Eq. (14) is given by

(2k − x + n)L(2k−1)
n (x) + x

d

dx
L(2k−1)

n (x) = (n + 1)L(2k−1)
n+1 (x). (49)

Duality Between BEP(k) and SIP(k). The duality relation for the Brownian
energy process with parameter k is stated below.

Theorem 6. The BEP(k) process and the SIP(k) process are dual via

Dn(x) =
N∏

i=1

ni! Γ(2k)
Γ(2k + ni)

L(2k−1)
ni

(xi) (50)

where L
(2k−1)
n (x) is the generalized Laguerre polynomial of degree n.

Remark 8. The factor Γ(2k) in (50) is not crucial to assess a duality relation,
but it allows to write the duality function as the hypergeometric function

Dn(x) =
N∏

i=1

1F1

( −ni

2k

∣
∣
∣
∣ xi

)
.
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Proof. As in the previous cases we notice that the proof can be shown for sites
1 and 2 only, in which case the generator of the BEP acts on

LBEP (k)Dn1(x1)Dn2(x2)

=
[
x1x2 (∂x1 − ∂x2)

2 − 2k(x1 − x1)(∂x1 − ∂x2)
]
Dn1(x1)Dn2(x2)

= (x1∂
2
x1

+ 2k∂x1)Dn1(x1)x2Dn2(x2) + x1Dn1(x1)(x2∂
2
x2

+ 2k∂x2)Dn2(x2)
− x1∂x1Dn1(x1)(x2∂x2 + 2k)Dn2(x2) − (x1∂x1 + 2k)Dn1(x1)x2∂x2Dn2(x2)

We seek an expression for

x∂2
xDn + 2k∂xDn, xDn, x∂xDn

that can easily be obtained rewriting (47), (48) and (49) for the duality function,
using

Dn(x) =
n! Γ(2k)

Γ(2k + n)
L(2k−1)

n (x)

so that, after simple manipulation

xD
′′
n(x) + (2k − x)D

′
n(x) + nDn(x) = 0 (51)

xDn(x) = −(n + 2k)Dn+1(x) + (2n + 2k)Dn(x) − nDn−1(x) (52)

xD
′
n(x) = nDn(x) − nDn−1(x). (53)

Note that plugging (53) into the difference Eq. (51), we get

xD
′′
n(x) + 2kD

′
n(x) = −nDn−1(x).

Let’s now use these information to write explicitly the BEP(k) generator.

LBEP (k)Dn1(x1)Dn2(x2)

= [−n1Dn1−1(x1)] [−(2k + n2)Dn2+1(x2) + (2n2 + 2k)Dn2(x2) − n2Dn2−1(x2)]

+ [−(2k + n1)Dn1+1(x1) + (2n1 + 2k)Dn1(x1) − n1Dn1−1(x1)] [−n2Dn2−1(x2)]

− [n1Dn1(x1) − n1Dn1−1(x1)] [(n2 + 2k)Dn2(x2) − n2Dn2−1(x2)]

− [(n1 + 2k)Dn1(x1) − n1Dn1−1(x1)] [n2Dn2(x2) − n2Dn2−1(x2)] .

Expanding products in the above expression we find

LBEP (k)Dn1(x1)Dn2(x2)
= n1Dn1−1(x1)(n2 + 2k)Dn2+1(x2) + (n1 + 2k)Dn1+1(x1)n2Dn2−1(x2)

+ n1Dn1(x1)(n2 + 2k)Dn2(x2) + (n1 + 2k)Dn1+1(x1)n2Dn2−1(x2)
+ Dn1−1(x1)Dn2(x2) [−n1(2n2 + 2k) + n1(n2 + 2k) + n1n2]
+ Dn1(x1)Dn2−1(x2) [−(2n1 + 2k)n1 + (n1 + 2k)n2 + n1n2]
+ Dn1−1(x1)Dn2−1(x2) [n1n2 + n1n2 − n1n2 − n1n2] .
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Noticing that the coefficients of the last three lines are zeros, we finally get

LBEP (k)Dn1(x1)Dn2(x2) (54)
= n1(n2 + 2k) [Dn1−1(x1)Dn2+1(x2) − Dn1(x1)Dn2−1(x2)]

+ (n1 + 2k)n2 [Dn1+1(x1)Dn2−2(x2) − Dn1(x1)Dn2(x2)]

= LSIP (k)Dn1(x1)Dn2(x2)

where LSIP (k) works on the dual variables (n1, n2). 
�

4.3 The Kipnis–Marchioro–Presutti Process, KMP(k)

The KMP model was first introduced by Kipnis, Marchioro and Presutti [29]
in 1982 as a model of heat conduction that was solved by using a dual process.
It is a stochastic model where a continuous non-negative variable (interpreted
as energy) is uniformly redistributed among two random particles on a lattice
at Poisson random times. A general version with parameter k, that we shall
call KMP(k) was defined in [11], by considering a redistribution rule where a
fraction p of the total energy is assigned to one particle and the remaining
fraction (1 − p) to the other particle, with p a Beta(2k, 2k) distributed random
variable. Thus the case k = 1/2 corresponds to the original KMP model. In [11]
it was shown that KMP(k) is in turn related to the Brownian Energy Process
with parameter k, as it can be obtained from the BEP(k) via a procedure called
“instantaneous thermalization”. If the spatial setting remains as described in the
previous sections, the generator of the KMP(k) process is

LKMP (k)f(x) =
∑

1≤i<l≤N(i,l)∈E

∫ 1

0

[
f
(
x1, . . . , xi−1, p(xi + xi+1),

(1 − p)(xi + xi+1), xi+2, . . . xN

) − f (x)
]
ν2k(p)dp

where ν2k(p) is the density function of the Beta distribution with parameters
(2k, 2k), i.e.

ν2k(p) =
p2k−1(1 − p)2k−1Γ(4k)

Γ(2k)Γ(2k)
, p ∈ (0, 1).

The dual process of KMP(k) [11] is generated by

Ldual-KMP (k)f(n) =
∑

1≤i<l≤N
(i,l)∈E

ni+ni+1∑

r=0

[
f
(
n1, . . . , ni−1, r, ni + ni+1 − r,

ni+2, . . . xN

) − f (n)
]
μ2k(r | ni + ni+1)

where μ2k(r|C) is the mass density function of the Beta Binomial distribution
with parameter (C, 2k, 2k), i.e.

μ2k(r | C) =

(
2k+r−1

r

)(
2k+C−r−1

C−r

)

(
4k+C−1

C

) , r ∈ {0, 1, . . . , C} .
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This generator is the result of a thermalized limit of the SIP(k) [11]. Our last
theorem is stated below.

Theorem 7. The KMP(k) process duality relation with its dual is established
via duality function

Dn(x) =
N∏

i=1

ni! Γ(2k)
Γ(2k + ni)

L(2k−1)
ni

(xi) (55)

where L
(2k−1)
n (x) is the generalized Laguerre polynomial of degree n.

Proof. As expected, the duality function is the same as the one for the BEP(k)
and SIP(k) duality relation. This shouldn’t surprise since BEP(k) and SIP(k)
are dual through duality function (55) and the thermalization limit doesn’t affect
the duality property. Indeed, considering two graph vertices, one has from [11]

LKMP (k)f(x1, x2) = lim
t→∞(etLBEP (k) − I)f(x1, x2)

and
Ldual-KMP (k)f(n1, n2) = lim

t→∞(etLSIP (k) − I)f(n1, n2).

Thus, combining the previous two equations and (54), the claim follows. 
�
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10. Carinci, G., Franceschini, C., Giardiná, C., Groenevelt, W., Redig, F.: Orthogonal
dualities of Markov processes and unitary symmetries. Preprint arXiv:1812.08553
(2018)
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