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Preface

This three-volume set, entitled Sojourns in Probability Theory and Statistical
Physics, constitutes a Festschrift for Chuck Newman on the occasion of his 70th
birthday. In these coordinated volumes, Chuck’s closest colleagues and
collaborators pay tribute to the immense impact he has had on these two deeply
intertwined fields of research. The papers published here include original research
articles and survey articles, on topics gathered by theme as follows:

Volume 1: Spin Glasses and Statistical Mechanics
Volume 2: Brownian Web and Percolation
Volume 3: Interacting Particle Systems and Random Walks

Our colleague Vladas Sidoravicius conceived the idea for this Festschrift during
the conference on Probability Theory and Statistical Physics that was hosted on 25–
27 March 2016 by the NYU-ECNU Institute of Mathematical Sciences at NYU
Shanghai. This conference brought together more than 150 experts to discuss
frontier research at the interface between these two fields, and it coincided with
Chuck’s 70th birthday. After the conference, Vladas approached various of Chuck’s
colleagues with invitations to contribute. Papers flowed in during the Fall of 2016
and the Spring of 2017. The Festschrift suffered delays in 2018, and then on 23
May 2019, Vladas passed away unexpectedly. Following discussions in June 2019
with NYU Shanghai and Springer Nature, we offered to assume editorial
responsibility for bringing the volumes to completion.

We gratefully acknowledge Vladas’s investment in these volumes, and we
recognise that his presence in our community worldwide will be sorely missed. We
offer our thanks to Julius Damarackas (NYU Shanghai) for his detailed preparation
of the articles in these volumes.

Chuck has been one of the leaders in our profession for nearly 50 years. He has
worked on a vast range of topics and has collaborated with and inspired at least
three generations of mathematicians, sharing with them his deep insights into

vii



mathematics and statistical physics and his views on key developments, always
leavened with his acute and captivating sense of humour. We wish him and his
family many fruitful years to come.

July 2019 Federico Camia
Geoffrey Grimmett

Frank den Hollander
Daniel Stein
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In celebration of Chuck’s 70th Birthday

Abstract. There have been extensive studies of a random walk among
a field of immobile traps (or obstacles), where one is interested in the
probability of survival as well as the law of the random walk conditioned
on its survival up to time t. In contrast, very little is known when the
traps are mobile. We will briefly review the literature on the trapping
problem with immobile traps, and then review some recent results on a
model with mobile traps, where the traps are represented by a Poisson
system of independent random walks on Z

d. Some open questions will
be given at the end.

Keywords: Trapping problem · Parabolic anderson model · Random
walk in random potential

1 Introduction

The trapping problem, where particles diffuse in space with randomly located
traps, has been studied extensively in the physics and mathematics literature. We
refer the reader to the review article [17], which explains in detail the background
for the trapping problem and some early results. Here we focus on a single
particle diffusing on Z

d according to a random walk, with randomly located
traps that may or may not be mobile. When the particle meets a trap, it is
killed at a fixed rate γ ∈ (0,∞].

More precisely, let X := (X(t))t≥0 be a random walk on Z
d with jump rate

κ ≥ 0. Let ξ := (ξ(t, ·))t≥0 be a continuous time Markov process with values in
[0,∞]Z

d

, which determines the trapping potential. Let γ ∈ (0,∞]. If X(t) = x,
then it is killed at rate γξ(t, x). As we will further detail below, there are two

c© Springer Nature Singapore Pte Ltd. 2019
V. Sidoravicius (Ed.): Sojourns in Probability Theory
and Statistical Physics - III, PROMS 300, pp. 1–22, 2019.
https://doi.org/10.1007/978-981-15-0302-3_1
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fundamentally different regimes: The setting of immobile or static traps, where
ξ(t, ·) is constant in t (corresponding to the traps being realized at time 0 and
not evolving in time), and the setting of mobile traps, where ξ(t, ·) depends
non-trivially on t. One can also consider the continuum model where X is a
Brownian motion on R

d and ξ(t, ·) ∈ [0,∞]R
d

, which we will do when reviewing
some classic results.

Denote by P
ξ and E

ξ the probability of and expectation with respect to ξ,
and similarly by P

X
x and E

X
x the probability of and expectation with respect to X

when starting at x ∈ Z
d. The above model gives rise to the following quantities

of interest.

Definition 1 (Survival Probabilities). Conditional on the realization of ξ,
the quenched survival probability of X up to time t is defined by

Zξ
γ,t := E

X
0

[
exp

{
− γ

∫ t

0

ξ(s,X(s)) ds
}]

. (1)

The annealed survival probability up to time t is defined by averaging over the
trap configuration:

Zγ,t := E
ξ
[
Zξ

γ,t

]
= E

ξ
[
E

X
0

[
exp

{
− γ

∫ t

0

ξ(s,X(s)) ds
}]]

. (2)

The above expressions immediately lead to the following definition of path
measures, which are the laws of the random walk X conditioned on survival
up to time t.

Definition 2 (Path Measures). We call the family of Gibbs measures

P ξ
γ,t(X ∈ ·) :=

E
X
0

[
exp

{
− γ

∫ t

0
ξ(s,X(s)) ds

}
1X∈·

]

Zξ
γ,t

, t ≥ 0, (3)

on the space of càdlàg paths D([0, t],Zd) from [0, t] to Z
d the quenched path

measures.
Similarly, the family

Pγ,t(X ∈ ·) :=
E

X
0

[
E

ξ
[
exp

{
− γ

∫ t

0
ξ(s,X(s)) ds

}]
1X∈·

]

Eξ[Zξ
γ,t]

, t ≥ 0, (4)

will be called the annealed path measures.

The quenched and annealed survival probabilities and their respective path mea-
sures are the key objects of interest for the trapping problem.

The trapping problem is closely linked to the so-called parabolic Anderson
model (PAM), which is the solution of the following parabolic equation with
random potential ξ:

∂

∂t
u(t, x) = κΔu(t, x) − γ ξ(t, x)u(t, x),

u(0, x) = 1,
x ∈ Z

d, t ≥ 0, (5)



Random Walk Among Mobile/Immobile Traps: A Short Review 3

where γ, κ and ξ are as before, and the discrete Laplacian on Z
d is given by

Δf(x) =
1
2d

∑
‖y−x‖=1

(f(y) − f(x)).

By the Feynman–Kac formula, the solution u is given by

u(t, 0) = E
X
0

[
exp

{
−γ

∫ t

0

ξ(t − s,X(s)) ds

}]
, (6)

which differs from Zξ
γ,t in (1) by a time reversal. Note that if ξ(t, ·) does

not depend on time, then u(t, 0) = Zξ
γ,t, and more generally, if the law of

(ξ(s, ·))0≤s≤t is invariant under time reversal, then

E
ξ[u(t, 0)] = E

ξ
E

X
0

[
exp

{
−γ

∫ t

0

ξ(t − s,X(s)) ds

}]

= E
X
0 E

ξ

[
exp

{
−γ

∫ t

0

ξ(s,X(s)) ds

}]
= E

ξ[Zγ
t,ξ].

Thus the study of the trapping problem is intimately linked to the study of the
PAM, especially the case of immobile traps. A comprehensive account can be
found in the recent monograph by König [19].

Historically, most studies of the trapping problem have focused on the case
of immobile traps, for which we now have a very good understanding, see e.g.
Sznitman [29] and [19]. Our goal is to review some of the recent results in this
direction, where ξ is the occupation field of a Poisson system of independent
random walks. These results provide first steps in the investigation, while much
remains to be understood.

The trapping problem has connections to many other models of physical and
mathematical interest, such as chemical reaction networks, random Schrödinger
operators and Anderson localization, directed polymers in random environment,
self-interacting random walks, branching random walks in random environment,
etc. The literature is too vast to be surveyed here. The interested reader can
consult [17] for motivations from the chemistry and physics literature and some
early mathematical results, [29] for results on Brownian motion among Poisson
obstacles, a continuum model with immobile traps, [8] for an overview of lit-
erature on mobile traps, and [19] for a comprehensive survey on the parabolic
Anderson model, focusing mostly on immobile traps on the lattice Z

d.
The rest of the paper is organized as follows. In Sect. 2, we briefly review

the literature on the trapping problem with immobile traps, which has been
the theme of the monographs [19,29]. We then review in Sect. 3 some recent
results on the case of mobile traps [2,8]. Lastly in Sect. 4, we discuss some open
questions.

2 Immobile Traps

In this section, we briefly review what is known for the trapping problem with
immobile traps, where the trapping potential ξ(t, x) = ξ(x) does not depend on
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time and (ξ(x))x∈Zd are i.i.d., which has been the subject of the recent mono-
graph [19]. We focus here on the lattice setting, although historically, the first
comprehensive mathematical results were obtained for the problem of Brownian
motion among Poisson obstacles [10,29], where the random walk is replaced by
a Brownian motion in R

d, and the traps are balls whose centers follow a homo-
geneous Poisson point process on R

d. As we will explain, the basic tools in the
analysis of the trapping problem with i.i.d. immobile traps are large deviation
theory and spectral techniques.

2.1 Annealed Asymptotics

We first consider the annealed survival probability Zγ,t (equivalently, Eξ[u(t, 0)]
for the PAM). Using the fact that (ξ(x))x∈Zd are i.i.d., we can integrate out ξ
to write

Zγ,t = E
ξ
[
E

X
0

[
exp

{
− γ

∫ t

0

ξ(X(s)) ds
}]]

= E
X
0

[
e
∑

x∈Zd H(γLt(x))
]
, (7)

where Lt(x) :=
∫ t

0
1{Xs=x} ds is the local time of X, and

H(t) := lnE
ξ[e−tξ(0)]. (8)

In the special case γ = ∞ and ξ(x) are i.i.d. Bernoulli random variables with
P(ξ(0) = 0) = p, the so-called Bernoulli trap model with hard traps, the expres-
sion simplifies to

Z∞,t = E
X
0

[
p|Ranges∈[0,t](X(s))|

]
= E

X
0

[
e|Ranges∈[0,t](X(s))| ln p

]
, (9)

where Ranges∈[0,t](X(s)) := {X(s) ∈ Z
d : s ∈ [0, t]} is the range of X by time

t. The asymptotic analysis of Z∞,t, and its continuum analogue, the Wiener
sausage, were carried out by Donsker and Varadhan in a series of celebrated
works [10,11] using large deviation techniques. The basic heuristics is that the
random walk chooses to stay within a spatial window of scale 1 � αt �

√
t,

and within that window, the random walk occupation time measure realizes an
optimal profile. Using the large deviation principle for the random walk occu-
pation time measure on spatial scale αt, one can then optimize over the scale
αt and the occupation time profile to derive a variational representation for the
asymptotics of Z∞,t. See e.g. [19, Sect. 4.2] and the references therein. Here we
only sketch how to identify the optimal scale αt.

In representation (9) there are two competing effects: the exponential factor
which becomes large when |Ranget(X)| is small, and the probabilistic cost of a
random walk having a small range. If, as the Faber–Krahn inequality suggests,
we assume that the expectation in (9) is attained by Ranget(X) being roughly a
ball of radius αt, then e|Ranget(X)| ln p ≈ e−c1αd

t , while PX
0 (sup0≤s≤t ‖Xs‖ ≤ αt) ≈

e−c2t/α2
t due to Brownian scaling with c1 and c2 positive constants. Hence,

Z∞,t = E
X
0

[
e|Ranget(X)| ln p] ≈ exp

{ − inf
1�αt�√

t
(c1α

d
t + c2t/α2

t )
}

= e−c3t
d

d+2
, (10)

where we find that the optimal scale is αt ≈ t
1

d+2 .
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Alternatively, we can first identify the optimal profile for the trapping poten-
tial ξ, which is to create a clearing free of traps in a ball of radius αt around the
origin, and the random walk in such a potential is then forced to stay within
this region. The probability of the first event is of the order e−c1αd

t , while the
probability of the second event is of the order e−c2t/α2

t , which leads to the same
optimal choice of αt ≈ t

1
d+2 .

For more general ξ and γ, one can still analyze (7) via large deviations of
the random walk occupation time measure. Suppose that the random walk is
confined to a box [−Rαt, Rαt]d for some R > 0 and scale 1 � αt � t1/d, and
let L̃t(y) := αd

t

t Lt(
αty�), y ∈ [−R,R]d, denote the rescaled occupation time
measure. Furthermore, assume that the generating function H in (8) satisfies
the assumption

(H) : lim
t↑∞

H(ty) − yH(t)
η(t)

= Ĥ(y) �= 0 for y �= 1, (11)

for some Ĥ : (0,∞) → R and continuous η : (0,∞) → (0,∞) with

lim
t→∞

η(t)/t ∈ [0,∞].

The assumption (H) essentially ensures an appropriate regularity in the right
tail of the distribution of −ξ(0). We can then rewrite (7) as

Zγ,t = E
X
0

[
exp

{
η
( γt

αd
t

) ∑
x∈Zd

H
(

γt
αd

t
L̃t

(
x
αt

))
− L̃t

(
x
αt

)
H

(
γt
αd

t

)

η
(

γt
αd

t

)
}]

e
αd

t H
(

γt

αd
t

)

≈ e
αd

t H
(

γt

αd
t

)
E

X
0

[
exp

{
η
( γt

αd
t

) ∑
x∈Zd

Ĥ
(
L̃t

( x

αt

))}]

≈ e
αd

t H
(

γt

αd
t

)
E

X
0

[
exp

{
η
( γt

αd
t

)
αd

t

∫

Rd

Ĥ
(
L̃t(y)

)
dy

}]

= e
αd

t H
(

γt

αd
t

)
E

X
0

[
exp

{ t

α2
t

∫

Rd

Ĥ
(
L̃t(y)

)
dy

}]
, (12)

where the scale αt is chosen to satisfy

η
( γt

αd
t

)
αd

t =
t

α2
t

, (13)

so that in (12), the exponential term is comparable to the large deviation prob-
ability of the random walk confined in a spatial window of scale αt. Similar to
the Bernoulli hard trap case, the asymptotics of Zγ,t can then be identified using
the large deviation principle for the random walk occupation time measure on
the scale αt.

Alternatively, we can first identify the optimal profile ψ(αt·) for the trapping
potential ξ on the spatial scale αt. The survival probability of a random walk in
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such a potential then decays like eλψt/α2
t , where λψ is the principal eigenvalue of

Δ − γψ. In principle, the asymptotics of Zγ,t can then be identified by applying
a large deviation principle for the potential ξ on the spatial scale αt, and then
optimizing over αt and ψ. In practice, this approach has been difficult to imple-
ment, and the large deviation approach outlined above has been the standard
route in the study of the PAM [19, Sect. 3.2].

We remark that the heuristics above applies when the scale αt chosen as in
(13) tends to infinity as t tends to infinity. However, there are also interesting
cases where αt remains bounded or even αt = 1. Under assumption (H) in (11),
there are in fact four classes of potentials [16], each determined by the right tail
probability of −ξ(0):

(a) potentials with tails heavier than those of the double-exponential distribu-
tion;

(b) double-exponentially distributed potentials, i.e., P(−ξ(0) > r) = e−er/ρ

for
some ρ ∈ (0,∞);

(c) so-called almost bounded potentials;
(d) bounded potentials.

What distinguishes the four classes are different scales αt, with αt = 1 in case
(a), also known as the single peak case; αt stays bounded in case (b), where the
potential follows the double exponential distribution; 1 � αt � tε for any ε > 0
in case (c); and αt → ∞ faster than some power of t in case (d), which includes in
particular the Bernoulli trap model, the discrete analogue of Brownian motion
among Poisson obstacles. In the annealed setting, the potential ξ realizes an
optimal profile on a so-called intermittent island of spatial scale αt centered
around the origin, and the walk then stays confined in that island. For further
details, see [19, Chap. 3] and the references therein.

The heuristics sketched above also suggests what the annealed path measure
Pγ,t should look like, namely, the random walk X should fluctuate on the spatial
scale αt. If αt → ∞, then after diffusively rescaling space-time by (α−1

t , α−2
t ),

we expect the random walk to converge to a Brownian motion h-transformed
by the principal eigenfunction of Δ − γψ, where ψ(αt·) is the optimal profile
the potential ξ realizes on the intermittent island of scale αt, and with Dirichlet
boundary condition off the intermittent island. In practice, however, identifying
the path behavior requires obtaining second-order asymptotics for the annealed
survival probability Zγ,t, and complete results have only been obtained in special
cases.

Indeed, for the continuum model of a Brownian motion (X(s))s∈[0,∞) among
Poisson obstacles in d = 1, Schmock [27] (hard obstacles) and Sethuraman [30]
(soft obstacles) have shown that under the annealed path measure Pγ,t, the law
of (t−

1
3 X(s · t

2
3 ))s∈[0,∞) converges weakly to a mixture of the laws of so-called

Brownian taboo processes, i.e., a mixture of Brownian motions conditioned to
stay inside a randomly centered interval of length (π2/ν)

1
3 , and the distribution

of the random center can also be determined explicitly (here ν is the Poisson
intensity of the traps). In particular, this result implies that typical annealed
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fluctuations for the Brownian motion among Poisson obstacles are of the order t
1
3

in d = 1. Similar convergence results have been proved by Sznitman in dimension
2 [28], and as observed by Povel in [24], can also be established in dimensions
d ≥ 3, where Brownian motion is confined to a ball with radius of the order
t

1
d+2 . For the Bernoulli trap model in dimension 2, path confinement to a ball

with radius of the order t
1
4 has been proved by Bolthausen in [3].

In the lattice setting, when the potential (ξ(x))x∈Zd is i.i.d. with double
exponential distribution (class (b) above), the intermittent islands are bounded
in size, and it is known that the rescaled occupation time measure L̃t(x) =
Lt(x)/t, x ∈ Z

d, converges to a deterministic measure with a random shift, and
the distribution of the random shift can also be identified explicitly [19, Theorem
7.2]. The convergence of the annealed path measure should follow by the same
proof techniques, although it does not seem to have been formulated explicitly
in the literature. For potentials in class (a) above, where the intermittent island
is a single site, the same result should hold, and the quenched setting leads to
more interesting results (see e.g. the survey [20]).

2.2 Quenched Asymptotics

In the quenched setting, the random walk X must seek out regions in space that
are favorable for its survival. The heuristics is that, one may first confine the
random walk to a box Λt of spatial scale t(ln t)2, and within Λt, there are inter-
mittent islands of an optimal spatial scale α̃t, on which ξ is close to minx∈Λt

ξ(x)
and takes on an optimal deterministic profile that favors the random walk’s sur-
vival. The random walk then seeks out an optimal intermittent island and stays
there until time t, where the choice of the island depends on the balance between
the cost for the random walk to get there in a short time and the probability of
surviving on the island until time t.

For instance, for Brownian motion among Poisson obstacles (or the Bernoulli
trap model), the intermittent islands should be balls containing no obstacles, and
it is then easy to see that within Λt, the largest such intermittent islands should
have spatial scale of the order α̃t = (ln t)1/d, which suggests that the quenched
survival probability Zξ

γ,t should decay like e−ct/(ln t)2/d

. For i.i.d. potential ξ on
Z

d satisfying assumption (H) in (11), the scale α̃t for the intermittent islands
can be determined similarly by considering the following:

(a) the large deviation probability of ξ achieving a non-trivial profile on the
intermittent island after suitable centering and scaling;

(b) a balance between this large deviation probability and the probability that
the random walk survives on the intermittent island until time t;

(c) and the requirement that there should be of order one such islands in Λt.

It turns out that α̃t = αβ(t), where β(t) is another scale satisfying

β(t)
α2

β(t)

= ln(td). (14)
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See e.g. [19, Sect. 5.1] for further details. Note that if αt = tε for some ε ∈ [0, 1/2),
then β(t) = (d ln t)

1
1−2ε . This implies that the size of the quenched intermittent

islands is of the same order as the size of the annealed intermittent islands when
the latter is bounded, and is much smaller when the latter grows to infinity. The
heuristic picture above leads to a sharp lower bound on Zξ

γ,t. The challenge is
to obtain the matching upper bound, as well as to identify finer asymptotics to
draw conclusions about the quenched path measure P ξ

γ,t.
The main tools are spectral techniques. The exponential rate of decay of

the quenched survival probability Zξ
γ,t is given by the principal eigenvalue of

Δ − γξ on the box Λt. Different techniques have been developed to bound the
principal eigenvalue. For Brownian motion among Poisson obstacles, Sznitman
developed the method of enlargement of obstacles (MEO), which resulted in
the monograph [29]. The basic idea is to enlarge the obstacles to reduce the
combinatorial complexity, without significantly altering the principal eigenvalue
of Δ − γξ in Λt. We refer to the review [18] and the monograph [29] for further
details. The MEO was adapted to the lattice setting in [1]. In the lattice setting,
a different approach has been developed in the context of the PAM. One divides
Λt into microboxes of scale α̃t. The principal Dirichlet eigenvalues of Δ − γξ on
the microboxes are i.i.d. random variables, and spectral domain decomposition
techniques allow one to control the principal eigenvalue on Λt in terms of the
principal eigenvalues on the microboxes. This reduces the analysis to an extreme
value problem, where the random walk optimizes over the choice of the microbox
to go to and the cost of getting there (see [19, Sects. 4.4, 6.3]). We note that
there is also a simple way to transfer the annealed asymptotics for the survival
probability to the quenched asymptotics using the so-called Liftshitz tail, as
shown by Fukushima in [13].

As the heuristics suggest, under the quenched measure, the random walk
should seek out one of the optimal intermittent islands and stay there until time
t. This has been partially verified. For Brownian motion among Poisson obsta-
cles, Sznitman [29] used the MEO to show that the quenched survival probability
decays asymptotically as e−(C+o(1))t/(ln t)2/d

. The expected picture is that there
are to(1) many intermittent islands, with size to(1) and mutual distance t1−o(1)

to each other and to the origin, and the time when the Brownian motion first
enters one of the intermittent islands is o(t). This has been rigorously verified
in dimension 1 (see e.g. [29, Chapter 6]). But in higher dimensions, there is still
a lack of control on the time of entering the intermittent islands. Much more
precise control on the size and number of intermittent islands have recently been
obtained by Ding and Xu for the Bernoulli hard trap model [12]: there are at most
(log n)a many intermittent islands, with size at most (log n)b for some a, b > 0,
and their distance to the origin is at least n/(log n)a. For the PAM on Z

d with
i.i.d. potential (ξ(x))x∈Zd satisfying assumption (H) in (11), sharp asymptotics
for the quenched survival probability has been obtained in all cases (see [19, The-
orem 5.1] and the references therein). When the trapping potential (ξ(x))x∈Zd

are i.i.d. with double exponential distribution, the eigenvalue order statistics has
been successfully analyzed in [5], the quenched path measure has been shown to
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concentrate on a single island at a distance of the order t/(ln t ln ln ln t) from the
origin, and the scaling limit of the quenched path measure has been obtained
(see [6] or [19, Theorem 6.5]). Similar results have been obtained for potentials
with heavier tails, for which the intermittent islands consists of single sites (see
[19, Sec. 6.4] or [20]).

3 Mobile Traps

There have been few mathematical results on the trapping problem with mobile
traps. Redig [26] considered trapping potential ξ generated by a reversible
Markov process, such as a Poisson field of independent random walks or the
symmetric exclusion process in equilibrium, and he obtained exponential upper
bounds on the annealed survival probability using spectral techniques for the
process of traps viewed from the random walk. When ξ is generated by a single
mobile trap, i.e., ξ(t, x) = δx(Yt) for a simple symmetric random walk Y on Z

d,
Schnitzler and Wolff [31] have computed the asymptotics of the decay of the
annealed survival probability via explicit calculations. The large deviation and
spectral techniques outlined in Sect. 2 for immobile traps largely fail for mobile
traps, and new techniques need to be developed.

Recently, we investigated further the model where ξ is generated by a Poisson
field of independent random walks, previously considered in [26]. More precisely,
given ν > 0, let (Ny)y∈Zd be a family of i.i.d. Poisson random variables with mean
ν. We then start a family of independent random walks (Y j,y)y∈Zd, 1≤j≤Ny

on
Z

d, each with jump rate ρ ≥ 0 and Y j,y := (Y j,y
t )t≥0 denotes the path of the

j-th trap starting from y at time 0. For t ≥ 0 and x ∈ Z
d, we then define

ξ(t, x) :=
∑

y∈Zd, 1≤j≤Ny

δx(Y j,y
t ) (15)

which counts the number of traps at site x at time t. When ρ = 0, we recover
the case of immobile traps.

For trapping potential ξ defined as in (15), there are no systematic tools
except the Poisson structure of the traps. The only known results so far are: (1)
The quenched survival probability decays at a well-defined exponential rate in
all dimensions, while the annealed survival probability decays sub-exponentially
in dimensions d = 1 and 2 and exponentially in d ≥ 3 [8]; (2) The random walk
is sub-diffusive under the annealed path measure in dimension d = 1 [2]. We will
review these results in Sects. 3.1 and 3.2 below. We will assume for the rest of
this section that ξ is defined as in (15).

We remark that in the physics literature, recent studies of the trapping prob-
lem with mobile traps have focused on the annealed survival probability [21,22],
and the particle and trap motion may also be sub-diffusive (see e.g. [4,32], and
also [7] for some mathematical results). In the recent mathematics literature,
continuum analogues of the results in [8] on the survival probability were also
obtained in [25], where the traps move as a Poisson collection of independent
Brownian motions in R

d. Further extensions to Lévy trap motion were carried
out in [9].
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3.1 Decay of Survival Probabilities

The precise rate of decay of the annealed and quenched survival probabilities
were determined in [8]. Recall that γ, κ, ρ and ν are respectively the rate of
killing per trap, the jump rate of the random walk X, the jump rate of the
traps, and the density of the traps.

Theorem 1 [Quenched survival probability]. Assume that d ≥ 1, γ > 0,
κ ≥ 0, ρ > 0 and ν > 0, and the traps as well as the walk X follow independent
simple symmetric random walks. Then there exists λq

d,γ,κ,ρ,ν deterministic such
that Pξ-a.s.,

Zξ
γ,t = exp

{
− λq

d,γ,κ,ρ,ν t(1 + o(1))
}

as t → ∞. (16)

Furthermore, 0 < λq
d,γ,κ,ρ,ν ≤ γν + κ.

The proof of Theorem 1 is based on the sub-additive ergodic theorem [8].

Theorem 2 [Annealed survival probability]. Assume that γ ∈ (0,∞], κ ≥
0, ρ > 0 and ν > 0, and the traps as well as the walk X follow independent
simple symmetric random walks. Then

Zγ,t = E
ξ[Zξ

γ,t] =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

exp
{

− ν

√
8ρt

π
(1 + o(1))

}
, d = 1,

exp
{

− νπρ
t

ln t
(1 + o(1))

}
, d = 2,

exp
{

− λa
d,γ,κ,ρ,ν t(1 + o(1))

}
, d ≥ 3.

(17)

Furthermore,
λa

d,γ,κ,ρ,ν ≥ λa
d,γ,0,ρ,ν =

νγ(
1 + γGd(0)

ρ

) ,

where Gd(0) :=
∫ ∞
0

pt(0) dt is the Green function of a simple symmetric random
walk on Z

d with jump rate 1 and transition kernel pt(·).

Note that in dimensions d = 1 and 2, the annealed survival probability decays
sub-exponentially, and the pre-factor in front of the decay rate is independent
of γ ∈ (0,∞] and κ ≥ 0.

Although Theorems 1 and 2 were proved in [8] for traps and X following
simple symmetric random walks, they can be easily extended to more general
symmetric random walks with mean zero and finite variance.

We sketch below the proof of Theorem 2 and the main tools used in [8].
The first step is to integrate out the Poisson random field ξ and derive suitable
representations for the annealed survival probability Zγ,t.
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Representation of Zγ,t in terms of random walk range: Given the Poisson
field ξ defined as in (15), we can integrate out ξ to obtain

Zγ,t = E
ξ[Zξ

γ,t] = E
X
0 E

ξ

[
exp

{
−γ

∫ t

0

ξ(s,X(s)) ds

}]

= E
X
0

[
exp

{
ν
∑
y∈Zd

(vX(t, y) − 1)
}]

, (18)

where conditional on X,

vX(t, y) = E
Y
y

[
exp

{
−γ

∫ t

0

δ0(Y (s) − X(s)) ds

}]
(19)

with E
Y
y [·] denoting expectation with respect to the motion of a trap starting

at y.
When γ = ∞, we can interpret

vX(t, y) = P
Y
y

(
Y (s) �= X(s)∀ s ∈ [0, t]

)
,

which leads to

Z∞,t = E
X
0

[
exp

{
− ν

∑
y∈Zd

P
Y
y

(
Y (s) − X(s) = 0 for some s ∈ [0, t]

)}]

= E
X
0

[
exp

{
− ν

∑
y∈Zd

P
Y
0

(
Y (s) − X(s) = −y for some s ∈ [0, t]

)}]

= E
X
0

[
exp

{
− νEY

0

[∣∣Ranges∈[0,t](Y (s) − X(s))
∣∣]}]

,

(20)

where we recall

Ranges∈[0,t](Y (s) − X(s)) = {Y (s) − X(s) ∈ Z : s ∈ [0, t]}. (21)

from (9).
When γ ∈ (0,∞), we can give a similar representation of Zγ,t in terms of the

range of Y −X. More precisely, let T := {T1, T2, . . .} ⊂ [0,∞) be an independent
Poisson point process on [0,∞) with intensity γ, and define

SoftRanges∈[0,t](Y (s) − X(s)) := {Y (Tk) − X(Tk) : k ∈ N, Tk ∈ [0, t]}. (22)

Then we have

Zγ,t = E
X
0

[
exp

{
− νEY,T

0

[∣∣SoftRanges∈[0,t](Y (s) − X(s))
∣∣]}]

, (23)

where E
Y,T
0 denotes expectation with respect to both Y and the Poisson point

process T .

Alternative representation of Zγ,t: We now derive an alternative represen-
tation of Zγ,t which will turn out useful below e.g. for showing the existence of
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an asymptotic exponential decay of the survival probability. For this purpose,
note that the time-reversed process ξ̃(s, ·) := ξ(t − s, ·), s ∈ [0, t], is also the
occupation field of a Poisson system of random walks, where each walk follows
the law of Ỹ := −Y , which is the same as that of Y by symmetry. We can then
write

Zγ,t = E
X
0 E

ξ

[
exp

{
−γ

∫ t

0

ξ̃(t − s,X(s)) ds

}]
= E

X
0

[
exp

{
ν
∑
y∈Zd

(ṽX(t, y) − 1)
}]

,

(24)
where

ṽX(t, y) = E
Ỹ
y

[
exp

{
−γ

∫ t

0

δ0(Ỹ (t − s) − X(s)) ds

}]
. (25)

Let L̃ denote the generator of Ỹ . Then by the Feynman–Kac formula,

(ṽX(t, y))t≥0,y∈Zd

solves the equation

∂

∂t
ṽX(t, y) = L̃ṽX(t, y) − γδX(t)(y) ṽX(t, y),

ṽX(0, ·) ≡ 1,
y ∈ Z

d, t ≥ 0, (26)

which implies that ΣX(t) :=
∑

y∈Zd(ṽX(t, y) − 1) is the solution of the equation

d
dt

ΣX(t) = −γṽX(t,X(t)),

ΣX(0) = 0.
(27)

Hence, ΣX(t) = −γ
∫ t

0
ṽX(s,X(s)) ds, which leads to the alternative representa-

tion

Zγ,t = E
X
0

[
exp

{
−νγ

∫ t

0

ṽX(s,X(s)) ds

}]
. (28)

Existence of limt→∞
1
t ln Zγ,t: From the representation (28), it is easily seen

that lnZγ,t is super-additive, which implies the existence of limt→∞
1
t ln Zγ,t.

Indeed, for t1, t2 > 0,

Zγ,t1+t2 = E
X
0

[
exp

{
−νγ

∫ t1

0

ṽX(s,X(s)) ds

}

× exp
{

−νγ

∫ t1+t2

t1

ṽX(s,X(s)) ds

} ]

≥ E
X
0

[
exp

{
−νγ

∫ t1

0

ṽX(s,X(s)) ds

}

× exp
{

−νγ

∫ t2

0

ṽθt1X(s, (θt1X)(s)) ds

} ]

= Zγ,t1Zγ,t2 ,
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where θt1X := ((θt1X)(s))s≥0 = (X(t1 + s) − X(t1))s≥0, we used the indepen-
dence of (X(s))0≤s≤t1 and ((θt1X)(s))0≤s≤t2 , and the fact that for s > t1,

ṽX(s,X(s)) = E
Ỹ
X(s)

[
exp

{
−γ

∫ s

0

δ0(Ỹ (r) − X(s − r)) dr

}]

≤ E
Ỹ
X(s)

[
exp

{
−γ

∫ s−t1

0

δ0(Ỹ (r) − X(s − r)) dr

}]

= ṽθt1X(s − t1, (θt1X)(s − t1)).

It then follows by super-additivity that limt→∞
1
t ln Zγ,t exists, although the rate

is zero in dimensions 1 and 2.
Below we sketch a proof of the precise sub-exponential rates of decay of Zγ,t

in dimensions 1 and 2. We refer the reader to [8] for details and proof of the case
when d = 3.

Lower bound on Zγ,t for d = 1, 2: A lower bound is achieved by clearing a
ball of radius Rt around the origin where there are no traps up to time t, and
then force the random walk X to stay inside this ball up to time t. Optimizing
the choice of Rt then gives the desired lower bound which, surprisingly, turns
out to be sharp in dimensions 1 and 2.

Let BRt
:= {x ∈ Z

d : ‖x‖∞ ≤ Rt} denote the L∞ ball of radius Rt centered
around the origin, with Rt to be optimized over later. Let Et denote the event
that there are no traps in BRt

at time 0, Ft the event that no traps starting
from outside BRt

at time 0 will enter BRt
before time t, and Gt the event that

the random walk X with X(0) = 0 does not leave BRt
before time t. Then we

have
Zγ,t ≥ P(Et ∩ Ft ∩ Gt) = P(Et)P(Ft)P(Gt). (29)

Since Et is the event that ξ(0, x) = 0 for all x ∈ BRt
, where ξ(0, x) are i.i.d.

Poisson with mean ν, we have

P(Et) = e−ν(2Rt+1)d

. (30)

To estimate P(Gt), note that for 1 � Rt �
√

t, we can approximate X by a
Brownian motion and rescale space-time by (1/Rt, 1/R2

t ) to obtain the estimate

P(Gt) ≥ e−c1t/R2
t (31)

for some c1 > 0.
To estimate P(Ft), note that Ft is the event that for each y /∈ BRt

, no trap
starting at y will enter BRt

before time t. Since the number of traps starting
from each y ∈ Z

d are i.i.d. Poisson with mean ν, we obtain

P(Ft) = exp
{

− ν
∑

y/∈BRt

P
Y
y (τBRt

≤ t)
}

, (32)

where τBRt
is the stopping time when Y enters BRt

.
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In dimension 1, since we have assumed for simplicity that Y makes nearest-
neighbor jumps, we note that P(Ft) in fact does not depend on the choice of
Rt. Furthermore, when Rt = 0, P(Ft) is easily seen as the annealed survival
probability for the trapping problem with instant killing by traps (γ = ∞) and
immobile X (κ = 0). The asymptotics of the annealed survival probability was
obtained in [8, Sect. 2.2], with

P(Ft) = e−(1+o(1))ν
√

8ρt/π. (33)

We can then combine the estimates for P(Et), P(Ft) and P(Gt) and optimize
over Rt to obtain the lower bound

Zγ,t ≥ e−(1+o(1))ν
√

8ρt/πe−ct1/3
, (34)

where the leading order asymptotics is determined by that of P(Ft), and the
second order asymptotics comes from P(Et)P(Gt), with the optimal choice of Rt

being a constant multiple of t1/3. This lower bound strategy strongly suggests
that the fluctuation of the random walk X under the path measure Pγ,t will be
of the order t1/3.

In dimension 2, it was shown in [8, Section 2.3] that if Rt � tε for all ε > 0,
then P(Ft) has the same leading order asymptotics as the annealed survival
probability of the trapping problem with γ = ∞ and κ = 0, which coincides
with the asymptotics for Zγ,t stated in (17). To obtain the desired lower bound
on Zγ,t, we can then choose any Rt satisfying

√
ln t � Rt � tε for any ε > 0,

which ensures that P(Et)P(Gt) gives lower order contributions. This suggests
that under the path measure Pγ,t, X fluctuates on a scale between

√
ln t and tε

for any ε > 0. However, to identify the optimal choice of Rt, we would need to
obtain more precise estimates on how P(Ft) depends on Rt.

Upper bound on Zγ,t for d = 1, 2: The key ingredient is what has been
named in the physics literature as the Pascal principle, which asserts that in
(18), if we condition on the random walk trajectory X, then the annealed survival
probability

ZX
γ,t := E

ξ

[
exp

{
−γ

∫ t

0

ξ(s,X(s)) ds

}]
= exp

{
ν
∑
y∈Zd

(vX(t, y) − 1)
}

(35)

is maximized when X ≡ 0, provided that the trap motion Y is a symmetric
random walk. Therefore

Zγ,t = E
X
0 [ZX

γ,t] ≤ ZX≡0
γ,t , (36)

which has the same leading order asymptotic decay as the case γ = ∞ and κ = 0
that appeared in the lower bound.

For discrete time random walks under suitable symmetry assumptions, the
Pascal principle was proved by Moreau, Oshanin, Bénichou and Coppey in
[21,22], which can then be easily extended to general continuous time symmet-
ric random walks [8]. An interesting corollary is that if Y is a continuous time
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symmetric random walk, then for any deterministic path X on Z
d with locally

finitely many jumps, we have

E
Y
0 [|Ranges∈[0,t](Y (s))|] ≤ E

Y
0 [|Ranges∈[0,t](Y (s) + X(s))|]. (37)

I.e., the expected range of a symmetric random walk can only be increased under
deterministic perturbations.

3.2 Path Measures

The only known result so far on the path measures is the following sub-diffusive
bound under the annealed path measure Pγ,t in dimension one, recently proved
in [2].

Theorem 3 (Sub-diffusivity in dimension one). Let X and the trap
motion Y follow continuous time random walks on Z with jump rates κ, ρ > 0
and non-degenerate jump kernels pX and pY respectively. Assume that pX has
mean zero and pY is symmetric, with

∑
x∈Z

eλ∗|x|pX(x) < ∞ and
∑
x∈Z

eλ∗|x|pY (x) < ∞ (38)

for some λ∗ > 0. Then there exists α > 0 such that for all ε > 0,

Pγ,t

(
‖X‖t ∈ (αt

1
3 , t

11
24+ε)

)
→ 1 as t → ∞. (39)

where ‖X‖t := sups∈[0,t] |Xs|.

Since 11
24 < 1

2 , this result shows that under the annealed path measure Pγ,t, X
is sub-diffusive.

Remark 1. Very recently, Öz [23] improved the upper bound t
11
24+ε in (39) to

ct
5
11 for the continuum analogue model of a Brownian motion among a Poisson

field of moving traps.

We sketch below the proof strategy followed in [2].

Simple random walk, γ = ∞: Let us assume for simplicity that X and Y are
continuous time simple symmetric random walks, and γ = ∞. By (4),

P∞,t(X ∈ ·) =
E

X
0

[
ZX

∞,t 1X∈·
]

Z∞,t
, (40)

where Z∞,t = E
X
0 [ZX

∞,t] with ZX
γ,t defined in (35), and by (18) and (20),

ZX
∞,t = exp

{
− νEY

0

[∣∣Ranges∈[0,t](Y (s) − X(s))
∣∣]}. (41)

As shown in the lower bound for the annealed survival probability in (29)–(34),

Z∞,t ≥ ZX≡0
∞,t e−ct1/3

. (42)
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Therefore, from (40) we obtain

P∞,t(X ∈ ·)

≤ ect1/3
E

X
0

[
ZX

∞,t/Z
X≡0
∞,t 1X∈·

]
(43)

= ect1/3
E

X
0

[
e−ν

(
E

Y
0

[∣∣Ranges∈[0,t](Y (s)−X(s))
∣∣−∣∣Ranges∈[0,t]Y (s)

∣∣])
1X∈·

]
. (44)

Note that by the corollary of the Pascal principle (37), the exponent in the
exponential is negative, and hence

P∞,t(X ∈ ·) ≤ ect1/3
P

X
0 (X ∈ ·). (45)

This implies that

P∞,t(‖X‖t ≤ αt1/3) ≤ ect1/3
P

X
0 (‖X‖t ≤ αt1/3) → 0 as → ∞, (46)

if α is sufficiently small, as can be easily seen if X is replaced by a Brownian
motion. This proves the lower bound on the fluctuations.

Proving the sub-diffusive upper bound on X in (39) requires finding lower
bounds on the differences of the ranges in (44) for typical realizations of X.
Using the fact that X and Y make nearest-neighbor jumps and Y is symmetric,
we have

E
Y
0

[∣∣Ranges∈[0,t](Y (s) − X(s))
∣∣]

= 1 + E
Y
0

[
sup

s∈[0,t]

(Y (s) − X(s)) − inf
s∈[0,t]

(Y (s) − X(s))
]

= 1 + E
Y
0

[
sup

s∈[0,t]

(Y (s) − X(s)) + sup
s∈[0,t]

(X(s) − Y (s))
]

= 1 + E
Y
0

[
sup

s∈[0,t]

(Y (s) − X(s)) + sup
s∈[0,t]

(Y (s) + X(s))
]
.

Therefore

E
Y
0

[∣∣Ranges∈[0,t](Y (s) − X(s))
∣∣ −

∣∣Ranges∈[0,t]Y (s)
∣∣]

= E
Y
0

[
sup

s∈[0,t]

(Y (s) − X(s)) + sup
s∈[0,t]

(Y (s) + X(s)) − 2 sup
s∈[0,t]

Y (s)
]
. (47)

We will show that for any ε > 0, uniformly in X with ‖X‖t ≥ t
11
24+ε,

The above expectation is bounded from below by Ct
1
3+ε, (48)

which by (44) then implies

P∞,t(‖X‖t ≥ t
11
24+ε) ≤ ect

1
3 −Ct

1
3+ε

→ 0 as t → ∞. (49)

To bound the expectation in (47), first note that we always have

sup
s∈[0,t]

(Y (s) − X(s)) + sup
s∈[0,t]

(Y (s) + X(s)) − 2 sup
s∈[0,t]

Y (s) ≥ 0,
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in contrast to |Ranges∈[0,t](Y (s)−X(s))| − |Ranges∈[0,t]Y (s)|. Therefore we can
restrict to a suitable subset of trajectories of Y to obtain a lower bound.

Let σX be the first time when X achieves its global maximum in [0, t], and
τX ∈ [0, t] the first time when X achieves its global minimum in [0, t]. If ‖X‖t ≥
t
11
24+ε, then one of the two sets

S := {s ∈ [0, t] : X(σX) − X(s) ≥ t
11
24+ε/2}

and
T := {s ∈ [0, t] : X(s) − X(τX) ≥ t

11
24+ε/2}

must have Lebesgue measure at least t/2. Assume w.l.o.g. that |S| ≥ t/2. Then
a lower bound on (47) can be obtained by restricting Y to the set of trajectories

F :=
{

σY ∈ S ∩ [t/8, 7t/8] and Y (σY ) − Y (σX) ≤ t
11
24+ε/4

}
.

Indeed, on this event,

sup
s∈[0,t]

(Y (s) − X(s)) + sup
s∈[0,t]

(Y (s) + X(s)) − 2 sup
s∈[0,t]

Y (s)

≥ Y (σY ) − X(σY ) + Y (σX) + X(σX) − 2Y (σY )
= (X(σX) − X(σY )) − (Y (σY ) − Y (σX))

≥ 1
4
t
11
24+ε. (50)

On the other hand, it is easily seen that there exists α > 0 such that uniformly
in t large,

P
Y
0 (σY ∈ S ∩ [t/8, 7t/8]) ≥ α. (51)

Furthermore, conditioned on σY , (Y (σY ) − Y (σY + s))s∈[0,t−σY ] and (Y (σY ) −
Y (σY − s))s∈[0,σY ] are two independent random walks conditioned respectively
to not hit zero or go below zero. Such conditioned random walks are comparable
to 3-dimensional Bessel processes. Assume w.l.o.g. that σX > σY , then we have
the rough estimate

P
Y
0 (Y (σY ) − Y (σX) ≤ t

11
24+ε/4 |σY ) ≥ C P

B
0 (|B(σX − σY )| ≤ t

11
24+ε/4)

≥ C ′ (t
11
24+ε)3

t
3
2

= C ′t−
1
8+3ε,

(52)

where B is a 3-dimensional Brownian motion starting from 0 and its Euclidean
norm, |Bt|, is a 3-dimensional Bessel process, while in the last inequality, we used
the local central limit theorem for B and σX − σY ≤ t. Combining (50)–(52),
we then obtain

E
Y
0

[
sup

s∈[0,t]

(Y (s) − X(s)) + sup
s∈[0,t]

(Y (s) + X(s)) − 2 sup
s∈[0,t]

Y (s)
]

≥ C ′αt−
1
8+3ε t

11
24+ε

4
= C ′′t

1
3+4ε, (53)
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which then implies (48) and hence (49). The above heuristic calculations were
made rigorous in [2].
Simple random walk, γ < ∞: When γ < ∞, the representation (41) for ZX

∞,t

should be replaced by

ZX
γ,t = exp

{
− νEY,T

0

[∣∣SoftRanges∈[0,t](Y (s) − X(s))
∣∣]} (54)

as can be seen from (23). The difficulty then lies in controlling the difference

Fγ,t(Y − X) :=
[∣∣Ranges∈[0,t](Y (s) − X(s))

∣∣]

− E
T [∣∣SoftRanges∈[0,t](Y (s) − X(s))

∣∣]

=
∑
x∈Z

e−γLY −X
t (x)1LY −X

t (x)>0,

where LY −X
t (x) :=

∫ t

0
1{Y (s)−X(s)=x}ds is the local time of Y − X at x. In [2],

this control is achieved by proving that

sup
t≥e

E
Y
0

[
exp

{ c

ln t
Fγ,t(Y )

}]
< ∞, (55)

which also leads to interesting bounds on the set of thin points of Y , i.e., the set
of x where the local time LY

t (x) is positive but unusually small.

Non-simple random walks: When X and Y satisfy the assumptions in The-
orem 3, but are not necessarily simple random walks, the arguments outlined
above can still be salvaged, provided we can control the difference

Gt(Y ) := sup
s∈[0,t]

Y (s) − inf
s∈[0,t]

Y (s) + 1 − |Ranges∈[0,t](Y (s))|

=
∑

inf
s∈[0,t]

Y (s)≤x≤ sup
s∈[0,t]

Y (s)

1LY
t (x)=0,

which is the total size of the holes in the range of Y . In [2], this control is achieved
by proving

sup
t≥e

E
Y
0

[
exp

{ c

ln t
Gt(Y )

}]
< ∞. (56)

The proof of (55) and (56) in [2] in fact follow the same line of arguments.

4 Some Open Questions

The large deviation and spectral techniques that have been successful for the
trapping problem with immobile traps largely fail for mobile traps. As a result,
many questions remain unanswered for the trapping problem with mobile traps,
even when the traps are just a Poisson system of independent random walks.
We list below some natural open questions.
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Open questions:

(1) In dimension 1, we conjecture that under the annealed path measure Pγ,t,
X fluctuates on the scale t1/3, which is based on the lower bound strategy
for survival in Sect. 3.1. In fact, we saw that the probability that traps from
outside the ball of radius Rt do not enter it before time t does not depend
on the choice of Rt, which leaves only the interplay between the cost of
clearing the ball of traps at time 0 and the cost of the forcing the walk to
stay within the ball up to time t. This is also what happens in the case of
immobile traps, which leads us to conjecture that not only the fluctuation
is on the same scale of t1/3 [27,30], but also the rescaled paths converge to
the same limit.

(2) In dimension 2, the lower bound strategy for the annealed survival proba-
bility suggests that under the annealed path measure Pγ,t, X fluctuates on
a scale Rt with

√
ln t � Rt � tε for all ε > 0. The correct scale of Rt still

needs to be determined. In dimension 1, we heavily used the fact that the
range of a random walk is essentially captured by its maximum and mini-
mum. This is no longer applicable in dimensions d ≥ 2, and new techniques
need to be developed.

(3) In dimensions d ≥ 3, if we follow the same lower bound strategy for the
annealed survival probability, then it is not difficult to see that the optimal
size of the ball which is free of traps should be of order one instead of
diverging as in dimensions 1 and 2. This seems to suggest that under the
annealed path measure Pγ,t, X should be localized near the origin. On the
other hand, it is also reasonable to expect that the interaction between the
traps and the random walk X will create a clearing around X in a time
of order 1, and random fluctuations will then cause the clearing and X to
undergo diffusive motion, leading to a central limit theorem and invariance
principle for X under Pγ,t. We conjecture that the second scenario is what
actually happens.

(4) What can we say about the quenched path measure P ξ
γ,t? For Brownian

motion among Poisson obstacles, Sznitman [29] has shown that the parti-
cle X seeks out pockets of space free of traps. There is a balance between
the cost of going further away from the starting point to find larger pock-
ets and the benefit of surviving in a larger pocket, which leads to super-
diffusive motion under the quenched path measure (as pointed out to us by
R. Fukushima, this follows from results in [29]; and see [12] for the Bernoulli
hard trap model). When the traps are mobile, these pockets of space free of
traps are destroyed quickly and become much more rare. Would X still be
super-diffusive under the quenched path measure?

(5) In our analysis, we heavily used the fact that the random trapping potential
ξ is a Poisson field. One could also consider ξ generated by other interacting
particle systems, such as the exclusion process or the voter model as Gärtner
et al. considered in the context of the parabolic Anderson model [14,15].
Their analysis has focused on the exponential asymptotics of the quenched
and annealed solution of the PAM. The path behavior of the corresponding
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trapping problem remains open. The behavior is expected to be similar
when ξ is the occupation field of either the symmetric exclusion process or
the Poisson system of independent random walks, because the two particle
systems have the same large scale space-time fluctuations.

(6) It is natural to also consider the case when the random walk moves with
a deterministic drift. A naive survival strategy of creating a ball centered
at the origin free of traps, then there is an exponential cost for the random
walk to stay within that region, while leaving the region will also incur an
exponential cost depending on γ, the rate of killing when the walk meets a
trap. Depending the strength of the drift relative to γ, it is conceivable that
there is a transition in the path behavior as the drift varies, such that when
the drift is small, the random walk is localized near the origin just as in the
case of zero drift, and when the drift becomes sufficiently large, the random
walk becomes delocalized. This is also a question of active interest for the
PAM with immobile traps (see e.g. [19, Sec. 7.10], [29, Sec. 5.4 and 7.3]).

(7) In Theorem 2 on the asymptotics of the annealed survival probability, we
note that in dimensions 1 and 2, the precise rate of decay of Zγ,t does not
depend on the killing rate γ. The heuristics is that as long as γ > 0, the
random walk X would not see the traps under the annealed path measure.
This suggests sending γ = γt → 0 as t → ∞ in order to see non-trivial
dependence on the killing rate. In dimension 1, the correct rate is γt = γ̃/

√
t,

and in dimension 2, γt = γ̃/ ln t. Decaying killing rate has been considered
in the immobile trap case, see [19, Sec. 7.3.3] and the references therein.
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14. Gärtner, J., den Hollander, F., Maillard, G.: Intermittency on catalysts. In: Trends
in Stochastic Analysis. London Mathematical Society Lecture Note Series, vol. 353,
pp. 235–248. Cambridge University Press, Cambridge (2009)

15. Gärtner, J., den Hollander, F., Maillard, G.: Quenched Lyapunov exponent for
the parabolic Anderson model in a dynamic random environment. In: Probability
in Complex Physical Systems. Springer Proceedings in Mathematics, vol. 11, pp.
159–193. Springer, Heidelberg (2012)

16. van der Hofstad, R., König, W., Mörters, P.: The universality classes in the
parabolic Anderson model. Commun. Math. Phys. 267(2), 307–353 (2006)

17. den Hollander, F., Weiss, G.H.: Aspects of trapping in transport processes. In:
Contemporary Problems in Statistical Physics, SIAM, Philadelphia (1994)

18. Komorowski, T.: Brownian motion in a Poisson obstacle field. Astérisque 266,
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Abstract. We propose a model of a one-dimensional random walk in
dynamic random environment that interpolates between two classical
settings: (I) the random environment is sampled at time zero only; (II)
the random environment is resampled at every unit of time. In our model
the random environment is resampled along an increasing sequence of
deterministic times. We consider the annealed version of the model, and
look at three growth regimes for the resampling times: (R1) linear; (R2)
polynomial; (R3) exponential. We prove weak laws of large numbers and
central limit theorems. We list some open problems and conjecture the
presence of a crossover for the scaling behaviour in regimes (R2) and
(R3).

Keywords: Random walk · Dynamic random environment ·
Resampling times · Law of large numbers · Central limit theorem

1 Introduction, Model, Main Theorems and Discussion

1.1 Background and Outline

Models for particles moving in media with impurities pose many challenges. In
mathematical terms, the medium with impurities is represented by a random
environment on a lattice and the particle motion is represented by a random
walk on this lattice with transition probabilities that are determined by the
environment.
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Static Random Environment. A model that has been studied extensively
in the literature is that of Random Walk in Random Environment (RWRE),
where the random environment is static (see Zeitouni [13] for an overview). In
one dimension this model exhibits striking features that make the presence of a
random environment particularly interesting. Namely, there are regions in the
lattice where the random walk remains trapped for a very long time. The pres-
ence of these traps leads to a local slow down of the random walk in comparison
to a homogeneous random walk. This, in turn, is responsible for a non-trivial
limiting speed, as well as for anomalous scaling behaviour (see Sect. 1.2 below).
For instance, under proper assumptions on the random environment, the random
walk can be transient yet sub-ballistic in time, or it can be non-diffusive in time
with non-Gaussian fluctuations. To derive such results and to characterise asso-
ciated limit distributions, a key approach has been to represent the environment
by a potential function: a deep valley in the potential function corresponds to a
region in the lattice where the random walk gets trapped for a very long time.

Dynamic Random Environment. If, instead, we consider a random walk in
a random environment that itself evolves over time, according to a prescribed
dynamic rule, then the random environment is still inhomogeneous, but the
dynamics dissolves existing traps and creates new traps. Depending on the choice
of the dynamics, the random walk behaviour can be similar to that in the static
model, i.e., show some form of localisation, or it can be similar to that of a homo-
geneous random walk, in which case we speak of homogenisation. The simplest
model of a dynamic random environment is given by an i.i.d. field of spatial
random variables that is resampled in an i.i.d. fashion after every step of the
random walk. This model has been studied in several papers. Clearly, under
the so-called annealed measure homogenisation occurs: the independence of the
random environment in space and time causes the random walk to behave like
a homogeneous random walk, for which a standard law of large numbers and a
standard central limit theorem hold.

Cooling Random Environment. In the present paper we introduce a new
model, which we call Random Walk in Cooling Random Environment (RWCRE).
This model interpolates between the two settings mentioned above: start at
time zero with an i.i.d. random environment and resample it along an increas-
ing sequence of deterministic times (the name “cooling” is chosen here because
the static model is sometimes called “frozen”). If the resampling times increase
rapidly enough, then we expect to see a behaviour close to that of the static
model, via some form of localisation. Conversely, if the resampling times increase
slowly enough, then we expect homogenisation to be dominant. The main goal
of our paper is to start making this rough heuristics precise by proving a few
basic results for RWCRE in a few cooling regimes. From a mathematical point
of view, the analysis of RWCRE reduces to the study of sums of independent
random variables distributed according to the static model, viewed at successive
time scales. In Sect. 1.5 we will point out what type of results for the static
model, currently still unavailable, would be needed to pursue a more detailed
analysis of RWCRE.
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Outline. In Sect. 1.2 we recall some basic facts about the one-dimensional
RWRE model. In Sect. 1.3 we define our model with a cooling random envi-
ronment and introduce the three cooling regimes we are considering. In Sect. 1.4
we state three theorems and make a remark about more general cooling regimes.
In Sect. 1.5 we mention a few open problems and state a conjecture. Sections 2–
4 are devoted to the proofs of our theorems. AppendixA proves a variant of a
Toeplitz lemma that is needed along the way. AppendixB recalls the central limit
theorem for sums of independent random variables. AppendixC strengthens a
well-known convergence in distribution property of recurrent RWRE, which is
needed for one of our theorems.

1.2 RWRE

Throughout the paper we use the notation N0 = N ∪ {0} with N = {1, 2, . . . }.
The classical one-dimensional random walk in random environment (RWRE) is
defined as follows. Let ω = {ω(x) : x ∈ Z} be an i.i.d. sequence with probability
distribution

μ = αZ

for some probability distribution α on (0, 1). The random walk in the space
environment ω is the Markov process Z = (Zn)n∈N0 starting at Z0 = 0 with
transition probabilities

Pω(Zn+1 = x + e | Zn = x) =
{

ω(x), if e = 1,
1 − ω(x), if e = −1,

n ∈ N0.

The properties of Z are well understood, both under the quenched law Pω(·)
and the annealed law

Pμ(·) =
∫
(0,1)Z

Pω(·)μ(dω). (1)

Let 〈·〉 denote expectation w.r.t. α. Abbreviate

ρ(0) =
1 − ω(0)

ω(0)
. (2)

Without loss of generality we make the following assumption on α:

〈log ρ(0)〉 ≤ 0. (3)

This assumption guarantees that Z has a preference to move to the right. In
what follows we recall some key results for RWRE on Z. For a general overview,
we refer the reader to Zeitouni [13].

The following result due to Solomon [12] characterises recurrence versus tran-
sience and asymptotic speed.

Proposition 1 (Recurrence, transience and speed RWRE). Let α be any
distribution on (0, 1) satisfying (3). Then the following hold:
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– Z is recurrent if and only if 〈log ρ(0)〉 = 0.
– If 〈log ρ(0)〉 < 0 and 〈ρ(0)〉 ≥ 1, then Z is transient to the right with zero

speed:

lim
n→∞

Zn

n
= 0 Pμ-a.s.

– If 〈log ρ(0)〉 < 0 and 〈ρ(0)〉 < 1, then Z is transient to the right with positive
speed:

lim
n→∞

Zn

n
= vμ =

1 − 〈ρ(0)〉
1 + 〈ρ(0)〉 > 0 Pμ-a.s.

The scaling limits in the different regimes have been studied in a number of
papers, both under the quenched and the annealed law. While the results are
the same for the law of large numbers, they are in general different for the
scaling limits. Under the quenched law only partial results are available (see
Peterson [8] for a summary of what is known). For this reason we are forced to
restrict ourselves to the annealed law.

In the recurrent case the proper scaling was identified by Sinai [11] and the
limit law by Kesten [6]. The next proposition summarises their results.

Proposition 2 (Scaling limit RWRE: recurrent case). Let α be any prob-
ability distribution on (0, 1) satisfying 〈log ρ(0)〉 = 0 and σ2

μ = 〈log2 ρ(0)〉 ∈
(0,∞). Then, under the annealed law Pμ, the sequence of random variables

Zn

σ2
μ log2 n

, n ∈ N, (4)

converges in distribution to a random variable V on R that is independent of α.
The law of V has a density p(x), x ∈ R, with respect to the Lebesgue measure
that is given by

p(x) =
2
π

∑
k∈N0

(−1)k

2k + 1
exp
[
− (2k + 1)2π2

8
|x|
]

, x ∈ R. (5)

For later use we need to show that the sequence in (4) converges to V in Lp for
every p > 0. This is done in AppendixC. Note that the law of V is symmetric
with variance σ2

V ∈ (0,∞).
The scaling in the (annealed) transient case was first studied by Kesten,

Kozlov and Spitzer [7]. In order to state their results, we need some more nota-
tion. Given s, b > 0, denote by Ls,b the s-stable distribution with scaling param-
eter b, centred at 0 and totally skewed to the right. In formulas, Ls,b lives on R

and is identified by its characteristic function

L̂s,b(u) =
∫
R

eiuxLs,b(dx) = exp
[
−b|u|s

(
1 − i

u

|u|gs(u)
)]

, u ∈ R, (6)

with

gs(u) =
{

tan( sπ
2 ), s 	= 1,

2
π log |u|, s = 1.

u ∈ R.
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Write φ(x) = 1√
2π

∫ x

−∞ e−y2/2dy, x ∈ R, to denote the standard normal distri-
bution.

Proposition 3 (Scaling limit RWRE: transient case). Let α be any prob-
ability distribution on (0, 1) satisfying 〈log ρ(0)〉 < 0 such that the support of the
distribution of log ρ(0) is non-lattice. Let s ∈ (0,∞) be the unique root of the
equation

〈ρ(0)s〉 = 1, (7)

and suppose that 〈ρ(0)s log ρ(0)〉 < ∞. Then, under the annealed law Pμ, the
following hold:

– If s ∈ (0, 1), then there exists a b > 0 such that

lim
n→∞Pμ

(
Zn

ns
≤ x

)
= [1 − Ls,b(x−1/s)]1{x>0}. (8)

– If s = 1, then there exist b > 0 and {δα(n)}n∈N, satisfying δα(n) = [1 +
o(1)]n/b log n as n → ∞, such that

lim
n→∞Pμ

(
Zn − δα(n)
n/ log2 n

≤ x

)
= 1 − L1,b(−b2x), x ∈ R. (9)

– If s ∈ (1, 2), then there exist b > 0 and c = c(b) > 0 such that

lim
n→∞Pμ

(
Zn − vμn

bn1/s
≤ x

)
= 1 − Ls,c(−x), x ∈ R. (10)

– If s = 2, then there exists a b > 0 such that

lim
n→∞Pμ

(
Zn − vμn

b
√

n log n
≤ x

)
= φ(x), x ∈ R.

– If s ∈ (2,∞), then there exists a b > 0 such that

lim
n→∞Pμ

(
Zn − vμn

b
√

n
≤ x

)
= φ(x), x ∈ R.

In (9) and (10), the limiting laws are stable laws that are totally skewed to the
left, i.e., their characteristic function is as in (6) but with a + sign in the term
with the imaginary factor i in the exponential. In (8), the limiting law is an
inverse stable law, sometimes referred to as the Mittag–Leffler distribution.

1.3 RWCRE

In the present paper we look at a model where ω is updated along a growing
sequence of deterministic times. To that end, let τ : N0 → N0 be a strictly
increasing map such that τ(0) = 0 and τ(k) ≥ k for k ∈ N (see Fig. 1). Define a
sequence of random environments Ω = (ωn)n∈N0 as follows:



28 L. Avena and F. den Hollander

• • • • •
τ(0) τ(1) τ(k − 1) τ(k) τ(k(n)) n

Fig. 1. Resampling times τ(k), 0 ≤ k ≤ k(n), prior to time n.

� At each time τ(k), k ∈ N0, the environment ωτ(k) is freshly resampled from
μ = αZ and does not change during the time interval [τ(k), τ(k + 1)).

The random walk in the space-time environment Ω is the Markov process
X = (Xn)n∈N0 starting at X0 = 0 with transition probabilities

PΩ(Xn+1 = x + e | Xn = x) =
{

ωn(x), if e = 1,
1 − ωn(x), if e = −1,

n ∈ N0.

We call X the random walk in cooling random environment (RWCRE) with
resampling rule α and cooling rule τ . Our goal will be to investigate the behavior
of X under the annealed law

PQ(·) =
∫
(RZ)N0

PΩ(·)Q(dΩ), (11)

where Q = Qα,τ denotes the law of Ω.
Note that if τ(1) = ∞, then RWCRE reduces to RWRE, i.e., X has the

same distribution as Z. On the other hand, if τ(k) = k, k ∈ N, then ωn is
freshly sampled from μ for all n ∈ N and RWCRE reduces to what is often
referred to as random walk in an i.i.d. space-time random environment. Under
the annealed law, the latter is a homogeneous random walk and is trivial. Under
the quenched law it is non-trivial and has been investigated in a series of papers,
e.g. Boldrighini, Minlos, Pellegrinotti and Zhizhina [4], and Rassoul-Agha and
Seppalainen [10]. For any other choice of τ the model has not been considered
before.

In this paper we will focus on three different growth regimes for τ(k) as
k → ∞:

(R1) No cooling: τ(k) ∼ Ak for some A ∈ (1,∞).
(R2) Slow cooling: τ(k) ∼ Bkβ for some B ∈ (0,∞) and β ∈ (1,∞).
(R3) Fast cooling: log τ(k) ∼ Ck for some C ∈ (0,∞).

Let
Tk = τ(k) − τ(k − 1), k ∈ N,

be the increments of the resampling times of the random environment. We
assume that k → Tk is sufficiently regular so that

Tk ∼ βBkβ−1 in regime (R2),
log Tk ∼ Ck in regime (R3). (12)
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n

k(n)

τ(0) τ(1) τ(2) τ(3) τ(4)
0

1

2

3

4

•

•

•

•

•

Fig. 2. Plot of n �→ k(n).

For instance, in regime (R2) this regularity holds as soon as k → Tk is ultimately
non-decreasing (Bingham, Goldie and Teugels [3, Sections 1.2 and 1.4]).

Let
Yk = Xτ(k) − Xτ(k−1), k ∈ N,

be the increments of the random walk between the resampling times. Our starting
point will be the relation

Xn =
k(n)∑
k=1

Yk + Ȳ n, (13)

where (see Fig. 2)
k(n) = max{k ∈ N : τ(k) ≤ n} (14)

is the last resampling prior to time n, Yk is distributed as ZTk
in environment

ωτ(k−1), while Ȳ n is a boundary term that is distributed as ZT̄n in environment
ωτ(k(n)) with

T̄n = n − τ(k(n)) (15)

the remainder time after the last resampling. Note that all terms in (13) are
independent.

1.4 Main Theorems

We are now ready to state our results under the annealed measure PQ in the
three cooling regimes (R1)–(R3).

• No cooling. Regime (R1) in essence corresponds to the situation where the
increments of the resampling times do not diverge, i.e., limk→∞ Tk 	= ∞. To
analyze this regime, we assume that the empirical measure of the increments of
the resampling times

Ln =
1

k(n)

k(n)∑
k=1

δτ(k)−τ(k−1)
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has a non-degenerate L1-limit, i.e.,

lim
n→∞

∑
�∈N

� |Ln(�) − ν(�)| = 0

for some ν ∈ M1(N). Since
∑

�∈N
�Ln(�) = τ(k(n))/k(n) with τ(k(n)) ∼ n and

k(n) ∼ n/A, it follows that
∑

�∈N
�ν(�) = A. Abbreviate

vν =
1
A

∑
�∈N

ν(�)Eμ(Z�), σ2
ν =

1
A

∑
�∈N

ν(�)Varμ(Z�).

Write w − limn→∞ to denote convergence in distribution.

Theorem 1 (No cooling: Strong LLN and CLT). In regime (R1) the fol-
lowing hold.

(1) Strong law of large numbers:

lim
n→∞

Xn

n
= vν PQ-a.s.

(2) Central limit theorem:

w − lim
n→∞

Xn − vνn

σν
√

n
= N (0, 1) under the law PQ, (16)

provided
(i) T̄n = o(

√
n),

(ii)
∑

�∈N
� |Ln(�) − ν(�)| = o (1/

√
n ) .

(17)

(It is possible to weaken (17), but we will not pursue this further.)

• Cooling. Regimes (R2) and (R3) is essence correspond to the situation where
the increments of the resampling times diverge, i.e., limk→∞ Tk = ∞. We have
a weak LLN under the latter condition only, which we refer to as cooling.

Theorem 2 (Cooling: Weak LLN). Let α be as in Proposition 1. If the cool-
ing rule τ is such that

lim
k→∞

Tk = ∞, (18)

then
w − lim

n→∞
Xn

n
= vμ under the law PQ.

For regimes (R2) and (R3) we derive Gaussian fluctuations for recurrent
RWRE:



Random Walks in Cooling Random Environments 31

Theorem 3 (Slow and fast cooling: Gaussian fluctuations for recurrent
RWRE). Let α be as in Proposition 2. In regimes (R2) and (R3),

w − lim
n→∞

Xn − EQ(Xn)√
χn(τ)

= N (0, 1) under the law PQ

with

χn(τ) =

{
(σ2

μσV )2
(

β−1
β

)4( n
B

)1/β log4 n, in regime (R2),
(σ2

μσV )2
(

1
5C5

)
log5 n, in regime (R3),

(19)

with σ2
μ the variance of the random variable log ρ(0) in (2) and σ2

V ∈ (0,∞) is
the variance of the random variable V in (5).

Note that the scaling in (19) depends on the parameters (B, β) and C in the
regimes (R2) and (R3), respectively, as well as on the law μ of the static random
environment.

1.5 Discussion, Open Problems and a Conjecture

Preliminary Results. The results presented in Sect. 1.4 are modest and are
only a first step in the direction of understanding the effect of the cooling of the
random environment. The weak LLN in Theorem2 holds as soon as the cooling
is effective, i.e., the increments of the resampling times diverge (as assumed in
(18)). In particular, the asymptotic speed vμ is the same as for RWRE. This
is markedly different from Theorem 1, where homogenisation occurs (defined in
Sect. 1.1), but with an averaged speed vν that is different from vμ. The CLT in
Theorem 3 can be extended to more general cooling regimes than (R2) and (R3),
but fails when the cooling becomes too rapid.

Future Targets. In future work we will show that also the strong LLN holds
in the effective cooling regime. The derivation is more technical and requires
that we distinguish between different choices of the parameter s defined in (7),
which controls the scaling behaviour of RWRE (recall Proposition 3). Below we
discuss what scaling to expect for RWCRE and what properties of the static
model in Sect. 1.2 would be needed to prove this scaling. Essentially, we need
rate of convergence properties of RWRE, as well as control on the fluctuations
of the resampling times.

Scaling Limits in the Recurrent Case. Suppose that α is as in Proposition 2.
Theorem 3 establishes Gaussian fluctuations for the position of the random walk
around its mean, of an order that depends on the cooling rule τ , given by (19).
From our knowledge of the static model (recall Proposition 2), we can only con-
clude that Eμ(Zn) = o(log2 n). Suppose that, under suitable conditions on α,
we could show that Eμ(Zn) = o(n−1/2 log n) (one example is when α is sym-
metric w.r.t. 1

2 , in which case Eμ(Zn) = 0 for all n ∈ N0). Then, as we will see
in Sect. 4, in the slow cooling regime (R2) this extra information would imply
for RWCRE that EQ(Xn) = o(n1/2β log2 n), in which case Theorem 3 would say
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that Xn/n1/2β log2 n converges in distribution to a Gaussian random variable.
In other words, the cooling rule would have the effect of strongly homogenising
the random environment, and the limiting Kesten distribution in (5) would be
washed out. For the recurrent case it is reasonable to expect the presence of a
crossover from a Gaussian distribution to the Kesten distribution as the cooling
gets slower.

A similar picture should hold in the fast cooling regime (R3). In fact, it would
be natural to look at even faster cooling regimes, namely, super-exponential cool-
ing, in order to see whether, after an appropriate scaling, the limiting distribution
is the same as in the static model. For double-exponential cooling like τ(k) = ee

k

the Lyapunov condition in Lemma2, on which the proof of Theorem3 is based,
is no longer satisfied.

Scaling Limits in the Transient Case. It is natural to expect that a similar
crossover also appears in the transient case, from the Gaussian distribution to
stable law distributions. The general philosophy is the same as in the recur-
rent case: the faster the cooling, the closer RWCRE is to the static model and
therefore the weaker the homogenisation.

We conjecture the following scenario for the scaling limits of the centred
position of the random walk (i.e., Xn − vμn, with vμ the speed in Theorem 2):

Transient Scaling (R1) (R2) (R3)

∃ βc = βc(s):

s ∈ (0, 2) CLT β < βc: Homogenisation Static Law

β > βc: Static Law

s ∈ (2, ∞) CLT CLT CLT

In this table, s ∈ (0,∞) is the parameter in Proposition 3, β is the exponent in
regime (R2), and:

– CLT means that the centred position divided by
√

n converges in distribution
to a Gaussian.

– Homogenisation means that the centred position divided by a factor that
is different from

√
n (and depends on the cooling rule τ) convergences in

distribution to a Gaussian (compare with Theorem3).
– Static Law means that the centred position divided by a factor that is different

from
√

n (and depends on the cooling rule τ) has the same limit distribution
as in the static model (compare with Proposition 3).

The items under (R2) and (R3) are conjectured, the items under (R1) are proven
(compare with Theorem 1).

The most interesting feature in the above table is that, in regime (R2) and
for s ∈ (0, 2), we conjecture the existence of a critical exponent βc = βc(s)
above which there is Gaussian behaviour and below which there is stable law
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behaviour. This is motivated by the fact that, for s ∈ (0, 2), fluctuations are of
polynomial order in the static model (see Proposition 3). Hence when the cooling
rule is also of polynomial order, as in regime (R2), there is a competition between
“localisation between resamplings” and “homogenisation through resamplings”.

Role of the Static Model. To establish the CLTs in the second row of the
table, for s ∈ (2,∞), a deeper understanding of the static model is required. In
fact, to prove Gaussian behaviour in regimes (R2) and (R3) we may try to check
a Lyapunov condition, as we do in the proof of Theorem3 (see Lemma 2 below).
However, as in the proof of Theorem3, Lp convergence for some p > 2 of Zn/

√
n

would be needed. As far as we know, this is not available in the literature. An
alternative approach, which would be natural for all regimes and would make
rigorous the picture sketched in the above table, is to check convergence of the
characteristic functions of the random variables Xn − vμn properly scaled. The
advantage of this approach is that, due to the independence of the summands
in (13), this characteristic function factorises into a product of characteristic
functions of the centred static model, on different time scales. However, we would
need suitable rate-of-convergence results for these static characteristic functions,
which are also not available.

In the table we did not include the case s = 2, nor did we comment on
the distinction between s ∈ (0, 1), s = 1 and s ∈ (1, 2), for which the centring
appears to be delicate (compare with Proposition 3).

Hitting Times. To derive the static scaling limits in Proposition 3, Kesten,
Kozlov and Spitzer [7] (see Peterson [8] for later work) first derive the scaling
limits for the hitting times σx = inf{n ∈ N0 : Zn = x}, x ∈ N, and afterwards
pass to the scaling limits for the positions Zn, n ∈ N0 via a simple inversion
argument. This suggests that a further approach might be to look at the hitting
times associated with our RWCRE model. However, a decomposition into a sum
of independent random variables, in the flavour of (13), would no longer hold
for σx, x ∈ N0. Consequently, in this approach it seems even more difficult to
exploit what is known about the static model.

Remark 1. Since the completion of this paper, two follow-up papers have
appeared [1,2] in which some of the open problems have been settled.

2 No Cooling: Proof of Theorem 1

Throughout the sequel we use the same symbol P for the annealed law Pμ of
RWRE in (1) and the annealed law PQ of RWCRE in (11). At all times it will be
clear which of the two applies: no confusion is possible because they are linked
via (13).
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Proof. The proof uses the Lyapunov condition in Lemma2.
(1) Rewrite (13) as

Xn

n
=

1
n

∑
�∈N

k(n)∑
k=1

Yk 1{τ(k)−τ(k−1)=�} +
1
n

Ȳ n

=̂
k(n)
n

∑
�∈N

Ln(�)

⎛
⎝ 1

k(n)Ln(�)

k(n)Ln(�)∑
m=1

Z
(m)
�

⎞
⎠+

1
n

ZT̄n ,

where Z
(m)
� , m ∈ N, are independent copies of Z� and =̂ denotes equality in

distribution. Since τ(k) ∼ Ak, we have k(n) ∼ n/A and T̄n = o(n). Moreover,
since |Zm| ≤ m for all m ∈ N0, we have

lim
n→∞

1
n

ZT̄n = 0 P-a.s., lim
N→∞

1
N

N∑
m=1

Z
(m)
� = E(Z�) P-a.s.,

and hence the claim follows by dominated convergence.
(2) Lemma 2 implies that, subject to the Lyapunov condition,

w − lim
n→∞

Xn − an√
bn

= N (0, 1) under the law P

with

an =
k(n)∑
k=1

E(Yk) + E(Ȳ n), bn =
k(n)∑
k=1

Var(Yk) + Var(Ȳ n).

We need to show that an = vνn+o(
√

n) and bn ∼ σ2
νn, and verify the Lyapunov

condition.
To compute bn, we note that Var(Ȳ n) ≤ (T̄n)2 = o(n) by Assumption (i)

in (17), and we write

k(n)∑
k=1

Var(Yk) = k(n)
∑
�∈N

Ln(�)Var(Z�)

= k(n)
∑
�∈N

ν(�)Var(Z�) + k(n)
∑
�∈N

[Ln(�) − ν(�)]Var(Z�).

The first term in the right-hand side equals k(n)Aσ2
ν ∼ σ2

νn, which is the
square of the denominator in (16). The second term is k(n) o(1) = o(n), because
Var(Z�) ≤ � and Ln converges to ν in mean. Hence bn ∼ σ2

νn.
To compute an, we note that |E(Ȳ n)| ≤ T̄n = o(

√
n) by Assumption (i) in

(17), and we write

k(n)∑
k=1

E(Yk) = k(n)
∑
�∈N

Ln(�)E(Z�)

= k(n)
∑
�∈N

ν(�)E(Z�) + k(n)
∑
�∈N

[Ln(�) − ν(�)]E(Z�).
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The first term in the right-hand side equals k(n)Avν ∼ vνn, which is the numer-
ator in (16). By Assumption (ii) in (17), the second term is k(n) o(1/

√
n) because

|E(Z�)| ≤ �. Hence an = vνn + o(
√

n).
It remains to verify the Lyapunov condition. To do so, we first show that

max
1≤k≤k(n)

Tk = o(
√

n). (20)

Define
Mn = argmax1≤k≤k(n)Tk,

i.e., the index for which the gap between two successive resampling times is
maximal. If there are several such indices, then we pick the largest one. We
estimate

max1≤k≤k(n) Tk√
n

≤ τ(Mn) − τ(Mn − 1)√
τ(Mn)

≤ 1 +
[(

τ(Mn) − 1
)− τ

(
k
(
τ(Mn) − 1

))]
√

τ(Mn) − 1

=
1 + T̄ τ(Mn)−1√

τ(Mn) − 1
,

(21)

where in the first inequality we use that τ(Mn) ≤ n and in the second inequality
that τ(Mn−1) = τ(k(τ(Mn))−1) = τ(k(τ(Mn)−1)) because m = k(τ(m)), m ∈
N0 (recall Fig. 2). By Assumption (i) in (17), the right-hand side of (21) tends
to zero when limn→∞ Mn = ∞. If the latter fails, then n → max1≤k≤k(n) Tk is
bounded, and the left-hand side of (21) still tends to zero.

Armed with (20) we prove the Lyapunov condition as follows. Abbreviate
�(n) = T̄n ∨ max1≤k≤k(n) Tk = o(

√
n). We have |Yk| ≤ �(n), 1 ≤ k ≤ k(n), and

|Ȳ n| ≤ �(n). This enables us to estimate

1

b
(2+δ)/2
n

⎡
⎣k(n)∑

k=1

E
(|Yk − E(Yk)|2+δ

)
+ E

(|Ȳ n − E(Ȳ n)|2+δ
)
⎤
⎦

≤ [2�(n)]δ

b
(2+δ)/2
n

⎡
⎣k(n)∑

k=1

E
(|Yk − E(Yk)|2)+ E

(|Ȳ n − E(Ȳ n)|2)
⎤
⎦ =

(
2�(n)√

bn

)δ

,

which tends to zero because bn ∼ σ2
νn and �(n) = o(

√
n). ��

3 Cooling: Proof of Theorem 2

Proof. We need to show that

lim
n→∞P

(∣∣n−1Xn − vμ

∣∣ > ε
)

= 0 ∀ ε > 0.
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To that end, we rewrite the decomposition in (13) (recall (14)–(15)) as

Xn =
∑
k∈N

γk,n
Yk

Tk
+ γn

Ȳ n

T̄n

with (see Fig. 3)

γk,n =
Tk

n
1{1≤k≤k(n)}, γn =

T̄n

n
. (22)

Note that
∑

k∈N
γk,n + γn = 1 and limn→∞ γk,n = 0 for all k ∈ N.

• • • • •
τ(0) τ(1) τ(k − 1) τ(k) τ(k(n)) n

Tk T̄n

Fig. 3. Resampling times and increments (recall Fig. 1).

To deal with the representation of Xn in (3), we need the following variant
of a Toeplitz lemma, adapted to our problem, the proof of which is given in
AppendixA.

Lemma 1. Let (γk,n)k,n∈N and (γn)n∈N be as in (22). Let (zk)k∈N be a real-
valued sequence such that limk→∞ zk = z∗ for some z∗ ∈ R. Then

lim
n→∞

(∑
k∈N

γk,nzk + γnzT̄n

)
= z∗.

With the help of (3), we may write

n−1Xn − vμ =

[∑
k∈N

γk,nCk + γnC̄n

]
+

[∑
k∈N

γk,n (vk − vμ) + γn (v̄n − vμ)

]
,

(23)
with

Ck =
Yk − E[Yk]

Tk
, C̄n =

Ȳ n − E[Ȳ n]
T̄n

, vk =
E[ZTk

]
Tk

, v̄n =
E[ZT̄n ]

T̄n
.

Next, note that limk→∞ vk = vμ because limk→∞ Tk = ∞. Applying Lemma 1
with zk = vk − vμ and z∗ = 0, we see that the second term between square
brackets in (23) tends to zero. Therefore, it suffices to show that the first term
between square brackets in (23) tends to zero in probability.

Estimate

P

(∣∣∣∣∣
∑
k∈N

γk,nCk + γnC̄n

∣∣∣∣∣ > ε

)
≤ 1

ε

(∑
k∈N

γk,nE [|Ck|] + γnE
[|C̄n|]

)
. (24)
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Since |Ck| ≤ 2, k ∈ N, we have E[|Ck|] ≤ 2P(|Ck| > δ)+ δ, k ∈ N, for any δ > 0.
On the other hand, with the help of Proposition 1 we get

lim
k→∞

P(|Ck| > δ) = lim
k→∞

P

(∣∣∣∣ZTk
− E[ZTk

]
Tk

∣∣∣∣ > δ

)
= 0, δ > 0,

and hence
lim

k→∞
E[|Ck|] = 0. (25)

Applying Lemma 1 with zk = E[|Ck|] and z∗ = 0, and using (25), we see that
the right-hand side of (24) vanishes as n → ∞ for any ε > 0. ��

4 Slow and Fast Cooling: Proof of Theorem 3

The proof again uses the Lyapunov condition in Lemma2.

Proof. For an arbitrary cooling rule τ , set

χn(τ) =
k(n)∑
k=1

Var(Yk) + Var(Ȳ n),

and

χn(τ ; p) =
k(n)∑
k=1

E(|Yk − E(Yk)|p) + E(|Ȳ n − E(Ȳ n)|p), p > 2.

In view of Lemma 2, it suffices to show that, in regimes (R2) and (R3),

lim
n→∞

χn(τ ; p)
χn(τ)p/2

= 0, p > 2. (26)

By Proposition 2, we have E(Zn) = o(log2 n), n → ∞. By Proposition 4 below
we further have

E(|Zn − E(Zn)|2) ∼ Σ2 log4 n, E(|Zn − E(Zn)|p) = O(log2p n), p > 2, (27)

where Σ = σ2
μσV . Consequently, using (13) and (27) we get that, for an arbitrary

cooling rule τ ,

χn(τ) ∼ Σ2

k(n)∑
k=1

log4 Tk + Σ2 log4 T̄n,

χn(τ ; p) =
k(n)∑
k=1

O(log2p Tk) + O
(
log2p T̄n

)
, p > 2.

By (12), in regime (R2) we have Tk ∼ βBkβ−1, k → ∞, and T̄n ∼ (n/B)1/β , n →
∞, while in regime (R3), we have log Tk ∼ Ck, k → ∞, and T̄n ∼ (1/C) log n,
n → ∞. Thus we see that, in both regimes, (26) holds and χn(τ) scales as in (19).
Hence the claim follows from Lemma 2 below. ��
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A Toeplitz Lemma

In this appendix we prove Lemma1.

Proof. Estimate∣∣∣∣∣
∑
k∈N

γk,nzk + γnzT̄n − z∗
∣∣∣∣∣ ≤
∑
k∈N

γk,n |zk − z∗| + γn |zT̄n − z∗| . (28)

Hence it suffices to shows that, for n large enough, the right-hand side is smaller
than an arbitrary ε > 0. To this end, pick ε1 > 0 (which will be fixed at the
end), and choose N0 = N0(ε1) such that |zk − z∗| < ε1 for k > N0. Note further
that, in view of (22), we can choose N1 = N1(ε1) such that, for n > N1,

N0∑
k=1

γk,n |zk − z∗| < ε1, (29)

and

γn =
T̄n

n
> ε1 =⇒ T̄n > N0. (30)

Write the right-hand side of (28) as

N0∑
k=1

γk,n |zk − z∗| +
∑

k>N0

γk,n |zk − z∗| + γn |zT̄n − z∗| . (31)

The first two terms in (31) are bounded from above by ε1 for n > max{N0, N1}.
Indeed, for the first term this is due to (29), while for the second term it is true
because

∑
k∈N

γk,n ≤ 1 and |zk − z∗| < ε1 for k > N0. For the third term we note
that either γn = T̄n/n > ε1, in which case (30) together with γn ≤ 1 guarantees
that γn |zT̄n − z∗| < ε1, or γn ≤ ε1, in which case γn |zT̄n − z∗| < Kε1 with
K = supk∈N

|zk − z∗| < ∞. We conclude that (31) is bounded from above by
(2 + max{1,K})ε1. Now we let ε1 be such that (2 + max{1,K})ε1 < ε, to get
the claim. ��

B Central Limit Theorem

Lemma 2 (Lindeberg and Lyapunov condition, Petrov [9, Theorem 22]).
Let U = (Uk)k∈N be a sequence of independent random variables (at least one of
which has a non-degenerate distribution). Let mk = E(Uk) and σ2

k = Var(Uk).
Define

χn =
n∑

k=1

σ2
k.

Then the Lindeberg condition

lim
n→∞

1
χn

n∑
k=1

E
(
(Uk − mk)2 1|Uk−mk|≥ε

√
χn

)
= 0
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implies that

w − lim
n→∞

1√
χn

n∑
k=1

(Uk − mk) = N (0, 1).

Moreover, the Lindeberg condition is implied by the Lyapunov condition

lim
n→∞

1

χ
p/2
n

n∑
k=1

E (|Uk − mk|p) = 0 for some p > 2.

C RWRE: Lp Convergence Under Recurrence

The authors are grateful to Zhan Shi for suggesting the proof of Proposition 4
below.

We begin by observing that all the moments of the limiting random variable
V in Theorem 2 are finite.

Lemma 3. Let V be the random variable with density function (5). Let P denote
its law. Then E (V p) < ∞ for all p > 0 with E

(
V 2k
)

= 0 for k ∈ N.

Proof. For k ∈ N, it follows from (5) that E(V 2k) = 0. For arbitrary p > 0,
compute

E (|V |p) =
4
π

∑
k∈N0

(−1)k

2k + 1

∫ ∞

0

xp exp
(

− (2k + 1)2π2

8
x

)
dx. (32)

Since bq
∫∞
0

xq−1 e−bx dx = Γ (q), the integral in (32) equals

8p+1Γ (p + 1)
(2k + 1)2(p+1)π2(p+1)

.

Therefore

E (|V |p) =
4Γ (p + 1)8p+1

π2p+3

∑
k∈N0

(−1)k

(2k + 1)2p+3
,

which is finite for all p > 0. ��
Proposition 4. The convergence in Proposition 2 holds in Lp for all p > 0.

Proof. The proof comes in 3 Steps.

1. As shown by Sinai [11],

w − lim
n→∞

Zn − bn

log2 n
= 0 under the law P,

where bn is the bottom of the valley of height log n containing the origin for
the potential process (U(x))x∈Z given by

U(x) =

⎧⎨
⎩
∑x

y=1 log ρ(y), x ∈ N,

0, x = 0,

−∑−1
y=x log ρ(y), x ∈ −N,
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with ρ(y) = (1 − ω̄(y))/ω̄(y). This process depends on the environment ω
only, and

w − lim
n→∞

bn

log2 n
= V under the law αZ.

We will prove the claim by showing that, for all p > 0,

sup
n≥3

EαZ

(∣∣∣ bn

log2 n

∣∣∣p) < ∞, sup
n≥3

E

(∣∣∣ Zn

log2 n

∣∣∣p) < ∞. (33)

To simplify the proof we may assume that there is a reflecting barrier at the
origin, in which case bn and Zn take values in N0. This restriction is harmless
because without reflecting barrier we can estimate |bn| ≤ max{b+n ,−b−

n } and
|Zn| ≤ max{Z+

n ,−Z−
n } in distribution for two independent copies of bn and

Zn with reflecting barrier to the right, respectively, to the left.
2. To prove the first half of (33) with reflecting barrier, define

H(r) = inf{x ∈ N0 : |U(x)| ≥ r}, r ≥ 0.

Then
bn ≤ H(log n). (34)

We have

EαZ

(∣∣∣H(log n)
log2 n

∣∣∣p) =
∫ ∞

0

pλp−1
P
(
H(log n) > λ log2 n

)
dλ.

Since
∫ 1

0
pλp−1dλ = 1, we need only care about λ ≥ 1. To that end, note that

{
H(log n) > λ log2 n

}
=
{

max
0≤x≤λ log2 n

|U(x)| < log n
}

and

αZ

(
max

0≤x≤λ log2 n
|U(x)| < log n

)
≤ P̂

(
max

0≤t≤λN
σ|W (t)| <

√
N

)
, N = log2 n,

where σ2 is the variance of ρ(0) and (W (t))t≥0 is standard Brownian motion
on R with law P̂ . But there exists a c > 0 (depending on σ) such that

P̂
(

max
0≤t≤λN

σ|W (t)| <
√

N
)

= P̂
(

max
0≤t≤λ

σ|W (t)| < 1
)

≤ e−cλ, λ ≥ 1. (35)

Combining (34)–(35), we get the first half of (33).
3. To prove the second half of (33), write

E

(∣∣∣ Zn

log2 n

∣∣∣p) =
∫ ∞

0

pλp−1
P
(
Zn > λ log2 n

)
dλ.

Again we need only care about λ ≥ 1. As in Step 2, we have

sup
n≥3

∫ ∞

1

pλp−1 αZ
(
H(λ1/3 log n) > λ log2 n

)
dλ < ∞.
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It therefore remains to check that

sup
n≥3

∫ ∞

1

pλp−1
P(Eλ,n) dλ < ∞ (36)

with
Eλ,n =

{
Zn > λ log2 n, H(λ1/3 log n) ≤ λ log2 n

}
.

To that end, for x ∈ N0, let T (x) = inf{n ∈ N0 : Zn = x}. On the event Eλ,n we
have T (H(λ1/3 log n)) ≤ n. Therefore, by Golosov [5, Lemma 7],

P(T (x) ≤ n | ω) ≤ n exp
(

− max
0≤y<x

[U(x − 1) − U(y)]
)
, x ∈ N, n ∈ N,

which is bounded from above by n e−U(x−1). Picking x = H(λ1/3 log n), we
obtain

P(Eλ,n | ω) ≤ n e−U(H(λ1/3 log n)−1),

which is approximately n e−λ1/3 log n because U(H(x)) is approximately x. (The
undershoot at x can be neglected because it has finite first moment, by our
assumption that σ < ∞.) Taking the expectation over ω, we get

P(Eλ,n) ≤ n−(λ1/3−1).

This implies (36), and hence we have proved the second half of (33). ��
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Abstract. We review a (constructive) approach first introduced in [6]
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Keywords: Hydrodynamics · Attractive particle system · Nonexplicit
invariant measures · Nonconvex or nonconcave flux · Entropy solution ·
Glimm scheme

1 Introduction

Among the most studied conservative interacting particle systems (IPS ) are the
simple exclusion and the zero-range processes. They are attractive processes, and
possess a one-parameter family of product extremal invariant and translation
invariant probability measures, that we denote by {να}α, where α represents the
mean density of particles per site: for simple exclusion α ∈ [0, 1], and for zero-range
α ∈ [0,+∞) (see [36, Chapter VIII], and [1]). Both belong to a more general class
of systems with similar properties, called misanthropes processes [19].
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Hydrodynamic limit [21,33,45] is a law of large numbers for the time evolu-
tion (usually described by a limiting PDE, called the hydrodynamic equation)
of empirical density fields in interacting particle systems. Most usual IPS can
be divided into two groups, diffusive and hyperbolic. In the first group, which
contains for instance the symmetric or mean-zero asymmetric simple exclusion
process, the macroscopic→microscopic space-time scaling is (x, t) �→ (Nx,N2t)
with N → ∞, and the limiting PDE is a diffusive equation. In the second group,
which contains for instance the nonzero mean asymmetric simple exclusion pro-
cess, the scaling is (x, t) �→ (Nx,Nt), and the limiting PDE is of Euler type. In
both groups the PDE often exhibits nonlinearity, either via the diffusion coeffi-
cient in the first group, or via the flux function in the second one. This raises
special difficulties in the hyperbolic case, due to shocks and non-uniqueness for
the solution of the PDE, in which case the natural problem is to establish con-
vergence to the so-called entropy solution [44].

In most known results, only a weak law of large numbers is established. In
this description one need not have an explicit construction of the dynamics: the
limit is shown in probability with respect to the law of the process, which is
characterized in an abstract way by its Markov generator and Hille–Yosida’s
theorem [36]. Nevertheless, when simulating particle systems, one naturally uses
a pathwise construction of the process on a Poisson space-time random graph
(the so-called graphical construction). In this description the dynamics is deter-
ministically driven by a random space-time measure which tells when and where
the configuration has a chance of being modified. It is of special interest to show
that the hydrodynamic limit holds for almost every realization of the space-time
measure, as this means a single simulation is enough to approximate solutions
of the limiting PDE.

We are interested here in the hydrodynamic behavior of a class of asymmetric
particle systems of Z, which arise as a natural generalization of the asymmetric
exclusion process. For such processes, hydrodynamic limit is given by the entropy
solutions to a scalar conservation law of the form

∂tu(x, t) + ∂xG(u(x, t)) = 0 (1)

where u(., .) is the density field and G is the macroscopic flux. The latter is given
for the asymmetric exclusion process by G(u) = γu(1 − u), where γ is the mean
drift of a particle. Because there is a single conserved quantity (i.e. mass) for the
particle system, and an ergodic equilibrium measure for each density value, (1)
can be guessed through heuristic arguments if one takes for granted that the sys-
tem is in local equilibrium. The macroscopic flux G is obtained by an equilibrium
expectation of a microscopic flux which can be written down explicitly from the
dynamics. A rigorous proof of the hydrodynamic limit turns out to be a difficult
problem, mainly because of the non-existence of strong solutions for (1) and the
non-uniqueness of weak solutions. Since the conservation law is not sufficient to
pick a single solution, the so-called entropy weak solution must be characterized
by additional properties; one must then look for related properties of the particle
system to establish its convergence to the entropy solution.

The derivation of hyperbolic equations of the form (1) as hydrodynamic lim-
its began with the seminal paper [41], which established a strong law of large
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numbers for the totally asymmetric simple exclusion process on Z, starting with
1’s to the left of the origin and 0’s to the right. This result was extended by
[15] and [2] to nonzero mean exclusion process starting from product Bernoulli
distributions with arbitrary densities λ to the left and ρ to the right (the so-
called Riemann initial condition). The Bernoulli distribution at time 0 is related
to the fact that uniform Bernoulli measures are invariant for the process. For
the one-dimensional totally asymmetric (nearest-neighbor) K-exclusion process,
a particular misanthropes process without explicit invariant measures, a strong
hydrodynamic limit was established in [43], starting from arbitrary initial pro-
files, by means of the so-called variational coupling, that is a microscopic version
of the Lax–Hopf formula. These were the only strong laws available before the
series of works reviewed here. A common feature of these works is the use of
subadditive ergodic theorem to exhibit some a.s. limit, which is then identified
by additional arguments.

On the other hand, many weak laws of large numbers were established for
attractive particle systems. A first series of results treated systems with prod-
uct invariant measures and product initial distributions. In [3], for a particular
zero-range model, a weak law was deduced from conservation of local equilibrium
under Riemann initial condition. It was then extended in [4] to the misanthropes
process of [19] under an additional convexity assumption on the flux function.
These were substantially generalized (using Kružkov’s entropy inequalities, see
[34]) in [39] to multidimensional attractive systems with product invariant mea-
sures for arbitrary Cauchy data, without any convexity requirement on the flux.
In [40], using an abstract characterization of the evolution semigroup associ-
ated with the limiting equation, hydrodynamic limit was established for the
one-dimensional nearest-neighbor K-exclusion process.

The above results are concerned with translation-invariant particle dynamics.
We are also interested in hydrodynamic limits of particle systems in random envi-
ronment, leading to homogenization effects, where an effective diffusion matrix or
flux function is expected to capture the effect of inhomogeneity. Hydrodynamic
limit in random environment has been widely addressed and robust methods
have been developed in the diffusive case. In the hyperbolic setting, the few
available results in random environment (prior to [9]) depended on particular
features of the investigated models. In [16], the authors prove, for the asymmet-
ric zero-range process with site disorder on Z

d, a quenched hydrodynamic limit
given by a hyperbolic conservation law with an effective homogenized flux func-
tion. To this end, they use in particular the existence of explicit product invariant
measures for the disordered zero-range process below some critical value of the
density value. In [42], extension to the supercritical case is carried out in the
totally asymmetric case with constant jump rate. In [43], the author establishes
a quenched hydrodynamic limit for the totally asymmetric nearest-neighbor K-
exclusion process on Z with i.i.d site disorder, for which explicit invariant mea-
sures are not known. The last two results rely on variational coupling. However,
the simple exclusion process beyond the totally asymmetric nearest-neighbor
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case, or more complex models with state-dependent jump rates, remain outside
the scope of this approach.

In this paper, we review successive stages [6–9,38] of a constructive approach
to hydrodynamic limits given by equations of the type (1), which ultimately
led us in [9] to a very general hydrodynamic limit result for attractive particle
systems in one dimension in ergodic random environment. We shall detail our
method in the setting of [9]. However, we will first explain our approach and
advances along the progression of papers, and quote results for each one, since
they are interesting in their own. We hope this could be helpful for a reader
looking for hydrodynamics of a specific model: according to the available knowl-
edge on this model, this reader could derive either a weak, or a strong (without
disorder or with a quenched disorder) hydrodynamic limit.

Our motivation for [6] was to prove with a constructive method hydrodynam-
ics of one-dimensional attractive dynamics with product invariant measures, but
without a concave/convex flux, in view of examples of k-step exclusion pro-
cesses and misanthropes processes. We initiated for that a “resurrection” of the
approach of [4], and we introduced a variational formula for the entropy solu-
tion of the hydrodynamic equation in the Riemann case, and an approximation
scheme to go from a Riemann to a general initial profile. Our method is based
on an interplay of macroscopic properties for the conservation law and analo-
gous microscopic properties for the particle system. The next stage, achieved in
[7], was to derive hydrodynamics (which was still a weak law) for attractive pro-
cesses without explicit invariant measures. In the same setting, we then obtained
almost sure hydrodynamics in [8], relying on a graphical representation of the
dynamics. The latter result, apart from its own interest, proved to be an essen-
tial step to obtain quenched hydrodynamics in the disordered case [9]. For this
last paper, we also relied on [38], which improves an essential property we use,
macroscopic stability.

Let us mention that we also worked [12,13] on the hydrodynamic behavior
of the disordered asymmetric zero-range process. This model falls outside the
scope of the present paper because it exhibits a phase transition with a critical
density above which no invariant measure exists. In the supercritical regime,
the hydrodynamic limit cannot be established by local equilibrium arguments,
and condensation may occur locally on a finer scale than the hydrodynamic one.
Other issues related to this model have been studied recently in [10,11].

This review paper is organized as follows. In Sect. 2, after giving general nota-
tion and definitions, we introduce the two basic models we originally worked
with, the misanthropes process and the k-step exclusion process. Then we
describe informally the results, and the main ideas involved in [4] which was our
starting point, and in each of the papers [6–9,38]. Section 3 contains our main
results, stated (for convenience) for the misanthropes process. We then aim at
explaining how these results are proved. In Sect. 4, we first give a self-contained
introduction to scalar conservation laws, with the main definitions and results
important for our purposes; then we explain the derivation of our variational for-
mula in the Riemann case (illustrated by an example of 2-step exclusion process),
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and finally our approximation scheme to solve the general Cauchy problem. In
Sect. 5, we outline the most important steps of our proof of hydrodynamic limit
in a quenched disordered setting: again, we first deal with the Riemann problem,
then with the Cauchy problem. Finally, in Sect. 6, we define a general framework
which enables to describe a class of models possessing the necessary properties
to derive hydrodynamics, and study a few examples.

2 Notation and Preliminaries

Throughout this paper N = {1, 2, ...} will denote the set of natural numbers,
Z

+ = {0, 1, 2, ...} the set of non-negative integers, and R
+∗ = R

+ \ {0} the set
of positive real numbers. The integer part �x� ∈ Z of x ∈ R is uniquely defined
by �x� ≤ x < �x� + 1.

The set of environments (or disorder) is a probability space (A,FA, Q), where
A is a compact metric space and FA its Borel σ-field. On A we have a group of
space shifts (τx : x ∈ Z), with respect to which Q is ergodic.

We consider particle configurations (denoted by greek letters η, ξ . . .) on Z

with at most K (but always finitely many) particles per site, for some given
K ∈ N ∪ {+∞}. Thus the state space, which will be denoted by X, is either
N

Z in the case K = +∞, or {0, · · · ,K}Z for K ∈ N. For x ∈ Z and η ∈ X,
η(x) denotes the number of particles on site x. This state space is endowed
with the product topology, which makes it a metrisable space, compact when
X = {0, · · · ,K}Z.

A function f defined on A × X (resp. g on A × X2, h on X) is called
local if there is a finite subset Λ of Z such that f(α, η) depends only on α
and (η(x), x ∈ Λ) (resp. g(α, η, ξ) depends only on α and (η(x), ξ(x), x ∈ Λ),
h(η) depends only on (η(x), x ∈ Λ)). We denote again by τx either the spatial
translation operator on the real line for x ∈ R, defined by τxy = x + y, or its
restriction to x ∈ Z. By extension, if f is a function defined on Z (resp. R), we
set τxf = f ◦τx for x ∈ Z (resp. R). In the sequel this will be applied to different
types of functions: particle configurations η ∈ X, disorder configurations α ∈ A,
or joint disorder-particle configurations (α, η) ∈ A×X. In the latter case, unless
mentioned explicitly, τx applies simultaneously to both components.

If τx acts on some set and μ is a measure on this set, τxμ = μ ◦ τ−1
x . We

let M+(R) denote the set of nonnegative measures on R equipped with the
metrizable topology of vague convergence, defined by convergence on continuous
test functions with compact support. The set of probability measures on X is
denoted by P(X). If η is an X-valued random variable and ν ∈ P(X), we write
η ∼ ν to specify that η has distribution ν. Similarly, for α ∈ A, Q ∈ P(A),
α ∼ Q means that α has distribution Q.

2.1 Preliminary Definitions

Let us introduce briefly the various notions we shall use in this review, in view
of the next section, where we informally tell the content of each of our papers.
We shall be more precise in the following sections. Reference books are [33,36].
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The Process. We work with a conservative (i.e. involving only particle jumps
but no creation/annihilation), attractive (see (2) for its definition below) Feller
process (ηt)t≥0 with state space X. When this process evolves in a random
environment α ∈ A, we denote its generator by Lα and its semigroup by
(Sα(t), t ≥ 0). Otherwise we denote them by L and S(t). In the absence of
disorder, we denote by S the set of translation invariant probability measures
on X, by I the set of invariant probability measures for the process (ηt)t≥0, and
by (I ∩ S)e the set of extremal invariant and translation invariant probability
measures for (ηt)t≥0. In the disordered case, S will denote the set of translation
invariant probability measures on A × X, see Proposition 2.

A sequence (νn, n ∈ N) of probability measures on X converges weakly to
some ν ∈ P(X), if and only if limn→∞

∫
f dνn =

∫
f dν for every continuous

function f on X. The topology of weak convergence is metrizable and makes
P(X) compact when X = {0, · · · ,K}Z.

We equip X with the coordinatewise order, defined for η, ξ ∈ X by η ≤ ξ if
and only if η(x) ≤ ξ(x) for all x ∈ Z. A partial stochastic order is defined on
P(X); namely, for μ1, μ2 ∈ P(X), we write μ1 ≤ μ2 if the following equivalent
conditions hold (see e.g. [32,36,46]):

(i) For every non-decreasing nonnegative function f on X,
∫

f dμ1 ≤
∫

f dμ2.
(ii) There exists a coupling measure μ on X×X with marginals μ1 and μ2, such

that μ{(η, ξ) : η ≤ ξ} = 1.

The process (ηt)t≥0 is attractive if its semigroup acts monotonically on prob-
ability measures, that is: for any μ1, μ2 ∈ P(X),

μ1 ≤ μ2 ⇒ ∀t ∈ R
+, μ1Sα(t) ≤ μ2Sα(t) (2)

Hydrodynamic Limits. Let N ∈ N be the scaling parameter for the hydro-
dynamic limit, that is, the inverse of the macroscopic distance between two
consecutive sites. The empirical measure of a configuration η viewed on scale N
is given by

πN (η)(dx) = N−1
∑

y∈Z

η(y)δy/N (dx) ∈ M+(R)

where, for x ∈ R, δx denotes the Dirac measure at x, and M+(R) denotes the
space of Radon measures on R. This space will be endowed with the metrizable
topology of vague convergence, defined by convergence against the set C0

K(R) of
continuous test functions on R with compact support. Let dv be a distance asso-
ciated with this topology, and π., π′

. be two mappings from [0,+∞) to M+(R).
We set

DT (π., π
′
.) := ess sup

t∈[0,T ]

dv(πt, π
′
t)

D(π., π
′
.) :=

+∞∑

n=0

2−n min[1,Dn(π., π
′
.)]
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A sequence (πn
. )n∈N of random M+(R)-valued paths is said to converge locally

uniformly in probability to a random M+(R)-valued path π. if, for every ε > 0,

lim
n→+∞ μn (D(πn

. , π.) > ε) = 0

where μn denotes the law of πn
. .

Let us now recall, in the context of scalar conservation laws, standard defi-
nitions in hydrodynamic limit theory. Recall that K ∈ Z

+ ∪ {+∞} bounds the
number of particles per site. Macroscopically, the set of possible particle densi-
ties will be [0,K]∩R. Let G : [0,K]∩R → R be a Lipschitz-continuous function,
called the flux. It is a.e. differentiable, and its derivative G′ is an (essentially)
uniformly bounded function. We consider the scalar conservation law

∂tu + ∂x[G(u)] = 0 (3)

where u = u(x, t) is some [0,K] ∩R-valued density field defined on R×R
+. We

denote by L∞,K(R) the set of bounded Borel functions from R to [0,K] ∩ R.

Definition 1. Let (ηN )N≥0 be a sequence of X-valued random variables, and
u0 ∈ L∞,K(R). We say that the sequence (ηN )N≥0 has:

(i) weak density profile u0(.), if πN (ηN ) → u0(.) in probability with respect to
the topology of vague convergence, that is equivalent to: for all ε > 0 and
test function ψ ∈ C0

K(R),

lim
N→∞

μN

(∣
∣
∣
∣

∫

R

ψ(x)πN (ηN )(dx) −
∫

R

ψ(x)u0(x)dx

∣
∣
∣
∣ > ε

)

= 0

where μN denotes the law of ηN .
(ii) strong density profile u0(.), if the random variables are defined on a common

probability space (Ω0,F0,P0), and πN (ηN ) → u0(.) P0-almost surely with
respect to the topology of vague convergence, that is equivalent to: for all test
function ψ ∈ C0

K(R),

P0

(

lim
N→∞

∫

R

ψ(x)πN (ηN )(dx) =
∫

R

ψ(x)u0(x)dx

)

= 1,

We consider hydrodynamic limits under hyperbolic time scaling, that is Nt, since
we work with asymmetric dynamics.

Definition 2. The sequence (ηN
t , t ≥ 0)N≥0 has hydrodynamic limit (resp. a.s.

hydrodynamic limit) u(., .) if: for all t ≥ 0, (ηN
Nt)N has weak (resp. strong)

density profile u(., t) where u(., t) is the weak entropy solution of (3) with initial
condition u0(.), for an appropriately defined macroscopic flux function G, where
u0 is the density profile of the sequence (ηN

0 )N in the sense of Definition 1.
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2.2 Our Motivations and Approach

Most results on hydrodynamics deal with dynamics with product invariant mea-
sures; in the most familiar cases, the flux function appearing in the hydrodynamic
equation is convex/concave [33]. But for many usual examples, the first or the
second statement is not true.

Reference Examples. We present the attractive misanthropes process on one
hand, and the k-step exclusion process on the other hand: these two classical
examples will illustrate our purposes along this review. In these basic examples,
we take α ∈ A = [c, 1/c]Z (for a constant 0 < c < 1) as the space of environments;
this corresponds to site disorder. We also consider those models without disorder,
which corresponds to α(x) ≡ 1. However, our approach applies to a much broader
class of models and environments, as will be explained in Sect. 6.

The misanthropes process was introduced in [19] (without disorder). It has
state space either X = N

Z or X = {0, · · · ,K}Z (K ∈ N), and b : Z+ ×Z
+ → R

+

is the jump rate function. A particle present on x ∈ Z chooses y ∈ Z with
probability p(y − x), where p(.) (the particles’ jump kernel) is an asymmetric
probability measure on Z, and jumps to y at rate α(x)b(η(x), η(y)). We assume
the following:

(M1) b(0, .) = 0, with a K-exclusion rule when X = {0, · · · ,K}Z: b(.,K) = 0;
(M2) Attractiveness: b is nondecreasing (nonincreasing) in its first (second)
argument.
(M3) b is a bounded function.
(M4) p has a finite first moment, that is,

∑
z∈Z

|z| p(z) < +∞.

The quenched disordered process has generator

Lαf(η) =
∑

x,y∈Z

α(x)p(y − x)b(η(x), η(y)) [f (ηx,y) − f(η)] (4)

where ηx,y denotes the new state after a particle has jumped from x to y (that
is ηx,y(x) = η(x) − 1, ηx,y(y) = η(y) + 1, ηx,y(z) = η(z) otherwise).
There are two well-known particular cases of attractive misanthropes processes:
the simple exclusion process [36] corresponds to

X = {0, 1}Z with b(η(x), η(y)) = η(x)(1 − η(y));

the zero-range process [1] corresponds to

X = N
Z with b(η(x), η(y)) = g(η(x)),

for a non-decreasing function g : Z+ → R
+ (in [1] it is not necessarily bounded).

Let us now restrict ourselves to the model without disorder. For the simple
exclusion and zero-range processes, (I∩S)e is a one-parameter family of product
probability measures. The flux function is convex/concave for simple exclusion,
but not necessarily for zero-range. However, in the general set-up of misanthropes
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processes, unless the rate function b satisfies additional algebraic conditions (see
[19,23]), the model does not have product invariant measures; even when this
is the case, the flux function is not necessarily convex/concave. We refer the
reader to [6,23] for examples of misanthropes processes with product invariant
measures. Note also that a misanthropes process with product invariant mea-
sures generally loses this property if disorder is introduced, with the sole known
exception of the zero-range process [16,22].

The k-step exclusion process (k ∈ N) was introduced in [29] (without disor-
der). Its state space is X := {0, 1}Z. Let p(.) be a probability distribution on
Z, and {Xn}n∈N denote a random walk on Z with jump distribution p(.). We
denote by Px the law of the random walk starting from x; expectation with
respect to this law is denoted by Ex. The k-step exclusion process with jump
distribution p(.) has generator

Lαf(η) =
∑

x,y∈Z

α(x)c(x, y, η) [f (ηx,y) − f(η)] with (5)

c(x, y, η) = η(x)(1 − η(y))Ex

[
σy−1∏

i=1

η(Xi), σy ≤ σx, σy ≤ k

]

where σy = inf {n ≥ 1 : Xn = y} is the first (non zero) arrival time to site y of
the walk starting at site x. In words if a particle at site x wants to jump it may
go to the first empty site encountered before returning to site x following the
walk {Xn}n∈N (starting at x) provided it takes less than k attempts; otherwise
the movement is cancelled. When k = 1, we recover the simple exclusion process.
The k-step exclusion is an attractive process.

Let us now restrict ourselves to the model without disorder. Then (I ∩S)e is
a one-parameter family of product Bernoulli measures. In the totally asymmetric
nearest-neighbor case, c(x, y, η) = 1 if η(x) = 1, y − x ∈ {1, . . . , k} and y is the
first nonoccupied site to the right of x; otherwise c(x, y, η) = 0. The flux function
belongs to C2(R), it has one inflexion point, thus it is neither convex nor concave.
Besides, flux functions with arbitrarily many inflexion points can be constructed
by superposition of different k-step exclusion processes with different kernels and
different values of k [6].

A Constructive Approach to Hydrodynamics. To overcome the difficulties
to derive hydrodynamics raised by the above examples, our starting point was
the constructive approach introduced in [4]. There, the authors proved the con-
servation of local equilibrium for the one-dimensional zero-range process with
a concave macroscopic flux function G in the Riemann case (in a translation
invariant setting, G is the mean flux of particles through the origin), that is

∀t > 0, ηN
Nt

L→ νu(t,x) (6)

where νρ is the product invariant measure of the zero-range process with mean
density ρ, and u(., .) is the entropy solution of the conservation law

∂tu + ∂x[G(u)] = 0; u(x, 0) = Rλ,ρ(x) = λ1{x<0} + ρ1{x≥0}
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One can show (see [33]) that (6) implies the hydrodynamic limit in the sense of
Definition 2. Let us begin by explaining (informally) their method. They first
show in [4, Lemma 3.1] that a weak Cesaro limit of (the measure of) the process
is an invariant and translation invariant measure, thus a convex combination of
elements of (I ∩ S)e, the one-parameter family of extremal invariant and trans-
lation invariant probability measures for the dynamics. Then they compute in
[4, Lemma 3.2] the (Cesaro) limiting density inside a macroscopic box, thanks to
the explicit knowledge of the product measures elements of (I ∩S)e. They prove
next in [4, Lemma 3.3 and Theorem 2.10] that the above convex combination
is in fact the Dirac measure concentrated on the solution of the hydrodynamic
equation, thanks to the concavity of their flux function. They conclude by prov-
ing that the Cesaro limit implies the weak limit via monotonicity arguments,
in [4, Propositions 3.4 and 3.5]. Their proof is valid for misanthropes processes
with product invariant measures and a concave macroscopic flux.

In [6], we derive by a constructive method the hydrodynamic behavior of
attractive processes with finite range irreducible jumps, and for which the set
(I ∩ S)e consists in a one-parameter family of explicit product measures but
the flux is not necessarily convex or concave. Our approach relies on (i) an
explicit construction of Riemann solutions without assuming convexity of the
macroscopic flux, and (ii) a general result which proves that the hydrodynamic
limit for Riemann initial profiles implies the same for general initial profiles.

For point (i), we rely on the (parts of) the proofs in [4] based only on attrac-
tiveness and on the knowledge of the product measures composing (I ∩S)e, and
we provide a new approach otherwise. Instead of the convexity assumption on
the flux, which belongs here to C2(R), we prove that the solution of the hydrody-
namic equation is given by a variational formula, whose index set is an interval,
namely the set of values of the parameter of the elements of (I ∩ S)e. Knowing
(I ∩S)e explicitly enables us to deal with dynamics with the non compact state
space N

Z.
Point (ii) is based on an approximation scheme inspired by Glimm’s scheme

for hyperbolic systems of conservation laws (see [44]). Among our tools are the
finite propagation property and the macroscopic stability of the dynamics. The
latter property is due to [17]; both require finite range transitions.

We illustrate our results on variations of our above reference examples.
While the results and examples of [6] include the case K = +∞, in our

subsequent works, for reasons explained below, we considered K < +∞, thus
X = {0, · · · ,K}Z, which will be assumed from now on. Under this additional
assumption, in [7], we extend the hydrodynamics result of [6] to dynamics with-
out explicit invariant measures. Indeed, thanks to monotonicity, we prove that
(I ∩ S)e is still a one-parameter family of probability measures, for which the
set R of values of the parameter is a priori not an interval anymore, but a closed
subset of [0,K]:
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Proposition 1 ([7, Proposition 3.1]). Assume p satisfies the irreducibility
assumption and α := 1

∀z ∈ Z,

+∞∑

n=1

[p∗n(z) + p∗n(−z)] > 0 (7)

where p∗n denotes the n-th convolution power of the kernel p, that is the law
of the sum of n independent p-distributed random variables. Then there exists a
closed subset R of [0,K], containing 0 and K, such that

(I ∩ S)e = {νρ : ρ ∈ R}
where the probability measures νρ on X satisfy the following properties:

lim
l→+∞

(2l + 1)−1
l∑

x=−l

η(x) = ρ, νρ- a.s.

and
ρ ≤ ρ′ ⇒ νρ ≤ νρ′

Following the same general scheme as in [6], but with additional difficulties, we
then obtain the following main result.

Theorem 1 ([7, Theorem 2.2]). Assume p(.) satisfies the irreducibility
assumption (7) α := 1. Then there exists a Lipschitz-continuous function
G : [0,K] → R

+ such that the following holds. Let u0 ∈ L∞,K(R), and (ηN
. )N be

any sequence of processes with generator (4), such that the sequence (ηN
0 )N has

density profile u0(.). Then, the sequence (ηN
N.)N has hydrodynamic limit given by

u(., .), the entropy solution to (3) with initial condition u0(.).

The drawback is that we have (and it will also be the case in the following papers)
to restrict ourselves to dynamics with compact state space to prove hydrody-
namics with general initial data. This is necessary to define the macroscopic flux
outside R, by a linear interpolation; this makes this flux Lipschitz continuous, a
minimal requirement to define entropy solutions. We have to consider a R-valued
Riemann problem, for which we prove conservation of local equilibrium. Then we
use an averaging argument to prove hydrodynamics (in the absence of product
invariant measures, the passage from local equilibrium to hydrodynamics is no
longer a consequence of [33]). For general initial profiles, we have to refine the
approximation procedure of [6]: we go first to R-valued entropy solutions, then
to arbitrary entropy solutions.

In [8], by a refinement of our method, we obtain a strong (that is, an almost
sure) hydrodynamic limit, when starting from an arbitrary initial profile. By
almost sure, we mean that we construct the process with generator (4) on an
explicit probability space defined as the product (Ω0 ×Ω,F0 ⊗F ,P0 ⊗P), where
(Ω0,F0,P0) is a probability space used to construct random initial states, and
(Ω,F ,P) is a Poisson space used to construct the evolution from a given state.
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Theorem 2 ([8, Theorem 2.1]). Assume p(.) has finite first moment and
satisfies the irreducibility assumption (7). Then the following holds, where G is
the same function as in Theorem 1. Let (ηN

0 , N ∈ N) be any sequence of X-valued
random variables on a probability space (Ω0,F0,P0) such that

lim
N→∞

πN (ηN
0 )(dx) = u0(.)dx P0-a.s.

for some measurable [0,K]-valued profile u0(.). Then the P0 ⊗P-a.s. convergence

lim
N→∞

πN (ηN
Nt)(dx) = u(., t)dx

holds uniformly on all bounded time intervals, where (x, t) �→ u(x, t) denotes the
unique entropy solution to (3) with initial condition u0(.).

Our constructive approach requires new ideas since the sub-additive ergodic the-
orem (central to the few previous existing proofs for strong hydrodynamics) is
no longer effective in our setting. We work with the graphical representation of
the dynamics, on which we couple an arbitrary number of processes, thanks to
the complete monotonicity property of the dynamics. To solve the R-valued Rie-
mann problem, we combine proofs of almost sure analogues of the results of [4],
rephrased for currents which become our centerpiece, with a space-time ergodic
theorem for particle systems and large deviation results for the empirical mea-
sure. In the approximation steps, new error analysis is necessary: in particular,
we have to do an explicit time discretization (vs. the “instantaneous limit” of
[6,7]), we need estimates uniform in time, and each approximation step requires
a control with exponential bounds.

In [38] we derive the macroscopic stability property when the particles’ jump
kernel p(.) has a finite first moment and a positive mean. We also extend under
those hypotheses the ergodic theorem for densities due to [40] that we use in
[8]. Finally, we prove the finite propagation property when p(.) has a finite third
moment. This enables us to get rid of the finite range assumption on p required
so far, and to extend the strong hydrodynamic result of [8] when the particles’
jump kernel has a finite third moment and a positive mean.

In [9], we derive, thanks to the tools introduced in [8], a quenched strong
hydrodynamic limit for bounded attractive particle systems on Z evolving in a
random ergodic environment. (This result, which contains Theorems 1 and 2
above, is stated later on in this paper as Theorem 3). Our method is robust with
respect to the model and disorder (we are not restricted to site or bond disor-
der). We introduce a general framework to describe the rates of the dynamics,
which applies to a large class of models. To overcome the difficulty of the simul-
taneous loss of translation invariance and lack of knowledge of explicit invariant
measures for the disordered system, we study a joint disorder-particle process,
which is translation invariant. We characterize its extremal invariant and trans-
lation invariant measures, and prove its strong hydrodynamic limit. This implies
the quenched hydrodynamic result we look for.
We illustrate our results on various examples.
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3 Main Results

The construction of interacting particle systems is done either analytically,
through generators and semi-groups (we refer to [36] for systems with compact
state space, and to [1,23,37] otherwise), or through a graphical representation.
Whereas the former is sufficient to derive hydrodynamic limits in a weak sense,
which is done in [6,7], the latter is necessary to derive strong hydrodynamic
limits, which is done in [8,9]. First, we explain in Subsect. 3.1 the graphical con-
struction, then in Subsect. 3.2 we detail our results from [9] on invariant measures
for the dynamics and hydrodynamic limits.

For simplicity, we restrict ourselves in this section to the misanthropes process
with site disorder, which corresponds to the generator (4). However, considering
only the necessary properties of the misanthropes process required to prove our
hydrodynamic results, it is possible to deal with more general models including
the k-step exclusion process, by embedding them in a global framework, in which
the dynamics is viewed as a random transformation of the configuration; the
latter simultaneously defines the graphical construction and generator. More
general forms of random environments than site disorder can also be considered.
In Subsect. 3.3 we list the above required properties of misanthropes processes,
and we defer the study of the k-step exclusion process and more general models
to Sect. 6.

3.1 Graphical Construction

This subsection is based on [8, Section 2.1]. We now describe the graphical con-
struction (that is the pathwise construction on a Poisson space) of the system
given by (4), which uses a Harris-like representation ([30,31]; see for instance
[2,11,25,47] for details and justifications). This enables us to define the evolu-
tion from arbitrarily many different initial configurations simultaneously on the
same probability space, in a way that depends monotonically on these initial
configurations.

We consider the probability space (Ω,F ,P) of measures ω on R
+ ×Z

2 × [0, 1]
of the form

ω(dt, dx, dz, du) =
∑

m∈N

δ(tm,xm,zm,um)

where δ(·) denotes Dirac measure, and (tm, xm, zm, um)m≥0 are pairwise distinct
and form a locally finite set. The σ-field F is generated by the mappings ω �→
ω(S) for Borel sets S. The probability measure P on Ω is the one that makes ω
a Poisson process with intensity

m(dt, dx, dz, du) = ||b||∞λR+(dt) × λZ(dx) × p(dz) × λ[0,1](du)

where λ denotes either the Lebesgue or the counting measure. We denote by E

the corresponding expectation. Thanks to assumption (M4 ), we can proceed as
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in [2,25] (for a construction with a weaker assumption we refer to [11,47]): for
P-a.e. ω, there exists a unique mapping

(α, η0, t) ∈ A × X × R
+ �→ ηt = ηt(α, η0, ω) ∈ X (8)

satisfying: (a) t �→ ηt(α, η0, ω) is right-continuous; (b) η0(α, η0, ω) = η0; (c) for
t ∈ R

+, (x, z) ∈ Z
2, ηt = ηx,x+z

t− if

∃u ∈ [0, 1] : ω{(t, x, z, u)} = 1 and u ≤ α(x)
b(ηt−(x), ηt−(x + z))

||b||∞
(9)

and (d) for all s, t ∈ R
+∗ and x ∈ Z,

ω{[s, t] × Zx × (0, 1)} = 0 ⇒ ∀v ∈ [s, t], ηv(x) = ηs(x) (10)

where
Zx :=

{
(y, z) ∈ Z

2 : y = x or y + z = x
}

In short, (9) tells how the state of the system can be modified by an “ω-event”,
and (10) says that the system cannot be modified outside ω-events.

Thanks to assumption (M2 ), we have that

(α, η0, t) �→ ηt(α, η0, ω) is nondecreasing w.r.t. η0 (11)

Property (11) implies (2), that is, attractiveness. But it is more powerful: it
implies the complete monotonicity property [20,24], that is, existence of a mono-
tone Markov coupling for an arbitrary number of processes with generator (4),
which is necessary in our proof of strong hydrodynamics for general initial pro-
files. The coupled process can be defined by a Markov generator, as in [19] for
two components, that is

Lαf(η, ξ)

=
∑

x,y∈Z: x	=y

{
α(x)p(y − x)[b(η(x), η(y)) ∧ b(ξ(x), ξ(y))] [f(ηx,y, ξx,y) − f(η, ξ)]

+ α(x)p(y − x)[b(η(x), η(y)) − b(ξ(x), ξ(y))]+ [f(ηx,y, ξ) − f(η, ξ)]

+ α(x)p(y − x)[b(ξ(x), ξ(y)) − b(η(x), η(y))]+ [f(η, ξx,y) − f(η, ξ)]
}

(12)

One may further introduce an “initial” probability space (Ω0,F0,P0), large
enough to construct random initial configurations η0 = η0(ω0) for ω0 ∈ Ω0.
The general process with random initial configurations is constructed on the
enlarged space (Ω̃ = Ω0 × Ω, F̃ = σ(F0 × F), P̃ = P0 ⊗ P) by setting

ηt(α, ω̃) = ηt(α, η0(ω0), ω)

for ω̃ = (ω0, ω) ∈ Ω̃. One can show (see for instance [11,25,47]) that this defines
a Feller process with generator (4): that is for any t ∈ R

+ and f ∈ C(X)
(the set of continuous functions on X), Sα(t)f ∈ C(X) where Sα(t)f(η0) =
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E[f(ηt(α, η0, ω))]. If η0 has distribution μ0, then the process thus constructed is
Feller with generator (4) and initial distribution μ0.

We define on Ω the space-time shift θx0,t0 : for any ω ∈ Ω, for any (t, x, z, u)

(t, x, z, u) ∈ θx0,t0ω if and only if (t0 + t, x0 + x, z, u) ∈ ω (13)

where (t, x, z, u) ∈ ω means ω{(t, x, z, u)} = 1. By its very definition, the map-
ping introduced in (8) enjoys the following properties, for all s, t ≥ 0, x ∈ Z and
(η, ω) ∈ X × Ω:

ηs(α, ηt(α, η, ω), θ0,tω) = ηt+s(α, η, ω) (14)

which implies Markov property, and

τxηt(α, η, ω) = ηt(τxα, τxη, θx,0ω)

which yields the commutation property

Lατx = τxLτxα (15)

3.2 Hydrodynamic Limit and Invariant Measures

This section is based on [9, Sections 2, 3]. A central issue in interacting particle
systems, and more generally in the theory of Markov processes, is the character-
ization of invariant measures [36]. Besides, this characterization plays a crucial
role in the derivation of hydrodynamic limits [33]. We detail here our results on
these two questions.

Hydrodynamic Limit. We first state the strong hydrodynamic behavior of the
process with quenched site disorder.

Theorem 3 ([9, Theorem 2.1]). Assume K < +∞, p(.) has finite third
moment, and satisfies the irreducibility assumption (7). Let Q be an ergodic
probability distribution on A. Then there exists a Lipschitz-continuous function
GQ on [0,K] defined in (23) and (24)–(25) below (depending only on p(.), b(., .)
and Q) such that the following holds. Let (ηN

0 , N ∈ N) be a sequence of X-valued
random variables on a probability space (Ω0,F0,P0) such that

lim
N→∞

πN (ηN
0 )(dx) = u0(.)dx P0-a.s.

for some measurable [0,K]-valued profile u0(.). Then for Q-a.e. α ∈ A, the
P0 ⊗ P-a.s. convergence

lim
N→∞

πN (ηNt(α, ηN
0 (ω0), ω))(dx) = u(., t)dx

holds uniformly on all bounded time intervals, where (x, t) �→ u(x, t) denotes the
unique entropy solution with initial condition u0 to the conservation law

∂tu + ∂x[GQ(u)] = 0 (16)
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The P-almost sure convergence in Theorem 3 refers to the graphical construction
of Subsect. 3.1, and is stronger than the usual notion of hydrodynamic limit,
which is a convergence in probability (cf. Definition 2). The strong hydrodynamic
limit implies the weak one [8]. This leads to the following weaker but more
usual statement, which also has the advantage of not depending on a particular
construction of the process.

Theorem 4. Under assumptions and notations of Theorem 3, there exists a
subset A′ of A, with Q-probability 1, such that the following holds for every
α ∈ A′. For any u0 ∈ L∞(R), and any sequence ηN

. = (ηN
t )t≥0 of processes with

generator (4) satisfying the convergence in probability

lim
N→∞

πN (ηN
0 )(dx) = u0(.)dx,

one has the locally uniform convergence in probability

lim
N→∞

πN
(
ηN

Nt

)
(dx) = u(., t)dx

Remark 1. Theorem 1 (resp. Theorem 2) is a special case of Theorem 4 (resp.
Theorem 3). Indeed, it suffices to consider the “disorder” distribution Q that
is the Dirac measure supported on the single homogeneous environment αhom

defined by αhom(x) = 1 for all x ∈ Z (see also Remark 2).

Note that the statement of Theorem 4 is stronger than hydrodynamic limit in
the sense of Definition 2, because it states convergence of the empirical measure
process rather then convergence at every fixed time. To define the macroscopic
flux GQ, we first define the microscopic flux as follows. The generator (4) can
be decomposed as a sum of translates of a “seed” generator centered around the
origin:

Lα =
∑

x∈Z

Lx
α (17)

Note that such a decomposition is not unique. A natural choice of component
Lx

α at x ∈ Z is given in the case of (4) by

Lx
αf(η) = α(x)

∑

z∈Z

p(z)
[
f
(
ηx,x+z

)
− f(η)

]

We then define j to be either of the functions j1, j2 defined below:

j1(α, η) := Lα

[
∑

x>0

η(x)

]

, j2(α, η) := L0
α

[
∑

x∈Z

xη(x)

]

(18)

The definition of j1 is partly formal, because the function
∑

x>0 η(x) does not
belong to the domain of the generator Lα. Nevertheless, the formal computation
gives rise to a well-defined function j1, because the rate b is a local function.
Rigorously, one defines j1 by difference, as the unique function such that

j1 − τxj1(α, η) = Lα

[
x∑

y=1

η(y)

]

(19)
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for every x ∈ N. The action of the generator in (19) is now well defined, because
we have a local function that belongs to its domain.

In the case of (4), we obtain the following microscopic flux functions:

j1(α, η) =
∑

(x,z)∈Z2,x≤0<x+z

α(x)b(η(x), η(x + z))

−
∑

(x,z)∈Z2,x+z≤0<x

α(x)b(η(x), η(x + z))

j2(α, η) = α(0)
∑

z∈Z

zp(z)b(η(0), η(z))

Once a microscopic flux function j is defined, the macroscopic flux function is
obtained by averaging with respect to a suitable family of measures, that we
now introduce.

Invariant Measures. We define the Markovian joint disorder-particle process
(αt, ηt)t≥0 on A×X with generator given by, for any local function f on A×X,

Lf(α, η) =
∑

x,y∈Z

α(x)p(y − x)b(η(x), η(y)) [f (α, ηx,y) − f(α, η)]

Given α0 = α, this dynamics simply means that αt = α for all t ≥ 0, while
(ηt)t≥0 is a Markov process with generator Lα given by (4). Note that L is
translation invariant, that is

τxL = Lτx (20)

where τx acts jointly on (α, η). This is equivalent to the commutation relation
(15) for the quenched dynamics.

Let IL, S and SA denote the sets of probability measures that are respectively
invariant for L, shift-invariant on A × X and shift-invariant on A.

Proposition 2 ([9, Proposition 3.1]). For every Q ∈ SA
e , there exists a

closed subset RQ of [0,K] containing 0 and K, depending on p(.) and b(., .),
such that

(IL ∩ S)e =
{
νQ,ρ, Q ∈ SA

e , ρ ∈ RQ
}

where index e denotes the set of extremal elements, and (νQ,ρ : ρ ∈ RQ) is a
family of shift-invariant measures on A × X, weakly continuous with respect to
ρ, such that ∫

η(0)νQ,ρ(dα, dη) = ρ

lim
l→∞

(2l + 1)−1
∑

x∈Z:|x|≤l

η(x) = ρ, νQ,ρ − a.s. (21)

ρ ≤ ρ′ ⇒ νQ,ρ � νQ,ρ′
(22)

Here, � denotes the conditional stochastic order defined in Lemma 1 below.
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From the family of invariant measures in the above proposition for the joint
disorder-particle process, one may deduce a family of invariant measures for the
quenched particle process.

Corollary 1 ([9, Corollary 3.1]). There exists a subset ÃQ of A with Q-
probability 1 (depending on p(.) and b(., .)), such that the family of probability
measures (νQ,ρ

α : α ∈ ÃQ, ρ ∈ RQ) on X, defined by νQ,ρ
α (.) := νQ,ρ(.|α) satisfies

the following properties, for every ρ ∈ RQ:

(B1) For every α ∈ ÃQ, νQ,ρ
α is an invariant measure for Lα.

(B2) For every α ∈ ÃQ, νQ,ρ
α -a.s.,

lim
l→∞

(2l + 1)−1
∑

x∈Z: |x|≤l

η(x) = ρ

(B3) The quantity

GQ
α (ρ) :=

∫
j(α, η)νQ,ρ

α (dη) =: GQ(ρ), ρ ∈ RQ (23)

does not depend on α ∈ ÃQ.

Remark 2. As already observed in Remark 1 above, we can view the non-
disordered model as a special “disordered” model by taking Q to be the Dirac
measure on the homogeneous environment αhom with constant value 1. Hence,
Proposition 1 is a special case of Proposition 2. Note that we then have νρ = νQ,ρ

α

and νQ,ρ = δαhom ⊗ νρ for Q-a.e. α ∈ A.

We now come back to the macroscopic flux function GQ(ρ). We define it as (23)
for ρ ∈ RQ and we extend it by linear interpolation on the complement of RQ,
which is a finite or countably infinite union of disjoint open intervals: that is, we
set

GQ(ρ) :=
ρ − ρ−

ρ+ − ρ− G(ρ+) +
ρ+ − ρ

ρ+ − ρ− G(ρ−), ρ �∈ RQ (24)

where
ρ− := sup[0, ρ] ∩ RQ, ρ+ := inf[ρ,+∞) ∩ RQ (25)

By definition of νQ,ρ
α and statement (B3) of Corollary 1, we also have

GQ(ρ) :=
∫

j(α, η)νQ,ρ(dα, dη), ρ ∈ RQ (26)

We point out that (26) yields the same macroscopic flux function, whether j = j1
or j = j2 defined in (18) is plugged into it. It does not depend on the choice of
a particular decomposition (17) either. These invariance properties follow from
translation invariance of νQ,ρ and translation invariance (20) of the joint dynam-
ics. Definitions (18) of the microscopic flux, and (23)–(26) of the macroscopic
flux are model-independent, and can thus be used for other models, such as the
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k-exclusion process, or the models reviewed in Sect. 6. Of course, the invariant
measures involved in (23)–(26) depend on the model and disorder.

The function GQ can be shown to be Lipschitz continuous [9, Remark 3.3].
This is the minimum regularity required for the classical theory of entropy solu-
tions, see Sect. 4. We cannot say more about GQ in general, because the measures
νQ,ρ

α are most often not explicit.
Note that in the special case of the non-disordered model investigated in [7]

(see Proposition 1, Theorem 1, Remarks 1 and 2 above), the microscopic flux
functions do not depend on α, and (23) or (26) both reduce to

G(ρ) :=
∫

j(η)dνρ(η), ρ ∈ R

Even in the absence of disorder, only a few models have explicit invariant mea-
sures, and thus an explicit flux function. In Sect. 6, we define a variant of the
k-step exclusion process, that we call the exclusion process with overtaking. It
is possible to tune the microscopic parameters of this model so as to obtain any
prescribed polynomial flux function (constrained to vanish at density values 0
and 1 due to the exclusion rule).

In contrast, a most natural and seemingly simple generalization of the asym-
metric exclusion process, the asymmetric K-exclusion process, for which K ≥ 2
and b(n,m) = 1{n>0}1{m<K} in (4), does not have explicit invariant measures.
Thus, nothing more than the Lipschitz property can be said about its flux func-
tion in general. In the special case of the totally asymmetric K-exclusion process,
that is for p(1) = 1, the flux function is shown to be concave in [43], as a conse-
quence of the variational approach used there to derive hydrodynamic limit. But
this approach does not apply to the models we consider in the present paper.

An important open question is whether the set RQ (or its analogue R in
the absence of disorder) covers the whole range of possible densities, or if it
contains gaps corresponding to phase transitions. The only partial answer to
this question so far was given by the following result from [7] for the totally
asymmetric K-exclusion process without disorder.

Theorem 5 ([7, Corollary 2.1]). For the totally asymmetric K-exclusion pro-
cess without disorder, 0 and K are limit points of R, and R contains at least
one point in [1/3,K − 1/3].

We end this section with a skeleton of proof for Proposition 2. We combine the steps
done to prove [7, Proposition 3.1] (without disorder) and [9, Proposition 3.1].

Proof of Proposition 2. The proof has two parts.
Part 1. It is an extension to the joint particle-disorder process of a classical
scheme in a non-disordered setting due to [35], which is also the basis for similar
results in [1,19,27,29]. It relies on couplings.

(a) We first need to couple measures, through the following lemma, analogous
to Strassen’s Theorem [46].
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Lemma 1 ([9, Lemma 3.1]). For two probability measures μ1, μ2 on A×X,
the following properties (denoted by μ1 � μ2) are equivalent:

(i) For every bounded measurable local function f on A × X, such that f(α, .)
is nondecreasing for all α ∈ A, we have

∫
f dμ1 ≤

∫
f dμ2.

(ii) The measures μ1 and μ2 have a common α-marginal Q, and μ1(dη|α) ≤
μ2(dη|α) for Q-a.e. α ∈ A.

(iii) There exists a coupling measure μ(dα, dη, dξ) supported on {(α, η, ξ) ∈ A×
X2 : η ≤ ξ} under which (α, η) ∼ μ1 and (α, ξ) ∼ μ2.

(b) Then, for the dynamics, we denote by L the coupled generator for the joint
process (αt, ηt, ξt)t≥0 on A × X2 defined by

Lf(α, η, ξ) = (Lαf(α, .))(η, ξ)

for any local function f on A×X2, where Lα was defined in (12). Given α0 = α,
this means that αt = α for all t ≥ 0, while (ηt, ξt)t≥0 is a Markov process with
generator Lα. We denote by S the set of probability measures on A × X2 that
are invariant by space shift τx(α, η, ξ) = (τxα, τxη, τxξ). We prove successively
(next lemma combines [9, Lemmas 3.2, 3.4 and Proposition 3.2]):

Lemma 2. (i) Let μ′, μ′′ ∈ (IL ∩S)e with a common α-marginal Q. Then there
exists ν ∈

(
IL ∩ S

)
e
such that the respective marginal distributions of (α, η)

and (α, ξ) under ν are μ′ and μ′′.
(ii) Let ν ∈

(
IL ∩ S

)
e
. Then ν{(α, η, ξ) ∈ A × X2 : η ≤ ξ} and ν{(α, η, ξ) ∈

A × X2 : ξ ≤ η} belong to {0, 1}.
(iii) Every ν ∈

(
IL ∩ S

)
e
is supported on {(α, η, ξ) ∈ A×X2 : η ≤ ξ or ξ ≤ η}.

(c) This last point (iii) is the core of the proof of Proposition 2: Attractiveness
assumption ensures that an initially ordered pair of coupled configurations
remains ordered at later times. We say that there is a positive (resp. neg-
ative) discrepancy between two coupled configurations ξ, ζ at some site x
if ξ(x) > ζ(x) (resp. ξ(x) < ζ(x)). Irreducibility assumption (7) induces
a stronger property: pairs of discrepancies of opposite signs between two
coupled configurations eventually get killed, so that the two configurations
become ordered.

Part 2. We define

RQ :=
{∫

η(0)ν(dα, dη) : ν ∈ (IL ∩ S)e , ν has α-marginal Q

}

Let νi ∈ (IL ∩ S)e with α-marginal Q and ρi :=
∫

η(0)νi(dα, dη) ∈ RQ for
i ∈ {1, 2}. Assume ρ1 ≤ ρ2. Using Lemma 1,(iii), then Lemma 2, we obtain
ν1 � ν2, that is (22). Existence (21) of an asymptotic particle density can be
obtained by a proof analogous to [38, Lemma 14], where the space-time ergodic
theorem is applied to the joint disorder-particle process. Then, closedness of RQ

is established as in [7, Proposition 3.1]: it uses (22), (21). Given the rest of the
proposition, the weak continuity statement comes from a coupling argument,
using (22) and Lemma 1. ��
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3.3 Required Properties of the Model

For the proofs of Theorem 3 and Proposition 2, we have not used the particular
form of Lα in (4), but the following properties.

1) The set of environments is a probability space (A,FA, Q), where A is a
compact metric space and FA its Borel σ-field. On A we assume given a
group of space shifts (τx : x ∈ Z), with respect to which Q is ergodic. For
each α ∈ A, Lα is the generator of a Feller process on X that satisfies
(15). The latter should be viewed as the assumption on “how the disorder
enters the dynamics”. It is equivalent to L satisfying (20), that is being a
translation-invariant generator on A × X.

2) For Lα we can define a graphical construction on a space-time Poisson space
(Ω,F ,P) satisfying the complete monotonicity property (11).

3) Irreducibility assumption (7), combined with attractiveness assumption
(M2 ), are responsible for Lemma 2,(iii).

Indeed, given the generator (4) of the process, there is not a unique graphical
construction. The strong convergence in Theorem 3 would hold for any graphical
construction satisfying (11) plus the existence of a sequence of Poissonian events
killing any remaining pair of discrepancies of opposite signs (see Part 1,(c)) of
the proof of Proposition 2 for this last point). The latter property follows in the
case of the misanthropes process from irreducibility assumption (7).

In Sect. 6 we shall therefore introduce a general framework to consider other
models satisfying 1) and 2), with appropriate assumptions replacing (7) to
imply Proposition 2. We refer to Lemma 11 for a statement and proof of
Property (11) in the context of a general model, including the k-step exclu-
sion process. The coupled process linked to this property can be tedious to write
in the usual form of explicit coupling rates for more than two components, or
for complex models. We shall see that it can be written in a simple model-
independent way using the framework of Sect. 6.1.

4 Scalar Conservation Laws and Entropy Solutions

In Subsect. 4.1, we recall the definition and characterizations of entropy solu-
tions to scalar conservation laws, which will appear as hydrodynamic limits of
the above models. Then in Subsect. 4.2, we explain our variational formula for
the entropy solution in the Riemann case, first when the flux function G is Lip-
schitz continuous, then when G ∈ C2(R) has a single inflexion point, so that the
entropy solution has a more explicit form. Finally, in Subsect. 4.3, we explain the
approximation schemes to go from a Riemann initial profile to a general initial
profile.
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4.1 Definition and Properties of Entropy Solutions

This section is taken from [7, Section 2.2] and [8, Section 4.1]. For more details,
we refer to the textbooks [28,44], or [18]. Equation (3) has no strong solutions in
general: even starting from a smooth Cauchy datum u(., 0) = u0, discontinuities
(called shocks in this context) appear in finite time. Therefore it is necessary to
consider weak solutions, but then uniqueness is lost for the Cauchy problem. To
recover uniqueness, we need to define entropy solutions.

Let φ : [0,K] ∩ R → R be a convex function. In the context of hyperbolic
systems, such a function is called an entropy. We define the associated entropy
flux ψ on [0,K] as

ψ(u) :=
∫ u

0

φ′(v)G′(v)dv

(φ, ψ) is called an entropy-flux pair. A Borel function u : R × R
+∗ → [0,K] is

called an entropy solution to (3) if and only if it is entropy-dissipative, i.e.

∂tφ(u) + ∂xψ(u) ≤ 0 (27)

in the sense of distributions on R × R
+∗ for any entropy-flux pair (φ, ψ). Note

that, by taking φ(u) = ±u and hence ψ(u) = ±G(u), we see that an entropy
solution is indeed a weak solution to (3). This definition can be motivated by the
following points: (i) when G and φ are continuously differentiable, (3) implies
equality in strong sense in (27) (this follows from the chain rule for differentia-
tion); (ii) this no longer holds in general if u is only a weak solution to (3); (iii)
the inequality (27) can be seen as a macroscopic version of the second law of ther-
modynamics that selects physically relevant solutions. Indeed, one should think
of the concave function h = −φ as a thermodynamic entropy, and spatial inte-
gration of (27) shows that the total thermodynamic entropy may not decrease
during the evolution (this is rigorously true for periodic boundary conditions, in
which case the total entropy is well defined).

Kružkov proved the following fundamental existence and uniqueness result:

Theorem 6 ([34, Theorem 2 and Theorem 5]). Let u0 : R → [0,K] be a
Borel measurable initial datum. Then there exists a unique (up to a Lebesgue-null
subset of R × R

+∗) entropy solution u to (3) subject to the initial condition

lim
t→0+

u(., t) = u0(.) in L1
loc(R)

This solution (has a representative in its L∞(R × R
+∗) equivalence class that)

is continuous as a mapping t �→ u(., t) from R
+∗ to L1

loc(R).

We recall here that a sequence (un, n ∈ N) of Borel measurable functions on R

is said to converge to u in L1
loc(R) if and only if

lim
n→∞

∫

I

|un(x) − u(x)| dx = 0

for every bounded interval I ⊂ R.
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Remark 3. Kružkov’s theorems are stated for a continuously differentiable G.
However the proof of the uniqueness result [34, Theorem 2] uses only Lipschitz
continuity. In the Lipschitz-continuous case, existence could be derived from
Kružkov’s result by a flux approximation argument. However a different, self-
contained (and constructive) proof of existence in this case can be found in [18,
Chapter 6].

The following proposition is a collection of results on entropy solutions. We first
recall the following definition. Let TVI denote the variation of a function defined
on some bounded closed interval I = [a, b] ⊂ R, i.e.

TVI [u(.)] := sup
x0=a<x1···<xn=b

n−1∑

i=0

|u(xi+1) − u(xi)|

The total variation of u is defined by

TV[u(.)] := sup
I⊂R

TVI [u(.)]

Let us say that u = u(., .) defined on R×R
+∗ has locally bounded space variation

if
sup
t∈J

TVI [u(., t)] < +∞

for every bounded closed space interval I ⊂ R and bounded time interval J ⊂
R

+∗.
For two measures α, β ∈ M+(R) with compact support, we define

Δ(α, β) := sup
x∈R

|α((−∞, x]) − β((−∞, x])| (28)

When α or β is of the form u(.)dx for u(.) ∈ L∞(R) with compact support, we
simply write u in (28) instead of u(.)dx. For a sequence (μn)n≥0 of measures
with uniformly bounded support, the following equivalence holds:

μn → μ vaguely if and only if lim
n→∞ Δ(μn, μ) = 0 (29)

Proposition 3 ([8, Proposition 4.1]).

(i) Let u(., .) be the entropy solution to (3) with Cauchy datum u0 ∈ L∞(R).
Then the mapping t �→ ut = u(., t) lies in C0([0,+∞), L1

loc(R)).
(ii) If u0 has constant value c, then for all t > 0, ut has constant value c.
(iii) If ui

0(.) has finite variation, that is TVui
0(.) < +∞, then so does ui(., t) for

every t > 0, and TVui(., t) ≤ TVui
0(.).

(iv) Finite propagation property: Assume ui(., .) (i ∈ {1, 2}) is the entropy solu-
tion to (3) with Cauchy data ui

0(.). Let

V = ||G′||∞ := sup
ρ

|G′(ρ)| (30)



66 C. Bahadoran et al.

Then, for every x < y and 0 ≤ t < (y − x)/2V ,
∫ y−V t

x+V t

[
u1(z, t) − u2(z, t)

]±
dz ≤

∫ y

x

[
u1

0(z) − u2
0(z)

]±
dz

In particular, assume u1
0 = u2

0 (resp. u1
0 ≤ u2

0) on [a, b] for some a, b ∈ R

such that a < b. Then, for all t ≤ (b − a)/(2V ), u1
t = u2

t (resp. u1
t ≤ u2

t )
on [a + V t, b − V t].

(v) If
∫

R

ui
0(z)dz < +∞, then

Δ(u1(., t), u2(., t)) ≤ Δ(u1
0(.), u

2
0(.)) (31)

Properties (i)–(iv) are standard. Property (v) can be deduced from the cor-
respondence between entropy solutions of (3) and viscosity solutions of the
Hamilton–Jacobi equation

∂th(x, t) + G[∂xh(x, t)] = 0 (32)

Namely, h is a viscosity solution of (32) if and only if u = ∂xh is an entropy
solution of (3). Then (v) follows from the monotonicity of the solution semigroup
for (32). Properties (iv) and (v) have microscopic analogues (respectively Lemma
10 and Proposition 10) in the class of particle systems we consider, which play
an important role in the proof of the hydrodynamic limit, as will be sketched in
Sect. 5.

We next recall a possibly more familiar definition of entropy solutions based
on shock admissibility conditions, but valid only for solutions with bounded vari-
ation. This point of view selects the relevant weak solutions by specifying what
kind of discontinuities are permitted. First, in particular, the following two con-
ditions are necessary and sufficient for a piecewise smooth function u(x, t) to be
a weak solution to Eq. (3) with initial condition (34) (see [14]):

1. u(x, t) solves Eq. (3) at points of smoothness.
2. If x(t) is a curve of discontinuity of the solution then the Rankine–Hugoniot

condition
d

dt
x(t) = S[u+;u−] :=

G(u−) − G(u+)
u− − u+

holds along x(t).
Moreover, to ensure uniqueness, the following geometric condition, known as
Olĕınik’s entropy condition (see e.g. [28] or [44]), is sufficient. A discontinuity
(u−, u+), with u± := u(x ± 0, t), is called an entropy shock, if and only if:

The chord of the graph of G between u− and u+ lies:
below the graph if u− < u+, above the graph if u+ < u−. (33)

In the above condition, “below” or “above” is meant in wide sense, i.e. does not
exclude that the graph and chord coincide at some points between u− and u+.
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In particular, when G is strictly convex (resp. concave), one recovers the fact
that only (and all) decreasing (resp. increasing) jumps are admitted (as detailed
in Subsect. 4.2 below). Note that, if the graph of G is linear on some nontrivial
interval, condition (33) implies that any increasing or decreasing jump within
this interval is an entropy shock.

Indeed, condition (33) can be used to select entropy solutions among weak
solutions. The following result is a consequence of [48].

Proposition 4 ([7, Proposition 2.2]). Let u be a weak solution to (3) with
locally bounded space variation. Then u is an entropy solution to (3) if and only
if, for a.e. t > 0, all discontinuities of u(., t) are entropy shocks.

One can show that, if the Cauchy datum u0 has locally bounded variation, the
unique entropy solution given by Theorem 6 has locally bounded space variation.
Hence Proposition 4 extends into an existence and uniqueness theorem within
functions of locally bounded space variation, where entropy solutions may be
defined as weak solutions satisfying (33), without reference to (27).

4.2 The Riemann Problem

This subsection is based first on [7, Section 4.1], then on [6, Section 2.1]. Of
special importance among entropy solutions are the solutions of the Riemann
problem, i.e. the Cauchy problem for particular initial data of the form

Rλ,ρ(x) = λ1{x<0} + ρ1{x≥0} (34)

Indeed: (i) as developed in the sequel of this subsection, these solutions can be
computed explicitly and have a variational representation; (ii) as will be seen
in Subsect. 4.3, one can construct approximations to the solution of the general
Cauchy problem by using only Riemann solutions. This has inspired our belief
that one could derive general hydrodynamics from Riemann hydrodynamics.

In connection with Theorem 3 and Proposition 2, it will be important in
the sequel to consider flux functions G with possible linear degeneracy on some
density intervals. Therefore, in the sequel of this section, R will denote a closed
subset of [0,K] ∩R such that G is affine on each of the countably many disjoint
open intervals whose union is the complement of R. Such a subset exists (for
instance one can take R = [0,K] ∩ R) and is not necessarily unique.

From now on we assume λ < ρ; adapting to the case λ > ρ is straightforward,
by replacing in the sequel lower with upper convex hulls, and minima/minimizers
with maxima/maximizers. Consider Gc, the lower convex envelope of G on [λ, ρ].
There exists a nondecreasing function Hc (hence with left/right limits) such that
Gc has left/right hand derivative denoted by Hc(α±0) at every α. The function
Hc is defined uniquely outside the at most countable set of non-differentiability
points of Gc

Θ = {α ∈ [λ, ρ] : Hc(α − 0) < Hc(α + 0)}
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As will appear below, the particular choice of Hc on Θ does not matter. Let v∗ =
v∗(λ, ρ) := Hc(λ+0) and v∗ = v∗(λ, ρ) := Hc(ρ− 0). Since Hc is nondecreasing,
there is a nondecreasing function hc on [v∗, v∗] such that, for every v ∈ [v∗, v∗],

α < hc(v) ⇒ Hc(α) ≤ v

α > hc(v) ⇒ Hc(α) ≥ v
(35)

Any such hc satisfies

hc(v − 0) = inf{α ∈ R : Hc(α) ≥ v} = sup{α ∈ R : Hc(α) < v}
hc(v + 0) = inf{α ∈ R : Hc(α) > v} = sup{α ∈ R : Hc(α) ≤ v}

(36)

We have that, anywhere in (36), Hc(α) may be replaced with Hc(α ± 0). The
following properties can be derived from (35) and (36):

1. Given G, hc is defined uniquely, and is continuous, outside the at most count-
able set

Σlow(G) = {v ∈ [v∗, v∗] : Gc is differentiable with derivative v

in a nonempty open subinterval of [λ, ρ]}

By “defined uniquely” we mean that for such v’s, there is a unique hc(v)
satisfying (35), which does not depend on the choice of Hc on Θ.

2. Given G, hc(v±0) is uniquely defined, i.e. independent of the choice of Hc on
Θ, for any v ∈ [v∗, v∗]. For v ∈ Σlow(G), (hc(v − 0), hc(v + 0)) is the maximal
open interval over which Hc has constant value v.

3. For every α ∈ Θ and v ∈ (Hc(α − 0),Hc(α + 0)), hc(v) is uniquely defined
and equal to α.

In the sequel we extend hc outside [v∗, v∗] in a natural way by setting

hc(v) = λ for v < v∗, hc(v) = ρ for v > v∗

Next proposition extends [6, Proposition 2.1], where we assumed G ∈ C2(R).

Proposition 5 ([7, Proposition 4.1]). Let λ, ρ ∈ [0,K]∩R, λ < ρ. For v ∈ R,
we set

Gv(λ, ρ) := inf {G(r) − vr : r ∈ [λ, ρ] ∩ R} (37)

Then

(i) For every v ∈ R \ Σlow(G), the minimum in (37) is achieved at the unique
point hc(v), and u(x, t) := hc(x/t) is the weak entropy solution to (3) with
Riemann initial condition (34), denoted by Rλ,ρ(x, t).
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(ii) If λ ∈ R and ρ ∈ R, the previous minimum is unchanged if restricted to
[λ, ρ] ∩ R. As a result, the Riemann entropy solution is a.e. R-valued.

(iii) For every v, w ∈ R,
∫ w

v

Rλ,ρ(x, t)dx = t[Gv/t(λ, ρ) − Gw/t(λ, ρ)] (38)

In the case when G ∈ C2(R) is such that G′′ vanishes only finitely many times,
the expression of u(x, t) is more explicit. Let us detail, as in [6, Section 2.1],
following [14], the case where G has a single inflexion point a ∈ (0,K) and G(u)
is strictly convex in 0 ≤ u < a and strictly concave in a < u ≤ 1. We denote
H = G′, h1 the inverse of H restricted to (−∞, a), and h2 the inverse of H
restricted to (a,+∞). We have

Lemma 3 ([14, Lemma 2.2, Lemma 2.4]). Let w < a be given, and define

w∗ := sup{u > w : S[w;u] > S[v;w], ∀v ∈ (w, u)}

Suppose that w∗ < ∞. Then

(a) S[w;w∗] = H(w∗);
(b) w∗ is the only zero of S[u;w] − H(u), u > w.

If ρ < λ < ρ∗ (ρ < a), then H(λ) > H(ρ): the characteristics starting from
x ≤ 0 have a speed (given by H) greater than the speed of those starting from
x > 0. If the characteristics intersect along a curve x(t), then Rankine–Hugoniot
condition will be satisfied if

x′(t) = S[u+;u−] =
G(λ) − G(ρ)

λ − ρ
= S[λ; ρ].

The convexity of G implies that Olĕınik’s Condition is satisfied across x(t).
Therefore the unique entropy weak solution is the shock :

u(x, t) =

{
λ, x ≤ S[λ; ρ]t;
ρ, x > S[λ; ρ]t;

If λ < ρ < a, the relevant part of the flux function is convex. The characteristics
starting respectively from x ≤ 0 and x > 0 never meet, and they never enter the
space-time wedge between lines x = H(λ)t and x = H(ρ)t. It is possible to define
piecewise smooth weak solutions with a jump occurring in the wedge satisfying
the Rankine–Hugoniot condition. But the convexity of G prevents such solutions
from satisfying Olĕınik’s Condition. Thus the unique entropy weak solution is
the continuous solution with a rarefaction fan:

u(x, t) =

⎧
⎪⎨

⎪⎩

λ, x ≤ H(λ)t;
h1(x/t), H(λ)t < x ≤ H(ρ)t;
ρ, H(ρ)t < x;
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Let ρ < ρ∗ < λ (ρ < a): Lemma 3 applied to ρ suggests that a jump from ρ∗ to
ρ along the line x = H(ρ∗)t will satisfy the Rankine–Hugoniot condition. Due
to the definition of ρ∗, a solution with such a jump will also satisfy Olĕınik’s
Condition, therefore it would be the unique entropic weak solution. Notice that
since H(λ) < H(ρ∗), no characteristics intersect along the line of discontinuity
x = H(ρ∗)t. This case is called a contact discontinuity in [14]. The solution is
defined by

u(x, t) =

⎧
⎪⎨

⎪⎩

λ, x ≤ H(λ)t;
h2(x/t), H(λ)t < x ≤ H(ρ∗)t;
ρ, H(ρ∗)t < x;

Corresponding cases on the concave side of G are treated similarly.
Let us illustrate this description on a reference example, the totally asym-

metric 2-step exclusion (what follows is taken from [6, Section 4.1.1]):
Its flux function G2(u) = u + u2 − 2u3 is strictly convex in 0 ≤ u < 1/6

and strictly concave in 1/6 < u ≤ 1. For w < 1/6, w∗ = (1 − 2w)/4, and for
w > 1/6, w∗ = (1 − 2w)/4; h1(x) = (1/6)(1 −

√
7 − 6x) for x ∈ (−∞, 7/6),

and h2(x) = (1/6)(1 +
√

7 − 6x) for x ∈ (7/6,+∞). We reproduce here [6,
Figure 1], which shows the six possible behaviors of the (self-similar) solution
u(v, 1), namely a rarefaction fan with either an increasing or a decreasing initial
condition, a decreasing shock, an increasing shock, and a contact discontinuity
with either an increasing or a decreasing initial condition. Cases (a) and (b)
present respectively a rarefaction fan with increasing initial condition and a
preserved decreasing shock. These situations as well as cases (c) and (f) cannot
occur for simple exclusion. Observe also that ρ ≥ 1/2 implies ρ∗ ≤ 0, which leads
only to cases (d),(e), and excludes case (f) (going back to a simple exclusion
behavior).

4.3 From Riemann to Cauchy Problem

The beginning of this subsection is based on [7, Section 2.4]. We will briefly
explain here the principle of approximation schemes based on Riemann solutions,
the most important of which is probably Glimm’s scheme, introduced in [26].
Consider as initial datum a piecewise constant profile with finitely many jumps.
The key observation is that, for small enough times, this can be viewed as a
succession of noninteracting Riemann problems. To formalize this, we recall part
of [6, Lemma 3.4], which is a consequence of the finite propagation property for
(3), see statement (iv) of Proposition 3. We denote by Rλ,ρ(x, t) the entropy
solution to the Riemann problem with initial datum (34).

Lemma 4 ([7, Lemma 2.1]). Let x0 = −∞ < x1 < · · · < xn < xn+1 = +∞,
and ε := mink(xk+1 − xk). Consider the Cauchy datum

u0 :=
n∑

k=0

rk1(xk,xk+1)
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where rk ∈ [0,K]. Then for t < ε/(2V ), with V given by (30), the entropy
solution u(., t) at time t coincides with Rrk−1,rk

(. − xk, t) on (xk−1 + V t, xk+1 −
V t). In particular, u(., t) has constant value rk on (xk + V t, xk+1 − V t).

Given some Cauchy datum u0, we construct an approximate solution ũ(., .) for
the corresponding entropy solution u(., .). To this end we define an approximation
scheme based on a time discretization step Δt > 0 and a space discretization
step Δx > 0. In the limit we let Δx → 0 with the ratio R := Δt/Δx kept
constant, under the condition

R ≤ 1/(2V ) (39)

known as the Courant–Friedrichs–Lewy (CFL) condition. Let tk := kΔt denote
discretization times. We start with k = 0, setting ũ−

0 := u0.

Step one (approximation step): Approximate ũ−
k with a piecewise constant profile

ũ+
k whose step lengths are bounded below by Δx.

Step two (evolution step): For t ∈ [tk, tk+1), denote by ũk(., t) the entropy solu-
tion at time t with initial datum ũ+

k at time tk. By (39) and Lemma 4, ũk(., t)
can be computed solving only Riemann problems. Set ũ−

k+1 = ũk(., tk+1).
Step three (iteration): increment k and go back to step one.

The approximate entropy solution is then defined by

ũ(., t) :=
∑

k∈N

ũk(., t)1[tk,tk+1)(t) (40)

The efficiency of the scheme depends on how the approximation step is per-
formed. In Glimm’s scheme, the approximation ũ+

k is defined as

ũ+
k :=

∑

j∈k/2+Z

ũ−
k ((j + ak/2)Δx)1((j−1/2)Δx,(j+1/2)Δx) (41)

where ak ∈ (−1, 1). Then we have the following convergence result.

Theorem 7 ([7, Theorem 2.3]). Let u0 be a given measurable initial datum.
Then every sequence εn ↓ 0 as n → ∞ has a subsequence δn ↓ 0 such that,
for a.e. sequence (ak) w.r.t. product uniform measure on (−1, 1)Z

+
, the Glimm

approximation defined by (40) and (41) converges to u in L1
loc(R × R

+∗) as
Δx = δn ↓ 0.

When u0 has locally bounded variation, the above result is a specialization to
scalar conservation laws of a more general result for systems of conservation
laws: see Theorems 5.2.1, 5.2.2, 5.4.1 and comments following Theorem 5.2.2 in
[44]. In [7, Appendix B], we prove that it is enough to assume u0 measurable.

Due to the nature of the approximation step (41), the proof of Theorem 7
does not proceed by direct estimation of the error between ũ±

k and u(., tk), but
indirectly, by showing that limits of the scheme satisfy (27).
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We will now present a different Riemann-based approximation procedure,
introduced first in [6, Lemma 3.6], and refined in [7,8]. This approximation allows
direct control of the error by using the distance Δ defined in (28). Intuitively,
errors accumulate during approximation steps, but might be amplified by the
resolution steps. The key properties of our approximation are that the total
error accumulated during the approximation step is negligible as ε → 0, and the
error is not amplified by the resolution step, because Δ does not increase along
entropy solutions, see Proposition 3(v).

Theorem 8 ([6, Theorem 3.1]). Assume (Tt)t≥0 is a semigroup on the set
of bounded R-valued functions, with the following properties:

1) For any Riemann initial condition u0, t �→ ut = Ttu0 is the entropy solution
to (3) with Cauchy datum u0.

2) (Finite speed of propagation). There is a constant v such that, for any a, b ∈
R, any two initial conditions u0 and u1 coinciding on [a; b], and any t <
(b − a)/(2V ), ut = Ttu0 and vt = Ttv0 coincide on [a + V t; b − V t].

3) (Time continuity). For every bounded initial condition u0 with bounded sup-
port and every t ≥ 0, limε→0+Δ(Ttu0, Tt+εu0) = 0.

4) (Stability). For any bounded initial conditions u0 and v0, with bounded sup-
port, Δ(Ttu0, Ttv0) ≤ Δ(u0, v0).

Then, for any bounded u0, t �→ Ttu0 is the entropy solution to (3) with Cauchy
datum u0.

A crucial point is that properties 1)–4) in the above Theorem 8 hold at particle
level, where this will allow us to mimic the scheme. The proof of Theorem 8
relies on the following uniform approximation (in the sense of distance Δ) by
step functions, which is also important at particle level.

Lemma 5 ([8, Lemma 4.2]). Assume u0(.) is a.e. R-valued, has bounded
support and finite variation, and let (x, t) �→ u(x, t) be the entropy solution to
(3) with Cauchy datum u0(.). For every ε > 0, let Pε be the set of piecewise
constant R-valued functions on R with compact support and step lengths at least
ε, and set

δε(t) := ε−1 inf{Δ(u(.), u(., t)) : u(.) ∈ Pε}
Then there is a sequence εn ↓ 0 as n → ∞ such that δεn

converges to 0 uniformly
on any bounded subset of R+.

5 Proof of Hydrodynamics

In this section, based on [9, Section 4], we prove the hydrodynamic limit in the
quenched disordered setting, that is Theorem 3, following the strategy introduced
in [6,7] and significantly strengthened in [8] and [9]. First, we prove the hydro-
dynamic limit for RQ-valued Riemann initial conditions (the so-called Riemann
problem), and then use a constructive scheme to mimic the proof of Theorem 8
at microscopic level.
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5.1 Riemann Problem

Let λ, ρ ∈ RQ with λ < ρ (for λ > ρ replace infimum with supremum below).
We first need to derive hydrodynamics for the Riemann initial condition Rλ,ρ

defined in (34). Microscopic Riemann states with profile (34) can be constructed
using the following lemma.

Lemma 6 ([9, Lemma 4.1]). There exist random variables α and (ηρ : ρ ∈
RQ) on a probability space (ΩA,FA,PA) such that

(α, ηρ) ∼ νQ,ρ, α ∼ Q

PA − a.s., ρ �→ ηρ is nondecreasing

Let νQ,λ,ρ denote the distribution of (α, ηλ, ηρ), and νλ,ρ
α the conditional distri-

bution of (α, ηλ, ηρ) given α. Recall the definition (13) of the space-time shift
θx0,t0 on Ω for (x0, t0) ∈ Z × R

+. We now introduce an extended shift θ′ on
Ω′ = A × X2 × Ω. If ω′ = (α, η, ξ, ω) denotes a generic element of Ω′, we set

θ′
x,tω

′ = (τxα, τxηt(α, η, ω), τxηt(α, ξ, ω), θx,tω)

It is important to note that this shift incorporates disorder. Let T : X2 → X be
given by

T (η, ξ)(x) = η(x)1{x<0} + ξ(x)1{x≥0}

A strong (that is almost sure with respect to the Poisson space) form of hydro-
dynamic limit for Riemann data can now be stated as follows.

Proposition 6 ([9, Proposition 4.1]). Set, for t ≥ 0,

βN
t (ω′)(dx) := πN (ηt(α, T (η, ξ), ω))(dx)

For all t > 0, s0 ≥ 0 and x0 ∈ R, we have that, for Q-a.e. α ∈ A,

lim
N→∞

βN
Nt(θ

′
�Nx0,Ns0

ω′)(dx) = Rλ,ρ(., t)dx, νλ,ρ
α ⊗ P-a.s.

Proposition 6 will follow from a law of large numbers for currents. Let x. =
(xt, t ≥ 0) be a Z-valued càdlàg random path, with |xt − xt− | ≤ 1, independent
of the Poisson measure ω. We define the particle current seen by an observer
travelling along this path by

ϕx.
t (α, η0, ω) = ϕx.,+

t (α, η0, ω) − ϕx.,−
t (α, η0, ω) + ϕ̃x.

t (α, η0, ω) (42)

where ϕx.,±
t (α, η0, ω) count the number of rightward/leftward crossings of x.

due to particle jumps, and ϕ̃x.
t (α, η0, ω) is the current due to the self-motion of

the observer. We shall write ϕv
t in the particular case xt = �vt�. Set φv

t (ω′) :=
ϕv

t (α, T (η, ξ), ω). Note that for (v, w) ∈ R
2,

βN
Nt(ω

′)([v, w]) = t(Nt)−1(φv/t
Nt (ω′) − φ

w/t
Nt (ω′)) (43)

We view (43) as a microscopic analogue of (38). Thus, Proposition 6 boils down
to showing that each term of (43) converges to its counterpart in (38).
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Proposition 7 ([9, Proposition 4.2]). For all t > 0, a ∈ R
+, b ∈ R and

v ∈ R,

lim
N→∞

(Nt)−1φv
Nt(θ

′
�bN,aNω′) = Gv(λ, ρ) νQ,λ,ρ ⊗ P − a.s.

where Gv(λ, ρ) is defined by (37).

To prove Proposition 7, we introduce a probability space Ω+, whose generic
element is denoted by ω+, on which is defined a Poisson process (Nt(ω+))t≥0

with intensity |v| (v ∈ R). Denote by P
+ the associated probability. Set

xN
s (ω+) := (sgn(v))

[
NaN+s(ω+) − NaN (ω+)

]
(44)

η̃N
s (α, η0, ω, ω+) := τxN

s (ω+)ηs(α, η0, ω)

α̃N
s (α, ω+) := τxN

s (ω+)α

Thus (α̃N
s , η̃N

s )s≥0 is a Feller process with generator

Lv = L + Sv, Svf(α, ζ) = |v| [f(τsgn(v)α, τsgn(v)ζ) − f(α, ζ)]

for f local and α ∈ A, ζ ∈ X. Since any translation invariant measure on A×X
is stationary for the pure shift generator Sv, we have IL ∩ S = ILv ∩ S. Define
the time and space-time empirical measures (where ε > 0) by

mtN (ω′, ω+) := (Nt)−1

∫ tN

0

δ(α̃N
s (α,ω+),η̃N

s (α,T (η,ξ),ω,ω+))ds

mtN,ε(ω′, ω+) := |Z ∩ [−εN, εN ]|−1
∑

x∈Z: |x|≤εN

τxmtN (ω′, ω+) (45)

Notice that there is a disorder component we cannot omit in the empiri-
cal measure, although ultimately we are only interested in the behavior of
the η-component. Let MQ

λ,ρ denote the compact set of probability measures
μ(dα, dη) ∈ IL ∩ S such that μ has α-marginal Q, and νQ,λ � μ � νQ,ρ. By
Proposition 2,

MQ
λ,ρ =

{

ν(dα, dη) =
∫

νQ,r(dα, dη)γ(dr) : γ ∈ P([λ, ρ] ∩ RQ)
}

The key ingredients for Proposition 7 are the following lemmas.

Lemma 7 ([9, Lemma 4.2]). The function φv
t (α, η, ξ, ω) is increasing in η,

decreasing in ξ.

Lemma 8 ([9, Lemma 4.3]). With νQ,λ,ρ ⊗ P ⊗ P
+-probability one, every

subsequential limit as N → ∞ of mtN,ε(θ′
�bN,aNω′, ω+) lies in MQ

λ,ρ.

Lemma 7 is a consequence of the monotonicity property (11). Lemma 8 relies
in addition on a space-time ergodic theorem and on a general uniform large
deviation upper bound for space-time empirical measures of Markov processes.
We state these two results before proving Proposition 7.
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Proposition 8 ([8, Proposition 2.3]). Let (ηt)t≥0 be a Feller process on X
with a translation invariant generator L, that is

τ1Lτ−1 = L

Assume further that
μ ∈ (IL ∩ S)e

where IL denotes the set of invariant measures for L. Then, for any local function
f on X, and any a > 0

lim
�→∞

1
a�2

∫ a�

0

�∑

i=0

τif(ηt)dt =
∫

fdμ = lim
�→∞

1
a�2

∫ a�

0

−1∑

i=−�

τif(ηt)dt

a.s. with respect to the law of the process with initial distribution μ.

Lemma 9 ([8, Lemma 3.4]). Let Pv
ν denote the law of a Markov process

(α̃., ξ̃.) with generator Lv and initial distribution ν. For ε > 0, let

πt,ε := |Z ∩ [−εt, εt]|−1
∑

x∈Z∩[−εt,εt]

t−1

∫ t

0

δ(τxα̃s,τx˜ξs)
ds

Then, there exists a functional Dv which is nonnegative, l.s.c., and satisfies
D−1

v (0) = ILv , such that, for every closed subset F of P(A × X),

lim sup
t→∞

t−1 log sup
ν∈P(A×X)

Pv
ν

(
πt,ε(ξ̃.) ∈ F

)
≤ − inf

μ∈F
Dv(μ)

Proof of Proposition 7. We will show that

lim inf
N→∞

(Nt)−1φv
tN ◦ θ′

�bN,aN (ω′) ≥ Gv(λ, ρ), νQ,λ,ρ ⊗ P-a.s. (46)

lim sup
N→∞

(Nt)−1φv
tN ◦ θ′

�bN,aN (ω′) ≤ Gv(λ, ρ), νQ,λ,ρ ⊗ P-a.s. (47)

Step one: Proof of (46).
Setting �aN = �aN (ω′) := T

(
τ�bNηaN (α, η, ω), τ�bNηaN (α, ξ, ω)

)
, we have

(Nt)−1φv
tN ◦ θ′

�bN,aN (ω′) = (Nt)−1ϕv
tN (τ�bNα,�aN , θ�bN,aNω)

Let, for every (α, ζ, ω, ω+) ∈ A × X × Ω × Ω+ and xN
. (ω+) given by (44),

ψv,ε
tN (α, ζ, ω, ω+) := |Z ∩ [−εN, εN ]|−1

∑

y∈Z: |y|≤εN

ϕ
xN
. (ω+)+y

tN (α, ζ, ω) (48)

Note that limN→∞(Nt)−1xN
tN (ω+) = v, P+-a.s., and that for two paths y., z.

(see (42)),

|ϕy.

tN (α, η0, ω) − ϕz.

tN (α, η0, ω)| ≤ K (|ytN − ztN | + |y0 − z0|)
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Hence the proof of (46) reduces to that of the same inequality where we
replace (Nt)−1φv

tN ◦ θ′
�bN,aN (ω′) by (Nt)−1ψv,ε

tN (τ�bNα,�aN , θ�bN,aNω, ω+)
and νQ,λ,ρ ⊗ P by νQ,λ,ρ ⊗ P ⊗ P

+. By definitions (18), (42) of flux and cur-
rent, for any α ∈ A, ζ ∈ X,

Mx,v
tN (α, ζ, ω, ω+) := ϕ

xN
. (ω+)+x

tN (α, ζ, ω)

−
∫ tN

0

τx

{
j(α̃N

s (α, ω+), η̃N
s (α, ζ, ω, ω+))

− v(η̃N
s (α, ζ, ω, ω+))(1{v>0})

}
ds

is a mean 0 martingale under P ⊗ P
+. Let

Rε,v
tN := (Nt |Z ∩ [−εN, εN ]|)−1

∑

x∈Z: |x|≤εN

Mx,v
tN (τ�bNα,�aN , θ�bN,aNω, ω+)

= (Nt)−1ψv,ε
tN (τ�bNα,�aN , θ�bN,aNω, ω+)

−
∫

[j(α, η) − vη(1{v>0})]mtN,ε(θ′
�bN,aNω′, ω+)(dα, dη) (49)

where the last equality comes from (45), (48). The exponential martingale asso-
ciated with Mx,v

tN yields a Poissonian bound, uniform in (α, ζ), for the expo-
nential moment of Mx,v

tN with respect to P ⊗ P
+. Since �aN is independent of

(θ�bN,aNω, ω+) under νQ,λ,ρ ⊗ P ⊗ P
+, the bound is also valid under this mea-

sure, and Borel–Cantelli’s lemma implies limN→∞ Rε,v
tN = 0. From (49), Lemma 8

and Corollary 1, (B2) imply (46), as well as

lim sup
N→∞

(Nt)−1φv
tN ◦ θ′

�bN,aN (ω′) ≤ sup
r∈[λ,ρ]∩RQ

[GQ(r) − vr], νQ,λ,ρ ⊗ P-a.s.

(50)
Step two: Proof of (47). Let r ∈ [λ, ρ]∩RQ. We define νQ,λ,r,ρ as the distribution
of (α, ηλ, ηr, ηρ). With respect to this measure, by (46) and (50), we have the
almost sure limit

lim
N→∞

(Nt)−1φv
tN ◦ θ′

�bN,aN (α, ηr, ηr, ω) = GQ(r) − vr

By Lemma 7,

φv
tN ◦ θ′

�bN,aN (ω′) ≤ φv
tN ◦ θ′

�bN,aN (α, ηr, ηr, ω)

The result follows by continuity of GQ and minimizing over r. ��

5.2 Cauchy Problem

Using (31) and the fact that an arbitrary function can be approximated by a
RQ-valued function with respect to the distance Δ defined by (28), the proof
of Theorem 3 for general initial data u0 can be reduced (see [7]) to the case
of RQ-valued initial data by coupling and approximation arguments (see [8,
Section 4.2.2]).
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Proposition 9 ([9, Proposition 4.3]). Assume (ηN
0 ) is a sequence of configu-

rations such that: (i) there exists C > 0 such that for all N ∈ N, ηN
0 is supported

on Z ∩ [−CN,CN ];
(ii) πN (ηN

0 ) → u0(.)dx as N → ∞, where u0 has compact support, is a.e. RQ-
valued and has finite space variation.
Let u(., t) denote the unique entropy solution to (16) with Cauchy datum u0(.).
Then, Q ⊗ P-a.s. as N → ∞,

ΔN (t) := Δ(πN (ηN
Nt(α, ηN

0 , ω)), u(., t)dx)

converges uniformly to 0 on [0, T ] for every T > 0.

Before proving this proposition, we state two crucial tools in their most complete
form (see [38]), the macroscopic stability and the finite propagation property for
the particle system. Macroscopic stability yields that the distance Δ defined in
(28) is an “almost” nonincreasing functional for two coupled particle systems.
It is thus a microscopic analogue of property (31) in Proposition 3. The finite
propagation property is a microscopic analogue of Proposition 3, iv). For the
misanthropes process, it follows essentially from the finite mean assumption
(M4 ).

Proposition 10 ([8, Proposition 4.2] with [38, Theorem 2]). Assume p(.)
has a finite first moment and a positive mean. Then there exist constants C > 0
and c > 0, depending only on b(., .) and p(.), such that the following holds. For
every N ∈ N, (η0, ξ0) ∈ X2 with |η0| + |ξ0| :=

∑
x∈Z

[η0(x) + ξ0(x)] < +∞, and
every γ > 0, the event

∀t > 0 : Δ(πN (ηt(α, η0, ω)), πN (ηt(α, ξ0, ω))) ≤ Δ(πN (α, η0), πN (α, ξ0)) + γ
(51)

has P-probability at least 1 − C(|η0| + |ξ0|)e−cNγ .

Lemma 10 ([38, Lemma 15]). Assume p(.) has a finite third moment. There
exist a constant v, and a function A(.) (satisfying

∑
n A(n) < ∞), depending

only on b(., .) and p(.), such that the following holds. For any x, y ∈ Z, any
(η0, ξ0) ∈ X2, and any 0 < t < (y − x)/(2v): if η0 and ξ0 coincide on the
site interval [x, y], then with P-probability at least 1 − A(t), ηs(α, η0, ω) and
ηs(α, ξ0, ω) coincide on the site interval [x + vt, y − vt] ∩ Z for every s ∈ [0, t].

To prove Proposition 10, we work with a coupled process, and reduce the prob-
lem to analysing the evolution of labeled positive and negative discrepancies to
control their coalescences. For this we order the discrepancies, we possibly relabel
them according to their movements to favor coalescences, and define windows,
which are space intervals on which coalescences are favored, in the same spirit as
in [17]. The irreducibility assumption (that is (7) in the case of the misanthropes
process) plays an essential role there. To take advantage of [17], we treat sep-
arately the movements of discrepancies corresponding to big jumps, which can
be controlled thanks to the finiteness of the first moment (that is, assumption
(M4 )).
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Proof of Proposition 9. By assumption (ii) of the proposition, limN→∞ ΔN (0) =
0. Let ε > 0, and ε′ = ε/(2V ), for V given by (30). Set tk = kε′ for
k ≤ κ := �T/ε′�, tκ+1 = T . Since the number of steps is proportional to ε−1, if
we want to bound the total error, the main step is to prove

lim sup
N→∞

sup
k=0,...,K−1

[
ΔN (tk+1) − ΔN (tk)

]
≤ 3δε, Q ⊗ P-a.s. (52)

where δ := δ(ε) goes to 0 as ε goes to 0; the gaps between discrete times are
filled by an estimate for the time modulus of continuity of ΔN (t) (see [8, Lemma
4.5]).

Proof of (52). Since u(., tk) has locally finite variation, by [8, Lemma 4.2],
for all ε > 0 we can find functions

vk =
lk∑

l=0

rk,l1[xk,l,xk,l+1)

with −∞ = xk,0 < xk,1 < . . . < xk,lk < xk,lk+1 = +∞, rk,l ∈ RQ, rk,0 = rk,lk =
0, such that xk,l − xk,l−1 ≥ ε, and

Δ(u(., tk)dx, vkdx) ≤ δε (53)

For tk ≤ t < tk+1, we denote by vk(., t) the entropy solution to (16) at time t with
Cauchy datum vk(.). The configuration ξN,k defined on (ΩA⊗Ω,FA⊗F ,PA⊗P)
(see Lemma 6) by

ξN,k(ωA, ω)(x) := ηNtk(α(ωA), ηrk,l(ωA), ω)(x), if �Nxk,l� ≤ x < �Nxk,l+1�

is a microscopic version of vk(.), since by Proposition 6 with λ = ρ = rk,l,

lim
N→∞

πN (ξN,k(ωA, ω))(dx) = vk(.)dx, PA ⊗ P-a.s. (54)

We denote by ξN,k
t (ωA, ω) = ηt(α(ωA), ξN,k(ωA, ω), θ0,Ntkω) the evolved config-

uration starting from ξN,k. By triangle inequality,

ΔN (tk+1) − ΔN (tk) ≤ Δ
[
πN (ηN

Ntk+1
), πN (ξN,k

Nε′ )
]

− ΔN (tk) (55)

+ Δ
[
πN (ξN,k

Nε′ ), vk(., ε′)dx
]

(56)

+ Δ(vk(., ε′)dx, u(., tk+1)dx) (57)

To conclude, we rely on Properties (29), (51) and (31) of Δ: Since ε′ =
ε/(2V ), finite propagation property for (16) and for the particle system (see
Proposition 3, iv) and Lemma 10) and Proposition 6 imply

lim
N→∞

πN (ξN,k
Nε′ (ωA, ω)) = vk(., ε′)dx, PA ⊗ P-a.s.
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Hence, the term (56) converges a.s. to 0 as N → ∞. By Δ-stability for (16), the
term (57) is bounded by Δ(vk(.)dx, u(., tk)dx) ≤ δε. We now consider the term
(55). By macroscopic stability (Proposition 10), outside probability e−CNδε,

Δ
[
πN (ηN

Ntk+1
), πN (ξN,k

Nε′ )
]

≤ Δ
[
πN (ηN

Ntk
), πN (ξN,k)

]
+ δε (58)

Thus the event (58) holds a.s. for N large enough. By triangle inequality,

Δ
[
πN (ηN

Ntk
), πN (ξN,k)

]
− ΔN (tk)

≤ Δ(u(., tk)dx, vk(.)dx) + Δ
[
vk(.)dx, πN (ξN,k)

]

for which (53), (54) yield as N → ∞ an upper bound 2δε, hence 3δε for the
term (55). ��

6 Other Models Under a General Framework

As announced in Sect. 3, we first define in Subsect. 6.1, as in [5,9,47] a general
framework (which encompasses all known examples), that we illustrate with
our reference examples, the misanthropes process (with generator (4)), and the
k-exclusion process (with generator (5)). Next in Subsect. 6.2, we study examples
of more complex models thanks to this new framework.

6.1 Framework

This section is based on parts of [9, Sections 2, 5]. The interest of an abstract
description is to summarize all details of the microscopic dynamics in a single
mapping, hereafter denoted by T . This mapping contains both the generator
description of the dynamics and its graphical construction. Once a given model
is written in this framework, all proofs can be done without any model-specific
computations, only relying on the properties of T .

Monotone Transformations. Given an environment α ∈ A, we are going to
define a Markov generator whose associated dynamics can be generically under-
stood as follows: we pick a location on the lattice and around this location, apply
a random monotone transformation to the current configuration. Let (V,FV ,m)
be a measure space, where m is a nonnegative finite measure. This space will
be used to generate a monotone conservative transformation, that is a mapping
T : X → X such that:

(i) T is nondecreasing: that is, for every η ∈ X and ξ ∈ X, η ≤ ξ implies
T η ≤ T ξ;

(ii) T acts on finitely many sites, that is, there exists a finite subset S of Z

such that, for all η ∈ X, T η only depends on the restriction of η to S, and
coincides with η outside S;
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(iii) T η is conservative, that is, for every η ∈ X,
∑

x∈S

T η(x) =
∑

x∈S

η(x)

We denote by T the set of monotone conservative transformations, endowed with
the σ-field FT generated by the evaluation mappings T �→ T η for all η ∈ X.

Definition of the Dynamics. In order to define the process, we specify a
mapping

A × V → T, (α, v) �→ T α,v

such that for every α ∈ A and η ∈ X, the mapping v �→ T α,vη is measurable from
(V,FV ,m) to (T,FT). When m is a probability measure, this amounts to saying
that for each α ∈ A, the mapping v �→ T α,v is a T-valued random variable.
The transformation T α,v must be understood as applying a certain update rule
around 0 to the current configuration, depending on the environment around 0.
If x ∈ Z \ {0}, we define

T α,x,v := τ−xT τxα,vτx (59)

This definition can be understood as applying the same update rule around site x,
which involves simultaneous shifts of the initial environment and transformation.

We now define the Markov generator

Lαf(η) =
∑

x∈Z

∫

V
[f (T α,x,vη) − f(η)] m(dv) (60)

As a result of (59), the generator (60) satisfies the commutation property (15).

Basic Examples. To illustrate the above framework, we come back to our
reference examples of Sect. 2.2.

The misanthropes process. Let

V := Z × [0, 1], v = (z, u) ∈ V, m(dv) = c−1||b||∞p(dz)λ[0,1](du) (61)

For v = (z, u) ∈ V, T α,v is defined by

T α,vη =

⎧
⎨

⎩
η0,z if u < α(0)

b(η(0), η(z))
c−1||b||∞

η otherwise
(62)

Once given T α,v in (62), we deduce T α,x,v from (59):

T α,x,vη =

⎧
⎨

⎩
ηx,x+z if u < α(x)

b(η(x), η(x + z))
c−1||b||∞

η otherwise
(63)

Though T α,v is the actual input of the model, from which T α,x,v follows, in the
forthcoming examples, for the sake of readability, we will directly define T α,x,v.
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Monotonicity of the transformation T α,x,z given in (63) follows from assump-
tion (M2 ). One can deduce from (60) and (63) that Lα is indeed given by (4).

The k-step exclusion process. Here we let V = Z
k and m denote the distribu-

tion of the first k steps of a random walk on Z with increment distribution p(.)
absorbed at 0. We define, for (x, v, η) ∈ Z × V × X, with v = (z1, . . . , zk),

N(x, v, η) = inf{i ∈ {1, . . . , k} : η(x + zi) = 0}

with the convention that inf ∅ = +∞. We then set

T α,x,vη =

{
ηx,x+N(x,v,η) if N(x, v, η) < +∞
η if N(x, v, η) = +∞

(64)

One can show that this transformation is monotone, either directly, or by applica-
tion of Lemma 11, since the k-step exclusion is a particular k-step misanthropes
process (see special case 2a below). Plugging (64) into (60) yields (5).

We now describe the so-called graphical construction of the system given
by (60), that is its pathwise construction on a Poisson space. We consider the
probability space (Ω,F ,P) of locally finite point measures ω(dt, dx, dv) on R

+ ×
Z × V, where F is generated by the mappings ω �→ ω(S) for Borel sets S of
R

+ × Z × V, and P makes ω a Poisson process with intensity

M(dt, dx, dv) = λR+(dt)λZ(dx)m(dv)

denoting by λ either the Lebesgue or the counting measure. We write E for
expectation with respect to P. There exists a unique mapping

(α, η0, t) ∈ A × X × R
+ �→ ηt = ηt(α, η0, ω) ∈ X (65)

satisfying: (a) t �→ ηt(α, η0, ω) is right-continuous; (b) η0(α, η0, ω) = η0; (c) the
particle configuration is updated at points (t, x, v) ∈ ω (and only at such points;
by (t, x, v) ∈ ω we mean ω{(t, x, v)} = 1) according to the rule

ηt(α, η0, ω) = T α,x,vηt−(α, η0, ω) (66)

The processes defined by (60) and (65)–(66) exist and are equal in law under
general conditions given in [47], see also [11] for a summary of this construction).

Coupling and Monotonicity. The monotonicity of T α,x,u implies monotone
dependence (11) with respect to the initial state. Thus, an arbitrary number of
processes can be coupled via the graphical construction. This implies complete
monotonicity and thus attractiveness. It is also possible to define the coupling
of any number of processes using the transformation T . For instance, in order
to couple two processes, we define the coupled generator Lα on X2 by

Lαf(η, ξ) :=
∑

x∈Z

∫

V
[f (T α,x,vη, T α,x,vξ) − f(η, ξ)] m(dv)

for any local function f on X2.
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6.2 Examples

We refer the reader to [9, Section 5] for various examples of completely mono-
tone models defined using this framework. We now review two of the models
introduced in [9, Section 5], then present a new model containing all the other
models in this paper, the k-step misanthropes process.

The Generalized Misanthropes Process. [9, Section 5.1]. Let K ∈ N. Let
c ∈ (0, 1), and p(.) (resp. P (.)), be a probability distribution on Z. Define A to
be the set of functions B : Z2 × {0, . . . , K}2 → R

+ such that:

(GM1) For all (x, z) ∈ Z
2, B(x, z, ., .) satisfies assumptions (M1 )–(M3 );

(GM2) There exists a constant C > 0 and a probability measure P (.) on Z

such that B(x, z,K, 1) ≤ CP (z) for all x ∈ Z.

Assumption (GM2) is a natural sufficient assumption for the existence of the
process and graphical construction below. The shift operator τy on A is defined
by (τyB)(x, z, n,m) = B(x + y, z, n,m) We generalize (4) by setting

LBf(η) =
∑

x,y∈Z

B(x, y − x, η(x), η(y)) [f (ηx,y) − f(η)]

Thus, the environment at site x is given here by the jump rate function B(x, ., .)
with which jump rates from site x are computed.

For v = (z, u), set m(dv) = CP (dz)λ[0,1](du) in (61), and replace (62) with

T B,x,vη =

⎧
⎨

⎩
ηx,x+z if u <

B(x, z, η(x), η(x + z))
CP (z)

η otherwise

A natural irreducibility assumption generalizing (7) is the existence of a constant
c > 0 and a probability measure p(.) on Z satisfying (7), such that

∀z ∈ Z, inf
x∈Z

b(x, z, 1,K − 1) ≥ cp(z)

The basic model (4) is recovered for B(x, z, n,m) = α(x)p(z)b(n,m). Another
natural example is the misanthropes process with bond disorder. Here A =
[c, 1/c]Z

2
with the space shift defined by τzα = α(. + z, . + z). We set

B(x, z, n,m) = α(x, x + z)b(n,m), where α ∈ A. Assumption (GM2) is now
equivalent to existence of a constant C > 0 and a probability measure P (.) on
Z such that α(x, y) ≤ CP (y − x).

The microscopic flux function j2 in (18) is given here by

j2(α, η) =
∑

z∈Z

zB(0, z, η(0), η(z))

that is well defined under the assumption that P (.) has a finite first moment.
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Asymmetric Exclusion Process with Overtaking. This example is a partic-
ular case of the generalized k-step K-exclusion studied in [9, Section 5.2, Example
5.4], see also the traffic flow model in [9, Section 5.3]. The former model is itself
a special case of the k-step misanthropes process defined below.

Let K = 1, k ∈ N, and K denote the set of (2k)-tuples (βj)j∈{−k,...,k}\{0} such
that βj+1 ≤ βj for every j = 1, . . . , k−1, βj−1 ≤ βj for every j = −1, . . . ,−k+1,
and β1 + β−1 > 0. We define A = KZ. An element of A is denoted by β =
(βj

x)j∈{−k,...,k},x∈Z. The dynamics of this model is defined informally as follows.
A site x ∈ Z is chosen as the initial site, then a jump direction (right or left) is
chosen, and in this direction, the particle jumps to the first available site if it is
no more than k sites ahead. The jump occurs at rate βj

x if the first available site
is x + j. Let V = [0, 1] × {−1, 1} and m = δ1 + δ−1. For x ∈ Z and v ∈ {−1, 1},
we set

N(x, v, η) := inf {i ∈ {1, . . . , k} : η(x + iv) = 0}
with the usual convention inf ∅ = +∞. The corresponding monotone transfor-
mation is defined for (u, v) ∈ V by

T β,x,vη =

{
ηx,x+N(x,v,η)v if N(x, v, η) < +∞ and u ≤ β

vN(x,v,η)
x

η otherwise
(67)

Monotonicity of the transformation T α,x,z is given by [9, Lemma 5.1], and is also
a particular case of Lemma 11 below, which states the same property for the
k-step misanthropes process. It follows from (60) and (67) that the generator of
this process is given for β ∈ A by

Lβf(η) =
∑

x∈Z

η(x)
k∑

j=1

{

βj
x[1 − η(x + j)]

i=j−1∏

i=1

η(x + i)

+ β−j
x [1 − η(x − j)]

i=j−1∏

i=1

η(x − i)

}

(68)

A sufficient irreducibility property replacing (7) is

inf
x∈Z

(
β1

x + β−1
x

)
> 0

The microscopic flux function j2 in (18) is given here by

j2(β, η) = η(0)
k∑

j=1

jβj
0[1 − η(j)]

j−1∏

i=1

η(i)

−η(0)
k∑

j=1

jβ−j
0 [1 − η(j)]

j−1∏

i=1

η(i) (69)

with the convention that an empty product is equal to 1. For ρ ∈ [0, 1], let
Bρ denote the Bernoulli distribution on {0, 1}. In the absence of disorder, that
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is when βi
x does not depend on x, the measure νρ defined by

νρ(dη) =
⊗

x∈Z

Bρ[dη(x)]

is invariant for this process. It follows from (69) that the macroscopic flux func-
tion for the model without disorder is given by

G(u) = (1 − u)
k∑

j=1

j[βj − β−j ]uj

The k-step Misanthropes Process. In the sequel, an element of Zk is denoted
by z = (z1, . . . , zk). Let K ≥ 1, k ≥ 1, c ∈ (0, 1).

Define D0 to be the set of functions b : {0, . . . , K}2 → R
+ such that b(0, .) =

b(.,K) = 0, b(n,m) > 0 for n > 0 and m < K, and b is nondecreasing (resp.
nonincreasing) w.r.t. its first (resp. second) argument. Let D denote the set of
functions b = (b1, . . . , bk) from Z

k × {0, . . . , K}2 → (R+)k such that bj(z, ., .) ∈
D0 for each j = 1, . . . , k, and

∀j = 2, . . . , k, bj(.,K, 0) ≤ bj−1(., 1,K − 1) (70)

Let q be a probability distribution on Z
k, and b ∈ D. We define the (q, b) k-step

misanthrope process as follows. A particle at x (if some) picks a q-distributed
random vector Z = (Z1, . . . , Zk), and jumps to the first site x+Zi (i ∈ {1, . . . , k})
with strictly less than K particles along the path (x + Z1, . . . , x + Zk), if such a
site exists, with rate bi(Z, η(x), η(x + Zi)). Otherwise, it stays at x.

Next, disorder is introduced: the environment is a field α = ((qx, bx) : x ∈
Z) ∈ A := (P(Zk) × D)Z. For a given realization of the environment, the dis-
tribution of the path Z picked by a particle at x is qx, and the rate at which it
jumps to x + Zi is bi

x(Z, η(x), η(x + Zi)). The corresponding generator is given
by

Lαf(η) =
k∑

i=1

∑

x,y∈Z

ci
α(x, y, η) [f(ηx,y) − f(η)] (71)

for a local function f on X, where (with the convention that an empty product
is equal to 1)

ci
α(x, y, η) =

∫
⎡

⎣bi
x(z, η(x), η(y))1{x+zi=y}

i−1∏

j=1

1{η(x+zj)=K}

⎤

⎦ dqx(z)

The distribution Q of the environment on A is assumed ergodic with respect to
the space shift τy, where τyα = ((qx+y, bx+y) : x ∈ Z).

A sufficient condition for the existence of the process and graphical construc-
tion below is the existence of a probability measure P (.) on Z and a constant
C > 0 such that

sup
i=1,...,k

sup
x∈Z

qi
x(.) ≤ C−1P (.) (72)
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where qi
x denotes the i-th marginal of qx. On the other hand, a natural irreducibil-

ity assumption sufficient for Proposition 2 and Theorem 3, is the existence of a
constant c > 0, and a probability measure p(.) on Z satisfying (72), such that

inf
x∈Z

q1
x(.) ≥ cp(.)

To define a graphical construction, we set, for (x, z, η) ∈ Z×Z
k ×X, b ∈ D0 and

u ∈ [0, 1],

N(x, z, η) = inf {i ∈ {1, . . . , k} : η (x + zi) < K} with inf ∅ = +∞

Y (x, z, η) =

{
x + zN(x,z,η) if N(x, z, η) < +∞
x if N(x, z, η) = +∞

T0
x,z,b,uη =

{
ηx,Y (x,z,η) if u < bN(x,z,η)(z, η(x), η(Y (x, z, η)))
η otherwise

(73)

Let V = [0, 1] × [0, 1], m = λ[0,1] ⊗ λ[0,1]. For each probability distribution q on
Z

k, there exists a mapping Fq : [0, 1] → Z
k such that Fq(V1) has distribution

q if V1 is uniformly distributed on [0, 1]. Then the transformation T in (66) is
defined by (with v = (v1, v2) and α = ((qx, βx) : x ∈ Z))

T α,x,vη = T x,Fqx (v1),bx(Fqx (v1),.,.),v2
0 η

The definition of j2 in (18), applied to the generator (71), yields

j2(α, η) =
∑

z∈Z

zcα(0, z, η)

where

cα(x, y, η) :=
k∑

i=1

ci
α(x, y, η)

Special Cases

1. The generalized misanthropes process is recovered for k = 1, because then in
(71) we have c1

α(x, y, η) = q1
x(y − x)b1

x(y − x, η(x), η(y)).
2. A generalized disordered k-step exclusion process is obtained if K = 1 and

bj
x(z, n,m) = βj

x(z)n(1 − m). In this process, if site x is the initial location of
an attempted jump, and a particle is indeed present at x, a random path of
length k with distribution qx is picked, and the particle tries to find an empty
location along this path. If it finds none, then it stays at x. Previous versions
of the k-step exclusion process are recovered if one makes special choices for
the distribution qx:
2a. The usual k-step exclusion process with site disorder, whose generator

was given by (5), corresponds to the case where qx is the distribution of
the first k steps of a random walk with kernel p(.) absorbed at 0, and
βj

x = α(x).
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2b. The exclusion process with overtaking, whose generator was given by (68),
corresponds to the case where the random path is chosen as follows: first,
one picks with equal probability a jumping direction (left or right); next,
one moves in this direction by successive deterministic jumps of size 1.

3. For K ≥ 2, the generalized k-step K-exclusion process ([9, Subsection 5.2])
corresponds to bj

x(z, n,m) = βj
x(z)1{n>0}1{m<K}.

Returning to the general case, condition (70) is the relevant extension of the
condition βj

x(z) ≤ βj−1
x (z) in the exclusion process with overtaking. If K ≥ 2, it

means that any possible j-step jump has rate larger or equal than any (j−1)-step
jump.

The monotonicity property (11) of the graphical construction, and thus the
complete monotonicity of the process, is a consequence of the following lemma.

Lemma 11. For every (x, z, u) ∈ Z × Z
k × [0, 1] and b ∈ D0, T x,z,b,u

0 is an
increasing mapping from X to X.

Proof of Lemma 11. Let (η, ξ) ∈ X2 with η ≤ ξ. To prove that T x,z,b,u
0 η ≤

T x,z,b,u
0 ξ, since η and ξ can only possibly change at sites x, y := Y (x, z, η) and

y′ := Y (x, z, ξ), it is sufficient to verify the inequality at these sites.
If ξ(x) = 0, then by (73), η and ξ are both unchanged by T x,z,b,u

0 . If η(x) =
0 < ξ(x), then T x,z,b,u

0 ξ(y′) ≥ ξ(y′) ≥ η(y′) = T x,z,b,u
0 η(y′).

Now assume η(x) > 0. Then η ≤ ξ implies N(x, z, η) ≤ N(x, z, ξ). If
N(x, z, η) = +∞, η and ξ are unchanged. If N(x, z, η) < N(x, z, ξ) = +∞,
then T x,z,b,u

0 η = ηx,y, and ξ(y) = K. Thus, T x,z,b,u
0 η(x) = η(x) − 1 ≤ ξ(x) =

T x,z,b,u
0 ξ(x), and T x,z,b,u

0 ξ(y) = ξ(y) = K ≥ T x,z,b,u
0 η(y).

In the sequel, we assume N(x, z, η) and N(x, z, ξ) both finite. Let

β := bN(x,z,η)(η(x), η(y))

and
β′ := bN(x,z,ξ)(ξ(x), ξ(y′)).

(1) Assume N(x, z, η) = N(x, z, ξ) < +∞, then y = y′. If u ≥ max(β, β′), both
η and ξ are unchanged. If u < min(β, β′), T x,z,b,u

0 η = ηx,y and T x,z,b,u
0 ξ =

ξx,y, whence the conclusion. We are left to examine different cases where
min(β, β′) ≤ u < max(β, β′).

(a) If η(x) = ξ(x), then β′ ≤ β, and β′ ≤ u < β implies η(y) < ξ(y). In this
case, T x,z,b,u

0 ξ(x) = ξ(x) ≥ η(x) > T x,z,b,u
0 η(x) and T x,z,b,u

0 ξ(y) = ξ(y) =
K ≥ T x,z,b,u

0 η(y).
(b) If η(x) < ξ(x), then T x,z,b,u

0 ξ(x) ≥ ξ(x) − 1 ≥ η(x) ≥ T x,z,b,u
0 η(x). If β ≤

u < β′, then T x,z,b,u
0 ξ(y) = ξ(y) + 1 > η(y) = T x,z,b,u

0 η(y). If β′ ≤ u < β,
then η(y) < ξ(y) and T x,z,b,u

0 ξ(y) = ξ(y) ≥ η(y) + 1 = T x,z,b,u
0 η(y).

(2) Assume N(x, z, η) < N(x, z, ξ) < +∞, hence β ≥ β′ by (70), and η(y) <

ξ(y) = K. If u ≥ β, η and ξ are unchanged. If u < β′, then T x,z,b,u
0 η(y) =

η(y)+1 ≤ ξ(y) = T x,z,b,u
0 ξ(y), and T x,z,b,u

0 ξ(y′) = ξ(y′)+1 ≥ T x,z,b,u
0 η(y′) =

η(y′). If β′ ≤ u < β, then T x,z,β,u
0 η(x) = η(x) − 1 ≤ T x,z,b,u

0 ξ(x) and
T x,z,b,u

0 η(y) = η(y) + 1 ≤ T x,z,b,u
0 ξ(y) = ξ(y) = K. ��
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34. Kružkov, S.N.: First order quasilinear equations with several independent variables.
Math. URSS Sb. 10, 217–243 (1970)

35. Liggett, T.M.: Coupling the simple exclusion process. Ann. Probab. 4(3), 339–356
(1976)

36. Liggett, T.M.: Interacting Particle Systems. Classics in Mathematics (Reprint of
first edition). Springer-Verlag, New York (2005)

37. Liggett, T.M., Spitzer, F.: Ergodic theorems for coupled random walks and other
systems with locally interacting components. Z. Wahrsch. Verw. Gebiete 56(4),
443–468 (1981)

38. Mountford, T.S., Ravishankar, K., Saada, E.: Macroscopic stability for nonfinite
range kernels. Braz. J. Probab. Stat. 24(2), 337–360 (2010)

39. Rezakhanlou, F.: Hydrodynamic limit for attractive particle systems on Z
d. Com-

mun. Math. Phys. 140(3), 417–448 (1991)



Euler Hydrodynamics of Attractive Systems 89

40. Rezakhanlou, F.: Continuum limit for some growth models. II. Ann. Probab. 29(3),
1329–1372 (2001)

41. Rost, H.: Nonequilibrium behaviour of a many particle process: density profile and
local equilibria. Z. Wahrsch. Verw. Gebiete 58(1), 41–53 (1981)
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Abstract. On the complete graph KM with M ≥ 3 vertices consider
two independent discrete time random walks X and Y, choosing their
steps uniformly at random. A pair of trajectories X = {X1, X2, . . . } and
Y = {Y1, Y2, . . . } is called non-colliding, if by delaying their jump times
one can keep both walks at distinct vertices forever. It was conjectured by
P. Winkler that for large enough M the set of pairs of non-colliding tra-
jectories {X,Y} has positive measure. N. Alon translated this problem to
the language of coordinate percolation, a class of dependent percolation
models, which in most situations is not tractable by methods of Bernoulli
percolation. In this representation Winkler’s conjecture is equivalent to
the existence of an infinite open cluster for large enough M . In this paper
we establish the conjecture building upon the renormalization techniques
developed in [4].

Keywords: Dependent percolation · Renormalization

1 Introduction

Bernoulli percolation has been a paradigm model for spatial randomness for last
half a century. The deep and rich understanding that emerged is a celebrated
success story of contemporary probability. In the mean time several natural
questions arising from mathematical physics and theoretical computer science
has necessitated the study of models containing more complicated dependent
structures, which are not amenable to the tools of Bernoulli percolation. Among
them we could mention classical gas of interacting Brownian paths [19], loop
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soups [18] and random interlacements [1,20]. A particular subclass of models
that has received attention is a class of “coordinate percolation” models, which
were introduced, motivated by problems of statistical physics, in late eighties
by B. Tóth under the name “corner percolation”, later studied in [17], and in
early nineties in theoretical computer science by P. Winkler, later studied in
several its variants in [5,6,15,21]. Problems of embedding one random sequence
into another can also be cast into this framework [4,9,11–14], which in turn is
intimately related to quasi-isometries of random objects [4,16].

In this work we focus on one particular model in this class, introduced by
Winkler, which in its original formulation relates to clairvoyant scheduling of
two independent random walks on a complete graph. More precisely, on the
complete graph KM with M ≥ 3 vertices consider two independent discrete time
random walks X and Y which move by choosing steps uniformly at random.
Two trajectories (realizations) X = {X1,X2, . . . } and Y = {Y1, Y2, . . . } are
called non-colliding, if, knowing all steps of X and Y, one can keep both walks on
distinct vertices forever by delaying their jump-times appropriately. The question
of interest here is whether the set of non-colliding pairs of trajectories have
positive probability. For M = 3 the measure of non-colliding pairs is zero (see
Corollary 3.4 [21]). It was conjectured by Winkler [6] that for large enough M , in
particular it is believed for M ≥ 4 based on simulations, the set of non-colliding
trajectories {X,Y} has positive measure. The question became prominent as the
clairvoyant demon problem.

N. Alon translated this problem into the language of coordinate percolation.
Namely, let X = (X1,X2, . . .) and Y = (Y1, Y2, . . .) be two i.i.d. sequences with

P(Xi = k) = P(Yj = k) =
1
M

for k = 1, 2, . . . ,M and for i, j = 1, 2, . . . .

Define an oriented percolation process on Z+ × Z+: the vertex (i1, i2) ∈ Z
2
>0

will be called “closed” if Xi1 = Yi2 . Otherwise it is called “open”. It is curious
to notice that this percolation process (for M=2) was introduced much earlier
by Diaconis and Freedman [7] in the completely different context of studying
visually distinguishable random patterns in connection with Julesez’s conjecture.
It is easy to observe that a pair of trajectories {X,Y} is non-colliding if and only
if there is an open oriented infinite path starting at the vertex (1, 1). The issue of
settling Winkler’s conjecture then translates to proving that for M sufficiently
large, there is percolation with positive probability, which is our main result in
this paper. For X and Y as above, we say X ←→ Y if there exists an infinite
open oriented path starting from (1, 1).

Theorem 1. For all M sufficiently large, P(X ←→ Y) > 0, thus clairvoyant
scheduling is possible.

1.1 Related Works

This scheduling problem first appeared in the context of distributed computing
[6] where it is shown that two independent random walks on a finite connected
non-bipartite graph will collide in a polynomial time even if a scheduler tries to
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keep them apart, unless the scheduler is clairvoyant. In a recent work [2], instead
of independent random walks, by allowing coupled random walks, it was shown
that a large number of random walks can be made to avoid one another forever.
In the context of clairvoyant scheduling of two independent walks, the non-
oriented version of the oriented percolation process described above was studied
independently in [21] and [3] where they establish that in the non-oriented model
there is percolation with positive probability if and only if M ≥ 4. In [8] it was
established that, if there is percolation, the chance that the cluster dies out after
reaching distance n must decay polynomially in n, which showed that, unlike
the non-oriented models, this model was fundamentally different from Bernoulli
percolation, where such decay is exponential.

In [4] a multi-scale structure was developed to tackle random embedding
problems which can be recast in co-ordinate percolation framework. As a corol-
lary of a general embedding theorem, it was proved there that an i.i.d. Bernoulli
sequence can almost surely be embedded into another in a Lipschitz manner
provided that the Lipschitz constant is sufficiently large. It also led to a proof
of rough isometry of two one-dimensional Poisson processes as well as a new
proof of Winkler’s compatible sequence problem. In this work we build upon
the methods of [4], using a similar multi-scale structure, but with crucial adap-
tations. An earlier proof of Theorem 1 appeared in [10] with a very difficult
multi-scale argument. Our proof is different and we believe gives a clearer induc-
tive structure. We also believe that our proof can be adapted to deal with this
problem on several other graphs, as well as in the case where there are multiple
random walks.

1.2 Outline of the Proof

Our proof relies on multi-scale analysis. The key idea is to divide the original
sequences into blocks of doubly exponentially growing length scales Lj = Lαj

0 ,
for j ≥ 1, and at each of these levels j we have a definition of a “good”
block. The multi-scale structure that we construct has a number of parameters,
α, β, δ,m, k0, R and L0 which must satisfy a number of relations described in the
next subsection. Single characters in the original sequences X and Y constitute
the level 0 blocks.

Suppose that we have constructed the blocks up to level j denoting the
sequence of blocks of level j as (X(j)

1 ,X
(j)
2 . . .). In Sect. 2 we give a construction

of (j + 1)-level blocks out of j-level sub-blocks in such way that the blocks are
independent and, apart from the first block, identically distributed. Construction
of blocks at level 1 has slight difference from the general construction.

At each level we have a definition which distinguishes some of the blocks as
good. This is designed in such a manner that at each level, if we look at the
rectangle in the lattice determined by a good block X and a random block Y,
then, with high probability, it will have many open paths with varying slopes
through it. For a precise definition see Definitions 4 and 5. Having these paths
with different slopes will help achieve improving estimates of the probability of
the event of having a path from the bottom left corner to the top right corner
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of the lattice rectangle determined by random blocks X and Y , denoted by
[X

c,c←→ Y ], at higher levels.
The proof then involves a series of recursive estimates at each level, given in

Sect. 3. We require that at level j the probability of a block being good is at least
1 − L−δ

j , so that the vast majority of blocks are good. Furthermore, we obtain

tail bounds on P(X
c,c←→ Y | X) by showing that for 0 < p ≤ 3/4 + 2−(j+3),

P

(
P

(
X

c,c←→ Y | X
)

≤ p
)

≤ pm+2−j

L−β
j ,

where β and m are parameters mentioned at the beginning of this section. We
show the similar bound for Y-blocks as well. We also ask that the length of
blocks satisfy an exponential tail estimate. The full inductive step is given in
Theorem 2. Proving this constitutes the main work of the paper.

We use the key quantitative estimate provided by Lemma 14 which is taken
from [4] (see Lemma 7.3, [4]), which bounds the probability of a block having:
(a) an excessive length, (b) too many bad sub-blocks, (c) a particularly difficult
collection of sub-blocks, where we quantify the difficulty of a collection of bad
sub-blocks {Xi}k

i=1 by the value of
∏k

i=1 P[Xi
c,c←→ Y |X], where Y is a random

block at the same level. In order to achieve the improvement on the tail bounds
of P(X

c,c←→ Y | X) at each level, we take advantage of the flexibility in trying a
large number of potential positions to cross the rectangular strips determined by
each member of a small collection of bad sub-blocks, obtained by using the recur-
sive estimates on probabilities of existence of paths of varying slopes through
rectangles determined by collections of good sub-blocks.

To this effect we also borrow the notion of generalised mappings developed
in [4] to describe such potential mappings. Our analysis is split into 5 different
cases. To push through the estimate of the probability of having many open paths
of varying slopes at a higher level, we make some finer geometric constructions.
To complete the proof we note that X

(j)
1 and Y

(j)
1 are good for all j with positive

probability. Using the definition of good blocks and a compactness argument we
conclude the existence of an infinite open path with positive probability.

1.3 Parameters

Our proof involves a collection of parameters α, β, δ, k0,m and R which must
satisfy a system of constraints. The required constraints are

α > 6, δ > 2α ∨ 48, β > α(δ + 1), m > 9αβ, k0 > 36αβ, R > 6(m + 1).

To fix on a choice we will set

α = 10, δ = 50, β = 600, m = 60000, k0 = 300000, R = 400000. (1)

Given these choices we then take L0 to be a sufficiently large integer. We did not
make a serious attempt to optimize the parameters or constraints, sometimes
for the sake of clarity of exposition.
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Organization of the Paper

Rest of this paper is organised as follows. In Sect. 2 we describe our block con-
structions and formally define good blocks. In Sect. 3 we state the main recursive
theorem and show that it implies Theorem 1. In Sect. 4 we construct a collection
of paths across a block which we shall use to improve the recursive estimates
from one scale to the next. In Sect. 6 we prove the main recursive tail estimate for
the corner to corner connection probabilities. Section 7 and Sect. 8 are devoted
to proving estimates for corner to side and side to side connection probabilities
respectively. In Sect. 9 we show that good blocks have the required inductive
properties thus completing the induction.

2 The Multi-scale Structure

Our strategy for the proof of Theorem 1 is to partition the sequences X and Y

into blocks at each level j ≥ 1. For each j ≥ 1, we write X = (X(j)
1 ,X

(j)
2 , . . .)

where we call each X
(j)
i a level j X-block, similarly we write Y = (Y (j)

1 , Y
(j)
2 , . . .).

Most of the time we would clearly state that something is a level j block and
drop the superscript j. Each of the X-block (resp. Y-block) at level (j + 1) is a
concatenation of a number of level j X-blocks, where the level 0 blocks are just
the elements of the original sequence.

2.1 Recursive Construction of Blocks

Level 1 blocks are constructed inductively as follows:
Suppose the first k blocks X

(1)
1 , . . . , X

(1)
k at level 1 have already been con-

structed and suppose that the rightmost element of X
(1)
k is X

(0)
nk . Then X

(1)
nk+1

consists of the elements X
(0)
nk+1,X

(0)
nk+2, . . . , X

(0)
nk+l where

l = min
{

t ≥ L1 : X
(0)
nk+t = 1 mod 4 and X

(0)
nk+t+1 = 0 mod 4

}
. (2)

The same definition holds for k = 0, assuming n0 = −1. Recall that L1 = Lα
0 .

Similarly, suppose the first k Y-blocks at level 1 are Y
(1)
1 , . . . , Y

(1)
k and also

suppose that the rightmost element of Y
(1)
k is Y

(0)
nk . Then Y

(1)
k+1 consists of the

elements Y
(0)
nk+1, Y

0)
nk+2, . . . , Y

(0)
nk+l where

l = min
{

t ≥ L1 : Y
(0)
nk+t = 3 mod 4 and Y

(0)
nk+t+1 = 2 mod 4

}
. (3)

We shall denote the length of an X-block X (resp. a Y-block Y ) at level 1
by LX = L1 + T

(1)
X (resp. LY = L1 + T

(1)
Y ). Notice that this construction, along

with Assumption 1, ensures that the blocks at level one are independent and
identically distributed.

At each level j ≥ 1, we also have a recursive definition of “good” blocks
(see Definition 7). Let GX

j and GY

j denote the set of good X-blocks and good
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Y-blocks at j-th level respectively. Now we are ready to describe the recursive
construction of the blocks X

(j)
i and Y

(j)
i for j ≥ 2.

The construction of blocks at level j ≥ 2 is similar for both X and Y and
we only describe the procedure to form the blocks for the sequence X. Let us
suppose we have already constructed the blocks of partition up to level j for
some j ≥ 1 and we have X = (X(j)

1 ,X
(j)
2 , . . .). Also assume we have defined the

“good” blocks at level j, i.e., we know GX

j . We describe how to partition X into

level (j + 1) blocks: X = (X(j+1)
1 ,X

(j+1)
2 , . . .).

Suppose the first k blocks X
(j+1)
1 , . . . , X

(j+1)
k at level (j + 1) has already

been constructed and suppose that the rightmost level j-subblock of X
(j+1)
k is

X
(j)
m . Then X

(j+1)
k+1 consists of the sub-blocks X

(j)
m+1,X

(j)
m+2, . . . , X

(j)

m+l+L3
j

where

l > L3
j + Lα−1

j is selected in the following manner. Let Wk+1,j+1 be a geometric
random variable having Geom(L−4

j ) distribution and independent of everything
else. Then

l = min
{
s ≥ L3

j + Lα−1
j + Wk+1,j+1 : Xm+s+i ∈ GX

j for 1 ≤ i ≤ 2L3
j

}
.

That such an l is finite with probability 1 will follow from our recursive estimates.
The case k = 0 is dealt with as before.

Put simply, our block construction mechanism at level (j + 1) is as follows:
Starting from the right boundary of the previous block, we include L3

j many
sub-blocks, then further Lα−1

j many sub-blocks, then a Geom(L−4
j ) many sub-

blocks. Then we wait for the first occurrence of a run of 2L3
j many consecutive

good sub-blocks, and end our block at the midpoint of this run.
We now record two simple but useful properties of the blocks thus constructed

in the following observation. Once again a similar statement holds for Y-blocks.

Observation 1. Let X = (X(j+1)
1 ,X

(j+1)
2 , . . .) = (X(j)

1 ,X
(j)
2 , . . .) denote the

partition of X into blocks at levels (j +1) and j respectively. Then the following
hold.

1. Let X
(j+1)
i = (X(j)

i1
,X

(j)
i1+1, . . . X

(j)
i1+l). For i ≥ 1, X

(j)
i1+l+1−k ∈ GX

j for each k,

1 ≤ k ≤ L3
j . Further, if i > 1, then X

(j)
i1+k−1 ∈ GX

j for each k, 1 ≤ k ≤ L3
j .

That is, all blocks at level (j + 1), except possibly the leftmost one, X
(j+1)
1 ,

are guaranteed to have at least L3
j “good” level j sub-blocks at either end.

Even X
(j+1)
1 ends in L3

j many good sub-blocks.

2. The blocks X
(j+1)
1 ,X

(j+1)
2 , . . . are independently distributed. In fact, X

(j+1)
2 ,

X
(j+1)
3 , . . . are independently and identically distributed according to some

law, say μX

j+1. Furthermore, conditional on the event {X
(k)
i ∈ GX

k for i =

1, 2, . . . , L3
k, for all k ≤ j}, the (j + 1)-th level blocks X

(j+1)
1 ,X

(j+1)
2 , . . . are

independently and identically distributed according to the law μX

j+1.
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From now on whenever we say “a (random) X-block at level j”, we would imply
that it has law μX

j , unless explicitly stated otherwise. Similarly let us denote the
corresponding law of “a (random) Y-block at level j” by μY

j .
Also, for j > 0, let μX

j,G denote the conditional law of an X block at level j,
given that it is in GX

j . We define μY

j,G similarly.
We observe that we can construct a block with law μX

j+1 (resp. μY

j+1) in the
following alternative manner without referring to the sequence X (resp. Y):

Observation 2. Let X1,X2,X3, . . . be a sequence of independent level j X-
blocks such that Xi ∼ μX

j,G for 1 ≤ i ≤ L3
j and Xi ∼ μX

j for i > L3
j . Now let W

be a Geom(L−4
j ) variable independent of everything else. Define as before

l = min
{
i ≥ L3

j + Lα−1
j + W : Xi+k ∈ GX

j for 1 ≤ k ≤ 2L3
j

}
.

Then X = (X1,X2, . . . , Xl+L3
j
) has law μX

j+1.

Whenever we have a sequence X1,X2, ... satisfying the condition in the obser-
vation above, we shall call X the (random) level (j + 1) block constructed from
X1,X2, .... and we shall denote the corresponding geometric variable by WX and
set TX = l − L3

j − Lα−1
j .

We still need to define good blocks, to complete the structure, we now move
towards that direction.

2.2 Corner to Corner, Corner to Side and Side to Side Mapping
Probabilities

Now we make some definitions that we are going to use throughout our proof.
Let

X =
(
X

(j)
s+1,X

(j)
s+2, . . . , X

(j)
s+lX

)
=
(
X(0)

a1
, . . . , X(0)

a2

)

be a level (j + 1) X-block (j ≥ 1) where X
(j)
i ’s and X

(0)
i are the level j

sub-blocks and the level 0 sub-blocks constituting it respectively. Similarly let
Y = (Y (j)

s′+1, Y
(j)
s′+2, ..., Y

(j)
s+lY

) = (Y (0)
b1

, . . . , Y
(0)
b2

) is a level (j + 1) Y-block. Let us
consider the lattice rectangle [a1, a2] × [b1, b2] ∩ Z

2, and denote it by X × Y . It
follows from (2) and (3) that sites at all the four corners of this rectangle are
open.

Definition 1 (Corner to Corner Path). We say that there is a corner to
corner path in X × Y , denoted by

X
c,c←→ Y,

if there is an open oriented path in X × Y from (a1, b1) to (a2, b2).

A site (x, b2) and respectively a site (a2, y), on the top, respectively on the
right side of X ×Y , is called “reachable from bottom left site” if there is an open
oriented path in X × Y from (a1, b1) to that site.
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Further, the intervals [a1, a2] and [b1, b2] will be partitioned into “chunks”

{CX
r }r≥1 and {CY

r }r≥1

respectively in the following manner. Let for any X-block X̃ at any level j ≥ 1,

I(X̃) =
{

a ∈ N : X̃ contains the level 0 block X(0)
a

}
.

Let X = (X(j)
s+1,X

(j)
s+2, . . . , X

(j)
s+lX

), and nX := 
lX/L4
j�. Similarly we define

n′
Y := 
lY /L4

j�.

Definition 2 (Chunks). The discrete segment CX
k ⊂ I(X) defined as

CX
k :=

⎧
⎨
⎩

∪kL4
j

t=(k−1)L4
j+1

I(X(j)
s+t), k = 1, . . . , nX − 1;

∪lX
t=kXL4

j+1
I(X(j)

s+t), k = nX ;

is called the kth chunk of X.

By CX and CY we denote the set of all chunks {CX
k }nX

k=1 and {CY
k }n′

Y

k=1 of X
and Y respectively. In what follows the letters T ,B,L,R will stand for “top”,
“bottom”, “left”, and “right”, respectively. Define:

CX
B = CX × {1}, CX

T = CX × {n′
Y },

CY
L = {1} × CY , CY

R = {nX} × CY .

Definition 3 (Entry/Exit Chunk, Slope Conditions). A pair (CX
k , 1) ∈

CX
B , k ∈ [Lj , nX − Lj ] is called an entry chunk (from the bottom) if it satisfies

the slope condition

1 − 2−(j+4)

R
≤ n′

Y − 1
nX − k

≤ R
(
1 + 2−(j+4)

)
.

Similarly, (1, CY
k ) ∈ CY

L , k ∈ [Lj , n
′
Y − Lj ], is called an entry chunk (from the

left) if it satisfies the slope condition

1 − 2−(j+4)

R
≤ n′

Y − k

nX − 1
≤ R

(
1 + 2−(j+4)

)
.

The set of all entry chunks is denoted by Ein(X,Y ) ⊆ (CX
B ∪CY

L ). The set of all
exit chunks Eout(X,Y ) is defined in a similar fashion.

We call (e1, e2) ∈ (CX
B ∪ CY

L ) × (CX
T ∪ CY

R ) is an “entry-exit pair of chunks”
if the following conditions are satisfied. Without loss of generality assume e1 =
(CX

k , 1) ∈ CX
B and e2 = (n′

X , CY
k′) ∈ CY

R . Then (e1, e2) is called an “entry-exit
pair” if k ∈ [Lj , nX −Lj ], k′ ∈ [Lj , n

′
Y −Lj ] and they satisfy the slope condition

1 − 2−(j+4)

R
≤ k′ − 1

nX − k
≤ R

(
1 + 2−(j+4)

)
.

Let us denote the set of all “entry-exit pair of chunks” by E(X,Y ).
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Definition 4 (Corner to Side and Side to Corner Path). We say that
there is a corner to side path in X × Y , denoted by

X
c,s←→ Y

if for each (CX
k , nX), (n′

Y , CY
k′) ∈ E2(X,Y )

#
{

a ∈ CX
k : (a, b2) is reachable

from (a1, b1) in X × Y
}

≥
(

3
4

+ 2−(j+5)

)
|CX

k |,

#
{

b ∈ CY
k : (a2, b) is reachable

from (a1, b1) in X × Y
}

≥
(

3
4

+ 2−(j+5)

)
|CY

k |.

Side to corner paths in X × Y , denoted X
s,c←→ Y is defined in the same

way except that in this case we want paths from the bottom or left side of the
rectangle X × Y to its top right corner and use E1(X,Y ) instead of E2(X,Y ).

Condition S: Let (e1, e2) ∈ E(X,Y ). Without loss of generality we assume
e1 = (CX

k1
, 1) ∈ CX

B and e2 = (nX , CY
k2

) ∈ CY
R . (e1, e2) is said to satisfy condition

S if there exists A ⊆ CX
k1

with |A| ≥
(
3/4 + 2−(j+5)

)
|CX

k1
| and B ⊆ CY

k2
with

|B| ≥
(
3/4 + 2−(j+5)

)
|CY

k2
| such that for all a ∈ A and for all b ∈ B there exist

an open path in X × Y from (a, b1) to (a2, b). Condition S is defined similarly
for the other cases.

Definition 5 (Side to Side Path). We say that there is a side to side path
in X × Y , denoted by

X
s,s←→ Y

if each (e1, e2) ∈ E(X,Y ) satisfies condition S.

It will be convenient for us to define corner to corner, corner to side, and
side to side paths not only in rectangles determined by one X-block and one
Y-block. Consider a j + 1-level X-block X = (X1,X2, . . . , Xn) and a j + 1-level
Y block Y = (Y1, . . . , Yn′) where Xi, Yi are j level subblocks constituting it. Let
X̃ (resp. Ỹ ) denote a sequence of consecutive sub-blocks of X (resp. Y ), e.g.,
X̃ = (Xt1 ,Xt1+1, . . . , Xt2) for 1 ≤ t1 ≤ t2 ≤ n. Call X̃ to be a segment of X. Let
X̃ = (Xt1 ,Xt1+1, . . . , Xt2) be a segment of X and let Ỹ = (Yt′

1
, Yt′

1+1, . . . , Yt′
2
)

be a segment of Y . Let X̃×Ỹ denote the rectangle in Z
2 determined by X̃ and Ỹ .

Also let Xt1 = (X(0)
a1 , . . . , X

(0)
a2 ), Xt2 = (X(0)

a3 , . . . , X
(0)
a4 ), Yt′

1
= (Y (0)

b1
, . . . , Y

(0)
a2 ),

Yt′
2

= (Y (0)
b3

, . . . , Y
(0)
b4

).

• We denote by X̃
c,c←→ Ỹ , the event that there exists an open oriented path

from the bottom left corner to the top right corner of X̃ × Ỹ .
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• Let X̃
c,s,∗←→ Ỹ denote the event that

{
#
{
b ∈ [b3, b4] : (a2, b) is reachable

from (a1, b1)
}

≥
(

3
4

+ 2−(j+7/2)

)
(b4 − b3)

}

and
{

#
{
a ∈ [a3, a4] : (a, b4) is reachable

from (a1, b1)
}

≥
(

3
4

+ 2−(j+7/2)

)
(a4 − a3)

}
.

X̃
s,c,∗←→ Ỹ is defined in a similar manner.

• We set X̃
s,s,∗←→ Ỹ to be the following event. There exists A ⊆ [a1, a2]

with |A| ≥ (3/4 + 2−(j+7/2))(a2 − a1), A′ ⊆ [a3, a4] with |A′| ≥ (3/4 +
2−(j+7/2))(a4 − a3), B ⊆ [b1, b2] with |B| ≥ (3/4 + 2−(j+7/2))(b2 − b1)
and B′ ⊆ [b3, b4] with |B| ≥ (3/4 + 2−(j+7/2))(b4 − b3) such that for all
a ∈ A, a′ ∈ A′, b ∈ B, b′ ∈ B′ we have that (a4, b

′) and (a′, b4)) are reachable
from (a, b1) and (a1, b).

Definition 6 (Corner to Corner Connection probability). For j ≥ 1, let
X be an X-block at level j and let Y be a Y-block at level j. We define the corner
to corner connection probability of X to be SX

j (X) = P(X
c,c←→ Y |X). Similarly

we define SY

j (Y ) = P(X
c,c←→ Y |Y ).

As noted above the law of Y is μY

j in the definition of SX

j and the law of X

is μX

j in the definition of SY

j .

2.3 Good Blocks

To complete the description, we need to give the definition of “good” blocks
at level j for each j ≥ 1 which we have alluded to above. With the definitions
from the preceding section, we are now ready to give the recursive definition of
a “good” block as follows. As usual we only give the definition for X-blocks, the
definition for Y is similar.

Let X(j+1) = (X(j)
1 ,X

(j)
2 , . . . , X

(j)
n ) be an X block at level (j + 1). Notice

that we can form blocks at level (j + 1) since we have assumed that we already
know GX

j .

Definition 7 (Good Blocks). We say X(j+1) is a good block at level (j + 1)
(denoted X(j+1) ∈ GX

j+1) if the following conditions hold.
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(i) It starts with L3
j good sub-blocks, i.e., X

(j)
i ∈ GX

j for 1 ≤ i ≤ L3
j . (This is

required only for j > 0, as there are no good blocks at level 0 this does not
apply for the case j = 0).

(ii) P

(
X

s,s←→ Y |X
)

≥ 1 − L−2β
j+1

(iii) P

(
X

c,s←→ Y |X
)

≥ 9/10 + 2−(j+4) and P

(
X

s,c←→ Y |X
)

≥ 9/10 + 2−(j+4).

(iv) SX

j (X) ≥ 3/4 + 2−(j+4).
(v) The length of the block satisfies n ≤ Lα−1

j + L5
j .

3 Recursive Estimates

Our proof of the theorem depends on a collection of recursive estimates, all of
which are proved together by induction. In this section we list these estimates
for easy reference. The proof of these estimates are provided in the next few
sections. We recall that for all j > 0, Lj = Lα

j−1 = Lαj

0 .

Tail Estimate

I. Let j ≥ 1. Let X be a X-block at level j and let mj = m + 2−j . Then

P
(
SX

j (X) ≤ p
)

≤ pmj L−β
j for p ≤ 3

4
+ 2−(j+3). (4)

Let Y be a Y-block at level j. Then

P
(
SY

j (Y ) ≤ p
)

≤ pmj L−β
j for p ≤ 3

4
+ 2−(j+3). (5)

Length Estimate

II. For X an X-block at level j ≥ 1,

E
[
exp(L−6

j−1(|X| − (2 − 2−j)Lj))
]

≤ 1. (6)

Similarly for Y , a Y-block at level j, we have

E
[
exp(L−6

j−1(|Y | − (2 − 2−j)Lj))
]

≤ 1. (7)

Probability of Good Blocks

III. Most blocks are “good”.

P
(
X ∈ GX

j

)
≥ 1 − L−δ

j . (8)

P
(
Y ∈ GY

j

)
≥ 1 − L−δ

j . (9)
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3.1 Consequences of the Estimates

For now let us assume that the estimates I − III hold at some level j. Then
we have the following consequences (we only state the results for X, but similar
results hold for Y as well).

Lemma 1. Let us suppose (4) and (8) hold at some level j. Then for all X ∈ GX

j

we have the following.

(i)

P

[
X

c,c←→ Y | Y ∈ GY

j ,X
]

≥ 3
4

+ 2−(j+7/2). (10)

(ii)

P

[
X

c,s←→ Y | Y ∈ GY

j ,X
]

≥ 9
10

+ 2−(j+7/2),

P

[
X

s,c←→ Y | Y ∈ GY
j ,X

]
≥ 9

10
+ 2−(j+7/2).

(iii)
P

[
X

s,s←→ Y | Y ∈ GY

j ,X
]

≥ 1 − L−β
j . (11)

Proof. We only prove (11), other two are similar. We have

P

[
X � s,s←→ Y | Y ∈ GY

j ,X
]

≤
P

[
X � s,s←→ Y | X

]

P[Y ∈ GY

j ]
≤ L−2β

j (1 − L−δ
j )−1 ≤ L−β

j

which implies (11). ��

3.2 The Main Recursive Theorem

We can now state the main recursive theorem.

Theorem 2 (Recursive Theorem). There exist positive constants α, β, δ,
m, k0 and R such that for all large enough L0 the following holds. If the recursive
estimates (4), (5), (6), (7), (8), (9) and hold at level j for some j ≥ 1 then all
the estimates hold at level (j + 1) as well.

We will choose the parameters as in Eq. (1). Before giving a proof of The-
orem 2 we show how using this theorem we can prove the general theorem. To
use the recursive theorem we first need to show that the estimates I, II and III
hold at the base level j = 1. Because of the obvious symmetry between X and Y

we need only show that (4), (6) and (8) hold for j = 1 if M is sufficiently large.
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3.3 Proving the Recursive Estimates at Level 1

Without loss of generality we shall assume that M is a multiple of 4. Let

X =
(

X
(0)
1 ,X

(0)
(2) , . . . , X

(0)

(L1+T
(1)
X )

)
∼ μX

1

be an X-block at level 1. Let

Y =
(

Y
(0)
1 , Y

(0)
(2) , . . . , Y

(0)

(L1+T
(1)
Y )

)
∼ μY

1 .

We first have the following lemma which proves the length estimate in the base
case.

Lemma 2. Let X be an X block at level 1 as above. Then we have for all l ≥ 1,

P

(
T

(1)
X ≥ l

)
≤
(

15
16

)(l−1)/2

. (12)

Further we have,

E

[
exp

(
L−6
0

(
|X| − 3

2
L1

))]
≤ 1. (13)

Proof. It follows from the construction of blocks at level 1 that T
(1)
X � 2V where

V has a Geom(1/16) distribution, (12) follows immediately from this. To prove
(13) we notice the following two facts.

P

[
exp(L−6

0 (|X| − 3/2L1)) ≥ 1
2

]
≤P

[
|X| ≥ 3

2
L1 − L6

0 log 2
]

≤P [|X| ≥ 5/4L1] ≤ (15/16)L1/10 ≤ 1/4

for L0 large enough using (12).
Also, for all x ≥ 0 using (12),

P

[
|X| − 3/2L1

L6
0

≥ x

]
≤
(

15
16

)xL6
0/2+L1/4

≤ 1
10

exp(−3x).

Now it follows from above that

E[exp(L−6
0 (|X| − 3/2L1))] =

∫ ∞

0
P

[
exp(L−6

0 (|X| − 3/2L1)) ≥ y
]

dy

=

∫ 1
2

0
P

[
exp(L−6

0 (|X| − 3/2L1)) ≥ y
]

dy

+

∫ 1

1
2

P

[
exp(L−6

0 (|X| − 3/2L1)) ≥ y
]

dy

+

∫ ∞

1
P

[
exp(L−6

0 (|X| − 3/2L1)) ≥ y
]

dy

≤ 1

2
+

1

8
+

1

10

∫ ∞

0
P

[
(L−6

0 (|X| − 3/2L1)) ≥ z
]
ez dz

≤ 1

2
+

1

8
+

1

10
≤ 1.

This completes the proof. ��
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Next we have the following theorem for the two remaining estimates.

Theorem 3. For all sufficiently large L0, if M (depending on L0) is sufficiently
large, then

P
(
SX

j (X) ≤ p
)

≤ pm+2−1
L−β
1 for p ≤ 3

4
+ 2−4, (14)

and
P
(
X ∈ GX

j

)
≥ 1 − L−δ

1 . (15)

Before starting with the proof of Theorem3, we define A(1)
X,1 to be the set of

level 1 X-blocks defined by

A(1)
X,1 :=

{
X : T

(1)
X ≤ 100mL1

}
.

It follows from Lemma 2 that for L0 sufficiently large

P

(
X ∈ A(1)

X,1

)
≥ 1 − L−3β

1 . (16)

We have the following two lemmas which will be used to prove Theorem 3.

Lemma 3. For M sufficiently large, the following inequalities hold for each X ∈
A(1)

X,1.

(i)

P[X
c,c←→ Y | X] ≥ 3

4
+ 2−4. (17)

(ii)

P[X
c,s←→ Y | X] ≥ 9

10
+ 2−4 and P[X

s,c←→ Y | X] ≥ 9
10

+ 2−4.

(iii)
P[X

s,s←→ Y | X] ≥ 1 − L−2β
1 .

Proof. Let Y be a level 1 block constructed out of the sequence Y
(0)
1 , . . .. Let

C(X) be the event
{

Y
(0)
i �= X

(0)
i′ ∀ i, i′, i ∈ [(10m + 1)L1], i′ ∈ [L1 + T

(1)
X ]

}
.

Let E denote the event
{

Y ∈ A(1)
Y,1

}
.
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Using the definition of the sequence Y
(0)
1 , . . . and the Y-version of (16) we

get that

P[C(X) ∩ E | X] ≥
(

1 − 4(100m + 1)L1

M

)(100m+1)L1

− L−3β
1

≥ max
{

1 − L−2β
1 ,

9
10

+ 2−4

}

for M large enough.
Since X

s,s←→ Y , X
s,c←→ Y , X

c,s←→ Y , X
c,c←→ Y each hold if C(X) and E

both hold, the lemma follows immediately. ��

Lemma 4. If M is sufficiently large then

P

(
P(X

c,c←→ Y | X) ≤ p
)

≤ pm+ 1
2 L−β

1 for p ≤ 3
4

+ 2−4.

Proof. Since L1 is sufficiently large, (17) implies that it suffices to consider the
case p < 1/500 and X /∈ A(1)

X,1. We prove that for p < 1/500

P

[
P(X

c,c←→ Y | X) ≤ p,X /∈ A(1)
X,1

]
≤ pm+2−1

L−β
1 .

Let E(X) denote the event

{
T

(1)
Y =

⌊
1

50m
T

(1)
X

⌋
, Y

(0)
i �= 2 mod 4,∀i ∈

[
L1 + 1, L1 + T

(1)
Y

]}

It follows from definition that

P[E(X) | X] ≥
(

1
4

)2(3
4

)T
(1)
X /(50m)

.

Now let Dk denote the event that

Dk =
{

Y
(0)
k �= X

(0)
i′ ∀ i′ ∈

[
50km, 50(k + 2)m ∧ T

(1)
Y

]}
.

Let

D =
L1+T

(1)
Y⋂

k=1

Dk.

It follows that

P[Dk | X, E(X)] ≥
(

1 − 400m

M

)
.

Since Dk are independent conditional on X and E(X)

P[D | X, E(X)] ≥
(

1 − 400m

M

)L1+T
(1)
X /50m

.
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It follows that

P[X
c,c←→ Y | X] ≥

(
1
4

)2(3
4

)T
(1)
X

50m
(

1 − 200m

M

)L1+T
(1)
X /50m

≥ 1
20

(
7
10

)T
(1)
X /(50m)

for M sufficiently large.
It follows that

P

[
P

(
X

c,c←→ Y | X
)

≤ p,X /∈ A(1)
X,1

]
≤ P

[
T

(1)
X ≥

(
50m

log 20p

log 7
10

)
∨ 100mL1

]

≤
(

15
16

)20m(log 20p)/(log 7
10 )

∧
(

15
16

)40mL1

≤ (20p)2m ∧
(

15
16

)40mL1

≤ pm+2−1
L−β
1

since (15/16)10 < 7/10 and L0 is sufficiently large and m > 100. ��

Proof of Theorem 3. We have established (14) in Lemma 4. That (15) holds
follows from Lemma 3 and (16) noting β > δ. ��

Now we prove Theorem 1 using Theorem 2.

Proof of Theorem 1. Let X = (X1,X2, . . .), Y = (Y1, Y2, . . .) be as in the state-
ment of the theorem. Let for j ≥ 1, X = (X(j)

1 ,X
(j)
2 , . . .) denote the partition

of X into level j blocks as described above. Similarly let Y = (Y (j)
1 , Y

(j)
2 , . . .)

denote the partition of Y into level j blocks. Let β, δ,m,R be as in Theorem 2.
It follows form Theorem 3 that for all sufficiently large L0, estimates I and II
hold for j = 1 for all sufficiently large M . Hence the Theorem 2 implies that if
L0 is sufficiently large then I and II hold for all j ≥ 1 for M sufficiently large.

Let T X

j = {X
(j)
k ∈ GX

j , 1 ≤ k ≤ L3
j} be the event that the first L3

j blocks at

level j are good. Notice that on the event ∩j−1
k=1T X

k , X
(j)
1 has distribution μX

j by

Observation 1 and so {X
(j)
i }i≥1 is i.i.d. with distribution μX

j . Hence it follows

from Eq. (8) that P(T X

j |∩j−1
k=1T X

k ) ≥ (1−L−δ
j )L3

j . Similarly defining T Y

j = {Y
(j)
k ∈

GY

j , 1 ≤ k ≤ L3
j} we get using (9) that P(T Y

j | ∩j−1
k=0 T Y

k ) ≥ (1 − L−δ
j )L3

j .
Let A = ∩j≥0(T X

j ∩ T Y

j ). It follows from above that P(A) > 0 since δ > 3
Let Aj+1 = ∩k≤j(T X

k ∩ T Y

k ). It follows from (10) and (8) that

P
[
X

(j+1)
1

c,c←→ Y
(j+1)
1 | Aj+1

]
≥ 3

4
+ 2−(j+9/2) − 2L−δ

j+1 ≥ 3
4
.
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Let Bj+1 denote the event

Bj+1 = {∃ an open path from (0, 0) → (m,n) for some m,n ≥ Lj+1} .

Then Bj+1 ↓ and Bj+1 ⊇
{

X
(j+1)
1

c,c←→ Y
(j+1)
1

}
. It follows that

P[∩Bj+1] ≥ lim inf P
[
X

(j+1)
1

c,c←→ Y
(j+1)
1

]
≥ 3

4
P[A] > 0.

A standard compactness argument shows that ∩Bj+1 ⊆ {X ↔ Y} and hence
P[X ↔ Y] > 0, which completes the proof of the theorem. ��

The remainder of the paper is devoted to the proof of the estimates in the
induction. Throughout these sections we assume that the estimates I − III hold
for some level j ≥ 1 and then prove the estimates at level j + 1. Combined they
complete the proof of Theorem 2.

From now on, in every Theorem, Proposition and Lemma we state, we would
implicitly assume the hypothesis that all the recursive estimates hold upto level j,
the parameters satisfy the constraints described in Sect. 1.3 and L0 is sufficiently
large.

4 Geometric Constructions

We shall join paths across blocks at a lower level to form paths across blocks
at a higher level. The general strategy will be as follows. Suppose we want to
construct a path across X × Y where X, Y are level j + 1 blocks. Using the
recursive estimates at level j we know we are likely to find many paths across
Xi × Y where Xi is a good sub-block of X. So we need to take special care to
ensure that we can find open paths crossing bad-subblocks of X (or Y ). To show
the existence of such paths, we need some geometric constructions, which we
shall describe in this section. We start with the following definition.

Definition 8 (Admissible Assignments). Let I1 = [a + 1, a + t] ∩ Z and
I2 = [b + 1, b + t′] ∩ Z be two intervals of consecutive positive integers. Let
I∗
1 = [a + L3

j + 1, a + t − L3
j ] ∩ Z and I∗

2 = [b + L3
j + 1, b + t′ − L3

j ] ∩ Z. Also
let B ⊆ I∗

1 and B′ ⊆ I∗
2 be given. We call Υ (I1, I2, B,B′) = (H,H ′, τ) to be

an admissible assignment at level j of (I1, I2) w.r.t. (B,B′) if the following
conditions hold.

(i) B ⊆ H = {a1 < a2 < · · · < a�} ⊆ I1 and B′ ⊆ H ′ = {b1 < b2 < · · · <
b�} ⊆ I∗

2 with � = |B| + |B′|.
(ii) τ(ai) = bi and τ(B) ∩ B′ = ∅.
(iii) Set a0 = a, a�+1 = a + t + 1; b0 = b, b�+1 = b + t′ + 1. Then we have for all

i ≥ 0
1 − 2−(j+7/2)

R
≤ bi+1 − bi − 1

ai+1 − ai − 1
≤ R

(
1 + 2−(j+7/2)

)
.
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The following proposition concerning the existence of admissible assignment fol-
lows from the results in Sect. 6 of [4]. We omit the proof.

Proposition 1. Assume the set-up in Definition 8. We have the following.

(i) Suppose we have

1 − 2−(j+4)

R
≤ t′

t
≤ R

(
1 + 2−(j+4)

)
.

Also suppose |B|, |B′| ≤ 3k0. Then there exist L2
j level j admissible assign-

ments (Hi,H
′
i, τi) of (I1, I2) w.r.t. (B,B′) such that for all x ∈ B, τi(x) =

τ1(x) + i − 1 and for all y ∈ B′, τ−1
i (y) = τ−1

1 (y) − i + 1.
(ii) Suppose

3
2R

≤ t′

t
≤ 2R

3
and |B| ≤ (t − 2L3

j )/(10R+
j ). Then there exists an admissible assignment

(H,H ′, τ) at level j of (I1, I2) w.r.t. (B, ∅).

Constructing suitable admissible assignments will let us construct different
types of open paths in different rectangles. To demonstrate this we first define
the following somewhat abstract set-up.

4.1 Admissible Connections

Assume the set-up in Definition 8. Consider the lattice A = I1 × I2. Let B =
(Bi1,i2)(i1,i2)∈A be a collection of finite rectangles where Bi1,i2 = [ni1 ] × [n′

i2
].

Let A ⊗ B denote the bi-indexed collection

{((a1, b1), (a2, b2)) : (a1, a2) ∈ A, (b1, b2) ∈ Ba1,a2} .

We think of A ⊗ B as a
∑

i1
ni1 ×

∑
i2

n′
i2

rectangle which is further divided
into rectangles indexed by (i1, i2) ∈ A in the obvious manner.

Definition 9 (Route). A route P at level j in A ⊗ B is a sequence of points
{(

(vi, b
1,vi), (vi, b

2,vi)
)}

i∈[�]

in A ⊗ B satisfying the following conditions.

(i) V (P ) = {v1, v2, . . . , v�} is an oriented path from (a+1, b+1) to (a+t, b+t′)
in A.

(ii) Let vi = (v1
i , v2

i ). For each i,

b1,vi ∈ [Lj−1, nv1
i

− Lj−1] × {1} ∪ {1} × [Lj−1, n
′
v2

i
− Lj−1]

and

b2,vi ∈ [Lj−1, nv1
i

− Lj−1] × {n′
v2

i
} ∪ {nv1

i
} × [Lj−1, n

′
v2

i
− Lj−1]

except that b1,v1 = (1, 1) and b2,v� = (nv1
�
, n′

v2
ell

) are also allowed.
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(iii) For each i (we drop the superscript vi), let b1 = (b11, b
1
2) and b2 = (b21, b

2
2).

Then for each i, we have

1 − 2−(j+3)

R
≤ b22 − b12

b21 − b11
≤ R(1 + 2−(j+3)).

(iv) b2,vi and b1,vi+1 agree in one co-ordinate.

A route P defined as above is called a route in A ⊗ B from (v1, b1,v1) to
(v�, b

2,v�). We call P a corner to corner route if b1,v1 = (1, 1) and b2,v� =
(nv1

�
, n′

v2
�
). For k ∈ I2, the k-section of the route P is defined to be the set of

k′ ∈ I1 such that (k′, k) ∈ V (P ).

Now gluing together these routes one can construct corner to corner (resp.
corner to side or side to side) paths under certain circumstances. We make the
following definition to that end.

Definition 10 (Admissible Connections). Consider the above set-up. Let

Sin = [Lj−1, na+1 − Lj−1] × {1} ∪ {1} × [Lj−1, n
′
b+1 − Lj−1]

and

Sout = [Lj−1, na+t − Lj−1] × {n′
b+t′} ∪ {na+t} × [Lj−1, n

′
b+t − Lj−1].

Suppose for each b ∈ Sout there exists a level j route P b in A ⊗ B from (1, 1) to
b. The collection P = {P b} is called a corner to side admissible connection in
A ⊗ B. A side to corner admissible connection is defined in a similar manner.
Now suppose for each b ∈ Sin, b′ ∈ Sout there exists a level j route P b,b′

in
A ⊗ B from b to b′. The collection P = {P b,b′} in this case is called a side to
side admissible connection in A ⊗ B. We also define V (P) = ∪P∈PV (P ).

The usefulness of having these abstract definitions is demonstrated by the
next few lemmata. These follow directly from definition and hence we shall omit
the proofs.

Now let X = (X1,X2, ....,Xt) be an X-blocks at level j +1 with Xi being the
j-level subblocks constituting it. Let Xi consisting of ni many chunks of (j − 1)-
level subblocks. Similarly let Y = (Y1, Y2, ..., Yt′) be a Y-block at level j + 1
with j-level subblocks Yi consisting of n′

i many chunks of (j −1) level subblocks.
Then we have the following Lemmata. Set A = [t]× [t′]. Define B = {Bi,j} where
Bi1,i2 = [n′

i1
] × [n′

i2
].

Lemma 5. Consider the set-up described above. Let H = {a1 < a2 < · · · <
a�} ⊆ [t] and H ′ = {b1 < b2 < · · · < b�}. Set X̃(s) = (Xas+1, . . . , Xas+1−1) and
Ỹ(s) = (Ybs+1, . . . , Ybs+1−1). Suppose further that for each s, X̃(s)

c,c←→ ˜Y(s) and
Xas

c,c←→ Ybs
. Then we have X

c,c←→ Y (Fig. 1).

The next lemma gives sufficient conditions under which we have X̃(s)
c,c←→

Ỹ(s).
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Fig. 1. Corner to corner paths

Lemma 6. In the above set-up, let Is
1 = [as +1, as+1−1], Is

2 = [as +1, as+1−1].
Set As = Is

1 × Is
2 and let Bs be the restriction of B to As. Suppose there exists a

corner to corner route P in As ⊗ Bs such that Xas+1
c,s←→ Ybs+1, Xas+1−1

s,c←→
Ybs+1−1 and for all other (v1, v2) ∈ V (P ) Xv1

s,s←→ Yv2 . Then X̃(s)
c,c←→ Ỹ(s).

The above lemmata are immediate from definition. Now we turn to corner to
side, side to corner and side to side connections. We have the following lemma.

Lemma 7. Consider the set-up as above. Suppose X and Y contain nX and nY

many chunks respectively. Further suppose that none of the subblock Xi or Yi

contain more than 3Lj level 0 subblocks.

(i) Suppose for every exit chunk in Eout(X,Y ) the following holds. For con-
creteness consider the chunk (k, nY ). Let Tk denote the set of all i such that
Xi is contained in CX

k . There exists T ∗
k ⊆ Tk with |T ∗

k | ≥ (1−10k0L
−1
j )|Tk|

such that for all r ∈ T ∗
k and X̃ = (X1, . . . , Xr) we have X̃

c,s,∗←→ Y .

Then we have X
c,s←→ Y .

(ii) A similar statement holds for X
s,c←→ Y .

(iii) Suppose for every pair of entry-exit chunks in E(X,Y ) the following holds.
For concreteness consider the pair of entry-exit chunks ((k1, 1), (nX , k2)).
Let Tk1 (resp. T ′

k2
) denote the set of all i such that Xi (resp. Yi) is contained

in CX
k1

(resp. CY
k2

). There exists Tk1,∗ ⊆ Tk1 , T ′
k2,∗ ⊆ T ′

k2
with |Tk1,∗| ≥

(1−10k0L
−1
j )|Tk1 |, |T ′

k2,∗| ≥ (1−10k0L
−1
j )|T ′

k2
| such that for all r ∈ Tk1,∗,

r′ ∈ T ′
k2,∗ and X̃ = (Xr, . . . , Xt), Ỹ = (Y1, . . . , Yr′) we have X̃

s,s,∗←→ Y .

Then we have X
s,s←→ Y .

Proof. Parts (i) and (ii) are straightforward from definitions. Part (iii) follows
from definitions by noting the following consequence of planarity. Suppose there
are open oriented paths in Z

2 from v1 = (x1, y1) to v2 = (x2, y2) and also from
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v3 = (x3, y1) to v4(x2, y3) such that x1 < x3 < x2 and y1 < y2 < y3. Then these
paths must intersect and hence there are open paths from v1 to v4 and also from
v2 to v3. The condition on the length of sub-blocks is used to ensure that none
of the subblocks in Tk1 \ Tk1,∗ are extremely long. ��

The next lemma gives sufficient conditions for X̃
c,s,∗←→ Ỹ and X̃

s,s,∗←→ Ỹ in
the set-up of the above lemma. This lemma also easily follows from definitions.

Lemma 8. Assume the set-up of Lemma 7. Let X̃ = (Xt1 ,Xt1+1, . . . , Xt2)
and Ỹ = (Yt′

1
, . . . , Yt′

2
). Let H = {a1 < a2 < · · · < a�} ⊆ [t1, t2] and

H ′ = {b1 < b2 < · · · < b�} ⊆ [t′1, t
′
2]. Set X̃(s) = (Xas+1, . . . , Xas+1−1) and

Ỹ(s) = (Ybs+1, . . . , Ybs+1−1) (a0, b0 etc. are defined in the natural way).

(i) Suppose that for each s < �, X̃(s)
c,c←→ Ỹ(s) and X̃(�)

c,s,∗←→ Ỹ(�). Also suppose
for each s, Xas

c,c←→ Ybs
. Then we have X̃

c,s,∗←→ Ỹ (Fig. 2).
(ii) A similar statement holds for X̃

s,c,∗←→ Ỹ .
(iii) Suppose that for each s ∈ [� − 1], X̃(s)

c,c←→ Ỹ(s), X̃(0)
s,c,∗←→ Ỹ(0) X̃(�)

c,s,∗←→
Ỹ(�). Also suppose for each s, Xas

c,c←→ Ybs
. Then we have X̃

s,s,∗←→ Ỹ
(Fig. 3).

Now we give sufficient conditions for X̃
c,s,∗←→ Ỹ and X̃

s,c,∗←→ Ỹ in terms of
routes.

Lemma 9. In the above set-up, further suppose that none of the level (j − 1)
sub-blocks of Xt1 , Xt2 , Yt′

1
, Yt′

2
contain more than 3Lj−1 level 0 sub-blocks. Set

Is
1 = [as +1, as+1 − 1], Is

2 = [as +1, as+1 − 1]. Set As = Is
1 × Is

2 and let Bs be the
restriction of B to As. Suppose there exists a corner to side admissible connection
P in As ⊗ Bs such that Xas+1

c,s←→ Ybs+1 and for all other (v1, v2) ∈ V (P)
Xv1

s,s←→ Yv2 . Then X̃(s)
c,s,∗←→ Ỹ(s). Similar statements hold for X̃(s)

s,c,∗←→ Ỹ(s)

and X̃(s)
s,s,∗←→ Ỹ(s).

Proof. Proof is immediate from definition of admissible connections and the
inductive hypotheses (this is where we need the assumption on the lengths of
j − 1 level subblocks). For X̃(s)

s,s,∗←→ Ỹ(s), we again need to use planarity as
before. ��

Now we connect it up with the notion of admissible assignments defined
earlier in this section. Consider the set-up in Lemma 5. Let B1 ⊆ I1 = [t],
B2 ⊆ I2 = [t′], let B∗

1 ⊇ B1 (resp. B∗
2 ⊇ B2) be the set containing elements

of B1 (resp. B2) and its neighbours. Let Υ be a level j admissible assignment
of (I1, I2) w.r.t. (B∗

1 , B∗
2) with associated τ . Suppose H = τ−1(B2) ∪ B1 and

H ′ = B∗
2 ∪ τ(B2). We have the following lemmata.

Lemma 10. Consider (X̃(s), Ỹ(s)) in the above set-up. There exists a corner to
corner route P in As ⊗ Bs. Further for each k ∈ Is

2 , there exist sets Hτ
k ⊆ Is

1

with |Hτ
k | ≤ Lj such that the k-section of the route P is contained in Hτ

k for all k.
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Fig. 2. Corner to corner and side to side routes

In the special case where t = t′ and τ(i) = i for all i, one case take Hτ
k = {k −

1, k, k + 1}. Further Let A′ ⊆ As with |A′| ≤ k0. Suppose Further that for all
v = (v1, v2) ∈ A′ and for i ∈ {s, s + 1} we have ||v − (ai, bi)||∞ ≥ k0R

310j+8.
Then we can take V (P ) ∩ A′ = ∅.
Proof. This lemma is a consequence of Lemma 12 below. ��
Lemma 11. In the above set-up, consider (X̃(s), Ỹ(s)). Assume for each i ∈
[as + 1, as+1 − 1], i′ ∈ [bs + 1, bs+1 − 1] we have Lα−5

j−1 ≤ ni, n
′
i′ ≤ Lα−5

j−1 + Lj−1.
Let A′ ⊆ As with |A′| ≤ k0. Suppose further that for all v = (v1, v2) ∈ A′ and for
i ∈ s, s + 1 we have ||v − (ai, bi)||∞ ≥ k0R

310j+8. Assume also as+1 −as, bs+1 −
bs ≥ 5j+6R. Then there exists a corner to side (resp. side to corner, side to side)
admissible connection P in As ⊗ Bs such that V (P ) ∩ A′ = ∅.
Proof. This lemma also follows from Lemma 12 below. ��
Lemma 12. Let A ⊗ B be as in Definition 9. Assume that

1 − 2−(j+7/2)

R
≤ t′

t
≤ R(1 + 2−(j+7/2)),

and Lα−5
j−1 + Lj−1 ≥ ni, n

′
i′ ≥ Lα−5

j−1 . Then the following holds.

(i) There exists a corner to corner route P in A ⊗ B where V (P ) ⊆ R(A)
where

R(A) = {v = (v1, v2) ∈ A : |v − (a + xt, b + xt′)|1 ≤ 50 for some x ∈ [0, 1]}.

(ii) Further, if t, t′ ≥ 5j+6R, then there exists a corner to side (resp. side to
corner, side to side) admissible connection P with V (P) ⊆ R(A).

(iii) Let A′ be a given subset of A with |A′| ≤ k0 such that A′ ⋂([k0R310j+8] ×
[k0R310j+8] ∪ ([n − k0R

310j+8, n] × [n′ − k0R
310j+8, n′]) = ∅. Then there

is a corner to corner route P in A⊗B such that V (P )∩A′ = ∅. Further, if
t, t′ ≥ 5j+6R, then there exists a corner to side (resp. side to corner, side
to side) admissible connection P with V (P) ∩ A′ = ∅.
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Proof. Without loss of generality, for this proof we shall assume a = b = 0. We
prove (i) first. Let yi = 
it′/t� + 1 for i ∈ [t] and let xi = �it/t′� for i ∈ [t′].
Define ỹi = (it′/t − yi + 1) and x̃i = (it/t′ − xi + 1).

Define y∗
i = 
ỹin

′
yi

� + 1 and x∗
i = �x̃inxi

�. Observe that it follows from
the definitions that y∗

i ∈ [n′
yi

] and x∗
i ∈ [nxi

]. Now define y∗∗
i = y∗

i if y∗
i ∈

[Lj−1, n
′
yi

−Lj−1]. If y∗
i ∈ [Lj−1] define y∗∗

i = Lj−1, if y∗
i ∈ [n′

yi
−Lj−1, n

′
yi

] define
y∗∗

i = n′
yi

− Lj−1. Similarly define x∗∗
i = x∗

i if x∗
i ∈ [Lj−1, nxi

− Lj−1]. If x∗
i ∈

[Lj−1] define x∗∗
i = Lj−1, if x∗

i ∈ [nxi
− Lj−1, nxi

] define x∗∗
i = nxi

− Lj−1. Now
for i ∈ [t − 1], i′ ∈ [t′ − 1] consider points ((i, ni), (yi, y

∗∗
i )), ((i + 1, 1), (yi, y

∗∗
i )),

((xi′ , x∗∗
i′ ), (i′, n′

i′)), ((xi′ , x∗∗
i′ ), (i′ + 1, 1)) alongwith the two corner points. We

construct a corner to corner route using these points.
Let us define V (P ) = {(i, yi), (xi′ , i′) : i ∈ [t − 1], i′ ∈ [t′ − 1]} ∪ {(t, t′)}.

We notice that either y1 = 1 or x1 = 1. It is easy to see that the vertices in
V (P ) defines an oriented path from (1, 1) to (t, t′) in A. Denote the path by
(v1, v2, . . . vt+t′−1). For v = vr, r ∈ [2, t + t′ − 2], we define points b1,vr

and
b2,vr

as follows. Without loss of generality assume v = vr = (i, yi). Then either
vr−1 = (i−1, yi) = (i−1, yi−1) or vr−1 = (i, yi−1) = (xyi−1, yi−1). If vr−1 = (i−
1, yi−1), then define {(b1,v

1 , b1,v
2 ), (b2,v

1 , b2,v
2 )} by b1,v

1 = 1, b1,v
2 = y∗∗

i−1, b2,v
1 = ni,

b2,v
2 = y∗∗

i . If vt−1 = (xyi−1, yi − 1) then define Kv = {(b1,v
1 , b1,v

2 ), (b2,v
1 , b2,v

2 )} by
b1,v
1 = x∗∗

yi−1, b1,v
2 = 1, b2,v

1 = ni, b2,v
2 = y∗∗

i . To prove that this is indeed a route
we only need to check the slope condition in Definition 9 in both the cases. We
do that only for the latter case and the former one can be treated similarly.

Notice that from the definition it follows that the slope between the points
(in R

2) (x̃yi−1, 0) and (1, ỹi) is t′/t. We need to show that

1 − 2−(j+3)

R
≤ b22 − b12

b21 − b11
=

y∗∗
i − 1

ni − x∗∗
yi−1

≤ R
(
1 + 2−(j+3)

)

Fig. 3. Side to side admissible connections
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where once more we have dropped the superscript v for convenience. Now if
x∗

yi−1 ∈ [ni − Lj−1, ni] and y∗
i ∈ [Lj−1] then from definition it follows that

(b22 − b12)/(b21 − b11) = 1 and hence the slope condition holds. Next let us suppose
y∗

i ∈ [Lj−1] but x∗
yi−1 /∈ [ni −Lj−1, ni]. Then clearly, (y∗∗

i − 1)/(ni − x∗∗
yi−1) ≤ 1.

Also notice that in this case x∗
yi−1 > Lj−1 and y∗∗

i − 1 ≥ n′
yi

ỹi(1 − L−1
j−1). It

follows that

1 −
x∗∗

yi−1

ni
= 1 −

x∗
yi−1

ni
≤ 1 − x̃yi−1 +

1
ni

≤ (1 − x̃yi−1)
(
1 + L−1

j−1

)
.

Hence

y∗∗
i − 1

ni − x∗∗
yi−1

≥
n′

yi

ni

ỹi

1 − x̃yi−1

1 − L−1
j−1

1 + L−1
j−1

≥ t′

t

Lα−5
j−1 (1 − L−1

j−1)

(Lα−5
j−1 + Lj−1)(1 + L−1

j−1)
≥ 1 − 2−(j+3)

R

for L0 sufficiently large. The case where y∗
i /∈ [Lj−1] but x∗

yi−1 ∈ [ni − Lj−1, ni]
can be treated similarly.

Next we treat the case where x∗
yi−1 ∈ [Lj−1 + 1, ni − Lj−1 − 1] and y∗

i ∈
[Lj−1 + 1, n′

yi
− Lj−1 − 1]. Here we have similarly as before

(
1 − L−1

j−1

)
(1 − x̃yi−1) ≤ 1 −

x∗∗
yi−1

ni
≤ (1 − x̃yi−1)

(
1 + L−1

j−1

)

and
ỹi

(
1 + 2L−1

j−1

)
≥ y∗∗

i − 1
n′

yi

≥ ỹi

(
1 − 2L−1

j−1

)
.

It follows as before that

(1 + 2Lj − 1−1)
1 − L−1

j−1

n′
yi

ni

n′

n
≥ y∗∗

i − 1
ni − x∗∗

yi−1

≥
n′

yi

ni

t′

t

(1 + 2Lj − 1−1)
1 − L−1

j−1

and hence

R
(
1 + 2−(j+3)

) y∗∗
i − 1

ni − x∗∗
yi−1

≥ 1 − 2−(j+3)

R

for L0 sufficiently large.
Other cases can be treated in similar vein and we only provide details in the

case where y∗
i ∈ [n′

yi
− Lj−1, n

′
yi

] and x∗
yi−1 ∈ [Lj−1]. In this case we have that

ỹi

(
1 − 2Lj−1

n′
yi

)
≤ y∗∗

i − 1
n′

yi

≤ ỹi.

We also have that

(1 − x̃yi−1)
(

1 − Lj−1

ni

)
1 −

x∗∗
yi−1

ni
≤ 1 − x̃yi−1.
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Combining these two relations we get as before that

R
(
1 + 2−(j+3)

) y∗∗
i − 1

ni − x∗∗
yi−1

≥ 1 − 2−(j+3)

R

for L0 sufficiently large.
Thus we have constructed a corner to corner route in A ⊗ B. From the defi-

nitions it follows easily that for P as above V (P ) ⊆ R(A) and hence proof of (i)
is complete.

Proof of (ii) is similar. Say, for the side to corner admissible connection, for
a given b ∈ Sin, in stead of starting with the line y = (t′/t)x, we start with the
line passing through (b1/n1, 0) and (t, t′), and define x̃i, ỹi to be the intersection
of this line with the lines y = i and x = i respectively. Rest of the proof is almost
identical, we use the fact t, t′ > 5j+6R to prove that the slope of this new line is
still sufficiently close to t′/t.

For part (iii), instead of a straight line we start with a number of piecewise
linear functions which approximate V (P ). By taking a large number of such
choices, it follows that for one of the cases V (P ) must be disjoint with the given
set A′, we omit the details. ��

Finally we show that if we try a large number of admissible assignments, at
least one of them must obey the hypothesis in Lemmas 10 and 11 regarding A′

Lemma 13. Assume the set-up in Proposition 1. Let Υh, h ∈ [L2
j ] be the family

of admissible assignments of (I1, I2) w.r.t. (B,B′) described in Proposition 1(i).
Fix any arbitrary T ⊂ [L2

j ] with |T | = R6k5
0102j+20. Then for every S ⊂ I1 × I2

with |S| = k0, there exist h0 ∈ T such that

min
x∈BX ,y∈BY ,s∈S

{
|(x, τh0(x)) − s|, |(τ−1

h0
(y), y)| − s|

}
≥ 2k0R

310j+8.

Proof. Call (x, y) ∈ I1 × I2 forbidden if there exist s ∈ S such that |(x, y) − s| ≤
2k0R

310j+8. For each s ∈ S, let Bs ⊂ I1 ×I2 denote the set of vertices which are
forbidden because of s, i.e., Bs = {(x, y) : |(x, y) − s| ≤ 2k0R

310j+8}. Clearly
|Bs| ≤ 102j+18k2

0R
6. So the total number of forbidden vertices is ≤ 102j+18k3

0R
6.

Since |B|, |B′| ≤ k0, there exists H ⊂ T with |H| = 102j+19R6k4
0 such that for

all x, x′ ∈ B, x �= x′, y, y′ ∈ B′, y �= y′, h1, h2 ∈ H, we have τh1(x) �= τh2(x
′)

and τ−1
h1

(y) �= τ−1
h2

(y′). Now for each x ∈ B (resp. y ∈ B′), (x, τh(x)) (resp.
(τ−1

h (y), y)) can be forbidden for at most 102j+18k3
0R

6 many different h ∈ H.
Hence,

#
⋃

x∈B,y∈B′

{
h ∈ H : (x, τh(x)) or (τ−1

h (y), y) is forbidden
}

≤ 2 × 102j+18R6k4
0 < |H|.

It follows that there exist h0 ∈ H which satisfies the condition in the statement
of the lemma. ��
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5 Length Estimate

We shall quote the following theorem directly from [4].

Theorem 4 (Theorem 8.1, [4]). Let X be an X block at level (j +1) we have
that

E

[
exp(L−6

j (|X| − (2 − 2−(j+1))Lj+1))
]

≤ 1.

and hence for x ≥ 0,

P(|X| > ((2 − 2−(j+1))Lj+1 + xL6
j )) ≤ e−x.

The proof is exactly the same as in [4].

6 Corner to Corner Estimate

In this section we prove the recursive tail estimate for the corner to corner
connection probabilities.

Theorem 5. Assume that the inductive hypothesis holds up to level j. Let X
and Y be random (j + 1)-level blocks according to μX

j+1 and μY

j+1. Then

P

(
P

(
X

c,c←→ Y |X
)

≤ p
)

≤ pmj+1L−β
j+1,

P

(
P

(
X

c,c←→ Y |Y
)

≤ p
)

≤ pmj+1L−β
j+1

for p ≤ 3/4 + 2−(j+4) and mj+1 = m + 2−(j+1).

Due to the obvious symmetry between our X and Y bounds and for brevity
all our bounds will be stated in terms of X and SX

j+1 but will similarly hold for
Y and SY

j+1. For the rest of this section we drop the superscript X and denote
SX

j+1 (resp. SX

j ) simply by Sj+1 (resp. Sj).
The block X is constructed from an i.i.d. sequence of j-level blocks X1,X2, . . .

conditioned on the event Xi ∈ GX

j for 1 ≤ i ≤ L3
j as described in Sect. 2.

The construction also involves a random variable WX ∼ Geom(L−4
j ) and let

TX denote the number of extra sub-blocks of X, that is the length of X is
Lα−1

j + 2L3
j + TX . Let KX denote the number of bad sub-blocks of X. Let us

also denote the position of bad subblock of X and their neighbours by {�1 < �2 <
· · · < �K′

X
}, where K ′

X denotes the number of such blocks. Trivially, K ′
X ≤ 3KX .

We define Y, . . . , WY , TY and KY similarly. The proof of Theorem 5 is divided
into 5 cases depending on the number of bad sub-blocks, the total number of
sub-blocks of X and how “bad” the sub-blocks are.

We note here that the proof of Theorem5 follows along the same general
line of argument as the proof of Theorem 7.1 in [4], with significant adaptations
resulting from the specifics of the model and especially the difference in the
definition of good blocks. As such this section is similar to Sect. 7 in [4].

The following key lemma provides a bound for the probability of blocks
having large length, number of bad sub-blocks or small

∏
i∈BX

Sj(Xi).
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Lemma 14. For all t′, k′, x ≥ 0 we have that

P

[
TX ≥ t′,KX ≥ k′,− log

∏
i∈BX

Sj(Xi) > x

]

≤ 2L
−δk′/4
j exp

(
−xmj+1 − 1

2
t′L−4

j

)
.

The proof of this Lemma is same as the proof of Lemma 7.3 in [4] and we
omit the details.

We now proceed with the 5 cases we need to consider.

6.1 Case 1

The first case is the scenario where the blocks are of typical length, have few
bad sub-blocks whose corner to corner connection probabilities are not too small.
This case holds with high probability.

We define the event A(1)
X,j+1 to be the set of (j + 1) level blocks such that

A(1)
X,j+1 :=

{
X : TX ≤

RLα−1
j

2
,KX ≤ k0,

∏
i∈BX

Sj(Xi) > L
−1/3
j

}
.

The following Lemma is an easy corollary of Lemma 14 and the choices of
parameters, we omit the proof.

Lemma 15. The probability that X ∈ A(1)
X,j+1 is bounded below by

P

[
X �∈ A(1)

X,j+1

]
≤ L−3β

j+1 .

Lemma 16. We have that for all X ∈ A(1)
X,j+1,

P

[
X

c,c←→ Y | Y ∈ A(1)
Y,j+1,X

]
≥ 3

4
+ 2−(j+3),

Proof. Suppose that X ∈ A(1)
X,j+1 with length Lα−1

j + 2L3
j + TX . Let BX denote

the location of bad subblocks of X. let K ′
X be the number of bad sub-blocks and

their neighbours and let set of their locations be B∗ = {�1 < · · · < �K′
X

}. Notice

that K ′
X ≤ 3k0. We condition on Y ∈ A(1)

Y,j+1 having no bad subblocks. Denote
this conditioning by

F =
{

Y ∈ A(1)
Y,j+1, TY ,KY = 0

}
.

Let I1 = [Lα−1
j +2L3

j +TX ] and I2 = [Lα−1
j +2L3

j +TY ]. By Proposition 1(i), we
can find L2

j admissible assignments Υh at level j w.r.t. (B∗, ∅), with associated τh

for 1 ≤ h ≤ L2
j , such that τh(�i) = τ1(�i)+h−1 and in particular each block �i is
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mapped to L2
j distinct sub-blocks. Hence we get H ⊂ [L2

j ] of size Lj < 
L2
j/9k2

0�
so that for all i1 �= i2 and h1, h2 ∈ H we have that τh1(�i1) �= τh2(�i2), that is
that all the positions bad blocks and their neighbours are mapped to are distinct.

Our construction ensures that all Yτh(�i) are uniformly chosen good j-blocks
conditional on F and since Sj(X�i

) ≥ L
−1/3
j we have that if X�i

/∈ GX

j ,

P

[
X�i

c,c←→ Yτh(�i) | F
]

≥ Sj(X�i
) − P

[
Yτh(�i) �∈ GX

j

]
≥ 1

2
Sj(X�i

). (18)

Also if X�i
∈ GX

j then from the recursive estimates it follows that

P

[
X�i

c,c←→ Yτh(�i) | F
]

≥ 3
4
;

P

[
X�i

c,s←→ Yτh(�i) | F
]

≥ 9
10

;

P

[
X�i

s,c←→ Yτh(�i) | F
]

≥ 9
10

.

If X�i
/∈ GX

j , or, if neither X�i−1 nor X�i+1 is ∈ GX

j , let Dh,i denote the event

Dh,i =
{

X�i

c,c←→ Yτh(�i)

}
.

If X�i
,X�i+1 ∈ GX

j then let Dh,i denote the event

Dh,i =
{

X�i

c,s←→ Yτh(�i)

}
.

If X�i
,X�i−1 ∈ GX

j then let Dh,i denote the event

Dh,i =
{

X�i

s,c←→ Yτh(�i)

}
.

Let Dh denote the event

Dh =
K′

X⋂
i=1

Dh,i.

Further, S denote the event

S =
{

Xk
s,s←→ Yk′∀k ∈ [Lα−1

j + 2L3
j + TX ] \ BX ,∀k′ ∈ [Lα−1

j + 2L3
j + TY ]

}
.

Also let

C1 =
{

X1
c,s←→ Y1

}
and C2 =

{
XLα−1

j +2L3
j+TX

s,c←→ YLα−1
j +2L3

j+TY

}
.

By Lemmas 5, 6 and 10 if ∪h∈HDh,S, C1, C2 all hold then X
c,c←→ Y . Con-

ditional on F , for h ∈ H, the Dh, C1, C2 are independent and by (18) and the
recursive estimates,

P[Dh | F ] ≥ 2−5k032k0L
−1/3
j .
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Hence

P[∪h∈HDh | F ] ≥ 1 −
(
1 − 2−5k032k0L

−1/3
j

)Lj

≥ 1 − L−3β
j+1 .

It follows from the recursive estimates that

P[∪h∈HDh, C1, C2 | F ] ≥
(

9
10

)2 (
1 − L−3β

j+1

)

Also a union bound using the recursive estimates at level j gives

P[¬S | F ] ≤
(

1 +
R

2

)2

L2α−2
j L−2β

j ≤ L−β
j .

It follows that

P

[
X

c,c←→ Y | F
]

≥ P[∪h∈HDh, C1, C2,S] ≥
(

9
10

)2 (
1 − L−3β

j+1

)
− L−β

j .

Hence

P

[
X

c,c←→ Y | Y ∈ A(1)
Y,j+1,X, TY

]

≥P

[
X

c,c←→ Y | F
]
P

[
KY = 0 | Y ∈ A(1)

Y,j+1, TY

]

≥
(
0.81

(
1 − L−3β

j+1

)
− L−β

j

)
P

[
KY = 0 | Y ∈ A(1)

Y,j+1, TY

]
.

Removing the conditioning on TY we get

P

[
X

c,c←→ Y | Y ∈ A(1)
Y,j+1,X

]

≥
((

9
10

)2 (
1 − L−3β

j+1

)
− L−β

j

)
P

[
KY = 0 | Y ∈ A(1)

Y,j+1

]

≥
((

9
10

)2 (
1 − L−3β

j+1

)
− L−β

j

)(
1 − L−3β

j+1 − 2L
−δ/4
j

)

≥3
4

+ 2−(j+1)

for large enough L0, where the penultimate inequality follows from Lemmas 14
and 15. This completes the lemma. ��

Lemma 17. When 1/2 ≤ p ≤ 3/4 + 2−(j+4)

P(Sj+1(X) ≤ p) ≤ pmj+1L−β
j+1
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Proof. By Lemmas 15 and 16 we have that for all X ∈ A(1)
X,j+1

P

[
X

c,c←→ Y | X
]

≥ P

[
Y ∈ A(1)

Y,j+1

]
P

[
X

c,c←→ Y | X,Y ∈ A(1)
Y,j+1

]

≥ 3
4

+ 2−(j+4).

Hence if 1/2 ≤ p ≤ 3/4 + 2−(j+4)

P

(
P

[
X

c,c←→ Y | X
]

≤ p
)

≤ P

[
X /∈ A(1)

X,j+1

]

≤ L−3β
j+1 ≤ 2−mj+1L−β

j+1 ≤ pmj+1L−β
j+1.

��

6.2 Case 2

The next case involves blocks which are not too long and do not contain too
many bad sub-blocks but whose bad sub-blocks may be very bad in the since
that corner to corner connection probabilities of those might be really small. We
define the class of blocks A(2)

X,j+1 as

A(2)
X,j+1 :=

{
X : TX ≤

RLα−1
j

2
,KX ≤ k0,

∏
i∈BX

Sj(Xi) ≤ L
−1/3
j

}
.

Lemma 18. For X ∈ A(2)
X,j+1,

Sj+1(X) ≥ min

{
1
2
,

1
10

(
3
4

)2k0

Lj

∏
i∈BX

Sj(Xi)

}

Proof. Suppose that X ∈ A(2)
X,j+1. Let E denote the event

E =
{
WY ≤ Lα−1

j , TY = WY

}
.

Then by definition of WY , P[WY ≤ Lα−1
j ] ≥ 1 − (1 − L−4

j )Lα−1
j ≥ 9/10 while

by the definition of the block boundaries the event TY = WY is equivalent to
their being no bad sub-blocks amongst YL3

j+Lα−1
j +WY +1, . . . , YL3

j+Lα−1
j +WY +2L3

j
,

that is that we don’t need to extend the block because of bad sub-blocks. Hence
P[TY = WY ] ≥ (1 − L−δ

j )2L3
j ≥ 9/10. Combining these we have that

P[E ] ≥ 8/10. (19)

By our block construction procedure, on the event TY = WY we have that the
blocks YL3

j+1, . . . , YL3
j+Lα−1

j +TY
are uniform j-level blocks.

Define I1, I2, BX and B∗ as in the proof of Lemma 16. Also set [Lα−1
j +2L3

j +
TX ] \ BX = GX . Using Proposition 1 again we can find L2

j level j admissible
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assignments Υh of (I1, I2) w.r.t. (B∗, ∅) for 1 ≤ h ≤ L2
j with associated τh. As

in Lemma 16 we can construct a subset H ⊂ [L2
j ] with |H| = Lj < 
L2

j/9k2
0�

so that for all i1 �= i2 and h1, h2 ∈ H we have that τh1(�i1) �= τh2(�i2), that is
that all the positions bad blocks are assigned to are distinct. We will estimate
the probability that one of these assignments work.

In trying out these Lj different assignments there is a subtle conditioning
issue since conditioned on an assignment not working (e.g., the event X�i

c,c←→
Yτh(�i) failing) the distribution of Yτh(li) might change. As such we condition on
an event Dh ∪ Gh which holds with high probability.

If X�i
/∈ GX

j , or, if neither X�i−1 nor X�i+1 is ∈ GX

j , let Dh,i denote the event

Dh,i =
{

X�i

c,c←→ Yτh(�i)

}
.

If X�i
,X�i+1 ∈ GX

j then let Dh,i denote the event

Dh,i =
{

Yτh(�i) ∈ GY

j ,X�i

c,s←→ Yτh(�i) and Xk
s,s←→ Yτh(�i)∀k ∈ GX

}
.

If X�i
,X�i−1 ∈ GX

j then let Dh,i denote the event

Dh,i =
{

Yτh(�i) ∈ GY

j ,X�i

s,c←→ Yτh(�i) and Xk
s,s←→ Yτh(�i)∀k ∈ GX

}
.

Let Dh denote the event

Dh =
K′

X⋂
i=1

Dh,i.

Further, let

Gh =
{

Yτh(�i) ∈ GY

j and Yτh(�i)
s,s←→ Xk for 1 ≤ i ≤ K ′

X , k ∈ GX

}
.

Then it follows from the recursive estimates and since β > α + δ + 1 that

P[Dh ∪ Gh | X, E ] ≥ P[Gh | X, E ] ≥ 1 − 10k0L
−δ
j .

and since they are conditionally independent given X and E ,

P[∩h∈H(Dh ∪ Gh) | X, E ] ≥ (1 − 10k0L
−δ
j )Lj ≥ 9/10. (20)

Now

P[Dh | X, E , (Dh ∪ Gh)] ≥ P[Dh | X, E ] ≥
(

3
4

)2k0 ∏
i∈BX

Sj(Xi)

and hence

P[∪h∈HDh | X, E ,∩h∈H(Dh ∪ Gh)] ≥ 1 −
(

1 −
(

3
4

)2k0 ∏
i∈BX

Sj(Xi)

)Lj

≥ 9
10

∧ 1
4

(
3
4

)2k0

Lj

∏
i∈BX

Sj(Xi) (21)
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since 1 − e−x ≥ x/4 ∧ 9/10 for x ≥ 0. Furthermore, if

M = {∃h1 �= h2 ∈ H : Dh1 \ Gh1 ,Dh2 \ Gh2} ,

then

P[M | X, E ,∩h∈H(Dh ∪ Gh)] ≤
(

Lj

2

)
P[Dh \ Gh | X, E ,∩h∈H(Dh ∪ Gh)]2

≤
(

Lj

2

)(
2
(

3
4

)2k0 ∏
i∈BX

Sj(Xi) ∧ 2L−δ
j

)2

≤ L
−(δ−2)
j

(
3
4

)2k0 ∏
i∈BX

Sj(Xi). (22)

Let JI = J1 and JF = JLα−1
j +2L3

j+TY
denote the events

JI =
{

X1
c,s←→ Y1 and Xk

s,s←→ Y1 for all k ∈ GX

}
;

JF =
{

XLα−1
j +2L3

j+TY

s,c←→ YLα−1
j +2L3

j+TY

and Xk
s,s←→ YLα−1

j +2L3
j+TY

∀k ∈ GX

}
.

For k ∈ {2, . . . Lα−1
j + 2L3

j + TY − 1, } \ ∪h∈H,1≤i≤K′
X

{τh(�i)}, let Jk denote the
event

Jk =
{

Yk ∈ GY

j ,Xk′
s,s←→ Yk for all k′ ∈ GX

}
.

Finally let

J =
⋂

k∈[Lα−1
j +2L3

j+TY ]\∪h∈H,1≤i≤K′
X

{τh(�i)}

Jk.

Then it follows from the recursive estimates and the fact that Jk are condition-
ally independent that

P[J | X, E ] ≥
(

9
10

)2 (
1 − RLα−1−β

j

)2Lα−1
j ≥ 3/4. (23)

If J ,∪h∈HDh and ∩h∈H(Dh ∪Gh) all hold and M does not hold then we can
find at least one h ∈ H such that Dh holds and Gh′ holds for all h′ ∈ H \ {h}.
Then by Lemma 10 as before we have that X

c,c←→ Y . Hence by (20), (21), (22),
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and (23) and the fact that J is conditionally independent of the other events
that

P

[
X

c,c←→ Y | X, E
]

≥ P[∪h∈HDh,∩h∈H(Dh ∪ Gh),J , ¬M | X, E ]
= P[J | X, E ]P[∪h∈HDh, ¬M | X, E ,∩h∈H(Dh ∪ Gh)]

× P[∩h∈H(Dh ∪ Gh) | X, E ]

≥ 27
40

[
9
10

∧ 1
4

(
3
4

)2k0

Lj

∏
i∈BX

Sj(Xi) − L
−(δ−2)
j

∏
i∈BX

Sj(Xi)

]

≥ 3
5

∧ 1
5
Lj

(
3
4

)2k0 ∏
i∈BX

Sj(Xi).

Combining with (19) we have that

P[X ↪→ Y | X] ≥ 1
2

∧ 1
10

(
3
4

)2k0

Lj

∏
i∈BX

Sj(Xi),

which completes the proof. ��

Lemma 19. When 0 < p < 1/2,

P

(
X ∈ A(2)

X,j+1, Sj+1(X) ≤ p
)

≤ 1
5
pmj+1L−β

j+1

Proof. We have that

P

(
X ∈ A(2)

X,j+1, Sj+1(X) ≤ p
)

≤ P

[
1
10

(
3
4

)2k0

Lj

∏
i∈BX

Sj(Xi) ≤ p

]

≤ 2

(
10p

Lj

(
4
3

)2k0
)mj+1

≤ 1
5
pmj+1L−β

j+1 (24)

where the first inequality holds by Lemma 18, the second by Lemma 14 and the
third holds for large enough L0 since mj+1 > m > αβ. ��

6.3 Case 3

The third case allows for a greater number of bad sub-blocks. The class of blocks
A(3)

X,j+1 is defined as

A(3)
X,j+1 :=

{
X : TX ≤

RLα−1
j

2
, k0 ≤ KX ≤

Lα−1
j + TX

10R+
j

}
.
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Lemma 20. For X ∈ A(3)
X,j+1,

Sj+1(X) ≥ 1
2

(
3
4

)2KX ∏
i∈BX

Sj(Xi)

Proof. For this proof we only need to consider a single admissible assignment Υ .
Suppose that X ∈ A(3)

X,j+1. Again let E denote the event

E = {WY ≤ Lα−1
j , TY = WY }.

Similarly to (19) we have that,

P[E ] ≥ 8/10. (25)

As before we have, on the event TY = WY , the blocks YL3
j+1, . . . , YL3

j+Lα−1
j +TY

are uniform j-blocks since the block division did not evaluate whether they are
good or bad.

Set I1, I2, BX , GX and B∗ as in the proof of Lemma 18. By Proposition 1
we can find a level j admissible assignment Υ of (I1, I2) w.r.t. (B∗, φ) with
associated τ so that for all i, L3

j + 1 ≤ τh(�i) ≤ L3
j + Lα−1

j + TY . We estimate
the probability that this assignment works.

If X�i
/∈ GX

j , or, if neither X�i−1 nor X�i+1 is ∈ GX

j , let Di denote the event

Di =
{

X�i

c,c←→ Yτ(�i)

}
.

If X�i
,X�i+1 ∈ GX

j then let Di denote the event

Di =
{

Yτ(�i) ∈ GY

j ,X�i

c,s←→ Yτ(�i) and Xk
s,s←→ Yτ(�i)∀k ∈ GX

}
.

If X�i
,X�i−1 ∈ GX

j then let Di denote the event

Di =
{

Yτ(�i) ∈ GY

j ,X�i

s,c←→ Yτ(�i) and Xk
s,s←→}Yτ(�i)∀k ∈ GX

}
.

Let D denote the event

D =
K′

X⋂
i=1

Di.

By definition and the recursive estimates,

P[D | X, E ] ≥
(

3
4

)2KX ∏
i∈BX

Sj(Xi) (26)

Let JI = J1 and JF = JLα−1
j +2L3

j+TY
denote the events

JI =
{

X1
c,s←→ Y1 and Xk

s,s←→ Y1 for all k ∈ GX

}
;
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JF =
{

XLα−1
j +2L3

j+TY

s,c←→ YLα−1
j +2L3

j+TY

and Xk
s,s←→ YLα−1

j +2L3
j+TY

∀k ∈ GX

}
.

For k ∈ {2, . . . Lα−1
j +2L3

j +TY − 1, } \∪1≤i≤K′
X

{τ(�i)}, let Jk denote the event

Jk =
{

Yk ∈ GY

j ,Xk′
s,s←→ Yk for all k′ ∈ GX

}
.

Finally let
J =

⋂

k∈[Lα−1
j +2L3

j+TY ]\∪1≤i≤K′
X

{τ(�i)}

Jk.

From the recursive estimates

P[J | X, E ] ≥ 3
4
. (27)

If D and J hold then by Lemma 10 we have that X
c,c←→ Y . Hence by (26)

and (27) and the fact that D and J are conditionally independent we have that,

P

[
X

c,c←→ Y | X, E
]

≥ P[D,J | X, E ]

= P[D | X, E ]P[J | X, E ]

≥ 3
4

(
3
4

)2KX ∏
i∈BX

Sj(Xi).

Combining with (25) we have that

P

[
X

c,c←→ Y | X
]

≥ 1
2

(
3
4

)2KX ∏
i∈BX

Sj(Xi),

which completes the proof. ��
Lemma 21. When 0 < p ≤ 1/2,

P

(
X ∈ A(3)

X,j+1, Sj+1(X) ≤ p
)

≤ 1
5
pmj+1L−β

j+1

Proof. We have that

P

(
X ∈ A(3)

X,j+1, Sj+1(X) ≤ p
)

≤ P

[
KX > k0,

1
2

(
3
4

)2KX ∏
i∈BX

Sj(Xi) ≤ p

]

≤
∞∑

k=k0

P

[
KX = k,

∏
i∈BX

Sj(Xi) ≤ 2p

(
4
3

)2k
]

≤ 2
∞∑

k=k0

(
2p

(
4
3

)2k
)mj+1

L
−δk/4
j

≤ 1
5
pmj+1L−β

j+1
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where the first inequality holds by Lemma 20, the third follows from Lemma 14
and the last one holds for large enough L0 since δk0 > 4αβ. ��

6.4 Case 4

In Case 4 we allow blocks of long length but not too many bad sub-blocks. The
class of blocks A(4)

X,j+1 is defined as

A(4)
X,j+1 :=

{
X : TX >

RLα−1
j

2
,KX ≤

Lα−1
j + TX

10R+
j

}
.

Lemma 22. For X ∈ A(4)
X,j+1,

Sj+1(X) ≥
(

3
4

)2KX ∏
i∈BX

Sj(Xi) exp

(
−

3TXL−4
j

R

)

Proof. In this proof we allow the length of Y to grow at a slower rate than that
of X. Suppose that X ∈ A(4)

X,j+1 and let E(X) denote the event

E(X) = {WY = 
2TX/R�, TY = WY }.

Then by definition P[WY = 
2TX/R�] = L−4
j (1 − L−4

j )
2TX/R�. Similarly to

Lemma 18, P[TY = WY | WY ] ≥ (1−L−δ
j )2L3

j ≥ 9/10. Combining these we have
that

P[E(X)] ≥ 9
10

L−4
j (1 − L−4

j )
2TX/R�. (28)

Set I1, I2, BX , B∗ as before. By Proposition 1 we can find an admissible
assignment at level j, Υ of (I1, I2) w.r.t. (B∗, ∅) with associated τ so that for all
i, L3

j +1 ≤ τ(�i) ≤ L3
j +Lα−1

j +TY . We again estimate the probability that this
assignment works.

We need to modify the definition of D and J in this case since the length
of X could be arbitrarily large. For k ∈ [Lα−1

j + 2L3
j + TY ] \ τ(BX), let Hτ

k ⊆
[Lα−1

j +2L3
j +TY ]\BX be the sets given by Lemma 10 such that |Hτ

k | ≤ Lj and
there exists a τ -compatible admissible route with k-sections contained in Hτ

k for
all k. We define D and J in this case as follows.

If X�i
/∈ GX

j , or, if neither X�i−1 nor X�i+1 is ∈ GX

j , let Di denote the event

Di =
{

X�i

c,c←→ Yτ(�i)

}
.

If X�i
,X�i+1 ∈ GX

j then let Di denote the event

Di =
{

Yτ(�i) ∈ GY

j ,X�i

c,s←→ Yτ(�i) and Xk
s,s←→ Yτ(�i)∀k ∈ Hτ

τ(li)

}
.

If X�i
,X�i−1 ∈ GX

j then let Di denote the event

Di =
{

Yτ(�i) ∈ GY

j ,X�i

s,c←→ Yτ(�i) and Xk
s,s←→ Yτ(�i)∀k ∈ Hτ

τ(li)

}
.
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Let D denote the event

D =
K′

X⋂
i=1

Di.

Let JI = J1 and JF = JLα−1
j +2L3

j+TY
denote the events

JI =
{

X1
c,s←→ Y1 and Xk

s,s←→ Y1 for all k ∈ Hτ
1

}
;

JF =
{

XLα−1
j +2L3

j+TY

s,c←→ YLα−1
j +2L3

j+TY

and Xk
s,s←→ YLα−1

j +2L3
j+TY

∀k ∈ Hτ
Lα−1

j +2L3
j+TY

}
.

For k ∈ {2, . . . Lα−1
j +2L3

j +TY − 1, } \∪1≤i≤K′
X

{τ(�i)}, let Jk denote the event

Jk =
{

Yk ∈ GY

j ,Xk′
s,s←→ Yk for all k′ ∈ Hτ

k

}
.

Finally let
J =

⋂

k∈[Lα−1
j +2L3

j+TY ]\∪1≤i≤K′
X

{τ(�i)}

Jk.

If D and J hold then by Lemma 10 we have that X
c,c←→ Y . It is easy to see

that, in this case (26) holds. Also we have for large enough L0,

P[J | X, E(X)] ≥ 3
4
(
1 − 2L−δ

j

)Lα−1
j +
2TX/R�+2L3

j

≥ 1
4

exp
(
−2L−δ

j (Lα−1
j + 
2TX/R� + 2L3

j )
)
. (29)

Hence by (26) and (29) and the fact that D and J are conditionally inde-
pendent we have that,

P

[
X

c,c←→ Y | X, E
]

≥ P[D | X, E ]P[J | X, E ]

≥ 1
4

exp
(
−L−δ

j

(
Lα−1

j + 
2TX/R� + 2L3
j

))(3
4

)2KX ∏
i∈BX

S(Xi).

Combining with (28) we have that

P

[
X

c,c←→ Y | X
]

≥ exp
(
−3TXL−4

j /R
)(3

4

)2KX ∏
i∈BX

Sj(Xi),

since TXL−4
j = Ω(Lα−6

j ) and δ > 5 which completes the proof. ��
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Lemma 23. When 0 < p ≤ 1/2,

P

(
X ∈ A(4)

X,j+1, Sj+1(X) ≤ p
)

≤ 1
5
pmj+1L−β

j+1

Proof. Set t0 = RLα−1
j /2 + 1 and for k ≥ k0, set

S(k) =
(

3
4

)2k ∏
i∈BX

Sj(Xi).

We have that

P

(
X ∈ A(4)

X,j+1, Sj+1(X) ≤ p
)

≤
∞∑

t=t0

∞∑
k=k0

P

[
TX = t,KX = k, S(k) exp

(
−

3tL−4
j

R

)
≤ p

]

≤
∞∑

t=t0

∞∑
k=k0

2
(

42kp

32k

)mj+1

exp

(
3mj+1tL

−4
j

R
−

tL−4
j

2

)
L

−δk/4
j

≤ 1
5
pmj+1L−β

j+1

where the first inequality holds by Lemma 22, the second by Lemma 14 and the
third holds for large enough L0 since 3mj+1/R < 1/2 and so for large enough
L0, (4/3)2(m+1)L

−δ/4
j ≤ 1/2 and

∞∑

t=RLα−1
j /2+1

exp
(

−tL−4
j

(
1
2

− 3mj+1

R

))
<

1
10

L−β
j+1.

��

6.5 Case 5

It remains to deal with the case involving blocks with a large density of bad
sub-blocks. Define the class of blocks A(5)

X,j+1 is as

A(5)
X,j+1 :=

{
X : KX >

Lα−1
j + TX

10R+
j

}
.

Lemma 24. For X ∈ A(5)
X,j+1,

Sj+1(X) ≥ exp
(
−2TXL−4

j

)(3
4

)2KX ∏
i∈BX

Sj(Xi)
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Proof. The proof is a minor modification of the proof of Lemma 22. We take
E(X) to denote the event

E(X) = {WY = TX , TY = WY }.

and get a bound of

P[E(X)] ≥ 9
10

L−4
j

(
1 − L−4

j

)TX
.

We consider the admissible assignment Υ given by τ(i) = i for i ∈ B∗. It follows
from Lemma 10 that in this case we can define Hτ

k = k − 1, k, k + 1. We define
D and J as before. The new bound for J becomes

P[J | X, E(X)] ≥ 3
4
(
1 − 2L−δ

j

)Lα−1
j +TX+2L3

j

≥ 1
4

exp
(
−2L−δ

j

(
Lα−1

j + TX + 2L3
j

))
.

We get the result proceeding as in the proof of Lemma 22. ��

Lemma 25. When 0 < p ≤ 1/2,

P

(
X ∈ A(5)

X,j+1, Sj+1(X) ≤ p
)

≤ 1
5
pmj+1L−β

j+1

Proof. First note that since α > 4,

L
−δ/(50R+

j )

j = L
−(δαj)/(50R+

j )

0 → 0

as j → ∞. Hence for large enough L0,

∞∑
t=0

(
exp

(
2mj+1L

−4
j

)
L

−δ/(50R+
j )

j

)t

< 2. (30)

Set

k∗ =
Lα−1

j + t

10R+
j

and for k ≥ k∗ set

S(k) =
(

3
4

)2k ∏
i∈BX

Sj(Xi).
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We have that

P

(
X ∈ A(5)

X,j+1, Sj+1(X) ≤ p
)

≤
∞∑

t=0

∞∑
k=k∗

P
[
TX = t,KX = k, S(k) exp(−2tL−4

j ) ≤ p
]

≤ pmj+1

∞∑
t=0

∞∑
k=k∗

2
(
exp(2mj+1tL

−4
j )

)
((

16
9

)mj+1

L
−δ/4
j

)k

≤ pmj+1

∞∑
t=0

4
(
exp(2mj+1tL

−4
j )

)
L

−(Lα−1
j +t)/(50R+

j )

j

≤ 1
5
pmj+1L−β

j+1

where the first inequality holds be by Lemma 24, the second by Lemma 14 and
the third follows since L0 is sufficiently large and the last one by (30) and the
fact that

L
−(δLα−1

j )/(50R+
j )

j ≤ 1
40

L−β
j+1,

for large enough L0. ��

6.6 Theorem 5

Putting together all the five cases we now prove Theorem5.

Proof of Theorem 5. The case of 1/2 ≤ p ≤ 1−L−1
j+1 is established in Lemma 17.

By Lemma 16 we have that Sj+1(X) ≥ 1/2 for all X ∈ A(1)
X,j+1. Hence we need

only consider 0 < p < 1/2 and cases 2 to 5. By Lemmas 19, 21, 23 and 25 then

P(Sj+1(X) ≤ p) ≤
5∑

l=2

P

(
X ∈ A(l)

X,j+1, Sj+1(X) ≤ p
)

≤ pmj+1L−β
j+1.

The bound for SY

j+1 follows similarly. ��

7 Side to Corner and Corner to Side Estimates

The aim of this section is to show that for a large class of X-blocks (resp. Y-
blocks), P(X

c,s←→ Y | X) and P(X
s,c←→ Y | X) (resp. P(X

c,s←→ Y | Y ) and
P(X

s,c←→ Y | Y )) is large. We shall state and prove the result only for X-blocks.
Here we need to consider a different class of blocks where the blocks have

few bad sub-blocks whose corner to corner connection probabilities are not too
small, where the excess number of subblocks is of smaller order than the typical
length and none of the subblocks, and their chunks contain too many level 0
blocks. This case holds with high probability. Let X be a level (j + 1) X-block
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constructed out of the independent sequence of j level blocks X1,X2, . . . where
the first L3

j ones are conditioned to be good.
For i = 1, 2, . . . , Lα−1

j + 2L3
j + TX , let Gi denote the event that all level j − 1

subblocks contained in Xi contains at most 3Lj−1 level 0 blocks, and Xi contains
at most 3Lj level 0 blocks. Let GX denote the event that for all good blocks Xi

contained in X, Gi holds. We define A(∗)
X,j+1 to be the set of (j + 1) level blocks

such that

A(∗)
X,j+1 :=

{
X : TX ≤ L5

j − 2L3
j ,KX ≤ k0,

∏
i∈BX

Sj(Xi) > L
−1/3
j ,GX

}
.

It follows from Theorem 4 that P[Gc
X ] is exponentially small in Lj−1 and hence

we shall be able to safely ignore this conditioning while calculating probability
estimates since L0 is sufficiently large.

Similarly to Lemma 15 it can be proved that

P

[
X ∈ A(∗)

X,j+1

]
≥ 1 − L−3β

j+1 . (31)

We have the following proposition.

Proposition 2. We have that for all X ∈ A(∗)
X,j+1,

P

[
X

c,s←→ Y | Y ∈ A(∗)
Y,j+1,X

]
≥ 9

10
+ 2−(j+15/4),

P

[
X

s,c←→ Y | Y ∈ A(1)
Y,j+1,X

]
≥ 9

10
+ 2−(j+15/4).

We shall only prove the corner to side estimate, the other one follows by
symmetry. Suppose that X ∈ A(∗)

X,j+1 with length Lα−1
j + 2L3

j + TX , define BX ,

B∗, K ′
X , TY and KY as in the proof of Lemma 16. We condition on Y ∈ A(∗)

Y,j+1

having no bad subblocks. Denote this conditioning by

F =
{

Y ∈ A(∗)
Y,j+1, TY ,KY = 0

}
.

Let nX and nY denote the number of chunks in X and Y respectively. We
first prove the following lemma.

Lemma 26. Consider an exit chunk (k, nY ) (resp. (nX , k)) in Eout(X,Y ). Fix
t ∈ [Lα−1

j + 2L3
j + TX ] contained in CX

k such that [t, t − L3
j ] ∩ BX = ∅ (resp.

fix t′ ∈ [Lα−1
j + 2L3

j + TY ] contained in CY
k ). Consider X̃ = (X1, . . . , Xt) (or

Ỹ = (Y1, . . . , Yt′)). Then there exists an event St with P[St | F ] ≥ 1−L−α
j and on

St, F and {X1
c,s←→ Y1} we have X̃

c,s,∗←→ Y (resp. St′ with P[St′ | F ] ≥ 1 − L−α
j

and on St′ , F and {X1
c,s←→ Y1} we have X

c,s,∗←→ Ỹ ).
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Proof. We shall only prove the first case, the other case follows by symmetry.
Set I1 = [t], I2 = [Lα−1

j + 2L3
j + TY ]. Also define BX̃ and B∗ as in the proof

of Lemma 16. The slope condition in the definition of Eout(X,Y ), and the fact
that BX is disjoint with [t − L3

j , t] implies that by Proposition 1 we can find
L2

j admissible generalized mappings Υh of (I1, I2) with respect to (B∗, ∅) with
associated τh for 1 ≤ h ≤ L2

j as in the proof of Lemma16. As in there, we
construct a subset H ⊂ [L2

j ] with |H| = Lj < 
L2
j/3k0� so that for all i1 �= i2

and h1, h2 ∈ H we have that τh1(�i1) �= τh2(�i2).
For h ∈ H, i ∈ B∗, define the events Dh,i similarly as in the proof of

Lemma 16. Set

Dh =
K′

X⋂
i=1

Dk
h,i and D =

⋃
h∈H

Dk
h.

Further, S denote the event

S =
{

Xk
s,s←→ Yk′∀k ∈ [t] \ {�1, . . . , �K′

X
},∀k′ ∈ [Lα−1

j + 2L3
j + TY ]

}
.

Same arguments as in the proof of yields

P[D | F ] ≥ 1 − L−3β
j+1

and
P[¬S | F ] ≤ 4L2α−2

j L−2β
j ≤ L−β

j .

Now it follows from Lemmas 8 and 11, that on {X1
c,s←→ Y1}, S,D and F , we

have X̃
c,s,∗←→ Y . The proof of the Lemma is completed by setting St = S ∩ D.

Now we are ready to prove Proposition 2.

Proof of Proposition 2. Fix an exit chunk (k, nY ) or (nX , k′) in Eout(X,Y ). In
the former case set Tk to be the set of all blocks Xt contained in CX

k such
that [t, t − L3

j ] ∩ BX = ∅, in the later case set T ′
k′ to be the set of all blocks

Yt′ contained in CY
k′ . Notice that the number of blocks contained in Tk is at

least (1 − 2k0L
−1
j ) fraction of the total number of blocks contained in CX

k .
For t ∈ Tk (resp. t′ ∈ T ′

k′), let St (resp. St′) be the event given by Lemma 26
Hence it follows from Lemma 7(i), that on {X1

c,s←→ Y1}
⋂

∩k,Tk
St

⋂
∩k′,Tk′ St′ ,

we have X
c,s←→ Y . Taking a union bound and using Lemma26 and also using

the recursive lower bound on P[X1
c,s←→ Y1] yields,

P

[
X

c,s←→ Y | F ,X
]

≥ 9
10

+ 2−(j+31/8).

The proof can now be completed by removing the conditioning on TY and pro-
ceeding as in Lemma 16.
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8 Side to Side Estimate

In this section we estimate the probability of having a side to side path in X ×Y .
We work in the set up of previous section. We have the following theorem.

Proposition 3. We have that

P

[
X

s,s←→ Y | X ∈ A(∗)
X,j+1, Y ∈ A(∗)

Y,j+1

]
≥ 1 − L−3β

j+1 . (32)

Suppose that X ∈ A(∗)
X,j+1, Y ∈ A(∗)

Y,j+1. Let TX , TY , BX , BY , GX , GY be
as before. Let B∗

1 = {�1 < · · · < �K′
X

} and B∗
2 = {�′

1 < · · · < �′
K′

Y
} denote the

locations of bad blocks and their neighbours in X and Y respectively. Let us
condition on the block lengths TX , TY , B∗

1 , B∗
2 and the bad-sub-blocks and their

neighbours themselves. Denote this conditioning by

F =
{

X ∈ A(1)
X,j+1, Y ∈ A(1)

Y,j+1, TX , TY ,K ′
X ,K ′

Y , �1, . . . , �K′
X

, �′
1, . . . , �

′
K′

Y
,

X�1 , . . . , X�K′
X

, Y�′
1
, . . . , Y�′

K′
Y

}
.

Let

BX,Y =
{

(k, k′) ∈ GX × GY : Xk � s,s←→ Yk′
}

and NX,Y = |BX,Y |. Let S denote the event {NX,Y ≤ k0}. We first prove the
following lemma.

Lemma 27. Let nX and nY denote the number of chunks in X and Y respec-
tively. Fix an entry exit pair of chunks. For concreteness, take ((k, 1), (nX , k′)) ∈
E(X,Y ). Fix t ∈ [Lα−1

j + 2L3
j + TX ] and t′ ∈ [Lα−1

j + 2L3
j + TY ] such that Xt is

contained in CX
k , Yt′ contained in CY

k′ also such that [t, t+L3
j ]∩BX = ∅. Also let

At,t′ denote the event that [t, t+L3
j ]×[1, L3

j ]∪[Lα−1
j +TX +L3

j , L
α−1
j +TX +2L3

j ]×
[t′ − L3

j , t
′] is disjoint with BX,Y . Set X̃ = (Xt,Xt+1, . . . , XLα−1

j +TX+2L3
j
) and

Ỹ = (Y1, Y2, . . . , Yt′), call such a pair (X̃, Ỹ ) to be a proper section of (X,Y ).
Then there exists an event St,t′ with P[St,t′ | F ] ≥ 1 − L−4β

j+1 and such that on

S ∩ St,t′ ∩ At,t′ , we have X̃
s,s,∗←→ Ỹ .

Proof. Set I1 = [t, Lα−1
j +TX +2L3

j ]∩Z, I2 = [1, t′]∩Z. By Proposition 1 we can
find L2

j admissible assignments mappings Υh with associated τh of (I1, I2) w.r.t.
(B∗

1∩I1, B
∗
2∩I2) such that we have τh(�i) = τ1(�i)+h−1 and τ−1

h (�′
i) = τ−1

1 (�′
i)−

h + 1. As before we can construct a subset H ⊂ [L2
j ] with |H| = 10k0Lj <


L2
j/36k2

0� so that for all i1 �= i2 and h1, h2 ∈ H we have that τh1(�i1) �= τh2(�i2)
and τ−1

h1
(�′

i1
) �= τ−1

h2
(�′

i2
), that is that all the positions bad blocks and their

neighbours are assigned to are distinct.
Hence we have for all h ∈ H

P

[
X�i

c,c←→ Yτh(�i) | F
]

≥ 1
2
Sj(X�i

); (33)
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P

[
Xτ−1

h (�′
i)

c,c←→ Y�′
i
| F

]
≥ 1

2
Sj(Y�′

i
). (34)

If X�i
/∈ GX

j , or, if neither X�i−1 nor X�i+1 is ∈ GX

j , let Dh,i,X denote the
event

Dh,i,X =
{

X�i

c,c←→ Y
τk,k′

h (�i)

}
.

If X�i
,X�i+1 ∈ GX

j then let Dh,i,X denote the event

Dh,i,X =
{

X�i

c,s←→ Y
τk,k′

h (�i)

}
.

If X�i
,X�i−1 ∈ GX

j then let Dh,i,X denote the event

Dh,i,X =
{

X�i

s,c←→ Y
τk,k′

h (�i)

}
.

Let Dh,X denote the event

Dh,X =
K′

X⋂
i=1

Dh,i,X

Let us define the event Dh,Y similarly and let

Dh = Dh,X ∩ Dh,Y

Finally, let

D =

{∑
h∈H

1Dh
≥ R6k5

0102j+20

}
.

Conditional on F , for h ∈ H, the Dh are independent and by (33), (34) and
the recursive estimates,

P[Dh | F ] ≥ 2−10k034k0L
−2/3
j .

Hence using a large deviation estimate for binomial tail probabilities we get,

P [D | F ] ≥ P

[
Bin(10k0Lj , 2−10k034k0L

−2/3
j ) ≥ R6k5

0102j+20
]

≥ 1 − L−4β
j+1

for L0 sufficiently large. Now it follows from Lemma 13 and Lemma 11 that if D,
S, and At,t′ all holds than X̃

s,s,∗←→ Ỹ . This completes the proof of the lemma. ��

Before proving Proposition 3, we need the following lemma bounding the
probability of S.

Lemma 28. We have
P[¬S | F ] ≤ 1

3
L−3β

j+1 .
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Proof. Let for k′ ∈ GY ,

V Y
k′ = I

[{
#
{

k ∈ GX : Xk � s,s←→ Yk′
}

≥ 1
}]

.

It follows from taking a union bound and using the recursive estimates that

P
[
V Y

k′ = 1 | F ,X
]

≤ 2Lα−1−β
j .

Since V Y
k′ are conditionally independent given X and F , a stochastic domi-

nation argument yields

P

[∑
k′

V Y
k′ ≥ k

1/2
0 | X,F

]
≤ P

[
Bin

(
2Lα−1

j , 2Lα−1−β
j

)
≥ k

1/2
0

]
.

Using a Chernoff bound and setting λ = k
1/2
0 L−2α+2+β

j /4 (note λ > 1 as
β > 2α and L0 is large enough) we get

P

[∑
k′

V Y
k′ ≥ k

1/2
0 | F ,X

]
≤ exp

(
4L2α−2−β

j (λ − 1 − λ log λ)
)

≤ exp
(
−2L2α−2−β

j λ log λ
)

≤
(

1
4
k
1/2
0 L−2α+2+β

j

)k
1/2
0 /2

≤ 1
6
L−3β

j+1

for L0 large enough since k
1/2
0 (β + 2 − 2α) > 6αβ.

Removing the conditioning on X we get,

P

[∑
k′

V Y
k ≥ k

1/2
0 | F

]
≤ 1

6
L−3β

j+1 .

Defining V X
k ’s similarly we get

P

[∑
k

V X
k ≥ k

1/2
0 | F

]
≤ 1

6
L−3β

j+1 .

Since on F ,

¬S ⊆
{∑

k

V X
k ≥ k

1/2
0

}
∪
{∑

k

V X
k ≥ k

1/2
0

}
,

the lemma follows. ��

Now we are ready to prove Proposition 3.
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Proof of Proposition 3. Consider the set-up of Lemma 27. Let Tk (resp. T ′
k′)

denote the set of indices t (resp. t′) such that Xt is contained in CX
k (resp. Yt′ is

contained in CY
k′). It is easy to see that there exists Tk,∗ ⊂ Tk (resp. T ′

k′,∗ ⊂ T ′
k′)

with |Tk,∗| ≥ (1−10k0L
−1
j )|Tk| (resp. |T ′

k′,∗| ≥ (1−10k0L
−1
j )|T ′

k′ |) such that for
all t ∈ Tk,∗ and for all t′ ∈ T ′

k′,∗, X̃ and Ỹ defined as in Lemma 27 satisfies that
(X̃, Ỹ ) is a proper section of (X,Y ) and At,t′ holds.

It follows now by taking a union bound over all t ∈ Tk, t′ ∈ T ′
k′ , and all pairs

of entry exit chunks in E(X,Y ) and using Lemma 7 that

P

[
X

s,s←→ Y | F
]

≥ 1 − 1
3
L−3β

j+1 − 4L2α
j L−3β

j+1 ≥ 1 − L−3β
j+1

for L0 sufficiently large since β > 2α. Now removing the conditioning we
get (32). ��

9 Good Blocks

Now we are ready to prove that a block is good with high probability.

Theorem 6. Let X be a X-block at level (j+1). Then P(X ∈ GX

j+1) ≥ 1−L−δ
j+1.

Similarly for Y-block Y at level (j + 1), P(Y ∈ GY

j+1) ≥ 1 − L−δ
j+1.

Proof. To avoid repetition, we only prove the theorem for X-blocks. Let X be a
X-block at level (j + 1) with length Lα−1

j .
Let the events Ai, i = 1, . . . 5 be defined as follows.

A1 =
{
TX ≤ L5

j − 2L3
j

}
.

A2 =
{
P

[
X

c,c←→ Y | X
]

≥ 3
4

+ 2−(j+4)

}
.

A3 =
{
P

[
X

c,s←→ Y | X
]

≥ 9
10

+ 2−(j+4)

}
.

A4 =
{
P

[
X

s,c←→ Y | X
]

≥ 9
10

+ 2−(j+4)

}
.

A5 =
{
P

[
X

s,s←→ Y | X
]

≥ 1 − L2β
j

}
.

From Lemma 14 it follows that

P[Ac
1] ≤ L−3β

j+1 .

From Lemmas 15 and 16 it follows that

P[Ac
2] ≤ L−3β

j+1 .
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From (31) and Proposition 2 it follows that

P[Ac
3] ≤ L−3β

j+1 , P[Ac
4] ≤ L−3β

j+1 .

Using Markov’s inequality, it follows from Proposition 3

P[Ac
5] = P

[
P

[
X � s,s←→ Y | X

]
≥ L−2β

j+1

]

≤ P

[
X � s,s←→ Y

]
L2β

j+1

≤
(
P

[
X � s,s←→ Y,X ∈ A(∗)

X,j+1, Y ∈ A(∗)
Y,j+1

]

+P

[
X /∈ A(∗)

X,j+1

]
+ P

[
Y /∈ A(∗)

Y,j+1

] )
L2β

j+1

≤ 3L−β
j+1.

Putting all these together we get

P
[
X ∈ GX

j+1

]
≥ P[∩5

i=1Ai] ≥ 1 − L−δ
j+1

for L0 large enough since β > δ. ��
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Abstract. We study an annealed model of Uniform Infinite Planar
Quadrangulation (UIPQ) with an infinite two-sided self-avoiding walk
(SAW), which can also be described as the result of glueing together two
independent uniform infinite quadrangulations of the half-plane (UIH-
PQs). We prove a lower bound on the displacement of the SAW which,
combined with the estimates of [15], shows that the self-avoiding walk is
diffusive. As a byproduct this implies that the volume growth exponent
of the lattice in question is 4 (as is the case for the standard UIPQ);
nevertheless, using our previous work [9] we show its law to be singular
with respect to that of the standard UIPQ, that is – in the language of
statistical physics – the fact that disorder holds.

Keywords: Uniform Infinite Planar Quadrangulation · Random
planar maps · Self-avoiding walk · Peeling process

1 Introduction

Much of the recent mathematical work on the geometry of random planar maps
is focused on the “pure gravity” case where the random lattice is not affected
by “matter”: in probabilistic terms, this corresponds to choosing a map uni-
formly at random within a certain class, e.g. triangulations, quadrangulations,
p-angulations... In this work we study the geometry of random planar quadran-
gulations weighted by the number of their self-avoiding walks (SAWs for short);
that is, we study the model of annealed SAWs on random quadrangulations. We
start by presenting our main objects of interest:

Surgeries. The Uniform Infinite Quadrangulation of the Plane (UIPQ),
denoted by Q∞, is the local limit of uniform random quadrangulations whose
size is sent to infinity. This object has been defined by Krikun [21] following
the earlier work of Angel and Schramm [6] in the case of triangulations; since
then the UIPQ has attracted a lot of attention, see [2,3,12,14,17] and references
therein.

c© Springer Nature Singapore Pte Ltd. 2019
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and Statistical Physics - III, PROMS 300, pp. 138–165, 2019.
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One can also define a related object (see [1,15]) called the Uniform Infinite
Quadrangulation of the Half-Plane with a Simple Boundary, or simple boundary
UIHPQ, denoted here1 by H∞, which is – as the name suggests – a random
quadrangulation with an infinite simple boundary.

The simple boundary UIHPQ can be obtained as the local limit of uniform
quadrangulations with n faces and a simple boundary of length 2p by first let-
ting n → ∞ and then p → ∞ (see Sect. 2 for more details). From it, we shall
construct two additional objects by means of “surgery” operations. First, we
define a random infinite quadrangulation of the plane by folding the infinite
simple boundary of H∞ onto itself as in Fig. 1. The resulting map Q→

∞ is nat-
urally endowed with an infinite one-ended self-avoiding path (P→

i )i≥0 which is
the image of the boundary of H∞.

Fig. 1. A simple boundary UIHPQ and the resulting quadrangulation with a self-
avoiding path obtained by folding the boundary onto itself.

We also perform a variant of the former construction. Consider two indepen-
dent copies H∞ and H′

∞ of the simple boundary UIHPQ and form a quadran-
gulation of the plane Q↔

∞ by glueing together H∞ and H′
∞ along their bound-

aries (identifying the root edges with opposite orientations). This rooted infinite
quadrangulation also comes with a distinguished bi-infinite self-avoiding path
(P↔

i )i∈Z resulting from the identified boundaries.
These will be the main objects of study within this work. We will show in

Sect. 2 that (Q→
∞,P→) and (Q↔

∞,P↔) are the natural models of annealed self-
avoiding walks (respectively one-sided and two-sided) on the UIPQ, which means
that they can be obtained as local limits of random objects uniformly sampled
among quadrangulations endowed with a self-avoiding path.

Results. According to the physics literature [16], the three infinite random
quadrangulations of the plane Q∞,Q→

∞ and Q↔
∞ should be described by the

1 Remark that this notation is not coherent with that of [9], where we denoted by

H∞ an object with a boundary that is not necessarily simple, and by ˜H∞ the one
that is central to this paper, obtained from H∞ by a pruning procedure. Since the
general boundary UIHPQ will make no appearance in this paper, we shall drop the
tilde with no fear of confusion.
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same conformal field theory with central charge c = 0; that is to say, roughly
speaking, the large scale properties of Q∞, Q→

∞ and Q↔
∞ should be close to

each other. We confirm this prediction by showing that these random lattices
share the same volume growth exponent of 4 (or “Hausdorff dimension”, as it is
commonly referred to by the physicists), a fact that is well-known in the case of
the UIPQ, see [10,24]. The key is to first show that the self-avoiding walks on
Q→

∞ and Q↔
∞ are diffusive:

Theorem 1 (Diffusivity of the SAWs). If (P→
i )i≥0 and (P↔

i )i∈Z are the
edges visited by the self-avoiding walks on Q→

∞ and Q↔
∞ then we have

dgr(P→
0 ,P→

n ) ≈ √
n and dgr(P↔

0 ,P↔
n ) ≈ √

n.

Notation: Here and later, for a random process (Xn)n≥0 with values in R+ and
a function f : Z+ → R+, we write Xn � f(n) if

lim
a→∞ lim sup

n→∞
P(Xn > af(n)) = 0

and similarly for Xn � f(n) with the reversed inequality and a tending to 0. We
write Xn ≈ f(n) if we have both Xn � f(n) and Xn � f(n).

The ball of radius r in a planar quadrangulation q is the map Br(q) obtained
by keeping only those (internal) faces of q that have at least one vertex at graph
distance smaller than or equal to r from the origin of the map (as usual all our
maps are rooted, that is given with one distinguished oriented edge whose tail
vertex is the origin of the map) and keeping the root edge. The notation #Br(q)
stands for the number of vertices in Br(q).

Corollary 1 (Volume growth). We have

#Br(Q→
∞) ≈ r4

as well as
#Br(Q↔

∞) ≈ r4.

Since graph distances in Q→
∞ and in Q↔

∞ are trivially bounded above by
distances between corresponding vertices in H∞ (and H′

∞) the lower bound for
the volume growth in Q→

∞ and Q↔
∞ follows from known results on the geometry of

the UIHPQ. The nontrivial part of the statement is the upper bound, for whose
proof we employ a lower bound on the displacement of the self-avoiding paths
P→ and P↔ (the upper bound also follows from known results on the UIHPQ
[9]).

Although Q↔
∞ and Q∞ share the same volume growth exponent, we show

that their laws are very different:

Theorem 2 (Glueing two half-planes does not produce a plane). The
two random variables Q∞ and Q↔

∞ are singular with respect to each other.
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In the language of statistical mechanics, the former result shows that disorder
holds on the UIPQ, meaning that the (quenched) number of SAWs on Q∞ is
typically much less than its expectation (see Corollary 2). However, as we shall
see, the proof of Theorem 2 does not involve enumerating self-avoiding walks,
and is instead based on a volume argument. Unfortunately, this argument does
not yield a proof of the similar result for Q→

∞ instead of Q↔
∞, see Conjecture 1.

Techniques. In order to understand the geometry of the quadrangulations
obtained from surgical operations involving the (simple boundary) UIHPQ, it is
first necessary to deeply understand the geometry of the UIHPQ itself. To this
end we devoted the paper [9], in which we first considered a general boundary
UIHPQ, also obtained as a local limit of uniform random quadrangulations with
a boundary (on which no simplicity constraint is imposed, see [15]), whose study
is simpler thanks to its construction “à la Schaeffer” from a random infinite
labelled tree. The results of [9] and [15] are nonetheless easily transferred to
our context and yield the upper bound in Theorem 1 and the lower bound in
Corollary 1.

In order to prove the diffusive lower bound for the self-avoiding walks, the
main idea is to construct disjoint paths in the UIHPQ whose endpoints lie on
the boundary and are symmetric around the origin, so that after the folding
of the boundary these paths become disjoint nested loops separating the origin
from infinity in Q→

∞, see Fig. 9 (a similar geometric construction is made in the
case of Q↔

∞). We build these paths inductively as close to each other as possible
using the technique of peeling (see [1]) on the UIHPQ. We prove that we can
construct ≈ n such paths on a piece of boundary of length ≈ n2 around the
origin. Through the “folding” operation, this will yield the diffusivity of the self-
avoiding walk P→ (resp. P↔). Corollary 1 then follows easily by using rough
bounds on the volume of balls in the UIHPQ.

The main ingredient in the proof of Theorem 2 is a series of precise estimates
of the volume growth in the UIPQ and in its half-plane analogue. Indeed, the
work of Le Gall & Ménard on the UIPQ [24,25] (see also [7, Chapitre 4]) as well
as our previous work on the UIHPQ [9] show2 that

E[#Br(Q∞)] ∼ 3
28

r4 and E[#Br(H∞)] ∼ 1
12

r4, as r → ∞. (1)

As the reader will see, the constants in the above display are crucial for our
purpose: since the surgeries used to create Q→

∞ and Q↔
∞ from H∞ can only

decrease distances we deduce that

E[#Br(Q→
∞)] ≥ r4/12 and E[#Br(Q↔

∞)] ≥ 2 × 1
12

r4 =
1
6
r4, as r → ∞.

Finally, the fact that 1/6 > 3/28 implies that balls (of large radius) around the
origin in Q↔

∞ are typically larger than those in Q∞. This fact applied to different

2 Actually the works [9,24,25] show a convergence in distribution and one needs to
prove uniform integrability to be able to pass to the expectation. We do not give the
details since the actual proof bypasses this technical issue.
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scales (so that the corresponding balls are roughly independent) is the core of
the proof of Theorem 2. However, since 1/12 < 3/28, this strategy does not work
directly to prove that the laws of Q∞ and of Q→

∞ are singular with respect to
each other.

Remark 1. During the final stages of this work we became aware of the recent
progresses of Gwynne and Miller [18–20], who study the scaling limits in the
Gromov–Hausdorff sense of the objects considered in this paper. In particular
in [18] they prove, roughly speaking, that the glueing of random planar quad-
rangulations along their boundaries defines a proper glueing operation in the
continuous setting after taking the scaling limit (i.e. the image of the boundaries
is a simple curve and the quotient metric does not collapse along the bound-
ary). To do so, they use a peeling procedure which is equivalent to the one we
study in Sect. 3. However, the estimates provided in [18] are much more precise
than those required and proved in this paper (their work thus greatly improves
upon our Sect. 3). Using the powerful theory developed by Miller & Sheffield, the
work [18] combined with [19] yields an impressive description of the Brownian
surfaces glued along their boundaries in terms of

√
8/3-Liouville Quantum Grav-

ity surfaces. In particular according to [18], the scaling limit of Q↔
∞ is a weight

4-quantum cone, the scaling limit of Q→
∞ is a weight 2-quantum cone, whereas

the Brownian plane (scaling limit of Q∞ itself) is a weight 4/3-quantum cone.
This difference of laws in the scaling limit could probably be used instead of (1)
as the main input to prove Theorem 2 and could probably yield a proof of our
Conjecture 1.

2 Annealed Self-Avoiding Walks on Quadrangulations

We start by recalling notation and classical convergence results about random
quadrangulations with a boundary. The curious reader may consult [2,9,15] for
details.

2.1 Quadrangulations with a Boundary

Recall that all the maps we consider here are planar and rooted, that is endowed
with one distinguished oriented edge whose tail vertex is called the origin of the
map.

A quadrangulation with a boundary q is a planar map all of whose faces have
degree four, with the possible exception of the face lying directly to the right of
the root edge (also called the external face, or outerface). The external face of q,
whose boundary is called by extension the boundary of q, necessarily has even
degree (since q is bipartite); we refer to this degree as the perimeter of q, while
the size of q is the number of its faces minus 1 (so the external face is excluded).
We say that q has a simple boundary if its boundary has no pinch point, that
is, if it is a cycle with no self-intersection (see Fig. 2(a)).
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We denote3 by Qn,p the set of all rooted quadrangulations with a simple
boundary having size n and perimeter 2p (and by #Qn,p its cardinal). Within
this paper, all quadrangulations with a boundary will be implicitly required to
have a simple boundary, unless otherwise stated.

By convention, the set Q0,0 contains a unique “vertex” map; more impor-
tantly, Q0,1 is the set containing the unique map with one oriented edge (which
has a simple boundary and no inner face). We remark that any quadrangulation
with a boundary of perimeter 2 can be seen as a rooted quadrangulation of the
sphere (i.e. without a boundary) by contracting the external face of degree two
(see Fig. 2(b)); thus the set Qn,1 can be identified with the set of all (rooted)
quadrangulations of the sphere with n faces, which we denote by Qn.

(a) (b)

Fig. 2. (a) A quadrangulation in Q9,4. (b) The two boundary edges of the above quad-
rangulation from Q3,1 are “glued together” to obtain a rooted quadrangulation of the
sphere with three faces (i.e. an element of Q3) on the right.

From [8, Eq. (2.11)], we report estimates for the cardinals of the sets Qn,p,
where n ≥ 0, p ≥ 1:

#Qn,p = 3−p (3p)!
p!(2p − 1)!

3n (2n + p − 1)!
(n − p + 1)!(n + 2p)!

, ∼
n→∞ Cp12nn−5/2, (2)

Cp =
1

2
√

π

(3p)!
p!(2p − 1)!

(
2
3

)p

∼
p→∞

√
3p

2π

(
9
2

)p

. (3)

The sum of the series
∑

n≥0 #Qn,p12−n (which is finite) is classically denoted
by Z(p) and can be explicitly computed: we have Z(1) = 4

3 and for p ≥ 2,

Z(p) = 2
(

2
3

)p (3p − 3)!
p!(2p − 1)!

∼
p→∞

2
9
√

3π
p−5/2

(
9
2

)p

. (4)

One can define a Boltzmann quadrangulation of the 2p-gon as a random variable
with values in

⋃
n≥0 Qn,p, distributed according to the measure that assigns a

weight 12−nZ(p)−1 to each map in Qn,p.
3 Notice that this is in contrast with the notation of [9], where a distinction needed

to be made between quadrangulations with a general boundary and ones whose
boundary was required to be simple, which we usually signalled with a “tilde” over
the relevant symbol.
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In what follows, for all n ≥ 0 and p ≥ 1, we shall denote by Qn,p a random
variable uniformly distributed over Qn,p. When p = 1 we also denote Qn := Qn,1

a uniform quadrangulation with n faces.

2.2 Uniform Infinite (Half-)Planar Quadrangulations

Recall that if q, q′ are two rooted (planar) quadrangulations (with or without a
boundary), the local distance between the two is

dloc(q, q′) =
(
1 + sup{r ≥ 0 : Br(q) = Br(q′)})−1

, (5)

where Br(q) is obtained by erasing from q everything but those inner faces
that have at least one vertex at distance smaller than or equal to r from the
origin (thus the outerface is not automatically preserved if q has a boundary).
The set of all finite quadrangulations with a boundary is not complete for this
metric: we shall work in its completion, obtained by adding locally finite infinite
quadrangulations with a finite or infinite simple boundary, see [14] for details.
Recall that Qn,p is uniformly distributed over Qn,p. The following convergences
in distribution for dloc are by now well known:

Qn,p
(d)−−−−→

n→∞ Q∞,p
(d)−−−→

p→∞ H∞. (6)

The first convergence in the special case p = 1 constitutes the definition of the
UIPQ by Krikun [21]; the second one is found in [15] (see also the pioneering
work [1] concerning the triangulation case). The object Q∞,p is the so-called
UIPQ of the 2p-gon and H∞ is the simple boundary UIHPQ.

It is worthwhile to note (such a fact will be useful later) that H∞ enjoys a
property of invariance under rerooting: if we shift the root edge by one along the
boundary (to the left or right), the random map thus obtained still has the law
of a (simple boundary) UIHPQ.

2.3 Zipper

Let us now give a precise definition of a self-avoiding path:

Definition 1. Let q be a (finite or infinite) planar quadrangulation, and let
b ∈ {0, 1, . . .}∪ {∞}, f ∈ {1, 2, . . .}∪ {∞} (“b” stands for backward and “f” for
forward). A (b, f)-SAW on q is a sequence

w = (�ei)−b≤i<f

of successive oriented edges of the map, where �ei has tail vertex xi and target
vertex xi+1, so that the target of �ei coincides with the tail of �ei+1, the oriented
edge �e0 is the root of q (thus x0 the origin) and the vertices in the sequence
(xi)−b≤i≤f are distinct, see Fig. 3.
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Fig. 3. Left: A (4, 3)-SAW in a rooted quadrangulation. Right: The function Z4,3 is
applied to a quadrangulation with a boundary of length 14 (whose outerface is drawn
as finite to aid visualisation) to obtain the quadrangulation with a distinguished (4, 3)-
SAW depicted on the Left.

We shall call Qb,f
n , the set of all pairs (q, P ), where q ∈ Qn and P is a

(b, f)-SAW on q (so that the set Q0,1
n is automatically identified with the set

Qn).
Fix p ≥ 1. There is an obvious bijective correspondence between, on the

one hand, the set Q0,p
n of quadrangulations of size n with a (0, p)-SAW and,

on the other hand, the set Qn,p of quadrangulations with a simple boundary of
perimeter 2p and size n; such a correspondence is an immediate generalisation
of the one between Qn,1 and Qn mentioned in Sect. 2.1 (Fig. 2(b)): simply let the
self-avoiding walk act as a “zipper”, eliminating the external face by pairwise
identifying its edges.

In fact, we may generalize this construction further: for b ≥ 0, f ≥ 1 such
that b + f = p one can build a bijection Zb,f between the set of all finite
quadrangulations with a simple boundary of length 2p and the set of all finite
quadrangulations of the sphere endowed with a (b, f)-SAW. Such a mapping
works as follows: write �e0, . . . , �e2p−1 for the 2p edges of the boundary of a quad-
rangulation q ∈ Qn,p, taken in clockwise order and in such a way that �e0 is the
root edge, each edge oriented clockwise with respect to the outerface. We set
Zb,f (q) to be the quadrangulation of the sphere obtained by identifying �ei with
−�e2f−1−i (where indices are to be read modulo 2p and the minus sign represents
a change in orientation), endowed with the distinguished self-avoiding path of
length p that is the image of the original cycle �e0, . . . �e2p−1 and rooted at the
image of �e0, see Fig. 3.

Since the above mappings are bijections, if Qn,p is uniformly distributed over
Qn,p then for any fixed quadrangulation of the sphere q with n faces we have

P
(
Zb,f (Qn,p) = (q,w) for some (b, f)-SAW w

)
=

#SAWb,f (q)
#Qn,b+f

, (7)
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where #SAWb,f (q) is the number of (b, f)-SAWs on q. In other words, the under-
lying quadrangulation of Zb,f (Qn,p) is not uniformly distributed, but biased by
its number of (b, f)-SAWs.

2.4 Annealed Infinite Self-Avoiding Walks on the UIPQ

One can extend the definition of the local distance to maps endowed with a
distinguished SAW as a variant of (5), by providing an appropriate notion of a
ball: if (q, (�ei)−b−1<i<f ) is a quadrangulation with a distinguished SAW of type
(b, f), for each r ≥ 2 we set

Br(q, (�ei)−b−1<i<f ) =
(
Br(q), (�ei)−(b∧(r−1))−1<i<(f∧(r−1))

)
.

For any fixed b, f , it is clear that the zipper map Zb,f is continuous for the
local topology, hence one may deduce from (6) that for any b ≥ 0, f ≥ 1 such
that b + f = p one has Zb,f (Qn,p) → Zb,f (Q∞,p) in distribution as n → ∞. We
are now interested in letting b and f tend to ∞.

Proposition 1 (Annealed UIPQs with SAW). We have the following con-
vergences in distribution for the local topology on quadrangulations endowed with
a self-avoiding walk:

Z0,p(Q∞,p)
(d)−−−→

p→∞ (Q→
∞, (P→

i )i≥0), (8)

Zp,p′
(Q∞,p+p′)

(d)−−−−−→
p,p′→∞

(Q↔
∞, (P↔

i )i∈Z), (9)

where (Q→
∞, (P→

i )i≥0) can be obtained as Z0,∞(H∞) by “zipping up” the boundary
of a UIHPQ, whereas (Q↔

∞, (P↔
i )i∈Z) is the result of the glueing of two indepen-

dent UIHPQs along their boundaries (so that their root edges are identified with
opposite orientations).

Proof. Consider the first convergence (8); we claim that it is a consequence of
the second convergence in (6). To see this, notice first that we can extend the
definition of the zipper map and consider Zb,f when one out of b, f is finite, the
other infinite; such a correspondence maps an infinite quadrangulation with an
infinite boundary to an infinite quadrangulation endowed with a (b, f)-SAW, as
depicted in Fig. 4.

Lemma 1. Let qp → q∞ be a sequence of quadrangulations with a boundary, qp

having perimeter 2p, which converges for dloc towards an infinite quadrangulation
with an infinite boundary; then we have

Z0,p(qp)
(dloc)−−−→
p→∞ Z0,∞(q∞).
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Fig. 4. The map Z2,∞ applied to a quadrangulation with an infinite boundary.

Proof. Fix r ≥ 1. Although Br(Z0,∞(q∞)) may not be a measurable function of
Br(q∞) (because graph distances may be decreased by applying Z0,∞), it is easy
to see that one can find r′ ≥ r (depending on q∞) such that if Br′(q∞) = Br′(qp)
then we have Br(Z0,p(qp)) = Br(Z0,∞(q∞)). This proves the lemma. �
Coming back to the proof of the theorem, by (6) and the Skorokhod embedding
theorem one can suppose that Q∞,p → H∞ almost surely. It thus follows from
the above lemma that Z0,p(Q∞,p) → Z0,∞(H∞) almost surely as p → ∞. This
proves the desired convergence in distribution.

We now move on to the second convergence (9), which is not this time a sim-
ple consequence of (6), as one cannot define Z∞,∞(H∞). The idea is that the two
parts of Q∞,p+p′ which are facing together near the root edge in Zp,p′

(Q∞,p+p′)
are distant from each other when p, p′ → ∞ and become asymptotically indepen-
dent. Here is the proper lemma from which the second convergence (9) immedi-
ately follows:

Lemma 2. For k ∈ {0, . . . , 2p} denote by Q(k)
∞,p the random infinite quadrangu-

lation with a boundary of perimeter 2p obtained by re-rooting Q∞,p at the k-th
edge along the boundary of its external face. Then we have

(Q∞,p,Q(k)
∞,p) −−−−−−−→

k→∞
(2p−k)→∞

(H∞,H′
∞),

where H∞ and H′
∞ are two independent copies of the UIHPQ.

Proof. Notice first that by invariance under re-rooting Q∞,p and Q(k)
∞,p have the

same law and both converge in law towards H∞ by (6). The only nontrivial
point is the asymptotic independence. Let r ≥ 1; we will show that the r-
neighborhoods around the root edge and the k-th edge along the boundary of
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Q∞,p become independent as k → ∞ and 2p − k → ∞. We write B•
r(Q∞,p)

for the hull of the ball of radius r inside Q∞,p: this is the submap obtained by
filling in all the finite holes that Br(Q∞,p) together with the boundary of Q∞,p

may create (recall that Q∞,p only has one end), see Fig. 5. Hence B•
r(Q∞,p) is

a finite quadrangulation with a simple boundary made up of two joined paths:
one belonging to the boundary of Q∞,p (the outer boundary) and the other (the
inner boundary) on which one needs to glue an infinite quadrangulation with a
boundary in order to recover Q∞,p (see [13, Section 4.1] for a similar definition
in the context of triangulations).

Fig. 5. The hull of the ball of radius 1 inside an infinite quadrangulation of the half-
plane. The outer boundary is the thick black line and the inner boundary is in red.

The spatial Markov property of the UIPQ of the 2p-gon (see [2,11,15]) shows
that conditionally on {B•

r(Q∞,p) = a} the law of the remaining part of Q∞,p is
that of of a UIPQ of the (2p + �in − �out)-gon where �in and �out are respectively
the length of the inner and outer boundary of a. Now if k → ∞ and 2p − k →
∞, by local finiteness, it is very unlikely that B•

r(Q∞,p) intersects B•
r(Q(k)

∞,p)
and, conditionally on the event that they are disjoint, by invariance under re-
rooting the law of B•

r(Q(k)
∞,p) is the same as that of B•

r(Q∞,p+�in−�out), which
converges to the law of B•

r(H∞) by (6). In particular this shows that B•
r(Q(k)

∞,p)
is asymptotically independent of {B•

r(Q∞,p) = a} as k → ∞ with 2p − k → ∞.
This yields our claim. �

2.5 Annealed and Quenched Connective Constants

In a lattice, the connective constant is generally defined as the exponential
growth rate (when it exists) of the number of (0, n)-SAWs. In our context, given
an infinite quadrangulation q, we call the connective constant of q the quantity

μ(q) = lim sup
n→∞

(
#SAW0,n(q)

)1/n
.

Proposition 2 (Existence of the quenched connective constant). The
connective constant μ(Q∞) of the UIPQ is almost surely constant.
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Proof. It follows from Lemma 2.1 of [22] that the value of the connective constant
on an infinite connected locally finite graph does not depend on the starting
point of the self-avoiding walks (actually Lacoin assumes a uniform bound on
the degrees but local finiteness is sufficient for the proof). In particular, the value
of the connective constant on the UIPQ is invariant by changing the root edge.
By ergodicity of the UIPQ (see [2, Theorem 7.2] for the case of triangulations,
which is easily adapted to our quadrangular case) any random variable which is
invariant under changing the root edge must be almost surely constant (see [4,
Theorem 3.1]). Hence μ(Q∞) is almost surely constant. �

Although the value of the almost sure connective constant of the UIPQ (some-
times called the quenched connective constant) remains a mystery, we can pre-
cisely compute the average number of self-avoiding walks of any given type in
the UIPQ.

Proposition 3 (Annealed connective constant). With the same notation
as (3), for any b ≥ 0 and f ≥ 1 we have

E[#SAWb,f (Q∞)] =
Cb+f

C1
=

(
9
2

)b+f+o(b+f)

.

Hence we could say that the “annealed” connective constant of the UIPQ is 9/2.

Proof. Let b ≥ 0 and f ≥ 1. Having fixed n, if Qn is a uniform quadrangulation
of the sphere with n faces, by the bijection between quadrangulations endowed
with a (b, f)-SAW and quadrangulations of the 2(b + f)-gon we have (thanks to
(7) and (3))

E[#SAWb,f (Qn)] =
#Qn,b+f

#Qn,1
−−−−→
n→∞

Cb+f

C1
.

On the other hand, the convergence of uniform quadrangulations towards the
UIPQ implies that for any fixed b, f the random variables #SAWb,f (Qn) converge
in law towards #SAWb,f (Q∞) as n → ∞. The statement of the proposition thus
follows once we prove that (#SAWb,f (Qn))n≥0 is uniformly integrable. In other
words, for any ε > 0 we want to find A > 0 such that

E[#SAWb,f (Qn)1#SAWb,f (Qn)>A] ≤ ε

for all n ≥ 0. If we denote Zb,f (Qn,b+f ) = (Qb,f
n ,wb,f

n ) we re-express the last
quantity using the fact (7) that the density of Qb,f

n with respect to Qn is pro-
portional to #SAWb,f (Qn):

E
[
#SAWb,f (Qn)1#SAWb,f (Qn)>A

]
=
(7)

#Qn,1

#Qn,(b+f)
E

[
1
#SAWb,f

(
Qb,f

n

)
>A

]
. (10)

Since we know that Qb,f
n converges locally in distribution (see the discussion

above Proposition 1), it follows that
(
#SAWb,f

(Qb,f
n

))
n≥1

converges in distri-
bution as well and in particular is tight. Using this fact and the asymptotics (2)
and (3) we can find A large enough so that the right-hand side of (10) is less
than ε uniformly in n ≥ 0 as desired. �



150 A. Caraceni and N. Curien

Open question 1 (Coincidence of the quenched and annealed connec-
tive constants). Combining the last two results we have μ(Q∞) ≤ 9/2. Do we
actually have a strict inequality?

Order and Disorder. The question of the coincidence of the quenched and
annealed connective constants is usually referred to as weak/strong disorder
in the statistical physics literature, see e.g. [22,23]. However, our context is dif-
ferent from the standard one where an underlying probability measure is tilted
via a martingale biasing, so we shall use this section to clarify what we mean
here by disorder.

For simplicity we restrict ourselves to the case of a two-sided SAW in order
to connect this section with Theorem 2. To simplify notation a little, we shall
write Qp,↔

∞ for the underlying rooted quadrangulation of Zp,p(Q∞,2p). Since
the random variable giving the number of self-avoiding paths of a given type
is continuous for the local topology, we can combine Proposition 1 with (7) to
deduce that the Radon–Nikodym derivative of Qp,↔

∞ with respect to Q∞ is given
by

dQp,↔
∞

dQ∞
=

C1

C2p
#SAWp,p(Q∞).

Hence Qp,↔
∞ is only a “mild” modification of Q∞, since the laws of the two

random quadrangulations are equivalent. However, the distortion effect might
become dramatic as p → ∞. Borrowing terminology from statistical physics,
we will say that disorder holds if the law of Q↔

∞ = limp Qp,↔
∞ is singular with

respect to that of Q∞. This is exactly the content of Theorem 2 which we will
prove below. First, however, let us state a direct corollary:

Corollary 2. We have C1
C2p

#SAWp,p(Q∞) → 0 in probability as p → ∞.

In other words, as p → ∞ the typical number of (p, p)-SAWs on the UIPQ
becomes much less than its expectation. Notice that even when disorder holds,
the quenched and the annealed connective constants may very well be equal.

Proof. We prove the result in greater generality. Let (E, d) be a Polish space
and μ, ν, (μn)n≥0 be probability measures on E such that μn → μ in distribution
as n → ∞ and such that μn is absolutely continuous with respect to ν, with
density fn (here μp is the law of Qp,↔

∞ , μ the law of Q↔
∞ and ν that of the UIPQ).

Assuming ν and μ are singular with respect to each other, the goal is to prove
that

fn → 0, in probability for ν.

Notice that, in general, there is no equivalence between the fact that ν and μ are
singular and the fact that fn → 0 in ν-probability. We pick a measurable subset
A such that μ(A) = 0 and ν(A) = 1. By regularity we can find a closed subset
F ⊆ A such that ν(F ) ≥ 1 − ε and a fortiori μ(F ) = 0. By the Portmanteau
theorem we thus have

0 = μ(F ) ≥ lim sup
n→∞

μn(F ) = lim sup
n→∞

∫
dν fn1F .
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It follows that ν({fn ≥ ε}) ≤ ν({fn ≥ ε} ∩ F ) + ε ≤ ε−1
∫

dν fn1F + ε, which is
eventually less than 2ε by the above display. We have thus proved that fn → 0
in ν-probability as desired. �

3 Displacement of the Distinguished SAW in Q→
∞

and Q↔
∞

This section is devoted to proving Theorem 1. Recall the notation (P→
i )i≥0 and

(P↔
i )i∈Z for the distinguished self-avoiding walks on Q→

∞ and Q↔
∞ respectively.

From our previous paper [9], the following is easily inferred:

dQ→
∞

gr (P→
0 ,P→

n ) � √
n and dQ↔

∞
gr (P↔

0 ,P↔
±n) � √

n, n ≥ 0, (11)

where the notation dq
gr(�u,�v) stands for the minimum graph distance between

an endpoint of �u and an endpoint of �v in the quadrangulation q. This is quite
immediate from [9, Proposition 6.1]: if we write (xi)i∈Z for the boundary vertices
of a UIHPQ H∞ (labelling them in the natural way, so that x0 → x1 is the root
edge) then the construction of Q→

∞ from H∞ may only decrease distances, so
that

dQ→
∞

gr (P→
0 ,P→

n ) ≤ dH∞
gr (x0, xn).

Thus dQ→
∞

gr (P→
0 ,P→

n ) � √
n, and the case of Q↔

∞ is analogous.
To establish Theorem 1 what we wish to obtain is a corresponding lower

bound

dQ→
∞

gr (P→
0 ,P→

n ) � √
n and dQ↔

∞
gr (P↔

0 ,P↔
±n) � √

n, n ≥ 0. (12)

We shall establish such a bound by constructing a sequence of nested “fences”
(P ′

i )i≥1 inside H∞, that is a sequence of disjoint paths whose endpoints lie on
the boundary of H∞ and are of the form x−r(i) and xr(i) for an increasing integer
sequence r(i). After the folding of H∞ to form Q→

∞ these paths will create nested
loops so that k ≥ r(i) implies dgr(x0, xk) ≥ i, see Fig. 9.

The construction of these fences will be achieved by a (deterministic) algo-
rithm which, when applied to the UIHPQ, will yield a random sequence (P ′

i )i≥1

for which one wishes to control the “growth” on the boundary (r(i))i≥1. This
will be possible thanks to the spatial Markov property of the simple boundary
UIHPQ.

3.1 Building One Fence

Suppose you are given a (deterministic) one-ended quadrangulation h with an
infinite simple boundary on the sequence of (successive) vertices (vi)i∈Z so that
v0 → v1 is the root edge, and a positive integer k.

We shall build a ‘fence’ P that avoids vertices v1, . . . , vk via a peeling process.
We first set e0 to be the root edge and then iteratively perform the following
loop, starting with i = 0:
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– reveal the face fi lying left of ei;
– consider the rightmost vertex vρi

of fi lying on the boundary of h; set ei+1

to be the rightmost edge in h which has vρi
as an endpoint and belongs to fi

(oriented towards vρi
);

– if ρi > k, then STOP; otherwise restart the loop, increasing i by 1.

Notice that each revealed face does have a vertex on the boundary, thus the
operations required are well defined, and that the sequence (ρi)i≥0 is weakly
increasing, so that (thanks to local finiteness of h) the algorithm does eventually
terminate (see Fig. 6).

Once the end condition is met (at – say – iteration T , where iterations
are numbered from 0), we have a final (connected) set of revealed faces F =
{f0, . . . , fT }. We consider then the hull F • of F obtained by “filling in” any
finite holes between F and the boundary of h, and set our fence P to be the
inner boundary of F • (i.e. the part of the boundary of F • which is not in com-
mon with the boundary of h). It is easy to show that P is indeed a simple path,
that one of its endpoints is vr+k for some r ≥ 1 while the other is some v1−� with
� ≥ 1, and that it has no vertices on the boundary of h except for its endpoints,
so that it does not intersect {v1, . . . , vk}.

Definition 2. We call the quantities � and r respectively the left and right
overshoots of the construction.

Fig. 6. Above, the algorithm run with k = 3 reveals 5 faces; the left overshoot is
| − 4|+1 = 5 and the right overshoot is 6− 3 = 3. Below, the flipped algorithm reveals
only 3 faces, but produces the same “fence”, with a left overshoot of | − 2|+ 1 = 3 and
a right overshoot of 8 − 3 = 5.



Self-Avoiding Walks on the UIPQ 153

Remark 2. We make here an alternative direct definition of F • which will be
useful later. We claim that F • is also the hull of the set of faces of the quadran-
gulation having (at least) a vertex in the set {v1, . . . , vk}. One inclusion is clear,
since all faces with a vertex in {v1, . . . , vk} must lie below P , which separates
{v1, . . . , vk} from infinity; the other is also clear, since all faces revealed during
the construction of P have a vertex in the set {v1, ..., vk}.

This alternative construction of P highlights the inherent symmetry in the
roles of the left and right overshoots. If we flip the quadrangulation h (exchanging
left and right) and relabel its boundary vertices as (v′

i)i∈Z so that v′
i is vk+1−i,

then perform the algorithm to build a fence as above (starting with e′
0 = (v′

0, v
′
1),

which corresponds to (vk+1, vk)), then the left overshoot of this new fence is the
right overshoot of P and vice versa (see Fig. 6).

3.2 One Fence in the Simple Boundary UIHPQ

Given k ≥ 0 and a copy of the simple boundary UIHPQ H∞, whose boundary
vertices we call (xi)i∈Z, we can use the above algorithm to discover F • and build
a fence P enclosing the vertices x1, . . . , xk. The spatial Markov property of the
UIHPQ already used in the proof of Lemma 2 then show that conditionally on
F • the remaining part H∞\F • (rooted for example at the rightmost edge on
the boundary of H∞ which lies to the left of F •) has the law of a UIHPQ. The
easiest way to see this is to say that F • has been discovered by the mean of a
peeling process (we shall discuss this later in more detail).

In this setting we denote by X+,(k) and X−,(k) respectively the right and
left overshoots in the construction of P . Obviously the law of these overshoots
depends on k, but the first observation we can make is that Remark 2 (combined
with the fact that the law of the UIHPQ is invariant under “flipping”) implies
that for all k ≥ 1

X+,(k) = X−,(k) in distribution. (13)

This being said, we will stochastically bound the variable X−,(k) by a random
variable which is independent of k. To do so, we may consider the peeling process
on the UIHPQ which consists in running the loop of Sect. 3.1 indefinitely (roughly
speaking by setting k = ∞), and set X to be the (random) index of the leftmost
boundary vertex of a face that is eventually revealed by it; it can be shown that X
is almost surely well defined (i.e. finite), and naturally we have X−,(k) ≤ |X|+1
stochastically for all k ≥ 1.

The explicit construction of the peeling process makes it possible to show the
following:

Lemma 3. For the peeling process based on Sect. 3.1 applied to H∞ with k = ∞,
the (random) index X of the leftmost boundary vertex belonging to a face that is
eventually revealed is such that

sup
n≥0

√
nP(X ≤ −n) < ∞.
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For the sake of completeness, we shall first devote a subsection to an explicit
description of the peeling process (based on [3], to which we refer the reader for
details), and then use it to give a proof of the above lemma. Before doing so, we
deduce the technical corollary that we will use:

Corollary 3. There exists a (law of a) random variable O ≥ 1 whose tail sat-
isfies P(O ≥ n) ≤ Cn−1/2 for some C > 0 and such that for any k ≥ 1 we can
couple O and the overshoots (X−,(k),X+,(k)) so that

max(X−,(k),X+,(k)) ≤ O.

Proof. It suffices to estimate the tail of max(X−,(k),X+,(k)). For n ≥ 1 we have

P(max(X−,(k),X+,(k)) ≥ n) ≤ P(X+,(k) ≥ n/2) + P(X−,(k) ≥ n/2)
=
(13)

2P(X−,(k) ≥ n/2)

≤ 2P(−X ≥ n/2 − 1) ≤
Lem. 3

Cn−1/2.

The statement of the corollary then follows from standard coupling
arguments. �

3.3 The Peeling Process

Let H∞ be a simple boundary UIHPQ and let us reveal the quadrangular face
that contains the root edge (an operation which we may call peeling the root
edge). The revealed face can separate the map into one, two or three regions,
only one of which is infinite according to the cases listed below. Conditionally
on each of these cases, such regions are independent from each other, the infinite
one (in light grey in the following figures) always being a copy of a UIHPQ while
the finite ones (in dark grey) are Boltzmann quadrangulations of appropriate
perimeter. We shall call edges of the revealed face that belong to the infinite
region exposed edges; edges of the boundary of H∞ that belong to the finite
regions will be said to have been swallowed, and we will distinguish edges that
are swallowed to the left and to the right according to whether they lie to the left
or right of the root edge being peeled (see Fig. 8). We distinguish the following
cases:

C Firstly, the revealed face may have exactly two vertices on the boundary of
H∞. In this case we say that the form of the quadrangle revealed is C (for
center).

R�, L� The revealed face can also have three of its vertices lying on the boundary
of H∞ and one in the interior, thus separating the map into a region with
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a finite boundary and one with an infinite boundary. We have two sub-
cases, depending on whether the third vertex lies on the left (case L�)
or on the right (case R�) of the root edge. Suppose for example that the
third vertex lies on the left of the root edge; the fourth vertex of the
quadrangle may lie on the boundary of the finite region or of the infinite
region. Since all quadrangulations are bipartite, this is determined by the
parity of the number � of swallowed edges (see the figure below for the
case of L�).

2k + 1 2k
L�1,�2 , C�1,�2 , R�1,�2 The last case to consider is when the revealed quadrangle

has all of its four vertices on the boundary. In this case the revealed face
separates from infinity two segments of length �1 and �2 along the boundary,
as depicted in the figure below. This could happen in three ways, as 0, 1,
or 2 vertices could lie to the right of the root edge (see Fig. 7) and the
corresponding subcases are denoted by L�1,�2 , C�1,�2 and R�1,�2 . Notice that
the numbers �1 = 2k1 + 1 and �2 = 2k2 + 1 must both be odd.

Fig. 7. Cases L�1,�2 and C�1,�2 .

Fig. 8. The exposed edges are in fat black lines and the swallowed ones are in fat gray
lines (the remaining cases are symmetric).

The exact probabilities of these events can be computed explicitly (see [3])
but we will only use the fact [3, Section 2.3.2] that, if E and S denote the number
of edges respectively exposed and swallowed by a peeling step,

E[E ] = 2, E[S] = 1, and P(S = k) ∼ Ck−5/2 (14)

for some constant C > 0 as k → ∞.
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By iterating the one-step peeling described above one can define a growth
algorithm that discovers (a subset of) the simple boundary UIHPQ step by step.

A peeling process is a randomized algorithm that explores H∞ by revealing
at each step the face in the unexplored part adjacent to a given edge, together
with any finite regions that it encloses; in order to choose the next edge to peel,
one can use the submap of H∞ that has already been revealed and possibly
another source of randomness as long as the choice remains independent of the
unknown region (see [3, Section 2.3.3] for details). Under these assumptions the
one-step peeling transitions and the invariance of H∞ under re-rooting along the
boundary show that the peeling steps are i.i.d., see [3, Proposition 4].

Notice that this is definitely the case with the algorithm described in Sect. 3.1,
which in fact consists of the one-step peeling described above, with the chosen
edge at each step being simply the rightmost exposed edge of the most recently
revealed face (until the algorithm stops).

Furthermore, consider the number of exposed, left swallowed and right swal-
lowed edges at each peeling step; each of these quantities is a random variable
whose law can be computed explicitly thanks to the probabilities of the various
events listed above, by referring to Table 1.

3.4 Overshoot Estimates

We now can proceed with the proof of Lemma 3.

Table 1.

Case Exposed Left swallowed Right swallowed ΔY

C 3 0 0 2

L2k 1 2k 0 −2k

L2k+1 2 2k + 1 0 −2k

R2k 1 0 2k 0

R2k+1 2 0 2k + 1 1

Lk1,k2 1 k1 + k2 0 −k1 − k2

Ck1,k2 1 k1 k2 −k1

Rk1,k2 1 0 k1 + k2 0

Proof of Lemma 3. Consider the peeling process on H∞ as defined in Sect. 3.1,
run indefinitely (with k = ∞). Steps are numbered from 0, and step i reveals a
face fi and outputs an oriented edge ei+1 incident to fi, with an endpoint xρi

on the boundary (xi)i∈Z of H∞; the edge ei+1 is then peeled at step i + 1; we
denote by H∞(i) the map obtained from H∞ after removing the hull of the faces
discovered up to time i. We already know that H∞(i) – appropriately rooted –
is distributed as a UIHPQ. We consider the section γi of the boundary of H∞(i)
lying left of ei+1. This is of course made of infinitely many edges, but γi and γ0
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differ by only finitely many edges. This makes possible to define for each i ≥ 0
a quantity Yi which represents the algebraic variation of the “length” of γi with
respect to γ0. The formal definition of Yi is given from Y0 = 0 via its variation
ΔYi = Yi+1 − Yi equal to the number of exposed edges minus the number of
swallowed edges on the left of the current point minus 1 (see the above table).
Clearly the definition of (Y ) and the properties of the peeling process entail
that (Y ) is a random walk with i.i.d. increments whose law can be explicitly
computed. In particular, E[ΔY ] = E[E ] − 1 − E[S]/2 = 1

2 with the notation of
(14). Since (Y ) has a positive drift we can define the overall infimum

inf
i≥0

Yi > −∞.

An easy geometric argument then shows that the variable X we are after is just
infi≥0 Yi. The tail of the overall infimum of the transient random walk (Y ) can
be estimated from the tail of ΔY (which is given by (14)) using [27, Theorem
2]. It follows that for some C ′ > 0

P(X ≤ −n) = P

(
inf
i≥0

Yi ≤ −n

)
≤ C ′n−1/2, for all n ≥ 1.

3.5 Building the Final Fences in Q→
∞ and Q↔

∞

Now, in order to conclude our proof of Theorem 1, we need a little tweaking of
the fence-building algorithm, so as to have fence endpoints coincide in the case
of Q→

∞ and Q↔
∞.

Consider first Q→
∞, built from H∞ by glueing the boundary onto itself as

described in the Introduction. Start by setting k = 1, reroot H∞ at e0 =
(x−1, x0), and build a fence P1 avoiding x0 whose endpoints are x−�1 and xr1 as
described in Sect. 3.1; let X+

1 = r1 and X−
1 = �1 be its right and left overshoots

respectively. Before building P2 we set P ′
1 to be P1 with the addition of the por-

tion of the boundary between x−r1 and x−�1 if r1 > �1, or between xr1 and x�1

if r1 < �1. Hence the path P ′
1 connects symmetric vertices on the boundary. We

then consider the map H∞(1) obtained by erasing the region of H∞ lying below
P ′
1 (or, equivalently, below P1), rooted at the first boundary edge on the left of

P ′
1. The map H∞(1) is a copy of the UIHPQ independent of the part erased. We

then build P2 by running the algorithm from Sect. 3.1 inside H∞(1), setting k
to be the number of edges of P ′

1 plus 1. We then extend P2 into P ′
2 as above to

make it connect mirror vertices. Iterating the process we build disjoint paths P ′
i

connecting mirror vertices x−r(i) to xr(i).
Consider now the sequence (P ′

i )i≥1 as seen in Q→
∞ (Fig. 9): the fences now

form nested disjoint loops. By planarity if j ≥ r(i) then the j-th point on the
distinguished self-avoiding walk P→ is at distance at least i from the origin in
Q→

∞. Our lower bound (12) (LHS) is then implied if we can show that

r(n) � n2. (15)
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Fig. 9. The fences (Pi)i≥1 are the subpaths of the fences (P ′
i )i≥1 above obtained by

disregarding boundary edges; we have X+
1 = 2, X+

2 = 1, X+
3 = 3, X−

1 = 1, X−
2 = 2,

X−
3 = 2. The overshoots of P ′

i are both equal to max{X+
i , X−

i } (hence 2, 2, 3 for
i = 1, 2, 3), and r(i) (see the folded version) is X1 + . . . + Xi (e.g. we have r(3) = 7).

If we denote by X−
i and X+

i the left and right overshoots of Pi, then

r(n) =
n∑

j=1

max(X+
j ,X−

j ).

Notice that the overshoots X+
1 ,X−

1 , . . . , X+
i ,X−

i are not independent nor iden-
tically distributed; however, using Corollary 3 we can couple those overshoots
with a sequence of i.i.d. random variables (Oi)i≥1 having the law prescribed in
Corollary 3 so that max(X+

j ,X−
j ) ≤ Oj for all j ≥ 1. Hence in this coupling we

have r(n) ≤ O1 + · · · + On. Standard estimates for i.i.d. variables with heavy
tails then show that O1 + · · · + On � n2 which proves our goal (15) which –
combined with Corollary 11 – proves the first part of Theorem 1.

The case of Q↔
∞ is essentially the same. Supposing H∞ and H′

∞ are the two
independent “halves” sharing the distinguished path (P↔

i )i∈Z on the vertices
(xi)i∈Z, one proceeds to build a fence P1 within H∞ that avoids x0, then a fence
Q1 in H′

∞ that does the same; one then builds P ′
1 and Q′

1 by adding boundary
edges to P1 and Q1 so that the endpoints of P ′

1 coincide with those of Q′
1 (see

Fig. 10), and thus the right overshoot of P ′
1 is the maximum between the right

overshoot of P1 and the left overshoot of Q1. Iterating such a construction and
applying the very same estimates as for the case of Q→

∞ finally shows Theorem 1.
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4 Volume Estimates and Singularity

4.1 Proof of Corollary 1

Proof of Corollary 1. We treat the case of Q→
∞, the argument being similar in the

case of Q↔
∞. We assume that Q→

∞ has been constructed from H∞ by folding its
boundary onto itself. Since the surgery operation performed to create Q→

∞ from
H∞ can only decrease distances we have Br(H∞) ⊆ Br(Q→

∞) and it follows from
the estimates on the volume growth in the UIHPQ [9, Proposition 6.2] that

#Br(Q→
∞) � r4.

Let us now turn to the upper bound. Consider the portion of the folded boundary
of H∞ that is inside Br(Q→

∞). By Theorem 1 the length Lr of this portion is
� r2. Hence it is immediate that Br(Q→

∞) is contained in the set of all faces
having one vertex at distance at most r from the boundary [[−Lr, Lr]] in H∞.
Let us denote by Mr the maximal distance in H∞ to the origin of this piece of
boundary. By the above argument we have

Br(Q→
∞) ⊆ BMr+r(H∞).

But applying the distance estimates along the boundary inside the UIHPQ ([9,
Proposition 6.1]) one deduces that Mr ≈ √

Lr ≈ r and using volume estimates
once more we get #BMr+r(H∞) ≈ r4, which completes the proof of the upper
bound and hence of Corollary 1. �

Fig. 10. Illustration of the construction of the fences in the case of Q↔
∞.

4.2 Proof of Theorem 2

We first recall the scaling limit results that we will need. The work of Le Gall
& Ménard on the UIPQ [24,25] as well as our previous work on the UIHPQ [9]
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show that there are two random variables Vp and Vh such that

r−4#Br(Q∞) → Vp and r−4#Br(H∞) → Vh,

in distribution as r → ∞. The expectations of such continuous random variables
have been computed and in particular E[Vh] = 7

9E[Vp]. We will only use a trivial
consequence of these calculations: if V ′

h is an (independent) copy of Vh since
E[Vh + V ′

h] > E[Vp] one can find α > 0 such that

P(Vh + V ′
h > α) > P(Vp > α), (16)

we can and will furthermore assume that α is not an atom for the law of Vp nor
for that of Vh + V ′

h (this is possible since there are at most a countable number
of atoms for each law).

By construction, the volume of the ball of radius r inside Q↔
∞ is at least

#B̃r(H∞) + #B̃r(H′
∞), where H∞ and H′

∞ are the two independent copies
of the UIHPQ with a simple boundary used to construct Q↔

∞, and B̃r(H∞) is
the set of inner vertices (not on the boundary) which are at distance less than
r from the origin of the map (since we shall use estimates for r−4#Br(H∞),
the number of vertices on the boundary which is of order r2 will turn out to
be completely irrelevant, see [9, Section 6]). In particular from the scaling limit
results recalled in the beginning of this section we deduce that for the α chosen
in (16) we have

lim
r→∞P(r−4#Br(Q∞) > α) = P(Vp > α),

lim inf
r→∞ P(r−4#Br(Q↔

∞) > α) ≥ lim inf
r→∞ P(r−4(#B̃r(H∞) + #B̃r(H′

∞)) > α)

= P(Vh + V ′
h > α).

Given a quadrangulation of the plane q, set Xr(q) = 1 if #Br(q) > αr4

and Xr(q) = 0 otherwise. Similarly if h1 and h2 are two quadrangulations of the
half-plane then we set Yr(h1, h2) = 1 if

#B̃r(h1) + #B̃r(h2) > αr4.

Clearly with this notation we have Xr(Q↔
∞) ≥ Yr(H∞,H′

∞). The singularity
result follows from an evaluation of the random variables Xr(Q↔

∞) and Xr(Q∞)
at different scales 0 � r1 � r2 � r3 � · · · chosen in such a way that Xri

(Q∞)
is roughly independent of Xrj

(Q∞) for i �= j, so that one may invoke a law of
large numbers. To make this precise we first state an independence lemma which
we prove at the end of the paper.

Lemma 4 (Independance of scales). For any r ≥ 0 and any ε > 0 there
exists R ≥ r such that for any s ≥ R we have

Cov
(Yr(H∞,H′

∞);Ys(H∞,H′
∞)

) ≤ ε,

Cov
(Xr(Q∞);Xs(Q∞)

) ≤ ε.
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Using the above lemma we build a sequence 0 � r1 � r2 � · · · such that for
all i < j one has Cov(Xri

(Q∞),Xrj
(Q∞)) ≤ 2−j as well as

Cov
(Yri

(H∞,H′
∞);Yrj

(H∞,H′
∞)

) ≤ 2−j .

Hence the hypotheses for the strong law of large numbers for weakly correlated
variables are satisfied, see e.g. [26], and this implies that

1
k

k∑

i=1

Xri
(Q∞) a.s.−−−−→

k→∞
P(Vp > α)

and
1
k

k∑

i=1

Yri
(H∞,H′

∞) a.s.−−−−→
k→∞

P(Vh + V ′
h > α).

Since we have Xr(Q↔
∞) ≥ Yr(H∞,H′

∞) this entails thanks to (16)

lim inf
k→∞

1
k

k∑

i=1

Xri
(Q↔

∞) ≥ P(Vh + V ′
h > α) > P(Vp > α).

In other words, the event {lim infk→∞ k−1
∑k

i=1 Xri
(q) = P(Vp > α)} has prob-

ability 1 under the law of the UIPQ and probability 0 under the law of Q↔
∞,

finally establishing singularity of the two distributions, as expected.

4.3 Lemma 4: Decoupling the Scales

Proof of Lemma 4. We begin with the first statement concerning the half-planes.
Let H∞ and H′

∞ be two copies of the UIHPQ and let r ≥ 0. As recalled above, in
[9, Section 6] we established scaling limits for the volume process (#Br(H∞))r≥0

in the UIHPQ. It follows in particular from the almost sure continuity of the
scaling limit process at time t = 1 and the fact that the boundary effects are
negligible that for any function o(r) negligible with respect to r we have

#Br+o(r)(H∞)

#B̃r(H∞)

(P)−−−→
r→∞ 1, (17)

where we recall that B̃r(H∞) are the inner vertices of Br(H∞). Recall also that
we denoted by B•

r(H∞) the hull of the ball of radius r inside H∞, and that by the
spatial Markov property of the UIHPQ the map H∞[r] := H∞\B•

r(H∞) rooted,
say, at the first edge on the boundary of H∞ on the left of B•

r(H∞), is distributed
as a UIHPQ and independent of B•

r(H∞) (and also of #B̃r(H∞)). An easy
geometric argument shows that there exist two random constants Ar, Br ≥ 0
depending on B•

r(H∞) such that we have for all s ≥ r

#B̃s−Ar
(H∞[r]) − Br ≤ #B̃s(H∞) ≤ #B̃s+Ar

(H∞[r]) + Br.
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Hence, using (17) we deduce that for any r ≥ 1

#B̃s(H∞)

#B̃s(H∞[r])

(P)−−−→
s→∞ 1,

and similarly when considering the other copy H′
∞ of the UIHPQ. The point

being that now #B̃s(H∞[r]) is independent of #B̃r(H∞). We use these con-
vergences together with the fact that α is not an atom of the law of Vh + V ′

h to
deduce that

1#˜Bs(H∞)+#˜Bs(H′∞)>αs4 − 1#˜Bs(H∞[r])+#˜Bs(H′∞[r])>αs4

(P)−−−→
s→∞ 0.

When developing the covariance Cov(Yr(H∞,H′
∞);Ys(H∞,H′

∞)) we can then
replace 1#˜Bs(H∞)+#˜Bs(H′∞)>αs4 by 1#˜Bs(H∞[r])+#˜Bs(H′∞[r])>αs4 with asymp-
totically no harm: For r fixed as s → ∞ we have

Cov
(Yr(H∞,H′

∞);Ys(H∞,H′
∞)

)

+ E

[
1#˜Bs(H∞)+#˜Bs(H′∞)>αs41#˜Br(H∞)+#˜Br(H′∞)>αr4

]

− P(#B̃s(H∞) + #B̃s(H′
∞) > αs4)P(#B̃r(H∞) + #B̃r(H′

∞) > αr4)
= o(1)

+ E

[
1#˜Bs(H∞[r])+#˜Bs(H′∞[r])>αs41#˜Br(H∞)+#˜Br(H′∞)>αr4

]

− P(#B̃s(H∞) + #B̃s(H′
∞) > αs4)P(#B̃r(H∞) + #B̃r(H′

∞) > αr4)
= o(1)

+ P(#B̃s(H∞[r]) + #B̃s(H′
∞[r]) > αs4)P(#B̃r(H∞) + #B̃r(H′

∞) > αr4)

− P(#B̃s(H∞) + #B̃s(H′
∞) > αs4)P(#B̃r(H∞) + #B̃r(H′

∞) > αr4),

where in the last line we used the independence of H∞[r] and B•
r(H∞) (and sim-

ilarly for H′
∞). Since H∞[r] has the law of a UIHPQ the product of probabilities

cancels out and the covariance indeed tends to 0 as s → ∞ as desired.
For the case of the UIPQ things are a little more complicated since the

spatial Markov property involves the perimeter of the discovered region. For
r ≥ 1 we also consider the hull B•

r(Q∞) of the ball of radius r inside the
UIPQ. Unfortunately Q∞\B•

r(Q∞) (appropriately rooted) is not independent
of B•

r(Q∞): conditionally on B•
r(Q∞) the map Q∞\B•

r(Q∞) has the law of a
UIPQ of the 2�-gon where 2� is the perimeter of the unique hole of B•

r(Q∞).
Yet, it can be shown (for example using the techniques of [11]) that for any � ≥ 1
if Q∞,� is a UIPQ of the 2�-gon then we still have

r−4#Br(Q∞,�)
(d)−−−→

r→∞ Vp.

This is in fact sufficient in order to adapt the above proof to the case of the
UIPQ. At this point in the paper, we leave the details to the courageous reader.
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5 Open Problems

In this section we discuss several open problems related to the topic of this
paper, and indicate some possible directions for further research. First we state
a natural conjecture motivated by Theorem 2 (see [5, Section 5] for a related
conjecture):

Conjecture 1. The laws of Q∞, Q→
∞ and of Q↔

∞ are singular with respect to each
other.

As stated in the Introduction, a possible way towards a proof of this conjec-
ture would be to use the recent work [18,19] as a replacement of the input (1)
and to adapt the proof of the last section. Recall also the open question about
coincidence of quenched and annealed connective constants:

Open question 1 (Coincidence of the quenched and annealed connec-
tive constants). The quenched connective constant μ(Q∞) of the UIPQ is less
than the “annealed” connective constant which is equal to 9/2. Do we actually
have equality?

In light of the works devoted to random walks on random planar maps (and
in particular the fact that the UIPQ is recurrent [17]) the following question is
also natural:

Open question 2. Are the random lattices Q→
∞ and Q↔

∞ almost surely recur-
rent?

Both open questions would have a positive answer if the geometry of Q→
∞

(resp. that of Q↔
∞) at a given scale were comparable (in a strong “local” sense)

to that of the UIPQ. A starting point for this strong comparison would be to
show that for any r ≥ 1 the following two random variables

B2r(Q∞)\B•
r(Q∞) and B2r(Q→

∞)\B•
r(Q

→
∞),

are contiguous (i.e. every graph property that holds with high probability for
the first random variable also holds for the second one and vice-versa). We do
not, however, intend to conjecture this is true.

Acknowledgments. We thank Jérémie Bouttier for fruitful discussion as well as for
providing us with an alternative derivation of (1) based on [8]. We are also grateful
to Jason Miller for a discussion about [18,19] and Sect. 5. Figure 1 has been done via
Timothy Budd’s software.
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Abstract. We consider a simple max-type recursive model which was
introduced in the study of depinning transition in presence of strong
disorder, by Derrida and Retaux [5]. Our interest is focused on the
critical regime, for which we study the extinction probability, the first
moment and the moment generating function. Several stronger assertions
are stated as conjectures.

Keywords: Max-type recursive model · Critical regime · Free energy ·
Survival probability

1 Introduction

Fix an integer m ≥ 2. Let X0 ≥ 0 be a non-negative random variable (but
very soon, taking values in Z+ := {0, 1, 2, . . .}). To avoid trivial discussions, we
assume that X0 is not almost surely a constant. Consider the following recurrence
relation:

Xn+1 = (X(1)
n + · · · + X(m)

n − 1)+, n ≥ 0, (1)
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where X
(1)
n , . . ., X

(m)
n are independent copies of Xn, and for all x ∈ R, x+ :=

max{x, 0} is the positive part of x.
The model with recursion defined in (1) was introduced by Derrida and

Retaux [5] as a simple hierarchical renormalization model to understand depin-
ning transition of a line in presence of strong disorder. The study of depinning
transition has an important literature both in mathematics and in physics. Of
particular interest are problems about the relevance of the disorder, and if it is,
the precise description of the transition. Similar problems are raised when the
line has hierarchical constraints. We refer to Derrida, Hakim and Vannimenus [4],
Giacomin, Lacoin and Toninelli [6], Lacoin [9], Berger and Toninelli [2], Derrida
and Retaux [5], and Hu and Shi [8] for more details and references. Let us men-
tion that the recursion (1) appears as a special case in the survey paper of
Aldous and Bandyopadhyay [1], in a spin glass toy-model in Collet et al. [3],
and is also connected to a parking scheme recently studied by Goldschmidt and
Przykucki [7].

Since x − 1 ≤ (x − 1)+ ≤ x for all x ≥ 0, we have, by (1),

mE(Xn) − 1 ≤ E(Xn+1) ≤ mE(Xn),

so the free energy

F∞ := lim
n→∞ ↓ E(Xn)

mn
= lim

n→∞ ↑ E(Xn) − 1
m−1

mn
, (2)

is well-defined.
In a sense, the free energy is positive for “large” random variables and van-

ishes for “small” ones. The two regimes are separated by a “surface” (called
“critical manifold” in [5]) in the space of distributions that exhibits a critical
behavior. Many interesting questions are related to the behavior of Xn at the
critical regime or near it.

As an example, let us recall a key conjecture, due to Derrida and Retaux [5],
which handles the following parametric setting.

For any random variable X, we write PX for its law. Assume

PX0 = (1 − p) δ0 + pPY0 ,

where δ0 is the Dirac measure at 0, Y0 is a positive random variable, and p ∈ [0, 1]
a parameter. Since F∞ =: F∞(p) is non-decreasing in p, there exists pc ∈ [0, 1]
such that F∞ > 0 for p > pc and that F∞(p) = 0 for p < pc. A conjecture of
Derrida and Retaux [5] says that if pc > 0 (and possibly under some additional
integrability conditions on Y0), then

F∞(p) = exp
(

− K + o(1)
(p − pc)1/2

)
, p ↓ pc , (3)

for some constant K ∈ (0, ∞).
When pc = 0, it is possible to have other exponents than 1

2 in (3), see [8],
which also contains several open problems in the regime p ↓ pc .
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We have not been able to prove or disprove the conjecture. In this paper, we
are interested in the critical regime, i.e., p = pc in the Derrida–Retaux conjecture
setting. However, we do not formulate the model in a parametric way. When X0

is integer valued, the critical regime is characterized by the following theorem.

Theorem 1 (Collet et al.[3]). If X0 takes values in Z+ := {0, 1, 2, . . .}, the
critical regime is given by

(m − 1)E(X0 mX0) = E(mX0) < ∞ ;

more precisely, F∞ > 0 if either E(mX0) < (m − 1)E(X0 mX0) < ∞, or
E(X0 mX0) = ∞ (a fortiori, if E(mX0) = ∞), and F∞ = 0 otherwise.

We assume from now on that X0 is Z+-valued, and we work in the critical
regime, i.e., assuming

(m − 1)E(X0 mX0) = E(mX0) < ∞. (4)

A natural question is whether E(Xn) → 0 in the critical regime. The answer is
positive.

Theorem 2. Assume (4). Then limn→∞ E(mXn) = 1. A fortiori,

lim
n→∞E(Xn) = 0.

It is natural to study the asymptotic behavior of Xn quantitatively. Although
we have not succeeded in making many of our arguments rigorous, we are led
by a general asymptotic picture described by the following two conjectures. The
first of them (Conjecture 1) describes how P(Xn 	= 0) tends to 0, while the
second one (Conjecture 2) describes the conditional asymptotic behavior of Xn

provided that Xn 	= 0.
We use the notation an ∼ bn, n → ∞, to denote limn→∞ an

bn
= 1.

Conjecture 1. Assume (4). Then we have

P(Xn 	= 0) ∼ 4
(m − 1)2

1
n2

, n → ∞.

When m = 2, Conjecture 1 was already given by Collet et al. [3] (see their
equation (AIII.10)) and by Derrida and Retaux [5].

Our next conjecture concerns weak convergence of Xn given Xn > 0.

Conjecture 2. Assume (4). Then, conditionally on Xn 	= 0, the random variable
Xn converges weakly to a limit Y∞ with geometric law: P(Y∞ = k) = m−1

mk for
integers k ≥ 1.

The two conjectures above immediately lead to more specific quantitative
assertions. In view of Theorem 2, it is natural to study how E(Xn) goes to zero
in the critical regime.
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Conjecture 3. Assume (4). Then we have

E(Xn) ∼ 4m

(m − 1)3
1
n2

, n → ∞ ,

and more generally, for all real numbers r ∈ (0, ∞),

E(Xr
n) ∼ c(r)

n2
, n → ∞ ,

where c(r) = c(r, m) := 4
m−1

∑∞
k=1

kr

mk .

In view of Conjectures 1 and 2, we may also guess how fast the moment
generating function converges.

Conjecture 4. Assume (4). Then

(a) We have, for n → ∞ and s ∈ (0, m), s 	= 1,

E(sXn) − 1 ∼ 4m

(m − 1)2
s − 1
m − s

1
n2

. (5)

(b) We have, for n → ∞,

E(mXn) − 1 ∼ 2
m − 1

1
n

. (6)

Possibly some additional integrability conditions, such as E(X3
0 mX0) < ∞

in Theorem 3 below, are necessary for our conjectures to hold.
The following weaker version of (6) can be rigorously proved.

Theorem 3. Assume (4). If Λ0 := E(X3
0 mX0) < ∞, then there exist constants

c2 ≥ c1 > 0, depending only on m, such that

c1
[P(X0 = 0)]1/2

Λ1/2
0

1
n

≤ E(mXn) − 1 ≤ c2
Λ1/2

0

[P(X0 = 0)]1/2

1
n

, n ≥ 1 .

Remark 1. (i) The assumption (4) guarantees that P(X0 = 0) > 0.
(ii) It will be seen (in Lemma 3) that in case m ≥ 3, we have P(X0 = 0) ≥ m−2

m−1 .

The content of the rest of the paper is as follows:

• Section 2: A few key facts about the moment generating functions of Xn and
their interrelations, with some technical proofs postponed to Sect. 7;

• Section 3: Proof of Theorem 1;
• Section 4: Proof of Theorem 2;
• Section 5: Heuristics for Conjectures 1 and 4b;
• Section 6: Heuristics for Conjectures 2, 3, and 4a;
• Section 8: Proof of Theorem 3;
• Section 9: Proofs of weaker versions of some of our conjectures.

Throughout the paper, ci = ci(m), for 1 ≤ i ≤ 17, denote finite and positive
constants whose values depend only on m.
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2 Moment Generating Functions and Their Evolution

2.1 Derivatives and Evolution

All the techniques used in this article are based on the evaluation of the moment
generating functions and on their evolution during the recursive process (1).
Write, for n ≥ 0,

Gn(s) := E(sXn),

the moment generating function of Xn.
In terms of generating functions, the recursion (1) writes as

Gn+1(s) =
1
s

Gn(s)m + (1 − 1
s
)Gn(0)m . (7)

Moreover, if G′
n(s) is well defined, then so is G′

n+1(s) and differentiation yields

G′
n+1(s) =

m

s
G′

n(s)Gn(s)m−1 − 1
s2

Gn(s)m +
1
s2

Gn(0)m . (8)

Eliminating Gn(0) from the two identities, it follows that

(s − 1)sG′
n+1(s) − Gn+1(s) = [m(s − 1)G′

n(s) − Gn(s)]Gn(s)m−1 . (9)

Taking s = m yields a formula particularly convenient for iterations, namely,

(m−1)mG′
n+1(m)−Gn+1(m) = [(m−1)mG′

n(m)−Gn(m)]Gn(m)m−1 . (10)

Further differentiation of (8) yields (if the involved derivatives are well
defined for G0)

G′′
n+1(s) = −2m

s2
G′

n(s)Gn(s)m−1 +
m

s
G′′

n(s)Gn(s)m−1 (11)

+
m(m − 1)

s
G′

n(s)2 Gn(s)m−2 +
2
s3

Gn(s)m − 2
s3

Gn(0)m

and

G′′′
n+1(s) =

6m

s3
G′

n(s)Gn(s)m−1 − 3m

s2
G′′

n(s)Gn(s)m−1

− 3m(m − 1)
s2

G′
n(s)2 Gn(s)m−2 − 6

s4
Gn(s)m

+
6
s4

Gn(0)m +
m

s
G′′′

n (s)Gn(s)m−1

+
3m(m − 1)

s
G′

n(s)G′′
n(s)Gn(s)m−2

+
m(m − 1)(m − 2)

s
G′

n(s)3Gn(s)m−3 . (12)

Notice that assumption (4) can be rewritten in the language of generating func-
tions as

(m − 1)mG′
0(m) = G0(m).
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It follows immediately from (10) that we have in this case for all n ≥ 0,

(m − 1)mG′
n(m) = Gn(m). (13)

Assuming E(X2
0 mX0) < ∞ and plugging (13) into (11) with s = m, we

obtain, for all n ≥ 0,

G′′
n+1(m) = G′′

n(m)Gn(m)m−1 +
m − 2

m3(m − 1)
Gn(m)m − 2

m3
Gn(0)m, (14)

which, in combination with (7), yields

G′′
n+1(m) +

2
m2(m − 1)

Gn+1(m) =
[
G′′

n(m) +
1

m2(m − 1)
Gn(m)

]
Gn(m)m−1 .

(15)
This is still not a perfectly iterative relation because of the difference of the
numerators on both sides.

However, let us continue the same operation with the third derivative. Assum-
ing that E(X3

0 mX0) < ∞ and plugging (13) into (12) with s = m, we obtain for
all n ≥ 0,

G′′′
n+1(m) =

−2m2 + 7m − 6
m4(m − 1)2

Gn(m)m +
6

m4
Gn(0)m +G′′′

n (m)Gn(m)m−1. (16)

By excluding Gn(0) from (16) and (14), it follows that

mG′′′
n+1(m) + 3G′′

n+1(m)

=
[
mG′′′

n (m) + 3G′′
n(m)

]
Gn(m)m−1 +

m − 2
m2(m − 1)2

Gn(m)m. (17)

Now we may get a completely iterative aggregate

Dn(m) := m(m − 1)G′′′
n (m) + (4m − 5)G′′

n(m) +
2(m − 2)

m2(m − 1)
Gn(m)

= (m − 1)
[
mG′′′

n (m) + 3G′′
n(m)

]
(18)

+ (m − 2)
[
G′′

n(m) +
2

m2(m − 1)
Gn(m)

]

because combining (15) and (17) yields, for all n ≥ 0,

Dn+1(m) = Dn(m)Gn(m)m−1. (19)

This is another perfectly iterative relation along with (10). Recall that it is
proved under (4) and assuming that E(X3

0 mX0) < ∞.
The approach based on analysis of the moment generating function is already

adopted by Collet et al. [3] and Derrida and Retaux [5], where the main attention
is focused on the case m = 2. As seen from (18), the case m = 2 only involves
the first half of Dn(m). Our work reveals the importance of the second half;
together with the first half, they serve as a useful tool in the study of the moment
generating function, as we will see in Sect. 7.2.
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2.2 Products

The main technical properties of generating functions are contained in the fol-
lowing two complementary propositions.

Proposition 1. Assume (4). There exists a constant c3 ∈ (0, ∞) such that

n∏
i=0

Gi(m)m−1 ≤ c3

P(X0 = 0)
n2 , n ≥ 1.

Proposition 2. Assume (4). If Λ0 := E(X3
0 mX0) < ∞, then there exists a

positive constant c4, depending only on m, such that

n∏
i=0

Gi(m)m−1 ≥ c4

Λ0
n2 , n ≥ 1.

The proofs of these propositions, rather technical, are postponed to Sect. 7.

3 Proof of Theorem 1

The proof of Theorem 1 essentially follows Collet et al. [3]. It is presented here,
not only for the sake of self-containedness, but also for some simplification, which
we consider as interesting, in both the upper and the lower bounds.

Assume for a while that E(X0 mX0) < ∞, which means, in the language of
generating functions, that G′

0(s) is well defined for all 0 ≤ s ≤ m. Then, as we
know from (8), the derivative G′

n(s) is well defined for all n ≥ 0 and 0 ≤ s ≤ m.

Proof of Theorem 1: Upper bound. Suppose (m − 1)E(X0 mX0) ≤ E(mX0) and
E(X0 mX0) < ∞. Let us prove that F∞ = 0. In the language of generat-
ing functions our assumption simply means (m − 1)mG′

0(m) − G0(m) ≤ 0
and G′

0(m) < ∞. Then iterative identity (10) yields that we have the same
relations (m − 1)mG′

n(m) − Gn(m) ≤ 0 and G′
n(m) < ∞ for all n ≥ 0.

Back to the moments’ language, we obtain E(Xn mXn) < ∞ and E(mXn) ≥
(m − 1)E(Xn mXn). The latter expression, by the FKG inequality, is greater
than or equal to (m− 1)E(Xn)E(mXn). Therefore, E(Xn) ≤ 1

m−1 , for all n ≥ 0.
By definition, we get F∞ = 0. ��

We now turn to the lower bound for the free energy.

Lemma 1. If E(mX0) < (m − 1)E(X0 mX0) < ∞, then there exists s ∈ (1, m)
such that

(s − 1)E(Xn sXn) − E(sXn) → ∞, n → ∞.
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Proof. Taking s ∈ (1, m) sufficiently close to m we may assure that

(s − 1)E(X0 sX0) − E(sX0) > 0.

In the language of generating functions, this means

(s − 1)sG′
0(s) − G0(s) > 0.

By (9),

(s − 1)sG′
n+1(s) − Gn+1(s) =

m

s

[
s(s − 1)G′

n(s) − s

m
Gn(s)

]
Gn(s)m−1

≥ m

s
[s(s − 1)G′

n(s) − Gn(s)]Gn(s)m−1

≥ m

s
[s(s − 1)G′

n(s) − Gn(s)],

where at the last step we used Gn(s) ≥ 1 for all s > 1. By induction, we obtain

(s − 1)sG′
n(s) − Gn(s) ≥

(m

s

)n

[(s − 1)sG′
0(s) − G0(s)] → ∞

which is precisely equivalent to the claim of our lemma. ��
Lemma 2. If F∞ = 0, then supn≥0 E(Xn sXn) < ∞ for all s ∈ (0, m).

Proof. Let k ≥ 1 and n ≥ 0. Clearly,

Xn+k ≥
mk∑
i=1

1{X
(i)
n ≥k+1},

where, as before, X
(i)
n , i ≥ 1, are independent copies of Xn. It follows that

E(Xn+k) ≥ mk
P(Xn ≥ k + 1) .

Suppose F∞ = 0. Then by (2), E(Xn+k) ≤ 1
m−1 for all n ≥ 0 and k ≥ 1; hence

P(Xn ≥ k + 1) ≤ 1
(m − 1)mk

for all n ≥ 0 and k ≥ 1, implying the assertion of our lemma. ��
Proof of Theorem 1: Lower bound. Assume first

E(mX0) < (m − 1)E(X0 mX0) < ∞.

Let us prove that F∞ > 0.
By Lemma 1, there exists s ∈ (1, m) such that

E(Xn sXn) → ∞, n → ∞. (20)
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If F∞ = 0, then by Lemma 2 we would have supn≥0 E(Xn sXn) < ∞, contra-
dicting (20).

Consider now the remaining case E(X0 mX0) = ∞. For any k ≥ 1 let X̃0,k :=
min{X0, k} be the trimmed version of X0. By choosing k sufficiently large, one
obtains

(m − 1)E(X̃0,k m
˜X0,k) > E(m ˜X0,k).

The just proved part of our theorem asserts that the free energy associated with
X̃0,k is positive, and a fortiori F∞ > 0 in this case. ��

4 Proof of Theorem 2

We prove Theorem 2 in this section by means of Proposition 1. Write as before
Gn(s) := E(sXn).

Lemma 3. Assume (4).

(i) For any n ≥ 0, s → Gn(s)m−1

s is non-increasing on [1, m]. In particular, we

have Gn(s)m−1

s ≥ Gn(m)m−1

m for n ≥ 0 and s ∈ [1, m].
(ii) We have supn≥0 Gn(m) ≤ m1/(m−1).
(iii) We have infn≥0 P(Xn = 0) ≥ m−2

m−1 .

Proof. (i) Since s → s G′
n(s)

Gn(s) is non-decreasing on [1, ∞) (this is a general prop-
erty of moment generating functions, and has nothing to do with assumption
(4)), we have, for s ∈ [1, m],

(m − 1)
sG′

n(s)
Gn(s)

− 1 ≤ (m − 1)
mG′

n(m)
Gn(m)

− 1 = 0

by (13). This implies that

d
ds

(
Gn(s)m−1

s

)
=

[
(m − 1)

sG′
n(s)

Gn(s)
− 1

]
Gn(s)m−1

s2
≤ 0

for s ∈ [1, m]; hence s → Gn(s)m−1

s is non-increasing on [1, m].

(ii) By (i), Gn(m)m−1

m ≤ Gn(1)m−1 = 1, so Gn(m)m−1 ≤ m.
(iii) From (4), we get

P(Xn = 0) = E(mXn) − E(mXn 1{Xn≥1})

= (m − 1)E(Xn mXn 1{Xn≥1}) − E(mXn 1{Xn≥1})

≥ (m − 2)E(mXn 1{Xn≥1}).

This implies (m − 1)P(Xn = 0) ≥ (m − 2)E(mXn) ≥ m − 2, as desired. ��
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Proof of Theorem 2. Assume (4). Let, for n ≥ 0,

εn := Gn(m) − 1 > 0 .

The proof of Theorem 2 consists of showing that εn → 0.
By (7), Gn+1(s) ≤ 1

s Gn(s)m +(1− 1
s ). In particular, taking s = m gives that

εn+1 ≤ (1 + εn)m − 1
m

, n ≥ 0 . (21)

We will now use the following elementary inequality

m

log(1 + my)
<

1
log(1 + y)

+
m − 1

2
, y > 0 . (22)

Indeed, the function h(x) := x
log(1+x) satisfies h′(x) ≤ 1

2 for all x > 0. Therefore,

m

log(1 + my)
− 1

log(1 + y)
= y−1(h(my) − h(y)) ≤ m − 1

2
.

Let now n > k ≥ 0. Since εn−k ≤ (1+εn−k−1)
m−1

m (see (21)), we have

1
log(1 + εn−k−1)

≤ m

log(1 + mεn−k)
<

1
log(1 + εn−k)

+
m − 1

2
,

the last inequality being a consequence of (22). Iterating the inequality yields
that for all integers 0 ≤ k ≤ n,

1
log(1 + εn−k)

≤ 1
log(1 + εn)

+
m − 1

2
k ≤ 1

εn
+ 1 +

m − 1
2

k ,

the second inequality following from the inequality 1
log(1+x) < 1

x + 1 (for x > 0).
As a consequence, for integers n > j ≥ 0,

n−j−1∑
k=0

log(1 + εn−k) ≥
n−j−1∑

k=0

1
1

εn
+ 1 + m−1

2 k
≥

∫ n−j

0

dx
1

εn
+ 1 + m−1

2 x
.

The sum on the left-hand side is
∑n

i=j+1 log(1+ εi), whereas the integral on the
right-hand side is equal to

2
m − 1

log
( 1

εn
+ 1 + m−1

2 (n − j)
1

εn
+ 1

)
≥ 2

m − 1
log(c5 (n − j)εn),

for some constant c5 > 0 whose value depends only on m (recalling from
Lemma 3 (ii) that εn ≤ m1/(m−1) − 1). This yields that for n > j ≥ 0,

n∏
i=j+1

(1 + εi)(m−1)/2 ≥ c5 (n − j)εn . (23)
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Replacing the pair (n, j) by (j, 0), we also have

j∏
i=1

(1 + εi)(m−1)/2 ≥ c5 jεj

for j ≥ 1. Therefore,

c2
5 j(n − j) εj εn ≤

n∏
i=1

(1 + εi)(m−1)/2,

which is bounded by c
1/2
3

[P(X0=0)]1/2
n (see Proposition 1). Consequently, with c6 :=

c
1/2
3
c25

, we have εj εn ≤ c6
[P(X0=0)]1/2

n
j(n−j) for n > j ≥ 1. In particular,

εj sup
n≥2j

εn ≤ 2c6

[P(X0 = 0)]1/2

1
j

, j ≥ 1 . (24)

This yields

(lim sup
j→∞

εj)2 = lim sup
j→∞

εj · lim
j→∞

sup
n≥2j

εn = lim sup
j→∞

(
εj sup

n≥2j
εn

)
= 0,

i.e., εj → 0. ��

5 Around Conjectures 1 and 4b

Let
εn := Gn(m) − 1.

By Theorem 2, εn → 0, n → ∞. Propositions 1 and 2 together say that∏n
i=0(1 + εi) is of order of magnitude n2/(m−1) when n is large. So if n → εn

were sufficiently regular, we would have

εn ∼ 2
m − 1

1
n

, n → ∞ , (25)

This is (6) in Conjecture 4b.
From the relation (7) we obtain, with s = m,

1 + εn+1 =
1
m

(1 + εn)m + (1 − 1
m

)Gn(0)m.

Since Gn(0) = 1 − P(Xn 	= 0), whereas εn → 0, this implies that

P(Xn 	= 0) ∼ εn − εn+1

m − 1
+

1
2

ε2
n, n → ∞. (26)

Let us look back at (25). If we were able to show that n2(εn− 2
m−1

1
n ) admits a

finite limit when n → ∞, (26) would give an affirmative answer to Conjecture 1.
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6 About Conjectures 2, 3 and 4a

Let us first look at Conjecture 4a. Theorem 2 yields P(Xn 	= 0) → 0. Therefore,

Gn(0)m = [1 − P(Xn 	= 0)]m = 1 − mP(Xn 	= 0) + o(P(Xn 	= 0)), n → ∞.

Using this fact and the identity (7), we obtain

Gn+1(s) − 1
P(Xn 	= 0)

=
s−1(Gn(s)m − 1) + (1 − s−1)(Gn(0)m − 1)

P(Xn 	= 0)

=
s−1(Gn(s)m − 1)

P(Xn 	= 0)
− m(1 − s−1) + o(1), n → ∞ .

Suppose we were able to prove that P(Xn+1 	= 0) ∼ P(Xn 	= 0) (which would
be a consequence of Conjecture 1), and that

Gn(s) − 1
P(Xn 	= 0)

→ H(s), (27)

for s ∈ (0,m), with some real-valued measurable function H( · ). Then

H(s) = s−1 mH(s) − m(1 − s−1),

which would lead to

H(s) =
m(s − 1)
m − s

,

for s ∈ (0, m). This, in view of Conjecture 1, is what have led us to Conjecture
4a.

To see why Conjecture 2 would be true, let us note from (27) and H(s) =
m(s−1)

m−s that

E(sXn |Xn 	= 0) → (m − 1)s
m − s

, s ∈ (0, m) . (28)

On the right-hand side, (m−1)s
m−s = E(sY∞) if Y∞ is such that P(Y∞ = k) = m−1

mk

for integers k ≥ 1. In words, Y∞ has a geometric distribution with parameter
1
m . This would give a proof of Conjecture 2.

Conjecture 3 would be an immediate consequence of Conjecture 1 and (28).
We end this section with an elementary argument showing that our prediction

for E(Xn) in Conjecture 3 would be a consequence of Conjecture 1 (without using
the conjectured convergence in (28)).

Lemma 4. Assume E(X0) < ∞. For all n ≥ 0, we have E(Xn) < ∞, and

P(Xn = 0) = [1 − mE(Xn) + E(Xn+1)]1/m.

Proof. Taking s = 1 in (8) gives that for n ≥ 0, E(Xn) < ∞ and

E(Xn+1) = mE(Xn) − 1 + Gn(0)m ,

which implies the lemma by noting that Gn(0) = P(Xn = 0). ��
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If Conjecture 1 were true, then it would follow from Lemma 4 (and Theorem
2 which guarantees E(Xn) → 0) that

E(Xn) − E(Xn+1)
m

∼ 4
(m − 1)2

1
n2

, n → ∞ .

Applying Lemma 5 below to an := E(Xn), λ := 1
m and b := 2, this would yield

the prediction for E(Xn) in Conjecture 3.

Lemma 5. Let 0 < λ < 1 and b > 0. Let (an, n ≥ 1) be a bounded sequence
such that

lim
n→∞ nb(an − λan+1) = x ,

for some real x. Then
lim

n→∞ nban =
x

1 − λ
.

Proof. Let pn := an − λan+1. Then limn→∞ nbpn = x and

M := sup
j≥1

(jb|pj |) < ∞.

In particular, the sequence (pn) is bounded.
By iterating the identity an = pn + λan+1, we get a series representation

an =
∞∑

k=0

pn+kλk,

where the series converges because (pn) is bounded. We may apply the dominated
convergence theorem to the identity

nban =
∞∑

k=0

nbpn+kλk,

because for every k ≥ 0 we have nbpn+k → x by assumption, and the dominating
summable majorant (Mk, k ≥ 0) is given by Mk := Mλk. We arrive at

lim
n→∞ nban = x

∞∑
k=0

λk =
x

1 − λ
,

as required. ��

7 Proofs of Propositions 1 and 2

7.1 Proof of Proposition 1

Let us define, for n ≥ 0 and s ∈ [0, m),

Δn(s) := [Gn(s) − s(s − 1)G′
n(s)] − (m − 1)(m − s)

m
[2sG′

n(s) + s2G′′
n(s)] .
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Then by (9), (8) and (11),

Δn+1(s) =
m

s
Δn(s)Gn(s)m−1 − m − s

s
[(m − 1)sG′

n(s) − Gn(s)]2Gn(s)m−2.

(29)

Lemma 6. Assume (4). Then Δn(s) ∈ [0, 1] for n ≥ 0 and s ∈ [0, m).

Proof. By the definition of Δn, for s ∈ [0, m),

Δ′
n(s) = −m − s

m
[2(m − 2)G′

n(s) + (4m − 5)sG′′
n(s) + (m − 1)s2G′′′

n (s)],

which is non-positive. Hence Δn is non-increasing on (0, m). Since Δn(0) =
Gn(0) = P(Xn = 0) ≤ 1, whereas under assumption (4), it is easily checked that
lims→m− Δn(s) = 0, the lemma follows. ��
Lemma 7. Assume (4). For all n ≥ 0,

[(m − 1)sG′
n(s) − Gn(s)]2 ≤ 2Gn(0)Δn(s), s ∈ [0, m).

Proof. By using (13) and writing x := s
m ∈ [0, 1) for brevity, we have

Gn(s) = (m−1)mG′
n(m)−Gn(m)+Gn(s) =

∞∑
k=1

mk(km−k−1+xk)P(Xn = k) .

[In particular, Gn(0) =
∑∞

k=1 mk(km − k − 1)P(Xn = k).] Furthermore,

Gn(s) − (m − 1)sG′
n(s) =

∞∑
k=1

mk[km − k − 1 + xk − (m − 1)kxk]P(Xn = k)

=
∞∑

k=1

mk(km − k − 1)(1 − xk)P(Xn = k) .

Consequently,

Δn(s) =
∞∑

k=1

mk(km − k − 1)(1 − (k + 1)xk + kxk+1)P(Xn = k) . (30)

By the Cauchy–Schwarz inequality,
( ∞∑

k=1

akqk

)2

≤
( ∞∑

k=1

qk

) ( ∞∑
k=1

a2
kqk

)
,

with ak := 1 − xk and qk := mk(km − k − 1)P(Xn = k), the proof of the lemma
is reduced to showing the following: for x ∈ [0, 1] and k ≥ 1,

(1 − xk)2 ≤ 2(1 − (k + 1)xk + kxk+1). (31)
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This can be rewritten as 2k xk(1 − x) ≤ 1 − x2k, which is proved by

1 − x2k

1 − x
= 1 + x + ... + x2k−1 ≥ 2kxk

(using that 2xk ≤ 2xk−1/2 ≤ xk+� + xk−�−1 for 0 ≤ � < k). ��
Proof of Proposition 1. By (29) and Lemma 7, for s ∈ [0, m),

Δn+1(s) ≥ m

s
Δn(s)Gn(s)m−1 − m − s

s
2Gn(0)Δn(s)Gn(s)m−2

≥ m

s
Δn(s)Gn(s)m−1 − 2(m − s)

s
Δn(s)Gn(s)m−1

=
2s − m

s
Δn(s)Gn(s)m−1.

Hence for any s ∈ (m
2 , m),

Δn+1(s) ≥ Δ0(s)(2s − m)n+1
n∏

i=0

Gi(s)m−1

s
≥ Δ0(s)(2s − m)n+1

n∏
i=0

Gi(m)m−1

m
,

where we used Lemma 3 (i) in the last inequality. Therefore, for s ∈ (m
2 , m),

n∏
i=0

Gi(m)m−1 ≤
( m

2s − m

)n+1 Δn+1(s)
Δ0(s)

≤
( m

2s − m

)n+1 1
Δ0(s)

,

the second inequality being a consequence of Lemma 6. Taking s = m − m
n+2

gives that with c7 := supn≥1(1 + 2
n )n+1 ∈ (1, ∞) and all n ≥ 1,

n∏
i=0

Gi(m)m−1 ≤ c7

Δ0(m − m
n+2 )

.

By (30) and (31), with x := 1 − 1
n+2 ,

Δ0(m − m

n + 2
) ≥ 1

2

∞∑
k=1

mk(km − k − 1)(1 − xk)2 P(X0 = k)

≥ 1
2

(1 − x)2
∞∑

k=1

mk(km − k − 1)P(X0 = k) .

On the right-hand side, (1 − x)2 = 1
(n+2)2 , whereas

∞∑
k=1

mk(km − k − 1)P(X0 = k) = E{[(m − 1)X0 − 1]mX0 1{X0≥1}}

= E{[(m − 1)X0 − 1]mX0} + P(X0 = 0),

which is P(X0 = 0) because under (4), we have E{[(m − 1)X0 − 1]mX0} = 0.
Consequently,

Δ0(m − m

n + 2
) ≥ P(X0 = 0)

2(n + 2)2
,

for all n ≥ 1. This yields the proposition. ��
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7.2 Proof of Proposition 2

Now we start to prepare the proof of Proposition 2. In the case m = 2, it is
proved in Appendix III of [3].

Lemma 8. Assume (4) and let n ≥ 0. If G′′′
n (m) < ∞, then

G′′
n(m) ≤ c8 max{G′′′

n (m)1/2, 1} , (32)

where c8 = c8(m) ∈ (0, ∞) is a constant whose value depends only on m.

Proof. According to Lemma 3 (ii), Gn(m) ≤ m1/(m−1). By plugging this into
(4), we have G′

n(m) ≤ m1/(m−1)

m(m−1) =: c9. The function G′
n( · ) being convex, we

have

G′′
n(s) ≤ G′

n(m) − G′
n(s)

m − s
≤ G′

n(m)
m − s

≤ c9

m − s
, s ∈ [0, m) .

By the convexity of G′′
n( · ), this implies that, for s ∈ [0, m),

G′′
n(m) ≤ G′′

n(s) + (m − s)G′′′
n (m) ≤ c9

m − s
+ (m − s)G′′′

n (m) .

The lemma follows by taking s := m − 1
max{G′′′

n (m)1/2,1} . ��
Lemma 9. Assume (4) and let n ≥ 0. If G′′′

n (m) < ∞, then

Gn(m) − 1 ≥ c10

max{G′′′
n (m)1/2, 1} , (33)

where c10 = c10(m) ∈ (0, ∞) is a constant that does not depend on n.

Proof. If m = 2 and P(Xn = 0) ≤ 1
2 , then Gn(2)−1 ≥ P(Xn ≥ 1) ≥ 1

2 . If m = 2
and P(Xn = 0) > 1

2 , the equation (AIII.5) of [3] says that G′′
n(2)(Gn(2) − 1) >

1
4 [P(Xn = 0)]2 > 1

16 . So the lemma (in case m = 2) follows from Lemma 8.
In the rest of the proof, we assume m ≥ 3.
Write (4) as

∞∑
k=0

((m − 1)k − 1)mk
P(Xn = k) = 0.

It follows that

P(Xn = 0) − m(m − 2)P(Xn = 1) =
∞∑

k=2

((m − 1)k − 1)mk
P(Xn = k)

≤ (m − 1)
∞∑

k=2

kmk
P(Xn = k).

Writing

G′′
n(m) =

1
m2

∞∑
k=2

k(k − 1)mk
P(Xn = k) ≥ 1

2m2

∞∑
k=2

k2 mk
P(Xn = k),

Gn(m) − 1 =
∞∑

k=1

(mk − 1)P(Xn = k) ≥ (1 − 1
m

)
∞∑

k=1

mk
P(Xn = k) ,
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it follows from the Cauchy–Schwarz inequality that

P(Xn = 0) − m(m − 2)P(Xn = 1) ≤
(
2m3(m − 1)G′′

n(m)[Gn(m) − 1]
)1/2

.

Write εn := Gn(m) − 1 as before. We have Gn(m) ≥ 1 + (m − 1)P(Xn = 1), i.e.,

m(m − 2)P(Xn = 1) ≤ m(m − 2) εn

m − 1
.

On the other hand, P(Xn = 0) ≥ m−2
m−1 by Lemma 3 (iii). Therefore,

m − 2
m − 1

− m(m − 2) εn

m − 1
≤ (2m3(m − 1))1/2 G′′

n(m)1/2 ε1/2
n ,

which yields
Gn(m) − 1 = εn ≥ c11

max{G′′
n(m), 1} , (34)

for some constant c11 = c11(m) ∈ (0, ∞) and all n. The lemma (in case m ≥ 3)
follows from Lemma 8. ��
Proof of Proposition 2. Write bj =

∏j
i=0 Gi(m)m−1. By (19),

Dn(m) = D0(m)bn−1 .

By Definition (18), we have Dn(m) ≥ m(m−1)G′′′
n (m) and D0(m)

m(m−1) ≤ c12Λ0 for
some c12 = c12(m) ∈ (0, ∞), where Λ0 := E(X3

0mX0). Therefore,

G′′′
n (m) ≤ c12 Λ0 bn−1 . (35)

We know that bn−1 ≥ 1, and that Λ0 ≥ E(X0m
X0) = 1

m−1E(mX0) ≥ 1
m−1 . So,

with c13 := max{c12, m − 1}, we have

max{G′′′
n (m), 1} ≤ c13 Λ0 bn−1 .

On the other hand, by Lemma 9, max{G′′′
n (m), 1} ≥ ( c10

Gn(m)−1 )2. Therefore,
with c14 := c10

c
1/2
13

, we have Gn(m) ≥ 1 + c14
Λ

1/2
0 b

1/2
n−1

, i.e.,

b
1/(m−1)
n

b
1/(m−1)
n−1

≥ 1 +
c14

Λ1/2
0 b

1/2
n−1

.

Since c14
Λ

1/2
0 b

1/2
n−1

≤ c14
Λ

1/2
0

≤ (m − 1)1/2c14, this yields that for some c15 = c15(m) ∈
(0, ∞) depending only on m,

b
1/2
n

b
1/2
n−1

≥ 1 +
c15

Λ1/2
0 b

1/2
n−1

.

Hence b
1/2
n − b

1/2
n−1 ≥ c15

Λ
1/2
0

. Thus b
1/2
n ≥ c15

Λ
1/2
0

n, as desired.
��
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8 Proof of Theorem 3

Proof. Assume (4). Write as before Gn(m) := E(mXn) and εn := Gn(m) − 1.
Recall from (23) that for integers n > j ≥ 0,

n∏
i=j+1

(1 + εi)(m−1)/2 ≥ c5 (n − j)εn.

Taking j := �n
2 � gives that for n ≥ 1,

n∏
i=�n

2 �+1

(1 + εi)(m−1)/2 ≥ c5

2
nεn .

By Proposition 1,

n∏
i=0

(1 + εi)(m−1)/2 ≤ c
1/2
3

P(X0 = 0)1/2
n,

whereas by Proposition 2, under the assumption Λ0 := E(X3
0 mX0) < ∞,

�n
2 �∏

i=0

(1 + εi)(m−1)/2 ≥ c16

Λ1/2
0

n

(for some constant c16 = c16(m) > 0 depending only on m; noting that the case
n = 1 is trivial because Λ0 ≥ 1

m−1 ). Hence

n∏
i=�n

2 �+1

(1 + εi)(m−1)/2 ≤ c
1/2
3 Λ1/2

0

c16 P(X0 = 0)1/2
.

Consequently, εn ≤ c17
Λ

1/2
0

P(X0=0)1/2
1
n with c17 := 2c

1/2
3

c5c16
.

To prove the lower bound, we note that under the assumption

Λ0 := E(X3
0 mX0) < ∞,

we have, by (33), εn ≥ c10
max{G′′′

n (m)1/2,1} ; since

G′′′
n (m) ≤ c12Λ0

n−1∏
i=0

(1 + εi)m−1

(see (35)), which is bounded by c12Λ0
c3

P(X0=0) n2 according to Proposition 1, this
yields that

εn ≥ c10

max
{

(c12c3)1/2 Λ
1/2
0

[P(X0=0)]1/2
n, 1

} ,

as desired. ��
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9 Some Additional Rigorous Results

Let (bi) be a numerical sequence. We define its harmonic limit as

h- lim
i→∞

bi := lim
n→∞

1
log n

n∑
i=1

bi

i
,

if the latter exists. The h-lim sup and h-lim inf are defined in the same way.

Proposition 3. Assume (4). If E(X3
0 mX0) < ∞, then

h- lim
i→∞

[(E(mXi) − 1)i] =
2

m − 1
.

This statement is a (much) weaker version of Conjecture 4b and a comple-
ment to Theorem 3. However, it has the advantage that the limiting constant

2
m−1 appears explicitly in the result.

Proof. We denote as usual εi := Gi(m)−1 = E(mXi)−1. Rewrite the assertions
of Propositions 1 and 2 as

1
m − 1

log
c4

Λ0
+

2
m − 1

log n ≤
n∑

i=1

log(1 + εi)

≤ 1
m − 1

log
c3

P(X0 = 0)
+

2
m − 1

log n.

Using log(1 + x) ≤ x ≤ log(1 + x) + x2/2 for all x > 0 we obtain

1
m − 1

log
c4

Λ0
+

2
m − 1

log n ≤
n∑

i=1

εi ≤ 1
m − 1

log
c3

P(X0 = 0)
+

S

2
+

2
m − 1

log n

where S :=
∑∞

i=1 ε2
i < ∞ by Theorem 3. It follows immediately that

lim
n→∞

1
log n

n∑
i=1

εi i

i
= lim

n→∞
1

log n

n∑
i=1

εi =
2

m − 1
, (36)

proving the proposition.
��

Proposition 4. Assume (4). If E(X3
0 mX0) < ∞, then

0 < h-lim inf
i→∞

[P(Xi 	= 0)i2] ≤ h-lim sup
i→∞

[P(Xi 	= 0)i2] < ∞ .

This result is a weaker version of Conjecture 1, but at least we are able to
say something rigorous about the order i−2 for P(Xi 	= 0).
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Proof. It is more convenient to use in the calculations the quantity

pi := m−1(1 − Gi(0)m) ∼ P(Xi 	= 0), i → ∞ .

Recall that (7) with s = m may be written as

1 + εi+1 =
1
m

(1 + εi)m +
(
1 − 1

m

)
(1 − mpi)

whereas
εi+1 = εi +

m − 1
2

ε2
i (1 + o(1)) − (m − 1)pi, i → ∞ ,

or equivalently, as in (26),

pi =
εi − εi+1

m − 1
+

ε2
i

2
(1 + o(1)), i → ∞ .

It follows that, for n → ∞,

n∑
i=1

pi i2

i
=

n∑
i=1

[pi i] =
1

m − 1

[
− nεn+1 +

n∑
i=1

εi

]
+

n∑
i=1

ε2
i i

2
(1 + o(1)).

By using (36) and Theorem 3, we immediately obtain

h-lim inf
i→∞

[pii
2] ≥ 2

(m − 1)2
+

c2
1

2
P(X0 = 0)

Λ0
> 0 (37)

and

h-lim sup
i→∞

[pii
2] ≤ 2

(m − 1)2
+

c2
2

2
Λ0

P(X0 = 0)
< ∞, (38)

where c1 and c2 are the constants from Theorem 3.
��

Proposition 5. Assume (4). If E(X3
0 mX0) < ∞, then

0 < h-lim inf
i→∞

[E(Xi)i2] ≤ h-lim sup
i→∞

[E(Xi)i2] < ∞ .

This result is a weaker version of Conjecture 3, but gives a rigorous statement
about the order i−2 for E(Xi).

Proof. As in the previous proof, we will use pi := m−1(1 − Gi(0)m). We already
know that

E(Xi+1) = mE(Xi) − 1 + Gn(0)m = mE(Xi) − mpi,

whereas
pi = E(Xi) − 1

m
E(Xi+1).
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By summing up, we obtain

n∑
i=1

[pi i] =
m − 1

m

n∑
i=2

[E(Xi) i] +
1
m

n∑
i=2

E(Xi) + E(X1) − E(Xn+1)n
m

.

Notice that the last term is bounded because by Jensen’s inequality,

E(Xn) log m ≤ logE(mXn) = log(Gn(m)) ≤ Gn(m) − 1 ≤ c2
Λ1/2

0

[P(X0 = 0)]1/2

1
n

,

using Theorem 3 at the last step. It follows that

m − 1
m

n∑
i=1

[E(Xi) i] + O(1) ≤
n∑

i=1

[pi i] ≤
n∑

i=1

[E(Xi) i] + O(1), n → ∞ .

The proof is completed by an application of (37) and (38). ��
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Abstract. For a series of Markov processes we prove stochastic duality
relations with duality functions given by orthogonal polynomials. This
means that expectations with respect to the original process (which
evolves the variable of the orthogonal polynomial) can be studied via
expectations with respect to the dual process (which evolves the index
of the polynomial). The set of processes include interacting particle sys-
tems, such as the exclusion process, the inclusion process and indepen-
dent random walkers, as well as interacting diffusions and redistribution
models of Kipnis–Marchioro–Presutti type. Duality functions are given
in terms of classical orthogonal polynomials, both of discrete and con-
tinuous variable, and the measure in the orthogonality relation coincides
with the process stationary measure.

Keywords: Interacting particle systems · Duality · Orthogonal
polynomials · Exclusion process

1 Motivations and Main Results

1.1 Introduction

Duality theory is a powerful tool to deal with stochastic Markov processes by
which information on a given process can be extracted from another process, its
dual. The link between the two processes is provided by a set of so-called duality
functions, i.e. a set of observables that are functions of both processes and whose
expectations, with respect to the two randomness, can be placed in a precise
relation (see Definition 1 below). It is the aim of this paper to enlarge the space
of duality functions for a series of Markov processes that enjoy the stochastic
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duality property. These novel duality functions are in turn connected to the
polynomials that are orthogonal with respect to the inner product provided
by the stationary measure of those processes. Thus the paper develops, via a
series of examples, a connection between probabilistic objects (duality functions)
and orthogonal polynomials. See [4] for a previous example of a process with
duality functions in terms of Hermite polynomials. Moreover, in [10,21,41] it is
shown how stochastic duality and orthogonal polynomials are connected from
an algebraic perspective.

Before going to the statement of the results, it is worth to stress the impor-
tance of a duality relation. Duality theory has been used in several different
contexts. Originally introduced for interacting particle systems in [45] and fur-
ther developed in [36], the literature on stochastic duality covers nowadays a host
of examples. Duality has been applied – among the others – to boundary driven
and/or bulk driven models of transport [5,27,40,46], Fourier’s law [23,29], dif-
fusive particle systems and their hydrodynamic limit [20,36], asymmetric inter-
acting particle systems scaling to KPZ equation [1,6,8,9,17,19,26], six vertex
models [7,18], multispecies particle models [2,3,33–35], correlation inequalities
[25], mathematical population genetics [12,38]. In all such different contexts it is
used, in a way or another, the core simplification that duality provides. Namely,
in the presence of a dual process, computation of k-point correlation functions
of the original process is mapped into the study of the evolution of only k dual
particles, thus substantially reducing the difficulty of the problem.

Besides applications, it is interesting to understand the mathematical struc-
ture behind duality. This goes back to classical works by Schütz and collabora-
tors [43,44], where the connection between stochastic duality and symmetries of
quantum spin chains was pointed out. More recently, the works [13,14,24,34,35]
further investigate this framework and provide an algebraic approach to Markov
processes with duality starting from a Lie algebra in the symmetric case, and its
quantum deformation in the asymmetric one. In this approach duality functions
emerge as the intertwiners between two different representations. Therefore one
has a constructive theory, in which duality functions arise from representation
theory.

An interesting problem is to fully characterize the set of all duality func-
tions. This question was first asked in [38] where it was defined the concept of
duality space, i.e. the subspace of all measurable functions on the configura-
tion product space of two Markov processes for which the duality relation (see
Definition 1 below) holds. In [38] the dimension of this space is computed for
some simple systems and, as far as we know, a general answer is not available in
the general case. Although the algebraic approach recalled above yields a duality
function from two representations of a (Lie) algebra, it is not clear a-priori if
every duality function can be derived from this approach. In this paper we follow
a different route. We shall show that duality functions can be placed in relation
to orthogonal polynomials.
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1.2 Results

We recall the classical definition of stochastic duality.

Definition 1 (Duality of processes). Let X = (Xt)t≥0 and N = (Nt)t≥0 be
two continuous time Markov processes with state spaces Ω and Ωdual , respec-
tively. We say that N is dual to X with duality function D : Ω × Ωdual �−→ R

if
Ex[D(Xt, n)] = En[D(x,Nt)], (1)

for all x ∈ Ω, n ∈ Ωdual and t ≥ 0. In (1) Ex (respectively En) is the expecta-
tion w.r.t. the law of the X process initialized at x (respectively the N process
initialized at n). If X and N are the same process, we say that X is self-dual
with self-duality function D.

Under suitable hypothesis (see [28]), the above definition is equivalent to the
definition of duality between Markov generators.

Definition 2 (Duality of generators). Let L and Ldual be generators of the
two Markov processes X = (Xt)t≥0 and N = (Nt)t≥0, respectively. We say that
Ldual is dual to L with duality function D : Ω × Ωdual −→ R if

[LD(·, n)](x) = [LdualD(x, ·)](n) (2)

where we assume that both sides are well defined. In the case L = Ldual we shall
say that the process is self-dual and the self-duality relation becomes

[LD(·, n)](x) = [LD(x, ·)](n). (3)

In (2) (resp. (3)) it is understood that L on the lhs acts on D as a function of
the first variable x, while Ldual (resp. L) on the rhs acts on D as a function of
the second variable n. The Definition 2 is easier to work with, so we will always
work under the assumption that the notion of duality (resp. self-duality) is the
one in Eq. (2) (resp. (3)).

Remark 1. If D(x, n) is duality function between two processes and

c : Ω × Ωdual −→ R

is constant under the dynamics of the two processes then c(x, n)D(x, n) is also
duality function. We will always consider duality functions modulo the quantity
c(x, n). For instance, the interacting particle systems studied in Sect. 3 conserve
the total number of particles and thus c is an arbitrary function of such conserved
quantity.

In this paper we shall prove that several Markov processes, for which a duality
function is known from the algebraic approach, also admit a different duality
function given in terms of polynomials that are orthogonal with respect to the
process stationary measure.



190 C. Franceschini and C. Giardinà

The processes that we consider include discrete interacting particle systems
(exclusion process, inclusion process and independent random walkers process)
as well as interacting diffusions (Brownian momentum process, Brownian energy
process) and redistribution models that are obtained via a thermalization limit
(Kipnis–Marchioro–Presutti processes). Their generators, that are defined in
Sects. 3 and 4, have an algebraic structure from which duality functions have
been previously derived [24].

The orthogonal polynomials we use are some of those with hypergeomet-
ric structure. More precisely we consider classical orthogonal polynomials, both
discrete and continuous, with the exception of discrete Hahn polynomials and
continuous Jacobi polynomials. Through this paper we follow the definitions of
orthogonal polynomials given in [39].

The added value of linking duality functions to orthogonal polynomials lies on
the fact that they constitute an orthogonal basis of the associated Hilbert space.
Often in applications [9,13,27] some quantity of interest are expressed in terms
of duality functions, for instance the current in interacting particle systems.
This is then used in the study of the asymptotic properties and relevant scaling
limits. For these reasons it seems reasonable that having an orthogonal basis of
polynomials should be useful in those analysis.

The following theorem collects the results of this paper, details and rigorous
proofs can be found in Sect. 3 for self-duality and Sect. 4 for duality.

Theorem 1. For the processes listed below, the following duality relations hold
true

(i) Self-duality

Process Stationary measure Duality function
D(x, n): product of

Exclusion Process Binomial(2j, p) Kn(x)/
(
2j
n

)

with up to 2j particles,
SEP(j)

Inclusion Process Negative Binomial (2k, p) Mn(x) Γ(2k)
Γ(2k+n)

with parameter k, SIP(k)

Independent Random Poisson(λ) Cn(x)
Walkers, IRW

where Kn(x) stands for Krawtchouk polynomials, Mn(x) for Meixner
polynomials, Cn(x) for Charlier polynomials.
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(ii) Duality

Process Stationary Duality function Dual Process

measure D(x, n): product of

Brownian Momentum Gaussian(0, σ2) 1
(2n−1)!!

H2n(x) Inclusion process

Process, BMP with k = 1/4

Brownian Energy Process Gamma(2k, θ)
n!Γ(2k)
Γ(2k+n)

L
(2k−1)
n (x) Inclusion process

with parameter k, with parameter k
BEP(k)

Kipnis–Marchioro–Presutti Gamma(2k, θ)
n!Γ(2k)
Γ(2k+n)

L
(2k−1)
n (x) dual-KMP(k)

with parameter k, process with
KMP(k) parameter k

where Hn(x) stands for Hermite polynomials and L
(2k−1)
n (x) for generalized Laguerre

polynomials.

Remark 2. As can be inferred from the table, the duality function is not, in
general, the orthogonal polynomial itself, but a suitable normalization. Moreover,
for the process defined on multiple sites the duality functions exhibit a product
structure where each factor is in terms of the relevant orthogonal polynomial.

1.3 Comments

Old and New Dualities. It is known that the six processes we consider sat-
isfy the same (self-)duality relation described by the chart above with different
(self-)duality functions. New and old (self-)duality functions can be related using
the explicit form of the polynomial that appears in the new one via a relation
of the following type:

Dnew(x, n) =
n∑

k=0

d(k, n)Dold(x, k)

where d(k, n) also depends on the parameter of the stationary measure. If, for
example, we consider the self-duality of the Independent Random Walker, where
the new self-duality functions are given by the Charlier polynomials and the old
self-duality functions are given by the falling factorial, then we have

Dnew(x, n) =
n∑

k=0

(
n

k

)
(−λ)n−k x!

(x − k)!
Dold(x, n) =

x!
(x − n)!

so that

Dnew(x, n) =
n∑

k=0

(
n

k

)
(−λ)n−kDold(x, k)

where λ is the Poisson distribution parameter.



192 C. Franceschini and C. Giardinà

The Norm Choice. A sequence of orthogonal polynomials {pn(x) : n ∈ N} on
the interval (a, b) is defined by the choice of a measure μ to be used in the scalar
product and a choice of a norm d2

n > 0

〈pn, pm〉 :=
∫ b

a

pn(x)pm(x)dμ(x) = δn,md2
n.

The main result of this paper states that orthogonal polynomials with a properly
chosen normalization furnish duality functions for the processes we consider. In
our setting the probability measure μ to be used is provided by the marginal
stationary measure of the process. The appropriate norm has been found by
making the ansatz that new duality functions can be obtained by the Gram–
Schmidt orthogonalization procedure initialized with the old duality functions
derived from the algebraic approach [24]. Namely, if one starts from a sequence
pn(x) of orthogonal polynomials with norm d2

n and claims that Dnew(x, n) =
bnpn(x), where bn is the appropriate normalization, then the previous ansatz
yields

bn =
〈Dold(·, n), pn〉

d2
n

. (4)

General Strategy of the Proof. Once a properly normalized orthogonal polyno-
mial is identified as a candidate duality function, then the proof of the duality
statement is obtained via explicit computations. Each proof heavily relies on
the hypergeometric structure of the polynomials involved. The idea is to use
three structural properties of the polynomials family pn(x), i.e. the differential
or difference hypergeometric equation they satisfy, their three terms recurrence
relation and the expression for the raising ladder operator. Those properties are
then transported to the duality function using the proper rescaling bnpn(x). This
yields three identities for the duality function, that can be used in the expression
of the process generator. Finally, algebraic manipulation allows to verify relation
(2) for duality and (3) for self-duality.

Stochastic Duality and Polynomials Duality. Last, we point out that there
exists a notion of duality within the context of orthogonal polynomials, see
Definition 3.1 in [30]. For example, in case of discrete orthogonal polynomials, the
polynomials self-duality can be described by the identity pn(x) = px(n) where x
and n take values in the same discrete set. It turns out that Charlier polynomials
are self-dual, whereas Krawtchouk and Meixner polynomials, defined as in [39]
see also Sect. 3, are not. However, it is possible to rescale them by a constant bn

so that they become self-dual. The constant bn is indeed provided by (4). It is
not clear if the two notions of stochastic duality and polynomials duality are in
some relation one to the other. This will be investigated in a future work.

1.4 Paper Organization

The paper is organized as follows. Section 2 is devoted to a (non exhaustive)
review of hypergeometric orthogonal polynomials, we recall their key properties
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that are crucial in proving our results. We closely follow [39] and the expert
reader might skip this part without being affected. The original results are pre-
sented in Sects. 3 and 4. In Sect. 3 we describe three interacting particle systems
that are self-dual and prove the statement of Theorem1, part (i). Section 4 is
dedicated to the duality relations of two diffusion processes and a jump process
obtained as thermalization limit of the previous ones and it contains the proof
of Theorem 1, part (ii).

2 Preliminaries: Hypergeometric Orthogonal Polynomials

In this section we give a quick overview of the continuous and the discrete hyper-
geometric polynomials (see [16,30,39,42]) by reviewing some of their structural
properties that will be used in the following.

We start by recalling that the hypergeometric orthogonal polynomials arise
from an hypergeometric equation, whose solution can be written in terms of an
hypergeometric function rFs.

Definition 3 (Hypergeometric function). The hypergeometric function is
defined by the series

rFs

(
a1, . . . , ar

b1, . . . , bs

∣
∣
∣
∣ x

)
=

∞∑

k=0

(a1)k · · · (ar)k

(b1)k · · · (bs)k

xk

k!
(5)

where (a)k denotes the Pochhammer symbol defined in terms of the Gamma
function as

(a)k =
Γ(a + k)

Γ(a)
.

Remark 3. Whenever one of the numerator parameter aj is a negative integer
−n, the hypergeometric function rFs is a finite sum up to n, i.e. a polynomial
in x of degree n.

The Continuous Case. Consider the hypergeometric differential equation

σ(x)y
′′
(x) + τ(x)y

′
(x) + λy(x) = 0 (6)

where σ(x) and τ(x) are polynomials of at most second and first degree respec-
tively and λ is a constant. A peculiarity of the hypergeometric equation is that,
for all n, y(n)(x), i.e. the nth derivative of a solution y(x), also solves an hyper-
geometric equation, namely

σ(x)y(n+2)(x) + τn(x)y(n+1)(x) + μny(n)(x) = 0 (7)

with
τn(x) = τ(x) + nσ

′
(x) (8)

and
μn = λ + nτ

′
+

1
2
n(n − 1)σ

′′
.
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We concentrate on a specific family of solutions: for each n ∈ N, let μn = 0, so
that

λ = λn = −nτ
′ − 1

2
n(n − 1)σ

′′

and Eq. (7) has a particular solution given by y(n)(x) constant. This implies that
y(x) is a polynomial of degree n, called polynomial of hypergeometric type (see
Remark 3) and denoted by pn(x). In the following we will assume that those
polynomials are of the form

pn(x) = anxn + bnxn−1 + . . . an �= 0. (9)

It is well known [39] that polynomials of hypergeometric type satisfy the orthog-
onality relation ∫ b

a

pn(x)pm(x)ρ(x)dx = δn,md2
n(x) (10)

for some (possibly infinite) constants a and b and where the function ρ(x) satisfies
the differential equation

(σρ)
′
= τρ. (11)

The sequence d2
n can be written in terms of σ(x), ρ(x) and an as

d2
n =

(ann!)2
∏n−1

k=0(λn − λk)

∫ b

a

(σ(x))nρ(x)dx.

As a consequence of the orthogonal property the polynomials of hypergeometric
type satisfy a three terms recurrence relation

xpn(x) = αnpn+1(x) + βnpn(x) + γnpn−1(x) (12)

where
αn = cn+1,n βn = cn,n γn = cn−1,n

with

ck,n =
1
d2

k

∫ b

a

pk(x)xpn(x)ρ(x)dx.

The coefficients αn, βn, γn can be expressed in terms of the squared norm d2
n and

the leading coefficients an, bn in (9) as [39]

αn =
an

an+1
βn =

bn

an
− bn+1

an+1
γn =

an−1

an

d2
n

d2
n−1

.

Finally, we will use the raising operator R that, acting on the polynomials pn(x),
provides the polynomials of degree n + 1. Such an operator is obtained from the
Rodriguez formula, which provides an explicit form for polynomials of hyperge-
ometric type

pn(x) =
Bn(σn(x)ρ(x))(n)

ρ(x)
with Bn =

an
∏n−1

k=0

(
τ ′ + n+k−1

2 σ′′) . (13)
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The expression of the raising operator (see Eq. 1.2.13 in [39]) reads

Rpn(x) = rnpn+1(x) (14)

where

Rpn(x) = λnτn(x)pn(x) − nσ(x)τ
′
np

′
n(x) and rn = λn

Bn

Bn+1
.

Remark that the raising operator increases the degree of the polynomial by
one, similarly to the so-called backward shift operator [30]. However the raising
operator in (14) does not change the parameters involved in the function ρ,
whereas the backward operator increases the degree and lowers the parameters
[31].

The Discrete Case. Everything discussed for the continuous case has a discrete
analog, where the derivatives are replaced by the discrete difference derivatives.
In particular it is worth mentioning that

Δf(x) = f(x + 1) − f(x) and ∇f(x) = f(x) − f(x − 1).

The corresponding hypergeometric differential Eq. (6) is the discrete hypergeo-
metric difference equation

σ(x)Δ∇y(x) + τ(x)Δy(x) + λy(x) = 0 (15)

where σ(x) and τ(x) are polynomials of second and first degree respectively,
λ is a constant. The differential equation solved by the nth discrete derivative
of y(x), y(n)(x) := Δny(x), is the solution of another difference equation of
hypergeometric type

σ(x)Δ∇y(n)(x) + τnΔy(n)(x) + μny(n)(x) = 0 (16)

with
τn(x) = τ(x + n) + σ(x + n) − σ(x)

and
μn = λ + nτ

′
+

1
2
n(n − 1)σ

′′
.

If we impose μn = 0, then

λ = λn = −nτ
′ − 1

2
n(n − 1)σ

′′

and y(n)(x) is a constant solution of Eq. (16). Under these conditions, y(x),
solution of (15), is a polynomial of degree n, called discrete polynomial of hyper-
geometric type (see Remark 3) and denoted by pn(x).
The derivation of the orthogonal property is done in a similar way than the one
for the continuous case where the integral is replaced by a sum

b−1∑

x=a

pn(x)pm(x)ρ(x) = δn,md2
n
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constants a and b can be either finite or infinite and the function ρ(x) is solution
of

Δ[σ(x)ρ(x)] = τ(x)ρ(x).

The sequence d2
n can be written in terms of σ(x), ρ(x) and an as

d2
n =

(ann!)2
∏n−1

k=0(λn − λk)

b−n−1∑

x=a

(

ρ(x + n)
n∏

k=1

σ(x + k)

)

As a consequence of the orthogonal property, the discrete polynomials of hyper-
geometric type satisfy a three terms recurrence relation

xpn(x) = αnpn+1(x) + βnpn(x) + γnpn−1(x) (17)

where
αn = cn+1,n βn = cn,n γn = cn−1,n

with

ck,n =
1
d2

k

b∑

x=a

pk(x)xpn(x).

The coefficients αn, βn, γn can be expressed in terms of the squared norm d2
n and

the leading coefficients an, bn in (9) as [39]

αn =
an

an+1
βn =

bn

an
− bn+1

an+1
γn =

an−1

an

d2
n

d2
n−1

.

The discrete Rodriguez formula

pn(x) =
Bn

ρ(x)
∇n

[

ρ(x + n)
n∏

k=1

σ(x + k)

]

with Bn =
an

∏n−1
k=0

(
τ ′ + n+k−1

2 σ′′)

leads to an expression for the discrete raising operator R (see Eq. 2.2.10 in [39])

Rpn(x) = rnpn+1(x) (18)

where
Rpn(x) =

[
λnτn(x) − nτ

′
nσ(x)∇

]
pn(x) rn = λn

Bn

Bn+1
.

We remark again that the raising operator shouldn’t be confused with the back-
ward shift operator in [31] which changes the value of parameters of the distri-
bution ρ.

3 Self-duality: Proof of Theorem 1 Part (i)

We consider first self-duality relations for some discrete interacting particle sys-
tems. In this case the dual process is an independent copy of the original one.
Notice that, even if the original process and its dual are the same, a massive sim-
plification occurs, namely the n-point correlation function of the original process
can be expressed by duality in terms of only n dual particles. Thus a problem for
many particles, possibly infinitely many in the infinite volume, may be studied
via a finite number of dual walkers.
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3.1 The Symmetric Exclusion Process, SEP(j)

In the Symmetric Exclusion Process with parameter j ∈ N/2, denoted by
SEP(j), each site can have at most 2j particles, jumps occur at rate propor-
tional to the number of particles in the departure site times the number of holes
in the arrival site. The special case j = 1/2 corresponds to the standard exclu-
sion process with hard core exclusion, i.e. each site can be either full or empty
[36]. We consider the setting where the spacial structure is given by the undi-
rected connected graph G = (V,E) with N vertices and edge set E. A particle
configuration is denoted by x = (xi)i∈V where xi ∈ {0, . . . , 2j} is interpreted as
the particle number at vertex i. The process generator reads

LSEP (j)f(x) =
∑

1≤i<l≤N
(i,l)∈E

xi(2j −xl)
[
f(xi,l) − f(x)

]
+(2j −xi)xl

[
f(xl,i) − f(x)

]

where xi,l denotes the particle configuration obtained from the configuration x by
moving one particle from vertex i to vertex l and where f : {0, 1, . . . , 2j}N → R

is a function in the domain of the generator.
It is easy to verify that the reversible (and thus stationary) measure of the

process for every p ∈ (0, 1) is given by the homogeneous product measure with
marginals the Binomial distribution with parameters 2j > 0 and p ∈ (0, 1), i.e.
with probability mass function

ρ(x) =
(

2j

x

)
px(1 − p)2j−x, x ∈ {0, 1, . . . , 2j}. (19)

The orthogonal polynomials with respect to the Binomial distribution are the
Krawtchouk polynomials Kn(x) with parameter 2j [32]. These polynomials are
obtained by choosing in Eq. (15)

σ(x) = x τ(x) =
2jp − x

1 − p
λn =

n

1 − p
.

Equivalently, Krawtchouk polynomials are polynomial solutions of the finite dif-
ference equation

x[Kn(x + 1) − 2Kn(x) + Kn(x − 1)] +
2jp − x

1 − p
[Kn(x + 1) − Kn(x)]

+
n

1 − p
Kn(x) = 0. (20)

They satisfy the orthogonality relation

2j∑

x=0

Kn(x)Km(x)ρ(x) = δn,md2
n

with ρ as in (19) and norm in 
2({0, 1, . . . , 2j}, ρ) given by

d2
n =

(
2j

n

)
pn(1 − p)n.
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As a consequence of the orthogonality they satisfy the recurrence relation (17)
with

αn = n + 1 βn = n + 2jp − 2np γn = p(1 − p)(2j − n + 1)

and the three-point recurrence then becomes

xKn(x) = (n+1)Kn+1(x)+(n+2jp−2np)Kn(x)+p(1−p)(2j −n+1)Kn−1(x).
(21)

Furthermore, the raising operator in (18) provides the relation

xKn(x − 1) +
p

1 − p
(n + x − 2j)Kn(x) =

n − 1
1 − p

Kn+1(x). (22)

Self-Duality for SEP(j). The Krawtchouk polynomials Kn(x) do not satisfy a
self-duality relation in the sense of Definition 2. However, the following theorem
shows that, with a proper normalization, it is possible to find a duality function
related to them.

Theorem 2. The SEP(j) is a self-dual Markov process with self-duality function

Dn(x) =
N∏

i=1

ni!(2j − ni)!
2j!

Kni
(xi) (23)

where Kn(x) denotes the Krawtchouk polynomial of degree n.

Remark 4. Since the Krawtchouk polynomials can be rewritten in terms of
hypergeometric functions, the self-duality function turns out to be

Dn(x) =
N∏

i=1

2F1

( −ni,−xi

−2j

∣
∣
∣
∣
1
p

)

where 2F0 is the hypergeometric function defined in (5).

Proof. We need to verify the self-duality relation in Eq. (3). Since the generator
of the process is a sum of terms acting on two variables only, we shall verify the
self-duality relation for two sites, say 1 and 2. We start by writing the action of
the SEP(j) generator working on the duality function for these two sites:

LSEP (j)Dn1(x1)Dn2(x2) = x1(2j − x2)
[
Dn1(x1 − 1)Dn2(x2 + 1)

− Dn1(x1)Dn2(x2)
]

+ (2j − x1)x2

[
Dn1(x1 + 1)Dn2(x2 − 1)

− Dn1(x1)Dn2(x2)
]

rewriting this by factorizing site 1 and 2, i.e.

LSEP (j)Dn1(x1)Dn2(x2) = x1Dn1(x1 − 1)(2j − x2)Dn2(x2 + 1)
− x1Dn1(x1)(2j − x2)Dn2(x2)
+ (2j − x1)Dn1(x1 + 1)x2Dn2(x2 − 1)
− (2j − x1)Dn1(x1)x2Dn2(x2) (24)
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we see that we need an expression for the following terms:

xDn(x), xDn(x − 1), (2j − x)Dn(x + 1). (25)

To get those we first write the difference Eq. (20), the recurrence relation (21) and
the raising operator Eq. (22) in terms of Dn(x). This is possible using Eq. (23)
that provides Dn(x) as a suitable normalization of Kn(x), i.e.

Dn(x) =
n!(2j − n)!

2j!
Kn(x).

Then the first term in (25) is simply obtained from the normalized recurrence
relation, whereas the second and third terms are provided by simple algebraic
manipulation of the normalized raising operator equation and the normalized
difference equation. We get

xDn(x) = −p(2j − n)Dn+1(x) + (n + 2pj − 2pn)Dn(x)
− n(1 − p)Dn−1(x)

xDn(x − 1) = −p(2j − n)Dn+1(x) + p(2j − 2n)Dn(x)
+ npDn−1(x)

(2j − x)Dn(x + 1) = p(2j − n)Dn+1(x) + (1 − p)(2j − 2n)Dn(x)

− n

p
(1 − p)2Dn−1(x).

These expressions can now be inserted into (24), which then reads:

LSEP (j)Dn1(x1)Dn2(x2)

=
[
p(n1 − 2j)Dn1+1(x1) + p(2j − 2n1)Dn1(x1) + pn1Dn1−1(x1)

]

×
[
p(2j − n2)Dn2+1(x2) + (1 − p)(2j − 2n2)Dn2(x2)

− n2

p
(1 − p)2Dn2−1(x2)

]

+
[
p(2j − n1)Dn1+1(x1) − (n1 + 2jp − 2pn1)Dn1(x1)

+ (1 − p)n1Dn1−1(x1)
]

× [
p(2j − n2)Dn2+1(x2) − (n2 + 2pj − 2pn2)Dn2(x2)

+ n2(1 − p)Dn2−1(x2) + 2jDn2(x2)
]

+ [p(n2 − 2j)Dn2+1(x2) + p(2j − 2n2)Dn2(x2) + pn2Dn2−1(x2)]

×
[
p(2j − n1)Dn1+1(x1) + (1 − p)(2j − 2n1)Dn1(x1)

− n1

p
(1 − p)2Dn1−1(x1)

]

+ [p(2j − n2)Dn2+1(x2) − (n2 + 2pj − 2pn2)Dn2(x2) + (1 − p)n2Dn2−1(x2)]

× [
p(2j − n1)Dn1+1(x1) − (n1 + 2pj − 2pn1)Dn1(x1)

+ n1(1 − p)Dn1−1(x1) + 2jDn1(x1)
]
.
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Working out the algebra, substantial simplifications are revealed in the above
expression. A long but straightforward computation shows that only products
of polynomials with degree n1 + n2 survive. In particular, after simplifications,
one is left with

LSEP (j)Dn1(x1)Dn2(x2)
= n1(2j − n2) [Dn1−1(x1)Dn2+1(x2) − Dn1(x1)Dn2(x2)]

+ (2j − n1)n2 [Dn1+1(x1)Dn2−1(x2) − Dn1(x1)Dn2(x2)]

and the theorem is proved. 
�

3.2 The Symmetric Inclusion Process, SIP(k)

The Symmetric Inclusion Process with parameter k > 0, denoted by SIP(k), is
a Markov jump process with unbounded state space where each site can have an
arbitrary number of particles. Again, we define the process on an undirected con-
nected G = (V,E) with |V | = N . Jumps occur at rate proportional to the num-
ber of particles in the departure and the arrival sites, as the generator describes:

LSIP (k)f(x) =
∑

1≤i<l≤N
(i,l)∈E

xi(2k+xl)
[
f(xi,l) − f(x)

]
+xl(2k+xi)

[
f(xl,i) − f(x)

]
.

Detailed balance is satisfied by a product measure with marginals given by iden-
tical Negative Binomial distributions with parameters 2k > 0 and 0 < p < 1,
i.e. with probability mass function

ρ(x) =
(

2k + x − 1
x

)
px(1 − p)2k, x ∈ {0, 1, . . .}. (26)

The polynomials that are orthogonal with respect to the Negative Binomial dis-
tribution are the Meixner polynomials Mn(x) with parameter 2k, first introduced
in [37]. Choosing in (15)

σ(x) = x τ(x) = 2kp − x(1 − p) λn = n(1 − p)

we have that the Meixner polynomials are solution of the difference equation

x [Mn(x + 1) − 2Mn(x) + Mn(x − 1)]
+ (2kp − x + xp) [Mn(x + 1) − Mn(x)] + n(1 − p)Mn(x) = 0. (27)

They satisfy the orthogonal relation
∞∑

x=0

Mn(x)Mm(x)ρ(x) = δm,nd2
n

with ρ as in (26) and norm in 
2(N0, ρ) given by

d2
n =

n!Γ(2k + n)
pnΓ(2k)
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where Γ(x) is the Gamma function. As consequence of the orthogonality they
satisfy the recurrence relation (17) with

αn =
p

p − 1
βn =

n + pn + 2kp

1 − p
γn =

n(n − 1 + 2k)
p − 1

which then becomes

xMn(x) =
p

p − 1
Mn+1(x)+

n + pn + 2kp

1 − p
Mn(x)+

n(n − 1 + 2k)
p − 1

Mn−1(x). (28)

Furthermore the raising operator in Eq. (18) provides the identity

[p(n + 2k + x)]Mn(x) − xMn(x − 1) = pMn+1(x). (29)

Self-duality for SIP(k). In analogy with the result for the Exclusion process
it is possible to find a duality function for the Symmetric Inclusion Process in
terms of the Meixner polynomials.

Theorem 3. The SIP(k) is a self-dual Markov process with self-duality function

Dn(x) =
N∏

i=1

Γ(2k)
Γ(2k + ni)

Mni
(xi)

where Mn(x) is the Meixner polynomial of degree n.

Remark 5. The self-duality function can be rewritten in terms of hypergeometric
function as

Dn(x) =
N∏

i=1

2F1

( −ni,−xi

2k

∣
∣
∣
∣ 1 − 1

p

)
.

Proof. As was done for the Exclusion Process we verify the self-duality relation
in Eq. (3) for two sites, say 1 and 2. The action of the SIP (k) generator working
on the self-duality function for two sites is given by

LSIP (k)Dn1(x1)Dn2(x2)
= x1(2k + x2) [Dn1(x1 − 1)Dn2(x2 + 1) − Dn1(x1)Dn2(x2)]

+ (2k + x1)x2 [Dn1(x1 + 1)Dn2(x2 − 1) − Dn1(x1)Dn2(x2)] .

We rewrite this by factorizing site 1 and 2, i.e.

LSIP (k)Dn1(x1)Dn2(x2) = x1Dn1(x1 − 1)(2k + x2)Dn2(x2 + 1)
− x1Dn1(x1)(2k + x2)Dn2(x2)
+ (2k + x1)Dn1(x1 + 1)x2Dn2(x2 − 1)
− (2k + x1)Dn1(x1)x2Dn2(x2) (30)
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so that we now need an expression for the following terms:

xDn(x), xDn(x − 1), (2k + x)Dn(x + 1). (31)

To get those, we first write the difference Eq. (27), the recurrence relation (28)
and the raising operator Eq. (29) in terms of Dn(x) using

Dn(x) =
Γ(2k)

Γ(2k + n)
Mn(x).

Then the first term in (31) is simply obtained from the normalized recurrence
relation, whereas the second and third terms are provided by simple algebraic
manipulation of the normalized raising operator equation and the normalized
difference equation. We have,

xDn(x) =
p

p − 1
(2k + n)Dn+1(x) − n + p(n + 2k)

p − 1
Dn(x)

+
n

p − 1
Dn−1(x)

xDn(x − 1) =
p

p − 1
(2k + n)Dn+1(x) − p

p − 1
(2k + 2n)Dn(x)

+
p

p − 1
nDn−1(x)

(2k + x)Dn(x + 1) =
p

p − 1
(2k + n)Dn+1(x) − 1

p − 1
(2k + 2n)Dn(x)

+
1

p − 1
nDn−1(x).

These relations allow us to expand the SIP(k) generator in Eq. (30) as

LSIP Dn1(x1)Dn2(x2)

=
[
p(2k + n1)

p − 1
Dn1+1(x1) − p(2k + 2n1)

p − 1
Dn1(x1) +

pn1

p − 1
Dn1−1(x1)

]

×
[
p(2k + n2)

p − 1
Dn2+1(x2) − 2k + 2n2

p − 1
Dn2(x2) +

n2

p − 1
Dn2−1(x2)

]

−
[
p(2k + n1)

p − 1
Dn1+1(x1) − n1 + p(n1 + 2k)

p − 1
Dn1(x1) +

n1

p − 1
Dn1−1(x1)

]

×
[
p(2k + n2)

p − 1
Dn2+1(x2) − n2 + p(n2 + 2k)

p − 1
Dn2(x2)

+
n2

p − 1
Dn2−1(x2) + 2kDn2(x2)

]

+
[
p(2k + n2)

p − 1
Dn2+1(x2) − p(2k + 2n2)

p − 1
Dn2(x2) +

pn2

p − 1
Dn2−1(x2)

]
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×
[
p(2k + n1)

p − 1
Dn1+1(x1) − 2k + 2n1

p − 1
Dn1(x1) +

n1

p − 1
Dn1−1(x1)

]

−
[
p(2k + n2)

p − 1
Dn2+1(x2) − n2 + p(n2 + 2k)

p − 1
Dn2(x2) +

n2

p − 1
Dn2−1(x2)

]

×
[
p(2k + n1)

p − 1
Dn1+1(x1) − n1 + p(n1 + 2k)

p − 1
Dn1(x1)

+
n1

p − 1
Dn1−1(x1) + 2kDn1(x1)

]
.

At this point it is sufficient to notice that the coefficients of products of
polynomials with degree different than n1 + n2 are all zero, so that we are left
with

LSIP (k)Dn1(x1)Dn2(x2)
= n1(2k + n2) [Dn1−1(x1)Dn2+1(x2) − Dn1(x1)Dn2(x2)]
+ (2k + n1)n2 [Dn1+1(x1)Dn2−1(x2) − Dn1(x1)Dn2(x2)]

and the theorem is proved. 
�

3.3 The Independent Random Walker, IRW

The Symmetric Independent Random Walkers, denoted IRW, is one of the sim-
plest, yet non-trivial particle system studied in the literature. It consists of inde-
pendent particles that perform a symmetric continuous time random walk at
rate 1. The generator, defined on the undirected connected graph G = (V,E)
with N vertices and edge set E, is given by

LIRW f(x) =
∑

1≤i<l≤N
(i,l)∈E

xi

[
f(xi,l) − f(x)

]
+ xl

[
f(xl,i) − f(x)

]
. (32)

The reversible invariant measure is provided by a product of Poisson distribu-
tions with parameter λ > 0, i.e. with probability mass function

ρ(x) =
e−λλx

x!
, x ∈ N0. (33)

The orthogonal polynomials with respect the Poisson distribution are the Char-
lier polynomials Cn(x) [15] with parameter λ. Choosing in Eq. (15)

σ(x) = x τ(x) = λ − x λn = n

we obtain the difference equation whose solution is Cn(x)

x [Cn(x + 1) − 2Cn(x) + Cn(x − 1)]+(λ − x) [Cn(x + 1) − Cn(x)]+nCn(x) = 0.
(34)
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The orthogonal relation satisfied by Charlier polynomials is

∞∑

x=0

Cn(x)Cm(x)ρ(x) = δm,nd2
n

where ρ is given in (33) and the norm in 
2(N0, ρ) is

d2
n = n!λ−n

As consequence of the orthogonality they satisfy the recurrence relation (17)
with

αn = −λ βn = n + λ γn = −n

which then becomes

xCn(x) = −λCn+1(x) + (n + λ)Cn(x) − nCn−1(x). (35)

Furthermore, the raising operator in Eq. (18) provides

λCn(x) − xCn(x − 1) = λCn+1(x). (36)

Self-duality of IRW. As the following theorem shows, the self-duality relation
is given by the Charlier polynomials themselves.

Theorem 4. The IRW is a self-dual Markov process with self-duality function

Dn(x) =
N∏

i=1

Cni
(xi) (37)

where Cn(x) is the Charlier polynomial of degree n.

Remark 6. Reading the Charlier polynomial as hypergeometric function, the
duality function then becomes

Dn(x) =
N∏

i=1

2F0

( −ni,−xi

−
∣
∣
∣
∣ − 1

λ

)
.

Proof. It is clear from (37) that the difference equations, the recurrence relations
and the raising operator for Dn(x) are respectively (34), (35) and (36), that we
rewrite as:

Dn(x + 1) = Dn(x) − n

λ
Dn−1(x)

xDn(x) = −λDn+1(x) + (n + λ)Dn(x) − nDn−1(x)
xDn(x − 1) = λDn(x) − λDn+1(x).



Stochastic Duality and Orthogonal Polynomials 205

As done before, we use the two particles IRW generator in (32) and the three
equations above to check that the self-duality relation holds. We have

LIRW Dn1(x1)Dn2(x2)
= x1Dn1(x1 − 1)Dn2(x2 + 1) − x1Dn1(x1)Dn2(x2)

+ Dn1(x1 + 1)x2Dn2(x2 − 1) − Dn1(x1)x2Dn2(x2)

= [λDn1(x1) − λDn1+1(x1)]
[
Dn2(x2) − n2

λ
Dn2−1(x2)

]

− [−λDn1+1(x1) + (n1 + λ)Dn1(x1) − n1Dn1−1(x1)] [Dn2(x2)]

+
[
Dn1(x1) − n1

λ
Dn1+1(x2)

]
[λDn2(x2) − λDn2+1(x2)]

− [Dn1(x1)] [−λDn2+1(x2) + (n2 + λ)Dn2(x2) − n2Dn2−1(x2)] .

After computing the products and suitable simplifications we get

LIRW Dn1(x1)Dn2(x2) = n1[Dn1−1(x1)Dn2+1(x2) − Dn1(x1)Dn2(x2)]
+ n2[Dn1+1(x1)Dn2−1(x2) − Dn1(x1)Dn2(x2)].


�

4 Duality: Proof of Theorem 1 Part (ii)

In this last section we show two examples of duality: the initial process is an
interacting diffusion, while the dual one is a jump process, which, in particular,
turns out to be the SIP process introduced in Sect. 3.2. We also show an example
of duality for a redistribution model of Kipnis–Marchioro–Presutti type.

4.1 The Brownian Momentum Proces, BMP

The Brownian Momentum Process (BMP) is a Markov diffusion process intro-
duced in [22]. On the undirected connected graph G = (V,E) with N vertices
and edge set E, the generator reads

LBMP f(x) =
∑

1≤i<l≤N
(i,l)∈E

(
xi

∂f

∂xl
(x) − xl

∂f

∂xi
(x)

)2

(38)

where f : RN → R is a function in the domain of the generator. A configuration
is denoted by x = (xi)i∈V where xi ∈ R has to be interpreted as a particle
momentum. A peculiarity of this process regards its conservation law: if the
process is started from the configuration x then ||x||22 =

∑N
i=1 x2

i is constant
during the evolution, i.e. the total kinetic energy is conserved.

The stationary reversible measure of the BMP process is given by a family
of product measures with marginals given by independent centered Gaussian
random variables with variance σ2 > 0. Without loss of generality we will identify
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a duality function related to Hermite polynomials in the case the variance equals
1/2. The case with a generic value of the variance would be treated in a similar
way by using generalized Hermite polynomials. Choosing in (6)

σ(x) = 1 τ(x) = −2x λn = 2n

we acquire the differential equation satisfied by the Hermite polynomials Hn(x)
[39]

H
′′
n (x) − 2xH

′
n(x) + 2nHn(x) = 0. (39)

The orthogonal relation they satisfy is
∫ +∞

−∞
Hn(x)Hm(x)ρ(x)dx = δm,nd2

n

with density function

ρ(x) =
e−x2

√
π

and norm in L2(R, ρ) given by

d2
n = 2nn!

As consequence of the orthogonality they satisfy the recurrence relation (12)
with

αn =
1
2

βn = 0 γn = n

which then can be written as

Hn+1(x) − 2xHn(x) + 2nHn−1(x) = 0. (40)

Furthermore the raising operator in Eq. (14) provides

2xHn(x) − H
′
n(x) = Hn+1(x). (41)

Duality Between BMP and SIP(1
4
). The following theorem has a similar

version in [4] and it states the duality result involving the Hermite polynomials.

Theorem 5. The BMP process is dual to the SIP(1
4) process through duality

function

Dn(x) =
N∏

i=1

1
(2ni − 1)!!

H2ni
(xi)

where H2n(x) is the Hermite polynomial of degree 2n.

Remark 7. Reading the Hermite polynomial as hypergeometric function, the
duality function then becomes

Dn(x) =
N∏

i=1

1
(2ni − 1)!!

(2xi)2ni
2F0

( −ni, (−2ni + 1)/2
−

∣
∣
∣
∣ − 1

x2
i

)
.
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Proof. Although the proof in [4] can be easily adapted to our case, we show here
an alternative proof that follows our general strategy of using the structural
properties of Hermite polynomials. It is sufficient, as before, to show the duality
relation in Eq. (1) for sites 1 and 2. The action of the BMP generator on duality
function reads

LBMP Dn1(x1)Dn2(x2)

= (x1∂x2 − x2∂x1)
2Dn1(x1)Dn2(x2)

= x2
1Dn1(x1)D′′

n2
(x2) + D′′

n1
(x1)x2

2Dn2(x2) − x1D
′
n1

(x1)Dn2(x2)
− Dn1(x1)x2D

′
n2

(x2) − 2x1D
′
n1

(x1)x2D
′
n2

(x2)

where we use ∂xi
= ∂

∂xi
. We now need the recurrence relation and the raising

operator appropriately rewritten in term of the duality function in order to get
suitable expression for

x2Dn(x), D′′
n(x), xD′

n(x).

This can be done using

Dn(x) =
1

(2n − 1)!!
H2n(x)

so that

x2Dn(x) =
1
4
(2n + 1)Dn+1(x) +

(
2n +

1
2

)
Dn(x) + 2nDn−1(x) (42)

D
′′
n(x) = 8nDn−1(x) (43)

xD
′
n(x) = 2nDn(x) + 4nDn−1(x) (44)

where (42) is obtained from iterating twice the recurrence relation in (40), for
Eq. (44) we combined (40) and (41) and then (43) is found from the differential
Eq. (39) using (44). Proceeding with the substitution into the generator we find

LBMP Dn1(x1)Dn2(x2)

=
(

1
4
(2n1 + 1)Dn1+1(x1) +

(
2n1 +

1
2

)
Dn1(x1) + 2n1Dn1−1(x1)

)

× 8n2Dn2−1(x2)
+ 8n1Dn1−1(x1)

×
(

1
4
(2n2 + 1)Dn2+1(x2) +

(
2n2 +

1
2

)
Dn2(x2) + 2n2Dn2−1(x2)

)

− (2n1Dn1(x1) + 4n1Dn1−1(x1)) Dn2(x2)
− Dn1(x1) (2n1Dn2(x2) + 4n2Dn2−1(x2))

− 2 (2n1Dn1(x1) + 4n1Dn1−1(x1)) (2n2Dn2(x2) + 4n2Dn2−1(x2))
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Finally, after appropriate simplification of the terms whose degree is different
from n1 + n2, we get

LBMP Dn1(x1)Dn2(x2)
= (2n1 + 1)2n2 [Dn1+1(x1)Dn2−1(x2) − Dn1(x1)Dn2(x2)]

+ 2n1(2n2 + 1) [Dn1−1(x1)Dn2+1(x2) − D2n1(x1)Dn2(x2)]

= LSIP Dn1(x1)Dn2(x2)

which proves the theorem. 
�

4.2 The Brownian Energy Process, BEP(k)

We now introduce a process, known as Brownian Energy Process with parameter
k, BEP(k) in short notation, whose generator is

LBEP (k)f(x) =
∑

1≤i<l≤N(i,l)∈E

[
xixj

(
∂

∂xi
f(x) − ∂

∂xj
f(x)

)2

+ 2k(xi − xj)
(

∂

∂xi
f(x) − ∂

∂xj
f(x)

) ]
. (45)

where f : RN → R is in the domain of the generator and x = (xi)i∈V denotes a
configuration of the process with xi ∈ R

+ interpreted as a particle energy. The
generator in (45) describes the evolution of particle system that exchange their
(kinetic) energies. It is easy to verify that the total energy of the system

∑N
i=1 xi

is conserved by the dynamic.
In [24] it was shown that the BEP(k) can be obtained from the BMP pro-

cess once 4k ∈ N vertical copies of the graph G are introduced. Under these
circumstances denoting zi,α the momentum of the ith particle at the αth level,
the kinetic energy per (vertical) site is

xi =
4k∑

α=1

z2
i,α.

If we use the above change of variable in the generator of such BMP process on
the ladder graph with 4k layers, the generator of the BEP(k) is revealed.

The stationary measure of the BEP(k) process is given by a product of inde-
pendent Gamma distribution with shape parameter 2k and scale parameter θ,
i.e. with Lebesgue probability mass function

ρ(x) =
x2k−1e− x

θ

Γ(2k)θk
. (46)

Without loss of generality we can set θ = 1 so that the polynomials orthogonal
with respect to the Gamma distribution are the generalized Laguerre polynomi-
als L

(2k−1)
n (x) [39].

Choosing
σ(x) = x τ(x) = 2k − x λn = n



Stochastic Duality and Orthogonal Polynomials 209

the differential equation whose generalized Laguerre polynomials are solution
becomes

x
d2

dx2
L(2k−1)

n (x) + (2k − x)
d

dx
L(2k−1)

n (x) + nL(2k−1)
n (x) = 0 (47)

The orthogonal relation they satisfy is
∫ +∞

0

L(2k−1)
n (x)L(2k−1)

m (x)ρ(x)dx = δm,nd2
n

with mass function as in (46) with θ = 1 and norm in L2(R+, ρ) given by

d2
n =

Γ(n + 2k)
n!Γ(2k)

.

As consequence of the orthogonality, they satisfy the recurrence relation (12)
with

αn = −(n + 1) βn = 2n + 2k γn = −(n + 2k − 1)

which then can be written as

xL(2k−1)
n (x) = −(n+1)L(2k−1)

n+1 (x)+(2n+2k)L(2k−1)
n (x)−(n+2k−1)L(2k−1)

n−1 (x)
(48)

Furthermore, the raising operator in Eq. (14) is given by

(2k − x + n)L(2k−1)
n (x) + x

d

dx
L(2k−1)

n (x) = (n + 1)L(2k−1)
n+1 (x). (49)

Duality Between BEP(k) and SIP(k). The duality relation for the Brownian
energy process with parameter k is stated below.

Theorem 6. The BEP(k) process and the SIP(k) process are dual via

Dn(x) =
N∏

i=1

ni! Γ(2k)
Γ(2k + ni)

L(2k−1)
ni

(xi) (50)

where L
(2k−1)
n (x) is the generalized Laguerre polynomial of degree n.

Remark 8. The factor Γ(2k) in (50) is not crucial to assess a duality relation,
but it allows to write the duality function as the hypergeometric function

Dn(x) =
N∏

i=1

1F1

( −ni

2k

∣
∣
∣
∣ xi

)
.
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Proof. As in the previous cases we notice that the proof can be shown for sites
1 and 2 only, in which case the generator of the BEP acts on

LBEP (k)Dn1(x1)Dn2(x2)

=
[
x1x2 (∂x1 − ∂x2)

2 − 2k(x1 − x1)(∂x1 − ∂x2)
]
Dn1(x1)Dn2(x2)

= (x1∂
2
x1

+ 2k∂x1)Dn1(x1)x2Dn2(x2) + x1Dn1(x1)(x2∂
2
x2

+ 2k∂x2)Dn2(x2)
− x1∂x1Dn1(x1)(x2∂x2 + 2k)Dn2(x2) − (x1∂x1 + 2k)Dn1(x1)x2∂x2Dn2(x2)

We seek an expression for

x∂2
xDn + 2k∂xDn, xDn, x∂xDn

that can easily be obtained rewriting (47), (48) and (49) for the duality function,
using

Dn(x) =
n! Γ(2k)

Γ(2k + n)
L(2k−1)

n (x)

so that, after simple manipulation

xD
′′
n(x) + (2k − x)D

′
n(x) + nDn(x) = 0 (51)

xDn(x) = −(n + 2k)Dn+1(x) + (2n + 2k)Dn(x) − nDn−1(x) (52)

xD
′
n(x) = nDn(x) − nDn−1(x). (53)

Note that plugging (53) into the difference Eq. (51), we get

xD
′′
n(x) + 2kD

′
n(x) = −nDn−1(x).

Let’s now use these information to write explicitly the BEP(k) generator.

LBEP (k)Dn1(x1)Dn2(x2)

= [−n1Dn1−1(x1)] [−(2k + n2)Dn2+1(x2) + (2n2 + 2k)Dn2(x2) − n2Dn2−1(x2)]

+ [−(2k + n1)Dn1+1(x1) + (2n1 + 2k)Dn1(x1) − n1Dn1−1(x1)] [−n2Dn2−1(x2)]

− [n1Dn1(x1) − n1Dn1−1(x1)] [(n2 + 2k)Dn2(x2) − n2Dn2−1(x2)]

− [(n1 + 2k)Dn1(x1) − n1Dn1−1(x1)] [n2Dn2(x2) − n2Dn2−1(x2)] .

Expanding products in the above expression we find

LBEP (k)Dn1(x1)Dn2(x2)
= n1Dn1−1(x1)(n2 + 2k)Dn2+1(x2) + (n1 + 2k)Dn1+1(x1)n2Dn2−1(x2)

+ n1Dn1(x1)(n2 + 2k)Dn2(x2) + (n1 + 2k)Dn1+1(x1)n2Dn2−1(x2)
+ Dn1−1(x1)Dn2(x2) [−n1(2n2 + 2k) + n1(n2 + 2k) + n1n2]
+ Dn1(x1)Dn2−1(x2) [−(2n1 + 2k)n1 + (n1 + 2k)n2 + n1n2]
+ Dn1−1(x1)Dn2−1(x2) [n1n2 + n1n2 − n1n2 − n1n2] .
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Noticing that the coefficients of the last three lines are zeros, we finally get

LBEP (k)Dn1(x1)Dn2(x2) (54)
= n1(n2 + 2k) [Dn1−1(x1)Dn2+1(x2) − Dn1(x1)Dn2−1(x2)]

+ (n1 + 2k)n2 [Dn1+1(x1)Dn2−2(x2) − Dn1(x1)Dn2(x2)]

= LSIP (k)Dn1(x1)Dn2(x2)

where LSIP (k) works on the dual variables (n1, n2). 
�

4.3 The Kipnis–Marchioro–Presutti Process, KMP(k)

The KMP model was first introduced by Kipnis, Marchioro and Presutti [29]
in 1982 as a model of heat conduction that was solved by using a dual process.
It is a stochastic model where a continuous non-negative variable (interpreted
as energy) is uniformly redistributed among two random particles on a lattice
at Poisson random times. A general version with parameter k, that we shall
call KMP(k) was defined in [11], by considering a redistribution rule where a
fraction p of the total energy is assigned to one particle and the remaining
fraction (1 − p) to the other particle, with p a Beta(2k, 2k) distributed random
variable. Thus the case k = 1/2 corresponds to the original KMP model. In [11]
it was shown that KMP(k) is in turn related to the Brownian Energy Process
with parameter k, as it can be obtained from the BEP(k) via a procedure called
“instantaneous thermalization”. If the spatial setting remains as described in the
previous sections, the generator of the KMP(k) process is

LKMP (k)f(x) =
∑

1≤i<l≤N(i,l)∈E

∫ 1

0

[
f
(
x1, . . . , xi−1, p(xi + xi+1),

(1 − p)(xi + xi+1), xi+2, . . . xN

) − f (x)
]
ν2k(p)dp

where ν2k(p) is the density function of the Beta distribution with parameters
(2k, 2k), i.e.

ν2k(p) =
p2k−1(1 − p)2k−1Γ(4k)

Γ(2k)Γ(2k)
, p ∈ (0, 1).

The dual process of KMP(k) [11] is generated by

Ldual-KMP (k)f(n) =
∑

1≤i<l≤N
(i,l)∈E

ni+ni+1∑

r=0

[
f
(
n1, . . . , ni−1, r, ni + ni+1 − r,

ni+2, . . . xN

) − f (n)
]
μ2k(r | ni + ni+1)

where μ2k(r|C) is the mass density function of the Beta Binomial distribution
with parameter (C, 2k, 2k), i.e.

μ2k(r | C) =

(
2k+r−1

r

)(
2k+C−r−1

C−r

)

(
4k+C−1

C

) , r ∈ {0, 1, . . . , C} .



212 C. Franceschini and C. Giardinà

This generator is the result of a thermalized limit of the SIP(k) [11]. Our last
theorem is stated below.

Theorem 7. The KMP(k) process duality relation with its dual is established
via duality function

Dn(x) =
N∏

i=1

ni! Γ(2k)
Γ(2k + ni)

L(2k−1)
ni

(xi) (55)

where L
(2k−1)
n (x) is the generalized Laguerre polynomial of degree n.

Proof. As expected, the duality function is the same as the one for the BEP(k)
and SIP(k) duality relation. This shouldn’t surprise since BEP(k) and SIP(k)
are dual through duality function (55) and the thermalization limit doesn’t affect
the duality property. Indeed, considering two graph vertices, one has from [11]

LKMP (k)f(x1, x2) = lim
t→∞(etLBEP (k) − I)f(x1, x2)

and
Ldual-KMP (k)f(n1, n2) = lim

t→∞(etLSIP (k) − I)f(n1, n2).

Thus, combining the previous two equations and (54), the claim follows. 
�
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Abstract. The connective constant μ(G) of a quasi-transitive graph G is
the asymptotic growth rate of the number of self-avoiding walks (SAWs)
on G from a given starting vertex. We survey several aspects of the
relationship between the connective constant and the underlying graph
G.

– We present upper and lower bounds for μ in terms of the vertex-
degree and girth of a transitive graph.

– We discuss the question of whether μ ≥ φ for transitive cubic graphs
(where φ denotes the golden mean), and we introduce the Fisher
transformation for SAWs (that is, the replacement of vertices by
triangles).

– We present strict inequalities for the connective constants μ(G) of
transitive graphs G, as G varies.

– As a consequence of the last, the connective constant of a Cayley
graph of a finitely generated group decreases strictly when a new
relator is added, and increases strictly when a non-trivial group ele-
ment is declared to be a further generator.

– We describe so-called graph height functions within an account of
‘bridges’ for quasi-transitive graphs, and indicate that the bridge
constant equals the connective constant when the graph has a uni-
modular graph height function.

– A partial answer is given to the question of the locality of connective
constants, based around the existence of unimodular graph height
functions.

– Examples are presented of Cayley graphs of finitely presented groups
that possess graph height functions (that are, in addition, harmonic
and unimodular), and that do not.

– The review closes with a brief account of the ‘speed’ of SAW.
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Keywords: Self-avoiding walk · Connective constant · Regular graph ·
Transitive graph · Quasi-transitive graph · Cubic graph · Golden
mean · Fisher transformation · Cayley graph · Bridge constant ·
Locality theorem · Graph height function · Unimodularity · Speed

1 Introduction

1.1 Self-avoiding Walks

A self-avoiding walk (abbreviated to SAW) on a graph G = (V,E) is a path
that visits no vertex more than once. An example of a SAW on the square
lattice is drawn in Fig. 1. SAWs were first introduced in the chemical theory
of polymerization (see Orr [66] and the book of Flory [22]), and their critical
behaviour has attracted the abundant attention since of mathematicians and
physicists (see, for example, the book of Madras and Slade [57] and the lecture
notes [7]).

0

Fig. 1. A 31-step SAW from the origin of the square lattice.

The theory of SAWs impinges on several areas of science including com-
binatorics, probability, and statistical mechanics. Each of these areas poses its
characteristic questions concerning counting and geometry. The most fundamen-
tal problem is to count the number of n-step SAWs from a given vertex, and
this is the starting point of a rich theory of geometry and phase transition.

Let σn(v) be the number of n-step SAWs on G starting at the vertex v.
The following fundamental theorem of Hammersley asserts the existence of an
asymptotic growth rate for σn(v) as n → ∞. (See Sect. 2.1 for a definition of
(quasi-)transitivity.)

Theorem 1 ([41]). Let G = (V,E) be an infinite, connected, quasi-transitive
graph with finite vertex-degrees. There exists μ = μ(G) ∈ [1,∞), called the
connective constant of G, such that

lim
n→∞ σn(v)1/n = μ, v ∈ V. (1)
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At the heart of the proof is the observation by Hammersley and Morton [42]
that (in the case of a transitive graph) log σn is a subadditive function. That is,

σm+n ≤ σmσn, m, n ≥ 1. (2)

The value μ = μ(G) depends evidently on the choice of graph G. Indeed,
μ may be viewed as a ‘critical point’, corresponding, in a sense, to the critical
probability of the percolation model, or the critical temperature of the Ising
model. Consider the generating function

Zv(x) =
∑

w∈Σ(v)

x|w|, x ∈ R, (3)

where Σ(v) is the set of finite SAWs starting from a given vertex v, and |w| is the
number of edges of w. Viewed as a power series, Zv(x) has radius of convergence
1/μ, and thus a singularity at the point x = 1/μ. Critical exponents may be
introduced as in Sect. 1.4.

In this paper we review certain properties of the connective constant μ(G),
in particular exact values (Sect. 1.2), upper and lower bounds (Sect. 2), a sharp
lower bound for cubic graphs, and the Fisher transformation (Sect. 3), strict
inequalities (Sects. 4, 5), and the locality theorem (Sect. 7). The results sum-
marised here may be found largely in the work of the authors [31–36] and [55].
This review is an expanded and updated version of [30].

Previous work on SAWs tends to have been focussed on specific graphs such as
the cubic lattices Zd and certain two-dimensional lattices. In contrast, the results
of [31–36] are directed at general classes of graphs that are quasi-transitive, and
often transitive. The work reviewed here may be the first systematic study of
SAWs on general transitive and quasi-transitive graphs. It is useful to have a
reservoir of (quasi-)transitive graphs at one’s disposal for the construction and
analysis of hypotheses, and to this end the Cayley graphs of finitely generated
groups play a significant role (see Sect. 5.1). We note the recent result of Mar-
tineau [59] that the set of connective constants of Cayley graphs contains a
Cantor space.

Notation for graphs and groups will be introduced when needed. A number
of questions are included in this review. The inclusion of a question does not of
itself imply either difficulty or importance.

1.2 Connective Constants, Exact Values

For what graphs G is μ(G) known exactly? There are a number of such graphs,
which should be regarded as atypical in this regard. We mention the ladder L,
the hexagonal lattice H, and the bridge graph BΔ with degree Δ ≥ 2 of Fig. 2,
for which

μ(L) = 1
2 (1 +

√
5), μ(H) =

√
2 +

√
2, μ(BΔ) =

√
Δ − 1. (4)

See [2, p. 184] and [19] for the first two calculations. The third is elementary.
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Fig. 2. Three regular graphs: the ladder graph L, the hexagonal tiling H of the plane,
and the bridge graph BΔ (with Δ = 4) obtained from Z by joining every alternate pair
of consecutive vertices by Δ − 1 parallel edges.

In contrast, the value of the connective constant of the square grid Z
2 is

unknown, and a substantial amount of work has been devoted to obtaining good
bounds. The best rigorous bounds known currently to the authors are those of
[45,68], namely (to 5 significant figures)

2.6256 ≤ μ(Z2) ≤ 2.6792,

and more precise numerical estimates are available, including the estimate μ ≈
2.63815 . . . of [44].

We make some remarks about the three graphs of Fig. 2. There is a corre-
spondence between the Fibonacci sequence and counts of SAWs on the ladder
graph L (see, for example [73]), whereby one obtains that μ(L) equals the golden
ratio φ := 1

2 (1 +
√

5). We ask in Question 6 whether μ(G) ≥ φ for all infinite,
simple, cubic, transitive graphs, and we discuss evidence for a positive answer
to this question.

Amongst a certain class of Δ-regular graphs permitted to possess multiple
edges, the bridge graph BΔ =

√
Δ − 1 is extremal in the sense that μ(BΔ) is

least. See the discussion of Sect. 2.
The proof that μ(H) =

√
2 +

√
2 by Duminil-Copin and Smirnov [19] is a

very significant recent result. The value
√

2 +
√

2 emerged in the physics lit-
erature through work of Nienhuis [65] motivated originally by renormalization
group theory. Its proof in [19] is based on the construction of an observable with
certain properties of discrete holomorphicity, complemented by a neat use of the
bridge decomposition introduced by Hammersley and Welsh [43]. The bridge
decomposition has been used since to prove the locality theorem for connective
constants (see Sect. 6 and Theorem 14).

1.3 Three Problems on the Square Lattice

There are a number of beautiful open problems associated with SAWs and con-
nective constants, of which we select three. Our first problem is to prove that
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a random n-step SAW from the origin of Z2 converges, when suitably rescaled,
to the Schramm–Loewner curve SLE8/3. This important conjecture has been
discussed and formalized by Lawler, Schramm, and Werner [52].

Question 1. Does a uniformly distributed n-step SAW from the origin of Z
2

converge, when suitably rescaled, to the random curve SLE8/3?

Recent progress in this direction was made by Gwynne and Miller [40], who
proved that a SAW on a random quadrangulation converges to SLE8/3 on a
certain Liouville-gravity surface.

There is an important class of results usually referred to as the ‘pattern
theorem’. In Kesten’s original paper [49] devoted to Z

2, a proper internal pattern
P is defined as a finite SAW with the property that, for any k ≥ 1, there exists
a SAW containing at least k translates of P. The pattern theorem states that:
for a given proper internal pattern P, there exists a > 0 such that the number
of n-step SAWs from the origin 0, containing fewer than an translates of P, is
exponentially smaller than the total σn := σn(0).

The lattice Z
2 is bipartite, in that its vertices can be coloured black or white

in such a way that every edge links a black vertex and a white vertex. The
pattern theorem may be used to prove for this bipartite graph that

lim
n→∞

σn+2

σn
= μ2.

The proof is based on a surgery of SAWs that preserves the parity of their
lengths. The following stronger statement has been open since Kesten’s paper
[49], see the discussion at [57, p. 244].

Question 2. Is it the case for SAWs on Z
2 that σn+1/σn → μ?

Hammersley’s Theorem 1 establishes the existence of the connective constant
for any infinite quasi-transitive graph. It is easy to construct examples of (non-
quasi-transitive) graphs for which the limit defining μ does not exist, and it is
natural to enquire of the situation for a random graph. For concreteness, we
consider here the infinite cluster I of bond percolation on Z

2 with edge-density
p > 1

2 (see [26]).

Question 3. Let σn(v) be the number of n-step SAWs on I starting at the vertex
v. Does the limit μ(v) := limn→∞ σn(v)1/n exist a.s., and satisfy μ(v) = μ(w)
a.s. on the event {v, w ∈ I}?

Discussions of issues around this question, including of when μ(v) = pμ(Z2)
a.s. on the event {v ∈ I}, may be found in papers of Lacoin [50,51]. The SAW
problem on (deterministic) weighted graphs is considered in [38] (see Sect. 6.3).

1.4 Critical Exponents for SAWs

‘Critical exponents’ play a significant role in the theory of phase transitions.
Such exponents have natural definitions for SAWs on a given graph, as sum-
marised next. The reader is referred to [7,57] and the references therein for
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general accounts of critical exponents for SAWs. The three exponents that have
received most attention in the study of SAWs are as follows.

We consider only the case of SAWs in Euclidean spaces, thus excluding,
for example, the hyperbolic space of [58]. Suppose for concreteness that there
exists a periodic, locally finite embedding of G into R

d with d ≥ 2, and no such
embedding into R

d−1. The case of general G has not been studied extensively,
and most attention has been paid to the hypercubic lattice Z

d.

The Critical Exponent γ. It is believed (when d 	= 4) that the generic
behaviour of σn(v) is given by:

σn(v) ∼ Avnγ−1μn, as n → ∞, for v ∈ V, (5)

for constants Av > 0 and γ ∈ R. The value of the ‘critical exponent’ γ is believed
to depend on d only, and not further on the choice of graph G. Furthermore,
it is believed (and largely proved, see the account in [57]) that γ = 1 when
d ≥ 4. In the borderline case d = 4, (5) should hold with γ = 1 and subject to
the correction factor (log n)1/4. (See the related work [6] on weakly self-avoiding
walk.)

The Critical Exponent η. Let v, w ∈ V , and

Zv,w(x) =
∞∑

n=0

σn(v, w)xn, x > 0,

where σn(v, w) is the number of n-step SAWs with endpoints v, w. It is known
under certain circumstances that the generating functions Zv,w have radius of
convergence μ−1 (see [57, Cor. 3.2.6]), and it is believed that there exists an
exponent η and constants A′

v > 0 such that

Zv,w(μ−1) ∼ A′
vdG(v, w)−(d−2+η), as dG(v, w) → ∞, (6)

where dG(v, w) is the graph-distance between v and w. Furthermore, η satisfies
η = 0 when d ≥ 4.

The Critical Exponent ν. Let Σn(v) be the set of n-step SAWs from v, and
let πn be chosen at random from Σn(v) according to the uniform probability
measure. Let ‖π‖ be the graph-distance between the endpoints of a SAW π. It
is believed (when d 	= 4) that there exists an exponent ν (the so-called Flory
exponent) and constants A′′

v > 0, such that

E(‖πn‖2) ∼ A′′
vn2ν , v ∈ V. (7)

As above, this should hold for d = 4 subject to the inclusion of the correction
factor (log n)1/4. It is believed that ν = 1

2 when d ≥ 4.
The exponent ν is an indicator of the geometry of an n-step SAW π chosen

with the uniform measure. In the diffusive case, we have ν = 1
2 , whereas in the
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ballistic case (with ‖πn‖ typically of order n), we have ν = 1. We return to this
exponent in Sect. 9.

The three exponents γ, η, ν are believed to be related through the so-called
Fisher relation γ = ν(2 − η). The definitions (5), (6), (7) may be weakened to
logarithmic asymptotics, in which case we say they hold logarithmically.

2 Bounds for Connective Constants

We discuss upper and lower bounds for connective constants in this section,
beginning with some algebraic background.

2.1 Transitivity of Graphs

The automorphism group of the graph G = (V,E) is denoted Aut(G), and the
identity automorphism is written 1. The expression A ≤ B means that A is a
subgroup of B, and A � B means that A is a normal subgroup.

A subgroup Γ ≤ Aut(G) is said to act transitively on G if, for v, w ∈ V , there
exists γ ∈ Γ with γv = w. It is said to act quasi-transitively if there exists a
finite set W of vertices such that, for v ∈ V , there exist w ∈ W and γ ∈ Γ with
γv = w. The graph is called transitive (respectively, quasi-transitive) if Aut(G)
acts transitively (respectively, quasi-transitively) on G.

An automorphism γ is said to fix a vertex v if γv = v. The stabilizer of v ∈ V
is the subgroup

Stabv := {γ ∈ Aut(G) : γv = v}.

The subgroup Γ is said to act freely on G (or on the vertex-set V ) if Γ∩Stabv =
{1} for v ∈ V .

Let G (respectively, Q) be the set of infinite, simple, locally finite, transitive
(respectively, quasi-transitive), rooted graphs, and let GΔ (respectively, QΔ) be
the subset comprising Δ-regular graphs. We write 1 = 1G for the root of the
graph G.

2.2 Bounds for μ in Terms of Degree

Let G be an infinite, connected, Δ-regular graph. How large or small can μ(G)
be? It is trivial by counting non-backtracking walks that σn(v) ≤ Δ(Δ − 1)n−1,
whence μ(G) ≤ Δ−1 with equality if G is the Δ-regular tree. It is not difficult to
prove the strict inequality μ(G) < Δ−1 when G is quasi-transitive and contains
a cycle (see [33, Thm 4.2]). Lower bounds are harder to obtain.

A multigraph is called loopless if each edge has distinct endvertices.

Theorem 2 ([33, Thm 4.1]). Let G be an infinite, connected, Δ-regular, tran-
sitive, loopless multigraph with Δ ≥ 2. Then μ(G) ≥

√
Δ − 1 if either

(a) G is simple, or
(b) G is non-simple and Δ ≤ 4.
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Note that, for the (non-simple) bridge graph BΔ with Δ ≥ 2, we have the
equality μ(BΔ) =

√
Δ − 1.

Here is an outline of the proof of Theorem 2. A SAW is called forward-
extendable if it is the initial segment of some infinite SAW. Let σF

n(v) be the
number of forward-extendable n-step SAWs starting at v. Theorem 2 is proved
by showing as follows that

σF
2n(v) ≥ (Δ − 1)n. (8)

Let π be a (finite) SAW from v, with final endpoint w. For a vertex x ∈ π
satisfying x 	= w, and an edge e /∈ π incident to x, the pair (x, e) is called π-
extendable if there exists an infinite SAW starting at v whose initial segment
traverses π until x, and then traverses e.

First, it is proved subject to a certain condition Π that, for any 2n-step
forward-extendable SAW π, there are at least n(Δ − 2) π-extendable pairs.
Inequality (8) may be deduced from this statement.

The second part of the proof is to show that graphs satisfying either (a)
or (b) of the theorem satisfy condition Π. It is fairly simple to show that (b)
suffices, and it may well be reasonable to extend the conclusion to include values
of Δ ≥ 5.

Question 4. Is it the case that μ(G) ≥
√

Δ − 1 in the non-simple case of Theo-
rem 2(b) with Δ ≥ 5?

The growth rate μF of the number of forward-extendable SAWs has been
studied further by Grimmett, Holroyd, and Peres [29]. They show that μF = μ
for any infinite, connected, quasi-transitive graph, with further results involving
the numbers of backward-extendable and doubly-extendable SAWs.

Question 5. Let Δ ≥ 3. What is the sharp lower bound μmin(Δ) := inf{μ(G) :
G ∈ GΔ}? How does μmin(Δ) behave as Δ → ∞?

This question is considered in Sect. 3.2 when Δ = 3, and it is asked in
Question 6 whether or not μmin(3) = φ, the golden mean. The lower bound
μ ≥

√
Δ − 1 of Theorem 2(a) may be improved as follows when G is non-

amenable.
Let P be the transition matrix of simple random walk on G = (V,E), and

let I be the identity matrix. The spectral bottom of I − P is defined to be the
largest λ with the property that, for all f ∈ 
2(V ),

〈
f(I − P )f

〉
≥ λ〈f, f〉. (9)

It may be seen that λ(G) = 1− ρ(G) where ρ(G) is the spectral radius of P (see
[56, Sect. 6], and [72] for an account of the spectral radius). It is known that G
is a non-amenable if and only if ρ(G) < 1, which is equivalent to λ(G) > 0. This
was proved by Kesten [47,48] for Cayley graphs of finitely-presented groups, and
extended to general transitive graphs by Dodziuk [16] (see also the references in
[56, Sect. 6.10]).
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Theorem 3 ([36, Thm 6.2]). Let G ∈ GΔ with Δ ≥ 3, and let λ = λ(G) be the
above spectral bottom. The connective constant satisfies

μ(G) ≥ (Δ − 1)
1
2 (1+cλ), (10)

where c = Δ(Δ − 1)/(Δ − 2)2.

2.3 Upper Bounds for μ in Terms of Degree and Girth

The girth of a simple graph is the length of its shortest cycle. Let GΔ,g be the
subset of GΔ containing graphs with girth g.

Theorem 4 ([34, Thm 7.4]). For G ∈ GΔ,g where Δ, g ≥ 3, we have that
μ(G) ≤ y where ζ := 1/y is the smallest positive real root of the equation

(Δ − 2)
M1(ζ)

1 + M1(ζ)
+

M2(ζ)
1 + M2(ζ)

= 1, (11)

with
M1(ζ) = ζ, M2(ζ) = 2(ζ + ζ2 + · · · + ζg−1). (12)

The upper bound y is sharp, and is achieved by the free product graph F :=
K2 ∗ K2 ∗ · · · ∗ K2 ∗ Zg, with Δ − 2 copies of the complete graph K2 on two
vertices and one copy of the cycle Zg of length g.

The proof follows quickly by earlier results of Woess [72], and Gilch and
Müller [24]. By [72, Thm 11.6], every G ∈ GΔ,g is covered by F , and by [24,
Thm 3.3], F has connective constant 1/ζ.

3 Cubic Graphs and the Golden Mean

A graph is called cubic if it is regular with degree Δ = 3. Cubic graphs have
the property that every edge-self-avoiding cycle is also vertex-self-avoiding. We
assume throughout this section that G = (V,E) ∈ Q3, and we write φ :=
1
2 (1 +

√
5) for the golden mean.

3.1 The Fisher Transformation

Let v ∈ V , and recall that v has degree 3 by assumption. The so-called Fisher
transformation acts at v by replacing it by a triangle, as illustrated in Fig. 3. The
Fisher transformation has been valuable in the study of the relations between
Ising, dimer, and general vertex models (see [13,21,53,54]), and also in the cal-
culation of the connective constant of the Archimedean lattice (3, 122) (see, for
example, [28,39,46]). The Fisher transformation may be applied at every ver-
tex of a cubic graph, of which the hexagonal and square/octagon lattices are
examples.
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A
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v

Fig. 3. The Fisher transformation of the star.

Let G be, in addition, quasi-transitive. By Theorem 1, G has a well-defined
connective constant μ = μ(G) satisfying (1). Write F (G) for the graph obtained
by applying the Fisher transformation at every vertex of G. The automorphism
group of G induces an automorphism subgroup of F (G), so that F (G) is quasi-
transitive and has a well-defined connective constant. It is noted in [31], and
probably elsewhere also, that the connective constants of G and F (G) have a
simple relationship. This conclusion, and its iteration, are given in the next
theorem.

Theorem 5 ([31, Thm 3.1]). Let G ∈ Q3, and consider the sequence (Gk : k =
0, 1, 2, . . . ) given by G0 = G and Gk+1 = F (Gk).

(a) The connective constants μk := μ(Gk) satisfy μ−1
k = g(μ−1

k+1) where g(x) =
x2 + x3.

(b) The sequence μk converges monotonely to the golden mean φ, and

−
(

4
7

)k

≤ μ−1
k − φ−1 ≤

(
2

7 −
√

5

)k

, k ≥ 1.

The idea underlying part (a) is that, at each vertex v visited by a SAW π on
Gk, one may replace that vertex by either of the two paths around the ‘Fisher
triangle’ of Gk+1 at v. Some book-keeping is necessary with this argument, and
this is best done via the generating functions (3).

A similar argument may be applied in the context of a ‘semi-cubic’ graph.

Theorem 6 ([31, Thm 3.3]). Let G be an infinite, connected, bipartite graph
with vertex-sets coloured black and white, and suppose the coloured graph is quasi-
transitive, and every black vertex has degree 3. Let G̃ be the graph obtained by
applying the Fisher transformation at each black vertex. The connective constants
μ and μ̃ of G and G̃, respectively, satisfy μ−2 = h(μ̃−1), where h(x) = x3 + x4.

Example 1. Take G = H, the hexagonal lattice with connective constant μ =√
2 +

√
2 ≈ 1.84776, see [19]. The ensuing lattice H̃ is illustrated in Fig. 4, and

its connective constant μ̃ satisfies μ−2 = h(μ̃−1), which may be solved to obtain
μ̃ ≈ 1.75056.

We return briefly to the critical exponents of Sect. 1.4. In [31, Sect. 3], rea-
sonable definitions of the three exponents γ, η, ν are presented, none of which
depend on the existence of embeddings into R

d. Furthermore, it is proved that
the values of the exponents are unchanged under the Fisher transformation.
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Fig. 4. The lattice ˜H is derived from the hexagonal lattice H by applying the Fisher
transformation at alternate vertices. Its connective constant μ̃ is a root of the equation
x−3 + x−4 = 1/(2 +

√
2).

3.2 Bounds for Connective Constants of Cubic Graphs

Amongst cubic graphs, the 3-regular tree T3 has largest connective constant
μ(T3) = 2. It is an open problem to determine the sharp lower bound on μ(G)
for G ∈ G3. Recall the ladder graph L of Fig. 2, with μ(L) = φ.

Question 6. [34, Qn 1.1] Is it the case that μ(G) ≥ φ for G ∈ G3?

Even in the case of graphs with small girth, the best general lower bounds
known so far are as follows.

Theorem 7 ([34, Thms 7.1, 7.2]).

(a) For G ∈ G3,3, we have that
μ(G) ≥ x, (13)

where x ∈ (1, 2) satisfies

1
x2

+
1
x3

=
1√
2
. (14)

(b) For G ∈ G3,4, we have that

μ(G) ≥ 121/6. (15)

The sharp upper bounds for G3,3 and G3,4 are those of Theorem 4, and they
are attained respectively by the Fisher graph of the 3-regular tree, and of the
degree-4 tree (in which each vertex is replaced by a 4-cycle).

Question 6 is known to have a positive answer for various classes of graph,
including so-called TLF-planar graphs (see [34,69]). The word plane means a
simply connected Riemann surface without boundaries. An embedding of a graph
G = (V,E) in a plane P is a function η : V ∪ E → P such that η restricted to V
is an injection and, for e = 〈u, v〉 ∈ E, η(e) is a C1 image of [0, 1]. An embedding
is (P-)planar if the images of distinct edges are disjoint except possibly at their
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endpoints, and a graph is (P-)planar if it possesses a (P-)planar embedding.
An embedding is topologically locally finite (TLF ) if the images of the vertices
have no accumulation point, and a connected graph is called TLF-planar if it
possesses a planar TLF embedding. Let TΔ denote the class of transitive, TLF-
planar graphs with vertex-degree Δ.

Theorem 8 ([34]). Let G ∈ T3 be infinite. Then μ(G) ≥ φ.

Two techniques are used repeatedly in the proof. The first is to construct
an injection from the set of SAWs on the ladder graph L that move either
rightwards or vertically, into the set of SAWs on a graph G′ derived from G. A
large subclass of T3 may be treated using such a construction. The remaining
graphs in T3 require detailed analyses using a variety of transformations of graphs
including the Fisher transformation of Sect. 3.1.

A second class of graphs for which μ ≥ φ is given as follows. The definition
of a transitive graph height function is deferred to Definition 1.

Theorem 9 ([34, Thm 3.1]). We have that μ(G) ≥ φ for any cubic graph G ∈
G3 that possesses a transitive graph height function.

This theorem covers all Cayley graphs of finitely presented groups with
strictly positive first Betti numbers (see Sect. 5.1 and [34, Example 3]). Cay-
ley graphs are introduced in Sect. 5.1.

4 Strict Inequalities for Connective Constants

4.1 Outline of Results

Consider a probabilistic model on a graph G, such as the percolation or random-
cluster model (see [27]). There is a parameter (perhaps ‘density’ p or ‘temper-
ature’ T ) and a ‘critical point’ (usually written pc or Tc). The numerical value
of the critical point depends on the choice of graph G. It is often important to
understand whether a systematic change in the graph causes a strict change in
the value of the critical point. A general approach to this issue was presented by
Aizenman and Grimmett [1] and developed further in [5,12,25] and [26, Chap. 3].
The purpose of this section is to review work of [32] directed at the corresponding
question for self-avoiding walks.

Let G be a subgraph of G′, and suppose each graph is quasi-transitive. It
is trivial that μ(G) ≤ μ(G′). Under what conditions does the strict inequal-
ity μ(G) < μ(G′) hold? Two sufficient conditions for the strict inequality are
reviewed here. This is followed in Sect. 5 with a summary of consequences for
Cayley graphs.

The results of this section apply to transitive graphs. Difficulties arise under
the weaker assumption of quasi-transitivity.
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4.2 Quotient Graphs

Let G = (V,E) ∈ G. Let Γ ≤ Aut(G) act transitively, and let A � Γ (we
shall discuss the non-normal case later). There are several ways of constructing
a quotient graph G/A, the strongest of which (for our purposes) is given next.
The set of neighbours of a vertex v ∈ V is denoted by ∂v.

We denote by �G = (V , �E) the directed quotient graph G/A constructed as
follows. Let ≈ be the equivalence relation on V given by v1 ≈ v2 if and only if
there exists α ∈ A with αv1 = v2. The vertex-set V comprises the equivalence
classes of (V,≈), that is, the orbits v := Av as v ranges over V . For v, w ∈ V ,
we place |∂v ∩ w| directed edges from v to w (if v = w, these edges are directed
loops).

Example 2. Let G be the square lattice Z
2 and let m ≥ 1. Let Γ be the set

of translations of Z2, and let A be the normal subgroup of Γ generated by the
map that sends (i, j) to (i+m, j). The quotient graph G/A is the square lattice
‘wrapped around a cylinder’, with each edge replaced by two oppositely directed
edges.

Since �G is obtained from G by a process of identification of vertices and
edges, it is natural to ask whether the strict inequality μ(�G) < μ(G) is valid.
Sufficient conditions for this strict inequality are presented next.

Let L = L(G,A) be the length of the shortest SAW of G with (distinct)
endpoints in the same orbit. Thus, for example, L = 1 if �G possesses a directed
loop. A group is called trivial if it comprises the identity only.

Theorem 10 ([32, Thm 3.8]). Let Γ act transitively on G, and let A be a
non-trivial, normal subgroup of Γ. The connective constant �μ = μ(�G) satisfies
�μ < μ(G) if: either

(a) L 	= 2, or
(b) L = 2 and either of the following holds:

(i) G contains some 2-step SAW v (= w0), w1, w2 (= v′) satisfying v = v′

and |∂v ∩ w1| ≥ 2,
(ii) G contains some SAW v (= w0), w1, w2, . . . , wl (= v′) satisfying v = v′,

wi 	= wj for 0 ≤ i < j < l, and furthermore v′ = αv for some α ∈ A
which fixes no wi.

Remark 1. In the situation of Theorem 10, can one calculate an explicit R =
R(G,A) < 1 such that μ(�G)/μ(G) < R? The answer is (in principle) positive
under a certain condition, namely that the so-called ‘bridge constant’ of G equals
its connective constant. Bridges are discussed in Sect. 6, and it is shown in The-
orem 13 that the above holds when G possesses a so-called ‘unimodular graph
height function’ (see Definition 1). See also [32, Thm 3.11] and [37, Remark 4.5].

We call A symmetric if

|∂v ∩ w| = |∂w ∩ v|, v, w ∈ V.
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Consider the special case L = 2 of Theorem 10. Condition (i) of Theorem 10(b)
holds if A is symmetric, since |∂w ∩ v| ≥ 2. Symmetry of A is implied by
unimodularity, for a definition of which we refer the reader to [32, Sect. 3.5] or
[56, Sect. 8.2].

Example 3. Conditions (i)–(ii) of Theorem 10(b) are necessary in the case L =
2, in the sense illustrated by the following example. Let G be the infinite 3-
regular tree with a distinguished end ω. Let Γ be the set of automorphisms that
preserve ω, and let A be the normal subgroup generated by the interchanges of
the two children of any given vertex v (and the associated relabelling of their
descendants). The graph �G is isomorphic to that obtained from Z by replacing
each edge by two directed edges in one direction and one in the reverse direction.
It is easily seen that L = 2, but that neither (i) nor (ii) holds. Indeed, μ(�G) =
μ(G) = 2.

The proof of Theorem 10 follows partly the general approach of Kesten in his
pattern theorem, see [49] and [57, Sect. 7.2]. Any n-step SAW �π in the directed
graph �G lifts to a SAW π in the larger graph G. The idea is to show there
exists a > 0 such that ‘most’ such �π contain at least an sub-SAWs for which the
corresponding sub-walks of π may be replaced by SAWs on G. Different subsets
of these sub-SAWs of �G give rise to different SAWs on G. The number of such
subsets grows exponentially in n, and this introduces an exponential ‘entropic’
factor in the counts of SAWs.

Unlike Kesten’s proof and its later elaborations, these results apply in the
general setting of transitive graphs, and they utilize algebraic and combinatorial
techniques.

We discuss next the assumption of normality of A in Theorem 10. The (undi-
rected) simple quotient graph G = (V ,E) may be defined as follows even if A
is not a normal subgroup of Γ. As before, the vertex-set V is the set of orbits
of V under A. Two distinct orbits Av, Aw are declared adjacent in G if there
exist v′ ∈ Av and w′ ∈ Aw with 〈v′, w′〉 ∈ E. We write G = GA to emphasize
the role of A.

The relationship between the site percolation critical points of G and GA
is the topic of a conjecture of Benjamini and Schramm [10], which appears to
make the additional assumption that A acts freely on V . The last assumption
is stronger than the assumption of unimodularity.

We ask for an example in which the non-normal case is essentially different
from the normal case.

Question 7. Let Γ be a subgroup of Aut(G) acting transitively on G. Can there
exist a non-normal subgroup A of Γ such that: (i) the quotient graph GA is
transitive, and (ii) there exists no normal subgroup N of some transitively acting
Γ′ such that GA is isomorphic to GN ? Might it be relevant to assume that A
acts freely on V ?

We return to connective constants with the following question, inspired in
part by [10].
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Question 8. Is it the case that μ(GA) < μ(G) under the assumption that A is a
non-trivial (not necessarily normal) subgroup of Γ acting freely on V , such that
GA is transitive?

The proof of Theorem 10 may be adapted to give an affirmative answer to
Question 8 subject to a certain extra condition on A, see [32, Thm 3.12]. Namely,
it suffices that there exists l ∈ N such that GA possesses a cycle of length l but
G has no cycle of this length.

4.3 Quasi-Transitive Augmentations

We consider next the systematic addition of new edges, and the effect thereof on
the connective constant. Let G = (V,E) ∈ G. From G, we derive a second graph
G′ = (V,E′) by adding further edges to E, possibly in parallel to existing edges.
We assume that E is a proper subset of E′.

Theorem 11 ([32, Thm 3.2]). Let Γ ≤ Aut(G) act transitively on G, and let
A ≤ Γ satisfy either or both of the following.

(a) A is a normal subgroup of Γ acting quasi-transitively on G.
(b) The index [Γ : A] is finite.

If A ≤ Aut(G′), then μ(G) < μ(G′).

Example 4. Let Z
2 be the square lattice, with A the group of its translations.

The triangular lattice T is obtained from Z
2 by adding the edge e = 〈0, (1, 1)〉

together with its images under A, where 0 denotes the origin. Since A is a normal
subgroup of itself, it follows that μ(Z2) < μ(T). This example may be extended
to augmentations by other periodic families of new edges, as explained in [32,
Example 3.4].

Remark 2. In the situation of Theorem 11, can one calculate an R > 1 such
that μ(G′)/μ(G) > R? As in Remark 1, the answer is positive when G′ has a
unimodular graph height function.

A slightly more general form of Theorem 11 is presented in [32]. Can one
dispense with the assumption of normality in Theorem 11(a)?

Question 9. Let Γ act transitively on G, and let A be a subgroup of Γ that
acts quasi-transitively on G. If A ≤ Aut(G′), is it necessarily the case that
μ(G) < μ(G′)?

A positive answer would be implied by an affirmative answer to the following
question.

Question 10. Let G ∈ G, and let A ≤ Aut(G) act quasi-transitively on G. When
does there exist a subgroup Γ of Aut(G) acting transitively on G such that A ≤ Γ
and Γ ∩ Stabv ≤ A for v ∈ V ?

See [32, Prop. 3.6] and the further discussion therein.
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5 Connective Constants of Cayley Graphs

5.1 Cayley Graphs

Let Γ be an infinite group with identity element 1 and finite generator-set S,
where S satisfies S = S−1 and 1 /∈ S. Thus, Γ has a presentation as Γ = 〈S | R〉
where R is a set of relators. The group Γ is called finitely generated since |S| < ∞,
and finitely presented if, in addition, |R| < ∞.

The Cayley graph G = G(Γ, S) is defined as follows. The vertex-set V of
G is the set of elements of Γ. Distinct elements g, h ∈ V are connected by an
edge if and only if there exists s ∈ S such that h = gs. It is easily seen that G
is connected, and Γ acts transitively by left-multiplication. It is standard that
Γ acts freely, and hence G is unimodular and therefore symmetric. Accounts of
Cayley graphs may be found in [4] and [56, Sect. 3.4].

Reference is occasionally made here to the first Betti number of Γ. This is
the power of Z, denoted B(Γ), in the abelianization Γ/[Γ,Γ]. (See [35, Remark
4.2].)

5.2 Strict Inequalities for Cayley Graphs

Theorems 10 and 11 have the following implications for Cayley graphs. Let
s1s2 · · · sl = 1 be a relation. This relation corresponds to the closed walk

(1, s1, s1s2, . . . , s1s2 · · · sl = 1)

of G passing through the identity 1. Consider now the effect of adding a further
relator. Let t1, t2, . . . , tl ∈ S be such that ρ := t1t2 · · · tl satisfies ρ 	= 1, and write
Γρ = 〈S | R ∪ {ρ}〉. Then Γρ is isomorphic to the quotient group Γ/N where N
is the normal subgroup of Γ generated by ρ.

Theorem 12 ([32, Corollaries 4.1, 4.3]). Let G = G(Γ, S) be the Cayley graph
of the infinite, finitely presented group Γ = 〈S | R〉.

(a) Let Gρ = G(Γρ, S) be the Cayley graph obtained by adding to R a further
non-trivial relator ρ. Then μ(Gρ) < μ(G).

(b) Let w ∈ Γ satisfy w 	= 1, w /∈ S, and let Gw be the Cayley graph of the
group obtained by adding w (and w−1) to S. Then μ(G) < μ(Gw).

As noted in Remarks 1 and 2, non-trivial bounds may in principle be calcu-
lated for the ratios of the two connective constants in case (a) (respectively, case
(b)) whenever G (respectively, Gw) has a unimodular graph height function.

Example 5. The square/octagon lattice, otherwise known as the Archimedean
lattice (4, 82), is the Cayley graph of the group with generator set S = {s1, s2, s3}
and relator set

R = {s2
1, s

2
2, s

2
3, s1s2s1s2, s1s3s2s3s1s3s2s3}.
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(See [32, Fig. 3].) By adding the further relator s2s3s2s3, we obtain a graph
isomorphic to the ladder graph of Fig. 2, whose connective constant is the golden
mean φ.

By Theorem 12(a), the connective constant μ of the square/octagon lattice
is strictly greater than φ = 1.618 . . . . The best lower bound currently known
appears to be μ > 1.804 . . . , see [45].

Example 6. The square lattice Z
2 is the Cayley graph of the abelian group with

S = {a, b} and R = {aba−1b−1}. We add a generator ab (and its inverse), thus
adding a diagonal to each square of Z

2. Theorem 12(b) implies the standard
inequality μ(Z2) < μ(T) of Example 4.

6 Bridges

6.1 Bridges and Graph Height Functions

Various surgical constructions are useful in the study of self-avoiding walks, of
which the most elementary involves concatenations of so-called ‘bridges’. Bridges
were introduced by Hammersley and Welsh [43] in the context of the hypercubic
lattice Z

d. An n-step bridge on Z
d is a self-avoiding walk π = (π0, π1, . . . , πn)

such that

π0(1) < πm(1) ≤ πn(1), 0 < m ≤ n,

where x(1) denotes the first coordinate of a vertex x ∈ Z
d.

The significant property of bridges is as follows: given two bridges π =
(0, x1, . . . , xm), π′ = (0, y1, . . . , yn) starting at 0, the concatenation π ∪ [xm +π′]
is an (m+n)-step bridge from 0. It follows that the number bn of n-step bridges
from 0 satisfies

bm+n ≥ bmbn, (16)

whence the bridge constant β(Zd) := limn→∞ b
1/n
n exists. Since bn ≤ σn, it is

trivial that β(Zd) ≤ μ(Zd). Using a surgery argument, Hammersley and Welsh
proved amongst other things that β = μ for Z

d.
In this section, we discuss the bridge constant for transitive graphs, therein

introducing the graph height functions that will be useful in the discussion of
locality in Sect. 7.

First we define a graph height function, and then we use such a function to
define a bridge.

Definition 1 ([37, Defn 3.1]). Let G = (V,E) ∈ Q with root labelled 1.

(i) A graph height function on G is a pair (h,H) such that:
(a) h : V → Z, and h(1) = 0,
(b) H ≤ Aut(G) acts quasi-transitively on G such that h is H-difference-

invariant, in the sense that

h(αv) − h(αu) = h(v) − h(u), α ∈ H, u, v ∈ V,



232 G. R. Grimmett and Z. Li

(c) for v ∈ V , there exist u,w ∈ ∂v such that h(u) < h(v) < h(w).
(ii) A graph height function (h,H) is called transitive (respectively, unimodular)

if the action of H is transitive (respectively, unimodular).

The reader is referred to [56, Chap. 8] and [37, eqn (3.1)] for discussions of
unimodularity.

6.2 The Bridge Constant

Let (h,H) be a graph height function of the graph G ∈ Q. A bridge π =
(π0, π1, . . . , πn) is a SAW on G satisfying

h(π0) < h(πm) ≤ h(πn), 0 < m ≤ n.

Let bn be the number of n-step bridges π from π0 = 1. Using quasi-transitivity,
it may be shown (similarly to (16)) that the limit β = limn→∞ b

1/n
n exists, and β

is called the bridge constant. Note that β depends on the choice of graph height
function.

The following is proved by an extension of the methods of [43].

Theorem 13 ([37, Thm 4.3]). Let G ∈ Q possess a unimodular graph height
function (h,H). The associated bridge constant β = β(G,h,H) satisfies β =
μ(G).

In particular, the value of β does not depend on the choice of unimodular
graph height function.

6.3 Weighted Cayley Graphs

A natural extension of the theory of self-avoiding walks is to edge-weighted
graphs. Let G = (V,E) be an infinite graph, and let φ : E → [0,∞). The
weight of a SAW π traversing the edges e1, e2, . . . , en is defined as

wφ(π) :=
n∏

i=1

φ(ei).

One may ask about the asymptotic behaviour of the sum of the wφ(π) over all
SAWs π with length n starting at a given vertex. The question is more interesting
when G is not assumed locally finite, since the number σn of SAWs from a given
vertex may then be infinite. Some conditions are needed on the pair (G,φ), and
these are easiest stated when G is a Cayley graph.

Let Γ = 〈S | R〉 be an infinite, finitely presented group, with a Cayley graph
G (we do not assume that G is locally finite). Let φ : Γ → [0,∞) be such that

(a) φ(1) = 0,
(b) φ is symmetric in that φ(γ) = φ(γ−1) for γ ∈ Γ,
(c) φ is summable in that

∑
γ∈Γ φ(γ) < ∞.
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The aggregate weights of SAWs on G have been studied in [38]. It turns out
to be useful to consider a generalized notion of the length l(π) of a SAW π,
and there is an interaction between l and φ. Subject to certain assumptions
(in particular, Γ is assumed virtually indicable), it is shown that the bridge
and connective constants are equal. This yields a continuity theorem for the
connective constants of weighted graphs.

7 Locality of Connective Constants

7.1 Locality of Critical Values

The locality question for SAWs may be stated as follows: for which families of
rooted graphs is the value of the connective constant μ = μ(G) determined by
the graph-structure of large bounded neighbourhoods of the root of G? Similar
questions have been asked for other systems including the percolation model,
see [9,60].

Let G ∈ Q. The ball Sk = Sk(G), with radius k, is the rooted subgraph of G
induced by the set of its vertices within distance k of the root 1. For G,G′ ∈ Q,
we write Sk(G) � Sk(G′) if there exists a graph-isomorphism from Sk(G) to
Sk(G′) that maps 1 to 1′. Let

K(G,G′) = max
{
k : Sk(G) � Sk(G′)

}
, G,G′ ∈ G,

and d(G,G′) = 2−K(G,G′). The corresponding metric space was introduced by
Babai [3]; see also [11,15].

Question 11. Under what conditions on G ∈ Q and {Gn} ⊆ Q is it the case
that

μ(Gn) → μ(G) if K(G,Gn) → ∞?

The locality property of connective constants turns out to be related in a
surprising way to the existence of harmonic graph height functions (see Theorem
16).

7.2 Locality Theorem

Let G ∈ Q support a graph height function (h,H). There are two associated
integers d, r defined as follows. Let

d = d(h) = max
{
|h(u) − h(v)| : u, v ∈ V, u ∼ v

}
. (17)

If H acts transitively, we set r = 0. Assume H does not act transitively, and
let r = r(h,H) be the infimum of all r such that the following holds. Let
o1, o2, . . . , oM be representatives of the orbits of H. For i 	= j, there exists
vj ∈ Hoj such that h(oi) < h(vj), and a SAW from oi to vj , with length r or less,
all of whose vertices x, other than its endvertices, satisfy h(oi) < h(x) < h(vj).

For D ≥ 1 and R ≥ 0, let QD,R be the subset of Q containing graphs
which possess a unimodular graph height function (h,H) with d(h) ≤ D and
r(h,H) ≤ R.
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Theorem 14 (Locality Theorem, [37, Thm 5.1]). Let G ∈ Q. Let D ≥ 1
and R ≥ 0, and let Gn ∈ QD,R for n ≥ 1. If K(G,Gn) → ∞ as n → ∞, then
μ(Gn) → μ(G).

The rationale of the proof is as follows. Consider for simplicity the case of
transitive graphs. Since log σn is a subadditive sequence (see (2)), we have that
μ ≤ σ

1/n
n for n ≥ 1. Similarly, by (16), log βn is superadditive, so that β ≥ b

1/n
n

for n ≥ 1. Therefore,

b1/n
n ≤ β ≤ μ ≤ σ1/n

n , n ≥ 1. (18)

Now, bn and σn depend only on the ball Sn(G). If G is such that β = μ, then their
shared value can be approximated, within any prescribed accuracy, by counts of
bridges and SAWs on bounded balls. By Theorem 13, this holds if G supports a
unimodular graph height function.

7.3 Application to Cayley Graphs

Let Γ = 〈S | R〉 be finitely presented with Cayley graph G = G(Γ, S). Let t ∈ Γ
have infinite order. We present an application of the Locality Theorem 14 to the
situation in which a new relator tn is added. Let Gn be the Cayley graph of the
group Γn = 〈S | R ∪ {tn}〉.

Theorem 15 ([35, Thm 6.1]). If the first Betti number of Γ satisfies B(Γ) ≥ 2,
then μ(Gn) → μ(G) as n → ∞.

8 Existence of Graph Height Functions

We saw in Sects. 6 and 7 that, subject to the existence of certain unimodular
graph height functions, the equality β = μ holds, and a locality result follows.
In addition, there exists a terminating algorithm for calculating μ to any degree
of precision (see [37]). In this section, we identify certain classes of graphs that
possess unimodular graph height functions.

For simplicity in the following, we restrict ourselves to Cayley graphs of
finitely generated groups.

8.1 Elementary Amenable Groups

The class EG of elementary amenable groups was introduced by Day in 1957,
[14], as the smallest class of groups that contains the set EG0 of all finite and
abelian groups, and is closed under the operations of taking subgroups, and of
forming quotients, extensions, and directed unions. Day noted that every group
in EG is amenable (see also von Neumann [64]). Let EFG be the set of infinite,
finitely generated members of EG.
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Theorem 16 ([36, Thm 4.1]). Let Γ ∈ EFG. There exists a normal subgroup
H � Γ with [Γ : H] < ∞ such that any locally finite Cayley graph G of Γ
possesses a graph height function of the form (h,H) which is both unimodular
and harmonic.

Note that the graph height function (h,H) of the theorem is harmonic. It
has a further property, namely that H � Γ has finite index, and H acts on Γ by
left-multiplication. Such a graph height function is called strong.

The proof of Theorem 16 has two stages. Firstly, by a standard algebraic
result, there exist H � Γ such that: |Γ/H| < ∞, and H is indicable in that there
exists a surjective homomorphism F : H → Z. At the second stage, we consider
a random walk on the Cayley graph G, and set h(γ) = Eγ(F (H)), where H is
the first hitting point of H viewed as a subset of vertices. That h is harmonic
off H is automatic, and on H because the action of H is unimodular.

The conclusion of Theorem 16 is in fact valid for the larger class of infinite,
finitely generated, virtually indicable groups (see [38, Thm 3.2]).

8.2 Graphs with No Graph Height Function

There exist transitive graphs possessing no graph height function, and examples
include the (amenable) Cayley graph of the Grigorchuk group, and the (non-
amenable) Cayley graph of the Higman group (see [36, Thms 5.1, 8.1]). This
may be deduced from the next theorem.

Theorem 17 ([36, Cor. 9.2]). Let Γ = 〈S | R〉 where |S| < ∞, and let Π be
the subgroup of permutations of S that preserve Γ up to isomorphism. Let G be
a Cayley graph of Γ satisfying Stab1 = Π, where Π is viewed as a subgroup of
Aut(G).

(a) If Γ is a torsion group, then G has no graph height function.
(b) Suppose Γ has no proper, normal subgroup with finite index. If G has graph

height function (h,H), then (h,Γ) is also a graph height function.

The point is that, when Stab1 = Π, every automorphism of G is obtained by
a certain composition of an element of Γ and an element of Π. The Grigorchuk
group is a torsion group, and part (a) applies. The Higman group Γ satisfies part
(b), and is quickly seen to have no graph height function of the form (h,Γ). (A
graph height function of the form (h,Γ) is called a group height function in [35,
Sect. 4].)

9 Speed, and the Exponent ν

For simplicity in this section, we consider only transitive rooted graphs G. Let
πn be a random n-step SAW from the root of G, chosen according to the uniform
measure on the set Σn of such walks. What can be said about the graph-distance
‖πn‖ between the endpoints of πn?
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We say that SAW on G has positive speed if there exist c, α > 0 such that

P(‖πn‖ ≤ cn) ≤ e−αn, n ≥ 0.

While stronger than the natural definition through the requirement of exponen-
tial decay to 0, this is a useful definition for the results of this section. When G
is infinite, connected, and quasi-transitive, and SAW on G has positive speed, it
is immediate that

Cn2 ≤ E(‖πn‖2) ≤ n2,

for some C > 0; thus (7) holds (in a slightly weaker form) with ν = 1.
For SAW on Z

d it is known, [18], that SAW does not have positive speed, and
that that E(‖πn‖2)/n2 → 0 as n → ∞ (cf. (7)). Complementary ‘delocalization’
results have been proved in [17], for example that, for ε > 0 and large n,

P(‖πn‖ = 1) ≤ n− 1
4+ε,

and it is asked there whether

P(‖πn‖ = x) ≤ n− 1
4+ε, x ∈ Z

d.

We pose the following question for non-amenable graphs.

Question 12. [18] Is it the case that, for any non-amenable Cayley graph G of
an infinite, finitely generated group, SAW on G has positive speed?

Progress towards this question may be summarised as follows. By bounding
the number of SAWs by the number of non-backtracking paths, Nachmias and
Peres [63, eqn (2.3)] have proved that that, for a non-amenable, transitive graph
G satisfying

(Δ − 1)ρ < μ, (19)

SAW on G has positive speed. Here, Δ is the vertex degree, ρ is the spectral
radius of simple random walk on G (see the discussion around (9)), and μ is the
connective constant.

It is classical (see, for example, [26, eqn (1.13)]) that μpc ≥ 1, where pc is the
critical probability of bond percolation on G. Inequality (19) is therefore implied
by the stronger inequality

(Δ − 1)ρpc < 1. (20)

These inequalities (19)–(20) are useful in several settings.

A. [63] There exist ρ0 < 1 and g0 < ∞ such that, if G is a non-amenable,
transitive graph with spectral radius less than ρ0 and girth at least g0, then
(20) holds, and hence SAW on G has positive speed.

B. [67] Let S ⊂ Γ be a finite symmetric generating set of an infinite group
Γ, and Δ = |S|. Let S(k) be the multiset of cardinality Δk comprising all
elements g ∈ Γ with length not exceeding k in the word metric given by S,
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each such element included with multiplicity equal to the number of such
ways of expressing g. The set S(k) generates Γ. By [67, Proof of Thm 2],

ρ(G,S(k))pc(G,S(k))Δk → 0 as k → ∞,

where (G,S(k)) denotes the (possibly non-simple) Cayley graph of Γ with
generator-set S(k). Inequality (20) follows for sufficiently large k

C. By the argument of [67, Prop. 1], (20) holds if

ρ <
Δ2 + Δ − 1

Δ2 + (Δ − 1)2
.

This holds when ρ < 1
2 , irrespective of Δ.

D. Thom [71] has shown that, for any finitely generated, non-amenable group
Γ and any ε > 0, there exists a finite symmetric generating set S such that
the corresponding Cayley graph G = G(Γ, S) has ρ < ε. By the above, SAW
on G has positive speed.

E. [70] Let i = i(G) be the edge-isoperimetric constant of an infinite, transitive
graph G. Since pc ≤ (1 + i)−1 and ρ2 ≤ 1 − (i/Δ)2 ([61, Thm 2.1(a)]),
inequality (20) holds whenever

(Δ − 1)

√
1 − (i/Δ)2

1 + i
< 1.

It is sufficient that i/Δ > 1/
√

2.
F. [20] It is proved that

ρ ≤
√

8Δ − 16 + 3.47
Δ

,

when G is planar. When combined with C above, for example, this implies
that SAW has positive speed on any transitive, planar graph with sufficiently
large Δ. A related inequality for hyperbolic tesselations is found in [20, Thm
7.4].

We turn next to graphs embedded in the hyperbolic plane. It was proved
by Madras and Wu [58] that SAWs on most regular tilings of the hyper-
bolic plane have positive speed. Note that the graphs treated in [58] are both
(vertex-)transitive and edge-transitive (unlike the graphs in F above). It was
proved by Benjamini [8] that SAWs on the seven regular planar triangulations
of the hyperbolic plane have mean displacement bounded beneath by a linear
function.

We turn finally to a discussion of the number of ends of a transitive graph.
The number of ends of an infinite, connected graph G = (V,E) is the supremum
over all finite subsets W ⊂ V of the number of infinite components that remain
after deletion of W . An infinite, finitely generated group Γ is said to have k
ends if some locally finite Cayley graph (and hence all such Cayley graphs) has
k ends. Recall from [62, Prop. 6.2] that a transitive graph G has k ∈ {1, 2,∞}
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and, moreover, if k = 2 (respectively, k = ∞) then G is amenable (respectively,
non-amenable).

Infinite, connected, (quasi-)transitive graphs with two or more ends have been
studied by Li [55, Thm 1.3], who has proved, subject to two conditions, that SAW
has positive speed. The approach of the proof (see [55]) is to consider a finite
‘cutset’ W with the property that many SAWs cross S to another component of
G \ W and never cross back. The pattern theorem is a key element in the proof.
These results may be applied, for example, to a cylindrical quotient graph of
Z

d (see [2,23]), and the infinite free product of two finite, transitive, connected
graphs. Here are two corollaries for Cayley graphs.

Theorem 18. ([55, Thms 1.7, 1.8]). Let Γ be an infinite, finitely generated
group with two or more ends.

(a) If Γ has infinitely many ends, and G is a locally finite Cayley graph, there
exists c > 0 such that

lim sup
n→∞

∣∣{π ∈ Σn(1) : ‖π‖ ≥ cn}
∣∣1/n = μ.

(b) There exists some locally finite, Cayley graph G such that SAW on G has
positive speed.
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20. Dvořák, Z., Mohar, B.: Spectral radius of finite and infinite planar graphs and of

graphs of bounded genus. J. Comb. Theory Ser. B 100, 729–739 (2010)
21. Fisher, M.E.: On the dimer solution of planar Ising models. J. Math. Phys. 7,

1776–1781 (1966)
22. Flory, P.: Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953)
23. Frauenkron, H., Causo, M.S., Grassberger, P.: Two-dimensional self-avoiding walks

on a cylinder. Phys. Rev. E 59, R16–R19 (1999)
24. Gilch, L.A., Müller, S.: Counting self-avoiding walks on free products of graphs.

Discrete Math. 340, 325–332 (2017)
25. Grimmett, G.R.: Potts models and random-cluster processes with many-body

interactions. J. Stat. Phys. 75, 67–121 (1994)
26. Grimmett, G.R.: Percolation, 2nd edn. Springer, Berlin (1999)
27. Grimmett, G.R.: The Random-Cluster Model. Springer, Berlin (2006). http://

www.statslab.cam.ac.uk/∼grg/books/rcm.html
28. Grimmett, G.R.: Three theorems in discrete random geometry. Probab. Surv. 8,

403–441 (2011)
29. Grimmett, G.R., Holroyd, A.E., Peres, Y.: Extendable self-avoiding walks. Ann.

Inst. Henri Poincaré D 1, 61–75 (2014)
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Abstract. We analyze the connection between front propagation and
quasi-stationary distributions in translation invariant one-dimensional
Markov processes. We describe the link between them through the micro-
scopic models known as Branching Brownian Motion with selection and
Fleming–Viot.
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1 Introduction

A selection mechanism in front propagation can be thought of as follows: a cer-
tain phenomenology is described through an equation that admits an infinite
number of traveling-wave solutions, but there is only one which has a physical
meaning, the one with minimal velocity. Under mild assumptions on initial con-
ditions, the solution converges to this minimal-velocity traveling wave. The most
remarkable example of this fact is the celebrated F–KPP equation (for Fisher,
Kolmogorov–Petrovskii–Piskunov)

∂v

∂t
=

1
2

∂2v

∂x2
+ rg(v), x ∈ R, t > 0,

v(0, x) = v0(x), x ∈ R.

(1)
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Assume for simplicity that g has the form g(s) = s2 − s, but this can be
generalized up to some extent. We also restrict ourselves to initial data v0 that are
distribution functions of probability measures in R. The equation was introduced
in 1937 [15,24] as a model for the evolution of a genetic trait and since then, has
been widely studied.

Both Fisher and Kolmogorov, Petrovskii and Piskunov proved independently
that this equation admits an infinite number of traveling wave solutions (TW)
of the form v(t, x) = wc(x − ct) that travel at velocity c. This fact is somehow
unexpected from the modeling point of view.

Fisher proposed a way to overcome this difficulty, related to the probabilistic
representation given later on by McKean [29], weaving links between solutions
to (1) and Branching Brownian Motion. The general principle behind is that
microscopic effects should be taken into account to properly describe the physical
phenomena. With a similar point of view in mind, Brunet, Derrida and coauthors
[8–11] started in the nineties a study of the effect of microscopic noise in front
propagation for Eq. (1) and related models, which resulted in a huge number
of works that study the change in the behavior of the front when microscopic
effects are taken into account. These works include both numerical and heuristic
arguments [8–11,22] as well as rigorous proofs [4,5,13,26]. Before that, Bramson
et al. [7] gave the first rigorous proof of a microscopic model for (1) that has a
unique velocity for every initial condition. They also prove that these velocities
converge in the macroscopic scale to the minimum velocity of (1), and call this
fact a microscopic selection principle, as opposed to the macroscopic selection
principle stated above, that holds for solutions of the hydrodynamic equation.

Consider a Markov process X = (Xt, t ≥ 0), killed at some state or region
that we call 0, defined on certain filtered probability space (Ω,F , (Ft),P). The
absorption time is defined by τ = inf{t > 0: Xt ∈ 0}. The conditioned evolution
at time t is defined by

μγ
t (·) := Pγ(Xt ∈ ·|τ > t).

Here γ denotes the initial distribution of the process. A probability measure
ν is said to be a quasi-stationary distribution (QSD) if μν

t = ν for all t ≥ 0.
The Yaglom limit is a probability measure ν defined by

ν := lim
t→∞ μδx

t ,

if it exists and does not depend on x. It is known that if the Yaglom limit exists,
then it is a QSD. A general principle is that the Yaglom limit selects the minimal
QSD, i.e. the Yaglom limit is the QSD with minimal mean absorption time. This
fact has been proved for a wide class of processes that include birth and death
process, Galton–Watson processes [32], random walks [21] and Brownian Motion
[27] among others.

It is a typical situation that there is an infinite number of quasi-stationary
distributions, but the Yaglom limit (the limit of the conditioned evolution of the
process started from a deterministic initial condition) selects the minimal one,
i.e. the one with minimal expected time of absorption.
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This description reveals that similar phenomena occur in both contexts (TW
and QSD). The purpose of this note is to show why and how are they related.
We first explain the link through the example of Brownian Motion and then we
show how to extend this relation to more general Lévy processes. This article
has essentially no proofs. In the companion paper [20] we give rigorous proofs
for the existence of a precise bijection between TW and QSD in the context of
one-dimensional Lévy processes.

2 Macroscopic Models

We elaborate on the two macroscopic models we study: front propagation and
QSD.

2.1 Front Propagation in the F–KPP

Since the seminal papers [15,24], Eq. (1) has received a huge amount of atten-
tion for several reasons. Among them, it is one of the simplest models explaining
several phenomena that are expected to be universal. For instance, it admits
a continuum of traveling wave solutions that can be parametrized by their
velocity c. More precisely, for each c ∈ [

√
2r,+∞) there exists a function

wc : R → [0, 1] such that
v(t, x) = wc(x − ct)

is a solution to (1). For c <
√

2r, there is no traveling wave solution, [1,24].
Hence c∗ =

√
2r represents the minimal velocity and wc∗ the minimal traveling

wave. Moreover, if v0 verifies for some 0 < b <
√

2r

lim
x→∞ ebx(1 − v0(x)) = a > 0,

then
lim

t→∞ v(t, x + ct) = wc(x), for c = r/b +
1
2
b, (2)

see [29–31]. If the initial measure has compact support (or fast enough decay at
infinity), the solution converges to the minimal traveling wave and the domain
of attraction and velocity of each traveling wave is determined by the tail of
the initial distribution. A smooth traveling wave solution of (1) that travels at
velocity c is a solution to

1
2
w′′ + cw + r(w2 − w) = 0. (3)

2.2 Quasi-Stationary Distributions

For Markov chains in finite state spaces, the existence and uniqueness of QSDs
as well as the convergence of the conditioned evolution to this unique QSD
for every initial measure follows from Perron–Frobenius theory. The situation
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is more delicate for unbounded spaces as there can be zero, one, or an infinite
number of QSD. Among those distributions, the minimal QSD is the one that
minimizes Eν(τ). Here E denotes expectation respect to P.

The presence of an infinite number of quasi-stationary distributions might be
anomalous from the modeling point of view, in the sense that no physical nor bio-
logical meaning has been attributed to them. The reason for their presence here
and in the front propagation context is similar: when studying for instance popu-
lation or gene dynamics through the conditioned evolution of a Markov process,
we implicitly consider an infinite population and microscopic effects are lost.

So, as Fisher suggests, in order to avoid the undesirable infinite number of
QSD, we should take into account microscopic effects. A natural way to do this
is by means of interacting particle systems. We discuss this in Sect. 3.

Brownian Motion with drift Quasi-stationary distributions for Brownian Motion
with constant drift towards the origin are studied in [27,28]. We briefly review
here some of the results of these papers and refer to them for the details.

For c > 0 we consider a one-dimensional Brownian Motion X = (Xt)t≥0

with drift −c defined by Xt = Bt − ct. Here (Bt)t≥0 is a one dimensional Wiener
process defined in the standard Wiener space. We use Px for the probability
defined in this space such that (Bt)t≥0 is Brownian Motion started at x and Ex

for expectation respect to Px. Define the hitting time of zero, when the process
is started at x > 0 by τx(c) = inf{t > 0: Xt = 0} and denote with P c

t the
sub-Markovian semigroup defined by

P c
t f(x) = Ex(f(Xt)1{τx(c)>t}). (4)

In this case, differentiating (4) and after some manipulation it can be seen
that the conditioned evolution μPt has a density u(t, ·) for every t > 0 and
verifies

∂u

∂t
(t, x) =

1
2

∂2u

∂2x
(t, x) + c

∂u

∂x
(t, x) +

1
2

∂u

∂x
(t, 0)u(t, x), t > 0, x > 0,

u(t, 0) = u(t,+∞) = 0, t > 0.

(5)

It is easy to check that if ν is a QSD, the hitting time of zero, started with
ν is an exponential variable of parameter r and hence ν is a QSD if and only if
there exists r > 0 such that

νP c
t = e−rtν, for any t > 0. (6)

Differentiating (4) and using the semigroup property and (6) we get that ν is a
QSD if and only if

∫ (
1
2
f ′′ − cf ′

)
dν = −r

∫
f dν, for all f ∈ C∞

0 (R+). (7)

Integrating by parts we get that the density w of ν must verify

1
2
w′′ + cw′ + rw = 0. (8)
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Solutions to this equation with initial condition w(0) = 0 are given by

w(x) =

⎧⎪⎨
⎪⎩

me−cx sin(
√

2r − c2x) r > c2

2 ,

mxe−cx r = c2

2 ,

me−cx sinh(
√

c2 − 2rx) r < c2

2 .

Here m is a normalizing constant. Observe that w defines an integrable den-
sity function if and only if 0 < r ≤ c2/2 (or equivalently, c ≥ √

2r). One can
thus parametrize the set of QSDs by their eigenvalues r, {νr : 0 < r ≤ c2/2}. For
each r, the distribution function of νr, v(x) =

∫ x

0
w(y) dy is a monotone solution

of (8) with boundary conditions

v(0) = 0, v(+∞) = 1. (9)

3 Particle Systems

In this section we introduce two particle systems. The first one is known as
Branching Brownian Motion (BBM) with selection of the N right-most particles
(N -BBM). As a consequence of the link between BBM and F–KPP that we
describe below, this process can be thought of as a microscopic version of F–KPP.
The second one is called Fleming–Viot and was introduced by Burdzy, Ingemar,
Holyst and March [12], in the context of Brownian Motion in a d-dimensional
bounded domain. It is a slight variation of the original one introduced by Fleming
and Viot [16]. The first interpretation of this process as a microscopic version of
a conditioned evolution is due to Ferrari and Marić [14].

3.1 BBM and F–KPP Equation

One-dimensional supercritical Branching Brownian Motion is a well-understood
object. Particles diffuse following standard Brownian Motion started at the origin
and branch at rate 1 into two particles. As already underlined, its connection
with the F–KPP equation and traveling waves was pointed out by McKean in
the seminal paper [29]. Denote with Nt the number of particles alive at time
t ≥ 0 and ξt(1) ≤ · · · ≤ ξt(Nt) the position of the particles enumerated from left
to right. McKean’s representation formula states that if 0 ≤ v0(x) ≤ 1 and we
start the process with one particle at 0 (i.e. N(0) = 1, ξ0(1) = 0), then

v(t, x) := E

(
Nt∏
i=1

v0(ξt(i) + x)

)

is the solution of (1). Of special interest is the case where the initial condition
is the Heaviside function v0 = 1{[0,+∞)} since in this case

v(t, x) = P(ξt(1) + x > 0) = P(ξt(Nt) < x).

This identity as well as various martingales obtained as functionals of this process
have been widely exploited to obtain the precise behavior of solutions of (1),
using analytic as well as probabilistic tools.
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3.2 N-BBM and Durrett–Remenik Equation

Consider now a variant of BBM where the N right-most particles are selected.
In other words, each time a particle branches, the left-most one is killed, keeping
the total number of particles constant.

This process was introduced by Brunet and Derrida [8,9] as part of a family of
models of branching-selection particle systems to study the effect of microscopic
noise in front propagation.

Durrett and Remenik [13] considered a slightly different process in the
Brunet–Derrida class: N -BRW. The system starts with N particles. Each parti-
cle gives rise to a child at rate one. The position of the child of a particle at x ∈ R

is x + y, where y is chosen according to a probability distribution with density
ρ, which is assumed symmetric and with finite expectation. After each birth,
the N + 1 particles are sorted and the left-most one is deleted, in order to keep
always N particles. They prove that if at time zero the particles are distributed
according to independent variables with distribution u0(x)dx, then the empiri-
cal measure of this system converges to a deterministic probability measure νt

for every t, which is absolutely continuous with density u(t, ·), a solution of the
following free-boundary problem

Find (γ, u)such that
∂u

∂t
(t, x) =

∫ ∞

−∞
u(t, y)ρ(x − y) dy ∀x > γ(t),

∫ ∞

γ(t)

u(t, y) dy = 1, u(t, x) = 0, ∀x ≤ γ(t),

u(0, x) = u0(x).

(10)

They also find all the traveling wave solutions for this equation. Just as for the
BBM, there exists a minimal velocity c∗ ∈ R such that for c ≥ c∗ there is a unique
traveling wave solution with speed c and no traveling wave solution with speed
c for c < c∗. The value c∗ and the behavior at infinity of the traveling waves can
be computed explicitly in terms of the Laplace transform of the random walk. In
Sect. 4 we show that these traveling waves correspond to QSDs of drifted random
walks.

It follows from renewal arguments that for each N , the process seen from the
left-most particle is ergodic, which in turn implies the existence of a velocity vN

at which the empirical measure travels for each N . Durrett and Remenik prove
that these velocities are increasing and converge to c∗ as N goes to infinity.

We can interpret this fact as a weak selection principle: the microscopic sys-
tem has a unique velocity for each N (as opposed to the limiting equation) and
the velocities converge to the minimal velocity of the macroscopic equation. The
word “weak” here refers to the fact that only convergence of the velocities is
proved, but not convergence of the empirical measures in equilibrium.

In view of these results, the same theorem is expected to hold for a N -BBM
that branches at rate r. In this case the limiting equation is conjectured to be
given by
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Find (γ, u) such that

∂u

∂t
(t, x) =

1
2

∂2u

∂2x
(t, x) + ru(t, x) ∀x > γ(t),

∫ ∞

γ(t)

u(t, y) dy = 1, u(t, x) = 0, ∀x ≤ γ(t),

u(0, x) = u0(x).

(11)

The empirical measures in equilibrium are expected to converge to the min-
imal traveling wave.

Traveling waves. Let us look at the traveling wave solutions u(t, x) = w(x − ct)
of (11). Plugging in the equation we see that they must verify

1
2
w′′ + cw′ + rw = 0, w(0) = 0,

∫ ∞

0

w(y) dy = 1, (12)

which is exactly (8). Note nevertheless that in (12) the parameter r is part
of the data of the problem (the branching rate) and c is part of the unknown
(the velocity), while in (8) the situation is reversed: c is data (the drift) and r
unknown (the absorption rate under the QSD). However, we have the following
relation

c is a minimal velocity for r
in (12) ⇐⇒ r is a maximal absorption rate for c

in (8)

Observe also that 1/r is the mean absorption time for the QSD associated
to r and hence, if r is maximal, the associated QSD is minimal. So the minimal
QSD for Brownian Motion in R+ and the minimal velocity traveling wave of
(11) are one and the same. They are given by

uc∗(r)(x) = ur∗(c) = 2r∗xe−√
2r∗

= (c∗)2xe−c∗x,

which is the one with fastest decay at infinity.
Again, the distribution function v of u is a monotone solution to the same

problem but with boundary conditions given by v(0) = 0, v(+∞) = 1.

3.3 Fleming–Viot and QSD

The Fleming–Viot process can be thought of as a microscopic version of condi-
tioned evolutions. Its dynamics are built with a continuous time Markov process
X = (Xt, t ≥ 0) taking values in a metric space Λ∪{0}, that we call the driving
process. We assume that 0 is absorbing in the sense that

Pδ0(Xt = 0) = 1, ∀t ≥ 0.
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As before, we use τ for the absorption time

τ = inf{t > 0: Xt /∈ Λ},

and Pt for the sub-Markovian semigroup defined by

Ptf(x) = Ex(f(Xt)1{τ > t}).

For a given N ≥ 2, the Fleming–Viot process is an interacting particle system
with N particles. We use ξt = (ξt(1), . . . , ξt(N)) ∈ ΛN to denote the state of the
process, ξt(i) denotes the position of particle i at time t. Each particle evolves
according to X and independently of the others unless it hits 0, at which time,
it chooses one of the N − 1 particles in Λ uniformly and takes its position. The
genuine definition of this process is not obvious and in fact is not true in general.
It can be easily constructed for processes with bounded jumps to 0, but is much
more delicate for diffusions in bounded domains [6,17] and it does not hold for
diffusions with a strong drift close to the boundary of Λ.

Here we are also interested in the empirical measure of the process

μN
t =

1
N

N∑
i=1

δξt(i). (13)

Its evolution mimics the conditioned evolution: the mass lost from Λ is redis-
tributed in Λ proportionally to the mass at each state. Hence, as N goes to
infinity, we expect to have a deterministic limit given by the conditioned evolu-
tion of the driving process X, i.e.

μN
t (A) → P(Xt ∈ A|τ > t) (N → ∞).

This is proved in [33] by the martingale method in great generality. See also
[18] for a proof based on sub and super-solutions for PDEs and correlations
inequalities. A much more subtle question is the ergodicity of the process for
fixed N and the behavior of these invariant measures as N → ∞. As a general
principle it is expected that

Conjecture 1. If the driving process X has a Yaglom limit ν, then the Fleming–
Viot process driven by X is ergodic, with (unique) invariant measure λN and
the empirical measures (13) distributed according to λN converge to ν.

We refer to [18] for an extended discussion on this issue. This conjecture has been
proved to be true for subcritical Galton–Watson processes, where a continuum
of QSDs arises [2] and also for certain birth and death processes [34].

We have again here a microscopic selection principle: whereas there exists
an infinite number of QSDs, when microscopic effects are taken into account
(through the dynamics of the Fleming–Viot process), there is a unique stationary
distribution for the empirical measure, which selects asymptotically the minimal
QSD of the macroscopic model.
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When the driving process is a one dimensional Brownian Motion with drift
−c towards the origin as in Sect. 2.2, the proof of the whole picture remains
open, but the ergodicity of FV for fixed N has been recently proved [3,23].

So, from [33, Theorem 2.1] we have that for every t > 0, μN
t converges as

N → ∞ to a measure μt with density u(t, ·) satisfying (5). The open problem is to
prove a similar statement in equilibrium. Observe that u is a stationary solution
of (5) if and only if it solves (8) for some r > 0. Hence, although Eq. (11) and
(5) are pretty different, stationary solutions to (5) coincide with traveling waves
of (11).

3.4 Choose the Fittest and F–KPP Equation

We introduce now the last microscopic model that is useful to explain the relation
between all these phenomena. In this subsection ξt = (ξt(1), . . . , ξt(N)) will
denote the state of the N− particle system that we describe below. In this
model particles perform independent standard Brownian Motion. Additionally
each particle has a Poisson process with rate 1/2 and when this process rings,
the particle chooses uniformly among the other particles to form a pair. Among
this pair of particles, the particle with the smaller position adopts the position
of the other one.

We consider again the empirical measure of this process as in (13) and denote
with vN (x, t) the cumulative distribution function

vN (x, t) :=
1
N

N∑
i=1

1{ξi
t ≤ x} (14)

It is proved in [19] that if there is a distribution function v0 such that
vN (·, 0) → v0 uniformly, in probability, then for all t > 0

lim
N→∞

‖vN (·, t) − v(·, t)‖∞ = 0, in probability. (15)

Here v is the solution of the F–KPP equation (1). Moreover, for each N it is
easily seen that the process is ergodic. This implies the existence of an asympotic
velocity

vN = lim
t→∞

ξt(i)
t

,

independent of i. It is also proved in [19] that, as N → ∞, vN ↗ √
2r, the

minimal velocity of (1).

Summing up

1. The link between N -BBM and Fleming Viot, in the Brownian Motion case is
clear. Both processes evolve according to N independent Brownian Motions
and branch into two particles. At branching times, the left-most particle is
eliminated (selection) to keep the population size constant. The difference is
that while N -BBM branches at a constant rate Nr, Fleming–Viot branches
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each time a particle hits 0. This explains why in the limiting equation for
N -BBM the branching rate is data and the velocity is determined by the
system while in the hydrodynamic equation for Fleming–Viot the velocity is
data and the branching rate is determined by the system.

2. The empirical measure of N -BBM is expected to converge in finite time inter-
vals to the solution of (11). This is supported by the results of [13] where the
same result is proved for random walks.

3. The empirical measure of Fleming–Viot driven by Brownian Motion converges
in finite time intervals to the solution of (5).

4. Both N -BBM seen from the left-most particle and FV are ergodic and their
empirical measure in equilibrium is expected to converge to the deterministic
measure given by the minimal solution of (12).
Note though that while for N -BBM r is data and minimality refers to c, for
Fleming–Viot c is data and minimality refers to 1/r (microscopic selection
principle).

5. u(t, x) = w(x − ct) is a traveling wave solution of (11) if and only if w is the
density of a QSD for Brownian Motion with drift −c and eigenvalue −r.

6. c is minimal for r (in (12)) if and only if 1/r is minimal for c. So, we can talk
of a “minimal solution of (12)”, which is both a minimal QSD and a minimal
velocity traveling wave.

7. The microscopic selection principle is conjectured to hold in both cases, with
the same limit, but a rigorous proof is still unavailable.

4 Traveling Waves and QSD for Lévy Processes

Let X = (Xt, t ≥ 0) be a Lévy process with values in R, defined on a filtered
space (Ω,F , (Ft),P), Laplace exponent ψ : R → R defined by E(eθXt) = eψ(θ)t

and generator L. This centered Lévy process plays the role of Brownian Motion
in the previous sections. Now, for c > 0 we consider the drifted process Xc given
by Xc

t = Xt −ct. It is immediate to see that the Laplace exponent of Xc is given
by ψc(θ) = ψ(θ) − cθ, that C2

0 is contained in the domain of the generator Lc of
Xc, and that Lcf = Lf − cf ′. Recall that the forward Kolmogorov equation for
X is given by

d
dt

Ex(f(Xt)) = Lf(x),

while the forward Kolmogorov (or Fokker–Plank) equation for the density u
(which exists since σ > 0) is given by

d
dt

u(t, x) = L∗u(t, ·)(x).

Here L∗ is the adjoint of L. As in the Brownian case, we consider

– A branching Lévy process (BLP) (ξ̄t(1), . . . , ξ̄t(Nt)) driven by L∗.
– A branching Lévy process with selection of the N rightmost particles

(N -BLP), driven by L.
– A Fleming–Viot process driven by Lc (FV).
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We focus on the last two processes. For a detailed account on BLP, we refer
to [25].

Let us just mention that the F–KPP equation can be generalized in this
context to:

∂v

∂t
= L∗v + rg(v), x ∈ R, t > 0,

v(0, x) = v0(x), x ∈ R.
(16)

A characterization of the traveling waves as well as sufficient conditions of
existence are then provided in [20,25].

For N -BLP we expect (but a proof is lacking) that the empirical measure
converges to a deterministic measure whose density is the solution of the gener-
alized Durrett–Remenik equation

Find (γ, u) such that
∂u

∂t
(t, x) = L∗u(t, x) + ru(t, x), x > γ(t),

∫ ∞

γ(t)

u(t, y) dy = 1, u(t, x) = 0, x ≤ γ(t),

u(0, x) = u0(x), x ≥ 0.

(17)

Existence and uniqueness of solutions to this problem have to be examined.
We show below the existence of traveling wave solutions for this equation

under mild conditions on L based on the existence of QSDs.
Concerning FV, it is known [33] that the empirical measure converges to the

deterministic process given by the conditioned evolution of the process, which
has a density for all times and verifies

∂u

∂t
(t, x) = L∗u(t, x) + c

∂u

∂x
(t, x) − u(t, x)

∫ ∞

0

L∗u(t, y)dy t > 0, x > 0,

u(t, 0) = u(t,+∞) = 0, t > 0,

(18)

Proposition 1. The following statements are equivalent:

– The probability measure ν with density w is a QSD for Xc with eigenvalue −r,
– u(t, x) = w(x − ct) is a traveling wave solution with speed c for the free-

boundary problem (17), with parameter r.

Proof. Denote 〈f, g〉 =
∫

f(x)g(x)dx. A QSD ν for Xc with eigenvalue −r is a
solution of the equation

〈νLc + rν, f〉 = 0,∀f ∈ C2
0 .

Using that L∗
cf = L∗f + cf ′ and writing that ν has density w, we obtain that

L∗w + cw′ + rw = 0,

which in turn is clearly equivalent to w being a traveling wave solution with
speed c for (17). ��
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In the companion paper [20] we prove that the picture that we described
for the Brownian Motion case holds in more generality. Our result states that,
under mild conditions, for given r, c > 0 we have that there exists a QSD νr

for Xc with eigenvalue −r if and only if there is a traveling wave wc for (16)
that travels at velocity c and moreover, νr is minimal for c if and only if wc is
minimal for r. Jointly with Proposition 1 this also proves that the existence of
a traveling wave for (16) is also equivalent to the existence of a traveling wave
for the Durrett–Remenik equation (17).
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distributions for one-dimensional Lévy processes. Preprint arXiv:1609.09338 (2013)

21. Iglehart, D.L.: Random walks with negative drift conditioned to stay positive. J.
Appl. Probab. 11, 742–751 (1974)

22. Kessler, D.A., Levine, H.: Fluctuation-induced diffusive instabilities. Nature 394,
556–558 (1998)
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Abstract. We study once-reinforced biased random walk on Z
d. We

prove that for sufficiently large bias, the speed v(β) is monotone decreas-
ing in the reinforcement parameter β in the region [0, β0], where β0 is a
small parameter depending on the underlying bias. This result is anal-
ogous to results on Galton–Watson trees obtained by Collevecchio and
the authors.

Keywords: Once-reinforced random walk · Reinforced random walk ·
Large bias · Coupling

1 Introduction

Reinforced random walks have been studied extensively since the introduction of
the (linearly)-reinforced random walk of Coppersmith and Diaconis [9]. In this
paper we study (a biased version of) once-reinforced random walk, which was
introduced by Davis [10] as a possible simpler model of reinforcement to under-
stand. While there have been recent major advances in the understanding of
linearly reinforced walks on Z

d (see e.g. [1,11,29,30] and the references therein),
rather less is known about once-reinforced walks on Z

d.
When the underlying random walk is biased we expect the once-reinforced

random walk to be ballistic in the direction of the bias. On regular trees with d
offspring per vertex, the underlying walk has a drift away from the root when
d ≥ 2 and the ballisticity of the once-reinforced walk is a well known result
due to Durrett, Kesten and Limic [12] (see [6] for a softer proof, and [8,25] for
further results). When one introduces an additional bias on the tree (letting
children have initial weight α), one must first clarify what one means by once-
reinforcement. Indeed, ballisticity depends on the sign of dα−1 in the setting of
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V. Sidoravicius (Ed.): Sojourns in Probability Theory
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additive once-reinforcement, but a different criterion reveals itself in the setting
of multiplicative once-reinforcement (see [7], and also [25]). It is also shown in
[7], for sufficiently large d and sufficiently small β0 > 0, depending on d, that
the speed of the walk away from the root is monotone in the reinforcement
β ∈ [0, β0]. In this paper we prove analogous monotonicity results on Z

d, when
the underlying bias is sufficiently large.

1.1 The Model

Fix d ≥ 2. Let E+ = (ei)i=1,...,d denote the canonical basis on Z
d, and E = {e ∈

Z
d : |e| = 1} denote the set of neighbours of the origin in Z

d. Let E− = E \ E+.
Given α = (αe)e∈E ∈ R

E
+ and β > 0, we define a once-edge-reinforced random

walk X on Z
d with natural filtration (Fn)n∈Z+ (i.e. Fn = σ(Xk : k ≤ n)) as

follows. Set X0 = 0 almost surely. For any n ≥ 0, let En = {[Xi−1,Xi] : 1 ≤
i ≤ n} denote the set of non-oriented edges crossed by X up to time n. Define

We(n) := αe(1 + β1{[Xn,Xn+e]∈En}). (1)

The walk jumps to a neighbor Xn + e with conditional probability given by

Pβ (Xn+1 = Xn + e| Fn) =
We(n)

∑
e′∈E We′(n)

. (2)

Together, (1) and (2) correspond to multiplicative once-edge reinforcement, with
reinforcement parameter β. See Sect. 1.2 for other related models.

Without loss of generality we may assume that the direction of bias (if any)
is in the positive coordinate direction for every coordinate. Moreover, we assume
that every direction has positive weight. Thus, up to a rescaling of parameters,
without loss of generality αe ≥ 1 for every e ∈ E .

Condition D. For every e ∈ E+, αe ≥ α−e ≥ 1.

Let α+ =
∑

e∈E+
αe and α− =

∑
e∈E− αe, and let α = α+ + α− =

∑
e∈E αe.

Our results depend upon a modification of an argument of [2] involving a cou-
pling with a 1-dimensional biased random walk. This general coupling approach
has also been utilised on Z

d for biased random walk on random conductances in
[3] (see [7] as well).

For this reason, we will assume the following with κ � 1.

Condition κ. The parameters α and β0 are such that β0 ≤ 1/α+ and

α+

(1 + β0)2α2−
> κ. (3)

If Condition κ holds with κ = 1 then a simple comparison with 1-dimensional
biased random walk shows that the walker is ballistic in direction �+ :=

∑
e∈E+

e

(i.e. lim infn→∞ n−1Xn · �+ > 0). In particular the walk is transient in direction
�+ (i.e. lim infn→∞ Xn · �+ = ∞). Combined with regeneration arguments (see
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e.g. [31,32]), this allows one to prove that there exists v ∈ R
d with v · �+ > 0

such that P(limn→∞ n−1Xn = v) = 1. Since the norm ‖x‖ :=
∑d

i=1 |xi| is a
continuous function on R

d we also have that

‖v‖ = lim
n→∞ n−1‖Xn‖, almost surely.

Note that if X is a nearest neighbour walk on Z
d then ‖X‖ is a nearest neighbour

walk on Z+. Therefore if v · e ≥ 0 for each e ∈ E+ then v · �+ = ‖v‖. Assuming
Condition D, it is intuitively obvious that if v exists then v ·e ≥ 0 for each e ∈ E+.
We conjecture that this is true however it does not seem easy to prove.

Conjecture 1. Assume Condition D. Then for each β > 0 there exists v = vβ ∈
R

d with v · e ≥ 0 for each e ∈ E+ such that P(n−1Xn → v) = 1.

Note that it is not at all obvious that v · e should be strictly positive for all β
when the underlying random walk (i.e. β = 0) has a positive speed in direction
e. In particular on regular trees there are settings where the underlying random
walk is ballistic but the multiplicative-once-reinforced walk is recurrent [7]. On
the other hand, we believe that on Z × F where F is a finite graph vβ · e1 > 0
whenever v0 · e1 > 0.

We make the following conjecture about the behaviour of vβ as β varies.

Conjecture 2. Assume Condition D. Then for β0 such that Condition κ holds
with κ ≥ 1, vβ · �+ is strictly decreasing in β ≤ β0.

There are at least 3 different strategies for proving monotonicity of the speed for
random walks on Z

d: coupling, expansion, and Girsanov transformation methods,
with the former usually being the weapon of choice, where possible. When d =
1 there is a rather general coupling method [18,22] for proving monotonicity,
however this argument completely breaks down when d ≥ 2. We are not aware
of any current technology that lets one resolve Conjecture 2 for all κ ≥ 1.

If the bias in direction �+ is sufficiently large then for small reinforcements
the reinforced walker still has a large bias in direction �+ (e.g. when Condition
κ holds for large κ). Thus, what the walker sees locally almost all of the time
is a single reinforced edge in some direction −e ∈ E−, and no reinforced edges
in directions in E+. In this case it is again intuitively obvious that the speed of
the reinforced version of the walk in direction �+ is decreasing in β for small β.
Actually proving this is non-trivial.

We will prove a version of this result assuming one of the following:

Condition S. The parameters α satisfy αe = α+/d and α−e = α−/d for each
e ∈ E+.

Note that Condition S (which is a symmetry condition) together with Con-
dition κ (for κ ≥ 1) implies Condition D. Condition S implies that the true
direction of bias of the underlying random walk is �+. At the other extreme, the
following condition (with κ � 1) implies that the true direction of bias of the
underlying random walk is almost in direction e1.
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Condition e1. The parameters α and β0 are such that
β0 ≤ 1/α+ and satisfy

αe1

(1 + β0)2(α − αe1)2
> κ.

Note that this implies Condition κ.

Curiously, with the technique that we employ, it seems considerably harder to
prove our results for parameters α between the two extremes given by Conditions
S and e1.

Our main results are the following Theorems, which verify that if either
Condition S or Condition e1 (for small ε) hold for large drifts and small rein-
forcement, increasing the reinforcement slows the walker down.

Theorem 1. There exists κ0 < ∞ such that if Condition S holds and if Condi-
tion κ holds for κ0, α and β0, then for all β ≤ β′ ≤ β0,

(vβ − vβ′) · �+ > 0 and ‖vβ‖ > ‖vβ′‖.

(Note that the second conclusion in Theorem 1 is immediate from the first and
Condition S.)

Theorem 2. Suppose that Condition D holds. There exists κ0 < ∞ such that
if Condition e1 holds for κ0, α and β0 then for all β ≤ β′ ≤ β0,

(vβ − vβ′) · �+ > 0.

Note that if α− = 0 then there is nothing to prove in either case. Otherwise
αe > 0 for some e ∈ E− in which case by Condition D we have that

α− ≥ 1. (4)

1.2 Discussion

We have restricted ourselves to multiplicative-once-edge-reinforced random walk.
In the general α setting one can describe a rather general once-reinforcement
scheme as follows. Recall that En is the set of edges crossed by the walk up to
time n and let Vn = {X0, . . . , Xn} denote the set of vertices visited up to time
n. Then, given a parameter set (α,αV ,αE) ∈ (0,∞)2d×3, define the law of a
walk Pα ,αV ,αE via (2) and the edge weights:

We(n) = αe1{Xn+e/∈Vn} + αV
e 1{Xn+e∈Vn,[Xn,Xn+e]/∈En} + αE

e 1{[Xn,Xn+e]∈En}.
(5)

This general setting includes multiplicative-once-edge-reinforced random walk
(this is the choice αV

e = αe and αE
e = (1 + β)αe for each e ∈ E), additive-once-

edge-reinforced random walk (the choice αV
e = αe and αE

e = αe + β for each
e ∈ E), and vertex-reinforced versions of these models (by setting αV

e = αE
e
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for each e ∈ E). It also includes hybrid models where the weight of a directed
edge depends on whether the undirected edge has been traversed, and otherwise
whether the other endvertex of the edge has been visited before.

The increased level of difficulty (for the coupling technique) that we encounter
in studying models with α that are not at the “extremes” given by either Con-
ditions S or e1, seems (at first glance) to persist for expansion methods (see
e.g. [15–17,23]). We have not investigated the possibility of proving such results
using Girsanov transformation methods (see e.g. [27,28]).

In the setting of reinforcement for an unbiased walk, the velocity v is zero,
but one imagines that (e.g. in the case of once-reinforcement), monotonicity in
β still holds for various quantities such as E[|Xn|2], E[‖Xn‖] and the expected
number of visits to 0 up to time n. Results of this kind hold in the elementary
setting where one only keeps track of the most recently traversed edge (but
can in fact fail in this setting with more general reinforcement schemes than
once-reinforcement), see e.g. [19,20].

There is also a substantial literature on monotonicity (or lack thereof) for
random walks in random graphs, where one is often interested in the monotonic-
ity (or lack thereof) of the speed of the walk in some parameter defining the bias
of the walk or the structure of the underlying graph (see e.g. [2–5,7,13,21,26]).

2 Preliminary Results

We will need the concept of regeneration times. Let Y denote a nearest neighbour
simple random walk on Z with probability p > 1/2 of stepping to the right. By
the law of large numbers n−1Yn → 2p−1 > 0 almost surely. Moreover it is easily
computed that

P( inf
n≥0

Yn ≥ Y0) = p−1(2p − 1). (6)

We say that N ∈ Z+ is a regeneration time of Y if supn<N Yn < YN ≤ infn≥N Yn.
Letting DY denote the set of regeneration times for Y , and D0 = {0 ∈ DY } we
see from (6) that P(D0) = p−1(2p − 1) > 0. In fact |DY | = ∞ almost surely and
we write (τi)i∈N = DY ∩ N (with τi < τi+1 for each i) for the ordered strictly
positive elements of DY . Set τ0 = 0 (this may or may not be a regeneration
time).

More generally, for a walk X on Z
d we say that N ∈ Z+ is a regeneration time

of X in the direction of x ∈ R
d \ {o} if supn<N Xn · x < XN · x ≤ infn≥N Yn · x.

For n ≥ 1 let ΔX
n = Xn − Xn−1.

The following is Lemma 3.1 of [7].

Lemma 1 (Lemma 3.1 of [7]). Suppose that Z′ and Z are nearest neighbour
walks on Z and that Y is a nearest neighbour simple random walk on Z with
P(Y1 = 1) = p > 1/2, all on the same probability space such that:

(i) ΔZ′
n = ΔZ

n = 1 whenever ΔY
n = 1,
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then the regeneration times τi of Y are also regeneration times for Z and Z′.
Moreover if

(ii) (Z ′
τi+1

− Z ′
τi

)i∈N are i.i.d. random variables and (Zτi+1 − Zτi
)i∈N are

i.i.d. random variables, with Z ′
τi+1

− Z ′
τi

and Zτi+1 − Zτi
being indepen-

dent of (τk : k ≤ i) for each i, and
(iii) E

[
Zτ1 − Z ′

τ1

∣
∣D0

]
> 0.

Then there exist v > v′ > 0 such that P(n−1Zn → v, n−1Z ′
n → v′) = 1.

Let P(·) = P(·|D0). Let B =
{
1 ≤ i < τ1 : ΔY

i = −1
}

denote the set of times
before τ1 when Y takes a step back. The following statement (and its proof) is
a trivial modification of Lemma 3.2 of [7].

Lemma 2. Let Z,Z′ be nearest neighbour walks on Z, and Y a biased random
walk on Z satisfying assumption Lemma 1 (i). Suppose also that P

(|B| = 1, Zτ1−
Z ′

τ1 < 0
)

= 0 and

P
(|B| = 1, Zτ1 − Z ′

τ1 ≥ 1
)

>

∞∑

k=2

2kP(|B| = k, Zτ1 − Z ′
τ1 < 0). (7)

Then (iii) of Lemma 1 holds. Therefore if the assumption of Lemma 1(ii) also
holds then Lemma 1 holds.

To prove Theorem 1 it therefore suffices to prove the following theorem.

Theorem 3. There exists κ0 < ∞ such that if Condition κ holds for κ0, α and
β0, and Condition S holds, then for all β ≤ β′ ≤ β0, there exists a probability
space on which the conditions of Lemma 1 hold for Z = X(β) · �+ and Z′ =
X(β′) · �+.

Similarly, to prove Theorem 2 it suffices to prove the following.

Theorem 4. Suppose that Condition D holds. There exists κ0 < ∞ such that
if Condition e1 holds for κ0, α and β0 then for all β ≤ β′ ≤ β0, there exists a
probability space on which the conditions of Lemma 1 hold for Z = X(β) · �+
and Z′ = X(β′) · �+.

In the next section we construct the probability spaces relevant to Theorems 3
and 4.

3 The Coupling

This section adapts an argument of Ben Arous, Fribergh and Sidoravicius [2].
In the construction of the coupling and verification of its properties we will

use various jargon as follows.
We say that a walk Y on Z jumps forward (at time n + 1) if ΔY

n+1 = 1.
Otherwise, we say that Y jumps backwards.
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For a walk X on Z
d (which will have the law of a once reinforced biased

random walk on Zd), we will say that X jumps forward (at time n + 1) if
ΔX

n+1 ∈ E+ and backwards otherwise. We will write that a (non-oriented) edge e
of Zd is reinforced at a given time n if it has already been crossed by X, i.e. if
e ∈ En. We will use the notation In := {e ∈ E : [Xn,Xn + e] ∈ En}, and say
that X jumps on its trace (at time n + 1) if ΔX

n+1 ∈ In (i.e. it jumps through
an edge which is already reinforced), otherwise we say that it jumps out of its
trace. We call local environment of X at time n the collection of weights of the
edges adjacent to Xn.

Recall that we have defined E+ = (ei)i=1,...,d. We extend the notation to
ei+d = −ei ∈ E− for any i ∈ {1, . . . , d}. Moreover, we use the shorthand αi = αei

for any i ∈ {1, . . . , 2d}. For each I ⊂ [2d], for any i ∈ [2d] and for each β ≥ 0,
define

p
(β)
i,I :=

αi(1 + 1{i∈I}β)
∑2d

j=1 αj(1 + 1{j∈I}β)
.

Note that if X is a biased ORRW on Z
d with reinforcement parameter β, then

P(ΔX(β)

n+1 = ei|Fn) = p
(β)
i,In(β) a.s.

Note that if β′ > β then for any I ⊂ [2d] we have

p
(β′)
i,I ≥ p

(β)
i,I , for any i ∈ I,

p
(β′)
i,I ≤ p

(β)
i,I , for any i /∈ I,

p
(β′)
i,I ∧ p

(β)
i,I ≥ pY

i , for any i ∈ [d],

where

pY
i :=

αi

α + β′(α − αi)
. (8)

Let us also define

pY :=
d∑

i=1

αi, qY := 1 − pY , and pY
i+d := 0, ∀i ∈ [d]. (9)

Note that from summing (8) and using Condition κ and (4) we have β0 ≤ 1/α+

and α+/α− > κ, and therefore

pY >
α+

(1 + β0)α
= 1 − β0α+

(1 + β0)α
− α−

α
≥ 1 − 2

κ
. (10)

In particular, pY can be taken arbitrarily close to 1 under Condition κ for large κ.
The main idea is to couple three walks, X,X ′,Y satisfying the conditions

of Theorems 3 and 4:

(1) X = X(β) a biased ORRW on Z
d with reinforcement parameter β;

(2) X ′ = X(β′) a biased ORRW on Z
d with reinforcement parameter β′ > β;

(3) Y a biased random walk on Z.
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In particular (see (7)) we must be able to control how each walk can make gains
on the other in direction �+. To this end, we will say that X and X ′ are still
coupled at time n if (Xk)k≤n = (X ′

k)k≤n, and that they decouple at time n + 1
if also Xn+1 = X ′

n+1. We will write δ = inf{n : Xn = X ′
n} to denote the

decoupling time. We call discrepancy (at time n) the difference Xn − X ′
n. We

say that the decoupling creates a negative discrepancy if (Xδ − X ′
δ) · �+ < 0.

3.1 The Dynamics

Fix β′ > β ≥ 0. Let (Ω,F ,P) denote a probability space on which (Ui)i≥1 is an
i.d.d. collection of U [0, 1] random variables. We will set X0 = X ′

0 = o ∈ Z
d and

Y0 = 0, and (Xn,X ′
n, Yn) will be Gn = σ(Uk : k ≤ n)-measureable. We will use ′

notation to denote quantities depending on X ′ e.g. E′
n = {[X ′

k−1,X
′
k] : k ≤ n}

and I ′
n := {e ∈ E : [X ′

n,X ′
n + e] ∈ E′

n}.
The coupling is given by the following rules, that we will explain in Sect. 3.2.

Firstly,

(0Y ) for any n ∈ N, Yn =
∑n

i=1

(
1{Ui>qY } − 1{Ui≤qY }

)
.

The above takes care of the marginal distribution of Y . Next, regardless of the
environment at time n,

(0X) If Un+1 ∈
(
1 − ∑i

j=1 pY
j , 1 − ∑i−1

j=1 pY
j

]
for i ∈ [d], then ΔX

n+1 = ΔX ′
n+1 =

ei;

Otherwise we define the joint increments inductively, considering separately the
cases when the two walks X, X ′ have (∗) the same local environments or (∗∗)
different local environments.

(=) Suppose that In = I ′
n, and let I = In. Denote k = |I|, write r1 < · · · < rk

for the elements of I listed in increasing order and r̄1 < · · · < r̄2d−k for
the elements of [2d] \ I in increasing order. Then,

(=I) If Un+1 ∈
(
qY − ∑i

j=1

(
p
(β)
rj ,I − pY

rj

)
, qY − ∑i−1

j=1

(
p
(β)
rj ,I − pY

rj

)]
for i ∈

[k], then ΔX
n+1 = ΔX ′

n+1 = eri
;

(=Ic) If

Un+1 ∈
⎛

⎝qY −
k∑

j=1

(
p
(β)
rj ,I − pY

rj

)
−

i∑

j=1

(
p
(β′)
r̄j ,I − pY

r̄j

)
,

qY −
k∑

j=1

(
p
(β)
rj ,I − pY

rj

)
−

i−1∑

j=1

(
p
(β′)
r̄j ,I − pY

r̄j

)
⎤

⎦ ,

then ΔX
n+1 = ΔX ′

n+1 = er̄i
;

(=I,Ic) If Un+1 ∈
(
0, 1 − ∑k

j=1 p
(β)
rj ,I − ∑2d−k

j=1 p
(β′)
r̄j ,I

]
then
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(i) if

Un+1 ∈
⎛

⎝
i−1∑

j=1

(
p
(β′)
rj ,I − p

(β)
rj ,I

)
,

i∑

j=1

(
p
(β′)
rj ,I − p

(β)
rj ,I

)
⎤

⎦

for i ∈ {1, . . . , k}, then ΔX ′
n+1 = eri

;
(ii) if

Un+1 ∈
⎛

⎝
i−1∑

j=1

(
p
(β)
r̄j ,I − p

(β′)
r̄j ,I

)
,

i∑

j=1

(
p
(β)
r̄j ,I − p

(β′)
r̄j ,I

)
⎤

⎦

for i ∈ {1, . . . , 2d − k}, then ΔX
n+1 = er̄j

.
(=) Now, if I ′

n = Inthen we follow:
(=X′) if

Un+1 ∈
⎛

⎝
i−1∑

j=1

(
p
(β′)
j,I − pY

j

)
,

i∑

j=1

(
p
(β′)
j,I − pY

j

)
⎤

⎦

for i ∈ [2d] then ΔX ′
n+1 = ei;

(=X) if

Un+1 ∈
⎛

⎝
i−1∑

j=1

(
p
(β)
j,I − pY

j

)
,

i∑

j=1

(
p
(β)
j,I − pY

j

)
⎤

⎦

for i ∈ [2d] then ΔX
n+1 = ei.

From now on, we denote (Gn) the natural filtration generated by the sequence
(Un) and note that the three walks are measurable with respect to this filtration.

3.2 Properties of the Coupling

Let us explain the coupling defined in Sect. 3.1. The proof that the marginals
of Y, X(β) and X(β′) have the correct distributions is left to the reader. Let us
simply emphasize that

0 ≤ qY −
k∑

j=1

(
p
(β)
rj ,I − pY

rj

)
−

d−k∑

j=1

(
p
(β′)
r̄j ,I − pY

r̄j

)

= 1 −
k∑

j=1

p
(β)
rj ,I −

d−k∑

j=1

p
(β′)
r̄j ,I

=
d−k∑

j=1

(
p
(β)
r̄j ,I − p

(β′)
r̄j ,I

)
=

k∑

j=1

(
p
(β′)
rj ,I − p

(β)
rj ,I

)
.
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For I ⊂ [2d] let αI =
∑

i∈I αi (so e.g. α+ = α[d]). We note that

k∑

j=1

p
(β)
rj ,I =

αI(1 + β)
αI(1 + β) + αIc

(11)

d−k∑

j=1

p
(β′)
r̄j ,I =

αIc

αI(1 + β′) + αIc

, (12)

and therefore that the quantity in the first interval of (=I,Ic) is

1 −
k∑

j=1

p
(β)
rj ,I −

d−k∑

j=1

p
(β′)
r̄j ,I =

αIαIc(β′ − β)
(αI(1 + β) + αIc)(αI(1 + β′) + αIc)

. (13)

So the first discrepancy by the walk will give us a (small) factor of (β′ − β).
Similarly, letting I+ = I ∩ [d] and Ic

+ = Ic ∩ [d] we see that the union of the
intervals in (=I,Ic) (i) over i ≤ |I+| gives the interval

(

0,
αI+αIc(β′ − β)

(αI(1 + β) + αIc)(αI(1 + β′) + αIc)

]

. (14)

Similarly, the union over i ≤ |Ic
+| of the intervals in (=I,Ic) (ii) gives

(

0,
αIc

+
αI(β′ − β)

(αI(1 + β) + αIc)(αI(1 + β′) + αIc)

]

. (15)

Here are the main properties satisfied under the coupling:

(P1) Whenever Y jumps forward, so do X and X ′, and they take the same step
that is independent of the local environment (this holds by (0Y ) and (0X)
of the coupling);

(P2) When X and X ′ have the same local environment, if X jumps on its trace
then X ′ also jumps on its trace and takes the same step (this holds by
(=I) (and (0X)) of the coupling);

(P3) When X and X ′ have the same local environment, if X ′ jumps out of
its trace then X also jumps out of its trace and takes the same step (this
holds by (=Ic) (and (0X)) of the coupling);

(P4) When X and X ′ have the same local environment and if the walks decou-
ple, then Y jumps backwards, X jumps out of its trace and X ′ jumps on
its trace (this holds by (=I,Ic) (and (0Y )) of the coupling).

Items ( =X) and (=X′) in the coupling are dealing with the case when X and
X ′ do not have the same local environment and Y jumps backwards. For this
case, we only define simple rules in order for the marginals to have the good
distributions.
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Common Regeneration Structure. Let Z = X · �+ and Z′ = X ′ · �+.
By property (P1) our coupling satisfies Lemma 1(i). This implies that if t is a
regeneration time for the walk Y, then it is also a regeneration time for X and
X ′. Recall that τ1, τ2, ..., denotes the sequence of positive regeneration times of
Y. Recall that D0 is the event on which 0 is a regeneration time, and we defined
P[·] := P[·|D0]. Using that Y is a biased random walk on Z with probability to
jump on the right equal to pY , these regeneration times are well defined as soon
as pY > 1/2 and (6) shows that P(D0) = (2pY − 1)/pY =: p∞.

Using classical arguments on regeneration times and taking advantage of the
common regeneration structure, we obtain the following result.

Proposition 1. For any β′ > β > 0 and (αi)i=1,...,2d such that pY > 1/2, we
have that, under P,

(
Yτk+1 − Yτk

,Xτk+1 − Xτk
,X ′

τk+1
− X ′

τk
, τk+1 − τk

)
, k ≥ 0

are independent and (except for k = 0) have the same distribution as
(
Yτ1 ,Xτ1 ,X

′
τ1 , τ1

)

under P.

Since this result is classical (see e.g. [26,32], or [14]) and intuitively clear, we
only give a sketch proof.

Sketch of Proof (of Proposition 1). Suppose that t ∈ DY , i.e. t is a regeneration
time for Y . Then ΔY

t+1 = 1 so both X and X ′ take a forward step which is chosen
independent of the environment. Moreover, whenever (Xt+n − Xt) · �+ = 0 or
(X ′

t+n−X ′
t)·�+ = 0 we must have that Yt+n = Yt and therefore again ΔY

t+n+1 = 1
and both X and X ′ take a forward step independent of the environment. On
the other hand, whenever both (Xt+n − Xt) · �+ > 0 and (Xt+n − Xt) · �+ > 0,
we have that neither X nor X ′ are incident to an edge reinforced before time t.
This shows that for any possible paths 
yt, 
xt, 
x′

t, the conditional distribution of
(Yt+n−Yt,Xt+n−Xt,X

′
t+n−X ′

t) given ((Yk)k≤t, (Xk)k≤t, (X ′
k)k≤t) = (
yt, 
xt, 
x′

t)
and t ∈ DY does not depend on t or (
yt, 
xt, 
x′

t) and the result follows. ��

4 Proofs of Theorem 3 and Theorem 4

Proposition 1 implies that item (ii) of Lemma 1 is satisfied by Y, Z′ = X ′ · �+
and Z = X · �+. Hence, to prove Theorem 3 and Theorem 4, we only need to
check the requirements of Lemma 2.
Define the first time before τ1 the walks X and X ′ decouple as

δ1 = inf {i ≤ τ1 : Xi = X ′
i} .

Note that δ1 = ∞ if the walks do not decouple before τ1.
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Proposition 2. For any β′ > β > 0, and α such that pY > 1/2, we have that

P
(|B| = 1, Zτ1 − Z ′

τ1 < 0
)

= 0.

Proof. The fact that pY > 1/2 guarantees that τ1 and P are well defined.
Note that, by property (P1), at any time n ∈ N such that ΔY

n = 1, we have that
ΔZ

n = ΔZ′
n = 1 and thus Zn+1 − Z ′

n+1 = Zn − Z ′
n.

On the event {|B| = 1}, there exists only one time 0 < nb < τ1 such that
ΔY

nb
= −1 and thus Zτ1 − Z ′

τ1 = (ΔZ
nb

− ΔZ′
nb

) · �+. At time nb − 1, X and X ′

are still coupled and thus have the same local environment, which is such that
Inb−1 = Inb−1 = {ed+i} for some i ∈ [d]. Thus by (P4) in order for the walks to
decouple on this step we must have δX ′

nb
= ed+i, which cannot create a negative

discrepancy. ��
The last result together with the two following Propositions respectively

imply Theorem 3 and Theorem 4 by Lemma 2 and Lemma 1.

Proposition 3. There exists κ0 < ∞ such that if Condition κ holds for κ0, α
and β0, and Condition S holds, then for all 0 < β < β′ < β0, inequality (7) is
satisfied.

Proposition 4. Suppose that Condition D holds. There exist κ0 < ∞ and β0 >
0 such that if Condition e1 holds for κ0, α and β0, then for all 0 < β < β′ < β0,
inequality (7) is satisfied.

4.1 Bounds on the Decoupling Events

Lemma 3. Assume that αi+d > 0 for any i ∈ [d]. There exists C0 > 0 such
that: There exists κ0 such that for α, β0 satisfying Condition κ for κ0, and all
β, β′ satisfying 0 ≤ β < β′ < β0,

P
(|B| = 1, Zτ1 − Z ′

τ1 = 2
) ≥ C0

β′ − β

α+
.

Proof. Let A =
{|B| = 1, Zτ1 − Z ′

τ1 = 2
}

and note that

P(A) =
1

p∞
P (A,D0) .

Now, let us describe the following scenario (which is in fact the only possible
event on which the walks decouple) such that A ∩ D0 holds:

(i) (Y1, Y2, Y3, Y4) = (1, 0, 1, 2) and τ1 = 4, so also D0 occurs;
(ii) ΔX

1 = ΔX ′
1 ∈ E+, then X ′ steps back onto its trace (ΔX′

2 = −ΔX′
1 ), while

X steps forward (ΔX
2 ∈ E+).
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Now, following this scenario and conditional on ΔX
1 = ΔX ′

1 = ei, we have (from
(=I,Ic)) that

P

(
ΔX

2 ∈ E+,ΔX ′
2 = ei+d

∣
∣F2

)
=

α+

α + βαi+d
− α+

α + β′αi+d
(16)

=
(β′ − β)α+αi+d

(α + βαi+d)(α + β′αi+d)
(17)

≥ (β′ − β)α+

(α+ + (1 + β′)α−)2
(18)

=
(β′ − β)

α+

(
α+

(α+ + (1 + β′)α−)

)2

(19)

≥ (β′ − β)κ2
0

α+(κ0 + 1)2
≥ c

β′ − β

α+
. (20)

Hence, summing over i ∈ [d] and using Condition D we obtain

P(A) ≥ 1
p∞

× pY × cd
β′ − β

α+
× (

pY
)2 × p∞.

We conclude noting that for κ0 > 4, pY > 1/2 (by (10)). ��
Lemma 4. There exists C1 > 0 such that: If Condition S holds then there exists
κ0 such that for α, β0 satisfying Condition κ for κ0, and all β, β′ satisfying
0 ≤ β < β′ < β0,

P
[|B| = 2, Zτ1 − Z ′

τ1 < 0
] ≤ C1(β′ − β)

α+κ0
.

Proof. Assume that, at a given time n, the walks are still coupled. Let J(I)
denote the right hand side of (13) and J1(I) and J2(I) denote the right hand
sides of the intervals in (14) and (15) respectively. Under Condition S these
quantities can be written as J(k+, k−), J1(k+, k−) and J2(k+, k−), corresponding
to the values above for given k+ and k−.

Then we can write item (=I,Ic) as:

(=I,Ic,S) If Un+1 ∈ (0, J(k+, k−)] then
(i) if Un+1 ∈ (0, J1(k+, k−)] then ΔX ′

n+1 ∈ E+ and ΔX ′
n+1 ∈ E− otherwise;

(ii) if Un+1 ∈ (0, J2(k+, k−)] then ΔX
n+1 ∈ E+ and ΔX

n+1 ∈ E− otherwise.

On the event {|B| = 2, Zτ1 − Z ′
τ1 < 0,D0}, the walk Y can only do one of

the following:

1. E1 = {{Y0, . . . , Y7} = {0, 1, 2, 1, 0, 1, 2, 3}, τ1 = 7};
2. E2 = {{Y0, . . . , Y6} = {0, 1, 0, 1, 0, 1, 2}, τ1 = 6};
3. E3 = {{Y0, . . . , Y7} = {0, 1, 0, 1, 2, 1, 2, 3}, τ1 = 7}.
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Recall the remarks from Sect. 3.2. In particular, recall that, by (P1), when Y
steps forward, X and X ′ take the same step. Moreover, if X and X ′ have the
same local environment with only one reinforced edge and if this edge is in one
of the directions of E−, then, by (P4), X and X ′ cannot decouple creating a
negative discrepancy. It follows that no negative discrepancy can be created the
first time Y steps back, so the magnitude of any negative discrepancy can only
be 2. It also follows that on (E2 ∩ {δ = 4}) ∪ E3, X and X ′ cannot create any
negative discrepancy.

It therefore remains to consider the cases E1 ∩ {δ = 3}, E2 ∩ {δ = 2}, and
E1 ∩ {δ = 4}.

On (E1 ∩{δ = 3})∪ (E2 ∩{δ = 2}), X ′ jumps backwards on its trace at time
δ and one of the following happens:

– At time δ, X jumps forward, hence Zδ − Z ′
δ = 2, thus Zτ1 − Z ′

τ1 ≥ 0 and the
walks cannot create any negative discrepancy before the regeneration time.

– At time δ, the X jumps backwards out of the trace, hence Zδ − Z ′
δ = 0 but

the two walks do not have the same local environment anymore. Then, the
second time Y jumps backwards, hence the two walks can create a negative
discrepancy.

Using the item (=I,Ic,S)-(ii) above (and (13),(15)) in the case k+ = 0 and
k− = 1, we have (by bounding only the conditional probability of the step taken
at time δ) that

P
(
(E1 ∩ {δ = 3}) ∪ (E2 ∩ {δ = 2}), Zτ1 − Z ′

τ1 < 0
)

≤ J(0, 1) − J2(0, 1) =
(d − 1)(α−)2(β′ − β)

(α−β + dα)(α−β′ + dα)

≤ (β′ − β)
(α−

α

)2

≤ (β′ − β)α+

α2κ0
≤ (β′ − β)

α+κ0
, (21)

where we have used Condition κ for the penultimate inequality.
Now, we want to study the probability of the event {E1, δ = 4} and consider

the cases when the discrepancy can be negative or not. One of the following
happens:

– If ΔX
3 = ΔX ′

3 ∈ E+ then, the local environment I3 is made of one single
reinforced edge, in the direction E−, hence X and X ′ cannot decouple creating
a negative discrepancy;

– At time 3, both X and X ′ can jump backward on their trace. This cor-
responds to the event E1,1 := {E1, δ = 4,ΔX

3 = −ΔX
2 }, which is treated

below;
– At time 3, both X and X ′ can jump backward out of their trace. This corre-

sponds to the event E1,2 := {E1, δ = 4,ΔX
3 ∈ E− \{−ΔX

2 }}, which is treated
below.

On the event E1,1, the local environment I3 of the walks is made of one reinforced
edge in some direction in E+ and one reinforced edge in some direction in E−.
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By property (P4), in order to decouple, X ′ has to jump on its trace and X
out of its trace. More precisely, in order to create a negative discrepancy, X ′

has to jump forward on its trace and X backwards out of its trace. Now, note
that, in the case k+ = k− = 1, J1(k+, k−) = J2(k+, k−) so the two intervals
of item (=I,Ic,S)-(i) and item (=I,Ic,S)-(ii) are equal. Hence, on E1,1, we have
that ΔX

δ · �+ = ΔX ′
δ · �+. This implies that Therefore, we have that

P
(
E1,1, Zτ1 − Z ′

τ1

)
= 0. (22)

Note that this is not necessarily true if we do not assume Condition S, with the
prescribed ordering of I and Ic.

On the event E1,2, the local environment I3 of the walks is made of one single
reinforced edge in some direction of E+. As the walks decouple, we have that X ′

jumps forward on the trace and X jumps out of the trace. The walks create a
negative discrepancy only if, furthermore, X jumps backwards: the probability
of this step is given by item (=I,Ic,S) above. Recalling that, at time 3, Y steps
backwards and using the item (=I,Ic,S)-(ii) above (and (13),(15)) in the case
k+ = 1 and k− = 0, we have that

P
[
E1,2, Zτ1 − Z ′

τ1 < 0
] ≤ qY × (J(1, 0) − J2(1, 0))

≤ qY dα−α+(β′ − β)
(α+β + dα)(α+β′ + dα)

≤ C
(1 + β0)α−

α+
× (β′ − β) × α−

α+

≤ C(β′ − β)
(

(1 + β0)α−
α+

)2

≤ C
(β′ − β)
α+κ0

,

where we used that, under Condition κ ,

qY ≤ 2
(1 + β0)α−

α+
.

This, together with (21) and (22), implies the conclusion. ��
Lemma 5. There exist C2, C

′
2 > 0 such that: There exists κ0 such that for α,

β0 satisfying Condition κ for κ0, and all β, β′ satisfying 0 ≤ β < β′ < β0, and
all k ≥ 2,

P
(|B| = k, Zτ1 − Z ′

τ1 < 0
) ≤ C ′

2k(β′ − β)
(

α − α1

α
∧ 1

) (

C2
(1 + β0)α−

α+

)k−1

.

Proof. Denote Ak =
{|B| = k, Zτ1 − Z ′

τ1 < 0
}
.

Recall that δ is the time of decoupling. Note that Y necessarily starts by jump-
ing forward and that the two last steps before τ1 are also necessarily forward
(otherwise this contradicts the definition of τ1).

Following [2, Lemma 4.1] and adjusting it to the definition of the regener-
ation times that we use here, one can prove (see e.g. Lemma 3.3 of [7]) that
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|B| = k ⇒ τ1 ≤ 3k + 1, almost surely, i.e. P
({|B| = k} \ {τ1 ≤ 3k + 1}) = 0.

Using this fact, we have that

P(Ak) ≤ p−1
∞ P

(
2 ≤ δ ≤ 3k, |{1 ≤ n ≤ 3k − 2 : ΔY

n+1 = −1}| ≥ k
)
.

(23)

On the event {δ = n + 1} the walks are still coupled at time n and thus, in
particular, I := In = I ′

n.
Denote k = |I|, I = {r1, . . . , rk} and {1, . . . , 2d} \ I = {r̄1, . . . , r̄2d−k}. Then

the event of decoupling at time n + 1 is controlled as follows, according to the
item (=I,Ic) of the coupling,

{δ = n + 1} = {δ > n} ∩
⎧
⎨

⎩
Un+1 ≤ 1 −

k∑

j=1

p
(β)
rj ,I −

d−k∑

j=1

p
(β′)
r̄j ,I

⎫
⎬

⎭

= {δ > n} ∩
{

Un+1 ≤ 1 − (1 + β)αI
α + βαI

− αIc

α + β′αI

}

= {δ > n} ∩
{

Un+1 ≤ αIcαI(β′ − β)
(α + βαI)(α + β′αI)

}

⊂
{

Un+1 ≤ (β′ − β)
(

α − α1

α
∧ 1

)}

,

where we have used the fact that either 1 ∈ I or 1 ∈ Ic to obtain the last
relation.

Thus, we have

P (Ak) ≤ p−1
∞

3k−1∑

n=2

P

(
Un ≤ (β′ − β)

(
α − α1

α
∧ 1

)

,

∣
∣{j ∈ {1, . . . , 3k − 1} \ {n} : Uj ≤ qY }∣

∣ ≥ k − 1
)

≤ ck(β′ − β)
(α − α1

α
∧ 1

)

×P
(∃B ⊂ [3k − 2] : |B| = k − 1, Uj ≤ qY ∀j ∈ B

)

≤ ck(β′ − β)
(α − α1

α
∧ 1

)(
3k − 2
k − 1

)

(qY )k−1

≤ c′k(β′ − β)
(

α − α1

α
∧ 1

)
(
c′′qY

)k−1
(24)

≤ c′k(β′ − β)
(

α − α1

α
∧ 1

) (
c′′′(1 + β0)α−

α+

)k−1

, (25)

where we used the inequality e11/12(n/e)n ≤ n! ≤ e(n/e)n, which holds for any
n ≥ 1, see [24], and we also used that

qY ≤ C
(1 + β0)α−

α+
and p∞ ≥ 1/2. ��
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Lemma 6. There exist C3 > 0 such that: There exists κ0 such that for α, β0

satisfying Condition κ for κ0, and all β, β′ satisfying 0 ≤ β < β′ < β0, we have
that ∞∑

k=3

2kP
[|B| = k, Zτ1 − Z ′

τ1 < 0
] ≤ C3(β′ − β)

α+κ0
.

Proof. Using Lemma 5, we have that
∞∑

k=3

2kP
[|B| = k, Zτ1 − Z ′

τ1 < 0
] ≤ C(β′ − β)

∞∑

k=3

k2

(

C2
(1 + β0)α−

α+

)k−1

≤ C ′(β′ − β)
(

(1 + β0)α−
α+

)2 (

1 − C2

κ0

)−3

≤ C ′ β
′ − β

α+κ0
,

where we have used Condition κ for large κ0. ��
Lemma 7. There exist C4 > 0 such that: There exists κ0 such that for α, β0

satisfying Condition e1 and Condition D then, for all 0 < β < β′ < β0, we have
that

P
(|B| = 2, Zτ1 − Z ′

τ1 < 0
) ≤ C4

β′ − β

α+κ0
.

Proof. This is a direct consequence of Condition e1 and Lemma 5 for k = 2. ��

4.2 Proofs of Proposition 3 and Proposition 4

Recall that Propositions 3 and 4 respectively imply Theorem 3 and Theorem 4.

Proof of Proposition 3. By Lemma 3, Lemma 4 and Lemma 6, there exists κ0 <
∞ such that if Condition κ holds for κ0, α and β0 and if Condition S holds,
then, for all 0 < β < β′ < β0, we have that

∞∑

k=2

2kP
[|B| = k, Zτ1 − Z ′

τ1 < 0
]

≤ 4P
[|B| = 2, Zτ1 − Z ′

τ1 < 0
]
+

∞∑

k=3

2kP
[|B| = k, Zτ1 − Z ′

τ1 < 0
]

≤ C
(β′ − β)
α+κ0

≤ C ′

κ0
P
(|B| = 1, Zτ1 − Z ′

τ1 ≥ 1
)
.

Hence, we can conclude that inequality (7) is satisfied as soon as κ0 is large
enough, which proves the Proposition. ��
Proof of Proposition 4. Suppose Condition D holds. There exist κ0 < ∞ and
β0 > 0 such that if Condition e1 holds for κ0, α and β0, then, for all 0 < β <
β′ < β0, we conclude exactly as in the previous proof that (7) holds by Lemma 3,
Lemma 7 and Lemma 6. ��
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the model of random walk in a random environment is a challenging problem.
For quantities like the velocity, the variance or the invariant measure of the
environment seen from the random walk, few results exist (see the review [12]
for the case of the Dirichlet environment and for expansions see [4,11]). In [11],

C. Laurent—Partially supported by Fondo Nacional de Desarrollo Cient́ıfico y Tec-
nológico postdoctoral grant 3130353.
A. F. Ramı́rez and S. Saglietti—Partially supported by Iniciativa Cient́ıfica Milenio
NC120062 and by Fondo Nacional de Desarrollo Cient́ıfico y Tecnológico grant 1141094.
A. F. Ramı́rez and C. Sabot—Partially supported by MathAmsud project “Large scale
behavior of stochastic systems”.

c© Springer Nature Singapore Pte Ltd. 2019
V. Sidoravicius (Ed.): Sojourns in Probability Theory
and Statistical Physics - III, PROMS 300, pp. 274–325, 2019.
https://doi.org/10.1007/978-981-15-0302-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0302-3_11&domain=pdf
https://doi.org/10.1007/978-981-15-0302-3_11


Velocity Estimates for RWRE 275

Sabot derived an asymptotic expansion for the velocity of the random walk at low
disorder under the condition that the local drift of the perturbed random walk is
linear in the perturbation parameter. As a corollary one can deduce that, in the
case of perturbations of the simple symmetric random walk, the velocity is equal
to the local drift with an error which is cubic in the perturbation parameter.
In this article we explore up to which extent this expansion can be generalized
to perturbations which are not necessarily linear in the perturbation parameter
and we exhibit connections with previous results of Sznitman about ballistic
behavior [16].

Fix an integer d ≥ 2 and for x = (x1, . . . , xd) ∈ Z
d let |x| := |x1| + · · · + |xd|

denote its l1-norm. Let V := {x ∈ Z
d : |x|1 = 1} be the set of canonical vectors

in Z
d and P denote the set of all probability vectors �p = (p(e))e∈V on V , i.e.

such that p(e) ≥ 0 for all e ∈ V and also
∑

e∈V p(e) = 1. Furthermore, let us
consider the product space Ω := PZ

d

endowed with its Borel σ-algebra B(Ω). We
call any ω = (ω(x))x∈Zd ∈ Ω an environment. Notice that, for each x ∈ Z

d, ω(x)
is a probability vector on V , whose components we will denote by ω(x, e) for
e ∈ V , i.e. ω(x) = (ω(x, e))e∈V . The random walk in the environment ω starting
from x ∈ Z

d is then defined as the Markov chain (Xn)n∈N0 with state space Z
d

which starts from x and is given by the transition probabilities

Px,ω(Xn+1 = y + e|Xn = y) = ω(y, e),

for all y ∈ Z
d and e ∈ V . We will denote its law by Px,ω. We assume through-

out that the space of environments Ω is endowed with a probability measure P,
called the environmental law. We will call Px,ω the quenched law of the random
walk, and also refer to the semi-direct product Px := P⊗Px,ω defined on Ω×Z

N

as the averaged or annealed law of the random walk. In general, we will call the
sequence (Xn)n∈N0 under the annealed law a random walk in a random environ-
ment (RWRE) with environmental law P. Throughout the sequel, we will always
assume that the random vectors (ω(x))x∈Zd are i.i.d. under P. Furthermore, we
shall also assume that P is uniformly elliptic, i.e. that there exits a constant
κ > 0 such that for all x ∈ Z

d and e ∈ V one has

P(ω(x, e) ≥ κ) = 1.

Given l ∈ S
d−1, we will say that our random walk (Xn)n∈N0 is transient in

direction l if
lim

n→∞
Xn · l = +∞ P0 − a.s.,

and say that it is ballistic in direction l if it satisfies the stronger condition

lim inf
n→∞

Xn · l

n
> 0 P0 − a.s.

Any random walk which is ballistic with respect to some direction l satisfies a law
of large numbers (see [5] for a proof of this fact), i.e. there exists a deterministic
vector �v ∈ R

d with �v · l > 0 such that

lim
n→+∞

Xn

n
= �v P0 − a.s..
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This vector �v is known as the velocity of the random walk.
Throughout the following we will fix a certain direction, say

e1 := (1, 0, . . . , 0) ∈ S
d−1

for example, and study transience/ballisticity only in this fixed direction. Thus,
whenever we speak of transience or ballisticity of the RWRE it will be understood
that it is with respect to this given direction e1. However, we point out that all
of our results can be adapted and still hold for any other direction.

For our main results, we will consider environmental laws P which are small
perturbations of the simple symmetric random walk. More precisely, we will work
with environmental laws P supported on the subset Ωε ⊆ Ω for ε > 0 sufficiently
small, where

Ωε :=
{

ω ∈ Ω :
∣
∣
∣
∣ω(x, e) − 1

2d

∣
∣
∣
∣ ≤

ε

4d
for all x ∈ Z

d and e ∈ V

}

. (1)

Notice that if P is supported on Ωε for some ε ≤ 1 then it is uniformly elliptic
with constant

κ =
1
4d

. (2)

Since we wish to focus on RWREs for which there is ballisticity in direction e1,
it will be necessary to impose some condition. If for x ∈ Z

d we define the local
drift of the RWRE at site x as the random vector

�d(x) :=
∑

e∈V

ω(x, e)e

then, for the walk to be ballistic in direction e1, one could expect that it is
enough that λ := E[�d(0)] · e1 is positive, where E denotes the expectation with
respect to P (notice that all local drift vectors (�d(x))x∈Zd are i.i.d. so that it
suffices to consider only the local drift at 0). Nevertheless, as shown in [3], there
exist examples of environments for which the expectation of the local drift is
positive in a given direction, while the velocity has a negative component in
that direction. Therefore, we will impose two different stronger conditions on
the local drift, specifying exactly how small we allow λ to be. The first condition
is the quadratic local drift condition.

Quadratic Local Drift Condition (QLD). Given ε ∈ (0, 1), we say that
the environmental law P satisfies the quadratic local drift condition (QLD)ε if
P(Ωε) = 1 and, furthermore,

λ := E(�d(0)) · e1 ≥ ε2.

Our second condition, the local drift condition, is weaker for dimensions d ≥ 3.

Local Drift Condition (LD). Given η, ε ∈ (0, 1), we say that an environmental
law P satisfies the local drift condition (LD)η,ε if P(Ωε) = 1 and, furthermore,
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λ := E[�d(0)] · e1 ≥ εα(d)−η, (3)

where

α(d) :=

⎧
⎪⎨

⎪⎩

2 if d = 2
2.5 if d = 3
3 if d ≥ 4.

(4)

Observe that for d = 2 and any ε ∈ (0, 1) condition (LD)η,ε implies (QLD)ε

for all η ∈ (0, 1), whereas if d ≥ 3 and η ∈ (0, 1
2 ) it is the other way round,

(QLD)ε implies (LD)η,ε. It is known that for every η ∈ (0, 1) there exists ε0 =
ε(d, η) such that any RWRE with an environmental law P satisfying (LD)η,ε

for some ε ∈ (0, ε0) is ballistic. Indeed, for d ≥ 3 this was proved by Sznitman
in [16], whereas the case d = 2 is proven in [9], and is also direct consequence
of Theorem 2 stated below. Therefore, any RWRE with an environmental law
which satisfies (LD)η,ε for ε small enough is such that P0-a.s. the limit

�v := lim
n→∞

Xn

n

exists and is different from 0. Our first result is the following.

Theorem 1. Given any η ∈ (0, 1) and δ ∈ (0, η) there exists some

ε0 = ε0(d, η, δ) ∈ (0, 1)

such that, for every ε ∈ (0, ε0) and any environmental law satisfying (LD)η,ε, the
associated RWRE is ballistic with a velocity �v which verifies

0 < �v · e1 ≤ λ + c0ε
α(d)−δ (5)

for some constant c0 = c0(d, η, δ) > 0. We abbreviate (5) by writing 0 < �v · e1 ≤
λ + Od,η,δ(εα(d)−δ).

Our second result is concerned with RWREs with an environmental law sat-
isfying (QLD).

Theorem 2. There exists ε0 ∈ (0, 1) depending only on the dimension d such
that for all ε ∈ (0, ε0) and any environmental law satisfying (QLD)ε, the associ-
ated RWRE is ballistic with a velocity �v which verifies

|�v · e1 − λ| ≤ ε2

d
.

Combining both results we immediately obtain the following corollary.

Corollary 1. Given δ ∈ (0, 1) there exists some ε0 = ε0(d, δ) ∈ (0, 1) such that,
for all ε ∈ (0, ε0) and any environmental law satisfying (QLD)ε, the associated
RWRE is ballistic with a velocity �v which verifies

λ − ε2

d
≤ �v · e1 ≤ λ + Od,δ(εα(d)−δ).
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Observe that for dimension d = 2 all the information given by Theorem1
and Corollary 1 is already contained in Theorem 2, whereas this is not so for
dimensions d ≥ 3. To understand better the meaning of our results, let us give
some background. First, for x ∈ Z

d and e ∈ V let us rewrite our weights ω(x, e)
as

ω(x, e) =
1
2d

+ εξε(x, e), (6)

where

ξε(x, e) :=
1
ε

(

ω(x, e) − 1
2d

)

.

Notice that if P(Ωε) = 1 then P-almost surely we have |ξε(x, e)| ≤ 1
4d for all

x ∈ Z
d and e ∈ V . In [11], Sabot considers a fixed p0 ∈ Ω together with an i.i.d.

sequence of bounded random vectors ξ = (ξ(x))x∈Zd ⊆ [−1, 1]V , where each
ξ(x) = (ξ(x, e))e∈V satisfies ξ(x, e) ∈ [−1, 1] for all e ∈ V and

∑
e∈V ξ(x, e) = 0.

Then, he defines for each ε > 0 the random environment ω on any x ∈ Z
d and

e ∈ V as
ω(x, e) := p0(e) + εξ(x, e).

In the notation of (6), this corresponds to choosing p0(e) = 1
2d and ξε(x, e) :=

ξ(x, e) not depending on ε. Under the assumption that the local drift associated
to this RWRE does not vanish, it satisfies Kalikow’s condition [8], and therefore
it has a non-zero velocity �v. Sabot then proves that this velocity satisfies the
following expansion: for any small δ > 0 there exists ε0 = ε0(d, δ) > 0 such that
for any ε ∈ (0, ε0) one has that

�v = �d0 + ε�d1 + ε2 �d2 + Od,δ

(
ε3−δ

)
, (7)

where
�d0 :=

∑

e∈V

p0(e)e, �d1 :=
∑

e∈V

E[ξ(0, e)]e,

and

�d2 :=
∑

e∈V

(
∑

e′∈V

Ce,e′Je′

)

e,

with

Ce,e′ := Cov(ξ(0, e), ξ(0, e′)) and Je := gp0(e, 0) − gp0(0, 0).

Here gp0(x, y) denotes the Green’s function of a random walk with jump kernel
p0. It turns out that for the particular case in which p0 is the jump kernel of
a simple symmetric random walk (which is the choice we make in this article),
we have that �d0 = 0 and also �d2 = 0. In particular, for this case we have
λ = ε�d1 · e1 = O(ε) and

�v · e1 = λ + Od,δ

(
ε3−δ

)
. (8)

Even though this expansion was only shown valid in the regime λ = O(ε), from it
one can guess that, at least at a formal level, the random walk should be ballistic
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whenever λ ≥ ε3−η for any η > δ. This was established previously by Sznitman
from [16] for dimensions d ≥ 4, but remains open for dimensions d = 2 and
d = 3 (see also [6,10] for generalizations of Sznitman’s result from [16]). In this
context, our results show that under condition (LD), which is always weaker than
the λ = O(ε) assumption in [11], for d = 2 the random walk is indeed ballistic
and expansion (8) is still valid up to the second order (Theorem2), whereas for
d ≥ 3 we show that at least an upper estimate compatible with the right-hand
side of (8) holds for the velocity (Theorem1).

The proof of Theorem 1 is rather different from the proof of the velocity
expansion (7) of [11], and is based on a mixture of renormalization methods
together with Green’s functions estimates, inspired in methods presented in
[2,16]. As a first step, one establishes that the averaged velocity of the ran-
dom walk at distances of the order ε−4 is precisely equal to the average of the
local drift with an error of order εα(d)−δ. To do this, essentially it is shown that
a right approximation for the behavior of the random walk at distances ε−1 is
that of a simple symmetric random walk, so that one has to find a good estimate
for the probability to move to the left or to the right of a rescaled random walk
moving on a grid of size ε−1. This last estimate is obtained through a careful
approximation of the Green’s function of the random walk, which involves com-
paring it with its average by using a martingale method. This is a crucial step
which explains the fact that one loses precision in the error of the velocity in
dimensions d = 2 and d = 3 compared with d ≥ 4. As a final result of these com-
putations, we obtain that the polynomial condition of [2] holds. In the second
step, we use a renormalization method to derive the upper bound for the veloc-
ity, using the polynomial condition proved in the first step as a seed estimate.
The proof of Theorem2 is somewhat simpler, and is based on a generalization of
Kalikow’s formula proved in [11] and a careful application of Kalikow’s criteria
for ballisticity.

The article is organized as follows. In Sect. 2 we introduce the general notation
and establish some preliminary facts about the RWRE model, including some
useful Green’s function estimates. In Sect. 3, we prove Theorem 2. In Sect. 4, we
obtain the velocity estimates for distances of order ε−4 which is the first step
in the proof of Theorem1. Finally, in Sect. 5 we finish the proof of Theorem1
through the renormalization argument described above.

2 Preliminaries

In this section we introduce the general notation to be used throughout the
article and also review some basic facts about RWREs which we shall need
later.

2.1 General Notation

Given any subset A ⊂ Z
d, we define its (outer) boundary as

∂A := {x ∈ Z
d − A : |x − y| = 1 for some y ∈ A}.
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Also, we define the first exit time of the random walk from A as

TA := inf{n ≥ 0 : Xn /∈ A}.

In the particular case in which A = {b} × Z
d−1 for some b ∈ Z, we will write Tb

instead of TA, i.e.
Tb := inf{n ≥ 0 : Xn · e1 = b}.

Throughout the rest of this paper ε > 0 will be treated as a fixed variable. Also,
we will denote generic constants by c1, c2, . . . . However, whenever we wish to
highlight the dependence of any of these constants on the dimension d or on η,
we will write for example c1(d) or c1(η, d) instead of c1. Furthermore, for the
sequel we will fix a constant θ ∈ (0, 1) to be determined later and define

L := 2[θε−1] (9)

where [·] denotes the (lower) integer part and also

N := L3, (10)

which will be used as length quantifiers. In the sequel we will often work with
slabs and boxes in Z

d, which we introduce now. For each M ∈ N, x ∈ Z
d and

l ∈ S
d−1 we define the slab

Ul,M (x) :=
{
y ∈ Z

d : −M ≤ (y − x) · l < M
}

. (11)

Whenever l = e1 we will suppress l from the notation and write UM (x) instead.
Similarly, whenever x = 0 we shall write UM instead of UM (0) and abbreviate
UL(0) simply as U for L as defined (9). Also, for each M ∈ N and x ∈ Z

d, we
define the box

BM (x) :=
{

y ∈ Z
d : −M

2
< (y − x) · e1 < M

and |(y − x) · ei| < 25M3 for 2 ≤ i ≤ d

}

(12)

together with its frontal side

∂+BM (x) := {y ∈ ∂BM,M ′(x) : (y − x) · e1 ≥ M} ,

its back side

∂−BM (x) :=
{

y ∈ ∂BM,M ′(x) : (y − x) · e1 ≤ −M

2

}

,

its lateral side

∂lBM (x) :=
{
y ∈ ∂BM,M ′(x) : |(y − x) · ei| ≥ 25M3 for some 2 ≤ i ≤ d

}
,
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and, finally, its middle-frontal part

B∗
M (x) :=

{

y ∈ BM (x) :
M

2
≤ (y − x) · e1 < M

and |(y − x) · ei| < M3 for 2 ≤ i ≤ d

}

together with its corresponding back side

∂−B∗
M (x) :=

{

y ∈ B∗
M (x) : (y − x) · e1 =

M

2

}

.

As in the case of slabs, we will use the simplified notation BM := BM (0) and
also ∂iBM := ∂iBM (0) for i = +,−, l, with the analogous simplifications for
B∗

M (0) and its back side.

2.2 Ballisticity Conditions

For the development of the proof of our results, it will be important to recall a few
ballisticity conditions, namely, Sznitman’s (T ) and (T ′) conditions introduced
in [14,15] and also the polynomial condition presented in [2]. We do this now,
considering only ballisticity in direction e1 for simplicity.

Conditions (T ) and (T ′). Given γ ∈ (0, 1] we say that condition (T )γ is satisfied
(in direction e1) if there exists a neighborhood V of e1 in S

d−1 such that for every
l′ ∈ V one has that

lim sup
M→+∞

1
Mγ

log P0

(
XTU

l′,M
· l′ < 0

)
< 0. (13)

As a matter of fact, Sznitman originally introduced a condition (T )γ which is
slightly different from the one presented here, involving an asymmetric version
of the slab Ul′,M in (13) and an additional parameter b > 0 which modulates the
asymmetry of this slab. However, it is straightforward to check that Sznitman’s
original definition is equivalent to ours, so we omit it for simplicity.

Having defined the conditions (T )γ for all γ ∈ (0, 1], we will say that:

– (T ) is satisfied (in direction e1) if (T )1 holds,
– (T ′) is satisfied (in direction e1) if (T )γ holds for all γ ∈ (0, 1).

It is clear that (T ) implies (T ′), while the other implication was only very recently
proved in [7], showing that both conditions are in fact equivalent.

Condition (P )K . Given K ∈ N we say that the polynomial condition (P )K

holds (in direction e1) if for some M ≥ M0 one has that

sup
x∈B∗

M

Px

(
XTBM

/∈ ∂+BM

)
≤ 1

MK
,
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where
M0 := exp

{
100 + 4d(log κ)2

}
(14)

where κ is the uniform ellipticity constant, which in our present case can be taken
as κ = 1

4d , see (2). It is well-known that both (T ′) and (P )K imply ballisticity
in direction e1, see [2,15]. Furthermore, in [2] it is shown that

(P )K holds for some K ≥ 15d + 5 ⇐⇒ (T ′) holds
⇐⇒ (T )γ holds for some γ ∈ (0, 1).

Together with the result from [7], we obtain that conditions (T ), (T ′) and the
validity of (P )K for some K ≥ 15d + 5 are all equivalent.

2.3 Green’s Functions and Operators

Let us now introduce some notation we shall use related to the Green’s functions
of the RWRE and of the simple symmetric random walk (SSRW).

Given a subset B ⊆ Z
d, the Green’s functions of the RWRE and SSRW killed

upon exiting B are respectively defined for x, y ∈ B ∪ ∂B as

gB(x, y, ω) := Ex,ω

(
TB∑

n=0

1{Xn=y}

)

and g0,B(x, y) := gB(x, y, ω0),

where ω0 is the corresponding weight of the SSRW, given for all x ∈ Z
d and

e ∈ V by

ω0(x, e) =
1
2d

.

Furthermore, if ω ∈ Ω is such that Ex,ω(TB) < +∞ for all x ∈ B, we can define
the corresponding Green’s operator on L∞(B) by the formula

GB [f ](x, ω) :=
∑

y∈B

gB(x, y, ω)f(y).

Notice that gB , and therefore also GB , depends on ω only though its restriction
ω|B to B. Finally, it is straightforward to check that if B is a slab as defined
in (11) then both gB and GB are well-defined for all environments ω ∈ Ωε with
ε ∈ (0, 1).

3 Proof of Theorem2

The proof of Theorem2 has several steps. We begin by establishing a law of large
numbers for the sequence of hitting times (Tn)n∈N.
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3.1 Law of Large Numbers for Hitting Times

We now show that, under the condition (P )K , the sequence of hitting times
(Tn)n∈N satisfies a law of large numbers with the inverse of the velocity in direc-
tion e1 as its limit.

Proposition 1. If (P )K is satisfied for some K ≥ 15d+5 then P0-a.s. we have
that

lim
n→∞

E0(Tn)
n

= lim
n→∞

Tn

n
=

1
�v · e1

> 0, (15)

where �v is the velocity of the corresponding RWRE.

To prove Proposition 1, we will require the following lemma and its subse-
quent corollary.

Lemma 1. If (P )K holds for some K ≥ 15d + 5 then there exists c1 > 0 such
that for each n ∈ N and all a > 1

v·e1
one has that

P0

(
Tn

n
≥ a

)

≤ 1
c1

exp

{

−c1

((

log
(

a − 1
�v · e1

)) 2d−1
2

+ (log(n))
2d−1

2

)}

.

(16)

Proof. By Berger, Drewitz and Ramı́rez [2], we know that since (P )K holds for
K ≥ 15d + 5, necessarily (T ′) must also hold. Now, a careful examination of the
proof of Theorem 3.4 in [15] shows that the upper bound in (16) is satisfied. �

Corollary 2. If (P )K holds for some K ≥ 15d + 5 then
(

Tn

n

)
n∈N

is uniformly
P0-integrable.

Proof. Note that, by Lemma 1, for K > 1
v·e1

and n ≥ 2 we have that

∫

{ Tn
n ≥K}

Tn

n
dP0 ≤

∞∑

k=K

(k + 1)P0

(
Tn

n
≥ k

)

≤ 1
c1

∞∑

k=K

(k + 1)e−c1(log(k−1/(�v·e1)))
(2d−1)/2−c1(log(2))(2d−1)/2

.

From here it is clear that, since d ≥ 2, we have

lim
K→∞

[

sup
n≥1

∫

{ Tn
n ≥K}

Tn

n
dP0

]

= 0

which shows the uniform P0-integrability. �

Let us now see how to obtain Proposition 1 from Corollary 2. Since (P )K

holds for K ≥ 15d + 5, by Berger, Drewitz and Ramı́rez [2] we know that the
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position of the random walk satisfies a law of large numbers with a velocity �v
such that �v · e1 > 0. Now, note that for any ε > 0 one has

P0

(∣
∣
∣
∣

n

Tn
− �v · e1

∣
∣
∣
∣ ≥ ε

)

= P0

(∣
∣
∣
∣
XTn

· e1

Tn
− �v · e1

∣
∣
∣
∣ ≥ ε

)

≤
∞∑

k=n

P0

(∣
∣
∣
∣
Xk · e1

k
− �v · e1

∣
∣
∣
∣ ≥ ε

)

≤
∞∑

k=n

e−C(log k)
2d−1

2 ,

where in the last inequality we have used the slowdown estimates for RWREs
satisfying (T ′) proved by Sznitman in [15] (see also the improved result of Berger
in [1]). Hence, by Borel–Cantelli we conclude that P0-a.s.

lim
n→∞

n

Tn
= �v · e1,

from where the second equality of (15) immediately follows. The first one is now
a direct consequence of the uniform integrability provided by Corollary 2.

3.2 Introducing Kalikow’s Walk

Given a nonempty connected strict subset B � Z
d, for x ∈ B we define Kalikow’s

walk on B (starting from x) as the random walk starting from x which is killed
upon exiting B and has transition probabilities determined by the environment
ωB ∈ PB given by

ωx
B(y, e) :=

E(gB(x, y, ω)ω(y, e))
E(gB(x, y, ω))

. (17)

It is straightforward to check that by the uniform ellipticity of P we have 0 <
E(gB(x, y, ω)) < +∞ for all y ∈ B, so that the environment ωx

B is well-defined.
In accordance with our present notation, we will denote the law of Kalikow’s
walk on B by Px,ωx

B
and its Green’s function by gB(x, ·, ωx

B). The importance of
Kalikow’s walk, named after S. Kalikow who originally introduced it in [8], lies
in the following result which is a slight generalization of Kalikow’s formula [8]
and of the statement of it given in [11].

Proposition 2. If B � Z
d is connected then for any x ∈ B with Px,ωx

B
(TB <

+∞) = 1 we have
E(gB(x, y)) = gB(x, y, ωx

B) (18)

for all y ∈ B ∪ ∂B.

Proof. The proof is similar to that of [11, Proposition 1], but we include it here
for completeness. First, let us observe that for any ω ∈ Ωε and y ∈ B ∪ ∂B we
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have by the Markov property

gB(x, y, ω) = Ex,ω

(
TB∑

n=0

1{Xn=y}

)

=
∞∑

n=0

Px,ω (Xn = y, TB ≥ n)

= 1{x}(y) +
∞∑

n=1

∑

e∈V

Px,ω (Xn−1 = y − e,Xn = y, TB > n − 1)

= 1{x}(y) +
∑

e∈V

∞∑

n=1

Px,ω (Xn−1 = y − e, TB > n − 1) ω(y − e, e)

= 1{x}(y) +
∑

e∈V

1B(y − e)gB(x, y − e, ω)ω(y − e, e),

so that

E(gB(x, y)) = 1{x}(y) +
∑

e∈V : y−e∈B

E(gB(x, y − e))ωx
B(y − e, e).

Similarly, if for each k ∈ N0 we define

g
(k)
B (x, y, ωx

B) := Ex,ωx
B

(
TB∧k∑

n=0

1{Xn=y}

)

then by the same reasoning as above we obtain

g
(k+1)
B (x, y, ωx

B) = 1{x}(y) +
∑

e∈V : y−e∈B

g
(k)
B (x, y − e, ωx

B)ωx
B(y − e, e). (19)

In particular, we see that for all k ∈ N0

E(gB(x, y)) − g
(k+1)
B (x, y, ωx

B)

=
∑

e∈V : y−e∈B

(
E(gB(x, y − e)) − g

(k)
B (x, y − e, ωx

B)
)

ωx
B(y − e, e)

which, since ωx
B is nonnegative and also g

(0)
B (x, y, ωx

B) = 1{x}(y) ≤ E(gB(x, y))
for every y ∈ B ∪ ∂B, by induction implies that g

(k)
B (x, y, ωx

B) ≤ E(gB(x, y)) for
all k ∈ N0. Therefore, by letting k → +∞ in this last inequality we obtain

gB(x, y, ωx
B) ≤ E(gB(x, y)) (20)

for all y ∈ B ∪ ∂B. In particular, this implies that

Px,ωx
B
(TB < +∞) =

∑

y∈∂B

gB(x, y, ωx
B) ≤

∑

y∈∂B

E(gB(x, y)) = Px(TB < +∞) ≤ 1.

(21)
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Thus, if Px,ωx
B
(TB < +∞) = 1 then both sums on (21) are in fact equal which,

together with (20), implies that

gB(x, y, ωx
B) = E(gB(x, y))

for all y ∈ ∂B. Finally, to check that this equality also holds for every y ∈ B, we
first notice that for any y ∈ B ∪ ∂B we have by (19) that

gB(x, y, ωx
B) = 1{x}(y) +

∑

e∈V : y−e∈B

gB(x, y − e, ωx
B)ωx

B(y − e, e)

so that if y ∈ B ∪ ∂B is such that E(gB(x, y)) = gB(x, y, ωx
B) then

0 =
∑

e∈V : y−e∈B

(E(gB(x, y − e)) − gB(x, y − e, ωx
B)) ωx

B(y − e, e).

Hence, by the nonnegativity of ωx
B and (20) we conclude that if y ∈ B ∪ ∂B is

such that (18) holds then (18) also holds for all z ∈ B of the form z = y − e
for some e ∈ V . Since we already have that (18) holds for all y ∈ ∂B and B is
connected, by induction one can obtain (18) for all y ∈ B. �

As a consequence of this result, we obtain the following useful corollary, which
is the original formulation of Kalikow’s formula [8].

Corollary 3. If B � Z
d is connected then for any x ∈ B such that Px,ωx

B
(TB <

+∞) = 1 we have
Ex(TB) = Ex,ωx

B
(TB)

and
Px(XTB

= y) = Px,ωx
B
(XTB

= y)

for all y ∈ ∂B.

Proof. This follows immediately from Proposition 2 upon noticing that, by def-
inition of gB , we have on the one hand

Ex(TB) =
∑

y∈B

E(gB(0, y)) =
∑

y∈B

gB(x, y, ωx
B) = Ex,ωx

B
(TB)

and, on the other hand, for any y ∈ ∂B

Px(XTB
= y) = E(gB(x, y)) = gB(x, y, ωx

B) = Px,ωx
B
(XTB

= y).

�

Proposition 1 shows that in order to obtain bounds on �v · e1, the velocity in
direction e1, it might be useful to understand the behavior of the expectation
E0(Tn) as n tends to infinity, provided that the polynomial condition (P )K

indeed holds for K sufficiently large. As it turns out, Corollary 3 will provide
a way in which to verify the polynomial condition together with the desired
bounds for E0(Tn) by means of studying the killing times of certain auxiliary
Kalikow’s walks. To this end, the following lemma will play an important role.
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Lemma 2. If given a connected subset B � Z
d and x ∈ B we define for each

y ∈ B the drift at y of the Kalikow’s walk on B starting from x as

�dB,x(y) :=
∑

e∈V

ωx
B(y, e)e

where ωx
B is the environment defined in (17), then

�dB,x(y) =
E

(
�d(y,ω)∑

e∈V ω(x,e)fB,x(y,y+e,ω)

)

E

(
1∑

e∈V ω(x,x+e)fB,x(y,y+e,ω)

) .

where fB,x is given by

fB,x(y, z, ω) :=
Pz,ω(TB ≤ Hy)
Px,ω(Hy < TB)

and Hy := inf{n ∈ N0 : Xn = y} denotes the hitting time of y.

Proof. Observe that if for y, z ∈ B ∪ ∂B and ω ∈ Ω we define

g(y, z, ω) := Pz,ω(Hy < TB)

then by the strong Markov property we have for any y ∈ B

E(gB(x, y, ω)) = E

(

Ex,ω

(
TB∑

n=0

1{Xn=y}

))

= E

(

g(y, x, ω)Ey,ω

(
TB∑

n=0

1{Xn=y}

))

.

Now, under the law Py,ω, the total number of times n ∈ N0 in which the random
walk X is at y before exiting B is a geometric random variable with success
probability

p :=
∑

e∈V

ω(y, y + e)(1 − g(y, y + e, ω)),

so that

Ey,ω

(
TB∑

n=0

1{Xn=y}

)

=
1

∑
e∈V ω(y, y + e)(1 − g(y, y + e, ω))

.

It follows that

E(gB(x, y, ω)) = E

(
1

∑
e∈V ω(y, y + e)fB,x(y, y + e, ω)

)

where fB,x is defined as

fB,x(y, z, ω) :=
1 − g(y, z, ω)

g(y, x, ω)
=

Pz,ω(TB ≤ Hy)
Px,ω(Hy < TB)

.
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By proceeding in the same manner, we also obtain

E(gB(x, y, ω)ω(y, e)) = E

(
ω(y, e)

∑
e∈V ω(y, y + e)fB,x(y, y + e, ω)

)

,

so that

�dB,x(y) =
E

(
�d(y,ω)∑

e∈V ω(y,y+e)fB,x(y,y+e,ω)

)

E

(
1∑

e∈V ω(y,y+e)fB,x(y,y+e,ω)

) .

�
As a consequence of Lemma 2, we obtain the following key estimates on the

drift of Kalikow’s walk.

Proposition 3. If P satisfies (QLD)ε for some ε ∈ (0, 1) then for any connected
subset B � Z

d and x ∈ B we have

sup
y∈B

[
|�dB,x(y) · e1 − λ|

]
≤ ε2

d
.

Proof. First, let us decompose

E

(
�d(y, ω) · e1∑

e∈V ω(y, e)fB,x(y, y + e, ω)

)

= E

(
(�d(y, ω) · e1)+ − (�d(y, ω) · e1)−∑

e∈V ω(y, e)fB,x(y, y + e, ω)

)

.

Now, notice that since P(Ωε) = 1 we have

1
∑

e∈V ω(y, e)fB,x(y, y + e, ω)
≤ 1
∑

e∈V

(
1
2d − ε

4d

)
fB,x(y, y + e, ω)

≤ 2d
∑

e∈V fB,x(y, y + e, ω)
· 1
1 − ε

2

and also
1

∑
e∈V ω(y, e)fB,x(y, y + e, ω)

≥ 2d
∑

e∈V fB,x(y, y + e, ω)
· 1
1 + ε

2

.

In particular, we obtain that

E

(
(�d(y, ω) · e1)±∑

e∈V ω(y, e)fB,x(y, y + e, ω)

)

≤ 2d

1 − ε
2

· E

(
1

∑
e∈V fB,x(y, y + e, ω)

· (�d(y, ω) · e1)±

)

and

E

(
(�d(y, ω) · e1)±∑

e∈V ω(y, e)fB,x(y, y + e, ω)

)

≥ 2d

1 + ε
2

· E

(
1

∑
e∈V fB,x(y, y + e, ω)

· (�d(y, ω) · e1)±

)

.
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Furthermore, since
∑

e∈V fB,x(y, y + e, ω) is independent of ω(y) it follows that

E

(
1

∑
e∈V fB,x(y, y + e, ω)

· (�d(y, ω) · e1)±

)

= E

(
1

∑
e∈V fB,x(y, y + e, ω)

)

· E

(
(�d(y, ω) · e1)±

)
.

Finally, by combining this with the previous estimates, a straightforward calcu-
lation yields

λ − 4
4 − ε2

· ε · E(|�d(y, ω) · e1|) +
2ε2

4 − ε2
· λ

≤ �dB,x(y) ≤ λ +
4

4 − ε2
· ε · E(|�d(y, ω) · e1|) +

2ε2

4 − ε2
· λ

Since P(Ωε) = 1 implies that |λ| ≤ E(|�d(y, ω) · e1|) ≤ ε
2d , by recalling that ε < 1

we conclude that if (QLD)ε is satisfied then

λ − 2
3d

· ε2 +
2
3
ε4 ≤ �dB,x(x) ≤ λ +

2
3d

· ε2 +
1
3d

· ε3

from where the result immediately follows. �

3.3 (QLD) Implies (P )K

Having the estimates from the previous section, we are now ready to prove the
following result.

Proposition 4. If P verifies (QLD)ε for some ε ∈ (0, 1) then (P )K is satisfied
for any K ≥ 15d + 5.

Proposition 4 follows from the validity under (QLD) of the so-called Kalikow’s
condition. Indeed, if we define the coefficient

εK := inf{�dB,0(y) · e1 : B � Z
d connected with 0 ∈ B, y ∈ B}.

then Kalikow’s condition is said to hold whenever εK > 0. It follows from [17,
Theorem 2.3], [13, Proposition 1.4] and [15, Corollary 1.5] that Kalikow’s condi-
tion implies condition (T ). On the other hand, from the discussion in Sect. 2.2
we know that (T ) implies (P )K for K ≥ 15d + 5 so that, in order to prove
Proposition 4, it will suffice to check the validity of Kalikow’s condition. But
it follows from Proposition 3 that, under (QLD)ε for some ε ∈ (0, 1), for each
connected B � Z

d and y ∈ B we have

�dB,0(y) ≥ λ − ε2

d
≥ d − 1

d
ε2 > 0

so that Kalikow’s condition is immediately satisfied and thus Proposition 4 is
proved.
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Alternatively, one could show Proposition 4 by checking the polynomial con-
dition directly by means of Kalikow’s walk. Indeed, if κ denotes the uniform ellip-
ticity constant of P then ωx

B(y, e) ≥ κ for all connected subsets B � Z
d, x, y ∈ B

and e ∈ V . In particular, it follows from this that Px,ωx
BM

(TBM
< +∞) = 1 for

all x ∈ BM and boxes BM as in Sect. 2. Corollary 3 then shows that, in order to
obtain Proposition 4, it will suffice to prove the following lemma.

Lemma 3. If P verifies (QLD)ε for some ε ∈ (0, 1√
2(d−1)

) then for each K ∈ N

we have
sup

x∈B∗
M

Px,ωx
BM

(
XTBM

/∈ ∂+BM

)
≤ 1

MK

if M ∈ N is taken sufficiently large (depending on K).

Proof. Notice that for each x ∈ B∗
M we have

Px,ωx
BM

(
XTBM

/∈ ∂+BM

)

≤ Px,ωx
BM

(
XTBM

∈ ∂lBM

)
+ Px,ωx

BM

(
XTBM

∈ ∂−BM

)
(22)

so that it will suffice to bound each term on the right-hand side of (22) uniformly
in B∗

M .
To bound the first term, we define the quantities

n+ := #{n ∈ {1, . . . , TBM
} : Xn − Xn−1 = e1}

and
n− := #{n ∈ {1, . . . , TBM

} : Xn − Xn−1 = −e1}.

and notice that on the event {XTBM
∈ ∂lBM} we must have n+ − nl ≤ M

2
since otherwise X would reach ∂+BM before ∂lBM . Furthermore, on this event
we also have that TBM

≥ 24M3 since, by definition of B∗
M , starting from any

x ∈ B∗
M it takes X at least 24M3 + 1 steps to reach ∂lBM . It then follows that

Px,ωx
BM

(
XTBM

∈ ∂lBM

)
=

∞∑

n=24M3

Px,ωx
BM

(

n+ − n− ≤ M

2
, TBM

= n

)

. (23)

Now, observe that the right-hand side of (23) can be bounded from above by
∑

n=24M3

[

Px,ωx
BM

(n+ + n− ≤ κN, TBM
= n)

+Px,ωx
BM

(

n+ + n− > κn, n+ − n− ≤ M

2
, TBM

= n

)]

.

But since for all y ∈ BM and e ∈ V we have ωx
BM

(y, e) ≥ κ = 1
4d by the uniform

ellipticity of P and, furthermore, by Proposition 3

ωx
BM

(y, e1) − ωx
BM

(y,−e1)
ωx

BM
(y, e1) + ωx

BM
(y,−e1)

=
�dBM ,x(y) · e1

ωx
BM

(y, e1) + ωx
BM

(y,−e1)

≥
λ − ε2

d

2κ
≥ 2(d − 1)ε2 > 0, (24)
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it follows by coupling with a suitable random walk (with i.i.d. steps) that for
n ≥ 24M3 and ε < 1√

2(d−1)
(so as to guarantee that 1

2 + (d − 1)ε2 ∈ (0, 1)) we

have
Px,ωx

BM
(n+ + n− ≤ κn, TBM

= n) ≤ F (κn;n, 2κ)

and

Px,ωx
BM

(

n+ + n− > κn, n+ − n− ≤ M

2
, TBM

= n

)

≤ F

(
κ

2
n + 3

√
n;κn,

1
2

+ (d − 1)ε2
)

where F (t; k, p) denotes the cumulative distribution function of a (k, p)-Binomial
random variable evaluated at t ∈ R. By using Chernoff’s bound which states that
for t ≤ np

F (t;n, p) ≤ exp
{

− 1
2p

· (np − t)2

n

}

we may now obtain the desired polynomial decay for this term, provided that
M is large enough (as a matter of fact, we get an exponential decay in M , with
a rate which depends on κ and ε).

To deal with second term in the right-hand side of (22), we define the
sequence of stopping times (τn)n∈N0 by setting

{
τ0 := 0
τn+1 := inf{n > τn : (Xn − Xn−1) · e1 �= 0} ∧ TBM

and consider the auxiliary chain Y = (Yk)k∈N0 given by

Yk := Xτk
· e1

It follows from its definition and (24) that Y is a one-dimensional random walk
with a probability of jumping right from any position which is at least 1

2 + (d −
1)ε2. Now recall that, for any random walk on Z starting from 0 with nearest-
neighbor jumps which has a probability p �= 1

2 of jumping right from any position,
given a, b ∈ N the probability E(−a, b, p) of this walk exiting the interval [−a, b]
through −a is exactly

E(−a, b, p) =
1 −
(

1−p
p

)b

1 −
(

1−p
p

)a+b
·
(

1 − p

p

)a

.

Thus, we obtain that

Px,ωx
BM

(
XTBM

∈ ∂−BM

)
≤ E

(

−M,
M

2
,
1
2

+ (d − 1)ε2
)

=
1 −
(

1−2(d−1)ε2

1+2(d−1)ε2

)M
2

1 −
(

1−2(d−1)ε2

1+2(d−1)ε2

) 3
2M

·
(

1 − 2(d − 1)ε2

1 + 2(d − 1)ε2

)M
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from where the desired polynomial decay (in fact, exponential) for this second
term now follows. This concludes the proof. �

3.4 Finishing the Proof of Theorem2

We now show how to conclude the proof of Theorem2.
First, we observe that by Proposition 4 the polynomial condition (P )K holds

for all K ≥ 15d + 5 if (QLD)ε is satisfied for ε sufficiently small, so that by
Proposition 1 we have in this case that

lim
n→+∞

E0(Tn)
n

=
1

�v · e1
.

On the other hand, it follows from Proposition 3 that if for each n ∈ N we define
the hyperplane

Bn := {x ∈ Z
d : x · e1 ≤ n},

then P0,B0
n
(TBn

< +∞) = 1. Indeed, Proposition 2 yields that infy∈Bn
�dBn,0(y) ·

e1 > 1
dε2 > 0 which, for example by suitably coupling Kalikow’s walk with a

one-dimensional walk with i.i.d. steps and a drift 1
dε2 to the right, yields our

claim. Hence, by Corollary 3 we obtain that

lim
n→+∞

E0,ω0
Bn

(Tn)

n
=

1
�v · e1

. (25)

Now, noting that for each n ∈ N the stopped process M (n) = (M (n)
k )k∈N0 defined

as

M
(n)
k := Xk∧Tn

−
k∧Tn∑

j=1

�dSn,0(Xj−1)

is a mean-zero martingale under P0,ω0
Sn

, by Proposition 3 and the optional stop-

ping theorem for M (n), we conclude that

n = E0,ω0
Sn

(XTn
· e1) ≤

(

λ +
ε2

d

)

E0,ω0
Sn

(Tn)

and analogously that

n = E0,ω0
Sn

(XTn
· e1) ≥

(

λ − ε2

d

)

E0,ω0
Sn

(Tn).

Together with (25), these inequalities imply that

|�v · e1 − λ| ≤ ε2

d

from where the result now follows.
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4 Proof of Theorem1 (Part I): Seed Estimates

We now turn to the proof of Theorem1. Let us observe that, having already
proven Theorem 2 which is a stronger statement for dimension d = 2, it suf-
fices to show Theorem 1 only for d ≥ 3. The main element in the proof of this
result will be a renormalization argument, to be carried out in Sect. 5. In this
section, we establish two important estimates which will serve as the input for
this renormalization scheme. More precisely, this section is devoted to proving
the following result. As noted earlier, we assume throughout that d ≥ 3.

Theorem 3. If d ≥ 3 then for any η ∈ (0, 1) and δ ∈ (0, η) there exist
c2, c3, c4 > 0 and θ0 ∈ (0, 1) depending only on d, η and δ such that if:

i. The constant θ from (9) is chosen smaller than θ0,
ii. (LD)η,ε is satisfied for ε sufficiently small depending only on d, η, δ and θ,

then
sup

x∈B∗
NL

Px

(
XTBNL

/∈ ∂+BNL

)
≤ e−c2ε−1

(26)

and

P

({

ω ∈ Ω : sup
x∈∂−B∗

NL

∣
∣
∣
∣
Ex,ω (TBNL

)
NL/2

− 1
λ

∣
∣
∣
∣ >

c4

λ2
εα(d)−δ

})

≤ e−c3ε−δ

. (27)

We divide the proof of this result into a number of steps, each occupying a
separate subsection.

4.1 (LD) Implies (P )K

The first step in the proof will be to show (26). Notice that, in particular, (26)
tells us that for any K ≥ 1 the polynomial condition (P )K is satisfied if ε is
sufficiently small. This fact will also be important later on. The general strategy
to prove (26) is basically to exploit the estimates obtained in [16] to establish
the validity of the so-called effective criterion. First, let us consider the box B
given by

B := (−NL,NL) ×
(

−1
4
(NL)3,

1
4
(NL)3

)d−1

(28)

and define all its different boundaries ∂iB for i = +,−, l by analogy with
Sect. 2.1. Observe that if for x ∈ B∗

NL we consider B(x) := B + x, i.e the
translate of B centered at x, then by choice of B we have that for any ω ∈ Ω

Px,ω

(
XTBNL

/∈ ∂+BNL

)
≤ Px,ω

(
XTB(x) /∈ ∂+B(x)

)
. (29)

Thus, from the translation invariance of P it follows that to obtain (26) it will
suffice to show that

P0 (XTB
/∈ ∂+B) ≤ e−c2ε−1

(30)
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for some constant c2 = c2(d, η) > 0 if ε is sufficiently small. To do this, we will
exploit the results developed in [16, Section 4]. Indeed, if for ω ∈ Ω we define

qB(ω) := P0,ω (XTB
/∈ ∂+B) and ρB(ω) :=

qB(ω)
1 − qB(ω)

then observe that

P0(XTB
/∈ ∂+B) = E(qB) ≤ E(

√
qB) ≤ E(

√
ρB).

But the results from [16, Section 4] show that there exists a constant c > 0 and
θ0(d), ε̃0(d, η) > 0 such that if (LD)η,ε is satisfied for ε ∈ (0, ε̃0) and L from (9)
is given by L = 2[θε−1] with θ ∈ (0, θ0) then

E(
√

ρB) ≤ 80
cεα(d)−ηL

exp
(
− c

20
εα(d)−ηNL

)

+ 2d exp

(

NL

[
log 4d

2
− 50

log 4d
log 2

(
3
4

− 7
100

)2
])

.

However, since for ε < θ
2 we have that

εα(d)−ηNL ≥ 16εα(d)−η(θε−1 − 1)4 ≥ θ4εα(d)−η−4 ≥ θ4ε−(1+η)

together with
εα(d)−ηL ≥ θεα(d)−η−1 ≥ θε

and
log 4d

2
− 50

log 4d
log 2

(
3
4

− 7
100

)2

< 0,

it is straightforward to check that if ε < ε0(d, η, θ) then (30) is satisfied.

4.2 Exit Measure from Small Slabs

The second step is to obtain a control on the probability that the random walk
exits the slab U “to the right”. For this we will follow to some extent Section 3 of
Sznitman [16]. We begin by giving two estimates: first, a bound for the (annealed)
expectation of GU (�d(0) · e1) in terms of the annealed expectation of TU , and
then a bound in P-probability for the fluctuations of E0,ω(TU ) around its mean
E0(TU ).

Proposition 5. If d ≥ 3 and ε ∈ (0, 1
8d ) then there exist positive constants

c5, c6, c7 and c8 such that if ε, θ ∈ (0, 1) are such that L ≥ 2 and εL ≤ c5 then
one has ∣

∣
∣E
(
GU [�d · e1](0)

)
− λE0(TU )

∣
∣
∣ ≤ c6ε log L, (31)

and also
c7L

2 ≤ E0 (TU ) ≤ c8L
2. (32)
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Furthermore, given any η ∈ (0, 1) there exists ε0 = ε0(d, η, θ) ∈ (0, 1) such that
if (LD)η,ε is satisfied for ε ∈ (0, ε0) then

E

(
GU [�d · e1](0)

)
≥ 2

5
dλL2. (33)

Proof. A careful inspection of the proof of [16, Proposition 3.1] yields the esti-
mates (31) and (33). On the other hand, inequalities (2.28) and (3.6) of [16] give
us the bounds in (32). �

The next estimate we shall need is essentially contained in Proposition 3.2
of [16], which gives a control on the difference between the random variable
GU (�d(0) · e1) and its expectation for d ≥ 3. We include it here for completeness
and refer to [16] for a proof.

Proposition 6. If d ≥ 3 then there exist constants c9, c10 > 0 such that if
ε, θ, α ∈ (0, 1) satisfy L ≥ 2 and εL < 1

2 · 1−α
2−α · c9, one has for all u ≥ 0 that

P

[∣
∣
∣GU [�d(·, ω) · e1](0) − E(GU [�d · e1](0))

∣
∣
∣ ≥ u

]
≤ c10 exp

{

− u2

cα,L

}

, (34)

where
cα,L := c11ε

2
∑

y∈U

g0,U (0, y)2/(2−α)

for some constant c11 = c11(d) > 0 and

cα,L ≤

⎧
⎪⎨

⎪⎩

c1,2ε
2L1+(2(1−α)/(2−α)) for d = 3

c1,2ε
2L(4(1−α)/(2−α)) for d = 4

c1,2ε
2 for d ≥ 5 and α ≥ 4

5

for some c1,2 = c1,2(α, d) > 0.

Finally, we establish a control of the fluctuations of the quenched expectation
E0,ω(TU ) analogous to the one obtained in Proposition 6.

Proposition 7. If d ≥ 3 then for any α ∈ [0, 1) and ε, θ ∈ (0, 1) with L ≥ 2
and εL < 1

2 · 1−α
2−α · c9 where c9 is the constant from Proposition 6, one has for all

u ≥ 0 that

P [|E0,ω(TU ) − E0(TU )| ≥ u] ≤ c12 exp

{

− u2

c′
α,L

}

(35)

for some c12 = c12(d) > 0, where

c′
α,L := c13

∑

y∈U

g0,U (0, y)2/(2−α)
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for some constant c13 = c13(d) > 0 and

c′
α,L ≤

⎧
⎪⎨

⎪⎩

c′
1,2L

1+(2(1−α)/(2−α)) for d = 3
c′
1,2L

(4(1−α)/(2−α)) for d = 4
c′
1,2 for d ≥ 5 and α ≥ 4

5

for some c′
1,2 = c′

1,2(α, d) > 0.

Proof. We follow the proof of [16, Proposition 3.2], using the martingale method
introduced there. Let us first enumerate the elements of U as {xn : n ∈ N}. Now
define the filtration

Gn :=

{
σ(ω(x1), . . . , ω(xn)) if n ≥ 1
{∅,Ω} if n = 0

and also the bounded Gn-martingale (Fn)n∈N0 given for each n ∈ N0 by

Fn := E (GU [1](0)|Gn)

where 1 is the function constantly equal to 1, i.e. 1(x) = 1 for all x ∈ Z
d. Observe

that
GU [1](0, ω) = E0,ω(TU )

by definition of GU . Thus, if we prove that for all n ∈ N

|Fn − Fn−1| ≤ c14g0,U (0, xn)
1

2−α =: γn (36)

for some c14 = c14(d) > 0 then, since F0 = E0(TU ) and F∞ = E0,ω(TU ), by
using Azuma’s inequality and the bound for cα,L in Proposition 6 (see the proof
of [16, Proposition 3.2] for further details) we obtain (35) at once. In order to
prove (36), for each n ∈ N and all environments ω, ω′ ∈ Ωε coinciding at every
xi with i �= n define

Γn(ω, ω′) := GU [1](0, ω′) − GU [1](0, ω).

Since Fn − Fn−1 can be expressed as an integral of Γn(ω, ω′) with respect to
ω and ω′, it is enough to prove that Γn(ω, ω′) is bounded from above by the
constant γn from (36). To do this, we introduce for u ∈ [0, 1] the environment
ωu defined for each i ∈ N by

ωu(xi) = (1 − u) · ω(xi) + u · ω′(xi).

If we set

Hxn
:= inf{j ≥ 0 : Xj = xn} and Hxn

:= inf{j ≥ 1 : Xj = xn}

then, by the strong Markov property for the stopping time Hxn
, a straightforward

computation yields that

GU [1](0, ωu) = E0,ωu
(Hxn

∧ (TU − 1) + 1) + P0,ωu
(Hxn

< TU )Exn,ωu
(TU ).

(37)
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Similarly, by the strong Markov property for the stopping time Hxn
we have

Exn,ωu
(TU ) = Exn,ωu

(Hxn
∧(TU −1)+1)+Pxn,ωu

(Hxn
< TU )Exn,ωu

(TU ), (38)

so that

GU [1](0, ωu) = E0,ωu
(Hxn

∧ (TU − 1) + 1)

+
P0,ωu

(Hxn
< TU )

Pxn,ωu
(Hxn

> TU )
Exn,ωu

(Hxn
∧ (TU − 1) + 1). (39)

Notice that P0,ωu
(Hxn

< TU ) and the first term in the right-hand side of (39)
do not depend on u. Furthermore, by the Markov property for time j = 1, we
have

Pxn,ωu
(Hxn

> TU ) =
∑

e∈V

ωu(xn, e)Pxn+e,ωu
(Hxn

> TU )

and

Exn,ωu
(Hxn

∧ (TU − 1) + 1) =
∑

e∈V

ωu(xn, e)(1 + Exn+e,ωu
(Hxn

∧ (TU − 1) + 1)),

so that differentiating GU [1](0, ωu) with respect to u yields

∂uGU [1](0, ωu) =
P0,ωu

(Hxn
< TU )

Pxn,ωu
(Hxn

> TU )

∑

e∈V

(ω′(xn, e) − ω(xn, e))(Ae − Be)

where
Ae := 1 + Exn+e,ωu

(Hxn
∧ (TU − 1) + 1)

and

Be :=
Pxn+e,ωu

(Hxn
> TU )

Pxn,ωu
(Hxn

> TU )
Exn,ωu

(Hxn
∧ (TU − 1) + 1).

Now, by a similar argument to the one used to obtain (37) and (38), we have
that

Exn+e,ωu
(Hxn

∧ (TU − 1) + 1)
= GU [1](xn + e, ωu) − Pxn+e,ωu

(Hxn
< TU )GU [1](xn, ωu)

and

Pxn,ωu
(Hxn

> TU )GU [1](xn, ωu) = Exn,ωu
(Hxn

∧ (TU − 1) + 1),

from which we conclude that

Ae − Be = 1 + ∇eGU [1](xn, ωu),

where for any bounded f : Z
d → R, x ∈ Z

d and ω ∈ Ω we write

∇eGU [f ](x, ωu) := GU [f ](x + e, ωu) − GU [f ](x, ωu).
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Furthermore, by the proof of [16, Proposition 3.2] we have

P0,ωu
(Hxn

< TU )
Pxn,ωu

(Hxn
> TU )

= gU (0, xn, ωu) ≤ c′g0,U (0, xn)
1

2−α

and
|∇eGU [1](xn, ωu)| ≤ c′′L

where L is the quantifier from (9). Since for ω′, ω ∈ Ωε we have
∑

e∈V

|ω′(xn, e) − ω(xn, e)| ≤ ε,

we conclude that for all u ∈ [0, 1]

|∂uGU [1](0, ωu)| ≤ c′g0,U (0, xn)
1

2−α ε(1 + c′′L) ≤ c14g0,U (0, xn)
1

2−α

since ε ≤ 1 and εL < 1
2 · 1−α

2−α · c9 ≤ c9
4 by hypothesis. From this estimate (36)

immediately follows, which concludes the proof. �

4.3 Exit Measures from Small Slabs Within a Seed Box

The next step in the proof is to show that, on average, the random walk starting
from any z ∈ BNL sufficiently far away from ∂lBNL moves at least ±L steps
in direction e1 before reaching ∂lBNL. The precise estimate we will need is
contained in the following proposition.

Proposition 8. There exist three positive constants c15, c16 = c16(d) and ε0 =
ε0(d) verifying that if ε, θ ∈ (0, 1) are such that L ≥ 2, εL ≤ c16 and ε ∈ (0, ε0),
then one has that

sup
ω∈Ωε

∣
∣Ez,ω(TUL(z)) − Ez,ω(TUL(z) ∧ T∂lBNL

)
∣
∣ ≤ e−c15L (40)

for all z ∈ B′
NL, where

B′
NL :=

{

z ∈ BNL : sup
2≤i≤d

|z · ei| ≤ 25(NL)3 − N

}

.

To prove Proposition 8 we will require the following two lemmas related to
the exit time TU . The first lemma gives a uniform bound on the second moment
of TU .

Lemma 4. There exist constants c17, c18 = c18(d) > 0 such that if ε, θ ∈ (0, 1)
are taken such that L ≥ 2 and εL ≤ c18 then one has that

sup
z∈Zd, ω∈Ωε

Ez,ω(T 2
UL(z)) ≤ c17L

4.
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Proof. Let us fix x ∈ Z
d and write Uz := UL(z) in the sequel for simplicity.

Notice that

Ez,ω(T 2
Uz

) = Ez,ω

⎛

⎜
⎝

⎛

⎝
∑

x∈Uz

∞∑

j=0

1x(Xj)1(j < TUz
)

⎞

⎠

2
⎞

⎟
⎠

= 2
∑

x∈Uz

∑

y∈Uz

∞∑

j=0

∞∑

k>j

Ez,ω (1x(Xj)1y(Xk)1(k < TUz
)1(j < TUz

))

+ Ez,ω (TUz
) . (41)

Now, by the Markov property, for each j < k we have that

Ez,ω (1x(Xj)1y(Xk)1(k < TUz
)1(j < TUz

))
= Ez,ω (1x(Xj)1(j < TUz

)) Ex,ω (1y(Xi)1(i < TUz
)) ,

where i := k − j. Substituting this back into (41), we see that

Ez,ω(T 2
Uz

)

≤ 2
∑

x∈Uz

∑

y∈Uz

∞∑

j=0

∞∑

i=1

Ez,ω (1x(Xj)1(j < TUz
)) Ex,ω (1y(Xi)1(i < TUz

))

+ Ez,ω(TUz
)

≤ 2
∑

x∈Uz

∞∑

j=0

Ez,ω (1x(Xj)1(j < TUz
)) Ex,ω (TUz

) + Ez,ω(TUz
)

= 2Ez,ω(TUz
)

(

sup
y∈Zd

Ey,ω(TUz
)

)

+ Ez,ω(TUz
)

≤ 2c2L4 + cL2

for some constant c > 0, where for the last line we have used inequality (2.28)
of Sznitman in [16], which says that

sup
z,y∈Zd,ω∈Ωε

Ey,ω(TUz
) ≤ cL2

whenever L ≥ 2 and εL ≤ c18(d). From this the result immediately follows. �

Our second auxiliary lemma states that, with overwhelming probability, the
random walk starting from any x ∈ BNL far enough from ∂lBNL is very likely
to move at least ±L steps in direction e1 before reaching ∂lBNL.

Lemma 5. There exist constants c19, c20 > 0 such that if ε, θ ∈ (0, 1) satisfy
L ≥ 2 and εL ≤ c20 then for any a ∈ (0, 25(NL)3) and z ∈ BNL verifying
sup2≤i≤d |z · ei| ≤ a one has

sup
ω∈Ωε

Pz,ω(T∂lBNL
≤ TUL(z)) ≤ 2e−c19

25(NL)3−a

L2 .
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Proof. Note that for any z ∈ BNL with sup2≤i≤d |z · ei| ≤ a one has that

Pz,ω(T∂lBNL
≤ TUL(z)) ≤ Pz,ω(TUL(z) ≥ 25(NL)3 − a).

Furthermore, by Proposition 2.2 in [16], there exist constants c19, c20 > 0 such
that if εL ≤ c20 then for any z ∈ Z

d

sup
x∈Zd,ω∈Ωε

Ex,ω

(
e

c19
L2 TUL(z)

)
≤ 2.

Hence, by the exponential Tchebychev inequality we conclude that

Pz,ω(T∂lBNL
≤ TUL(z)) ≤ e−c19

25(NL)3−a

L2 Ez,ω

(
e

c19
L2 TUL(z)

)
≤ 2e−c19

25(NL)3−a

L2 .

�

We are now ready to prove Proposition 8. Indeed, notice that

Ez,ω(TUL(z)) = Ez,ω(TUL(z)1(TUL(z) < T∂lBNL
))

+ Ez,ω(TUL(z)1(TUL(z) ≥ T∂lBNL
))

= Ez,ω((TUL(z) ∧ T∂lBNL
)1(TUL(z) < T∂lBNL

))
+ Ez,ω(TUL(z)1(TUL(z) ≥ T∂lBNL

))
≤ Ez,ω(TUL(z) ∧ T∂lBNL

) + Ez,ω(TUL(z)1(TUL(z) ≥ T∂lBNL
)).

Hence, since sup2≤i≤d |z · ei| ≤ 25(NL)3 − N for any z ∈ B′
NL, by the Cauchy–

Schwarz inequality and Lemmas 4 and 5 it follows that

|Ez,ω(TUL(z)) − Ez,ω(TUL(z) ∧ T∂lBNL
)| ≤

√
Ez,ω(T 2

UL(z))Pz,ω(TUL(z) ≥ T∂lBNL
)

≤
√

2c17L
2e− c19

2 L.

From this estimate, taking c16 := min{c18, c20} and ε sufficiently small yields
(40).

4.4 Renormalization Scheme to Obtain a Seed Estimate

Our next step is to derive estimates on the time spent by the random walk on
slabs of size NL.

Let us fix ω ∈ Ω and define two sequences W = (Wk)k∈N0 and V = (Vk)k∈N0

of stopping times, by setting W0 = 0 and then for each k ∈ N0

Wk+1 := inf{n > Wk : |(Xn − XWk
) · e1| ≥ L} and Vk := Wk ∧ TBNL

.

Now, consider the random walks Y = (Yk)k∈N0 and Z = (Zk)k∈N0 defined for
k ∈ N0 by the formula

Yk := XWk
(42)
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and
Zk := XVk

. (43)

Notice that at each step, the random walk Y jumps from x towards some y with
(y − x) · e1 ≥ L, i.e. it exits the slab UL(x) “to the right”, with probability
p̂(x, ω), where

p̂(x, ω) := Px,ω (Tx·e1+L < Tx·e1−L) .

Observe also that p̂ verifies the relation

p̂(x, ω) =
1
2

+
1

2L
GUL(x)[�d · e1](x, ω) (44)

which follows from an application of the optional sampling theorem to the Pω-
martingale (Mk,ω)k∈N given by

Mk,ω = Xk −
k−1∑

j=0

�d(Xj , ω).

Now, for each p ∈ [0, 1] let us couple Y (e1) := (Yk · e1)k∈N0 with a random walk
y(p) := (y(p)

k )k∈N0 on Z, which starts at 0 and in each step jumps one unit to
the right with probability p and one to the left with probability 1 − p, in such a
way that both Y (e1) and y(p) jump together in the rightward direction with the
largest possible probability, i.e. for any k ≥ 0, x ∈ Z

d and m ∈ Z

Pω(Y (e1)
k+1 ≥ x · e1 + L, y

(p)
k+1 = m + 1|Yk = x, y

(p)
k = m) = min{p̂(x, ω), p}.

The explicit construction of such a coupling is straightforward, so we omit the
details. Call this the coupling to the right of Y (e1) and y(p). Now, consider the
random walks y− := y(p−) and y+ := y(p+), where

p− :=

(
1
2

+
E(GU [�d · e1](0)) − εα(d)−2−δ

2L

)

∨ 0 (45)

and

p+ :=

(
1
2

+
E(GU [�d · e1](0)) + εα(d)−2−δ

2L

)

∧ 1, (46)

and assume that they are coupled with Y (e1) to the right. Let us call E−
0 and E+

0

the expectations defined by their respective laws. Next, for each M ∈ N define
the stopping times T Y

M , S+
M and S−

M given by

T Y
M := inf {k ≥ 0 : Yk · e1 ≥ LM} and S±

M := inf
{
k ≥ 0 : y±

k ≥ M
}

.

Finally, if for each subset A ⊂ Z
d we define the stopping time

T Z
A := inf {k ≥ 0 : Zk /∈ A} ,

we have the following control on the expectation of T Z
BNL

.
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Proposition 9. If d ≥ 3 then for any given η ∈ (0, 1) and δ ∈ (0, η) there exist
c21, c22 > 0 and θ0 ∈ (0, 1) depending only on d, η and δ such that if:

i. The constant θ from (9) is chosen smaller than θ0,
ii. (LD)η,ε is satisfied for ε sufficiently small depending only on d, η, δ and θ,

then for any z ∈ ∂−B∗
NL we have

P

({

ω ∈ Ω :
N/2

2p+ − 1
− e−c22ε−1 ≤ Ez,ω

(
T Z

B′
NL

)

≤ Ez,ω

(
T Z

BNL

)
≤ N/2

2p− − 1

})

≥ 1 − e−c21ε−δ

.

Proof. Define the event

B :=
⋂

x∈BNL

{
ω ∈ Ω :

∣
∣
∣GU [�d · e1](x, ω) − E(GU [�d · e1](x))

∣
∣
∣ ≤ εα(d)−2−δ

}
. (47)

Let us observe that for any ω ∈ B we have p− ≤ p̂(x, ω) for all x ∈ BNL. In
particular, since Y (e1) is coupled to the right with y−, if Y

(e1)
0 = NL

2 and y−
0 = 0

then for any ω ∈ B we have

Y
(e1)
k ≥ Ly−

k +
NL

2

for all 0 ≤ k ≤ T Z
BNL

so that, in particular, for any ω ∈ B

T Z
BNL

≤ S−
N
2

and thus
Ez,ω

(
T Z

BNL

)
≤ E−

0 (S−
N
2
).

Similarly, since Y (e1) is coupled to the right with y+ and p̂(x, ω) ≤ p+ for all
x ∈ BNL when ω ∈ B, if y+

0 = 0 then for any ω ∈ B we have

Y
(e1)
k ≤ Ly+

k +
NL

2

for all 0 ≤ k ≤ T Z
BNL

, so that for any such ω on the event {T Y
NL = T Z

B′
NL

} we
have

T Z
B′

NL
≥ S+

N
2
.

Therefore, we see that for each z ∈ ∂−B∗
NL

Ez,ω

(
T Z

B′
NL

)
= Ez,ω

(
T Z

B′
NL

1(T Z
B′

NL
< T Y

NL)
)

+ Ez,ω

(
T Z

B′
NL

1(T Y
NL = T Z

B′
NL

)
)

≥ Ez,ω

(
S+

N
2
1(T Y

NL = T Z
B′

NL
)
)

= E+
0

(
S+

N
2

)
− Ez,ω

(
S+

N
2
1(T Z

B′
NL

< T Y
NL)
)

. (48)
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Now, by the Cauchy–Schwarz inequality we have that

Ez,ω

(
S+

N
2
1(T Z

B′
NL

< T Y
NL)
)

≤
√

E+
0

((
S+

N
2

)2
)

Pz,ω

(
XTB′

NL

/∈ ∂+B′
NL

)

≤
√

E+
0

((
S+

N
2

)2
)

Pz,ω

(
XTB(z) /∈ ∂+B(z)

)
(49)

where B(z) := B + z for B as defined in (28) and, to obtain the last inequality,
we have repeated the same argument used to derive (29) but for B′

NL instead of
BNL (which still goes through if L ≥ 2). On the other hand, using the fact that
the sequences M± = (M±

n )n∈N0 and N± = (N±
n )n∈N0 given for each n ∈ N0 by

M±
n = y±

n − n(2p± − 1)

and
N±

n =
(
y±

n − n(2p± − 1)
)2 − n(1 − (2p± − 1)2)

are all martingales with respect to the natural filtration generated by their asso-
ciated random walks, and also that by Proposition 5 if ε is sufficiently small
(depending on d, θ, η and δ)

2p± − 1 =
1
L

(E(GU [�d · e1](0)) ± εα(d)−η/2) > 0

since (LD)η,ε is satisfied and δ < η, we conclude that

E±
0 (S±

N
2
) =

N/2
2p± − 1

,

and

E+
0

((
S+

N

)2)
=

(N/2)2

(2p+ − 1)2
+

(N/2)
2p+ − 1

(1 − (2p+ − 1)2) ≤ C+N2

if ε ∈ (0, 1), where C+ > 0 is a constant depending on p+. Inserting these bounds
in (48) and (49), we conclude that for ω ∈ B one has

N/2
2p+ − 1

−
√

C+N2Pz,ω

(
XTB(z) /∈ ∂+B(z)

)
≤ Ez,ω

(
T Z

B′
NL

)

≤ Ez,ω

(
T Z

BNL

)
≤ N/2

2p− − 1
. (50)

But, by the proof of (26) in Sect. 4.1 and Markov’s inequality, we have that

P

(
Pz,ω

(
XTB(z) /∈ ∂+B(z)

)
≥ e− 1

2 c2ε−1
)

≤ e
1
2 c2ε−1

Pz

(
XTB(z) /∈ ∂+B(z)

)

≤ exp
(

−1
2
c2ε

−1

)

, (51)
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where c2 = c2(d, η) > 0 is the constant from (26). Furthermore, Proposition 6
implies that θ from (9) can be chosen so that for any ε sufficiently small (depend-
ing on d, δ and θ)

P(Bc) ≤ C(d)(NL)3(d−1)+1 exp
(
−cε−δ

)
(52)

for some constants C(d), c > 0. Combining the estimates (51) and (52) with the
inequalities in (50), we conclude the proof. �

4.5 Proof of (27)

We conclude this section by giving the proof of (27). The proof has two steps:
first, we express the expectation Ex,ω(TBNL

) for x ∈ ∂−B∗
NL in terms of the

Green’s function of Z and the quenched expectation of TUL
∧ TBNL

, and then
combine this with the estimates obtained in the previous subsections to conclude
the result. The first step is contained in the next lemma.

Lemma 6. If we define Z := {z ∈ BNL : z · e1 = kL for some k ∈ Z} and the
Green’s function

gZ(x, y, ω) :=
∞∑

i=0

Ex,ω(1{y}(Zi)1{i<T Z
BNL

}),

where Z is the random walk in (43), then for any x ∈ ∂−B∗
NL we have that

Ex,ω (TBNL
) =

∑

z∈Z
gZ(x, z, ω)Ez,ω

(
TUL(z) ∧ TBNL

)
. (53)

Proof. Note that

Ex,ω (TBNL
) =

∑

y∈BNL

Ex,ω

( ∞∑

n=0

1{y}(Xn)1{n<TBNL
}

)

=
∑

y∈BNL

∞∑

i=0

Ex,ω

(
Wi−1∑

n=Wi

1{y}(Xn)1{n<TBNL
}

)

=
∑

y∈BNL

∞∑

i=0

Ex,ω

(

1{Wi<TBNL
}EXWi

,ω

×
(

W1−1∑

n=0

1{y}(Xn)1{n<TBNL
}

))

=
∑

y∈BNL

∞∑

i=0

∑

z∈BNL

Ez,ω

(
W1−1∑

n=0

1{y}(Xn)1{n<TBNL
}

)

× Ex,ω

(
1{z}(Yi)1{Wi<TBNL

}

)

=
∑

z∈Z
gZ(x, z, ω)Ez,ω

(
TUL(z) ∧ TBNL

)
,
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where in the third equality we have used the Markov property for X valid under
the probability Pω and, in the last one, that Y visits only sites in Z before the
time TBNL

. �
Now, to continue with the proof let us define the event

A2 :=
⋂

z∈Z

{
ω ∈ Ω :

∣
∣Ez,ω(TUL(z)) − E0(TUL

)
∣
∣ ≤ ε−α∗(d)−δ

}
,

where

α∗(d) := 3 − α(d) =

{
0.5 if d = 3
0 if d ≥ 4.

(54)

By Lemma 6, Proposition 5 and (53) we have for any x ∈ ∂−B∗
NL and ω ∈ A2

that

Ex,ω(TBNL
) ≤

∑

z∈Z
gZ(x, z, ω)Ez,ω(TUL(z))

≤
∑

z∈Z
gZ(x, z, ω)(E0(TUL

) + ε−α∗(d)−η)

≤ Ex,ω(T Z
BNL

)(E0(TUL
) + ε−α∗(d)−δ)

≤ Ex,ω(T Z
BNL

)
(

1
λ

E(GU [�d · e1](0)) +
c6

λ
ε log L + ε−α∗(d)−δ

)

if ε, θ ∈ (0, 1) are taken such that L ≥ 2 and εL ≤ c5. In a similar manner,
since for every z ∈ Z we have TUL(z) ∧ TBNL

= TUL(z) ∧ T∂lBNL
, by using also

Proposition 8 we obtain that

Ex,ω(TBNL
) ≥

∑

z∈Z∩B′
NL

gZ(x, z, ω)Ez,ω

(
TUL(z) ∧ TBNL

)

≥
∑

z∈Z∩B′
NL

gZ(x, z, ω)(Ez,ω(TUL(z)) − e−c15L)

≥
∑

z∈Z∩B′
NL

gZ(x, z, ω)
(
E0(TUL

) − ε−α∗(d)−δ − e−c15L
)

≥ Ex,ω(T Z
B′

NL
)
(
E0(TUL

) − ε−α∗(d)−δ − e−c15L
)

≥ Ex,ω(T Z
B′

NL
)

×
(

1
λ

E(GU [�d · e1](0)) − c6

λ
ε log L − ε−α∗(d)−δ − e−c15L

)

for any ω ∈ A2 provided that ε, θ ∈ (0, 1) are taken such that L ≥ 2, εL ≤ c16

and ε ∈ (0, ε0), where ε0 is the one from Proposition 8. Next, consider the event

A3 :=
{

ω ∈ Ω :
N/2

2p+ − 1
− e−c22ε−1 ≤ Ex,ω

(
T Z

B′
NL

)

≤ Ex,ω

(
T Z

BNL

)
≤ N/2

2p− − 1

}

,
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where p± are those defined in (45) and (46), respectively. Since 2p± − 1 > 0 by
(LD)η,ε, we see that for ω ∈ A2 ∩ A3

Ex,ω(TBNL
) ≤ N/2

2p− − 1

(
1
λ

E(GU [�d · e1](0)) +
c6

λ
ε log L + ε−α∗(d)−δ

)

≤ NL/2

E(GU [�d · e1](0)) − εα(d)−2−δ

×
(

1
λ

E(GU [�d · e1](0)) +
c6

λ
ε log L + ε−α∗(d)−δ

)

=
NL

2

(
1
λ

(

1 +
εα(d)−2−δ + c6ε log L + λε−α∗(d)−δ

E(GU [�d · e1](0)) − εα(d)−2−δ

))

.

Furthermore, if ε is chosen sufficiently small (depending on η, δ and θ) so as to
guarantee that L ≥ 2 together with

1
θ2

· εη−δ <
1
5
d

then by Proposition 5 we have E(GU [�d·e1](0))−εα(d)−2−δ ≥ 2
5dλL2−λε−2+η−δ ≥

1
5λL2, so that

Ex,ω(TBNL
)

NL/2
− 1

λ
≤ 5

λ2L2

(
εα(d)−2−δ + c6ε log L + λε−α∗(d)−δ

)

≤ 5
λ2

(
1
θ2

εα(d)−δ + 2c6
log L

L3
+

1
2dθ2

ε−α∗(d)+3−δ

)

≤ C(d, θ)
λ2

εα(d)−δ

if ε is taken sufficiently small depending on δ, where:

i. To obtain the second inequality we have used that θε−1 ≤ L ≤ 2ε−1 whenever
ε < θ and also that the inequality λ ≤ ε

2d holds in our case since P(Ωε) = 1.
ii. For the third inequality we have used that L−3 log L ≤ θ−3ε3−δ ≤ θ−3εα(d)−δ

when ε is sufficiently small so as to guarantee that ε < θ and log L ≤ ε−δ.

By performing also the analogous computation but for the lower bound
instead, we conclude that if θ, ε are chosen appropriately then for any ω ∈ A2∩A3

and x ∈ ∂−B∗
NL we have

∣
∣
∣
∣
Ex,ω(TBNL

)
NL/2

− 1
λ

∣
∣
∣
∣ ≤

c4

λ2
εα(d)−δ.

We can now finish the proof by using Propositions 7 and 9 to obtain an expo-
nential upper bound of the form e−c3ε−δ

for the probability P(Ac
2 ∪ Ac

3).
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5 Proof of Theorem1 (Part II): The Renormalization
Argument

We now finish the proof of Theorem1 by using the results established in Sects. 3.1
and 4. To conclude, we only need to show the following proposition.

Proposition 10. If d ≥ 3 then for any given η > 0 and δ ∈ (0, η) there exists
ε0 = ε0(d, η, δ) > 0 such that if (LD)η,ε holds for ε ∈ (0, ε0) then we have P0-a.s.
that

lim inf
n→∞

E0 (Tn)
n

≥ 1
λ

+
1
λ2

Od,η,δ

(
εα(d)−δ

)
. (55)

Indeed, let us recall from Sect. 4.1 that if our RWRE satisfies (LD)η,ε for ε

sufficiently small so as to guarantee that NL ≥ M0 and (NL)−(15d+5) ≥ e−c2ε−1
,

where M0 and c2 are respectively the constants from (14) and (26), then the
polynomial condition (P )15d+5 is satisfied and therefore, by Proposition 1, we
have that our RWRE is ballistic with velocity �v ∈ R

d − {0} verifying

lim
n→+∞

E0(Tn)
n

=
1

�v · e1
> 0.

Together with (55), this implies that

1
�v · e1

≥ 1
λ

+
1
λ2

Od,η,δ

(
εα(d)−δ

)
.

Taking the reciprocal of this inequality then yields Theorem1. Thus, the remain-
der of the section is devoted to the proof of Proposition 10.

5.1 The Renormalization Scheme

The general strategy to prove Proposition 10 will be to apply a renormalization
argument similar to the one developed by Berger, Drewitz and Ramı́rez in [2]
to show that the polynomial condition (P )K for K sufficiently large implies
condition (T ′) in [15]. We outline the construction of the different scales involved
in the argument below.

We start by introducing two sequences (Nk)k∈N0 and (N ′
k)k∈N0 specifying the

size of each scale. These sequences will depend on ε and are defined by fixing
first

N0 := NL

and then for each k ∈ N0 setting

Nk := akN ′
k and N ′

k+1 := bkN ′
k,

where (ak)k∈N0 and (bk)k∈N0 are two sequences of natural numbers to be chosen
appropriately. Observe that, with this definition, for each k ∈ N0 we have

Nk+1 = αkNk

for αk := ak+1
ak

bk. For the renormalization argument to work, we will require
(ak)k∈N0 and (bk)k∈N0 to satisfy the following conditions:
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C1. a0 = 2, i.e. N ′
0 : NL

2 .
C2. (ak)k∈N0 is increasing.
C3. ak ≤ 1

22bk for all k ∈ N0, i.e. Nk ≤ 1
22N ′

k+1 for all k.
C4. supk∈N0

log αk

ak
< +∞

C5. For each k ∈ N one has that
2
ak

+
1
12

· log ak−1

ak−1
+

NL

αk−1
<

1
(k + 1)2

.

C6. There exists a constant c∗ > 0 (independent of k and ε) such that for all
j ∈ N

j∑

i=1

log αi−1 ≤ c∗j
2 log ε−1.

C7. There exists a constant c∗ > 0 (independent of k and ε) such that
∞∏

k=1

(

1 − 8
ak−1

bk−1

)

≥ 1 − c∗ε3.

Notice that, in particular, (C1), (C2) and (C3) together imply that ak ≤ αk and
αk ≥ 22 for all k. One possible choice of sequences is given for each k ∈ N0 by

ak+1 := (k + 1 + K)3 and bk := ak(k + 1 + K)2,

for K := 22[ε−6]. Indeed, (C1), (C2) and (C3) are simple to verify if ε ∈ (0, 1).
On the other hand, we have that

αk = ak+1(k + 1 + K)2 = (k + 1 + K)5

so that (C4) is also satisfied because log(k+1+K)
k+K → 0 as k → +∞. Moreover,

since we have K ≥ 22 by definition, if k ∈ N then

2
ak

=
1

(k + K)2
· 1
22

<
1
3

· 1
(k + 1)2

,

1
12

· log ak−1

ak−1
≤ 1

12
∧
(

1
12

· 1
(k + K)2

· 3 log(k + K)
k + K

)

≤ 1
3

· 1
(k + 1)2

and
NL

αk−1
≤ 16ε−4

(k + 1 + K)5
≤ 1

3
· 1
(k + 1)2

if ε is sufficiently small so as to guarantee that 16
K ≤ 1

3 , so that (C5) follows at
once. Furthermore, for each j ∈ N one has that

j∑

i=1

log αi−1 ≤ 5
j∑

i=1

log(i + K)

≤ 5
j∑

i=1

(log i + log(K + 1))

≤ 5(j2 + j log(K + 1)) ≤ 5j2 log(K + 1)
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from where (C6) easily follows provided that ε is sufficiently small. Finally, since
log(1 − x) ≥ −2x2 for x ≤ 1

2 , we obtain

∞∑

k=1

log
(

1 − 8
ak−1

bk−1

)

=
∞∑

k=1

log
(

1 − 8
(k + K)2

)

≥
∞∑

k=1

128
(k + K)4

≥ −128
22

· 1
[ε−6]

·
∞∑

k=1

1
k3

≥ −c∗ε6

for c∗ = 128
11

∑∞
k=1

1
k3 , from which (C7) readily follows.

Next, we introduce the concept of boxes of scale k ∈ N0. Given k ∈ N0 we
say that a set Qk ⊆ Z

d is a box of scale k (or simply k-box to abbreviate) if
it is of the form Qk = BNk

(x) for some x ∈ Z
d, where for M ∈ N the box

BM (x) is defined as in (12). For any k-box Qk we define its boundaries ∂iQk

for i = +,−, l as in Sect. 2.1. However, for our current purposes we will need to
consider a different definition of its middle-frontal part. Indeed, for any given
k-box Qk = BNk

(x) we define its middle-frontal k-part as

Q̃k :=
{
y ∈ BNk

(x) : Nk − N ′
k ≤ (y − x) · e1 < Nk,

|(y − x) · ei| < N3
k for 2 ≤ i ≤ d

}

together with its corresponding back side

∂−Q̃k :=
{

y ∈ Q̃k : (y − x) · e1 = Nk − N ′
k

}
.

Observe that for 0-boxes this definition coincides with the previous one of plain
middle-frontal parts.

For the sequel it will be necessary to introduce for each k ∈ N0 the partition
Ck = (C(z)

k )z∈Zd of Z
d by middle-frontal k-parts defined as

C
(z)
k :=

{
y ∈ Z

d : z1N
′
k ≤ y1 < (z1 + 1)N ′

k,

zi(2N3
k − 1) ≤ yi < (zi + 1)(2N3

k − 1) for 2 ≤ i ≤ d
}
.

Given this partition Ck, for each x ∈ Z
d we define

i. z(x) as the unique element of Z
d such that x ∈ C

(z(x))
k .

ii. Qk(x) as the unique k-box having C
(z(x))
k as its middle-frontal k-part.

iii. Uk(x) as the symmetric slab around x given by

Uk(x) :=
⋃

z:|(z−z(x))·e1|≤ 3
2ak−1

C
(z)
k

together with its corresponding (inner) boundaries

∂−Uk(x) :=
{

y ∈ Uk(x) : y1 =
(

z(x) −
(

3
2
ak − 1

))

N ′
k

}
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and

∂+Uk(x) :=
{

y ∈ Uk(x) : y1 =
(

z(x) +
(

3
2
ak − 1

))

N ′
k

}

.

Observe that, with this particular choice of boundaries, we have ∂−Qk(x) ⊆
∂−Uk(x).

Finally, we need to introduce the notion of good and bad k-boxes. Given ω ∈ Ω,
k ∈ N0 and ε > 0, we will say that:

• A 0-box Q0 is (ω, ε)-good if it satisfies the estimates

inf
x∈Q̃0

Px,ω(XTQ0
∈ ∂+Q0) ≥ 1 − e− c2

2 ε−1
(56)

and

inf
x∈∂−Q̃0

Ex,ω(TQ0) >

(
1
λ

− c4

λ2
εα(d)−δ

)

N ′
0, (57)

where c2, c4 are the constants from Theorem 3. Otherwise, we will say that
Q0 is (ω, ε)-bad.

• A (k + 1)-box Qk+1 is (ω, ε)-good if there exists a k-box Q′
k such that all

k-boxes intersecting Qk+1 but not Q′
k are necessarily (ω, ε)-good. Otherwise,

we will say that Qk+1 is (ω, ε)-bad.

The following lemma, which is a direct consequence of the seed estimates
proved in Theorem 3, states that all 0-boxes are good with overwhelming prob-
ability.

Lemma 7. Given η ∈ (0, 1) there exist positive constants c23 and θ0 depending
only on d and η such that if:

i. The constant θ from (9) is chosen smaller than θ0,
ii. (LD)η,ε is satisfied for ε sufficiently small depending only on d, η and θ,

then for any 0-box Q0 we have that

P({ω ∈ Ω : Q0 is (ω, ε)-bad}) ≤ e−c23N
δ
4
0 .

Proof. Notice that, by translation invariance of P, it will suffice to consider the
case of Q0 = BNL. In this case, (27) implies that the probability of (57) not
being satisfied is bounded from above by

e− c3
2 N

δ
4
0 , (58)

since N
δ
4
0 = Lδ ≤ 2δ · θδ · ε−δ ≤ 2ε−δ. On the other hand, by Markov’s inequality

and (26) we have

P

(
sup

x∈Q̃0

Px,ω(XTQ0
/∈ ∂+Q0) > e− c2

2 ε−1

)

≤ e
c2
2 ε−1 ∑

x∈Q̃0

Px(XTQ0
/∈ ∂+Q0) ≤ |Q̃0|e− c2

2 ε−1
. (59)
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Combining (58) with (59) yields the result. �

Even though the definition of good k-box is different for k ≥ 1, it turns out
that such k-boxes still satisfy analogues of (56) and (57). The precise estimates
are given in Lemmas 8 and 10 below.

Lemma 8. Given any η ∈ (0, 1) there exists ε0 > 0 satisfying that for each
ε ∈ (0, ε0) there exists a sequence (dk)k∈N0 ⊆ R>0 depending on d, η, δ and ε
such that for each k ∈ N0 the following holds:

i. dk ≥ Ξkd0, where Ξk ∈ (0, 1) is given by

Ξk :=
k∏

j=1

(

1 − 1
(j + 1)2

)

,

with the convention that
∏0

j=1 := 1.
ii. If Qk is a (ω, ε)-good k-box then

inf
x∈Q̃k

Px,ω(XTQk
∈ ∂+Qk) ≥ 1 − e−dkNk . (60)

Proof. First, observe that if for k = 0 we take

d0 :=
c2

2εN0
(61)

then condition (i) holds trivially since Ξ0 = 1
2 and (ii) also holds by definition of

(ω, ε)-good 0-box. Hence, let us assume that k ≥ 1 and show that (60) is satisfied
for any fixed (ω, ε)-good k-box Qk. To this end, for each x ∈ Q̃k we write

Px,ω(XTQk
/∈ ∂+Qk) ≤ Px,ω(XTQk

∈ ∂lQk) + Px,ω(XTQk
∈ ∂−Qk). (62)

We will show that if ε is sufficiently small (not depending on k) and there exists
dk−1 > 0 satisfying that:

i’. dk−1 ≥ Ξk−1d0,
ii’. For any (ω, ε)-good (k − 1)-box Qk−1 and all y ∈ Q̃k−1

max{Py,ω(XTQk−1
∈ ∂lQk−1), Py,ω(XTQk−1

∈ ∂−Qk−1)} ≤ e−dk−1Nk−1 ,

then there also exists dk > 0 with dk ≥ Ξkd0 such that for all x ∈ Q̃k

max{Px,ω(XTQk
∈ ∂lQk), Px,ω(XTQk

∈ ∂−Qk)} ≤ 1
2
e−dkNk . (63)

From this, an inductive argument using that (i’) and (ii’) hold for d0 as in
(61) will yield the result. We estimate each term on the left-hand side of (63)
separately, starting with the leftmost one.
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For this purpose, we recall the partition Ck−1 introduced in the beginning
of this subsection and define a sequence of stopping times (κj)j∈N0 by fixing
κ0 := 0 and then for j ∈ N0 setting

κj+1 := inf{n > κj : Xn /∈ Qk−1(Xκj
)}.

Having defined the sequence (κj)j∈N0 we consider the rescaled random walk
Y = (Yj)j∈N0 given by the formula

Yj := Xκj∧TQk
. (64)

Now, since Qk is (ω, ε)-good, there exists a (k−1)-box Q′
k−1 such that all (k−1)-

boxes intersecting Qk but not Q′
k−1 are also (ω, ε)-good. Define then BQ′

k−1
as

the collection of all (k − 1)-boxes which intersect Q′
k−1 and also set Q′

k−1 as the
smallest horizontal slab S of the form

S = {z ∈ Z
d : ∃ y ∈ Q′

k−1 with |(z − y) · ei| < M for all 2 ≤ i ≤ d}

which contains BQ′
k−1

. Observe that, in particular, any (k − 1)-box which does
not intersect Q′

k−1 is necessarily (ω, ε)-good. Next, we define the stopping times
m1, m2 and m3 as follows:

• m1 is the first time that Y reaches a distance larger than 7N3
k from both

Q′
k−1 and ∂lQk, the lateral sides of the box Qk.

• m2 is the first time that Y exits the box Qk.
• m3 := inf{j > m1 : Yj ∈ Q′

k−1}.

Note that on the event {XTQk
∈ ∂lQk} we have Px,ω-a.s. m1 < m2 < +∞ so

that the stopping time
m′ := m2 ∧ m3 − m1

is well-defined. Furthermore, notice that on the event {XTQk
∈ ∂lQk} for each

m1 < j < m′ + m1 (such j exist because m′ > 1, see (65) below) we have that
at time κj our random walk X is exiting Qk−1(Xκj−1). This box is necessarily
good since it cannot intersect Q′

k−1, being j < m3. Moreover, X can exit this
box Qk−1(Xκj−1) either through its back, front or lateral sides. Hence, let us
define n−, n+ and nl as the respective number of such back, frontal and lateral
exits, i.e. for i = −,+, l define

ni := #{m1 < j < m′ + m1 : Xκj
∈ ∂iQk−1(Xκj−1)}.

Furthermore, set n∗
+ as the number of pairs of consecutive frontal exits, i.e.

n∗
+ := #{m1 < j < m′ + m1 − 1 : Xκi

∈ ∂+Qk−1(Xκj−1) for i = j, j + 1}.

Note that with any pair of consecutive frontal exits the random walk moves at
least a distance N ′

k−1 to the right direction e1, since it must necessarily traverse
the entire width of some C

(z)
k−1. Similarly, with any back exit the random walk

can move at most a distance 3
2Nk−1 to the left in direction e1, which is the width
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of any (k − 1)-box. Therefore, since our starting point x ∈ Q̃k is at a distance
not greater than N ′

k from ∂+Qk, we conclude that on the event {XTQk
∈ ∂lQk}

one must have
N ′

k−1 · n∗
+ − 3

2
Nk−1 · n− ≤ N ′

k.

On the other hand, by definition of m1 it follows that

m′ ≥ 7N3
k

25N3
k−1

=
7
25

α3
k−1 =: m′′

k . (65)

Furthermore, observe that n+ + n− + nl = m′ − 1 and also that n+ − n∗
+ ≤

n− + nl since n+ − n∗
+ is the number of frontal exits which were followed by a

back or lateral exit. Thus, since Nk−1 ≥ 2N ′
k−1 by assumption, from the above

considerations we obtain that

N ′
k

N ′
k−1

+ 3
Nk−1

N ′
k−1

· (n− + nl) ≥ m′ − 1.

From here, a straightforward computation using the definition of Nj and N ′
j for

j ≥ 0 shows that

n− + nl ≥ 1
3ak−1

· (m′ − m′′
k) + Mk

where

Mk :=
1

3ak−1

(
7
25

α3
k−1 − bk−1 − 1

)

≥ 1
15ak−1

α3
k−1

since bk−1 ≤ αk−1 and 1 ≤ αk−1 ≤ 1
25α3

k−1. Thus, by conditioning on the value
of m′ − m′′

k it follows that

Px,ω(XTQk
∈ ∂lQk) ≤ Px,ω

(

n− + nl ≥ 1
3ak−1

· (m′ − m′′
k) + Mk

)

≤
∑

N≥0

P

(

UN ≥ 1
3ak−1

· N + Mk

)

,

where each UN is a Binomial random variable of parameters n := m′′
k + N and

pk := e−dk−1Nk−1 . Using the simple bound P (UN ≥ r) ≤ pr
k2N+m′′

k for r ≥ 0
yields

Px,ω(XTQk
∈ ∂lQk) ≤

⎡

⎣ 1

1 − 2p
1

3ak−1
k

⎤

⎦ pMk

k 2m′′
k

≤

⎡

⎣ 1

1 − 2p
1

3ak−1
k

⎤

⎦ e−dk−1Nk−1Mk+m′′
k log 2.

Now, since

inf
k∈N0

Ξk =
∞∏

j=1

(

1 − 1
(j + 1)2

)

=
1
2
,
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it follows that dk−1N
′
k−1 ≥ 1

4d0N0 because one then has dk−1 ≥ Ξk−1d0 ≥ 1
2d0

and N ′
k−1 ≥ 1

2N0. Hence, we obtain that

p
1

3ak−1
k = e− 1

3dk−1N ′
k−1 ≤ e− 1

12d0N0 ≤ e− c2
24 ε−1

(66)

and also

−dk−1Nk−1Mk + m′′
k log 2 = −dk−1Nk

(
1

3ak−1αk−1
Ml − 7

25
log 2

dk−1Nk−1
α2

k−1

)

≤ −dk−1Nk

((
1

15ak−1
− 28

25
log 2

d0N0ak−1

)

α2
k−1

)

≤ −dk−1Nk

((
1
15

− 56
25

log 2
c2

ε

)
α2

k−1

ak−1

)

≤ −dk−1Nk

((
1
15

− 56
25

log 2
c2

ε

)

αk−1

)

(67)

since ak−1 ≤ αk−1. Thus, if ε is taken sufficiently small so as to guarantee that

1
1 − 2e− c2

24 ε−1 ≤ 2 and
1
15

− 56
25

log 2
c2

· ε ≥ 1
16

then, since αk−1 ≥ 16 and ε ∈ (0, 1) by construction, we conclude that

Px,ω(XTQk
∈ ∂lQk) ≤ 2e−dk−1Nk ≤ 1

2
exp {−dk−1Nk + log 4}

≤ 1
2

exp
{

−dk−1Nk

(

1 − log 4
dk−1Nk

)}

≤ 1
2

exp
{

−dk−1Nk

(

1 − log 4
ak

· 1
dk−1N ′

k

)}

≤ 1
2

exp
{

−dk−1Nk

(

1 − log 4
ak

· 4
d0N0

)}

≤ 1
2

exp
{

−dk−1Nk

(

1 − log 4
ak

· ε · 8
c2

)}

≤ 1
2
e−d̂kNk , (68)

for d̂k > 0 given by the formula

d̂k := dk−1

(

1 − 1
ak

)

,

provided that ε is also small enough so as to guarantee that

8 log 4
c2

· ε < 1.
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We turn now to the bound of the remaining term in the left-hand side of (63).
Consider once again the partition Ck−1 and notice that if X0 = x ∈ Q̃k then,
by construction, we have Qk−1(x) ⊆ Uk−1(x). We can then define a sequence
Z = (Zn)n∈N0 ⊆ R as follows:

i. First, define κ′
0 := 0 and for each j ∈ N set

κ′
j := inf{n > κ′

j−1 : Xn ∈ ∂−Uk−1(Xκ′
j−1

) ∪ ∂+Uk−1(Xκ′
j−1

)}.

ii. Having defined the sequence (κ′
j)j∈N0 , for each j ∈ N0 define

Zj := z(Xκ′
j∧TQk

) · e1.

The main idea behind the construction of Z is that:

• Z starts inside the one-dimensional interval [lk, rk], where

lk = min{z · e1 : C
(z)
k−1 ∩ Qk �= ∅} and rk = max{z · e1 : C

(z)
k−1 ∩ Qk �= ∅},

and moves inside this interval until the random walk X first exits Qk. Once
this happens, Z remains at its current position forever afterwards.

• Until X first exits Qk, the increments of Z are symmetric, i.e. Zj+1 − Zj =
±
(

3
2ak−1 − 1

)
for all j with κ′

j+1 < TQk
.

• Given that Xκ′
j

= y ∈ Qk, if X exits Qk−1(y) through its back side then
Xκ′

j+1
∈ ∂−Uk−1(y), so that Zj+1 − Zk = −

(
3
2ak−1 − 1

)
.

Thus, it follows that

Px,ω(XTQk
∈ ∂−Qk) ≤ Px,ω(TZ

lk
< T

Z

rk
) (69)

where TZ
lk

and T
Z

rk
respectively denote the hitting times for Z of the sets (−∞, lk]

and (rk,+∞). To bound the right-hand side of (69), we need to obtain a good
control over the jumping probabilities of the random walk Z. These will depend
on whether the corresponding slab Uk−1 which Z is exiting at each given time
contains a (ω, ε)-bad (k − 1)-box or not. More precisely, since Qk is (ω, ε)-good
we know that there exists some (k − 1)-box Q

′
k−1 such that all (k − 1)-boxes

which intersect Qk but not Q
′
k−1 are necessarily (ω, ε)-good. Define then

{
Lk−1 := min{z · e1 : C

(z)
k−1 ∩ Qk−1 �= ∅} − 2ak−1

Rk−1 := max{z · e1 : C
(z)
k−1 ∩ Qk−1 �= ∅} + 2ak−1

and observe that, with this definition, if y ∈ Z
d satisfies y ∈ C

(z)
k−1 for some

z = (z1, . . . , zd) ∈ Z
d with z1 /∈ [Lk−1, Rk−1] then all (k − 1)-boxes contained in

the slab Uk−1(y) are necessarily good. From this observation and the uniform
ellipticity, it follows that the probability of Z jumping right from a given position
z1 ∈ [lk, rk] is bounded from below by

pk−1(z1) :=

⎧
⎨

⎩

(1 − e−dk−1Nk−1)
3
2ak−1−1 if z1 /∈ [Lk−1, Rk−1]

κ
3
2Nk−1 if z1 ∈ [Lk−1, Rk−1].
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Hence, if we write TZ
[Lk−1,Rk−1]

to denote the hitting time of [Lk−1, Rk−1] and

ΘZ := {TZ
lk

< T
Z

rk
} then we can decompose

Px,ω(ΘZ) = Px,ω(ΘZ∩{TZ
[Lk−1,Rk−1]

= +∞})+Px,ω(ΘZ∩{TZ
[Lk−1,Rk−1]

< +∞}).
(70)

Now, recall that if (Wj)j∈N0 is a random walk on Z starting from 0 with nearest-
neighbor jumps which has probability p �= 1

2 of jumping right then, given a, b ∈ N,
the probability E(−a, b, p) of exiting the interval [−a, b] through −a is exactly

E(−a, b, p) = (1 − p)a · pb − (1 − p)b

pa+b − qa+b
≤ (1 − p)a

pa+b − (1 − p)a+b
=: E(−a, b, p).

Furthermore, if a, b ∈ N are such that

Nk − 2N ′
k

Nk−1
≤ a ≤ 2 · Nk

Nk−1
and a + b ≤ 4 · Nk

Nk−1

then for p′
k−1 := (1 − e−dk−1Nk−1)

3
2ak−1−1 and ε sufficiently small (but not

depending on k) one has

E(−a, b, p′
k−1) ≤ 2e−d̃kNk . (71)

for

d̃k := dk−1

(

1 − 2
ak

− 1
12

· log ak−1

ak−1

)

≥ dk−1

(

1 − 1
(k + 1)2

)

> 0.

Indeed, by Bernoulli’s inequality which states that (1−p)n ≥ 1−np for all n ∈ N

and p ∈ (0, 1), for ε sufficiently small so as to guarantee that 32
c2

· ε < 1
12 we have

that

(1 − p′
k−1)

a ≤
((

3
2
ak−1 − 1

)

e−dk−1Nk−1

)a

≤ exp {−adk−1Nk−1 − 2a log ak−1}

≤ exp
{

−dk−1Nk

(

a
Nk−1

Nk
+ 2a

log ak−1

dk−1Nk

)}

≤ exp
{

−dk−1Nk

(
Nk − 2N ′

k

Nk
− 4

log ak−1

dk−1Nk−1

)}

≤ exp
{

−dk−1Nk

(

1 − 2
ak

− 16 · log ak−1

ak−1
· 1
d0N0

)}

≤ exp
{

−dk−1Nk

(

1 − 2
ak

− 32
c2

· ε · log ak−1

ak−1

)}

≤ e−d̃kNk

where we use that 3
2 ≤ ak−1 in the second line and dk−1N

′
k−1 ≥ 1

4d0N0 in the
second-to-last one. Similarly, by (C4) we can take ε sufficiently small so as to
guarantee that

32
c2

· ε · sup
j∈N

(
log αj−1

aj−1

)

<
1
2
,
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in which case we have that

(p′
k−1)

a+b ≥ 1 − 2ak−1(a + b)e−dk−1Nk−1

≥ 1 − exp
{

−dk−1Nk−1

(

1 − log 2ak−1(a + b)
dk−1Nk−1

)}

≥ 1 − exp
{

−dk−1Nk−1

(

1 − 16
c2

· ε ·
(

log ak−1

ak−1
+

log αk−1

ak−1

))}

≥ 1 − exp
{

−dk−1Nk−1

(

1 − 32
c2

· ε · log αk−1

ak−1

)}

≥ 1 − exp
{

− c2

16
ε−1
}

, (72)

where we have used that 2 ≤ ak−1 and 4 ≤ αk−1 to obtain the third line. Finally,
we have

(1 − p′
k−1)

a+b ≤ 1 − p′
k−1 ≤

(
3
2
ak−1 − 1

)

e−dk−1Nk−1

≤ 2ak−1(a + b)e−dk−1Nk−1 ≤ exp
{

− c2

16
ε−1
}

where, for the last inequality, we have used the bound (72). Hence, by choosing
ε sufficiently small (independently of k) so as to guarantee that

(p′
k−1)

a+b − (1 − p′
k−1)

a+b ≥ 1
2
,

we obtain (71).
With this, from the considerations made above it follows that

Px,ω(ΘZ ∩ {TZ
[Lk−1,Rk−1]

= +∞}) ≤ E(−a, b, p′
k−1)

for

a :=
[
(z(x) · e1) − lk

3
2ak−1 − 1

]

and b :=
[
rk − (z(x) · e1)

3
2ak−1 − 1

]

+ 1,

where [·] here denotes the (lower) integer part. Recalling that the width in direc-
tion e1 of any C

(z)
k−1 is exactly N ′

k−1 and also that N ′
j−1 ≤ Nj−1 ≤ 1

8N ′
j holds

for all j ∈ N, by using the fact that x ∈ Q̃k it is straightforward to check that

Nk − N ′
k

Nk−1
≤

3
2Nk − N ′

k − N ′
k−1 − ( 3

2Nk−1 − N ′
k−1)

3
2Nk−1 − N ′

k−1

≤ a ≤
3
2Nk + N ′

k−1
3
2Nk−1 − N ′

k−1

≤ Nk + N ′
k

Nk−1
≤ 2 · Nk

Nk−1

and

a + b ≤ a +
N ′

k + 3
2Nk−1

3
2Nk−1 − N ′

k−1

≤ 2 · Nk + N ′
k

Nk−1
≤ 4 · Nk

Nk−1
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so that (71) in this case yields

Px,ω(ΘZ ∩ {TZ
[Lk−1,Rk−1]

= +∞}) ≤ 2e−d̃kNk . (73)

To bound the remaining term in the right-hand side of (70), we separate matters
into two cases: either z(x) · e1 ≤ Rk−1 or z(x) · e1 > Rk−1. Observe that if
z(x) · e1 ≤ Rk−1 and we define

⎧
⎨

⎩

l(x) := inf
{
j ≥ 0 : z(x) · e1 − j

(
3
2ak−1 − 1

)
< Lk−1

}
< +∞

zl(x) := z(x) · e1 − l(x)
(

3
2ak−1 − 1

)

then Z necessarily visits the site zl(x) on the event ΘZ ∩ {TZ
[Lk−1,Rk−1]

< +∞}.
On the other hand, if z(x) · e1 > Rk−1 and we define

⎧
⎨

⎩

r(x) := sup
{
j ≥ 0 : z(x) · e1 − j

(
3
2ak−1 − 1

)
> Rk−1

}
< +∞

zr(x) := z(x) · e1 − r(x)
(

3
2ak−1 − 1

)

then Z necessarily visits the site zr(x) on the event ΘZ ∩ {TZ
[Lk−1,Rk−1]

< +∞}.
In the first case, by the strong Markov property we can bound

Px,ω(ΘZ ∩ {TZ
[Lk−1,Rk−1]

< +∞}) ≤ PZ
zl(x),ω(TZ

lk
< T

Z

rk
).

where PZ
zl(x),ω denotes the quenched law of Z starting from zl(x). Using the

strong Markov property once again, we can check that

PZ
zl(x),ω(TZ

lk
< T

Z

rk
) ≤

PZ
zl(x),ω(D−)

PZ
zl(x),ω(D− ∪ D+)

≤
PZ

zl(x),ω(D−)

PZ
zl(x),ω(D+)

where
D− := {TZ

lk
< HZ

zl(x)} and D+ := {T
Z

rk
< HZ

zl(x)}

and we define HZ
y := inf{j > 1 : Zj = y} for each y ∈ Z. Now, by forcing

Z to always jump right, using that (rk − Rk−1) · N ′
k−1 ≤ N ′

k holds whenever
z(x) · e1 ≤ Rk−1 and also that

|Rk−1 − Lk−1| ≤ 3
2
ak−1 + 2 + 4ak−1 ≤ 8ak−1

we obtain

PZ
zl(x),ω(D+) ≥ κ8Nk−1

(
p′

k−1

)
N′

k
3
2 Nk−1−N′

k−1 ≥ κ8Nk−1
(
p′

k−1

)Nk
N k−1 ≥ 1

2
κ8Nk−1 ,

where we have used (72) to obtain the last inequality. On the other hand, by the
Markov property at time j = 1, we have that

PZ
zl(x),ω(TZ

lk
< HZ

zl(x)) ≤ E(−a′, b′, p′
k−1)
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for

a′ :=
[

zl(x) − lk
3
2ak−1 − 1

]

and b′ := 1.

Using the facts that x ∈ Q̃k, z(x) · e1 ≤ Rk−1, |Rk−1 − Lk−1| ≤ 8ak−1 and
N ′

k−1 ≤ Nk−1 ≤ 1
22N ′

k, it is easy to check that

Nk − N ′
k

Nk−1
≤ a′ ≤ 2 · Nk

Nk−1
and a + b ≤ 4 · Nk

Nk−1
,

so that (71) immediately yields

PZ
zl(x),ω(D−) ≤ 2e−d̃kNk ,

and thus

Px,ω(ΘZ ∩ {TZ
[Lk−1,Rk−1]

< +∞}) ≤ 4κ−8Nk−1e−d̃kNk . (74)

It remains only to treat the case in which z(x)·e1 > Rk−1. Recall that in this case
we had that Z necessarily visits zr(x) so that, by the strong Markov property,
we have

Px,ω(ΘZ ∩{TZ
[Lk−1,Rk−1]

< +∞}) ≤ PZ
z(x)·e1,ω(TZ

zr(x) < T
Z

rk
)·PZ

zr(x),ω(TZ
lk

< T
Z

rk
).

Notice that, by proceeding as in the previous cases, we obtain

PZ
z(x)·e1,ω(TZ

zr(x) < T
Z

rk
) ≤ E(−a′′, b, p′

k−1)

for

a′′ :=
[
(z(x) · e1) − zr(x)

3
2ak−1 − 1

]

and b :=
[
rk − (z(x) · e1)

3
2ak−1 − 1

]

+ 1.

Now, we have two options: either |lk − zr(x)| ≤ 11ak−1 or |lk − zr(x)| > 11ak−1.
In the first case, we have that

a′′ ≤ a :=
[
(z(x) · e1) − lk

3
2ak−1 − 1

]

≤ a′′ + 1 +
11ak−1

3
2ak−1 − 1

≤ a′′ + 9

so that, by the bound previously obtained on a and a + b, we conclude that

Nk − 2N ′
k

Nk−1
≤ a′′ ≤ 2 · Nk

Nk−1
and a′′ + b ≤ 4 · Nk

Nk−1
,

which implies that

Px,ω(ΘZ ∩ {TZ
[Lk−1,Rk−1]

< +∞}) ≤ PZ
z(x)·e1,ω(TZ

zr(x) < TZ
rk

)

≤ E(−a′′, b, p′
k−1) ≤ 2e−d̃kNk . (75)

On the other hand, if |lk − zr(x)| > 11ak−1 then, since |zr(x) − zl(x)| < 11ak−1

holds because |Rk−1 − Lk−1| ≤ 8ak−1, the walk Z starting from zr(x) must
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necessarily visit zl(x) if it is to reach (−∞, lk] before (rk,+∞). Therefore, using
the strong Markov property we obtain that

Px,ω(ΘZ ∩{TZ
[Lk−1,Rk−1]

< +∞}) ≤ PZ
z(x)·e1,ω(TZ

zr(x) < T
Z

rk
) ·PZ

zl(x),ω(TZ
lk

< T
Z

rk
).

Since it still holds that 1 ≤ a′′ + b ≤ a + b ≤ 4 · Nk

Nk−1
in this case, then

(p′
k−1)

a′′+b − (1 − p′
k−1)

a′′+b ≥ (p′
k−1)

4· Nk
Nk−1 − (1 − p′

k−1) ≥ 1
2

so that

PZ
z(x),ω(TZ

zr(x) < TZ
rk

) ≤ E(−a′′, b, p′
k−1) ≤ 2(1 − p′

k−1)
a′′

.

On the other hand, as before we have

PZ
zl(x),ω(TZ

lk
< T

Z

rk
) ≤

PZ
zl(x),ω(D−)

PZ
zl(x),ω(D+)

but now the distance of zl(x) from the edges lk and rk has changed. Indeed, one
now has the bounds

PZ
zl(x),ω(D+) ≥ κ8Nk−1(p′

k−1)

[
rk−lk

3
2 ak−1−1

]

+1
≥ κ8Nk−1(p′

k−1)
4· Nk

Nk−1 ≥ 1
2
κ8Nk−1

and
PZ

zl(x),ω(D−) ≤ E(−â, b′, p′
k−1)

for

â :=
[

zl(x) − lk
3
2ak−1 − 1

]

and b′ := 1.

Since clearly â + b′ ≤ a + b ≤ 4 · Nk

Nk−1
because z(x) · e1 ≥ zl(x) by definition, we

obtain that
(p′

k−1)
â+b′ − (1 − p′

k−1)
â+b′ ≥ 1

2
,

so that
PZ

zl(x),ω(D−) ≤ 2(1 − p′
k−1)

â.

We conclude that

Px,ω(ΘZ ∩ {TZ
[Lk−1,Rk−1]

< +∞}) ≤ 8κ−8Nk−1(1 − p′
k−1)

a′′+â.

Now, recalling that 11ak−1 > |zr(x) − zl(x)|, we see that

4 · Nk

Nk−1
≥ a′′ + â ≥

(z(x) · e1) − zr(x) + zl(x) − lk − 2
(

3
2ak−1 − 1

)

3
2ak−1 − 1

≥
(z(x) · e1) − lk −

(
3
2ak−1 − 1

)

3
2ak−1 − 1

− zr(x) − zl(x)
3
2ak−1 − 1

− 1

≥ Nk − N ′
k

Nk−1
− 9

≥ Nk − 2N ′
k

Nk−1
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so that
Px,ω(ΘZ ∩ {TZ

[Lk−1,Rk−1]
< +∞}) ≤ 8κ−8Nk−1e−d̃kNk . (76)

In conclusion, gathering (73), (74), (75) and (76) yields

Px,ω(XTQk
∈ ∂−Qk) ≤ 10κ−8Nk−1e−d̃kNk ≤ 1

2
e−d′

kNk ,

where
d′

k := d̃k − 8 log 20κ−1 · 1
αk−1

.

Together with (68), this gives (63) for dk := min{d̂k, d′
k}. It only remains to

check that dk ≥ Ξkd0. To see this, first notice that (C5) implies that

d̂k = dk−1

(

1 − 1
ak

)

≥ dk−1

(

1 − 2
ak

)

≥ dk−1

(

1 − 1
(k + 1)2

)

≥ Ξkd0

since dk−1 ≥ Ξk−1d0. Thus, it will suffice to check that d′
k ≥ Ξkd0 holds if ε is

sufficiently small. This will follow once again from (C5). Indeed, if ε is such that
32 log 20κ−1

c2
· ε < 1 then we have that

d′
k : = dk−1

(

1 − 2
ak

− 1
2

· log ak−1

ak−1
− 8 log 20κ−1

dk−1
· 1
αk−1

)

= dk−1

(

1 − 2
ak

− 1
12

· log ak−1

ak−1
− 32 log 20κ−1

c2
· ε · NL

αk−1

)

≥ dk−1

(

1 − 1
(k + 1)2

)

≥ Ξkd0.

This shows that dk ≥ Ξkd0 and thus concludes the proof. �

Lemma 9. Given any η ∈ (0, 1) and δ ∈ (0, η) there exists ε0 = ε0(d, η, δ) > 0
such that if Qk is a (ω, ε)-good k-box for some ε ∈ (0, ε0) and k ∈ N0 then

inf
x∈∂−Q̃k

Ex,ω(TQk
) >

(
1
λ

− c4

λ
εα(d)−δ

)

N ′
k

⎡

⎣
k∏

j=1

(

1 − 8
aj−1

bj−1

)
⎤

⎦

2

(77)

with the convention that
∏0

j=1 := 1.

Proof. We will prove (77) by induction on k ∈ N0. Notice that (77) holds for
k = 0 by definition of (ω, ε)-good 0-box. Thus, let us assume that k ≥ 1 and that
(77) holds for (ω, ε)-good (k −1)-boxes. Consider a (ω, ε)-good k-box Qk and let
x ∈ ∂−Q̃k. Observe that if for j = 0, . . . , bk−1 we define the stopping times

Oj := inf{n ∈ N0 : (Xn − X0) · e1 = jN ′
k−1} ∧ TQk
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then TQk
=
∑bk−1

j=1 Oj − Oj−1. Furthermore, if for each j we define Yj := XTOj

then it follows from the strong Markov property that

Ex,ω(TQk
) =

bk−1∑

j=1

Ex,ω(Oj − Oj−1)

≥
bk−1∑

j=1

Ex,ω((Oj − Oj−1)1{Oj−1<TQk
})

≥
bk−1∑

j=1

Ex,ω(EYj−1,ω(O1)1{Oj−1<TQk
, d(Yj ,∂lQk)>25N3

k−1})

≥
bk−1∑

j=1

Ex,ω(EYj−1,ω(TQ̂k−1(Yj−1)
)1{XT

Q′
k

∈∂+Q′
k}), (78)

where d(·, ∂lQk) denotes the distance to the lateral side ∂lQk and we define the
box Q′

k as
Q′

k := {y ∈ Qk : d(y, ∂lQk) > 25N3
k−1},

together with its frontal side

∂+Q′
k := ∂+Qk ∩ Q′

k

and the (k − 1)-box Q̂k−1(y) for any y ∈ Z
d through the formula

Q̂k−1(y) := BNk−1(y − (Nk−1 + N ′
k−1)e1).

Observe that if Yj ∈ Q′
k then Q̂k−1(Yj) ⊆ Qk so that

EYj ,ω(O1) ≥ EYj ,ω(TQ̂k−1(Yj)
),

which explains how we obtained (78). Now, since there can be at most |Rk−1 −
Lk−1| ≤ 8ak−1 boxes of the form Q̂k−1(Yj−1) for j = 1, . . . , bk−1 which are
(ω, ε)-bad, it follows from the inductive hypothesis that

Ex,ω(TQk ) ≥
(

1

λ
− c4

λ
εα(d)−δ

)
N ′

k

[
k−1∏
j=1

(
1 − 8

aj−1

bj−1

)]2

×
(

1 − 8
ak−1

bk−1

)
Px,ω

(
XTQ′

k
∈ ∂+Q′

k

)
. (79)

But, by performing a careful inspection of the proof of Lemma8, one can show
that

Px,ω

(
XTQ′

k

∈ ∂+Q′
k

)
≥ 1 − e− 1

4d0Nk
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so that, using that e−x ≤ 1
x for x ≥ 1 and also that Nk ≥ N ′

k ≥ bk−1N
′
k−1 ≥

bk−1
ak−1

Nk−1 ≥ bk−1
ak−1

N0, for ε < c2 we obtain

Px,ω

(
XTQ′

k

∈ ∂+Q′
k

)
≥ 1 − e− 1

4d0Nk

≥ 1 − 4
d0Nk

≥ 1 − 4
d0N0

· ak−1

bk−1

= 1 − 8
c2

· ε · ak−1

bk−1
≥ 1 − 8

ak−1

bk−1

which, combined with (79), yields (77). �

Finally, we need the following estimate concerning the probability of a k-box
being (ω, ε)-bad.

Lemma 10. Given η ∈ (0, 1) and δ ∈ (0, η) there exists θ0 depending only on
d, η and δ such that if:

i. The constant θ from (9) is chosen smaller than θ0,
ii. (LD)η,ε is satisfied for ε sufficiently small depending only on d, η, δ and θ,

then there exists c24 = c24(d, η, δ, θ, ε) such that for all k ∈ N0 and any k-box Qk

one has
P({ω ∈ Ω : Qk is (ω, ε)-bad}) ≤ e−c242

k

.

Proof. For each k ∈ N0 and ε > 0 define

qk(ε) := P({ω : Qk is (ω, ε)-bad})

Notice that qk does not depend on the particular choice of Qk due to the trans-
lation invariance of P. We will show by induction on k ∈ N0 that

qk ≤ e−mk2k

(80)

for mk given by

mk := c23N
δ
4
0 − 12d

k∑

j=1

log Nj

2j

with the convention that
∑0

j=1 := 0. From (80), the result will follow once we
show that infk mk > 0.

First, observe that (80) holds for k = 0 by Lemma 7. Therefore, let us assume
that k ≥ 1 and (80) holds for k−1. Notice that if Qk is (ω, ε)-bad then necessarily
there must be at least two (ω, ε)-bad (k − 1)-boxes which intersect Qk but not
each other. Since the number of (k − 1)-boxes which can intersect Qk is at most

3
2
Nk ·

(
50N3

k

)d−1 ≤ (2Nk)6d,
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then by the union bound and the product structure of P we conclude that

qk ≤ (2Nk)6dq2
k−1 ≤ exp

{
6d log 2Nk − mk−12k

}
≤ e−mk2k

.

Thus, it only remains to check that

inf
k

mk = c23N
δ
4
0 − 12d

∞∑

j=1

log Nj

2j
> 0. (81)

But notice that by (C6) we have that

∞∑

j=1

log Nj

2j
≤ log N0 +

∞∑

j=1

(
1
2j

j∑

i=1

log αi−1

)

≤ c log ε−1

for some constant c > 0, from where (81) follows if ε sufficiently small (depending
on δ and θ). �

Let us now see how to deduce Proposition 10 from Lemmas 9 and 10. For
each k ∈ N0 consider the k-box given by

Qk :=
(

−3
2
Nk + N ′

k, N ′
k

)

×
(
−25N3

k , 25N3
k

)d−1
.

Using the probability estimate on Lemma 10, the Borel–Cantelli lemma then
implies that if ε, θ are chosen appropriately small then for P-almost every ω the
boxes Qk are all (ω, ε)-good except for a finite amount of them. In particular,
by Lemma 9 we have that for P-almost every ω

lim inf
k→+∞

E0,ω(TN ′
k
)

N ′
k

≥
(

1
λ

− c4

λ
εα(d)−δ

)
⎡

⎣
∞∏

j=1

(

1 − 8
aj−1

bj−1

)
⎤

⎦

2

By Fatou’s lemma, the former implies that

lim inf
k→+∞

E0(TN ′
k
)

N ′
k

≥
(

1
λ

− c4

λ
εα(d)−δ

)
⎡

⎣
∞∏

j=1

(

1 − 8
aj−1

bj−1

)
⎤

⎦

2

which in turn, since limn→+∞
E0(Tn)

n exists by Proposition 1, yields that

lim inf
n→+∞

E0(Tn)
n

≥
(

1
λ

− c4

λ
εα(d)−δ

)
⎡

⎣
∞∏

j=1

(

1 − 8
aj−1

bj−1

)
⎤

⎦

2

.

Recalling now that by (C7) we have
∞∏

j=1

(

1 − 8
aj−1

bj−1

)

= 1 + O(ε3),

we conclude the result.
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