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Preface

Wave mechanics and vibration principles are commonly encountered in various
problems of aeronautical, civil, architectural, robotics, marine, mechanical, nuclear,
biology, earthquake, tsunami, and other areas of science and technology. These
problems need to be analyzed by easy, fast, and efficient computational methods.

In view of the above, 8th National Conference on Wave Mechanics and
Vibrations (WMVC 2018) has been organized in the Department of Mathematics,
NIT Rourkela, Odisha, India, during November 26–28, 2018, in collaboration with
Von Karman Society for Advanced Study & Research in Mathematical Sciences,
Jalpaiguri, West Bengal. The aim of this important conference has been to bring
together leading researchers of wave mechanics and vibrations who use and
develop new theories as well as computational and experimental techniques.

Different mathematical theories of vibration and wave mechanics, numerical
simulations, machine intelligence techniques, physical experiments with computa-
tional investigations, and their various engineering, biological, and science appli-
cations have been targeted in this event. Accordingly, this conference deliberated an
outstanding opportunity to teachers, researchers, and industry experts for sharing
new ideas, experience, and progress. Researchers in different academic institutions,
universities, R&D establishments, and industries in India and abroad are continu-
ously investigating the above areas.

In response to our invitation, a very good number of papers pertaining to the
mentioned subject have been received from national as well as few from interna-
tional researchers. After the presentation of the papers in the above conference,
authors are invited to submit the full-length papers. Then, rigorous review of each
of the full papers was done by at least two learned reviewers. According to the
comments/suggestions of the reviewers, the papers are then revised/re-submitted by
the authors again. As such, 32 papers are finally accepted to be included in this book.
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It is sincerely hoped that the readers will find this book purposeful and chal-
lenging. Finally, we are sure that the present book, which is the outcome of the
above conference, will help in nurturing the new thinking and new research in all
areas of science and engineering research in general and to wave mechanics and
vibration in particular.

Rourkela, India S. Chakraverty
Jalpaiguri, India Paritosh Biswas
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Transverse Vibration of Thick
Triangular Plates Based on a Proposed
Shear Deformation Theory

K. K. Pradhan and S. Chakraverty

Abstract Natural frequencies of different thick triangular plates subject to classical
boundary conditions are found based on a proposed shear deformation plate theory in
this chapter. The stress distribution needs no shear correction factor in this proposed
plate theory. The numerical formulation is performed by means of Rayleigh–Ritz
method to obtain the generalized eigenvalue problem. The aim of this study is to find
the effect of different physical and geometric parameters on natural frequencies. New
results along with 3D mode shapes have been evaluated after the test of convergence
and validation with the available results.

Keywords Vibration · Triangular plate · Shear deformation theory · Rayleigh–ritz
method · 3D mode shapes

1 Introduction

Based on the importance of triangular plates in structural design and architecture,
the literature survey provides the research efforts on finding dynamic behavior of
triangular plates. Mirza and Bijlani [12] have depicted the natural frequencies and
mode shapes of cantilevered triangular plates with variable thickness using the finite
element technique. A highly accurate analytical solution (method of superposition)
has been proposed by Gorman [6–8] for free vibration of right triangular plates with
simply supported edge supports, with combinations of clamped-simply supported
boundary supports and different boundary conditions with one edge free, respec-
tively. Saliba [15] has given a highly accurate simplified solution to study the free
vibration of simply supported right triangular thin plates. An exhaustive study using
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2 K. K. Pradhan and S. Chakraverty

Rayleigh–Ritz method is provided by Singh and Chakraverty [18] to handle all sets
of classical edge supports in case of isotropic triangular plates. Wanji and Cheung
[21] have found the bending, vibration, and buckling of a refined triangular discrete
Kirchoff thin plate element (RDKT) in order to improve the results for the origi-
nal triangular discrete Kirchoff thin plate element (DKT). An approximate method
using Green function is developed by Sakiyama and Huang [14] for free vibration
of right triangular plates with variable thickness. Zhong [23] has applied a triangular
differential quadrature method to study free flexural vibration of isosceles triangular
Mindlin plates. Reddy’s third-order plate theory is used by Cheng and Batra [4] to
study buckling and steady-state vibrations of a simply supported FG polygonal plate
resting on a Winkler–Pasternak elastic foundation. Kang and Lee [10] have applied
nondimensional influence (Green’s) function in free vibration analysis of arbitrarily
shaped plates with clamped edges. Free vibration of cantilevered and completely free
isosceles triangular plates has been investigated by Cheung and Zhou [5] based on
exact three-dimensional elasticity theory. Moreover, very few authors have worked
especially on FG triangular plates.

Implication of shear deformation theory to the dynamic characteristics of plates
is also a major aspect of this investigation. So it is worth to address different studies
carried out on this scope. Two-variable refined plate theory was implemented by
Shimpi and Patel [16] for free vibration analysis of plates. Two new displacement-
based first-order shear deformation plate theories were introduced by Shimpi et al.
[17] to study the dynamic problems. Aydogdu [2] has proposed a new higher order
shear deformation laminated composite plate theory from 3D elasticity solutions by
using an inverse method. Various shear deformation theories have been implemented
by Xiang et al. [22] for the modeling of isotropic, sandwich, and laminated plates.
Flexural vibration of Lévy-type rectangular plates has been studied by Hosseini-
Hashemi et al. [9] within the framework of third-order shear deformation theory.
A new inverse tangent shear deformation theory (ITSDT) was presented by Thai et
al. [20] for the static, free vibration, and buckling analysis of laminated composite
and sandwich plates. A unified solution for arbitrary triangular laminated thin plates
with elastic boundary conditions is introduced by Lv and Shi [11] using Rayleigh–
Ritz method. Ansari et al. [1] have developed a variational differential quadrature
approach to study free vibration of arbitrary shaped thick functionally graded carbon
nanotube-reinforced composite (FG-CNTRC) plates based on the higher order shear
deformation theory (HSDT). Pradhan and Chakraverty [13] have given Rayleigh–
Ritz approximation to find the natural frequencies of only equilateral triangular plate
along with 3D mode shapes. In the present study, two different thick triangular
plates are being considered here with the same deformation theory in Rayleigh–Ritz
method.

In view of the above, the present investigation considers two right-angled trian-
gular plates. In particular, the first one assumes different perpendicular heights and
the second one is a particular case of right-angled triangular plate. The displacement
field is based on the generalized power-law exponent-based shear deformation plate
theory (PESDPT) andRayleigh–Ritz approach has been considered here to obtain the
generalized eigenvalue problem. New results for natural frequencies for the assumed
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plates are computed after checking the test of convergence and validation in special
cases. In addition, three-dimensional mode shapes can also be depicted for different
triangular plates.

2 Triangular Plate

In this section, a triangular plate can be completely determined by three numbers a,
b, and c in the Cartesian coordinate system, as shown in Fig. 1. Let us now apply
a transformation of coordinates from Cartesian (x, y) to natural coordinate system
(ξ, η) to generate a standard triangle as given in Eq. (1) [18].

ξ = (x − by
c )

a
, η = y

c
; x = aξ + bη, y = cη (1)

One may notice as truly mentioned in Singh and Chakraverty [18] that unlike
finite element methods, where one element is transformed into another element of
similar shape, we use Eq. (1) globally for the whole plate.

In the present investigation, we have considered the following triangular plates
and their specifications are clearly mentioned as below.

1. A right-angled triangle with angles 30◦, 60◦, and 90◦ is demonstrated in Fig. 2b.
Sides 1, 2, and 3 have the lengths as 1/

√
3, 1, and 2/

√
3, respectively.Accordingly,

we can find the values of θ = 0 and μ = 1/
√
3.

2. Second, Fig. 2b represents an isosceles trianglewith angles 30◦, 30◦, and120◦. The
nondimensionalized lengths of the sides 1, 2, and 3 are 1, 1, and

√
3, respectively,

with θ = −1/
√
3 and μ = √

3/2.

In these figures, the boundary conditions may very well be controlled by the assigned
edges 1, 2, and 3, respectively.

Fig. 1 Coordinate transformation of given generalized triangle onto the standard triangle [18]
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Fig. 2 Two different cases of thick triangular plates

3 Shear Deformation Plate Theory

Considering the deformation of the thick isotropic plate to be in the middle surface,
(x − y) plane based on generalized higher order shear deformation plate theory with
the similar assumptions to [2, 22] are as follows:

ux (x, y, z; t) = u(x, y; t) − z
∂w

∂x
+ f (z)φx (x, y; t)

uy(x, y, z; t) = v(x, y; t) − z
∂w

∂y
+ f (z)φy(x, y; t)

uz(x, y, z; t) = w(x, y; t)

(2)

where u, v, w, φx , and φy are five unknown displacement components of the middle
plane of the plate and f (z) denotes the transverse shear function to determine the
parabolic distribution of the transverse shear strains and stresses across the thickness.
After following literature on proposition of theories, we have concluded that the
mathematical function deciding the shear deformation theories may take varieties
of forms. Hence, present investigation assumes a power-law exponent-based shear
deformation plate theory (PESDPT)with the corresponding shape function as f (z) =
h
(
z
h

)2n+1 − (2n + 1)z
(
1
2

)2n
. In this shape function, n is a nonnegative integer which

plays a key role in determining various deformation theories and such assumption
is first of its kind in dealing with vibration analysis of thick right-angled triangular
plates.
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4 Mathematical Formulation

Assume the nonzero linear strains for the above displacement field of Eq. (2) as

εxx = ∂ux

∂x
= ∂u

∂x
− z

∂2w

∂x2
+ f (z)

∂φx

∂x
(3a)

εyy = ∂uy

∂y
= ∂v

∂y
− z

∂2w

∂y2
+ f (z)

∂φy

∂y
(3b)

γxy = ∂ux

∂y
+ ∂uy

∂x
=
(

∂u

∂y
+ ∂v

∂x

)
− 2z

∂2w

∂x∂y
+ f (z)

(
∂φx

∂y
+ ∂φy

∂x

)
(3c)

γyz = ∂uy

∂z
+ ∂uz

∂y
= f ′φy (3d)

γxz = ∂ux

∂z
+ ∂uz

∂x
= f ′φx (3e)

where εxx and εyy are the normal strains in x− and y− directions, respectively and
γxy , γyz , and γxz are the shear strains in x − y, y − z, and x − z planes, respectively.
Assuming the material constituents of the plate to obey the generalized Hooke’s law,
the stress–strain relationships can be written in matrix form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σxx

σyy

τxy
τyz
τxz

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎛

⎜
⎜⎜⎜
⎝

Q11 Q12 0 0 0
Q21 Q22 0 0 0
0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55

⎞

⎟
⎟⎟⎟
⎠

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

εxx
εyy
γxy

γyz

γxz

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(4)

where σxx , σyy are the normal stresses; τxy , τyz , and τxz are the shear stresses. The
reduced stiffness coefficients, Qi j (i, j = 1, 2, 4, 5, 6) are then given by

Q11 = Q22 = E

1 − ν2
, Q12 = Q21 = νE

1 − ν2
and

Q44 = Q55 = Q66 = G = E

2(1 + ν)

Here, E , G, and ν are Young’s modulus, shear’s modulus, and Poisson’s ratio of the
material constituent, respectively.We can nowdefine the strain energy (U) and kinetic
energy (T) for the free vibration of isotropic plate by considering the constitutive
relations.

U = 1

2

∫

�

⎡

⎢
⎣

h/2∫

−h/2

(
σxxεxx + σyyεyy + τxyγxy + τyzγyz + τxzγxz

)
dz

⎤

⎥
⎦ dxdy (5)
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T = 1

2

∫

�

⎡

⎢
⎣

h/2∫

−h/2

ρ

{(
∂ux

∂t

)2

+
(

∂uy

∂t

)2

+
(

∂uz

∂t

)2
}

dz

⎤

⎥
⎦ dxdy (6)

Substituting σi i (i = x, y) and τi j (i, j = x, y, z) in Eq. (5), it becomes

U = 1

2

∫

�

[ h/2∫

−h/2

{
Q11

(
ε2xx + ε2yy

)+ 2Q12εxxεyy + Q66γ
2
xy

+Q44γ
2
yz + Q55γ

2
xz

}
dz

]
dxdy (7)

Substituting the stress–strain relations in Eq. (7), the strain energy (U) becomes

U = 1

2

∫

�

[

A11

{(
∂u

∂x

)2
+
(

∂v

∂y

)2}

− 2B11

(
∂u

∂x

∂2w

∂x2
+ ∂v

∂y

∂2w

∂y2

)

+2C11

(
∂u

∂x

∂φx

∂x
+ ∂v

∂y

∂φy

∂y

)
+ D11

⎧
⎨

⎩

(
∂2w

∂x2

)2

+
(

∂2w

∂y2

)2
⎫
⎬

⎭

+E11

{(
∂φx

∂x

)2
+
(

∂φy

∂y

)2}

− 2F11

(
∂φx

∂x

∂2w

∂x2
+ ∂φy

∂y

∂2w

∂y2

)

+2A12
∂u

∂x

∂v

∂y
− 2B12

(
∂u

∂x

∂2w

∂y2
+ ∂v

∂y

∂2w

∂x2

)

+ 2C12

(
∂u

∂x

∂φy

∂y
+ ∂v

∂y

∂φx

∂x

)

+2D12
∂2w

∂x2
∂2w

∂y2
+ 2E12

∂φx

∂x

∂φy

∂y
− 2F12

(
∂φx

∂x

∂2w

∂y2
+ ∂φy

∂y

∂2w

∂x2

)

+A66

(
∂u

∂y
+ ∂v

∂x

)2
− 4B66

(
∂u

∂y
+ ∂v

∂x

)
∂2w

∂x∂y

+2C66

(
∂u

∂y
+ ∂v

∂x

)(
∂φx

∂y
+ ∂φy

∂x

)
+ 4D66

(
∂2w

∂x∂y

)2

+ E66

(
∂φx

∂y
+ ∂φy

∂x

)2

−4F66

(
∂φx

∂y
+ ∂φy

∂x

)
∂2w

∂x∂y
+ H44φ

2
y + H55φ

2
x

]

dxdy (8)

and taking time derivative of displacement components leads to the kinetic energy
(T) as

T = 1

2

∫

�

{

ρ0

[(
∂u

∂t

)2

+
(

∂v

∂t

)2

+
(

∂w

∂t

)2
]

− 2ρ1

(
∂u

∂t

∂2w

∂x∂t
+ ∂v

∂t

∂2w

∂y∂t

)

+ρ2

[(
∂2w

∂x∂t

)2

+
(

∂2w

∂y∂t

)2
]

+ 2ρ1
0

(
∂u

∂t

∂φx

∂t
+ ∂v

∂t

∂φy

∂t

)
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+ρ2
0

[(
∂φx

∂t

)2

+
(

∂φy

∂t

)2
]

− 2ρ1
1

(
∂φx

∂t

∂2w

∂x∂t
+ ∂φy

∂t

∂2w

∂y∂t

)}

dxdy (9)

The extensional, coupling, bending, and transverse shear rigidities (as given in
Eq. (8)) for the higher order shear deformation theory can be expressed as

(Ai j , Bi j ,Ci j ) =
h/2∫

−h/2

Qi j (1, z, f (z)) dz; where i, j = 1, 2, 6

(Di j , Ei j , Fi j ) =
h/2∫

−h/2

Qi j (z
2, f 2, z f (z)) dz; where i, j = 1, 2, 6

Hkk =
h/2∫

−h/2

Qkk f
′2 dz; where k = 4, 5

whereas the cross-sectional inertial coefficients in Eq. (9) are written as

ρi =
h/2∫

−h/2

ρzi dz; where i, j = 0, 1, 2

ρ
j
i =

h/2∫

−h/2

ρzi f j dz; where i = 0, 1; j = 1, 2.

In particular, the displacement components can be assumed as harmonic type as

u(x, y, t) = U (x, y) exp(iωt)

v(x, y, t) = V (x, y) exp(iωt)

w(x, y, t) = W (x, y) exp(iωt)

φx (x, y, t) = 1

a
�x (x, y) exp(iωt)

φy(x, y, t) = 1

c
�y(x, y) exp(iωt)

(10)

In Eq. (10), i = √−1; U (x, y), V (x, y), W (x, y), �x (x, y), and �y(x, y) are
the respective amplitudes for these displacement components for free vibration of
isotropic plate and the exponential terms indicate the harmonic type variationwhereω

is the natural frequency. The mathematical manipulation reveals that the coefficients
associated with Bi j , Ci j , ρ1, and ρ1

0 will be zero since
∫ h/2
−h/2 z dz and

∫ h/2
−h/2 f (z) dz

yield the value as zeroes irrespective of the shear deformation theory considered.
Substituting the displacement components of Eq. (10) in Eqs. (8) and (9) yields the
maximum strain energy (Umax ) and the maximum kinetic energy (Tmax ) as stated
below
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Umax = 1

2

∫

�

[

A11

{(
∂U

∂x

)2

+
(

∂V

∂y

)2
}

+ 2A12
∂U

∂x

∂V

∂y
+ A66

(
∂U

∂y
+ ∂V

∂x

)2

+D11

{(
∂2W

∂x2

)2

+
(

∂2W

∂y2

)2
}

+ 2D12
∂2W

∂x2
∂2W

∂y2
+ 4D66

(
∂2W

∂x∂y

)2

+ E11

a2

{(
∂�x

∂x

)2

+ μ2
(

∂�y

∂y

)2
}

+ 2E12

ab

∂�x

∂x

∂�y

∂y
+ E66

a2

(
∂�x

∂y
+ μ

∂�y

∂x

)2

−2F11
a

(
∂�x

∂x

∂2W

∂x2
+ μ

∂�y

∂y

∂2W

∂y2

)
− 2F12

a

(
∂�x

∂x

∂2W

∂y2
+ μ

∂�y

∂y

∂2W

∂x2

)

−4F66
a

(
∂�x

∂y
+ μ

∂�y

∂x

)
∂2W

∂x∂y
+ H44

a2

(
�2

x + μ2�2
y

)]
dxdy (11)

Tmax = 1

2

∫

�

[

ρ0

(
U2 + V 2 + W 2

)
+ ρ2

{(
∂W

∂x

)2
+
(

∂W

∂y

)2}

+ ρ20
a2

(
�2
x + μ2�2

y

)

−2ρ11
a

(
�x

∂W

∂x
+ μ�y

∂W

∂y

)]

dxdy (12)

Introducing the transformation of coordinates as given in Eq. (1), the maximum
strain and kinetic energies take the following forms:

Umax = Dac

2a4

∫

�

[

12δ2
{(

∂U

∂ξ

)2

+
(

−θ
∂V

∂ξ
+ 1

μ

∂V

∂η

)2

+ 2ν
∂U

∂ξ

(
−θ

∂V

∂ξ
+ 1

μ

∂V

∂η

)

+
(
1 − ν

2

)(
−θ

∂U

∂ξ
+ 1

μ

∂V

∂η
+ ∂V

∂ξ

)}
+
{(

∂2W

∂ξ2

)2

+
(

θ2
∂2W

∂ξ2
− 2θ

μ

∂2W

∂ξ∂η
+ 1

μ2

∂2W

∂η2

)2

+ 2ν
∂2W

∂ξ2

(
θ2

∂2W

∂ξ2
− 2θ

μ

∂2W

∂ξ∂η

+ 1

μ2

∂2W

∂η2

)
+ 2(1 − ν)

(
θ

∂2W

∂ξ2
+ 1

μ

∂2W

∂ξ∂η

)2}
+ 12C1

{(
∂�x

∂ξ

)2

+
(

−θ
∂�y

∂ξ
+ 1

μ

∂�y

∂η

)2

+ 2ν

μ

∂�x

∂ξ

(
− θ

∂�y

∂ξ
+ 1

μ

∂�y

∂η

)

+1 − ν

2

[

−θ
∂�x

∂ξ
+ 1

μ

(
∂�x

∂η
+ ∂�y

∂ξ

)2
]}

− 24C2

{
∂�x

∂ξ

∂2W

∂ξ2

+ 1

μ

(
−θ

∂�y

∂η
+ 1

μ

∂�y

∂ξ

)(
θ2

∂2W

∂ξ2
− 2θ

μ

∂2W

∂ξ∂η
+ 1

μ2

∂2W

∂η2

)

+2ν

[
∂�x

∂ξ

(
θ2

∂2W

∂ξ2
− 2θ

μ

∂2W

∂ξ∂η
+ 1

μ2

∂2W

∂η2

)
+ 1

μ

(
− θ

∂�y

∂η
+ 1

μ

∂�y

∂ξ

)
∂2W

∂ξ2

]

+2(1 − ν)

(
−θ

∂�x

∂ξ
+ 1

μ

(
∂�x

∂η
+ ∂�y

∂ξ

))(
−θ

∂2W

∂ξ2
+ 1

μ

∂2W

∂ξ∂η

)}

+6C3(1 − ν)δ2

(

�2
x + �2

y

μ2

)]

dξdη (13)
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Tmax = ρhω2ac

2

∫

�

[

(U2 + V 2 + W 2) + 1

12δ2

{(
∂W

∂ξ

)2
+
(

−θ
∂W

∂ξ
+ 1

μ

∂W

∂η

)2}

+C1

δ2

(

�2
x + �2

y

μ2

)

− 2C2

δ2

{
�x

∂W

∂ξ
+ 1

μ

(
− θ

∂W

∂ξ
+ 1

μ

∂W

∂η

)}]

dξdη (14)

where θ = b/c,μ = c/a, and δ = a/h. The coefficients (Ci , i =1, 2, and3) involved
inEq. (13)maybe defined in terms of nondimensional thickness (−1/2 ≤ z̄ = z/h ≤
1/2) as

C1 =
1/2∫

−1/2

[

z̄2n+1 − (2n + 1)z̄

(
1

2

)2n
]2

dz̄

C2 =
1/2∫

−1/2

{

z̄2n+2 − (2n + 1)z̄2
(
1

2

)2n
}

dz̄

C3 =
1/2∫

−1/2

(2n + 1)2
{

z̄2n −
(
1

2

)2n
}2

dz̄

5 Rayleigh–Ritz Approximation

In this numerical approximation, the amplitudes of displacements are expressed as
linear combination of simple algebraic polynomials generated from Pascal’s triangle
as given below.

U =
n∑

i=1

ciϕ
u
i , V =

n∑

j=1

d jϕ
v
j , W =

n∑

k=1

ekϕ
w
k , �x =

n∑

l=1

glϕ
1
l , �y =

n∑

m=1

hmϕ2
m

where ci , d j , ek , gl , and hm are the unknown constant coefficients to be determined
and ϕu

i , ϕ
v
j , ϕ

w
k , ϕ

1
l , and ϕ2

m are the admissible functions corresponding to the ampli-
tudes;U , V ,W , �x , and �y , respectively. The admissible functions must satisfy the
essential boundary conditions and can be represented as

ϕu
i (x, y) = a f ψ

u
i (x, y), i = 0, 1, 2, . . . , n

ϕv
j (x, y) = a f ψ

v
j (x, y), j = 0, 1, 2, . . . , n

ϕw
k (x, y) = a f ψ

w
k (x, y), k = 0, 1, 2, . . . , n

ϕ1
l (x, y) = a f ψ

1
l (x, y), l = 0, 1, 2, . . . , n

ϕ2
m(x, y) = a f ψ

2
m(x, y), m = 0, 1, 2, . . . , n

(15)
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The function f = ξ pηq (1 − ξ − η)r with the exponents p, q, and r , which con-
trol various BCs.1 The parameter p = 0, 1, or 2 according as the side ξ = 0 is free
(F), simply supported (S), or clamped (C). Similar interpretations can be given to
the parameters q and r corresponding to the sides η = 0 and ξ + η = 1, respec-
tively. Then the Rayleigh Quotient (ω2) can be obtained by equating Umax and Tmax .
Taking the partial derivatives of the Rayleigh Quotient with respect to the constant
coefficients involved in the admissible functions, we have

∂ω2

∂ci
= 0; i = 1, 2, . . . , n

∂ω2

∂d j
= 0; j = 1, 2, . . . , n

∂ω2

∂ek
= 0; k = 1, 2, . . . , n

∂ω2

∂gl
= 0; l = 1, 2, . . . , n

∂ω2

∂hm
= 0; m = 1, 2, . . . , n.

This will yield the governing equation for the free vibration of isotropic plate in the
form of generalized eigenvalue problem as mentioned below

([K] − λ2[M]) {�} = 0 (16)

Here, [K] and [M] are the stiffness and inertia matrices, respectively, and {�} is
the column vector of unknown constant coefficients. The eigenvalues (λ) in Eq. (16)
are the nondimensional frequencies for the concerned free vibration problem. In the
present study, free vibration eigenfrequencies obtained from this eigenvalue problem
are evaluated in further section by assuming different combinations of boundary
conditions. A comparison of nondimensional frequencieswith the available literature
is also carried out for the validation after checking a test of convergence.

6 Numerical Results

The convergence of the first six nondimensional frequencies has been checked in
Table1with increase in number of polynomials involved in displacement components
along with n = 0. It may be observed that the natural frequencies converge gradually
with increase in n. It is nowworth to report the new results in Tables2 and 3 based on
different parameters mentioned in the formulation. In these computations, both the
triangular plates as mentioned in Fig. 2 are considered with C-S-F boundary supports

1Boundary Conditions.
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Table 1 Convergence and comparison of first six nondimensional frequencies of thick F-C-F
triangular plates
Plate
type

δ n Mode

1 2 3 4 5 6

Fig. 2a 1000 2 20.3927 78.1541 9064.6489 17463.9348 30820.6806 34025.4136

5 17.2498 61.3124 124.1624 166.2471 403.5102 6832.6244

8 17.0642 51.5644 93.2703 156.6905 263.2885 335.0134

10 17.0598 51.0436 89.2063 154.3559 224.5704 274.2444

13 16.9793 50.7287 88.2901 110.4154 202.0650 263.1899

15 16.9768 50.6990 87.6855 110.4142 202.0283 249.3513

18 16.9720 49.7516 87.6317 108.5587 181.1437 210.5853

Singh and
Chakraverty
[18]

16.960 49.737 87.604 108.46 180.78 –

Singh and
Saxena [19]

16.948 49.712 87.338 – – –

5 2 19.5029 45.3232 65.5861 87.3197 154.1034 170.1271

5 16.6564 34.1631 52.2983 61.4083 77.9497 92.9045

8 16.4978 32.6346 45.0616 59.3493 69.2767 74.7328

10 16.4933 31.6979 44.6034 57.9253 67.4202 72.6854

13 16.4170 31.5352 44.3489 57.6123 65.9876 72.1428

15 16.9768 50.6990 87.6855 110.4142 202.0283 249.3513

18 16.4096 31.1154 43.6617 56.8823 65.0577 71.7023

Fig. 2b 1000 2 6.9213 59.8125 4280.1638 9831.4392 25667.3985 37102.6638

5 6.0356 26.4031 56.8614 104.2010 422.7189 2626.8857

8 5.8848 22.6825 49.6015 72.8403 142.4618 216.5425

10 5.8284 21.9921 44.8665 68.4445 119.0248 153.6323

13 5.7494 21.8362 38.8414 59.2241 100.3980 149.2491

15 5.7368 21.8189 38.7040 57.2716 94.8093 142.3618

18 5.7167 21.5245 37.4538 56.0593 74.6843 120.6403

Mirza and
Bijlani [12]

5.7667 21.100 35.950 54.143 67.425 102.56

Bhat [3] 5.7170 21.525 37.455 56.061 74.625 120.65

Singh and
Chakraverty
[18]

5.7167 21.524 37.456 56.141 74.769 121.16

5 2 6.8155 21.4008 49.1572 50.3630 128.3370 185.5133

5 5.9611 13.1344 24.5546 32.7670 44.5314 46.1200

8 5.8131 12.3677 21.2212 30.2262 37.0275 40.5099

10 5.7592 11.8457 20.7237 28.0859 35.9482 36.7639

13 5.6825 11.6816 20.5497 27.7580 33.2419 35.3455

15 5.6704 11.4236 20.5413 27.1825 33.0288 34.8645

18 5.6509 11.2123 20.2575 26.7289 31.9753 34.5557
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Table 2 First six nondimensional frequencies of C-S-F right angled triangular plate with different
δ and n

n δ Mode

1 2 3 4 5 6

0 1000 26.3262 69.9065 126.3835 151.0697 230.2337 268.0560

100 26.3196 69.8720 126.2850 150.9336 229.8946 267.6597

10 25.6741 66.6537 117.4568 138.8612 154.3847 164.2517

5 23.9536 59.0575 77.1924 82.1259 99.0618 103.6633

1 1000 26.3260 69.9053 126.3812 151.0773 230.2371 267.8897

100 26.3076 69.5813 126.1510 150.7603 228.9596 259.5213

10 22.9766 50.7963 98.6327 124.9565 154.3847 164.2517

5 16.2340 52.7556 77.1924 82.1259 84.3379 101.1012

5 1000 26.3261 69.9048 126.3811 151.0649 230.2308 268.0705

100 26.3174 69.9241 126.3010 150.5828 229.7825 264.7317

10 25.6563 66.6495 117.4881 138.8225 154.3847 164.2517

5 23.9371 59.0518 77.1924 82.1259 99.0836 103.6633

10 1000 26.3262 69.9065 126.3835 151.0697 230.2337 268.0560

100 26.3196 69.8720 126.2850 150.9336 229.8946 267.6597

10 25.6741 66.6537 117.4568 138.8612 154.3847 164.2517

5 23.9536 59.0575 77.1924 82.1259 99.0618 103.6633

50 1000 26.3262 69.9065 126.3835 151.0697 230.2337 268.0560

100 26.3196 69.8720 126.2850 150.9336 229.8946 267.6597

10 25.6741 66.6537 117.4568 138.8612 154.3847 164.2517

5 23.9536 59.0575 77.1924 82.1259 99.0618 103.6633

with different δ and power-law indices (n) of PESDPT. It can be observed that the
results follow an ascending trend with an increase in δ for a fixed n, whereas these
frequencies are gradually increasing with n > 1 andmerge with the solution at n = 0
for higher values of n. It is also worth mentioning that the plates may provide the
solution for corresponding thin plates for n = 0 and also for higher values of n.
Looking into present results, one may easily evaluate natural frequencies of different
triangular plates with various classical edge conditions. First six three-dimensional
mode shapes of C-S-F isosceles triangular plate with n = 100 and δ = 5 can also be
depicted in Fig. 3.
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Table 3 First six nondimensional frequencies of C-S-F isosceles triangular plate with different δ

and n

n δ Mode

1 2 3 4 5 6

0 1000 19.0451 46.9083 81.8150 127.7056 136.2504 228.6029

100 19.0416 46.8930 81.7715 127.5945 136.1390 228.3057

10 18.6984 45.4371 77.7313 117.7430 124.9959 126.2656

5 17.7530 41.7137 62.4980 68.3409 71.3868 89.6326

1 1000 19.0429 46.9047 81.8141 127.6891 136.1965 228.8543

100 18.8632 46.8756 81.6949 125.8759 133.2544 242.1342

10 18.5502 57.0396 57.0396 116.0060 124.9959 142.7736

5 17.3846 34.4807 59.4301 62.4980 71.3868 89.6326

5 1000 19.0448 46.9100 81.8159 127.7077 136.2519 228.6361

100 19.0375 46.8746 81.7419 127.5040 135.9637 229.7807

10 18.6953 45.4358 77.7322 117.7026 124.9959 126.2499

5 17.7495 41.7143 62.4980 68.3409 71.3868 89.6326

10 1000 19.0451 46.9083 81.8150 127.7056 136.2504 228.6029

100 19.0416 46.8930 81.7715 127.5945 136.1390 228.3057

10 18.6984 45.4371 77.7313 117.7430 124.9959 126.2656

5 17.7530 41.7137 62.4980 68.3409 71.3868 89.6326

50 1000 19.0451 46.9083 81.8150 127.7056 136.2504 228.6029

100 19.0416 46.8930 81.7715 127.5945 136.1390 228.3057

10 18.6984 45.4371 77.7313 117.7430 124.9959 126.2656

5 17.7530 41.7137 62.4980 68.3409 71.3868 89.6326
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Fig. 3 First six 3D mode shapes of C-S-F isosceles triangular plate with n = 50 and δ = 5
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7 Conclusions

The present investigation is based on finding natural frequencies of thick triangular
plates by using Rayleigh–Ritz method. Instead of finding eigenfrequencies for all
sets of classical edge supports, we have computed only for C-S-F triangular plates to
address the convenience of using all edge supports. The following conclusions may
be drawn based on the computed results. The natural frequencies attain the conver-
gence with an increase in the number of polynomials in displacement components in
Rayleigh–Ritz method. The results follow ascending pattern with increase in δ for a
fixed n. These frequencies are gradually increasing with n > 1 and become stagnant
for higher values of n. It is also worth mentioning that the plates may provide the
solution for corresponding thin plates for n = 0 and also for higher values of n.
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Study on Some Recent Earthquakes
of Sikkim Himalayan Region
and Construction of Suitable Seismic
Model: A Mathematical Approach

Ajit De

Abstract Sikkim Himalayan region lies between Nepal–India border in the west
and the Bhutan Himalaya in the east. The region is known to be characterized by
strike-slip motion on certain deep-rooted faults. In the past, the region has expe-
rienced several devastating earthquakes, namely April 25, 2015 Nepal earthquake
(M: 7.8); September 18, 2011 Mangan (Sikkim) earthquake (M: 6.9); February 14,
2006 Sikkim earthquake (M: 5.3), and the like. The present study mainly focuses
on few major shocks and their source mechanism to explain properly the process of
tectonics. A numerically stable computational scheme, using method of eigenfunc-
tion expansion has been used in the study to compute surface response or theoretical
seismogram in a layered vertically stratifiedmedia overlying a half-space. Simple dis-
location source model has been considered. The transverse (SH) and vertical (P-SV)
components of displacement field have been computed exactly as summed modes by
propagatormatrix approach usingRunga–Kuttamethod of order 4. The present result
has been compared with the observed seismograms. The overflow error appearing
in the numerical computation has been prevented by approximating layer matrices
suitably or using generalized R/T (Reflection and Transmission) coefficients. The
numerical result has been represented here graphically. The study has an advantage
to get an idea of real earth structure or seismic source model by an inverse iterative
technique.
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1 Introduction

The Sikkim Himalaya region is recognized as a part of seismically active “Alpide-
Himalayan global seismic belt” and lies between Nepal–India border in the west and
the Bhutan Himalaya in the east. Sikkim Himalayan wedge is the most appropriate
region to explore the first-order kinematic behavior of the active Himalayan wedge
and is characterized by two “dominant” structures that are most likely to have built
taper in the wedge and driven the wedge forward into the foreland [1, 2]. The region
has experienced many earthquakes of magnitude 5.0 and above, viz, 1988 Nepal–In-
dia border earthquake (M 6.4); February 14, 2006 Phodong (Sikkim) earthquake (M
5.3); May 20, 2007 West Sikkim earthquake (M 5.0); September 18, 2011 Mangan
(Sikkim) earthquake (M 6.9); April 25, 2015 Nepal earthquake (M 7.8), etc. The
region comes under high seismic hazard zone designated as Zone IV according to
seismic hazard zonation of India (Bureau of Indian Standards, 2002) and broadly
associated with seismic intensity VIII on the modified Mercalli intensity scale. The
Himalayan belt is one of the youngest orogenic and has been caused by continuous
collision of Indian plate with the Eurasian plate since early Eocene time. The north-
wardmovement of the Indian plate against the Tibet block of Eurasian plate hasmade
Himalaya prone to tectonic activity [3]. The Sikkim Himalayan region is included
in the eastern subdivision of the Himalayan belt with 7.8 mm/yr slip rate [4]. The
major cause of seismic activity of the region is due to tectonic slippage of large rock
masses along the region of fracture or fault when the accrued strain energy crosses
the bearing capacity of the rock. The seismicity of the region is considered to be a
result of collision tectonics and correlated with the Main Boundary Thrust (MBT)
and Main Central Thrust (MCT) [5]. The MCT passes through Gangtok, Mangan,
andNorth Sada. Earthquakes of moderate magnitude are found to occur in this region
in a regular interval and the region is found to be less vulnerable in compared to the
rest of the Himalaya.

It is known that the ground displacement and acceleration or intensity of an earth-
quake at a place depends on the magnitude, focal distance, duration, underlying soil
structure, and the like. In the present study, the real earthquake has been simulated
as a point or finite source and the assumed source is buried. An elastic half-space
is a simple model of earth. But earth’s interior is inhomogeneous and divided into
various inhomogeneous layers, including the crust with nonuniform P- and S-wave
velocities. So, it is the target of the present study to construct efficient models which
include earth’s inhomogeneity, source geometry, and travel time of seismic waves.

The Ingate et al. [6] proposed model for the calculation of theoretical or syn-
thetic SH-seismogram in a laterally homogeneous layeredmedium for buried sources
which was based on Harkrider [7] and the extension of the reflectivity method of
Kind [8, 9]. The spectral representation of the Love wave operator was studied by
Kazi [10]. He obtained the exact form of the eigenvalues both for a finite layer and
in case of lowest layer, extends to infinity. It is very hard to suggest any general
method to compute synthetic seismogram in a vertically inhomogeneous medium,
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like wave number integration or branch line integration as in the case of homoge-
neous medium, following Herrmann [11]. Energy integrals associated with surface
waves—Love and Rayleigh, are useful in the computation of synthetic seismogram
at large distance from the source [12]. The wave number integration method [13]
and reflectivity method [8] are suitable for homogeneous elastic earth models. Apsel
and Luco’s [13] algorithm uses reflection–transmission matrix suggested by Kennett
and Kerry [14] and Kennett [15] and avoids numerical instability that arises due to
growing exponential terms. Takeuchi and Saito’s [16] numerical scheme avoids the
necessity of sub-layering in case of vertically inhomogeneous medium. The classical
Haskell’s propagator matrix method [17] and Chen’s [18] algorithm are only suitable
for computation of normal mode solution in homogeneous layered earth models.

The method used in the study includes an exact evaluation by using Reflection—
Transmission coefficients. The advantage of the present complete eigenfunction
expansion form that of Green’s function for the analysis is that the formulation
itself becomes independent of the number of layers and the scattering waves can be
decomposed into the modes for the spectra in the layered medium. In the present
study, the sphericity of the earth has been ignored and it has been considered as a
four-layer half-space model with inhomogeneous fourth layer. The source is a buried
time-dependent point source. The approximate displacement field associatedwith the
assumed source model has been presented at large distance as summed modes.

2 Formulation of the Problem and Basic Equations

The structure of the earth’s interior is a layered media. This inspires seismologists
to model earth as a system of n parallel and vertically stratified media with the
elastic parameters in each layer as either constants or some function of depth. In
the present study, a four-layer half-space model (Fig. 1) with inhomogeneous fourth
layer (ModifiedActonmodel [19], (Fig. 2)) has been considered. The source has been
considered at a depth h below the surface as a time-dependent stress discontinuity
or a point source. The displacement–stress vectors (U j

p(z, h, k) and D j
p(z, h, k), p =

PSV or SH) in the jth layer satisfy the continuity condition at the jth interface and the
stress vanishes on the free surface. The radiation condition at infinity is also satisfied
by the seismic wave field.

A set of a finite number of wave numbers (kn, n = 0, 1, 2, . . . , M(ω)) is now
evaluated by using the stress–free boundary condition on the surface for a given
frequencyω. Shooting method, which is similar to that of bisection method, has been
used here to evaluate nonlinear equations [Appendix 1]. The eigen displacements,
corresponding to each pair of values of (ω, kn), are then evaluated. The theory of the
partial differential equation suggests that the spectrum of surface wave dispersion
equation consists of a finite number of real discrete eigen spectrum and continuous
eigen spectrum.
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Fig. 1 Four-layer Half-space model of Sikkim (modification of Acton model [19]) with inhomo-
geneous fourth layer and source at a depth 49.9 km

Fig. 2 P-wave velocity at
different depths

The displacement field (Aki and Richards [20] and Appendix 2) associated to the
Love wave component at large distances (omitting the continuous eigen spectrum

part) from a point force
→
F exp(−iωt) at r = 0, z = h, can be expressed as

uLove = e−iωt
∑

n

i( fy cos φ − fx sin φ)Wn(ω, kn , h)

8cUL I
(1)
L

√
2

πknr
[Wn(ω, kn , z)

∧
φ] exp(i(knr + π/4))

(1)

where
→
F = ( fx , fy, fz),

∧
φ is the unit vector in φ direction, and Wn(ω, kn, z) is the

eigenfunction corresponding to the nth mode.

c = Phase velocity = ω/k

UL = Group velocity = ∂ω

∂k
= I (2)

L

cI (1)
L
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I (1)
L = 1

2

∞∫

0

ρ(z)[W (ω, kn, z)]2dz and I (2)
L = 1

2

∞∫

0

μ(z)[W (ω, kn, z)]2dz (2)

ρ(z) is the density and λ(z) and μ(z) are the elastic parameters of the medium.
The similar expression for the Rayleigh wave can be expressed as

uRayleigh = e−iωt
∑

n

i
fzVn(ω, kn, h) + ( fx cosφ + fy sin φ)Un(ω, kn, h)

8cUR I
(1)
R

√
2

πknr

x[Un(ω, kn, z) exp(−iπ/4)
∧
r +Vn(ω, kn, z) exp(iπ/4)

∧
z] exp(iknr) (3)

where

c = Phase velocity = ω/k

UR = Group velocity = ∂ω

∂k
= I (2)R + I (3)R /2k

cI (1)R

, I (1)R = 1

2

∞∫

0

ρ(z)[U2(ω, kn , z) + V 2(ω, kn , z)]dz

I (2)R = 1

2

∞∫

0

[(λ(z) + 2μ(z))U2(ω, kn , z) + μ(z)V 2(ω, kn , z)]dz

I (3)R =
∞∫

0

[λ(z)U (ω, kn , z)
dV (ω, kn , z)

dz
− μ(z)V (ω, kn , z)

dU (ω, kn , z)

dz
]dz (4)

3 Discussions

The seismic study presents the earth’s interior as a layered homogeneous or inhomo-
geneous medium. This leads to model earth, for the present study as a system of “n”
parallel and vertically stratified medium where elastic parameters of each layer are
either constant or some function of depth. The inhomogeneity in the present earth
model can be modeled by subdividing the inhomogeneous layer in the medium into a
finite number of isotropic sub-layerswith small values of layer thickness and decreas-
ing values of layer parameters up to the next homogeneous layer above it so that the
result converges. But one disadvantage in further sub-layering is that it increases the
possibility of overflow error in numerical computation and is an important constraint
to get the surface response for the present model. The methods involving the use of
the technique of normalization of eigenfunctions and the Reflection/Transmission
coefficients to exclude the growth terms have been found to reduce the numerical
instability up to certain limits. The vertical inhomogeneity in the jth layer (here j= 4)
for the present model has been resolved by solving the following ordinary differential
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Fig. 3 Triangular source

equation of first-order by Runge–Kutta method of order 4 in the jth layer.

d

dz

(
U j

p(z, h, k)

D j
p(z, h, k)

)
= A

(
U j

p(z, h, k)

D j
p(z, h, k)

)
, (p = PSV or SH) (5)

where A is either a 4 × 4 or 2 × 2 matrix, respectively, representing P-SV and
SH-wave in the jth layer [21].

In Fig. 1, a vertically stratified four-layer half-space inhomogeneous model of
Sikkim has been considered and the source (Fig. 3) is in the inhomogeneous layer.
The source layer has been further subdivided here into two sub-layers through the
source. Simple computer programming with the numerical scheme computes the
displacement field (Fig. 4). The vertical and horizontal components of displacement
field as computed in Fig. 4 nearly agrees with the results as recorded at Adampool,
East Sikkim, 100 km away from the epicenter (Fig. 4.1, p. 29, [22]). Figure 5 rep-
resents the sum modes and first three modes of the vertical displacement field. It is
evident that amplitude gradually decreases in the higher modes from the fundamental
and the fundamental mode dominates. The displacement spectra (Fig. 6) due to the
source model as represented in Fig. 3 decay as ω−2. The advantage of the present
study is that it includes the inhomogeneity of the earth and can be extended to model
real earth by introducing more inhomogeneity in the model. The study also can be
extended to analyze future damages.

A systematic and efficient computational scheme has been developed for the
computation of synthetic/theoretical seismogram associated with realistic seismic
source model of earthquake in Sikkim Himalayan region. The synthetic seismogram
or surface responses as evaluated due to the assumed source model are in accordance
with the standard available results.

Acknowledgements The work was supported financially by U.G.C., NewDelhi, India underMRP
(Sanction No. F PSW-200/15-16 (ERO)).

Appendix 1

The free elastodynamics equation for an isotropic multilayered half-space can be

expressed in terms of three-dimensional displacement vector,
→
u (x, y, z; t) as
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Fig. 4 Vertical and
horizontal components of the
displacement field as
computed at the station
Adampool, East Sikkim at a
distance 100 km from the
epicenter due to the main
shock (M 6.9) of the
September 18, 2011 Sikkim
earthquake with source at a
depth 49.9 km below the
surface
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Fig. 5 Sum modes and first three modes of the vertical displacement field

Fig. 6 Displacement spectra
of the main shock due to the
triangular source model
(Fig. 3)

→∇ [(λ j + 2μ j )
→∇ .

→
u ] − →∇ ×[μ j →∇ × →

u ] + 2[(→∇ μ j →∇ )
→
u + →∇ μ j × (

→∇ × →
u )] = ρ j ∂2

→
u

∂t2
for j = 1, 2, 3, . . . ,N,N + 1

(6)

where the depth z( j) of the lower jth layer boundary satisfies the relation

0 = z(0) < z(1) < · · · < z(N ) < z(N+1) = +∞ (7)

and
→∇ ≡ (

∧
i ∂

∂x + ∧
j ∂

∂y + ∧
k ∂

∂z ), λ
j , μ j and ρ j are, respectively, the elastic moduli and

density of the jth layer.
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The dynamic displacement–stress vectors (U j
p(z, h, k) and D j

p(z, h, k), p = PSV
or SH) in the jth layer of a layered half-space media can be expressed in terms of
down and up going P and S waves by using modified R/T coefficients [12] as

(
U j

p(z, h, k)

D j
p(z, h, k)

)
=

(
E j
11 E j

12

E j
21 E j

22

)(
�

j
d(z) 0
0 �

j
u(z)

)(
C j
d (h)

C j
u (h)

)
(8)

where C j
d (h) and C j

u (h) are, respectively, the down and up going coefficients and
E j as layer matrix in the jth layer. A time-dependent stress discontinuity 	(t), at a
depth “h” below the surface has been considered in the source layer S as

(
US+

p (h)

DS+
p (h)

)
=

(
US−

p (h)

DS−
p (h)

)
+

(
0
	(t)

)
, (p = PSV or SH) (9)

where S+ and S− are, respectively, the sub-layers below and above the source.
Now the surface of the layered media is stress-free and applying the stress-free

boundary conditions at the surface z(0) = 0, the secular equation in the layered media
can be expressed as

(I − R(0)
u R

(1)
d ) = 0 (10)

where I is either a 2 × 2 identity matrix (Rayleigh wave) or 1 (Love wave).
For a given frequency (ω), only a set of finite number of wave numbers

(kn, n = 0, 1, 2, . . . , M(ω)), are the roots of the secular function (I − R(0)
u R

(1)
d )

and the eigen displacements W (ω, kn, z) can be evaluated at the roots of the secular
function.

Appendix 2

In a multilayered half-space, the differential equation satisfied by the transformed
displacement field (U(ω, k), V (ω, k), W (ω, k)) in the cylindrical coordinate system
is singular in nature. From the theory of the partial differential equation, it follows
that the spectrum of surface wave dispersion equation consists of a finite number of
real discrete eigen spectrum Un(ω, k, z) and continuous eigen spectrum, also called
improper eigen spectrum, φ(ν, z) due to the branch cut (�) for Rayleigh wave and
continuous and discrete spectrum ψ(ν, z) and Wn(ω, k, z), respectively, for Love
wave [23]. The orthogonal property holds between the discrete eigen displacement
Un(ω, k, z) and the continuous eigen displacement φ(ν, z) and among themselves,
i.e.,
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〈Un(k, ω, z),Ul(k, ω, z)〉 =
∞∫

0

ρ(z)Ut
n(z)Ul(z)dzδnl

〈Un(k, ω, z), φ(ν, z)〉 =
∞∫

0

ρ(z)Ut
n(z)φ(ν, z)dz = 0

〈
φ(ν, z), φ(ν ′, z)

〉 =
∞∫

0

ρ(z)φt (ν, z)φ∗(ν ′, z)dz = δ(ν − ν ′) (11)

where φ∗ is the complex conjugate of φ.
Similar type of relations between discrete and continuous eigen spectrum,

Wn(ω, k, z) andψ(ν, z) for Lovewave can be deduced. It is to be noted thatUn(z) has
been written for Un(ω, k, z) and ν represents the integration variable in continuous
eigen displacement instead of ω2.

The discrete and continuous orthogonal eigen spectrum form a complete system
while individually each one is not a complete set. The completeness property implies
that the transformed radial and vertical displacement field for the Rayleighwave (i.e.,
U (ω, k, z)) and also for the Love wave (i.e., W (ω, k, z)) can be expressed in terms
of the complete set of eigen spectrum. Thus, considering only the Rayleigh wave
displacement

U (ω, k, z) =
∑

n

cnUn(z) +
∫

�

c(ν)φ(ν, z)dν (12)

Operating both sides of the above equation by the operator LR which is defined
as

LRU = d

dz
τ − kBt dU

dz
− k2CU (13)

where τ(k, ω) = AdU
dz + kBU and

A =
(

μ(z) 0
0 λ(z) + 2μ(z)

)
, B =

(
0 −μ

λ 0

)
,C =

(
λ(z) + 2μ(z) 0
0 μ(z)

)
(14)

and using the results

LU (z) = −ρω2U (z) + ρF(ω, k, z)

LUn(z) = −ρω2Un(z)

Lφ(ν, z) = −ρνφ(ν, z) (15)

the following relations are obtained
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cn(ω
2 − ω2

n)〈Un(z),Un(z)〉 = 〈F(ω, k, z),Un(z)〉
c(ν)(ω2 − ν) = 〈F(ω, k, z), φ(ν, z)〉 (16)

where F(ω, k, z) is the transformed component of force field.
Hence

U (ω, k, z) =
∑

n

〈F(ω, k, z),Un(z)〉Un(z)

(ω2 − ω2
n)〈Un(z),Un(z)〉 +

∫

�

〈F(ω, k, z), φ(ν, z)〉
(ω2 − ν)

φ(ν, z)dν

(17)

The corresponding transformed displacement associated with the Love wave
which is horizontal having only the cross-radial component is given by

W (ω, k, z) =
∑

n

〈F(ω, k, z),Wn(z)〉Wn(z)

(ω2 − ω2
n)〈Wn(z),Wn(z)〉 +

∫

�

〈F(ω, k, z), ψ(ν, z)〉
(ω2 − ν)

ψ(ν, z)dν

(18)

The displacement at any point can be obtained on taking the inverse transform.
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On the Design and Vibration Analysis
of a Three-Link Flexible Robot
Interfaced with a Mini-Gripper

Prathamesh Warude, Manoj Patel, Pankaj Pandit, Vikram Patil,
Harshal Pawar, Chinmay Nate, Shreyash Gajlekar, Viinod Atpadkar
and Debanik Roy

Abstract Flexible Robotic System (FRS) having multiple degrees of freedom has
various challenging issues related to real-time control of inherent vibration. The paper
addresses novel design semantics as well as vibration analysis of three degrees of
freedom flexible robotic arm, fitted with a mini-gripper at its distal link. In this study,
the design of a flexible robotic arm has been carried out along with the finite element
analysis of the links and revolute joints a priori. Besides successful laboratory-based
test hardware of the FRS, the paper focuses on new insight toward modeling of this
inherent vibration of the FRS and brings out its effect on the associated dynamics of
the FRS.

Keywords Flexible robot · Vibration · Rheology · Sensor · Gripper

1 Introduction

The domain of Flexible Robotic Systems (FRS) is one of the unique ensembles of
robotics research that deals with various modes of vibrations, inherent in the system.
Thevibration, so referred, is completely built-in type and thus it is design invariant.By
nature, vibration in FRS is self-propagating and does not follow analytical modeling
and rule base in all real-time applications.

The FRS-ensemble that has been developed in the present research is aimed at use
in hospitals to help the bedridden patients as and when the need arises. This patient
assistant robot is designed to pick and place objects like pills, tablets, bottles, cotton,
spoon, etc., and transfer the items to the patient, based on the urge from the patient
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and/or nurse. A successful deployment of this very patient assistant flexible robot is
entrusted to reduce the burden on the hospital staffs and help in creating a tension-
free environment. Besides, patients, admitted in the ICU, will be able to do some
tasks of their own without any intervention from anyone aided by this robot.

The patient assistant robot (FRS) consists of three links, three revolute joints,
two flexible shafts, a mini-gripper, a recirculating ball screw, a tripod, and electrical
actuators like motors, motion controllers and drivers. Effective horizontal reach of
the robot is around 1500 mm. The payload will be gripped by the gripper at the
extreme end of the links and the other end will be attached to the motor using
couplings. In-depth Finite Element Analysis (FEA) has been conducted in order to
arrive at the finalized design of the revolute joint as it must be strong enough to
sustain the torsional load. Although the FRS with revolute joints will ensure better
maneuvrability and reachability in the workspace, on the flip side, the design will
escalate deflection and in situ vibration. As a matter of fact, multi degrees of freedom
flexible robotic system is self-vibrating by nature and that’s the primary challenge of
the control system designers. The problem gets complex and highly coupled because
of more than one link and joint in the ensemble system. Also, a major component
of the load will be concentrated on the revolute joints. Thus, the combined effect
of deflection and vibration will be prudent with more number of joints in a robotic
arm that will culminate in higher dimensionality of the output response. With this
backdrop, the design intricacy as well as strength of the joint has been validated
through FEA.

Similarly, analysis and evaluation for gripping torque for the mini-gripper is done
to determine the gripping torque required to grip the payload of 800 grams (max.).
In order to prevent sagging of the micro-gripper, deformation of the links must be as
low as possible, which has been ascertained from FEA. Nonetheless, the ensemble
deflection of the links and gripper tuple must be under control through servomotor
loop since complete elimination of the deflection and vibration is not possible. In this
work, systematic studies have been carried out in exploring the pathways for reducing
the inbuilt vibration of the robot, considering various combinations of nonmetallic
materials for the links and joint assemblies. Similarly, the total elemental stresses on
the links and joints are also calculated. The final selection of the materials for the
links and revolute joints was made based on the results of the analysis, under the
aegis of minimum vibration/ deflection and optimal load-carrying capacity.

Control issues of FRS have gained research attention over the last few decades,
which deal with novel techniques of control of system dynamics in real-time [1].
While perturbation method was tried for fine-tuning FRS-controller [2], direct real-
time feedback from strain gauges was experimented too [3]. It is true that a robust
dynamic model becomes very effective in understanding the behavior of FRS in real-
time and the same becomes crucial for a multi-link FRS [4, 5]. Feliu et al. attempted
the control issue of three degrees of freedom FRS using the methodology of inverse
dynamics in contrast to strain gauge-based control [6, 7]. The fuzzy learning-based
approach for control of FRSwas also reported byMoudgal et al. [8]. Specific metrics
related to the reduction of system vibration of a robotic gadget were attributed by
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Singer and Seering [9]. Various techniques for vibration attenuation and control in
FRS have been reported hitherto, such as sliding mode theory [10], adaptive resonant
control [11], online frequency and damping estimation [12], and integral resonant
control [13]. Dynamicmodel and simulation of FRS based on spring and rigid bodies
was established too [14]. However, modeling of the multi-link FRS using compliant
sub-assemblies, such as spring-dashpot damper, remains an open research domain
till date.

Vibration analysis of links becomes even more critical because of the augmenta-
tion of flexible shafts in the robotic system. This additional source of vibration occurs
while motor power gets transmitted to the links through rotating flexible shafts. With
the rotation of the flexible shafts, vibration will be inducted into the assembly, which
will call for program-level control of the robotic system, along with the mini-gripper
in real-time.

The paper has been organized into six sections. An overview of the mechanical
design of the multi degrees of freedom FRS is presented in the next section. Details
on the finite element model of the FRS and vibration signature simulation have been
discussed in Sect. 3. Issues related to modeling of the control system of the FRS and
development of the control program thereon is attributed in Sect. 4. Paradigms on
hardware manifestations of the designed FRS are discussed in Sect. 5 and finally,
Sect. 6 concludes the paper.

2 Mechanical Design of Developed Three-Link
Serial-Chain Flexible Robotic System

As an important prelude to the development of the prototype “Patient Assistant
Robot” (PAR), we have designed the detailed firmware for building a three-link
three degrees of freedom serial-chain FRS. All drive motors of this three-link FRS
have been designed for placement at the base of the FRS, in order to reduce theweight
at the links and thereby, in situ vibration of the system. It is to be noted here that this
inbuilt vibration of an FRS occurs in the form of trembling of the links and at times,
in form of slight torsion too. As the drive motors are placed at FRS-base, respective
joints will be actuated through flexible shafts, connected between the motor output
shaft and the joint shaft. Figure 1 schematically illustrates the layout of a serial-
chain three-link FRS, fitted with flexible shafts. The tapered cross section of the
links has been conceived to have less weight and better slenderness ratio. The FRS
is having three links and three revolute type joints with no joint at the wrist. While
the motor tuple {M1, M2 and M3} is located at the base of the FRS, the motor, M4
is responsible for the operation of the micro-gripper. The final prototype has been
made in modular fashion so that links can be detached easily as and when required
in order to smoothen the dynamics in real-time. The drive for joint 1 is direct, i.e.,
coupled straight away with M1. The drives for joint 2 and joint 3 are through the
flexible shafts, as shown in Fig. 1. The driver end (left-hand side) of the flexible shaft
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Fig. 1 Schematic of the three-link flexible shaft-driven FRS

is the shaft of the respective motor (M2 or M3) and the transmission is carried over
to the driven end of the shaft (right-hand side) and thereafter to the joint.

The developed hardware, as an experimental platform for PAR, consists of three
circular cross-sectioned links of lengths 800mm, 400mm, and 200mm, respectively.
Thematerial for construction of the links is Carbon Fiber Reinforced Plastic (CFRP),
which is lightweight as well as having high mechanical strength.

The links being slender and not to exceed 10 mm in outside diameter, the design
of links is quite challenging. Thus, the links are designed in such a way so as to
reduce the effective weight without sacrificing the torsional endurance. These facets
have been achieved by making the links hollow and also tapered at one end. By
virtue of this layout, the overall tare weight of the link assembly gets reduced with
an improvement in its bending resistance. It may be noted that the tare weight of the
FRS-link is low because CFRP has a very low density as compared to metals, which
reduces the torque requirements for the motors. The revolute joints are used in the
FRS for enabling the rotation of the links in a smooth and non-interfering mode.
The revolute joints have been fabricated as simple bearing-supported pin joints, with
an extended flange at the bottom. These are essentially single degree of freedom
kinematic pair, consisting of two parts, viz., joint housing and adapter plate. Figure 2
presents the detailed schematic of the revolute joints that have been fabricated and
used in the final mechanical hardware.

The adapter plate has a pin that extends through the joint housing and then gets
coupled to a flexible shaft. As shown in Fig. 2, the adapter plate sits firmly on the
joint housing. Then after, joint housing and adapter plate get fixed to the link, which
in turn provides the rotational motion to the link. The joint housing encloses two sets
of micro-bearings that support the pin over and above the adapter plate and makes
free rotation of the pin a reality. Notwithstanding its own assembly, the fixtures of
these revolute joints into such small and slender links is challenging too.
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Fig. 2 Schematic of the
revolute joint assembly of
FRS. Index: A: Pin; B:
Micro-bearing (upper rung);
C: Micro-bearing (lower
rung); D: Joint housing; E:
Adapter plate; F: Fixing
screws; G: Extension plate

The drive motion required to rotate the links of the FRS is transferred through
flexible shafts from the motors. The flexible shaft is a mechanical shaft that transmits
motion to two different non-coaxialmechanicalmembers. Functionally, flexible shaft
is similar to a solid drive; but it can be routed under, over, and around obstacles.
The flexible shaft is extremely rugged and permits continuous operation at high-
speed ranges. It also dampens system-generated vibrations and in fact, it prevents
transmission of any sort of vibration from the motor to the links. The end couplings
of a flexible shaft enable us to couple those to suitable power transmitting shaft. The
motor power will be transmitted to the revolute joint via flexible shaft, which will be
connected to the revolute joint pin. In our hardware, one end of the flexible shaft is
connected to motor shaft and the other is connected to the pin of the revolute joint.
By virtue of this design, the pin gets enabled to transmit this motion to the respective
link. This pin will therefore be subjected to torsion and torsional vibration thereof.

Besides joint actuation and drive transmission, the other crucial design paradigm
of the FRS lies with the base of the system. The base serves dual purpose, viz., (a)
encapsulation of hardware gadgets and (b) transmission of linear motion to the FRS
in the vertical axis (using a recirculating ball screw mechanism). The base encloses
all motors, electrical circuits, motor drivers, motion controller (“NI myRIO”), and
D.C. power supply unit. The D.C. servomotors, responsible for the joint actuations,
are mounted on the top of the base. The base has a hole in the middle, which allows
the ball screw to pass through. The ball nut is fixed to the base itself. The whole
base assembly is mounted on a tripod stand. The tripod stand has been designed
as a foldable unit with provision for height adjustment. The driving motor for the
recirculating ball screw is mounted on the tripod itself. Figure 3 shows the CAD
model of the base assembly of the fabricated FRS.

As evident from Fig. 3, the backbone of the design of the base assembly is the
disposition of the ball screw and nut mechanism toward sustaining the tare weight of
the base as well as jerk-free vertical motion. The ball screw-driven height adjustment
of the tripod mechanism of the base is a bare essential prerequisite from application
standpoint. Several design iterations were made to optimize the design of the base
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Fig. 3 CAD model of the
base assembly of the FRS.
Index: A: Ball screw; B: Ball
nut; C: Tripod stand; D:
Height adjusting holes; E:
Housing of the base

A

B

C

D

E

assembly, in order to synchronize with the balance of the FRS in operation with its
full dynamics.

The mini-gripper has been designed within an external envelope of 50 mm ×
40 mm × 15 mm. The drive is designed with a small motor while actuation is made
with sector (spur) gear pair. The gripper jaws are parallel and being actuated through
tiny links, forming a closed-bar micro-mechanism. Figure 4 depicts the CAD model
of the mini-gripper.

It is to be noted that design of the revolute joints plays the most crucial role
in overall system assembly of the FRS. In fact, slenderness of the links has added
difficulty in the overall integration of the link sub-assemblies. Figure 5 illustrates the
ensemble CAD model of the designed FRS.

The design ensemble has culminated into three facets subsequently, viz., (a) Finite
element model of the FRS for vibration signature, (b) fabrication of the FRS with

Fig. 4 CAD model of the
mini-gripper of the FRS.
Index: A: D.C. Motor
connection; B: Base plate; C:
Sector gears; D: Driver link;
E: Connecting link; F: Jaw
actuating link; G: Jaw-link
pin; H: Main-link pin; I:
Interlink pin; J: Jaws

J

A

B
C

D

E
F 

G

H

I
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Fig. 5 Ensemble CAD
model of the designed FRS

A 

B C
D

E

Index: A: Base sub-assembly; B:
Link 1 sub -assembly; C: Link 2 
sub-assembly; D: Link 3 sub -
assembly; E: Mini-gripper sub -
assembly.        [‘B’, ‘C’ & ‘D’ 
includes respective joints too]

different materials, and (c) design of the control system of the FRS and development
of the FRS-controller. We will dwell upon these facets in the next subsections.

3 Finite Element Model and Vibration Analysis
of the Flexible Robotic System

As evident from the overall design as well as CAD model, the multi-link FRS has a
horizontal reach of 1500 mm, distributed over three jointed links. Hence, by virtue of
the self-weight itself, the FRSwill havemild shaking and natural means of producing
vibration in real-time. This self-vibrating structure will be boosted up for enhanced
vibration as and when FRS will grip a payload by its mini-gripper. We have modeled
the system for a maximum payload of 800 gm at a terminal reach of 1500 mm
and analyzed the same through finite element method. The total weight of the FRS
assembly is 18 kg (approx.), considering a factor of safety of 2.0 for strength-bearing
members. Figure 6 shows the finite element model and overall deformation pattern
(total) of the designed FRS.

Deformation values are in 
mm. (combined X, Y & Z);

Natural Frequency of 
Vibration: 3.3798 Hz

Fig. 6 FE model and ensemble deformation of the designed FRS
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The ensemble deformation pattern, in the form of nonlinear deflection, indicates
that the effect of payload is more prudent at the third-link zone but it is considerable
at the second link too. Although natural frequency of vibration of the system at the
base mode is controllable, it needs to be compared with the other modal frequen-
cies as well. FE-simulation was carried out up to 10 modes of vibration. All those
modal frequencies (in Hz.) are plotted below and indexed. These data are useful for
extracting the overall dynamic behavior of the FRS at a certain frequency (Fig. 7).

The deformation pattern of the FRS will be altered to some extent under next
higher modes of vibration, i.e., second. and third modes. While maximum deforma-
tion values get reduced, the effect of deformation is more spreading over the links
during these modes of vibration. Refer Figs. 8 and 9 for details.

Mode 1: 3.3798; Mode 2: 3.7728; Mode 3: 
20.063; Mode 4: 20.806; Mode 5: 36.24; 
Mode 6: 39.848; Mode 7: 59.795; Mode 8: 
60.016; Mode 9: 102.14;  Mode 10: 105.95

Fig. 7 Plot of modal frequencies under vibration of the FRS

Deformation values are in mm.
(combined X, Y & Z); Natural 
Frequency of Vibration (2nd.

Mode): 3.7728 Hz

Fig. 8 Deformation pattern of the FRS at second mode of vibration
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Deformation values are in mm.
(combined X, Y & Z); Natural 

Frequency of Vibration (3rd.

Mode): 20.063 Hz

Fig. 9 Deformation pattern of the FRS at third mode of vibration

Deformation values are in mm.
(combined X, Y & Z); Natural 

Frequency of Vibration (4th

Mode): 20.806 Hz

Fig. 10 Deflection hue of the FRS at fourth mode of vibration

We will now investigate the failure of the FRS as per the FE-simulation and
evaluate the threshold modal frequency that will be responsible for such failure. Of
course, by “failure” we mean maximum drooping of the FRS that may be a cause of
concern for the controller. As first phase toward eventual failure, FE-simulation for
the fourth and fifth modes reveals that substantial stress gets accumulated all over
the FRS-body including the base. Figures 10 and 11 illustrate the cases.
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Deformation values are in 
mm. (combined X, Y & Z) 

Natural Frequency of Vibration 
(5th Mode): 36.24 Hz

Fig. 11 Deflection hue of the FRS at fifth mode of vibration

It is interesting to note the deformation pattern of Fig. 11, wherein the enhanced
levels of deformation has occurred throughout the span of the FRS and also partially
the base. This shows the onset of buckling of the FRS, which will be established
throughFE-simulation for the next threemodes of vibration.These deflectionpatterns
are shown in Figs. 12, 13, and 14 (respectively, against sixth, seventh, and eighth
modes).

The deflection pattern, vis-à-vis, natural frequency of vibration of the FRS takes
an optimal undesirable near-failure phaseout at the ninth and tenthmode of vibration.
FE-simulation results for these two modes of vibration are depicted in Figs. 15 and
16.

Deformation values are in 
mm. (combined X, Y & Z) 

Natural Frequency of Vibration 
(6th Mode): 39.848 Hz

Fig. 12 Deflection hue of the FRS at sixth mode of vibration
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Deformation values are in 
mm. (combined X, Y & Z) 

Natural Frequency of Vibration
(7th Mode): 59.795 Hz

Fig. 13 Deflection hue of the FRS at seventh mode of vibration

Deformation values are in 
mm. (combined X, Y & Z) 

Natural Frequency of Vibration 
(8th Mode): 60.016 Hz

Fig. 14 Deflection hue of the FRS at eighth mode of vibration

Deformation values are in 
mm. (combined X, Y & Z) 

Natural Frequency of Vibration 
(9th Mode): 102.14 Hz

Fig. 15 Deflection pattern of the FRS at ninth mode of vibration
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Deformation values 
are in mm.

(combined X, Y & Z) 

Natural Frequency of Vibration 
(10th Mode): 105.95 Hz

Fig. 16 Deflection pattern of the FRS at tenth mode of vibration

FE-simulation-based detection of (i) deflection pattern and (ii) sharp increase of
vibrational frequency at ninth and tenth modes is a major support tool to the control
system program of the FRS. The undesirable modal frequencies must be avoided for
the functionalization of the FRS in real-time.

4 An Overview of the Device Controller and Programming
of the Flexible Robotic System

The device controller for the FRS has been designed using National Instrument®-
make myRIO®, which has an easy handshaking with the D.C. servomotors (for the
joint actuations) as well as the motion controller and motion manager software.
Besides, it has built-in WiFi and a faster processor with enhanced memory. The
myRIO® runs on a Linux-based real-time operating system, which enables it to
piggyback LabVIEW® code on it, besides multithreading to have some parallel
operations. The FPGA on the myRIO® allows high-speed data acquisition and/or
filtering at a much faster rate (~40 MHz clock rate). We have used LABVIEW®-
based graphical-mode programming for being interfaced with the motion controller
and myRIO®. The developed Graphical User Interface (GUI) makes uniform and
intuitive procedures possible independent of the device family and interface used.
Figure 17 shows a screenshot of the myRIO®—LabVIEW® tuple that is used for
initial program runs to test the FRS. Although this tuple is effective as GUI, it lacks
fine-tuning the joint rotations and forward kinematics of the FRS.
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Fig. 17 Screenshot of myRIO and LABVIEW-based program

In order to imbibe more flexibility, open-source electronic prototyping platform,
Arduino® was used for controlling the joint motors of the FRS. MATLAB®-based
indigenous code was compiled thereof and was interfaced with the Arduino® board.
In fact, usual trial and error-based debugging ofArduino® gets reduced to a significant
extent due to the augmentation of MATLAB® code. The code can be edited under a
user-friendly GUI. Extracts of the MATLAB-based indigenous code is reproduced
below.
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function varargout = RoboFlex(varargin)
GUI_Singleton = 1;
GUI_State = struct('gui_Name',    mfilename, ...

'gui_OpeningFcn', @RoboFlex_OpeningFcn, .
'gui_OutputFcn',  @RoboFlex_OutputFcn, ...
'gui_LayoutFcn', . 'gui_Callback',   

function RoboFlex_OpeningFcn(hObject, eventdata, handles, varargin)
function varargout = RoboFlex_OutputFcn(hObject, eventdata, handles) 
function Tha_1_Callback(hObject, eventdata, handles)
function Tha_1_CreateFcn(hObject, eventdata, handles)
function Tha_2_Callback(hObject, eventdata, handles)
function Tha_2_CreateFcn(hObject, eventdata, handles)
function Tha_3_Callback(hObject, eventdata, handles)
function Tha_3_CreateFcn(hObject, eventdata, handles)

Th_1 = str2double(handles.Tha_1.String)*pi/180;
Th_2 = str2double(handles.Tha_2.String)*pi/180;
Th_3 = str2double(handles.Tha_3.String)*pi/180;
l1 = 800; l2 = 400; l3 = 300;

L(1) = Link('revolute', 'd', 0, 'a', l1, 'alpha', 0);
L(2) = Link('revolute', 'd', 0, 'a', l2, 'alpha', 0);
L(3) = Link('revolute', 'd', 0, 'a', l3, 'alpha', 0);

R = SerialLink(L); R.name = 'Flexible Robo';

R.plot([Th_1 Th_2 Th_3])
%trchain('R(Th_1)Tx(l1)R(Th_2)Tx(l2)R(Th_3)Tx(l3)')
x = l1*cos(Th_1) + l2*(cos(Th_1+Th_2)) + l3*cos(Th_1+Th_2+Th_3);
y = l1*sin(Th_1) + l2*(sin(Th_1+Th_2)) + l3*sin(Th_1+Th_2+Th_3);
z=0;
function btn_Inv_Callback(hObject, eventdata, handles)
l1 = 800; l2 = 400; l3 = 300;
%L(1) = Link([0 0 l1 pi/2]); %L(2) = Link([0 0 l2 0]);
%L(3) = Link([0 0 l3 0]);

PX = str2double(handles.Xx.String);
PY = str2double(handles.Yy.String);
PZ = str2double(handles.Zz.String);
L(1) = Link('revolute', 'd', 0, 'a', l1, 'alpha', 0);
L(2) = Link('revolute', 'd', 0, 'a', l2, 'alpha', 0);
L(3) = Link('revolute', 'd', 0, 'a', l3, 'alpha', 0);

T = [1 0 0 PX; 0 1 0 PY; 0 0 1 PZ; 0 0 0 1];
J = R.ikine(T, [0 0 0],'mask', [1 1 1 0 0 0])*pi/180;
handles.Tha_1.String = num2str((floor(J(1)))*180/pi);
handles.Tha_2.String = num2str((floor(J(2)))*180/pi);
handles.Tha_3.String = num2str((floor(J(3)))*180/pi);
R.plot(J*180/pi);

The MATLAB program involves various subroutines and call functions to send
commands to the motors for joint rotation as well as graphical plot of the alteration
of configuration of the FRS. The main program, “RoboFlex” gathers input from
“varagin” and returns output in the form of a basic GUI of the FRS. Respective
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function calls, e.g.,Tha_1, Tha_2, Th_3,helps in acquiring the data for joint positions,
based on the link lengths. The plot subroutine, R_plot, takes those data as input and
calculates the changed positions of the links using D-H Transformation matrix. The
terminal functions (bracket), “handles.Tha_j.String” (∀j = 1, 2, 3) transform the
desired joint angles to the motion controller for the rotation of the links.

5 Paradigms of Hardware Manifestation of the Designed
Flexible Robotic System

The hardware manifestation of the test bed of the designed FRS was carried out in
two phases. In phase-I, we have developed the FRS using steel and aluminum as the
materials of construction of the links and joints, respectively. This phase was more
of a design realization and several iterations were passed through in order to attain
dynamic stability of the system. Besides, the hardware of the mini-gripper (as stand-
alone unit) underwent various minor modifications in this phase. Figure 18 shows the
photographic view of the hardware of the FRS test setup, as part of phase-I, having
two links.

The experience of phase-I has led us to take up the hardware of the second test bed
under phase-II, using CFRP as the material of fabrication for the link. The joints have
been addedwith aworm–worm-wheel pair for improved dynamics. The photographic
view of the developed hardware of the three-link FRS with mini-gripper is shown
in Fig. 19. It is to be noted that base and tripod assembly (subsuming joint 1) of the
phase-II hardware is the same as that of phase-I.

Fig. 18 Hardware test bed
of the FRS developed under
phase-I

A

B

C
D

E

F

G

Index: A: Base; B: Tripod 
assembly & Joint 1; C: Link 
1; D: Joint 2; E: Flexible 
Shaft; F: Link 2; G: Conduit 
for cables & wiring
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A B 
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F 
G 

D

Fig. 19 Hardware test bed of the FRS developed under phase-II. Index: A: Link 1; B: Joint 2; C:
Link 2; D: Joint 3; E: Flexible shaft; F: Link 3; G: Mini-gripper

6 Conclusions

Novel design and a pair of test setups of three-link three-joint serial-chain FRS have
been reported in this paper. We have investigated the design basis for reducing the
inherent vibration of the system and implemented the firmware in an elegant way.
Details of vibration signature and associated deflection of the FRS-links have been
studied. FE-simulation thereof has helped us in pinpointing the support locations
and related kinetics between the base assembly and first link. The paradigms earned
through modeling and hardware manifestation can be benchmarked that has made
the foundation for the firmware for Patient Assistant Robot in the near future.
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Design, Dynamic Simulation and Test
Run of the Indigenous Controller
of a Multi-gripper Revolute Robot
by Minimizing System Trembling

Harshal Pawar, Chinmay Nate, Manoj Patel, Pankaj Pandit, Vikram Patil,
Prathamesh Warude, Neel Wankhede, Pratik Chothe, Viinod Atpadkar
and Debanik Roy

Abstract A revolute jointed robot havingmultiple grippers/end-effectors poses del-
icate issues in real-time control operation. The present paper reports the attributes
of parametric design and dynamic simulation of the controller of a Multi-gripper
Assistive Robot, along with results of test runs. The ensemble programming logic
for the robot is developed toward controlling in-built vibration in real time. The
hardware of the robotic manipulator has been accomplished in a way to minimize
the inherent shaking of the manipulator’s arms. Two posture-driven strategies have
been formulated, pertaining to two different phases of a graspable object, namely:
(a) in-plane grasping and (b) off-plane lifting. The customized program module has
been made interactive in order to systemize multiple grippers.

Keywords Revolute robot ·Mechatronics · Vibration · Sensor · Controller ·
Simulation · Gripper · Instrumentation · Assistive

1 Introduction

Hardware realization as well as real-time operation of a revolute jointed robot having
provision for augmenting multiple grippers/end-effectors is a challenging research
task due to its inherent vibration. The present robotic system is a lightweight tabletop
gadget that can be easily lifted over and repositioned at any desired location hav-
ing a smooth surface manually. The developed robotic system consists of two serial
links and end-effector(s), for gripping the object from a preassigned location. The
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developed robotic armwith automated serving (using end-effector) andmulti-gripper
technology detects a specific object, picks that object from source location and places
or serves it to destination. This Multi–Gripper Robotic System (MGRS) will do this
work at any time anywhere with almost zero probability of error, provided the robotic
hardware is interfaced with an apt controller that minimizes inherent vibration. Thus,
the entire hardware development is biased with the novel design of the system con-
troller, which is responsible for the minimization of the system trembling in order to
perform the series of tasks in the desired manner. The base of the developed MGRS
has rotary mechanism for easy planar swiveling. The system is fabricated with the
novel feature of interchangeability of multiple grippers as quick replacement that
allows lifting even delicate objects with the maximum reach of 400 mm and 500 g
payload. This microcontroller-based MRGS uses D.C. servomotors for joint actua-
tions. In order to attain high level of kinematic accuracy, MGRS is interfaced with
different sensors, such as infrared sensors, force sensors, strain gauges, load cells,
and FlexiForce sensors which help the system for getting real-time information of
the surrounding environment. Starting from dynamic simulation to the test run, focus
of the indigenous controller is to minimize system vibration or trembling of the robot
arms/links. In this work, studies have been conducted to check the suitability of the
controller for various subtle pick-and-place jobs in domestic and/or social arena so
as to use this gadget as an “Assistive Robot.”

The crux of any successful and application-centric robotic system is nothing
other than a robust mechatronic design, interfaced with sensory instrumentation.
As a matter of fact, the process of synthesization of sensor-based modular mecha-
tronic products has attained an optimal status, starting from successful experimental
verifications [1] to initial assessment at the design stage, a priori the hardware devel-
opment [2]. The paradigms of control system architecture for a mechatronic gadget
and/or process are governed by a dual tuple, namely, using (a) sensors and intelli-
gent actuators [3–5] and (b) multi-sensor fusion [6]. This ensemble treatise on the
mechanical design and control system paved the way for the present design ideation
of the MGRS. Substantiated by the design rules as well as requirement metrics,
real-life experience in developing infrared sensor-based object detection system(s)
for robotic application has been reported [7, 8]. The concept of designing and using
large-span thin tactile sensor in robotic devices has been instrumental in the devel-
opment of sensor-driven robotic systems [9]. Besides sensory instrumentation, the
other salient aspect of the present research is the study on system-induced vibration.
This low-amplitude vibration or trembling can be tackled by either recasting the con-
trol commands [10] or direct input of rheology data, obtainable from strain gauge
system(s) in the robot controller [11]. It is true that the design of a novel controller
and its real-time operation can alleviate the system-induced vibration and/or in situ
trembling of a small-sized lightweight robotic system to an appreciable extent. The
controller algorithm can be developed using neural network [12] or nonlinear torque
control [13] or adaptive resonant control [14]. All of these control methodologies
are essential for reducing the in situ vibrations of a lightweight low-payload robotic
device so as to obtain a smoother dynamics in real time.
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The paper has been organized into six sections. An overview of the mechanical
design of the multi-degrees of freedom MGRS is presented in the next section.
Details on the finite element model of the various gripper assemblies of the MGRS
and vibration signature simulation have been discussed in Sect. 3. Issues related
to modeling of the control system of the MGRS and development of the control
program thereon is attributed in Sect. 4. Paradigms on hardware manifestations of
the designed MGRS are discussed in Sect. 5 and finally, Sect. 6 concludes the paper.

2 Overview of the Mechanical Design of the Multi-gripper
Robotic System

The design conceptualization of MGRS began with the ideation of the DC servo-
motors that will be used for achieving the overall function as well as dexterity of
the gadget. Accordingly, layout for five servomotors was conceived along with their
movement spectrum. Unlike standard two-link tabletop type revolute robots, we have
designed the second link of MGRS with two servomotors so as to produce effective
torque to the gripper assembly. Figure 1 schematically illustrates the design dispo-
sition of the fabricated MGRS.

As observed in Fig. 1, the base of MGRS is driven by a stepper motor (M6)
while all the other joints and links are powered with DC servomotors, {M1, …,
M5}. While the rotary motions at the gripper and wrist are being catered by M1
and M2, that of first link is powered by M5. However, the main design novelty lies
with the motion of the second link, which is driven by a pair of motors, namely,
M3 and M4. One of the salient features of MGRS is its unique design of the links,
which are ultra lightweight, high strength, and novel in disposition. The links are
manufactured from Acrylonitrile Butadiene Styrene (ABS) thermoplastic through
rapid prototyping process. As shown in Fig. 1, the “arm” of MGRS consists of two
links, having lengths of 250mm and 80mm, respectively (‘X’ and ‘Y ’). The links are

Fig. 1 Schematic layout of
the designed MGRS
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Fig. 2 Developed CAD
model of the links of MGRS A B

Index: 
A: First 
Link; B:
Second 
Link

designed as per the position of the servomotors (M2 to M5) and its compactibility
with standard parts. The low density of ABS helps to attain low tare weight of the
links, which reduces the torque requirement of the motors. The prime objectives
before this modeling were to attain (a) weight reduction, (b) ease of assembly, (c)
minimum wall thickness of 5 mm although, and (d) proper holding and positioning
to the motors. Figure 2 shows the CAD model of the links.

The novelty of the design of the gripper is associated with compactness as well as
detachability of the jaws. Essentially the design of MGRS-gripper has been made in
two parts wherein main body of the gripper (griper-shank) is separated out from its
jaws. While the design of the “shank” has been made universal, we have designed
and fabricated three varieties of jaws in order to test with cylindrical, spherical,
ellipsoid, and rectangular parallelepiped-shaped objects (as payload) in form closure
mode. All variants of these grippers were fabricated using ABS material through
rapid prototyping. Like the links, CAD modeling of the gripper was also made with
the objectives stated above, e.g., weight reduction, ease of assembly, and minimum
thickness of the gripper components (5 mm), along with the maximum value of jaw
opening as 70 mm. Figure 3a shows the CAD model of a particular gripper-type,
suitable for holding a circular object. The CADmodel of the base is shown in Fig. 3b.

Fig. 3 Developed CAD
models of the gripper and
base of MGRS

3a 3b

Index: A: Gripper Shank; B: Gripper 
Cradle; C: Gripper Gear-train; D: 
Gripper Motor; E: Gripper Jaws; F: 
Rubber Pad; G: Robot Base; H: Base 
Motor; I: Anchor; J: Fitting for Link
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As indexed in Fig. 3b, 2 Nm capacity stepper motor, H, was mounted inside the
steel cast housing, G (230 mm × 230 mm × 130 mm) having gear reduction ratio
3:1. Castor balls were used to eliminate tilting of the base due to ensemble cantilever
payload, as generated from the motions of links and gripper.

3 3D Model and Vibration Study of the Grippers

Finite Element Analysis (FEA)was carried out for three variants of the grippers, used
inMGRS.Due attentionwas paid toward accurate discretization of theCADmodel in
order to ascertain finite degrees of freedom of the gripper system. 3D solid elements
(20 nodes and 10 nodes) were used for the FEA, which do support hyperelasticity,
plasticity, creep, stress stiffening, and large deflection of the nodes. Figure 4 shows
the 3D model of the first variant of the gripper that underwent FEA with modal
analysis. It may be noted that the boundary condition for the modal analysis through
finite element analysis software was selected based on the payload capacity of the
gripper. In our case of multi-gripper robot, the said payload was decided to be 2 kg.
(maximum). Apart from this, usual force-induced limiting conditions of FEA were
adopted, such as zero displacement at the anchor plate of the gripper, etc. Kinematic
constraints were not taken in this analysis as the prime goal was to sensitize the
design for in situ trembling.

Upon discretization of the 3D model of this curved-jaw gripper, modal analysis
was carried out up to the sixthmodeof vibration. Figure 5depicts theFEAscreenshots
for stress plots under first to sixth mode of vibration (of the MGRS-Gripper: type-I
of Fig. 4).

In a similar way, FEA with modal vibration analysis was performed for the other
two variants of the gripper too. Figures 6 and 7 show the 3D model of the second
variant of the gripper and stress plots under six-modal vibration for the gripper-II,
respectively.

It is important to note that the natural frequency of vibration increases monotoni-
cally from first to sixth mode. This feature is valid irrespective of the design variants
of MGRS-gripper.

Fig. 4 3D solid model of the
first variant of
MGRS-Gripper
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A B

C
D

E
F

Index: [Mode of 
Vibration :  Natural 
Frequency]  
A: 1st. Mode: 50.242 
Hz.; B: 2nd. Mode: 
92.353 Hz.; C: 3rd.

Mode: 110.65 Hz.; D:
4th. Mode: 355.31 Hz.: 
E: 5th. Mode: 427.92 
Hz.; 
F: 6th. Mode: 519.4 
Hz. [Gripper Type-I] 

Fig. 5 FEA stress plots for gripper: type-I under modal vibration

Straight Parallel Jaw
Gripper with Links

Fig. 6 3D solid model of the second variant of MGRS-gripper

The 3D model of the third variant of the MGRS-gripper is shown in Fig. 8 and
the corresponding stress signature under six modes of vibration is plotted in Fig. 9.

Results of Figs. 7 and 9 reveal that individual values of the modal frequencies can
vary across the gripper types baring end values. In type-I gripper, we can observe a
sharp rise in vibration frequency from 2nd to 4th. mode, which is attributed to the
curvilinear jaw and nature of grasping the payload thereof. However, the shift in
modal frequencies is comparatively smooth for other two types of grippers, due to
their respective design of the jaw.
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A B

C D

E F

Index: [Mode of Vibration :  Natural Frequency] 
A: 1st. Mode: 296.74 Hz.; B: 2nd. Mode: 358.95 Hz.; C: 3rd. Mode: 
386.63 Hz.; D: 4th. Mode: 466.91 Hz.: E: 5th. Mode: 492.1 Hz.; 
F: 6th. Mode: 634.88 Hz.  [Gripper Type-II] 

Fig. 7 FEA stress plots for gripper: type-II under modal vibration

Straight Parallel Jaw
Gripper with Curved Links

Fig. 8 3D solid model of the third variant of MGRS-gripper
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A B

C D

E F

Index: [Mode of Vibration :  Natural Frequency] 
A: 1st. Mode: 252.45 Hz.; B: 2nd. Mode: 285.62 Hz.; C: 3rd. Mode: 
364.78 Hz.; D: 4th. Mode: 455.79 Hz.: E: 5th. Mode: 560.48 Hz.; 
F: 6th. Mode: 627.83 Hz.  [Gripper Type-III]

Fig. 9 FEA stress plots for gripper: type-III under modal vibration

4 Modeling of the Control System and Development
of Firmware for the Robot

Modeling of the control system of MGRS started with an ideation on the
microcontroller-based actuation of the stepper and servomotors. The grass root-
level trials and development of the controller thereof were realized through Atmel’s
ATmega328P™ controller that provided the best suitable platform due to the aug-
mented benefit from it and Arduino™ software.

The Atmel picoPower ATmega328P™ is a high-performance low-power CMOS
8-bit microcontroller based on the AVR enhanced RISC architecture. By executing
powerful instructions in a single clock cycle, the ATmega328P™ achieves throughput
close to 1MIPS per MHz, which serves as a good optimization of the robot controller
for power consumption versus processing speed.
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Fig. 10 Connection and
flow diagram of Arduino
Uno™ board

myservo (  )
for motors
1,2,3,4,5,6

<servo.h>

Joints & Gripper
Actuation 

Arduino Uno™ is a microcontroller board based on the ATmega328P™ that is pro-
grammable with its proprietary software. It has 14 digital input/output pins (of which
six can be used as PWM outputs), six analog inputs, a 16 MHz quartz crystal, a USB
connection, a power jack, an ICSP header, and a reset button. The ATmega328P™

on the Arduino Uno™ comes preprogrammed with a bootloader, through which new
code can be uploaded to it without the use of an external hardware programmer.
It communicates using the original STK500 protocol using ANSI C header files.
Figure 10 shows the connection diagram of Arduino Uno™ with the servomotor(s)
of MGRS.

As shown in Fig. 10,myservo ( ) subroutines were used to create “servo objects” to
control the servomotors of the respective joints ofMGRS. Once these subroutines get
easy handshaking establishedwithArduinoUno™ board, several command functions
start functioning, e.g., rotation of the base by a certain angle (in degrees) for “homing”
or ‘destination’, dual motion of the motors of second link for positioning the robot
upward/downward, opening of gripper jaws, gripping of object, closing of gripper
jaw, etc. All these command functions do work in unison under the main header file,
<servo.h> that has a two-way association with ATmega328P™ and Arduino Uno™

board.
In this work, entire programming logic was developed toward controlling in-

built vibration to orchestrate the system in real time. The angle of rotation of each
joint motor has been finalized first through simulation and repeated trials afterwards
so that the robot can pick object from “source” and place it at “destination.” The
motors with encoders have provided the actual shaft position (of the motors) and
accordingly alteration of angles was done using motion controllers. However, initial
testing of MGRS—prototype was carried out with servomotors without encoders
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and those motors were controlled directly, proportionate to change in angle through
customized program routines.

5 Hardware Manifestation and Test Runs

The multi-gripper robot has a characteristic design feature that is commensurate to
its customized controller. The hardware of the robotic manipulator has been accom-
plished in a way to minimize the inherent shaking of the manipulator arms. Besides,
all three variants of the gripper have been manufactured with an aim for synchro-
nization of dynamics of the manipulator body. The final dimensions of the grippers
were selected after repeated trails in order to control the trembling of links to the best
possible extent. Figure 11 shows the photographic view of the fabricated grippers.

Type -I

Type -III

Type -II 

Fig. 11 Photographic view of the fabricated grippers of MGRS
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The photographic views of the complete assembly of the multi-gripper robot with
type-I gripper are shown in Fig. 12a, b.

Two posture-driven strategies for control command syntax for MGRS have been
formulated as part of the present research, pertaining to two different phases of a
graspable object, namely: (a) in-plane grasping and (b) off-plane lifting. As part of
in-plane grasping, the second link and the gripper have been kept horizontal and
parallel to ground during the entire course of gripping of the object. Figure 13 shows
the real-life experimental view of the MGRS undergoing in-plane grasping of a
cylindrical object.

MGRS with Curvilinear-Jaw 
Gripper in Fully Assembled 

Condition: [Open Jaw]

with wiring for Servomotors,
Drivers and Controller Board

MGRS with Curvilinear-
Jaw Gripper : [Closed Jaw]

(a)

(b)

Fig. 12 a Photographic view of MGRS fitted with type-I gripper. b Photographic view of MGRS
fitted with type-I gripper
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Object

Fig. 13 Photographic view of in-plane grasping by MGRS

In contrast, the second link and first link of MGRS must move through same
angle but in opposite direction for proper off-plane lifting, as illustrated in the real-
life experimental view of Fig. 14.

Dedicated control semantics have been evolved for in-plane grasping of “nested”
task, e.g., shake-free gripping of a glass filledwithwater. Although by regular control
scheme gripping of glass will be through advanced programming which is needed to
ensure shake-free gripping so that dripping of water from the glass can be avoided.
We have successfully met this sort of nested tasks wherein coupled state vector of
control system has been solved. Likewise, for off-plane lifting, it is being ensured
through the customized control semantics that the robotic manipulator is rotated till
destination coordinates are reached as well as the robotic system is able to place the
object without jerking. The other classical problem of off-plane lifting that has been
experimented is serving/pouring liquid inside a tumbler. In this case, angle of the
robot wrist gets finalized in order to serve the content without spilling. Figure 15

Fig. 14 Photographic view of off-plane lifting of object by MGRS
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Fig. 15 Real-time testing of nested work module by MGRS

shows the nested experiment of off-plane lifting and sideway pouring, as performed
by MGRS.

Obviously, in all these experiments selection of the rotational speed of the motor
is equally crucial in order to launch the control system appropriately. Object manip-
ulation has been carried out with slow speed at the wrist, which is approximately
25% of the base rotation speed (~3–4 rpm). A time delay is imbibed between every
incremental angle of rotation so as to ensure jerk-free movement of the wrist and
gripper assembly during task execution. The customized program module has been
made interactive in order to systemize multiple grippers.

6 Conclusions

In-depth design, finite element analysis and hardware development of a novel
lightweight tabletop robotic system with adaptability to multiple grippers have been
delineated in the paper. We have carried out the research with the prime objective
of demonstration of the capabilities of the MGRS in real time, alleviating inherent
system vibration. Links as well as grippers of the robotic system have been designed
and manufactured in such a way so as to control the in situ trembling of the robotic
unit. Improvisation of the design with miniaturization as well as wider selection of
materials for fabrication will be taken up as future milestone of the research.

Acknowledgements Authors are indebted to the help and assistance rendered by Shri Shubham
Choudhury, SVR Infotech, Pune in performing the FEA of the gripper variants.
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Flow Analysis of Reiner–Rivlin Fluid
Between Two Stretchable Rotating Disks

Abhijit Das and Suman Sarkar

Abstract Explicit, analytical solutions are obtained for the flow of a non-Newtonian
Reiner–Rivlin fluid between two coaxially rotating and radially stretching disks. The
rotor–stator case and the cases of co- and counter-rotation are discussed elucidating
the effects of various parameters of interest, such as stretching parameters, non-
Newtonian parameter and Reynolds number.

Keywords Stretchable rotating disks · Reiner–Rivlin fluid · HAM · Reynolds
number

1 Introduction

Since Kármán’s seminal paper [1] on similarity solutions for the steady, viscous
flowover an infinite rotating disk, numerous investigations (theoretical/experimental)
have been carried out in this field yielding various perspectives [2–5]. The immense
interest in this field is due to the fact that the flows related to rotating disks are
of tremendous industrial and academic importance. Theoretically, these flows are
among a few of the problems in fluid dynamics for which the Navier–Stokes equa-
tions admit an exact solution. From a practical point of view, these flows can model
cases arising in geophysics, oceanography and in many industrial applications like
turbomachinery. For a detailed literature and better understanding of such flows of
a Newtonian fluid, one can go through the book titled “Rotating Flow” by PRN
Childs [6] and the references therein. In Chaps. 4 and 5 of his book, the author
discusses about the flow characteristics in different geometries of the rotating disk
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systems which provides a clear perception and a detailed understanding to anyone
new in this field.

In this work, we focus on the two-disk configuration of the rotating disk system,
initially considered and qualitatively discussed byBatchelor [7]. After Batchelor, this
flow problem has been attacked and solved by a number of investigators [8–10]. One
can find a systematic description of the qualitative nature of the flow between two
coaxial rotating disks in the work of Soong et al. [11]. Recently, Turkyilmazoglu [12]
(motivated by the work of Fang [13]) extended Batchelor’s problem considering heat
transfer to the case where the disks surfaces are allowed to stretch continuously. His
numerical results show that the general flow characteristics of Batchelor’s problem is
completely lost under the influence of surface stretching. However, his results were
limited to the case of a viscous fluid. It is well known that non-Newtonian fluids are
more appropriate models of fluids in industrial and technological applications than
Newtonian fluids. In view of the diversity in the nature of fluids, several models of
non-Newtonian fluids have been proposed over the years. The present investigation
focuses on the simplest memoryless model, called Reiner–Rivlin fluid model. The
fluid model was introduced by Renier [14] and Rivlin [15] to describe the behaviour
of wet sand and its constitutive equation is given by

T = −pI + φ1D + φ2D2, (1)

where

D = 1

2

[∇v + (∇v)T
]
. (2)

The response functions φ1, φ2 are functions of the scalar invariants trD and tr(D2).
With an aim to extend the study of Turkyilmazoglu [12] to the non-Newtonian

case, the governing Partial Differential Equations (PDEs) are first transformed into
a set of fully nonlinear and highly coupled Ordinary Differential Equations (ODEs)
via similarity transformations. Next, this study adopts the popular and promising
analytical technique called Homotopy Analysis Method (HAM) to obtain analytical
solutions of the nonlinear boundary value problem governing the considered flow
problem. The HAMwas introduced by Liao [16] and has been found to be extremely
effective in solving nonlinear problems irrespective of the presence of any large
or small parameter in the given nonlinear problem. In addition, the presence of an
auxiliary parameter �, commonly known as convergence control parameter makes
the method more elegant as it allows us to adjust and control the convergence region
whenever necessary. The effectiveness and validity of themethod are evident from the
number of literature devoted to it. For example, one can go through theworks [17–20]
and the references therein which clearly guarantees the applicability of the method
to many nonlinear problems of science and engineering.

The rest of the paper is organized as follows: the governing equations are derived
in Sect. 2. TheHAM is applied to the resulting systemof nonlinear and coupledODEs
in Sect. 3 and the results are discussed in Sect. 4. Finally, conclusions are drawn in
Sect. 5.
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Fig. 1 Schematic diagram
of the flow domain

2 Governing Equations

Let’s consider the two-disk configuration depicted in Fig. 1 The lower disk is placed
at z = 0 and the upper one at z = d. The disks are rotating coaxially with angular
velocities Ω1 & Ω2, respectively. In addition, the lower and upper disks are stretch-
ing radially with constant rates c1 and c2 respectively. Taking velocity components
(u, v,w) along cylindrical polar coordinates (r, θ, z), respectively, and ∂

∂θ
= 0 (in

view of rotational symmetry), the equation of continuity and momentum read as
follows:

∂u

∂r
+ u

r
+ ∂w

∂z
= 0, (3)

ρ

(
u

∂u

∂r
− v2

r
+ w

∂u

∂z

)
= ∂τrr

∂r
+ ∂τr z

∂z
+ τrr − τθθ

r
, (4)

ρ

(
u

∂v

∂r
+ uv

r
+ w

∂v

∂z

)
= ∂τrθ

∂r
+ ∂τθ z

∂z
+ 2τrθ

r
, (5)

ρ

(
u

∂w

∂r
+ w

∂w

∂z

)
= ∂τzr

∂r
+ ∂τzz

∂z
+ τr z

r
. (6)

And the boundary conditions are given by

u(0) = rc1, v(0) = rΩ1, w(0) = 0

u(d) = rc2, v(d) = rΩ2, w(d) = 0.
(7)
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Next, we use the following similarity transformations [12]:

u = rΩ1H
′(ζ ), v = rΩ1G(ζ ), w = −2dΩ1H(ζ ), (8)

where ζ = z
d and the governing equations are reduced to

H ′′′′ + 2Re(GG ′ + HH ′′′) − LRe(H ′H ′′′′ + 3G ′G ′′ + 2H ′′H ′′′) = 0, (9)

G ′′ + 2Re(HG ′ − H ′G) + LRe(H ′′G ′ − H ′G ′′) = 0, (10)

and the boundary conditions become

H(0) = 0, G(0) = 1, H ′(0) = C1

H(1) = 0, H(1) = Ω, H ′(1) = C2,
(11)

where ′ denotes derivatives with respect to ζ , Re = Ω1d2

ν
is the Reynolds number,

C1 = c1
Ω1

andC2 = c2
Ω1

are the stretching parameters,Ω = Ω2
Ω1

is the rotation number,
L = μc

ρd2 is the non-Newtonian parameter.

3 HAM Solution

In the frame of HAM, due to the boundary conditions (11), we choose the base
function {ζm |m ≥ 0} to express H(ζ ) and G(ζ ). The initial approximations are
chosen as

H0(ζ ) = C1ζ − (2C1 + C2)ζ
2 + (C2 − C1)ζ

3, (12)

G0(ζ ) = 1 + (Ω − 1)ζ, (13)

and the auxiliary linear operators LH ( f ) and LG( f ) as

LH ( f ) = f ′′′′, (14)

LG( f ) = f ′′, (15)

with the following properties

LH (d1 + d2ζ + d3ζ
2 + d4ζ

3) = 0, (16)

LG(d5 + d6ζ ) = 0, (17)

where di , i = 1 − 6 are arbitrary constants.
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Next, we construct the zero-order deformation equations as follows:

(1 − q)LH [Ĥ(ζ ; q) − H0(ζ )] = q�H NH [Ĥ(ζ ; q), Ĝ(ζ ; q)], (18)

(1 − q)LG[Ĝ(ζ ; q) − G0(ζ )] = q�GNG[Ĥ(ζ ; q), Ĝ(ζ ; q)], (19)

with the following boundary conditions

Ĥ(0; q) = 0, Ĝ(0; q) = 1,
∂ Ĥ(ζ ; q)

∂ζ

∣∣∣
∣
ζ=0

= C1,

Ĥ(1; q) = 0, Ĝ(1; q) = Ω,
∂ Ĥ(ζ ; q)

∂ζ

∣∣∣
∣
ζ=1

= C2.

(20)

In the above equations, �H , �G are the nonzero auxiliary parameters and the differ-
ential operators, NH , NG are defined by

NH = ∂4 Ĥ(ζ ; q)

∂ζ 4
+ 2Re

(

Ĝ(ζ ; q)
∂Ĝ(ζ ; q)

∂ζ
− Ĥ(ζ ; q)

∂3 Ĥ(ζ ; q)

∂ζ 3

)

−LRe

(
∂ Ĥ(ζ ; q)

∂ζ

∂4 Ĥ(ζ ; q)

∂ζ 4
+ 3

∂Ĝ(ζ ; q)

∂ζ

∂2Ĝ(ζ ; q)

∂ζ 2
+ 2

∂2 Ĥ(ζ ; q)

∂ζ 2
∂3 Ĥ(ζ ; q)

∂ζ 3

)

,

(21)

NG = ∂2Ĝ(ζ ; q)

∂ζ 2
+ 2Re

(

Ĥ(ζ ; q)
∂Ĝ(ζ ; q)

∂ζ
− ∂ Ĥ(ζ ; q)

∂ζ
Ĥ(ζ ; q)

)

+LRe

(
∂2 Ĥ(ζ ; q)

∂ζ 2

∂Ĝ(ζ ; q)

∂ζ
− ∂ Ĥ(ζ ; q)

∂ζ

∂2Ĝ(ζ ; q)

∂ζ 2

)

,

(22)

Note that when the embedding, parameter q varies from 0 to 1, Ĥ(ζ ; q), Ĝ(ζ ; q)

varies from their initial approximations H0(ζ ), G0(ζ ) to the original solutions
H(ζ ), G(ζ ).

Next following Liao [16], the higher order (say r th-order) deformation equations
are constructed as

LH [Hr (ζ ) − χr Hr−1(ζ )] = �H RH
r , (23)

LG[Gr (ζ ) − χrGr−1(ζ )] = �G R
G
r , (24)

with the following boundary conditions

Hr (0) = Gr (0) = H ′
r (0) = Hr (1) = Gr (1) = H ′

r (1) = 0. (25)
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In the above r th-order deformation equations, Hr (ζ ) = 1
r !

∂r Ĥ(ζ ;q)

∂qr

∣∣
∣∣
q=0

and simi-

larly others. And

RH
r = ∂4Hr−1(ζ )

∂ζ 4 + 2Re
r−1∑

n=0

(
Gn(ζ )

∂2Gr−1−n(ζ )

∂ζ 2 + Hn(ζ )
∂3Hr−1−n(ζ )

∂ζ 3

)

−LRe
r−1∑

n=0

(
∂Hn(ζ )

∂ζ

∂4Hr−1−n(ζ )

∂ζ 4 + 3
∂Gn(ζ )

∂ζ

∂2Gr−1−n(ζ )

∂ζ 2 + 2
∂2Hn(ζ )

∂ζ 2

∂3Hr−1−n(ζ )

∂ζ 3

)
,

(26)

RG
r = ∂2Gr−1(ζ )

∂ζ 2
+ 2Re

r−1∑

n=0

(
Hn(ζ )

∂Gr−1−n(ζ )

∂ζ
− ∂Hn(ζ )

∂ζ
Gr−1−n(ζ )

)

+LRe
r−1∑

n=0

(
∂2Hn(ζ )

∂ζ 2

∂Gr−1−n(ζ )

∂ζ
− ∂Hn(ζ )

∂ζ

∂2Gr−1−n(ζ )

∂ζ 2

)
,

(27)

and

χr =
{
1 r > 1

0 r ≤ 0.
(28)

Finally, these linear equations (23)–(25) are solved using symbolic software such
as, MATHEMATICA and the results are discussed below.

4 Analysis of Results

The convergence of HAM solutions depends strongly on the auxiliary parameter �

and to determine a proper value of � we have plotted the graph of H ′′(0), G ′(0)
against �. Two such �-graphs are displayed in Fig. 2 for certain values of Re,C1,
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Fig. 2 �-graphs a Ω = 0.0,Re = 10, L = 0,C1 = C2 = 0.5, b Ω = −1,Re = 10, L =
0.2,C1 = 0,C2 = 0.5
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Table 1 Values of H ′′(0) (first row),−G ′(0) (second row) for different values of stretching param-
eter when L = 0,Ω = 0,Re = 10

Stretching parameters Ref. [12] Current HAM results

S1 = 0.5, S2 = 0 –1.44561724 –1.4456

2.56217438 2.56217

S1 = 0, S2 = 0.5 0.04718400 0.0471772

0.47526163 0.475266

S1 = S2 = 0.5 –2.38938053 –2.38942

1.54480443 1.54482
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Fig. 3 Variations of flow fields with Ω for L = 0.1, Re = 10,C1 = C2 = 0.5. a Radial, b Axial,
c Tangential

C2,Ω and L . From these figures, one can easily determine a proper value of �

corresponding to the line segment nearly parallel to horizontal axis.
To validate our results obtained using 20th-order homotopy approximations, in

Table1 we present a comparison between our results and those reported by [12] for
Newtonian case (L = 0). Setting �H = �G = −0.7, the values of H ′′(0) and−G ′(0)
are tabulated for different values of the stretching parameters keeping Re = 10 and
Ω = 0 fixed. An excellent agreement can be seen.

For no-stretching case (C1 = C2 = 0), the effects of the non-Newtonian parameter
on the flow profiles have been discussed in [18]. In Fig. 3 the variations of flow pro-
files with rotation Ω are shown for selected values of L = 0.1, C1 = C2 = 0.5 and
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Fig. 4 Variations of flow fields with L for Ω = 0, Re = 10. Dot-dashed lines for C1 = 0, C2 =
0.5, dashed lines for C1 = 0.5, C2 = 0 and straight lines for C1 = C2 = 0.5. a Radial, b Axial,
c Tangential

Re = 10. It can be observed that the flow characteristics are same for all the rotation
rate shownwith a slight change in their magnitude. For other values ofC1, C2 similar
behaviours of the velocity fields were observed, hence are not shown here.Moreover,
for the fluid model under investigation, the effects of surface stretching on the flow
characteristics are in consistent with those observed by Turkyilmazoglu [12].

The effects of the non-Newtonian parameter L , in the presence of surface stretch-
ing are noted in Fig. 4, keeping the Reynolds number Re = 10 fixed. It is evident
from the rotor–stator case, i.e., Ω = 0 displayed in Fig. 4 that for C1 = 0, C2 = 0.5
and C1 = C2 = 0.5, the magnitude of the radial component of velocity H ′ increases
with L near the lower disk and decreases with L near the upper one. This behaviour
of H ′ is compensated by an decrease in the magnitude of axial component of velocity
−H near the lower disk and an increase in magnitude near the upper disk. However,
for C1 = 0.5, C2 = 0, an opposite behaviour is observed in both H ′ and −H . The
tangential component of velocityG is found to be a decreasing function of L for both
the cases C1 = 0, C2 = 0.5 and C1 = 0.5, C2 = 0.5. But for C1 = 0.5, C2 = 0, G
is increasing in magnitude for increasing values of L .
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5 Conclusion

The present investigation produced explicit, analytical solutions for the flow of a non-
Newtonian Reiner–Rivlin fluid between two stretchable rotating disks using HAM.
Various cases, such as the rotor–stator case, co- and counter-rotation cases were dis-
cussed. The effects of the non-newtonian parameter and the stretching parameters
were also noted. To the best of author’s knowledge no such series solution exists in
literature for the considered flow problem. Moreover, the present successful imple-
mentation of the HAM yet again shows the validity and effectiveness of the method.
Thus, it can be concluded that the method can be used to analyse many other non-
linear problems of scientific and engineering importance, particularly in linear and
nonlinear wave mechanics and vibration problems.
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Effects of Viscosity, Thermal
Conductivity, and Heat Source on MHD
Convective Heat Transfer in a Vertical
Channel with Thermal Slip Condition

G. Kiran Kumar , G. Srinivas and B. Suresh Babu

Abstract The present paper aims to study the effects of nonuniform fluid viscosity
and thermal conductivity onMHDflow and heat transfer of fluid in a vertical channel
with heat source by considering thermal slip boundary conditions. Consideration
of temperature-dependent viscosity, thermal conductivity, and magnetic parameter
yields a highly nonlinear coupled systemof partial differential equations. The coupled
nonlinear partial differential equations governing the problem are reduced to a system
of coupled highly nonlinear higher order ordinary differential equations by applying
suitable similarity transformations. The system of higher order ordinary differential
equations is then solved by employing Runge–Kutta sixth-order method.

Keywords Viscosity · Thermal conductivity · Heat source · MHD · Convection ·
Thermal slip · Runge–kutta sixth-order method

1 Introduction

In recent years, remarkable attention has been shown in the study of convection in
immiscible fluid flows due to rapid growth in fluid mechanics research and its impor-
tance in many branches of science. The effect of variable fluid viscosity and variable
thermal conductivity on the heat transfer through the immiscible fluid flowswith heat
source by considering thermal slip boundary conditions that have not been studied
as per the best of my knowledge and available literature. The effects of nonuniform
fluid viscosity and thermal conductivity on MHD flow and heat transfer of fluid in
a vertical channel with heat source are investigated in this chapter by considering
thermal slip boundary conditions. Considering the temperature-dependent viscosity,
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thermal conductivity, and magnetic parameter result in obtaining a highly nonlinear
coupled system of PDEs. Using suitable similarity transformations, the governing
coupled nonlinear PDEs of the model problem are reduced to a system of coupled
highly nonlinear higher order OrdinaryDifferential Equations (ODEs). Runge–Kutta
method of order 6 has been applied for finding the solution of above obtained system
of higher ODEs.

Martin and Boyd [1], the flow in a laminar boundary layer is replicated with
a slip boundary condition. The slip condition varies the boundary layer forma-
tion from a self-similar profile to a two-dimensional formation. Abdul Aziz [2]
studied the boundary layer flow above a flat plate with slip flow and stable heat
flux surface condition because the plate surface temperature differs along the x-
direction; the momentum and energy equations are united due to the presence of
the temperature gradient at the side of the plate surface. Rahman [3] presented
heat transfer process in a two-dimensional steady hydromagnetic convective flow
of an electrically conducting fluid over a flat plate with partial slip at the surface of
the boundary subjected to the convective surface heat flux at the boundary. Khan et al.
[ 4] studied the effects of hydrodynamic and thermal slip boundary conditions on the
double-diffusive free convective flow of a nanofluid along a semi-infinite flat solid
vertical plate. Upendra Mishra and Gurminder Singh [5] have investigated axisym-
metric flow of a viscous incompressible fluid over a shrinking vertical cylinder with
heat transfer. The flow considered is with both the second-order momentum slip and
first-order thermal slip boundary condition. Asim Aziz et al. [6] investigated the slip
effects on the boundary layer flow and heat transfer characteristics of a power law
fluid past a porous flat plate embedded in the Darcy type porous medium.

2 Mathematical Formulation

The two infinite parallel plates are placed at Y = –h1 and Y = h2 along Y-direction
initially as shown in Fig. 1 and both plates are isothermal with different temperatures
T1 and T2, respectively. The distance −h1 ≤ Y ≤ 0 represents region-1 and the
distance 0 ≤ Y ≤ h2 represents region-2 where the first region is filled with the
fluid having density ρ1, viscosity μ1 and the second region is filled with another
fluid having density ρ2, viscosityμ2.The fluid flow in the channel is due to buoyancy
forces.

The following assumptions are considered to get the governing equations for the
problem:

1. The flow is assumed to be one dimensional, steady, laminar, immiscible, and
incompressible

2. The fluid flow is due to buoyancy forces
3. The fluid flow is fully developed
4. The flow, temperature, and species concentration are assumed to be continuous

at the interface
5. Each of thewalls are isothermal, have constant species concentration and T1 > T2
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Fig. 1 Geometry of the
problem
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3 Governing Equations

Under the above hypothesis and Boussinesq approximation, the governed equations
of conservation of mass and conversation of energy are expressed as follows:

Region-1:

dU1

dY
= 0

[
Continuity

]
(1)

ρ1 = ρ0[1 − β1T (T1 − T0)] [State] (2)

1

ρ1

[
∂μ1

∂Y

∂U1

∂Y
+ μ1

∂2U1

∂Y2

]
+ gβ1T(T1 − T0) − σB2

0U1

ρ
= 0 [Momentum] (3)

1

ρCρ

[
∂

∂y
k
∂T1

∂Y
+ Q(T1 − T0) + μ1

(
∂U1

∂Y

)2
]

= 0
[
Energy

]
(4)

Region-2:

dU2

dY
= 0

[
Continuity

]
(5)

ρ2 = ρ0[1 − β2T (T2 − T0)] [State] (6)

1

ρ2

[
∂μ2

∂Y

∂U2

∂Y
+ μ2

∂2U2

∂Y 2

]
+ gβ2T (T2 − T0) − σ B2

0U2

ρ
= 0 [Momentum] (7)
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1

ρ2CP

[
∂

∂Y
K2

∂T2
∂Y

+ Q(T2 − T0) + μ2

(
∂U2

∂Y

)2
]

= 0
[
Energy

]
(8)

The corresponding boundary conditions for the velocity and temperature fields
are given as follows:

U1 = 0 at Y = −h1,U2 = 0 at Y = h2,

U1(0) = U2(0), T = T0 + B
∂T

∂Y
at Y = −h1, T = T2 at Y = h2,

T1(0) = T2(0),

dU1(0)

dY
= 0,

dU2(0)

dY
= 0,

dT1(0)

dY
= 0,

dT2(0)

dY
= 0.

The following nondimensional variables are introduced to get the system of equa-
tions into nondimensional form:

y = Y
h1

(Region 1), u1 = U1
U0
, θ1 = T1−T0

�T , M = σ B2
0h

2
1

μ∞ (Magnetic field parameter),

Gr = gβ1T �Th31
v21

(Grashof number), ν1 = μ∞
ρ1
,R = U0h1

v1
(Reynolds number),

Pr = ν1
α0
,Ec = U 2

0
Cp1 �T (Eckert number), y = Y

h2
(Region-2), u2 = U2

U0
, θ2 = T2−T0

�T ,

h = h1
h2
, b = β1T

β2T
, a = ρ1

ρ2
, (ρ2 > ρ1), Cp = Cp1

Cp2
, ν2 = μ∞

ρ2
,α2 = k2

ρ2Cp2
, U0 is

characteristic velocity of fluid ψ = B
h1
.

As the crux of the work is to study the effect of variable viscosities and variable
thermal conductivities, it is considered in the function of temperature asμ1 = − μ∞θr

θ1−θr

andμ2 = − μ∞θr
θ2−θr

for region-1 and region-2, respectively, where θr is variable viscos-
ity parameter of the region-1 and region-2, respectively. The thermal conductivities
for both the regions are taken as α1 = α0(1 + βθ1) and α2 = α0(1 + βθ2) where β is
thermal conductivity parameter of region-1 and region-2, respectively.

Hence, the governing equationswill become into nondimensional form as follows:
Region-1:

θr

(θ1 − θr)
2

∂θ1

∂y

∂u1
∂y

− θr

(θ1 − θr)

∂2u1
∂y2

+ Gr

R
θ1 − Mu1 = 0 (9)

β

(
∂θ1

∂y

)2

+ (
1 + βθ1

)∂2θ1

∂y2
+ Qhθ1 − PrEc

(
θr

θ1 − θr

)(
∂u1
∂y

)2

= 0 (10)

Region-2
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θr

(θ2 − θr)
2

∂θ2

∂y

∂u2
∂y

− θr

(θ2 − θr)

∂2u2
∂y2

+ 1

ρbh2
Gr

R
θ2 − Mu2

h2
= 0 (11)

β

(
∂θ2

∂y

)2

+ (1 + βθ2)
∂2θ2

∂y2
+ Qhθ2 −

(
θr

θ2 − θr

)
a Pr Ec

(
∂u2
∂y

)2

= 0 (12)

The dimensionless boundary and interface conditions thus formed are

u1(−1) = 0, u2(1) = 0, u1(0) = u2(0), u
′
1(0) = 0, θ ′

1(0) = 0

θ1(−1) = 1 + ψθ ′
1(−1), θ2(1) = 0, θ1(0) = θ2(0) (13)

4 Solution of the Problem

The reduced partial differential equations of flow, energy Eqs. (9)–(12), set of nondi-
mensional boundary conditions Eq. (13) constitute a system of highly nonlinear cou-
pled boundary value problem, which are numerically solved by using Runge–Kutta
sixth-order method. Suitable number of iterations are executed in Mathematica 10.4
to get the desired results. It is observed that a very good agreement has been achieved
with previous results. The Nusselt number and shearing stress on both walls are also
calculated using the expressions:

Nu1 =
[
∂θ1

∂y

]

y=−1

, Nu2 =
[
∂θ2

∂y

]

y=1

, St1 =
[
∂u1
∂y

]

y=−1

, St2 =
[
∂u2
∂y

]

y=1

.

5 Results and Discussion

The numerical solution of the system of equations is analyzed for different values of
the governing parameters and the results are presented graphically. Grashof number
(Gr), Reynolds number (R), Magnetic field parameter (M), Eckert number (Ec),
variable viscosity parameter (θr), thermal conductivity parameter (β), heat source
parameter (Qh), and Thermal slip parameter (ψ) are fixed as Gr = 3, R = 3, M = 3,
Ec = 0.001, θr = −0.8, β = 0.6, Qh = 0.2, and ψ = 6 for all the profiles excepting
the varying parameter.

The curves in Figs. 2, 3, 4, 5, 6, 7, 8, and 9 illustrate the effect of various parameters
on velocity. The Grashof number for heat transfer signifies the relative effect of the
buoyancy force to the viscous hydrodynamic force in the boundary layer. FromFig. 2,
it is observed that as Gr increases the velocity increases in both regions because of the
enhancement of buoyancy. The influence of Reynolds number on velocity is shown
in Fig. 3. From Fig. 3 inertial forces is inversely proportional with the fluid flow



76 G. Kiran Kumar et al.

Fig. 2 Velocity profiles for
different Gr
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Fig. 3 Velocity profiles for
different R
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Fig. 4 Velocity profiles for
different M
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Fig. 5 Velocity profiles for
different Qh
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Fig. 6 Velocity profiles for
different Ec
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Fig. 7 Velocity profiles for
different β
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Fig. 8 Velocity profiles for
different θr
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Fig. 9 Velocity profiles for
different ψ
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in both the regions. The natural convection is found to be significant in fluid flow.
Figure 4 represents the effect of Magnetic field parameter. Magnetic field retards the
flow due to the presence of electrically conducting fluid, so the Lorentz force can
be increased to regulate the flow. The heat source parameter effect is presented in
Fig. 5, and from this it is clear that the more heat source the more flow. The effect
of the Eckert number on velocity is shown in Fig. 6. Ec is proportional to velocity
and not shown significant effect. The effect of thermal conductivity parameters on
velocity is depicted in the Fig. 7 it shows that the increase in β leads to increase in
the flow of the fluid in both the regions of the channel due to lowering viscosity. The
thermal conductivity affects the velocity in region-1 than in region-2. The effect of
variable viscosity is studied and depicted in Fig. 8 it shows that the absolute viscosity
and the fluid flow are found inversely proportional. The Fig. 9 shows the variation of
velocity with respect to thermal slip parameterψ . The graph reveals that the velocity
decreases when the values of ψ increases.

Figures 10,11, 12, 13, 14, 15, 16, and 17, illustrate the temperature profiles MHD
flow in the vertical channel. The temperature across the channel for various param-
eters was investigated effectively with the help of results obtained. The temperature
in both the regions is linearly varying for all the parameters. The variation of tem-
perature are not much significant for Gr, R, M, Ec, β, and θr. The effect of Gr on
the heat transfer process is shown by the Fig. 10. This figure reveals that an increase
in Grashof number (Gr) results decrease in the temperature distribution. The effect

Fig. 10 Temperature
profiles for different Gr
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Fig. 11 Temperature
profiles for different R
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Fig. 12 Temperature
profiles for different M
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Fig. 13 Temperature
profiles for different Qh
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Fig. 14 Temperature
profiles for different Ec
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Fig. 15 Temperature
profiles for different β
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Fig. 16 Temperature
profiles for different θr
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Fig. 17 Temperature
profiles for different ψ
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of inertial forces on temperature is shown in Fig. 11 and is inversely proportional
to temperature in both the regions. The effect of magnetic field on temperature is
shown in Fig. 12 and is inversely proportional to temperature in both the regions.
The heat source parameter effect is presented in Fig. 13, and from this it is clear that
the more heat source the more flow. Figure 14 illustrates the influence of viscous
dissipation on temperature. On observing the temperature graph, viscous dissipation
is directly proportional to the temperature and not shown significant effect. The effect
of thermal conductivity (β) shown in Fig. 15 is observed that the thermal conduc-
tivity and temperature are directly proportional. The effect of variable viscosity (θr)
on temperature is shown in Fig. 16, and it is observed that the variable viscosity and
temperature are found inversely proportional. Figure 17 shows the variation of tem-
perature with respect to thermal slip parameter ψ . The graph shows that the thermal
slip parameter and temperature are inversely proportional to each other.

Table 1 shows the shear stress number values and with the effects of all governing
parameters. Shearing rate is directly proportional to the buoyancy on the plate abut-
ting the region-1. The absolute shearing rate on the plate abutting the region-2 is also
directly proportional to the buoyancy. The viscous force is inversely proportional
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to the absolute shearing rate on both the plates. The same behavior is observed for
Lorentz force. The heat source enhances heat transfer rate on both the plates. Interest-
ingly viscous dissipation enhances the shearing rate on both the plates. The thermal
conductivity is enhancing the shearing rate on the plate abutting the region-1 and
retarding the shearing rate on the plate abutting the region-1. The reverse effect is
observed for variable viscosity. The thermal slip parameter is inversely proportional
to the absolute shearing rate on both the plates.

Table 2 shows the Nusselt number values, i.e., the rate of heat transfer with the
effect of all governing parameters. Nusselt number value is inversely proportional
to the buoyancy on the plate abutting the region-1.The absolute Nusselt number
value, i.e., the rate of heat transfer on the plate abutting the region-2 is also inversely
proportional to the buoyancy. The viscous force is directly proportional to the abso-
lute Nusselt number on both the plates. The same behavior is observed for Lorentz
force.Heat source is retarding the Nusselt number on the plate abutting the region-1
and enhancing the Nusselt number on the plate abutting the region-2. Interestingly
viscous dissipation retardes the rate of heat transfer on both the plates. The vari-
able viscosity is decreasing the rate of heat transfer on both the plates. The thermal
conductivity is retarding the Nusselt number on the plate abutting the region-1 and
enhancing the Nusselt number on the plate abutting the region-2. The thermal slip
parameter is inversely proportional to the absolute heat transfer rate on both the
plates.

6 Conclusions

1. The velocity and temperature aremore in region-1 than in region-2 due to smaller
density.

2. The variation of viscosity and thermal conductivity enhances the flow signifi-
cantly.

3. The thermal conductivity variation could not enhance the temperature notably.
4. The shear rate is more on the hot plate than the cold plate. The absolute rate of

heat transfer is more on cold plate than on hot plate.
5. The variable viscosity and thermal conductivity significantly enhance the rate of

shear stress and rate of heat transfer.
6. The increase in thermal conductivity and viscosity of the fluid transfer the heat

more significantly even in immiscible flows.
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Diffraction of Scalar-Impulsive(SH)
Waves by a Spherical Cavity Embedded
in an Inhomogeneous Medium

Aditya Kumar Patnaik, S. M. Abo-Dahab and Sapan Kumar Samal

Abstract The solution of displacement field to the problem of diffraction of SH
waves generated by an impulsive point source due to a spherical cavity in a non-
homogeneous elastic medium, has been obtained in integral forms. The integrals
are evaluated asymptotically to obtain short time estimate of the motion near the
wave front for large frequency. The displacement of impulsive waves are shown
graphically for different values of inhomogeneity factor ‘q(0 < q < 1)’ with respect
to observational point. It is observed that the displacement of diffracted SH-waves
decreases as the arrival time increases for some fixed values of inhomogeneity of the
medium. Also for fixed arrival time the displacement decreases as the inhomogeneity
increases.

Keywords Diffraction · SH-impulsive waves · Spherical cavity · Inhomogeneity

1 Introduction

In recent years, more attentions have been made for diffusing because of its appli-
cations in diverse field, especially in engineering, petroleum, geophysics and acous-
tics. The problems of scattering of two dimensional elastic waves by cylindrical and
spherical obstacles in an infinite, homogeneous, isotropic elastic medium have been
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studied by many authors in recent years. Gilbert and Knopoff [1] used Friedlander’s
method [2] to study the scattering of impulsive elastic waves by a smooth convex
cylinder. Knopoff and Gilbert [3] extended the said work and studied the diffraction
of elastic waves by the core of the earth. Pao and Mow [4] discussed the problem
of scattering of elastic waves by a spherical obstacle. They show that general results
of an elastic inclusion for a rigid sphere, a fluid sphere, a cavity or an obstacle in a
fluid can be derived by proper limiting process. Norwood and Miklowitz [5] con-
sidered the diffraction of transient elastic waves by a spherical cavity embedded in
an infinite, linear, homogeneous, isotropic elastic medium. Rajhans and Kesari [6]
studied the problem of the scattering of three dimensional elastic waves by a cylin-
drical cavity in homogeneous, isotropic elastic medium. Hwang et al. [7] discussed
the three dimensional elastic waves scattering and diffraction due to a rigid cylinder
embedded in an elastic medium by a point source. Akkas and Erdogan [8] discussed
the propagation of acoustic waves away from a spherical cavity using the residual
variable method (RVM). They have shown that this method is very much suitable to
analyze the acoustic wave propagation in an infinite medium from the cavity surface.
Rajhans et al. [9] studied the three dimensional diffraction of compressionalwaves by
a rigid cylinder in an inhomogeneousmedium. Samal et al. [10] studied the scattering
of SH-waves by a spherical cavity embedded in a homogeneous,isotropic medium.
Hasheminejad et al. [11] discussed the important effects of interphase anisotropy and
inhomogeneity on the total Scattering Cross Section and dynamic concentrations for
a moderately wide range of frequencies and interface layer thickness. Avila-Carrera
[12] analysed the diffracted displacement amplitude versus normalized frequency
and radiation patterns at low, intermediate and high frequencies. Wang et al. [13]
described scattering cross section amplitude and far-field scattering amplitude of
diffracted elastic waves by a cylindrical Nanohole. Some new works on elastic and
thermoelastic diffusion have been discussed [14–17].

Mineral reserves may be existed inside the earth in the cylindrical, spherical and
any other forms. Seismicwaves generated by natural earthquake or any other artificial
sources fall on it and some get reflected and some get diffracted. So keeping in view
of this, a mathematical modeling of diffraction of scalar impulsive SH-waves by a
spherical cavity embedded in an inhomogeneous medium by point source has been
considered. The point source is located at a distance r = r0, θ = 0+,φ = 0 from
the center of the sphere. It is assumed that velocity of scalar impulsive waves is the
function of r and is given by β = β0rq where 0 < q < 1. This law of variation of the
velocity has been found prevalent in actual earth, Bullen [18]; Roy [19] and is more
general as it included the homogeneous case when q = 0. In the shadow zone the
diffraction event takes place, the method of residue is used to evaluate the integral.
Here it is assumed that ‘s’ the Laplace transformvariable to be large, real and positive.
This corresponds to the short-time approximations of the pulses. Following Knopoff
[20] the solution is obtained in transformed field and finally the time solution is
obtained on performing Laplace inversion. The solution so obtained is interpreted
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as the diffracted SH-waves in the shadow zone. The graphical representation of
diffracted waves motion with respect to time for various values of inhomogeneity is
shown. The effect of inhomogeneity in diffracted SH-waves is studied at different
position of the observational point.

2 Formulation of the Problem and Formal Solution

Let a point source of SHwaves be situated at (r0, 0+, 0) from the center of the sphere
(Fig. 1).We choose a spherical polar co-ordinate system (r, θ,φ). The impulsive point
source is expressed mathematically in the form of Dirac delta function and this can
be removed by taking transform of the equation. The displacement u has only φ
component, is a function of r, θ and t and is a solution of the equation

∇2u − β−2 ∂2u

∂t2
= −δ(r − r0)δ(θ − 0+)δ(t)(r2 sin θ)−1. (1)

where

∇2 = 1

r2
∂(r2 ∂

∂r )

∂r
+ 1

r2 sin θ

∂(sin θ ∂
∂θ

)

∂θ
,

β = β0rq = velocity of the SH-wave, function of r , and q is the inhomogeneity
factor, 0 < q < 1. The Laplace transform of the Eq. (1) with respect to time ‘t’

∇2u − s2

β2
u = −δ(r − r0)δ(θ − 0+)(r2 sin θ)−1. (2)

where u = ∫ ∞
0 u exp(−st)dt .

Now the Legendre transform with respect to the angle ‘θ’, Knopoff [20]; Tranter
[21, 22]

U (ν) =
∫ π

0
u(cos θ)Pν(cos θ)dθ (3)

Fig. 1 Geometry of the problem
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Fig. 2 Path of integration

u(cos θ) = i−1
∫

l
η sec(ηπ)U (η − 1

2
)Pη− 1

2
(− cos θ)dη

The l is the path of integration shown in Fig. 2.
Using this transformation (3) in (2), we get

r−2 ∂(r2 ∂U
∂r )

∂r
− [ s2

β2
+ r−2ν(ν + 1)]U = −r−2δ(r − r0) (4)

The particular solution of (4) is Marcuvitz [23]

Up = r−0.5
0 K ν+ 1

2
1−q

(
sr1−q

β0(1 − q)

)

I ν+ 1
2

1−q

(
sr1−q

0

β0(1 − q)

)

, r > r0

= r−0.5
0 I ν+ 1

2
1−q

(
sr1−q

β0(1 − q)

)

K ν+ 1
2

1−q

(
sr1−q

0

β0(1 − q)

)

, r < r0

where β = β0rq , 0 < q < 1, and I and K are modified Bessel’s functions of first
kind and second kind respectively.
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The complete solution is

U = Up + Ar−0.5K ν+ 1
2

1−q

(
sr1−q

β0(1 − q)

)

(5)

where A is arbitrary constant.
Weconsider the spherical cavity at r = a < r0 and the suitable boundary condition

is
∂U

∂r
= 0, at r = a (6)

Then, from this boundary condition (6), we get the arbitrary constant

A =
sβ−1

0 r−0.5
0 a−q K ν+ 1

2
1−q

(
sr1−q

0
β0(1−q)

)
I ′

ν+ 1
2

1−q

(
sa1−q

β0(1−q)

)

0.5a1.5K ′
ν+ 1

2
1−q

(
sa1−q

β0(1−q)

)
+ sa−0.5β−1

0 r−q K ′
ν+ 1

2
1−q

(
sa1−q

β0(1−q)

)

Then U can be expressed as

U = r−0.5
0 I ν+ 1

2
1−q

(
sr1−q

β0(1 − q)

)

K ν+ 1
2

1−q

(
sr1−q

0

β0(1 − q)

)

−
sβ−1

0 r−0.5
0 a−q K ν+ 1

2
1−q

(
sr1−q

0
β0(1−q)

)
I ′

ν+ 1
2

1−q

(
sa1−q

β0(1−q)

)

0.5a1.5K ′
ν+ 1

2
1−q

(
sa1−q

β0(1−q)

)
+ sa−0.5β−1

0 r−q K ′
ν+ 1

2
1−q

(
sa1−q

β0(1−q)

)

Now taking inverse Legendre transformation, we get

ū = i−1
∫

l
η sec ηπ

[

r−0.5
0 I η

1−q

(
sr1−q

β0(1 − q)

)

K η
1−q

(
sr1−q

0

β0(1 − q)

)

−
sβ−1

0 r−0.5
0 a−q K η

1−q

(
sr1−q

0
β0(1−q)

)
I ′

η
1−q

(
sa1−q

β0(1−q)

)

0.5a1.5K ′
η

1−q

(
sa1−q

β0(1−q)

)
+ sa−0.5β−1

0 r−q K ′
η

1−q

(
sa1−q

β0(1−q)

)

⎤

⎥
⎦ P η

1−q
(− cos θ)dη

(7)

3 Motions in the Shadow Zone: Diffracted Pulses

The contour integral (7) can be calculated by the theorem of residues. We have
considered the case when η and s both large and η is purely imaginary. It is found
that K η

1−q
( sa1−q

β01−q ) has infinite number of zeros in complex plane. In this case the
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appropriate approximations for modified Bessel’s functions are used, Friedlander
[2]. Let η = iμ, where μ is real and positive. It is found that when μ ∼

sa1−q

β0(1−q)

K iμ
1−q

(χ) =
[
20.5π

3χ1/3

]

e
−πμ

2(1−q) f (ζ) (8)

and

I iμ
1−q

(χ) =
[−20.5π

3χ1/3

]

e
−πμ

2(1−q) [i f (ζ) + g(ζ)] (9)

Where f (ζ) = 3/21/6 Ai (−21/3ζ), ζ = 1
2 [ 3sa1−q

β0(1−q)
(ξ cosh ξ − sinh ξ)]2/3, cos ξ =

μβ0(1−q)

sa1−q .
The zeros of f (ζ), denoted by ζn , are related to μn by the expression

μn =
(

sa1−q

β0(1 − q)

)

+ ζn

(
sa1−q

β0(1 − q)

)1/3

Then using residue method the solution of Eq. (7) can be written as

ū =
∞∑

n=1

20.5(π−1)3(sechß¯n)s
4
3 r−0.5

0 [(f ′)−1K i¯n
1−q

(
sr1−q

0

fi0(1 − q)

)

K i¯n
1−q

(
sr1−q

fi0(1 − q)

)

I ′
iμn
1−q

(
sa1−q

β0(1 − q)

)

P iμn
1−q

(cos θ) exp

(
μnπ

2(1 − q)

)

(10)

The Legendre function is approximated by Hobson [24]

P μ
1−q

(cos θ) ≈
(
2πμ sin θ

1 − q

)−1/2

exp

(

± μθ

1 − q

)

,μ < 0, θ > 0, |μ| � 1,μ > 0

Now towrite the Eq. (10) in simplified formwe use a simpler formula formodified
Bessel function which is Friedlander [2]

K iμ
1−q

(
sr1−q

0

β0(1 − q)

)

≈
(π

2

)1/2
(

sr1−q
0

β0(1 − q)

)−1/2 (
s2r2−2q

0 − β2
0η

2

β2
0(1 − q)2

)−1/4

exp[ μ

1 − q
cos−1

(
μβ0

sr1−q
0

)(
s2r2−2q

0 − β2
0μ

2

β2
0(1 − q)2

)1/2

− πμ

2(1 − q)
] (11)

Using approximated values of all the functions, we get

ū(r, θ, s) =
∞∑

n=1

−21/2(1 − q)4s−0.5a
2−q
3 π0.5r−0.5

0 sin−1/2 θ

⎛

⎝r2(1−q)
0 −

(
a1−q

1 − q

)2
⎞

⎠

−1/4
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(r2(1−q) −
(

a1−q

1 − q
)2

)−1/4

g(ζ)[( f ′)−1]

exp

[

s

(
β−1
0 a1−q

(1 − q)2

) (

cos−1

(
a1−q

r1−q
0 (1 − q)

)

+ cos−1

(
a1−q

r1−q (1 − q)

))]

exp

⎡

⎣s

(

−β−1
0 a1−q

(1 − q)2

)⎛

⎝−
(

r2−2q
0 (1 − q)2

a2−2q
− 1

)1/2

−
(

r2−2q (1 − q)2

a2−2q
− 1

)1/2

+ π

2
− θ

⎞

⎠

⎤

⎦

exp

⎡

⎣− ζn

1 − q

(
sa1−q

β0(1 − q)

)1/3 (

− cos−1

(
a1−q

r1−q
0 (1 − q)

)

− cos−1

(
a1−q

r1−q (1 − q)

)

+ π

2
− θ

)⎤

⎦

(12)

Now by using the following approximation, the transient solution of (12), Ragab [25]

1

2πi

∫ c+i∞

c−i∞
sm exp(sT − s1/3Q)ds ∼= 2−1π−1/23(6m+1)/4

(
Q(6m+3)/4

T (6m+5)/4

) (

exp
−2Q3/2

33/2T 1/2

)

(13)

Here m = 0.5, T = t − γ, Q = ζn

1−q

(
a1−q

β0(1−q)

)1/3
�

� =
(
− cos−1

(
a1−q

r1−q
0 (1−q)

)
− cos−1

(
a1−q

r1−q (1−q)

)
+ π

2 − θ
)

and γ =
(
− β−1

0 a1−q

(1−q)2

) ((
r2−2q
0 (1−q)2

a2−2q − 1
)1/2

−
(

r2−2q (1−q)2

a2−2q − 1
)1/2 + �

)

u(r, θ, t) =
∞∑

n=1

−2−1/2(1 − q)4a
2−q
3 r−0.5

0 sin−0.5 θ

((r0
a

)2(1−q) − (1 − q)−1

)−1/4

(( r

a

)2(1−q) − (1 − q)−1

)−1/4

g(ζn)[ f ′(ζn)]−1ζ3/2n �3/2(t − γ)−1/2

exp
(
−23−3/2ζ3/2n a(1−q)/2β

−1/2
0 �3/2(t − γ)−1/2

)
H(t − γ) (14)

4 Numerical Calculation and Interpretation

The numerical results are shown here by taking all the quantities normalized with
respect to the radius a and the SH-wave velocity β. The travel time is normalized by
taking a1−q/β0 as the unit time. When the inhomogeneity factor q = 0, the Eq. (14)
gives displacement of diffracted SHwave by a spherical cavity embedded in a homo-
geneous medium, Samal [26]. The source position is taken as r0 = 3a, θ = 0,φ = 0
and observational point is at r = 2a,φ = 0, θ varies. Figure3 depicts the variation
of magnitude of diffracted SH-waves with respect to travel time in a spherical cavity
embedded in a homogeneous medium (q = 0). Figures4 and 5 show the variation of
magnitude of diffracted SH-waves for different values of q i.e. q = 0.2 and 0.5. It is
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Fig. 3 Variation of radial
displacement of diffracted
SH-waves as a function of
time for q = 0.0

Fig. 4 Variation of radial
displacement of diffracted
SH-waves as a function of
time for q = 0.2

Fig. 5 Variation of radial
displacement of diffracted
SH-waves as a function of
time for q = 0.5
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Fig. 6 Variation of radial
displacement of diffracted
SH-waves as function of q
for t − γ = 0.2

Fig. 7 Variation of radial
displacement of diffracted
SH-waves as a function of q
for t − γ = 0.4

observed that the magnitude of diffracted SH-waves decreases as the value of inho-
mogeneity factor q increases. Figures6 and 7 are plotted for radial displacement of
diffracted SH-waves with respect to different inhomogeneity factors keeping fixed
arrival time. It is found that displacement decreases as the inhomogeneity factor
increases but it increases as the observational angle θ increases.

5 Conclusions

It is concluded that the displacement of diffracted SH-waves decreases as the inho-
mogeneity of the medium increases for different observational angles. From obser-
vational angle θ = 150◦ to 170◦ the diffracted SH-waves have less displacement but
for θ = 180◦ it shows very high displacement. It is also concluded that for a fixed
value of arrival time, the displacement decreases as the inhomogeneity of medium
increases.
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Love Type Surface Waves in Curved
Layers

Aditya Kumar Patnaik, Sapan Kumar Samal and Anjana P. Ghorai

Abstract A mathematical modeling of Love type surface waves propagating in a
curved homogeneous isotropic layer lying over a curved homogeneous isotropic half-
space has been considered. The variable separable and WKB methods are applied
to solve the motion of differential equation of Love type surface waves propagation
along with curved layer. Both the effects of two curvature of radii of curved layers
which along and perpendicular to the propagation direction are taken into account.
The analytical expression for Love type surface waves velocity and curvature of
curved layer are obtained by setting the propagation of Love waves in plane layer
as basis. The effect of radius of curvature on the phase velocity has been shown
graphically.

Keywords Love type surface waves · WKB method · Curved layer

1 Introduction

The study of surface waves in a curved layer is very much important to seismologists
due to its possible application in geophysical exploration and in understanding the
cause and damage due to earthquake. Number of works in propagation of seismic
waves in the layered medium is found in the book by Ewing et al. [1]. Sahay et al.
[2] discussed the seismic wave propagation in homogeneous and isotropic porous
medium. Pradhan et al. [3] discussed the propagation of shear waves in a fluid-
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saturated elastic plate. Szilard [4] presented an overview of the existed research
results concerning the propagation behavior of Rayleigh wave along curved surfaces.
Based on the assumption that the curved surface is sufficiently smooth and the radii
of curvature very sufficiently slow, Biryukov et al. [5] provided the suitable wave
equation for Rayleigh wave propagation along a curved surface and showed the
influence of radius curvature on the propagation of Rayleigh wave. Jin et al. [6]
analyzed the basic properties of Rayleigh surface wave propagation along a curved
surface.

The earth has a layered structure which consists the isotropic and anisotropic
layers with regular and irregular interfaces. These layers may be concave upward
and concave downward. In these curved form of layers the radius of curvature has
a major role in propagation of surface waves. Very little work has been done so far
taking radius of curvature of curved layer. So we have made an attempt to study
propagation of Love waves in curved surfaces.

In this paper, the variation of parameters and WKB methods are used to solve
the differential equations of Love type waves propagating along with curved layer.
The effects of two radii of curvature of curved surfaces along and perpendicular to
the propagation direction are taken into account. The analytical expression for Love
type surface wave in a curved layer is obtained in comparison to the propagation of
Love waves on plane surface.

2 Wave Equations of Love Type Surface Waves on a
Curved Surface Layer

It is assumed that a smooth surface satisfies the condition kρmn >> 1 where k is
the wave number of Love type wave, ρmn is the minimal radius of curvature. We
introduce a system of local cartesian coordinate Oαβγ assuming that a curvilinear
isotropic layer rests upon a curvilinear isotropic half-space (Fig. 1).

Fig. 1 Geometry of the
problem
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For the propagation of Love type surface waves, the displacement components
along β direction is U (α, γ, t) and along other α and γ directions are zero. The
equation of motion for a curved surface layer without body force is [7, 8].

1

hαhβhγ

[
∂

∂α

(
hβhγ

hα

∂U

∂α

)
+ ∂

∂γ

(
hαhβ

hγ

∂U

∂γ

)]
− 1

C2
T

∂2U

∂t2
= 0 (1)

where CT is the velocity of Love type surface waves; hα, hβ, and hγ are Lame
coefficients and the approximations used in the following expressions (Biryukov et
al. [5])

hα ≈ 1 + γ

ρα

, hβ ≈ 1 + γ

ρβ

, hγ = 1 (2)

in which k0 is the wave number for a plane surface. To investigate the influence
of radii of curvature ρα and ρβ on the propagation of Love type surface wave, the
solution of Eq. (1) can be taken as

U = u(α, γ )eik0αe−iωt (3)

Substituting of expression (3) into Eq. (1) together with (2), yields the following
equation:

(
1 + γ

ρα

− γ

ρβ

)
∂2u

∂γ 2
+ 2ik0

∂u

∂α
+

(
1

ρα

− 1

ρβ

)
∂u

∂γ
(4)

+
{(

ω2

C2
T

− k20

)
+

(
ω2

C2
T

+ k20

)
γ

ρα

+
(

ω2

C2
T

+ k20

)
γ

ρβ

}
u = 0

3 Solution of Love Type Surface Waves Equations on a
Curved Layer

The WKB asymptotic approximation technique is applied to solve the wave Eq. (4)
Let m = 1

ρα
+ 1

ρβ
, n = 1

ρα
− 1

ρβ
then Eq. (4) can be written as

(1 + nγ )
∂2u

∂γ 2
+ 2ik0

∂u

∂α
+ n

∂u

∂γ
+

{(
ω2

C2
T

− k20

)
+ ω2

C2
T

mγ + k20nγ

}
u = 0 (5)

The method of variable separable is applied to solve the Eq. (5). Let u(α, γ ) =
X1(γ )Y1(α) then Eq. (5) becomes
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(1 + nγ )X ′′
1 + nX ′

1 +
{(

ω2

C2
T

− k20

)
+ ω2

C2
T

mγ + k20nγ�k2
}
X1 = 0 (6)

2ik0Y
′
1 + �k2Y1 = 0 (7)

where �k2 is the constant of separation.
The solution of Eq. (7) is Y1 = M exp( i�k2

2k0
)α.

It is very much difficult to solve the Eq. (6). Here the WKB technique is applied
to obtain the asymptotic approximation of Eq. (6) by the following procedure
X1 = e± ∫

φ(γ )dγ .
Applying this transformation to the Eq. (6), we get

dφ

dγ
+ n

1 + nγ
φ + φ2 +

(w
2

c2T
− k20) + (w

2

c2T
mγ + k20nγ − �k2)

1 + nγ
= 0 (8)

Taking q2 = ω2

c2T
− k2, P2

0 = k20n + ω2

c2T
m, �k2 = k2 − k20 , and nγ less than 1, the

following expression can be obtained:

dφ

dγ
+ n(1 − nγ )φ − q2(1 − nγ ) + P2

0 γ = 0 (9)

The Eq. (9) is a second order nonlinear differential equation in φ. To get the solution
of this equation, the solution φ can be expressed as inverse powers of q. The φ can
be written as

φ = φ0q + φ1 + φ2

q
+ φ3

q2
+ . . . (10)

Substituting (10) in Eq. (9)and writing in inverse powers of q, the equation takes the
form

[φ2
0 − (1 − nγ ]q2 + [φ′

0 + nφ0 + 2φ0φ1]q + [φ′
1 + nφ1 + φ2

1 + 2φ0φ2 (11)

+ p20γ ][φ′
2 + nφ2 + 2φ1φ2 + 2φ0φ3]q−1 + . . . = 0,

where superscript’ stands differentiation with respect to φ. Equating the coefficients
of each power of q to zero, the following system of infinite number of equations are
obtained

φ2
0 − (1 − nγ ) = 0 (12)

φ′
0 + nφ0 + 2φ0φ1 = 0 (13)

φ′
1 + nφ1 + φ2

1 + 2φ0φ2 + p20γ = 0 (14)

φ′
2 + nφ2 + 2φ1φ2 + 2φ0φ3 = 0 (15)

and so on.
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The solutions of φ0, φ1, φ2, φ3, . . . can be obtained from above equations. Only
first four solutions are kept and substitute in Eq. (10). The asymptotic solution of (9)
can be written as follows (Jin et al. [6]):

φ = q(1 − 1

2
nγ ) + n

4
− P2

0 γ

2q
+ 1

4

P2
0

q2
(16)

The solution of Eq. (3.2) can be obtained in the form

X1 = exp
{(

q + n
4 + P2

0
4q2

)
γ − 1

4

(
nq + P2

0
q

)
γ 2

}
Therefore, the solution of wave equation in curved surface layer can be written as

u = Mexp

[
ikα +

(
q + n

4
+ P2

0

4q2

)
γ − 1

4

(
nq + P2

0

q

)
γ 2

]
(17)

+ Nexp

[
ikα +

(
−q + 3n

4
+ P2

0

4q2

)
γ − 1

4

(
nq + P2

0

q

)
γ 2

]

where M and N are arbitrary constants.

4 Solution of Love Type Surface Waves Equations on a
Curved Half-Space

Similarly for the curved surface half-space, the displacement is

v = Bexp

[
ikα +

(
−q ′ + 3n

4
+ P ′2

0

q ′2

)
γ − 1

4

(
nq ′ + P ′2

0

q ′

)
γ 2

]
(18)

where B is arbitrary constant, prefix ’,’ stands for curved surface half-space and
q2 = ω2

c′2
T

− k2, P ′2
0 = k20n + ω2

c′2
T
m.

5 Boundary Conditions and Solution

Boundary conditions on the interface and on the free surface can be expressed as

σγγ = σ ′
γ γ at γ = 0

u = v at γ = 0

σαγ = 0 at γ = −H (19)

Using (10) and (18) in (19), we get
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M

(
q + n

4
+ P2

0
4q2

)
+ N

(
−q + 3n

4
+ P2

0
4q2

)
= B

(
−q ′ + 3n

4
+ P ′2

0
q ′2

)
μ1

μ2
(20)

M + N = B (21)

M

{(
q + n

4
+ P2

0
4q2

)
+ 1

2

(
nq − P2

0
q

)
H

}
e
−(q+ n

4+ P20
4q2

)H
(22)

+N

{(
−q ′ + 3n

4
+ P ′2

0
q ′2

)
+ 1

2

(
nq − P2

0
q

)
H

}
e
−(q+ n

4+ P20
4q2

)H = 0

where
μ1 and μ2 are rigidity of upper curved layer and lower curved half-space.

Eliminating the constants from (20), (21), and (23) the frequency equation for
Love type surface waves is obtained as

∣∣∣∣∣∣
R S T μ1

μ2

1 1 1
(R + 1

2 LH)e−RH (S + 1
2 LH)e−SH 0

∣∣∣∣∣∣ = 0 (23)

where

R = q + n

4
+ P2

0
4q2

, S = −q + 3n

4
+ P2

0
4q2

, T = −q ′ + 3n

4
+ P ′2

0
q ′2 , L = 1

2

(
nq − P2

0
q

)

The Eq. (23) can be derived into frequency equation as

tanh
(
q − n

4

)
H = (R + 1

2 LH)(S − T μ1

μ2
) − (S + 1

2 LH)(R − T μ1

μ2
)

(R + 1
2 LH)(S − T μ1

μ2
) + (S + 1

2 LH)(R − T μ1

μ2
)

(24)

Case 1:

When ρα → ∞ ρβ → ∞ then we find n = 0 and P0 = 0. The Eq. (24) takes the
form

tanh

(√
c2

c2T
− 1

)
kH =

(√
c2

c′2
T

− 1
)

μ1

μ2(√
c2

c2T
− 1

) (25)

If k = ik1 is taken then the Eq. (24) takes the form

tan

(√
c2

c2T
− 1

)
k1H = −

(√
1 − c2

c′2
T

)
μ1

μ2(√
c2

c2T
− 1

) (26)

which is the standard form of dispersion equation in plane layer.
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Case 2:

When 1
ρα

→ 0 thenm = 1
ρβ

= 1
R and n = − 1

ρβ
= 1

R . For the convex cylindrical layer
(R > 0), the Eq. (24) becomes

tanh

(√
c2

c2T
− 1

)
kH =

1 − 2

(√
c2

c′2T
−1

)
μ1
μ2(√

c2

c2T
−1

)
H
2R

−2
H/2R +

(√
c2

c′2T
−1

)
μ1
μ2(√

c2

c2T
−1

)

Case 3:

When 1
ρα

→ 0 then m = 1
ρβ

= 1
R and n = − 1

ρβ
= 1

R . For the concave cylindrical
layer (R < 0), let R = −R1 and R1 > 0, the Eq. (24) becomes

tanh

(√
c2

c2T
− 1

)
kH =

1 + 2

(√
c2

c′2T
−1

)
μ1
μ2(√

c2

c2T
−1

)
H

2R1

2
H/2R1

−
(√

c2

c′2T
−1

)
μ1
μ2(√

c2

c2T
−1

)

6 Numerical Calculation and Discussion

For Case 2, the numerical calculation has been done by taking μ1

μ2
= 1.4 and cT

c′
T

=
0.89 and Phase velocity is obtained for different values of H/2R.

Figure2 shows the effect of H/2R in the propagation of Love type surface waves
in a curved layer lying over a curved half-space. As the H/2R increases the phase
velocity increases but when the dimensionless wave number increases the phase
velocity decreases.

For Case 3, the numerical calculation has been done by taking the same material
properties and phase velocity is obtained for different values of H/2R1. It is observed
that when H/2R1 increases the phase velocity increases but as the dimensional wave
number increases the phase velocity decreases (Fig. 3).
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Fig. 2 Phase velocity with respect to wave number

Fig. 3 Phase velocity with respect to wave number

7 Conclusions

It is observed from dispersion equation that two radii of curvature of curved layer has
significant effect in propagation of Love type surface waves in a curved layer lying
over a curved half-space. The phase velocity first increases and then decreases as
wave number increases when propagation of Love type surface wave takes place in
cylindrical convex curved layer lying over a cylindrical convex curved half-space but
as the width of the layer increases with respect to radius of cylinder the phase velocity
increases. The medium becomes stable when Love type surface waves propagate in
a large width of cylindrical concave curved layer with respect to radius. The phase
velocity increases as the wave number increases when the width of layer is very large
in comparison to radius of layer.
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Numerical Solution of Fuzzy Stochastic
Volterra-Fredholm Integral Equation
with Imprecisely Defined Parameters

Sukanta Nayak

Abstract Uncertainties play amajor role in stochasticmechanics problems.To study
the trajectory involved in stochastic mechanics problems generally, probability dis-
tributions are considered. Accordingly, the stochastic mechanics problems govern by
stochastic differential equations followed by Markov process. However, the obser-
vation still lacks some sort of uncertainties, which are important but ignored. These
imprecise uncertainties involved in the various factors affecting the constants, coef-
ficients, initial, and boundary conditions. Hence, there may be a possibility to model
a more reliable strategy that will quantify the uncertainty with better confidence. In
this context, a computational method for solving fuzzy stochastic Volterra-Fredholm
integral equation, which is based on the Block Pulse Functions (BPFs) using fuzzy
stochastic operational matrix, is presented. The developed model is used to investi-
gate a test problem of fuzzy stochastic Volterra integral equation and the results are
compared in special cases.

Keywords Fuzzy arithmetic · Stochastic operational matrix (SOM) · Fuzzy
stochastic Volterra-Fredholm integral equation

1 Introduction

When the past and future are conditionally independent then a stochastic process
comes under the category of Markov process. As such, the past knowledge provides
no information about the future than knowledge of the present, and vice versa. This
process is the backbone of stochastic mechanics, which results the trajectory u(t) is
a Markov process governed by the following stochastic differential equation of the
form

du(t) = dw(t) + b(u(t), t)dt,
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where w is a Wiener process.
Similarly, Stock market analysis is one of the most important areas in finance.

Generally, the stock market relies on management, investment, and return. So, the
risk of investment and returns along with the management makes the whole process
uncertain. Hence, risk behaves randomly where the events have measurable proba-
bilities [13]. These probabilities occur either due to frequency of the various events
or from theoretical models. Further, these models depend on the behavior of investor,
customer, and seller which are used to represent the probability distribution for stock
market returns [8]. However, lack of information tempted to study the past obser-
vations of market. As such, probability theory is commonly used to analyze stock
market returns. Apart from that the involvement of emotions, vagueness, and chaotic
nature of the market only probability theory may not be sufficient to tackle the risk of
market. In this regard, both the concept of probabilities and fuzziness may be useful
to quantify the uncertainties. Therefore, the concept of probabilities and fuzziness
has been hybridized here.

Stochastic integral equation plays an important role in stockmarket analysis prob-
lems.Generally, the stochastic processes contain noiseswhich are governedbyproba-
bility laws. Hence, the modeling of stock market analysis problems involves stochas-
tic processes, which require studying various types of stochastic integral equations
[5, 9, 21]. As to obtain the exact solution to these problems are quite difficult, so
numerical methods are used to handle the same. In this context, various authors
have contributed their work to study the numerical solution of stochastic integral and
differential equations [2–4, 7, 11, 12, 17, 23–25].

Also, the uncertainties are caused due to the vague, imprecise, and insufficient
knowledge of the involved parameters. These parameters may be handled through
the concept of fuzzy set. As such, we may hybridize the concept of fuzziness with
stochasticity to tackle the above problems. As a result, the governing differential
equation becomes fuzzy stochastic. The fuzzy stochastic integral equation [1] is
investigated by the proposed hybridized method. The proposed method comprised
the concepts of fuzziness with Block Pulse Functions (BPFs), where BPFs is a tool
to estimate the solution of stochastic integral equation [10, 14, 15, 22].

In this investigation, we have considered the following fuzzy stochastic Volterra
integral equation [16, 18–20],

Ỹ (α, t) = f̃ (α, t) +
∫ t

0
c̃1(α, u, t)Y (u)du +

t∫

0

c̃2(α, u, t)Y (u)dB(u)

Here, the domain of the functions Ỹ (α, t), f̃ (α, t), c̃1(α, u, t) and c̃2(α, u, t) is
[0,T ), and u, t ∈ [0,T ), α ∈ [0, 1] is the fuzzy stochastic processes defined on the
probability space (�,F,P). Further, Ỹ (α, t) is unknown, Brownian process is B(t)

and fuzzy Ito integral is
t∫
0
c̃2(α, u, t)Y (u)dB(u).
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1.1 Block Pulse Functions (BPFs)

Under various operations, BPFs [4, 10, 15, 22] transforms the matrix representation
of algebraic equations to triangular matrix form which is very useful in different
fields. As such, orthogonal property and its usefulness of BPFs are depicted here.

BPFs may be defined as

ξi(t) =
{
1 t ∈ [(i − 1)s, is),
0 otherwise.

(1)

where i = 1, 2, . . . , n, t ∈ [0,T ), s = T
n .

Following are the elementary properties of BPFs

(i) Disjoint property:

ξi(t)ξj(t) = δijξi(t), (2)

where δij represents Kronecker delta, i, j = 1, 2, . . . , n.

(ii) Orthogonal property:

T∫

0

ξi(t)ξj(t) = sδij, (3)

(iii) Consider an arbitrary function f (t) ∈ L2[0,T ), then BPFs holds the following
Parseval’s identity

T∫

0

f 2(t)dt =
∞∑
i=1

f 2i ‖ξi(t)‖2, (4)

where fi = 1
s

∫ T
0 f (t)ξi(t)dt

and

f (t) ∼=
∞∑
i=1

fiξi(t) = f (t)ξ(t). (5)

Here, ξ(t) = (ξ1(t), ξ2(t), . . . , ξn(t))
T and f (t) = (f1(t), f2(t), . . . , fn(t)).
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Disjoint property may also be represented in the following matrix form

ξ(t)ξT (t) =

⎡
⎢⎢⎢⎣

ξ1(t) 0 · · · 0
0 ξ2(t) · · · 0
...

...
. . .

...

0 · · · 0 ξn(t)

⎤
⎥⎥⎥⎦

n×n

, (6)

where

ξT (t)ξ(t) = 1. (7)

In view of Eq. (5), any arbitrary function g(u, t) ∈ L2([0,T1) × [0,T2)) may also
be represented as

g(u, t) ≈ ηT (u)Gξ(t). (8)

Here,
η(u) is m-dimensional BPFs; ξ(t) is n-dimensional BPFs; G is m × n block pulse
coefficient matrix.

For the block pulse coefficient matrix, the coefficients may be defined as

gij = 1

s1s2

T1∫

0

T2∫

0

g(u, t)ηi(u)ξj(t)dtdu, (9)

where s1 = T1
m and s2 = T2

m ; i = 1, 2, . . . ,m and j = 1, 2, . . . , n.
Next, using the above concept we may define the integration operational matrix.

Before that, we have to integrate the block pulse functions. After, integrating the
above-mentioned block pulse functions we get

t∫

0

ξi(u)du =
⎧⎨
⎩
0 t ∈ [0, (i − 1)s)
t − (i − 1)s t ∈ [(i − 1)s, is)
s t ∈ [is,T )

. (10)

From Eq. (10), one may approximate t− (i−1)s by s
2 for t ∈ [(i − 1)s, is) using

s
2 as the value at the midpoint of [(i − 1)s, is). Further, considering BPFs,

∫ t
0 ξi(u)du

may be expressed as

t∫

0

ξi(u)du ≈
(
0, 0, . . . , 0,

s

2
, . . . , s

)
ξ(t), (11)
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and the ith component of
t∫
0

ξi(u)du the vector is multiplied with a factor of s
2 .

Therefore, Eq. (11) can also be depicted as

t∫

0

ξi(u)du ≈ Pξ(t), (12)

where P = s
2

⎛
⎜⎜⎜⎜⎜⎝

1 2 2 · · · 2
0 1 2 · · · 2
0 0 1 · · · 2
...

...
...

. . .
...

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠
.

Finally, integral of any arbitrary function f (t) may be approximated as

t∫

0

f (u)du ≈
t∫

0

FT ξ(u)du ≈ FTPξ(t), (13)

for F = (f1, f2, . . . , fm)T .
Next, the concepts of fuzziness and stochasticity have been hybridized with block

pulse functions.

2 Block Pulse Functions (BPFs) and Fuzzy Arithmetic

The uncertainties as intervals [6] can be illustrated in the following way

[b, b] =
{
x|x ∈ R, b ≤ x ≤ b

}
, (14)

where

b is the left value of the interval [b, b],
b is the right values of the interval [b, b],
m = b+b

2 is mid-value of the interval [b, b], and
w = b − b is the width of the interval [b, b].

The above interval concept can be extended to fuzzy numbers and the same may
be expressed as intervals through α-cut. Fuzzy numbers are nothing but the union of
intervals at a different α level, where α ∈ [0, 1]. Further, using some transformation
[19], the fuzzy numbers can be written in ordered pair. Then the interval arithmetic
may be applied to operate various fuzzy numbers viz. triangular and trapezoidal
fuzzy numbers, etc.
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Next, one may calculate the Ito integral for BPFs and the concept of fuzziness
may apply to quantify the uncertainties. As such, the Ito integral for each BPFs ξi(t)
can be computed as

t∫

0

ξi(u)dB(u) =
⎧⎨
⎩
0, t ∈ [0, (i − 1)s)
B(t) − B((i − 1)s), t ∈ [(i − 1)s, is)
B(is) − B((i − 1)s), t ∈ [is,T )

(15)

From Eq. (15), one may approximate B(t) − B((i − 1)s) by B((i − 0.5)s) −
B((i − 1)s)B((i − 0.5)s) − B((i − 1)s) for t ∈ [(i − 1)s, is), using B((i − 0.5)s) −
B((i − 1)s) as the value at the midpoint of [(i − 1)s, is). Further, considering BPFs
t∫
0

ξi(u)dB(u) may be expressed as

t∫

0

ξi(u)dB(u) ≈ (B((i − 0.5)s) − B((i − 1)s))ξi(t) + (B(is) − B((i − 1)s))
m∑

j=i+1

ξj(t).

(16)

Equation (16) may be viewed as the following vector form

t∫

0

ξi(u)dB(u) ≈ (0, . . . , 0,B((i − 0.5)s) − B((i − 1)s),B(is) − B((i − 1)s), . . . ,B(is) − B((i −

(17)

and the ith component of
t∫
0

ξi(u)dB(u) the vector is multiplied with a factor of

B((i − 0.5)s) − B((i − 1)s). Hence, Ito integral can be redefined as

t∫

0

ξi(u)dB(u) ≈ Puξ(t). (18)

Here,Pu is the stochastic operational matrix and can be illustrated in the following
matrix form

Pu =

⎛
⎜⎜⎜⎜⎜⎜⎝

B
(
s
2

)
B(s) B(s) · · · B(s)

0 B
(
3s
2

) − B(s) B(2s) − B(s) · · · B(2s) − B(s)
0 0 B

(
5s
2

) − B(s) · · · B(3s) − B(2s)
...

...
...

. . .
...

0 0 0 · · · B
(

(2m−1)s
2

)
− B((m − 1)s)

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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In view of this, Ito integral of any arbitrary function f (t) may be rewritten as

t∫

0

f (u)dB(u) ≈
t∫

0

FT ξ(u)dB(u) ≈ FTPuξ(t). (19)

3 Fuzzy Stochastic Volterra Integral Equations
with Stochastic Operational Matrix (SOM)

Consider a linear fuzzy stochastic Volterra integral equation

Ỹ (α, t) = f̃ (α, t) +
t∫

0

c̃1(α, u, t)Y (u)du +
t∫

0

c̃2(α, u, t)Y (u)dB(u), (20)

where fuzzy stochastic processes Ỹ (α, t), f̃ (α, t), c̃1(α, u, t) and c̃2(α, u, t) with
u, t ∈ [0, T ), and α ∈ [0, 1] are defined on the probability space (�,F,P). Here,

the Brownian process is B(t) and fuzzy Ito integral is
t∫
0
c̃2(α, u, t)Y (u)dB(u).

Onemay approximate the fuzzy stochastic processes Ỹ (α, t), f̃ (α, t), c̃1(α, u, t)
and c̃2(α, u, t) by the following two relations

f̃ (α, t) ≈ F̃T ξ(t) = [
F,F

]T
ξ = ξT F̃; (21)

and

c̃(α, u, t) ≈ ηT (u)C̃ξ(t) = ηT C̃ξ ; (22)

where

Ỹ (t) ≈ Ỹ T (t)ξ(t) = ξT Ỹ ;
f̃ (t) ≈ F̃T (t)ξ(t) = ξT F̃;
c̃1(u, t) ≈ ηT (u)C̃1ξ(t) = ξT C̃1η;
c̃2(u, t) ≈ ηT (u)C̃2ξ(t) = ξT C̃2η. (23)

Here, the fuzzy stochastic block pulse coefficient vectors are Ỹ and F̃ , and fuzzy
stochastic block pulse coefficient matrices are c̃1 and c̃2, respectively.

Equations (20) and (23) together gives
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Ỹ T ξ(t) ≈ F̃T ξ(t) + Ỹ T

⎛
⎝

t∫

0

η(u)ηT (u)du

⎞
⎠C̃1ξ(t) + Ỹ T

⎛
⎝

t∫

0

η(u)ηT (u)dB(u)

⎞
⎠C̃2ξ(t).

(24)

Take C̃i
1 and C̃

i
2 be the ith row of the constant matrix C̃1 and C̃2, respectively. D̃i

1

and D̃i
2 be the diagonal matrices with C̃i

1 and C̃
i
2 as its diagonal entries, respectively.

Similarly, Ri and Ri
u are ith row of the integration operational matrix P and stochastic

integration operational matrix Pu. assuming m1 = m2, results

⎛
⎝

t∫

0

η(u)ξT (u)du

⎞
⎠C̃1ξ(t) =

⎛
⎝

t∫

0

ξ(u)ξT (u)du

⎞
⎠C̃1ξ(t)

=

⎛
⎜⎜⎜⎝

R̃1ξ(t)C̃1
1ξ(t)

R̃2ξ(t)C̃2
1ξ(t)

...

R̃mξ(t)C̃m
1 ξ(t)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

R̃1D̃1
1

R̃2D̃2
1

...

R̃mD̃m
1

⎞
⎟⎟⎟⎠ξ(t) = B̃1ξ(t) (25)

where

B̃1 = s

2

⎛
⎜⎝

b11 · · · b1m
...

. . .
...

bm1 · · · bmm

⎞
⎟⎠

m×m

, bij =

⎧⎪⎨
⎪⎩
2C1

ij for i < j;
C1
ij for i = j;

0 for i > j.

Also,

⎛
⎝

t∫

0

η(u)ηT (u)dB(u)

⎞
⎠C̃2ξ(t) =

⎛
⎝

t∫

0

ξ(u)ξT (u)dB(u)

⎞
⎠C̃2ξ(t)

=

⎛
⎜⎜⎜⎝

R̃1
uξ(t)C̃1

2ξ(t)
R̃2
uξ(t)C̃2

2ξ(t)
...

R̃m
u ξ(t)C̃m

2 ξ(t)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

R̃1
uD̃

1
2

R̃2
uD̃

2
2

...

R̃m
u D̃

m
2

⎞
⎟⎟⎟⎠ξ(t) = B̃2ξ(t)

(26)

where

B̃2 =
⎛
⎜⎝

e11 · · · e1m
...

. . .
...

em1 · · · emm

⎞
⎟⎠

m×m

, eij =

⎧⎪⎨
⎪⎩
K2
ij(B(is) − B((i − 1)s)) for i < j;

K2
ij

(
B
(

(2i−1)
2 s

)
− B((i − 1)s)

)
for i = j;

0 for i > j.
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Using the values of Eqs. (25) and (26) in Eq. (24), we get

Ỹ T ξ(t) ≈ F̃T ξ(t) + Ỹ T B̃1ξ(t) + Ỹ T B̃2ξ(t). (27)

Now, Eq. (27) can be rearranged and represented as

Ỹ T
(
1 − B̃1 − B̃2

)
≈ F̃T . (28)

Considering Ñ =
(
1 − B̃1 − B̃2

)T
and replacing ≈ by =, Eq. (29) becomes

Ñ Ỹ = F̃ . (29)

Finally, the solution of the linear system of equations (Eq. (29)) gives the desired
solution for fuzzy stochastic process Ỹ (t).

4 Case Study

Consider the stochastic integral equation (Eq. (20)) with the parameters,

f̃ = 1;
c̃1 = [0.5, 0.75, 1];

and
c̃2 = [0.25, 0.30, 0.35] are triangular fuzzy values.
Take XL, XN , and XR be the left, center and right solutions at α = 0. Then, the

uncertain width is defined as ‖W‖∞ = max
1≤i≤m

|(XR)i − (XL)i|. Applying the proposed
method, left, center, and right solutions are reported in Table 1. Further, the left,
center, and right solutions α = 0 are shown in Fig. 1. Here, the partition is defined

Table 1 Left, center, and
right mean of X at α = 0

XL XN XR

2.219505215 3.118294437 4.116946535

1.572157682 1.993984502 2.282818375

1.466581772 1.793512715 2.01120275

1.368095655 1.613196018 1.771904653

1.276223226 1.451008053 1.561078862

1.190520354 1.305126188 1.375337668

1.110572731 1.173911036 1.211696441

1.035993871 1.055888031 1.06752567
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Fig. 1 TFN plot for X

as the time interval, that is s = T
m , m = 8. From the tabulated values it is seen that

the uncertain widths along with left, center, and right solutions are decreasing with
the increase in value of m. In other words, from Fig. 1, one may observed that the
width decreases with decrease in value of s.

In this problem,widths represent the uncertainty of the trajectory path in stochastic
mechanics problems. In particular, different alpha level set (α-cut) tells confidence
interval such that the uncertainties of trajectory are large for more widths and small
for less widths.

5 Conclusion

In this paper, the author has presented an alternative approach to handle the involved
uncertainties in stochastic mechanics problems. As such, the discussed approach is
used to investigate a fuzzy stochastic Volterra-Fredholm integral equation. In this
proposed method, BPFs are used as a tool with fuzzy stochastic operational matri-
ces to solve the said integral equation. Then the method is demonstrated through
an example problem. The observed solutions are reported by tabulated values and
graphically in terms of TFNs. Finally, it is seen that the proposed method is quantify-
ing uncertain parameters nicely if one compared with its special case (exact sample
values).
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Characterization of Geometrical
Complexity of the Landscape Patches
Using Fractional Dimension

Uttam Ghosh and Dilip Kumar Khan

Abstract Fractal dimension which is developed using linear regression method
(log(area) − log(perimeter)) gives the overall shape of the landscape patches
relating to their internal structure while the individual patch provides the geometrical
complexity that can be obtained using the modified definition of fractal dimension.
Here we have considered north-western part of Orissa, India as the sampled land-
scape. The fractal dimension as obtained from linear regression method indicates
wasteland and agriculture patches with low fractal value but the forest patches have
high fractal dimension, i.e., forest patches aremore fragmented compared to the other.
The modified definition of fractal dimension gives high values of fractal dimension
for all the landscape patches and consequently geometrical complexity is reflected.

Keywords Fractional dimension · Landscape complexity · Geometrical
complexity · Landscape patch · Landscape heterogeneity

1 Introduction

Fractal geometry and fractional dimension are important mathematical tools to
describe the non-Euclidean shapes (i.e., highly heterogeneous and self-similar
objects). There are many objects in the universe which are self-similar and those
objects can not be studied using Euclidean geometry. The landscape mosaic on the
earth surface is one of them.

Landscapes are characterized by its different number of biotic and abiotic ele-
ments alongwith the cultural components. The dimensions, structural, and functional
relationship among these components create the complexity on the landscape. The
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landscapes are more than the sum of their measurable components because of their
emergent organizational system properties. They become an entirely new entity as
an ordered whole or Gestalt system, in which like organisms all their parts are related
to each other by the general state of the whole.

Nature creates the pattern of landscape mosaic depending on its physical feature.
These patterns change due to anthropogenic activities and new pattern is introduced
by the new habitats. Researchers are trying to predict these changes in pattern and
possible causes for changes.

To study the organizational complexity of the landscape the traditional measuring
rules such as themechanical or structural orArchimedean geometrical configurations
is not complete. So, to study the complexity of landscape, innovative transdisciplinary
approaches and methods are required for their study. This is especially the case
with highly fragmented and heterogeneous human-modified and human-managed
landscape [1].

Landscape pattern analysis to predict the hierarchical structure of landscape is
an important research aspect after 1980. There are many methods which are used
to predict the complexity of land use pattern. The change in landscape structure
is due to the interaction of different natural processes (ecological, biological, and
other physical processes) or anthropological activities. Landscape structure is largely
determined by the origin, number, and size of patches. However, spatial juxtaposition
of patches is equally important [2]. Turner [3] concludes that landscape study is well
integrated with ecology and suggested that it should continue to focus on spatial
heterogeneity and relationship between pattern and process.

A natural way to find the complexity of landscape pattern is to describe and com-
pare landscape structure by measuring the shape of patches within the landscape [4].
But therewas no suitablemethod to describe this type of problemuntil the early 1980s
to determine this non-Euclidean shape of the complex non-linear patches [5]. Here
the term complexity is used to indicate the shape of habitat patches and the different
habitat juxtapositions, since the landscape contains many habitats and they create
different mosaic on it and create distributional and juxtapositional heterogeneity.

To describe the non-Euclidean shapes in nature, Mandelbrot [6] introduced a new
mathematical as well as statistical method named as fractal analysis. This method
generates a numerical index called fractal dimension which indicates numerical pre-
sentation of the complexity of patches. To predict complexity of landscape patch
Krummel et al. [7] calculated fractal dimension of different landscapes. The method
used by Krummel et al. [7] gives the pattern index relating to their internal structure
as developed by using regression method. Researchers used fractal dimension to pre-
dict the complexity of different patches [4, 5, 7–10]. The fractal dimension (D) of
a surface appears to contain useful information about the surface which is not given
by other morphometric measures [11–13]. Klinkenberg [12] concluded that the links
between the fractal dimension and physical processes which produced characteristics
of form captured by D have not been identified. But Turner [14] and Krummel et al.
[7] concluded that (i) fractal dimension is a scale-dependent measure, (ii) high value
of fractal dimension of the patches indicates high complexity of the patches, and
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(iii) low value of fractal dimension indicates low complexity, i.e., the patches are
more smooth.

Milne [15] used fractal dimension to estimate probability of locating a landscape
patch within a large landscape. Initially, fractal dimension of patches was found by
using mainly area-perimeter relation and linear regression analysis. The regression
technique does not imply significant value when the patches are small in number. To
overcome this problem Olsen et al. [16] and Ricatta et al. [5] used a non-regression
method to determine the fractal dimension of the patches. Olsen et al. [16] used
the same method to determine the fractal dimension of small landscape patches.
They opined that the methods as developed by earlier workers need to find the land-
scape complexity. They modified the formula of fractal dimension by accounting
both geometry of habitat patches and their juxtaposition along with the other habi-
tats. These techniques allowed calculating a fractal index which better represents
landscape diversity.

The ecological principles in urban ecosystems are highly complex, and more
complex than many other natural systems was concluded by Breuste et al. [17]. The
main difference between urban and nonurban ecosystems is the kind of intensity
and frequency of anthropogenic influences. The Urban ecosystems are governed by
human actions so it is important to consider these actions in ecological analysis.

Imre et al. [18] used fractal dimension to characterize patchiness of fragmented
habitats and to detect secondary processes, like reforestation. Ghosh and Khan [19]
used fractal dimension techniques to compare two landscapepatches of north-western
parts of Orissa, India. Irvine et al. [20] established the necessity of fractal measure-
ment to study spatial pattern of the vegetative system and the persistence of under-
lying dynamics using the theoretical arguments with an aerial snapshot of seagrass.
This paper seeks to calculate patch shape with considered patch juxtaposition along
with other habitats using modified fractal dimension.

Organization of the paper is as follows: In Sect. 2 materiel and methods are
described. Result and discussion is described in Sect. 3 and some conclusions are
given in Sect. 4.

2 Materials and Methods

Mandelbrot [6] gave the basic definition of fractional to study the behavior of self-
similar objects. Turner et al. [14] first time used to study the landscape complexity.
The basic definition of fractal relationship between patch area and its perimeter as
describe by Peitgen and Saupe [21] is given by

P ∝ A
D
2 (1)

P = k A
D
2 (2)
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where P is the perimeter, A is the area; k is variation constant, and D is the fractal
dimension of the patch. Taking logarithm in both sides of (2), we get

log(P) = log(k) + D

2
log(A) (3)

and (3) is of the form y = mx + c is linear in log–log scale. Twice slope (D = 2m)
of the above line gives the fractal dimension. This D is always fraction, when D
increases from 0 to 1 or 1to 2 (not 1 or 2) then boundary of the patches becomes
more clumping, i.e., complex.

To avoid the regression technique, the constant of proportionality in expression
(1) need to be calculated. If we consider a single square cell then p = 4, A = 1 with
D = 1.0. Then (1) gives k = 4

P = k A
D
2 (4)

D = 2log (P/4)

log (A)
= D1(say) (5)

To describe the juxtapositional diversity the authors in [16] modified the relation
(4) in the following form

D2 = 2log (Pm/4)

log (A)
(6)

where Pm = P + Q
C(Ct−1)

A = area of the patch within sample landscape,
P = perimeter of the patch within sample landscape,
C = count of classes adjacent to patches within the landscape,
Ct = total perimeter of classes in entire landscape,
Pm = modified perimeter count,
D = modified fractal dimension, and
Q = Pt − Pg = Theoretical maximum perimeter −grid imposed maximum
perimeter.

3 Application of Fractional Dimension to Study the
Complex Distributional Pattern

There are many objects on the earth surface which are highly heterogeneous and
complex. The distribution of habitat on the earth surface is one of them and it cre-
ates highly heterogeneous patches on the earth surface. To study the distributional
heterogeneity and juxtapositional complexity here we consider a sampled landscape
with 20 × 20 grid cell with heterogeneous distribution as shown in Fig. 1, the mosaic
is extracted from topographical map 73J/3 north-western part of Orissa, India. The
calculated value of fractal dimension for these three habitat types are presented in
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Fig. 1 The mosaic of
landscape pattern (A =
Agriculture, F = Forest, W
= Waste Land, R = River)

A R R R R W W A A F F F F F F F F F F F
A R R R A A A A F F F F F F F F F F F F
R R R R R A A A F F F F F F F F F F W W
R R R R R A A F F F F F F F F F F W W W
R R R R R F F F F F F F F F F F F W W W
R R R R W W A A A A A A A A A A A A W W
F F F F F W W F F F F F F F F F W W W W
F F F F F W W F F F F F F F F W W W W W
F F F F F A F F F F F F F F F W W W W W
F F F A A A A A W W A A A A A W W W W W
F F A A A A A A A A A A A A A W W A W W
A A A A A A A A A A A A A A A A A A A W
A A A A A A A A A A A A A A A A A A A A
A A A A A A A A A A A A A A A A A A A A
W W A A W W A A A A A A A A A A A A A A
W W A A A A A A A A A A A A A A A A A A
W W A A W W W W A A A A A A A A A A A A
A A A A A A W W A A A A A A A A A A A A
A A A A A A A A W A W W A A A W W A A A
A W A A A A A A A A A A A A A W W W A A

Table1. As defined by regression method the fractal dimension (D) indicate the
overall shape of the landscapes. The calculated values of fractal dimension (D) for
agriculture patches is 1.19, for forest patches it is 1.76, and for wasteland patches
it is 1.30. The fractal dimension value explains that the agriculture patches have
more anthropogenic disturbances compared to other habitat type. While the forest
patches have less anthropogenic disturbances. This has similarity with the study con-
ducted by Ghosh and Khan [19] for landscape patches north-western parts of Orissa,
India. Since all other habitat patches have fractal dimension (D1) greater than 1.00
except one agriculture patch. This shows that patch boundaries are highly clumping
and geometrically complicated. In the sampled landscape agriculture patches are
more complex compared to the other habitat patches. The fractal dimension (D2)
obtained from modified one is greater than the values from old one of individual
patches. Since D1(= 1.17) and D2(= 1.47) for first agriculture patch (Table1) and
for second patch D1(= 1.25) and D2(= 1.38) the change in D values imply that
the neighboring habitat of the first is more diverse (i.e., different) compared with
the others. That is complicated juxtapositional heterogeneity is evident in the first
agricultural patch compared to the second. Similar diverge neighboring habitat pat-
tern is found in fourth agriculture patch compared to the second patch (which is
evident from Table1). Again D2 values of first and fourth agriculture patches are,
respectively, 1.47 and 1.49 implies both the patches have heterogeneous neighbor-
ing habitat distribution compared to other two patches. While the second and third
wasteland patches have D1 values 1.22 and 1.02, respectively, but both have D2 val-
ues 1.45 implies both the patches have same dimensional landscape complexity of
the neighboring habitat distribution but the second wasteland patch is more clump-
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Table 1 Variation of fractal dimension using two method of analysis

Fractal dimension

Habitat type Regression method
(D)

Using only
area-perimeter (D1)

Using modified
method (D2)

Agriculture 1.19 1.17 1.47

1.25 1.38

1.00 1.00

1.19 1.49

Forest 1.76 1.25 1.41

1.07 1.27

Wasteland 1.30 1.17 1.33

1.22 1.45

1.02 1.45

1.14 1.50

ing compared to the other. From the above discussion, it is clear that the sampled
landscape is largely affected and modified by anthropogenic disturbances reflect-
ing geometrical complexities. The distributional heterogeneity of the neighboring
patches is more heterogeneous for agriculture patches compared with other patches.

4 Conclusion

The fractal dimension predicated by using the linear regression method gives over-
all patterns of landscape patches of same habitat not the juxtaposition of different
habitats. The sampled landscape is highly disturbed by anthropogenic processes.
D1 values of the habitat patches give the complex patterns of several patches of
different habitats. In the sampled landscape the agriculture patches are highly het-
erogeneous and consequently, the patches are highly complex compared to the other
habitat patches. But D2 (the modified method determines the fractal dimension, i.e.,
diversity index) indicate the pattern of individual patch shape their juxtapositional
heterogeneity of the neighboring habitat patches. The values of fractal dimension
indicate the degree of geometrical complexity of habitat distributional pattern. The
neighborhood of agriculture patches has more heterogeneous distribution compared
with the other patches. Using the method that is described here, the spatial and
temporal change of landscape complexity may be analyzed. The present study on
characterization of geometrical complexity will help the planner to frame policy
planning for land uses in areas covered by heterogeneous landscape structure.
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Transverse Vibrations of an Axially
Travelling String

Shashendra Kumar Sahoo, H. C. Das and L. N. Panda

Abstract In this paper, the transverse vibration of axially travelling string is anal-
ysed. The axial velocity of the string is periodically varying about an average value.
Applying direct perturbation method (MMS), an analytical solution is found. An
analysis of principal parametric resonances is carried out when changing frequency
of the axial velocity is zero, close to zero and twice the natural frequency. Mathemat-
ical analysis is carried out to determine the stability and instability zones. The results
show that instability occurs when changing frequency of the axial velocity is close
to two times the natural frequency, whereas no instability occurs when changing
frequency is close to zero. A case study of bandsaw is discussed. The stability and
instability zones are plotted for the first five natural frequencies.

Keywords Axially travelling string · Method of multiple scales (MMS) ·
Parametric resonance · Stability

Notation

A Cross-sectional area of the string
L Length of the string
ρ Mass density of the string
P Tension force in the string
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P0 Initial tension force in the string
κ Pulley support parameter
v0 Dimensionless mean velocity of the string
y = y∗

L Dimensionless transverse displacement of the string
x = x∗

L Dimensionless spatial variable
t = (1/L)

√
(P0/ρA)t∗ Dimensionless time

�∗ = 1
L

√
P0
ρA� Dimensional frequency of velocity variation

v = v∗/
√
P0/ρA Dimensionless axial velocity of the string

ε Dimensionless parameter <<1
σ Detuning parameter
ψn Mode shapes of the travelling string
ωn Natural frequency of the travelling string

1 Introduction

The axially travelling string represents the simplest model for many mechanical
systems which include transmission belt, aerial tramways, magnetic tapes, textile
fibres, bandsaw blades, thread lines and pipe supporting fluid. The literature study
is very vast on the axially moving system which is modelled as either axially trav-
elling string or beam. Swope et al. [1], Mote et al. [2–5] and Wickert et al. [6–8]
made earlier studies on linear and non-linear vibration analysis of axially moving
system. Pakdemirli et al. [9] studied the vibration analysis of the travelling string
using Galerkin’s method and carried out stability analysis by applying Floquet the-
ory. Pakdemirli andUlsoy [10] investigated the dynamic analysis of axially travelling
string using two different methods, direct perturbation and discretization perturba-
tion. Chen et al. [11] studied two-to-one parametric resonance of an axially travelling
viscoelastic string considering geometric non-linearity. Kesimili et al. [12] studied
the non-linear vibration analysis of multi-supported axially moving string and calcu-
lated the effect of non-linear terms on the natural frequency of the system. Ghayesh
et al. [13–15] studied the stability analysis of axially accelerating string supported
by an elastic foundation.

Oz et al. [16, 17] studied both linear and non-linear vibration analysis of travelling
tensioned beam. Ghayesh et al. [18, 19] studied the stability analysis and bifurcations
of an axiallymoving beamwith intermediate spring support. Sahoo et al. [20] studied
the parametric and internal resonance of travelling Euler–Bernoulli beam simply
supported at both the ends. Chakraverty et al. [21, 22] studied the free and forced
responses of a travelling slender beam using non-linearity. Mao et al. [23] studied 3:1
internal resonance for a supercritically axially moving beam subjected to pulsating
speed.
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Panda and Kar [24, 25] studied the combination and principal parametric reso-
nance with 3:1 internal resonance of pipe conveying pulsatile fluid. Oz et al. [26,
27] studied the stability analysis of pipes conveying fluid considering linear and
non-linear vibration. Ghayesh et al. [28, 29] investigated the dynamic analysis of a
fluid-conveying cantilevered pipe fitted with an end mass and studied the flutter anal-
ysis at a critical velocity via supercritical Hopf bifurcation. Zhou et al. [30] studied
the dynamics of pipes conveying fluid considering superharmonic resonance of the
secondmodewith 1:2 internal resonance. Javadi et al. [31] studied the divergence and
flutter instabilities of pipes conveying fluid assuming Euler–Bernoulli beam theory,
viscoelastic damping and plug flow model for fluid flow.

In this paper, the transverse vibration of axially travelling string is analysed. The
axial velocity of the string is assumed to be periodically varying about an average
value. The effect of small fluctuation in the axial velocity of the string on the stability
of the system is studied. Applying direct perturbation method (MMS), an analytical
solution is obtained. An analysis of principal parametric resonance is performed
when changing frequency of the axial velocity is zero, close to zero and twice the
natural frequency. Mathematical calculations are carried out to determine stability
and instability zones. The results show that instability occurs when the changing
frequency of the axial velocity is close to two times the natural frequency, whereas
no instability occurs when changing frequency is close to zero. A case study of
bandsaw is discussed. The stability and instability zones are plotted for the first five
natural frequencies.

2 Formulation of the Problem

A continuous string of length L travelling axially over two pulleys with variable
velocity v∗(t∗) is considered (Fig. 1).

The equation of motion for transverse vibration of an axially travelling string with
boundary conditions is given by Pakdemirli and Ulsoy [10]

Fig. 1 Schematic diagram
of an axially travelling string

y*

L 

x*
k 

v*(t*)

P P
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ρA
(
ÿ∗ + v̇∗y′∗ + 2v∗ ẏ′∗) + (

ρAv∗2 − P
)
y′′∗ = 0, y∗(0, t∗) = y∗(L, t∗) = 0

(1)

where dot denotes derivative with respect to time (t) and prime denotes derivative
with respect to spatial variable (x).

The tension in the string is given by Mote [2]

P = P0 + ηρAv∗2 (2)

where 0 ≤ η ≤ 1.
The pulley support parameter is given by

κ = 1 − η (3)

The value of the pulley support parameter depends on the pulleymounting system.
The equation of motion then becomes

ρA
(
ÿ∗ + v̇∗y′∗ + 2v∗ ẏ′∗) + (

kρAv∗2 − P0
)
y′′∗ = 0 (4)

The dimensional variables are represented by an asterisk.
Introducing dimensionless variables

x = x∗

L
, y = y∗

L
, t = (1/L)

√
(P0/ρA)t∗, v = v∗/

√
P0/ρA (5)

we get the dimensionless equation of motion as

ÿ + v̇y′ + 2vẏ′ + (kv2 − 1)y′′ = 0 (6)

The expression for velocity function is given as

v = v0 + εv1 sin�t (7)

where v0, εν1 and � are the dimensionless mean velocity, the dimensionless ampli-
tude and the dimensionless frequency of the velocity component, respectively.

The dimensionless frequency is given by

�∗ = 1

L

√
P0
ρA

� (8)

Substituting Eq. (7) into (6), the equation of motion becomes

ÿ + 2v0 ẏ
′ + (kv20 − 1)y′′ + ε

{
2v1 sin�t y′ + 2kv0v1 sin�t y′′ + �v1 cos�t y′} = 0 (9)
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3 Method of Analysis

For the analytical solution, the direct perturbation method of multiple scales is
employed.

Expressing the first-order expansion as

y(x, t; ε) = y0(x,T0,T1) + εy1(x,T0,T1) + . . . (10)

where T0 = t and T = εt are the slow and fast time scales, respectively.
The time derivatives are as follows:

d2

dt2
= D2

0 + 2εD0D1 + . . . ..d/dt = D0 + εD1 + . . . , (11)

where D0 = ∂/∂T0, D1 = ∂/∂T1.
Substituting Eqs. (10) and (11) into Eq. (9), we obtain different orders of pertur-

bation expansion as

O(1) : D2
0y0 + 2v0D0y

′
0 + (kv20 − 1)y′′

0 = 0 (12)

O(ε) : D2
0 y1 + 2v0D0y

′
1 + (kv20 − 1)y

′′
1 = −2D0D1y0 − 2v0D1y

′
0

−2v1 sin�T0D0y
′
0 − 2kv0v1 sin�T0y

′′
0 − �v1 cos�T0y

′
0 (13)

The solution of Eq. (12) can be taken as

y0(x,T0, T1) = An(T1)e
iωnT0ψn(x) + Ān(T1)e

−iωnT0ψ̄n(x) (14)

whereψn denotes the mode shapes of the travelling string and ωn denotes the natural
frequencies of the travelling string. Themode shapes of the travelling string are given
by [10]

ψn = Cne
iαn x sin nπx (15)

where

Cn = 1

nπ

√
1 − kv20

αn = nπv0√
1 − kv20 + v20

(16)

The natural frequencies of the travelling string are given by [10]

ωn = nπ(1 − kv20)√
1 − kv20 + v20

(17)
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Substituting Eq. (14) into (13), we obtain

D2
0 y1 + 2v0D0y

′
1 + (kv20 − 1)y′′

1 = D1Ane
iωnT0(−2iωnψn − 2v0ψ

′
n)

+ Ane
i(�+ωn)T0

[
−v1ωnψ

′
n + ikv0v1ψ

′′
n − �v1

2
ψ ′

n

]

+ Ane
i(�+ωn)T0

[
v1ωnψ̄

′
n + ikv0v1ψ̄

′′
n − �v1

2
ψ̄ ′

n

]
+ cc (18)

where cc representing the complex conjugates of the preceding terms.
Using Eq. (17), the natural frequencies are plotted against axial mean velocity

for the first five modes in Fig. (2). It is observed that the natural frequencies of the
travelling string decrease with increasing mean velocity.

4 Principal Parametric Resonances

Three cases are investigated separately depending on changing frequencies of axial
velocity and stability analysis is carried out.

4.1 Ω � 2ωn

The changing frequency of the axial velocity is close to two times the natural fre-
quency. The frequency relation is written as

� = 2ωn + εσ (19)

Fig. 2 The variations of first
five natural frequencies with
mean velocity for pulley
support parameter (k = 0.22)
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where σ is a detuning parameter.
In this case, Eq. (18) becomes

D2
0 y1 + 2v0D0y

′
1 + (kv20 − 1)y′′

1 = D1Ane
iωnT0(−2iωnψn − 2v0ψ

′
n)

+ Ane
iωnT0eiσT1

[
v1ωnψ̄

′
n + ikv0v1ψ̄

′′
n − �v1

2
ψ̄ ′

n

]
+ NST + cc (20)

where NST and cc denote non-secular terms and complex conjugates, respectively.
The solution of Eq. (20) can be taken as

y1(x, T0,T1) = Y (x,T1)e
iωnT0 + W (x,T0,T1) + cc, (21)

where the first term and second term relate to secular and non-secular term, respec-
tively.

Substituting Eq. (21) into (20), we get

− ω2
nY + 2v0iωnY

′ + (kv20 − 1)Y′′ = −2(iωnψn + v0ψ
′
n)D1An

+
(
v1ωnψ̄

′
n + ikv0v1ψ̄

′′
n − �v1

2
ψ̄ ′

n

)
Āne

iσT1 (22)

For the solvability condition, the complex conjugate of the eigenfunction of the
travelling string is orthogonal to the right side of Eq. (22) which leads to complex
variable modulation equation as

D1An + (k1 − ik2)Āne
iσT1 = 0 (23)

where

k1 = (kv1/4) sin 2αn, k2 = (kv1/4)(1 − cos 2αn) (24)

To perform stability analysis, introducing transformation

An = Bne
iσT1/2 (25)

and substituting in Eq. (23), we get

D1Bn + iσ

2
Bn + (k1 − ik2)B̄n = 0 (26)

Let

Bn = (bRn + ibI
n)e

λT1 (27)
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Substituting in the Eq. (26) and solving, we get the eigenvalues as

λ1,2 = ∓1

2

√
−σ 2 + 4(k21 + k22) (28)

The boundaries for stability zones are calculated as

σ1,2 = ∓2
√
k21 + k22 (29)

Substituting the values of k1 and k2 and σ into the Eq. (19), we get

� = 2ωn ∓ εv1k sin αn (30)

4.2 Ω � 0

The changing frequency of the axial velocity is close to zero. The frequency relation
is written as

� = εσ (31)

The solvability condition is given as

D1An + (k3 cos σT1 + ik4 sin σT1)An = 0 (32)

where

k3 = v0v1�

2(1 − kv20 + v20)
, k4 = nπv0v1

[
1 + k(1 − kv20 + v20)

]

(1 − kv20 + v20)
3/2

(33)

On integration, we get

An = A0e
( −k3

σ
sin σT1+i k4

σ
cos σT1

)
(34)

Since |sin σT1| ≤ 1 and |cos σT1| ≤ 1, we obtain the amplitudes to be bounded
in time.
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Table 1 Standard values for
a bandsaw [3]

Parameter Standard value Unit

P0 76.22 N

ρ 7754.0 Kg/m3

A 0.5201 × 10−5 m2

k 0.22 –

L 0.3681 m

4.3 Ω Is Away from 0 and 2ωn

The changing frequency of the axial velocity is away from 0 and 2ωn .
The solvability condition is given as

D1An = 0 (35)

On integration, we get

An = A0 (36)

Hence, we obtain a constant amplitude.

5 Numerical Results

The instability zones for the principal parametric resonance � � 2ωn are plotted
for bandsaw vibration. The standard parameter values are given in Table 1 for a
bandsaw [3]. The critical velocity is

√
P0/ρA = 43.4738 m/s The mean speed of

the travelling string is assumed to be 50 m/s, and the dimensionless mean speed (v0)
is obtained as 1.15011. The boundaries for stability zones are plotted for first five
natural frequencies taking v0 = 1.15011 and k = 0.22 in Fig. (3). From the stability
diagram, it is seen that the instability zone for fifth natural frequency appears as a
line.

6 Conclusion

The transverse vibration analysis of an axially travelling string is studied. The axial
velocity of the string is periodically changing about a constant average value, i.e.
v = v0+εv1 sin�t where 0 < ε << 1. The stability of the system is analysed consider-
ing small fluctuations in the axial velocity of the string. Applying direct perturbation
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Fig. 3 Stability boundaries
for first five natural
frequencies for a bandsaw
with pulley support
parameter (k = 0.22) and
dimensionless mean speed
(v0 = 1.15011)

method (MMS), an analytical solution is obtained. An analysis of principal para-
metric resonances is carried out when changing frequency (�) of the axial velocity
is zero, nearly equal to zero and equal to two times of natural frequency. Mathe-
matical calculations are carried out to determine stability and instability zones. It is
observed that instability occurs when changing frequency (�) of the axial velocity
is close to twice the natural frequency, whereas no instability occurs when changing
frequency is close to zero. A case study of bandsaw is discussed and stability and
instability zones have been plotted for first five natural frequencies. It is observed
that the instability zone for fifth natural frequency appears as a line.
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Structural Parameter Identification
Using Interval Functional Link Neural
Network

Deepti Moyi Sahoo and S. Chakraverty

Abstract This paper presents a procedure to identify uncertain structural parameters
of multistorey shear buildings by interval functional link neural network. The struc-
tural parameters are identified using the response of the structure with both ambient
and forced vibration. Here interval functional link neural network has been used to
train interval data. The polynomials used in the functional link are Chebyshev poly-
nomial. Different degrees of Chebyshev polynomial is used for training and further
it is tested with interval Legendre polynomial using the stored converged weights
of ChNN. These polynomials are taken in interval form. It is seen that by using
interval functional link neural network the computational time is very less compared
to interval neural network. Accordingly example problems of two and five-storey
shear buildings have been analyzed for free and forced vibration case to show the
efficiency of the IFLNN model.

Keywords Structural parameters · Chebyshev polynomials · ChNN · IChNN ·
Shear buildings

1 Introduction

For the past few decades system identification techniques have attractedmany design
engineers. This is due to the fact that full-scale experimental studies are more expen-
sive and also difficult to perform in some cases. System identification is studied to
analyze the recorded data and estimate modal parameters or to use the recorded data
to assess the damage in a structure for health monitoring. Studies are being done by
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various researchers in this field. To refine and to get more accurate results continuous
efforts are being done to develop analytical models.

System identification technique for detecting changes in both linear and non-
linear structural parameters has been used by Loh and Ton [1]. Katsikadelis and
Nerantzaki [2] solved inverse problems by use of AEM. Different methodologies
have been used by researchers to study system identification problems [3–5]. Sanayei
et al. [6] have done parameter estimation using modal data and boundary conditions.
Chakraverty [7] identified stiffness parameter of multistorey frame structure from
dynamic data. Using modal data Chakraverty [8] estimated structural parameters of
multistorey shear buildings. A state space-based structural identification theory, its
implementation and applications have been presented by [9].

Artificial neural networks have been utilized by many researchers and have
become an intensively interesting topic due to its application in various fields such
as pattern recognition, classification, function approximation, system identification
and speech recognition, etc. Various works on System Identification using neural
network techniques have been done. Facchini et al. [10] presented an artificial neu-
ral network-based technique for the output-only modal identification of structural
systems. Not only neural network technique but also various hybrid neural network
techniques such as interval and fuzzy neural technique have also been used to estimate
the structural parameters. Interval neural network technique based on response data
for system identification of multistorey shear building has been done by Chakraverty
and Sahoo [11]. Chakraverty and Sahoo [12] used fuzzy neural network modelling
for identification of structural parameters of multistorey shear buildings.

Functional Link Neural network is the type of neural network where the hidden
layers are replaced by functional expansion block. These functional expansion blocks
contain the orthogonal polynomials Patra [13]. Patra et al. [14–16] solved dynamic
non-linear system identificationproblemusingChebyshev functional neural network.
Purwar et al. [17] used Chebyshev neural network for On-line system identification.
As regards, the publication by [18–23] used Chebyshev neural network to solve
different varieties of problem.

Here interval stiffness parameters of the multistorey shear building using single
layer multi-input and multi-output Interval Functional Link neural network (IFLNN)
is estimated. Training with ChNN is done and the converged weights are stored for
testing. Example problems of two and five-storey shear buildings have been analyzed
for free and forced vibration case to show the efficiency of the IFLNN model.

2 Analysis and Modelling with Interval Case

Floor masses for the present problem are taken as
[
m1, m̄1

]
,
[
m2, m̄2

]
, . . . ,

[
mn, m̄n

]

and stiffness as
[
k1, k̄1

]
,
[
k2, k̄2

]
, . . . ,

[
kn, k̄n

]
. The structural parameters are the

stiffness parameters which are to be identified. The mass and stiffness parameters
are taken here in interval form. The interval n-storey shear structure is already shown
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Fig. 1 Multistorey shear
structure with n-levels
having interval structural
parameters

in Fig. 1 [11]. Dynamic equation of motion without damping for n-storey (supposed
as n degrees of freedom) shear structure may be written as in [11].

[
M̃

]{ ¨̃X
}

+ [
K̃

]{
X̃

} = {
F̃(t)

}
(1)

where
[
M̃

] = [
M, M

]
and

[
K̃

] = [
K , K

]
are interval mass and stiffness matrices

and
{
F̃(t)

} = {
F(t), F(t)

}
is the interval horizontal displacement forcing function.

Equations (2) and (3) represents the initial conditions in interval form

{x̃(0)} = {
x(0), x̄(0)

} = {x̃1(0), x̃2(0), . . . , x̃n(0)}T (2)

{ ˙̃x(0)
}

= {
ẋ(0), ¯̇x(0)} =

{ ˙̃x1(0), ˙̃x2(0), . . . , ˙̃xn(0)
}T

(3)

The corresponding interval eigenvalues and eigenvectors for free vibration equa-
tion are obtained by solving Eq. (1). The interval eigenvalue and eigenvectors are
denoted by λ̃i and

{
Ã
}
i
= {

A, A
}
i
, i = 1, . . . , n where ω̃2

i

(= λ̃i
)
are the system’s

interval natural frequency. The free vibration equation is now converted to an inter-
val eigenvalue problem. Although there exist different techniques to handle interval
eigenvalue problems in order to avoid complexities, these interval eigenvalues and
vectors are obtained by taking different sets of lower and upper stiffness and mass
values. Also the inverse of the matrices is taken in crisp form separately as lower and
upper value. And hence we will now replace ‘~’ from all notations and consider the
case for lower form first and simultaneously for upper form. Therefore, the modal
matrix for lower form

{
A
}
may be written as

[
A
] = [{

A
}
1

{
A
}
2 . . .

{
A
}
n

]
(4)

The diagonal matrix made up of the eigenvalues in lower form is denoted as λi[
λ
]
n×n , a new set of coordinates in the lower form

{
y
}
related to the coordinates

{
X

}
is introduced by the well-known transformation.
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{
X

} = [
A
]{

y
}

(5)

If the system (1) is subjected to an initial velocity only then substituting Eq. (5)
in Eq. (1) for ambient vibration, the following equation is obtained for the response
in lower form as:

{
X

} = [
A
][
D

][
ω

]−1[
A
]−1{

ẋ(0)
}

(6)

whereas for the horizontal displacement in the lower form we have the equation

{
ÿ
}

+ [
λ
]{

y
}

= [
P

]−1[
A
]T {

F(t)
}

(7)

where

[
P

] = [
A
]T [

M
][
A
]

(8)

The final response for this case may be expressed in term of the original coordi-
nates

{
X

}
after solving Eq. (7) for y and then putting in Eq. (5). In a similar manner,

we can compute for the upper form. The training patterns are now trained using
interval functional link neural network.

3 Interval Chebyshev Polynomial

For each natural numberm, the first four degrees of interval Chebyshev polynomials
may be written as in Patrício et al. [24].

T0,m(x) =
[
1 − 1

m
, 1 + 1

m

]

T1,m(x) =
[
1 − 1

m
, 1 + 1

m

]
x

T2,m(x) = 2

[
1 − 1

m
, 1 + 1

m

]
x2 −

[
1 − 1

m
, 1 + 1

m

]
1

T3,m(x) = 4

[
1 − 1

m
, 1 + 1

m

]
x3 − 3

[
1 − 1

m
, 1 + 1

m

]
x

Interval Chebyshev polynomials of a higher degree may be obtained by the well-
known recursive rule.

Tj+1,m(x) = 2xTj,m(x) − Tj−1,m(x) (9)

For eachm ∈ Nand j ∈ N,we can say Tj,m(x) as interval Chebyshev Polynomial.
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4 Learning Algorithm of Interval Functional Link Neural
Network (IFLNN)

In IFLNN, in order to minimize the cost function, the interval weights are updated.
Here interval error backpropagation algorithm has been used for learning and for
updating the weights of IFLNN. Inputs Õi = X̃i are the interval frequencies and
outputs ÕJ = k̃ J are the stiffness parameters.As such, linear sum z̃ J canbe calculated
as

Z̃ J =
N∑

j=1
w̃ j Ũ j (X) + θ̃ j

J = i = number of input vectors and j is the degree of the polynomial
(10)

where w̃ j are the interval weights, θ̃ j are the interval bias and Ũ j (X) are expanded
inputs vector in interval form. These Ũ j (X) are considered here as Chebyshev poly-
nomials in interval form.

The net output is given as

ÕJ = f
(
Z̃ J

)

Here unipolar sigmoidal function has been used as the activation function and
defined as

f
(
Z̃ J

) = 1

1 + e−γ (Z̃ J)

The cost function used for minimization of error is defined as

E = 1

2

[
d̃ j − ÕJ

]2 = 1

2
ẽ2j (11)

where d̃J is the desired output, ÕJ is the target output and ẽJ is the error value. The
error value is computed to obtain the desired accuracy in interval form. Weights are
updated as follows:

w̃ j (New) = w̃ j (Old) + �w̃ j (12)

where the change in weights in interval form are calculated as

�w̃ j =
[
−η

∂ Ẽ

∂ω̃ j

]
=

[
−η

(
d̃J − ÕJ

)(
1 − Õ2

J

)
Ui (X̃)

]
(13)

Here η is the learning parameter. We follow the same procedure to update the
bias θ̃ j . The multi-input and multi-output single layer IFLNN architecture are shown
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Fig. 2 Single layer multi-input and multi-output interval functional link neural network

in Fig. 2, where
{
Ũ j

}N

j=1 are set of interval Chebyshev and Legendre orthogonal
polynomials.

5 Results and Discussion

Though the developed method has been used for different storey shear structure but
here only two and five storeys shear structure has been reported to understand the
methodology [11]. To identify interval stiffness parameters and to investigate the
present method, a numerical experiment has been shown for two and five storeys
lumped mass structure. In order to identify the interval stiffness parameters we need
to have interval responses in the input nodes. Practically due to error inmeasurements,
we may not have the response data in crisp form. We may have uncertainty and these
uncertain data is taken here in interval form. It is worth mentioning that the response
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may actually be obtained from some experiments. But here the analyses have been
shown by numerical simulation only. In this respect one may see that the procedure
is mentioned with constant masses but with interval stiffness parameters. To get the
set of data of interval responses and interval stiffness parameters, the problem has to
be solved first as forward vibration problem. For this the initial design (structural)
parameters in interval form are randomized [25] and training sets of initial interval
stiffness parameters are generated. For the above sets of initial interval stiffness
parameters, the set of corresponding responses in interval form are generated from
Eq. (6) for ambient vibration and from Eq. (5) for other case (after solving Eq. (8) for
y or y). In order to get the interval responses for ambient vibration problem, Eq. (6) is
used and for forced vibration problem Eqs. (5) and (8) are used. The neural network
training is done until a desired accuracy is reached. The stiffness parameter in interval
form is identified using the interval form of maximum absolute response. Matlab
programming codes have been written to obtain the results for Interval functional
link neural network. The methodology has been discussed by giving the results for
following two cases with two functional link networks.

Case (i): Ambient vibration: interval response with an initial condition in interval
form.
Case (ii): Forced vibration: interval response with the forcing function in interval
form.

5.1 Ambient Vibration

Example 1. Two storey shear buildings
The input layer will have the nodes as

{
X̃1 = [

X1, X1
]
and X̃2 = [

X2, X2
]}

and the
output layer will have the nodes as

{̃
k1 = [

k1, k1
]
and k̃2 = [

k2, k2
]}

for two-storey
shear structure. For case (i) one problem has been solved for two-storey shear struc-
ture. Here the system is subjected to initial condition expressed by the vector (with

zero displacement) in interval form as
{
ẋ(0) ẋ(0)

}
= {(8, 10) (−10,−8)}T . The

masses are kept constant for this problem and are taken as m1 = m1 = 1 andm2 =
m2 = 1. The initial interval stiffness parameter is considered as k̃1 = [1000, 2000]
and k̃2 = [1000, 2000]. 50 sets of data for both responses and structural parameters
are generated from these initial interval stiffness parameters. The values of m are
taken as 2 for interval Chebyshev. Different degrees of Chebyshev polynomials in
interval form are considered for training in order to achieve the desired accuracy of
0.001. But, here we have given the results for two degree polynomials. After training
10 trained data among 50 is incorporated for comparison of the desired and interval
ChNN values for this problem in Table 1. The CPU time for ChNN is 110.34 s. The
stored converged weights of interval ChNN is used for testing.With the same desired
values the testing has been done for interval ChNN. Comparison of results between
desired and interval LeNN has been given in Table 2.
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Table 1 Comparison of desired and interval ChNN value for ambient vibration with interval initial

condition for k1, k1 and k2, k2 for two-storey building

Data
no.

k1
(ChNN)

k1
(Des)

k1
(ChNN)

k1
(Des)

k2
(ChNN)

k2
(Des)

k2
(ChNN)

k2
(Des)

1 1820 1860 1944 1949 1358 1348 1794 1717

2 1356 1311 1989 1934 1452 1446 1997 2009

3 1363 1306 1922 1984 1092 1054 1282 1298

4 1388 1343 1828 1859 1106 1177 1466 1425

5 1450 1477 1751 1785 1457 1475 1629 1626

6 1435 1513 1672 1658 1360 1331 1763 1774

7 996 1035 1153 1178 1812 1828 1867 1898

8 1453 1399 1942 1852 1184 1110 1180 1118

9 1119 1134 1513 1569 1101 1188 1916 1988

10 1088 1031 1887 1864 1381 1370 1552 1540

Table 2 Comparison of desired and interval LeNN value for ambient vibration with interval initial

condition for k1, k1 and k2, k2 for two-storey building

Data
no.

k1
(LeNN)

k1
(Des)

k1
(LeNN)

k1
(Des)

k2
(LeNN)

k2
(Des)

k2
(LeNN)

k2
(Des)

1 1818 1860 1944 1949 1357 1348 17964 1717

2 1360 1311 1984 1934 1456 1446 2000 2010

3 1366 1305 1925 1984 1094 1054 1288 1298

4 1382 1343 1829 1859 1107 1177 1465 1425

5 1457 1477 1755 1785 1454 1474 1622 1663

6 1433 1513 1679 1658 1361 1330 1763 1774

7 995 1035 1157 1178 1819 1828 1869 1898

8 1458 1398 1841 1852 1180 1110 1188 1118

9 1113 1134 1519 1569 1109 1188 1919 1988

10 1080 1030 1885 1864 1389 1370 1560 1540

5.2 Force Vibration

Example 1. Five storey shear buildings

The input nodes are taken as

{
X̃1 = [

X1, X1
]
, X̃2 = [

X2, X2
]
, X̃3 = [

X3, X3
]
,

X̃4 = [
X4, X4

]
and X̃5 = [

X5, X5
]} and

the output nodes are taken as

{̃
k1 = [

k1, k1
]
, k̃2 = [

k2, k2
]
, k̃3 = [

k3, k3
]
,

k̃4 = [
k4, k4

]
and k̃5 = [

k5, k5
]} for five-

storey shear structure. In case (ii) the forcing function vector in interval form with
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zero initial condition is defined as F̃1(t) = {80 sin((1.6 π t) + π ), 100 sin((1.6π t)
+ π )}, F̃2(t) = {80 sin((1.6 π t) + π ), 100 sin((1.6π t) + π )}, F̃3(t) = {80 sin((3.2
π t) + π ), 100 sin((3.2π t) + π )}, F̃4(t) = {80 sin((3.2 π t) + π ), 100 sin((3.2 π t)
+ π )} and F̃5(t) = {80 sin((3.2 π t) + π ), 100 sin((3.2π t) + π )}. The masses are
kept constant for this problem and are taken as m1 = m1 = · · ·m5 = m5 = 1. The
initial interval stiffness parameter is considered as k̃1 = [2200, 1100], k̃2 = · · · =
k̃5[2100, 1100]. Here 60 data sets for both responses and structural parameters are
generated from these initial interval stiffness parameters. The values of m are taken
as 2 for interval Chebyshev. Chebyshev polynomials of fifth degree are considered
to train interval ChNN so as to get an accuracy of 0.001. Comparison between the
desired and ChNN values for 10 data among 60 sets of data have been plotted in
Fig. 3a–e. The CPU time for ChNN is 268.645721 s. Again testing is done with
ChNN from the converged weights of ChNN. Results between desired and intervals
ChNN are plotted in Fig. 4a–e.

6 Conclusion

In order to protect different structures subjected to various natural calamities, the
engineers should have the proper knowledge of health monitoring. So it is a chal-
lenging task to know the present health of the structures to avoid any failure. In system
identification problem the models need to have the knowledge of the initial design
parameters namely stiffness and mass. The error caused due to human or equipment
arises the concept of uncertainty. Here the uncertain data are considered to be in
intervals [11]. Therefore, the initial design parameters, i.e. responses for a structure
in interval form are computed by numerical simulation. These interval responses are
used as inputs to train the IFLNNmodel. The converged IFLNNmodel will have the
capability to estimate the present interval stiffness parameter values for each floor. It
may be seen that the present IFLNN model are easy to implement with low compu-
tational complexity and are also more efficient than INN. Example problems of two
and five-storey shear buildings have been analyzed for free and forced vibration case
to show the efficacy and usefulness of the IFLNN model. Testing has been done for
shear buildings which validate the novelty of the present methods. Different Matlab
codings have been done to get the results and figures.
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Fig. 3 a Comparison of desired and interval ChNN value for forced vibration with interval forcing
function for k1, k1 for five-storey shear building. b Comparison of desired and interval ChNN
value for forced vibration with interval forcing function for k2, k2 for five-storey shear building.
cComparison of desired and interval ChNN value for forced vibration with interval forcing function
for k3, k3 for five-storey shear building.dComparison of desired and interval ChNNvalue for forced
vibration with interval forcing function for k4, k4 for five-storey shear building. e Comparison of
desired and interval ChNN value for forced vibration with interval forcing function for k5, k5 for
five-storey shear building
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Fig. 4 a Comparison of desired and interval ChNN value for forced vibration with interval forcing
function for k1, k1 for five-storey shear building. b Comparison of desired and interval ChNN
value for forced vibration with interval forcing function for k2, k2 for five-storey shear building.
cComparison of desired and interval ChNN value for forced vibration with interval forcing function
for k3, k3 for five-storey shear building.dComparison of desired and interval ChNNvalue for forced
vibration with interval forcing function for k4, k4 for five-storey shear building. e Comparison of
desired and interval ChNN value for forced vibration with interval forcing function for k5, k5 for
five-storey shear building
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Seismic Behaviour of Unreinforced
Masonry

Nikhil P. Zade, Pradip Sarkar and P. Robin Davis

Abstract The present paper assesses the safety of existing unreinforced building
subjected to earthquake loading, considering uncertainty associated with various
material properties. A static pushover analysis was carried out on an equivalent
frame model of selected clay and fly ash brick masonry walls using two different
load pattern as per ASCE/SEI 41-17. Uncertain material properties that affect the
response significantly are identified through sensitivity analysis. The study shows the
effect of brick type and mortar grade on the seismic performance of brick masonry
wall. It was found from the study that masonry density, elastic modulus, Poisson’s
ratio and shear bond strength are the most important material properties which affect
the output response.

Keywords Unreinforced masonry · Pushover · Sensitivity · Seismic performance

1 Introduction

It is well known that masonry buildings suffer a great deal of damage during earth-
quakes, leading to significant loss of lives. Almost 75% of the fatalities, attributed
to the earthquake in the last century, is caused by the collapse of buildings of which
the greatest portion (more than 70%) is due to collapse of masonry buildings. A
majority of the tenements in India are Unreinforced Masonry (URM) buildings that
are weak and vulnerable, even under moderate earthquakes. URM is designed for
vertical loads normally due to its good compressive strength. Hence, URM structures
will behave well when loads are vertical, that is, they are under gravity load only
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(a) σ0 σ0σ0 (b) (c)

Fig. 1 Different types of failure in masonry pier: a sliding shear; b rocking; and c diagonal shear
cracking

but fail easily when seismic forces act on them, due to very high shear and flexural
stresses. URM construction is usually done without any technical information since
very less research, and technical development is done in this field. Pushover analysis
is an approximate analysis method in which the building model is subjected to a pre-
defined load pattern, and the loads are increased monotonically until some members
yield.

The structure is modified for decreased stiffness of the yielded members, and the
loads are again increased until a controlled displacement is reached or the struc-
ture becomes unstable. In pushover analysis, non-linear hinges are required to be
inserted in the model. The non-linear properties of these hinges are based on the
failure mechanisms occurring in masonry. The various failure mechanisms [1] such
as sliding shear, rocking and diagonal shear cracking are shown in Fig. 1.

Several experimental studies [2–4] on URM concluded that these structures result
in brittle failure and its energy absorbing capacity is limited by elastic deformation.
Out of plane failure, in-plane failure and combined in-plane are the different types
of failure given by Bruneau [5].

For the masonry structures, various microlevel and macrolevel models have been
developed based on different theoretical approaches [6] by the previous researchers.
Out of which the finite element models [7, 8], is the most accurate to predict the
critical points in the structure, including with different failure mechanisms. Since it
involves the use of expensive and complex software and also time-consuming, it is not
much famous.Whereas, ‘macromodel’ modelling approach is a simpler one in which
masonry structure is divided into several one or two-dimensional ‘macroelements’ [9,
10]. The use of Equivalent framemodel (EFM) approach is allowed by theASCE/SEI
41-17 [11] and the new Italian seismic code [12]. Various codes are used for seismic
analysis of masonry buildings using both one and two-dimensional elements [12,
13].
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2 Pushover Analysis

Pushover analysis is nothing but pushing the structure with predefined load pattern
till the building collapses. Pushover analysis is an approximate method of non-linear
static analysis in which the predefined load pattern as per the code provision is
increased monotonically, but while doing so the distribution of load pattern does not
change (Fig. 2). The building is displaced up to yielding of somemembers or collapse
of the structure occur. While doing so, displacement is measured at the ‘control
node’. The control node is the node considered in the top storey where displacement
is monitored. It is to be noted that for reinforced concrete (RCC) and steel members
predefined hinges are available in SAP2000 [14], but for URM members we have to
define the hinges based on a cross-section of the member, properties of masonry and
failure pattern observed from experimental research.

ASCE/SEI 41-17 [11] recommends at least two different load pattern out of three
shown in Fig. 3 should be considered for static pushover analysis (SPO). The reason
behind to use two different lateral load patterns is to get the overall idea of the
response of the structure.

2.1 Equivalent Frame Modelling

Just like columns and beams in RCC building, EFM is used to model the wall
as a combination of vertical and horizontal members. Where a vertical member
is known as the pier and a horizontal member as a spandrel. Walls with an opening
can be divided into horizontal and vertical members which combine to represent the
complete wall as shown in Fig. 4. This modelling method is commonly known as

Fig. 2 A simplified representation of the pushover analysis procedure
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Fig. 3 Different load pattern for SPO analysis as per ASCE/SEI 41-17

Rocking hinge Pier shear hinge Spandrel shear hinge

Fig. 4 Equivalent frame model

equivalent frame modelling. Provided hinges allow the structure to undergo inelastic
shear and flexural deformation to predict the actual behaviour of the structure during
an earthquake. In the present study, EFM is used to model the wall. The plastic
hinges were used in SPO analyses as given in previous literature [1] since it allows
the user to accurately follow the structural behaviour not only up to the elastic limit
but in inelastic limit also up to failure. The hinges were modelled based on the failure
mechanism, as shown in Fig. 1 and various experimental results obtained for URM
to represent the non-linear behaviour [15].
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2.2 Non-linear Hinge Modelling for the SPO Analysis

Figure 5a represents the standard load deformation curve which can be used in
the SAP2000 for plastic hinges. The masonry piers, that is, vertical members, were
modelled as elastoplasticwith final brittle failure as shown inFig. 5b by providing two
‘rocking hinges’ at the end of the deformable parts and one ‘shear hinge’ atmidheight.
Perfectly rigid plastic behaviour is assumed with final brittle failure shown in Fig. 5c
for all plastic hinges. Hinges are provided considering Dolce offset [16].

Ultimate moment capacity Mu and ultimate shear capacity Vu for hinge can be
calculated by using the following equations. Ultimate moment capacity defined by
Eq. (1). Two equations were recommended [15] based on the experimental results for
shear strength capacity. Equation (2) for existing buildings [17] is based on failure
with diagonal cracking. The ultimate shear strength of new buildings is calculated
[18] based on failure due to sliding, as shown in Eq. (3).

(a)

(b)

(c)

(d)
(e)

Fig. 5 a Standard load versus deformation curve in SAP2000 for the plastic hinge; b and c assumed
behaviour for the entire pier and the correspondent plastic hinge, respectively; d and e assumed
behaviour for the entire spandrel beam and the correspondent plastic hinge, respectively
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where Mu is the ultimate moment for rocking hinges and V f
u and V f

s are the shear
strength considering failure with diagonal cracking and failure with sliding. Mini-
mum of V f

u and V f
s should be considered for ultimate shear hinge capacity. σ 0 is the

mean vertical stress, t is pier thickness, D is pier width, k is coefficient taking into
account the vertical stress distribution at the compressed toe (a common assumption
is an equivalent rectangular stress block with k is 0.85), f v0d is the design shear
strength with no axial force, f m is the design compression strength, ε is (coefficient
related to the pier geometrical ratio), μf is friction coefficient, H0 is effective pier
height (distance between two rocking hinges) and γm is safety factor (assumed to be
equal to 2).

To define hinge property, the maximum rotation φu corresponds to a maximum
lateral deflection δu is given in Eq. (4) and for shear hinge maximum shear displace-
ment can be calculated as per Eq. (5) as recommended in [1]. The behaviour assumed
for the entire pier and corresponding plastic hinge is shown in Fig. 5b, c.

φu = 0.8

100
hd − δe (4)

δu = 0.4

100
hd − δe (5)

Failure of the pier can take place through shear or rocking based on whether
maximum displacement or rotation occurs first. Type of failure occurring in the pier
can be described through the formation of hinges in themodel. Since it is not possible
to automatically control the total deflection of an entire macro element in SAP2000,
if more than one of its plastic hinges exceed the elastic limit, such a quantity was
manually checked on every macro element at the end of each load step. Modelling
of the spandrel is done by providing one shear hinge at the centre of spandrel whose
ultimate shear strength can be calculated by the equation given below:

Vu = h × t × fv0d (6)

where h is the depth and t is the thickness of spandrel and fv0d is design shear strength
with no axial force. A brittle–elastic behaviour with residual strength after cracking
equal to one-fourth of the maximum strength was assumed for the entire element,
with no limit in deflection.
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2.3 Validation of EFM

In order to check the reliability of the model, the results of the present study are
compared with those of a previous study [1]. The pushover curves were obtained for
the wall for two different lateral loadings (a) inverted triangular distribution (SPO1),
(b) uniform distribution (SPO2), as recommended by recent codes of practice and
regulations. The result obtained from the present analysis[1] is shown in Table 1.
The top displacement obtained from the present analysis was almost the same as that
detected by literature as shown in Figs. 6 and 7 with a maximum percentage error of
7.8% in the base shear for inverted triangular distribution (Table 1).

3 Structural Modelling of Masonry Wall

Detailed pushover analysis of the two-storey unreinforced masonry having window
and door openings is carried out. Figure 8 represents the plan and elevation of the
analysed wall. All windows are of the same size and having a wall thickness equal
to 0.25 m. Three hinges are provided for each pier, i.e. one shear hinge at the centre
and two rocking hinges at the end of the pier. In case of spandrel one shear hinge
is provided at the centre as shown in Fig. 4. Perfectly rigid plastic behaviour with

Table 1 Validation results Base shear (kN) Lateral load pattern

Inverted triangular Uniform

Pasticier et al. [1] 126.54 157.15

Present study 136.51 159.65

Error in base shear 7.8% 1.5%

Fig. 6 Pushover curve for
inverted triangular
distribution
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Fig. 7 Pushover curve for uniform distribution
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Fig. 8 a Plan and b Elevation of masonry wall (All dimensions are in metre)

final brittle failure was assumed for all these plastic hinges. The hinge properties in
terms of the ultimate moment and ultimate rotation or ultimate shear and ultimate
shear displacement were calculated as per Eqs. (1), (2) and (3) as described earlier.
Cross-section of each pier and spandrel were found out based on the geometry of the
structure andmodelled in SAP2000 by usingEFMconcept.Wall shown in Fig. 8were
analysed considering different masonries like clay masonry and fly ash masonry. In
order to know the range of response of structure two different load pattern, one is
inverted triangular, that is, proportional to the product of the masses by the floor
heights, and another one is uniform distribution that is, proportional to the floor
masses used in the present study.
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Table 2 Clay masonry properties

Property Variable Mean Source

Density (kN/m3) γ 18.84 [19]

Masonry compressive strength (MPa) f m 5 [20]

Masonry shear strength (MPa) f v0d 0.18 [19]

Elastic modulus (MPa) Em 4200 [19]

Poisson’s ratio μ 0.07 [21]

Table 3 Properties of fly ash brick masonry [22]

Mortar Gradea f m (MPa) Em (MPa) f v0d (MPa) Gm (MPa) μ

CM3 (1:3) 3.76 2256 0.171 1064.646 0.060

CM2 (1:4.5) 2.87 1722 0.113 703.538 0.224

CM1 (1:6) 1.86 1116 0.112 697.312 0.200

aFigures in the parenthesis represent the Cement: Sand proportion in the mortar

The mechanical and physical properties for masonry like density, modulus of
elasticity, Poisson’s ratio, shearmodulus, compressive strength, design shear strength
and coefficient of friction are taken from the previous literature. The coefficient of
friction is taken as 0.5 for all masonry since no standard value for the coefficient
of friction is available. The material properties used in the present study for clay
masonry are presented in Table 2.

Similarly, the properties of fly ash masonry are taken from previous literature
[22]. Compressive and shear strength of fly ash brick masonry for different grades
of cement mortars are presented in Table 3. It also recommends the relationship
between modulus of elasticity with compressive strength and shear modulus with
design shear strength as given in Eqs. (7) and (8). The density (γ) of fly ash brick is
considered as 17.31 kN/m3.

Em = 600 fm (7)

Gm = 6226 fv0d (8)

Poisson’s ratio is calculated from the basic relation between Young’s modulus,
shear modulus and Poisson’s ratio as given in Eq. (9).

Em = 2Gm(1+ μ) (9)
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Fig. 9 SPO curves for Clay
and Fly ash masonry
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4 SPO Analysis

4.1 SPO Analysis for Clay and Fly Ash Masonry

Considering only dead load analysis is carried out, and SPO curves are obtained for
the analysed wall. First dead load analysis is run to find out mean vertical stress (σ0).
Two SPO analyses correspond to two different load pattern are done, ‘SPO1’ and
‘SPO2’ corresponds to an inverted triangular and uniform distribution, respectively.
The analysis is carried out on the same wall considering clay masonry (CLM) and
fly ash masonry (FAM), and the resulting SPO curves are shown in Fig. 9 and 10.

5 Sensitivity Analysis

The study of uncertainty in output concerning to uncertainty in the input properties
is known as sensitivity analysis. In the present study different masonry properties,
such as compression strength, Young’s modulus, shear strength, density and shear
modulus of URM are considered as input parameters to know their effect on the
lateral behaviour of URM when the earthquake occurs. Base shear at yield and
ultimate base shear are considered as sensitivity parameter. Sensitivity analysis is
carried out on the same wall for clay masonry properties. Sensitivity analysis is
useful to check the accuracy of the model. It will help to reduce the uncertainty
in the model by knowing the input parameters that result in significant change in
output and reduce the computational effort by focusing on sensitive parameters [23].
Celarec [24] have carried out a sensitivity analysis of masonry infilled RC frame and
considering sensitivity (Δy) as given in Eq. (10),

�y = y(Pn) − y(Pmean)

y(Pmean)
×100(%) (10)
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Fig. 10 SPO curves for
different mortar grades
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where y (Pn) and y (Pmean) are the responses at nth (such as 5 and 95th) percentile
and mean value of variables, respectively.

5.1 Tornado Diagram

The results of the sensitivity analysis are represented by using Tornado Diagram
(TD) for different input variables. The output of pushover analysis by equivalent
frame modelling is used in the present study to carry out the sensitivity analysis.
To examine the change in the response of structure 5%, mean and 95% probability
values of random variables are considered. The pushover curve for clay masonry
wall for random variables is shown in Fig. 11.

Tornado diagrams are useful for deterministic sensitivity analysis—comparing
the relative importance of variables. For each uncertainty considered, we need to
estimate what the low, base and high outcomes would be. The sensitive variable is
modelled as uncertain value while all other variables are held at baseline, that is,
mean value. The sensitivity of all parameters that affect the lateral behaviour of the
URMwall, is plotted as shown in Fig. 12. Ultimate base shear and base shear at yield
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Fig. 12 TD for Clay masonry wall

are considered as a response parameter for sensitivity analysis. It can be observed
from TDs that fm do not affect the lateral behaviour of URM wall whereas f v0d and
γ greatly influence the response of structures.

6 Concluding Remarks

Seismic evaluation of typical two-storey unreinforcedmasonry building is conducted
in the present study using static pushover analysis utilising the concept of equivalent
frame model. Salient conclusions obtained from the present studies are as follows:

(i) Inverted triangular load pattern in static pushover analysis yields conservative
response (in terms of base shear) of selected masonry walls compared to uni-
form lateral load pattern. Hinge formation occurs in the top storey for inverted
triangular load pattern while; storey mechanism occurs in the ground storey for
the uniform lateral load. For both the cases, ultimate displacement is in close
proximity.
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(ii) Development of shear hinge in the structure is found to be the fundamental
reason for structural collapse.A higher grade of cementmortar is found to result
higher lateral strength in brick masonry wall. Fly ash brick masonry found to
yield lower lateral strength in comparison with fired clay brick masonry due to
lower density and strength of the fly ash brick unit.

(iii) Results acquired from sensitivity analysis demonstrates that base shear at yield
level is sensitive to shear bond strength and unit weight of brick masonry while
ultimate base shear is affected by all of the random input variables considered.
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Numerical Modeling of Love Waves
in Dry Sandy Layer Under Initial Stress
Using Different Order Finite Difference
Methods

Jayantika Pal and Anjana P. Ghorai

Abstract This statedmanuscript is concernedwith the propagation of surfacewaves
in a dry sandy layer under initial stress. The analysis is based on Biot’s theory. The
dispersion equation of phase velocity of this proposed layer has been derived using
convenient second-order finite difference scheme, staggered-grid finite difference
scheme, and higher order finite difference scheme where, in each case, second-order
central difference operator has been used for temporal derivatives, but second, fourth,
and higher order finite difference scheme are used for spatial derivatives, respectively.
A comparison study using these threemethods has been done and presented in graphs.
It has been shown that staggered-grid finite difference scheme is more accurate than
second-order finite difference scheme and higher order finite difference scheme is
more accurate than second-order finite difference scheme and staggered-grid finite
difference scheme both.

Keywords Sandy layer · Surface waves · Initial stress · Phase velocity · Finite
difference scheme

1 Introduction

Numerical simulation of propagation of Love waves in elastic media is the key
attention to the seismologists due to its possible application in geophysical prospect-
ing and in earthquake damage assessment. In fact, the earth is an initially stressed
medium. A large quantity of initial stress may develop in a medium due to many
physical causes. The soil layer of the earth is invented to be more sandy than elastic.
A dry sandy blanket which consists of sandy particles retentive no water vapors or
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moistures. Weiskopf has conferred the mechanics of dry sandy soil [1] and it dis-
closes the slippage of coarse particles in a dry sandy soil, E

μ
> 2(1+ σ) where E is

denoted as the Young’s modulus of elasticity, rigidity is μ, and the Poisson’s ratio is
σ . Weiskopf recommended that the relationship E

μ
= 2η(1 + σ) could be fitting for

the dry sandy soil. When η > 1, it is labeled as sandy parameter and when η = 1,
it relates to an elastic solid. Keeping it in mind, it might be of significant interest to
study the propagation of elastic waves in dry sandy layer, considering the medium
to be initially stressed.

Many complications in the wave field are labeled by parameters which are gov-
erned by coordinates, time, etc. Such systems are specified in mathematical models
by partial differential equations, relation between stress and strain is a great exam-
ple. For solving these equations there are mainly two approaches: analytical and
numerical. In earlier, date analytical methods are implied for determination of math-
ematical functions which express solution in a closed form. Numerical solution of
seismic wave equation has played an important role in both theoretical and applied
seismology. Numerical methods have the basic characteristic, the fundamental equa-
tions which describe the problem, including the boundary and initial conditions
are solved in approximate numerical way. The finite difference scheme is the well-
known numerical method which is widely used in seismic modeling and migration.
These are easy to implement and required comparatively less computation time and
small memory rather than other numerical methods. In finite difference scheme a
second-order temporal derivative is commonly used to perform wave field recur-
sion successfully and stably but has limits for the exactness of modeling. A reduced
time step or grid size may increase the modeling accuracy but will necessitate more
computation time. Several methods such as staggered grid, higher order have been
established to improve the precision which do not escalate the computation rate.

The dynamic theory ofwave propagation in fluid-saturated layeredmedia has been
established by Biot [2–5]. By virtue of Biot’s theory, a lot of researchers considered
Love waves in various layered media. Brief reviews of some prominent research on
propagation of surface waves in various structured media and the effect of initial
stress are obtainable in the existing work of some researchers, namely, Ewing et al.
[6–11].

Relatively a worthy literature about the numerical modeling and propagation of
seismic waves using finite difference scheme is available in the following research
materials. Propagation of elastic waves in layered media by finite difference method
has been illustrated byAlterman et al. [12]. For the propagation of P-SVwave and SH
wave in heterogeneousmedia, Virieux [13, 14] have used finite differencemethod. To
increase the exactness and steadiness of finite difference scheme, many researchers
have used and established various types of finite difference methods. fourth-order
approximation in space, Levender [15] has used for numerical modeling of the P-SV
waves. Applying staggered-grid finite difference method, Graves [16] studied the
simulation of seismic wave propagation in 3D elastic media. Hayashi and burns [17]
presented finite difference scheme with variable grids. Saenger et al. [18] have con-
sidered the modeling of elastic waves propagation using a modified finite difference
grid. Tessmer [19] reported seismic numerical modeling with spatially variable time
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steps. Kristek and Moczo [20] delivered seismic wave propagation in viscoelastic
media using 3D fourth-order staggered-grid finite difference scheme. Saenger and
Bohlen [21] studied the finite difference modeling of viscoelastic and anisotropic
wave propagation using the rotated staggered grid. Kristek andMoczo [22] explained
on the precision of the finite difference scheme for the one-dimensional elastic prob-
lem. Finkelstein and Kastner [23] discussed finite difference time domain dispersion
reduction schemes. Liu and Sen [24–26] reported advanced and shortened finite
difference method for seismic modeling and considered a new time–space domain
high-order difference method for the acoustic wave equation. The advantages of the
higher order difference scheme have been reported by Dublain [27]. Liu and Sen [28]
demonstrated spatial finite difference stencils on a time–space domain to simulate
wave propagation in acoustic vertically transversely isotropic medium. Zhu and Mc
Mechan [29] established finite difference modeling of the seismic response of fluid
saturated, porous, elastic solid using Biot’s theory. Ghorai et al. [30] presented higher
order finite difference method for modeling of surface waves in a fluid-saturated
poro-elastic medium under initial stress. A time–space domain dispersion relation
based on staggered-grid finite difference schemes has been developed by Liu and Sen
[31] for modeling the scalar wave equation. Liu and Xiucheng [32] explained finite
difference numerical modeling with even order accuracy in two-phase anisotropic
media.

However, but the study by finite difference scheme of the propagation of Love
waves in initially stressed dry sandy layer has remained less attempted. Here in this
presented paper, an attempt has been made to study the propagation of Love waves in
sandy layer under initial stress by second-order finite difference scheme, staggered-
grid finite difference scheme, and higher order finite difference scheme. For deriving
the finite difference coefficients in the dual time–space domain the Taylor series
expansion of dispersion relation is employed. Error analysis and stability analysis
have been done by following conventional eigenvalue method. It has been shown
that the method is always stable as we have considered the courant number (R) ≤ 1.
It is also shown graphically that it is more stable for lower values of R and for higher
order finite difference schemes. It also has been shown that the dispersion curves of
Love waves are less dispersed for higher order finite difference method than of lower
order finite differencemethod.We have seen that dispersion is less andmore accurate
in higher order finite difference scheme rather than second-order and staggered-grid
finite difference scheme.

2 Problem Formulation

A model is made up of initially stressed dry sandy layer of finite thickness h has
been considered. The cylindrical coordinates system has been reflected to study the
propagation of Love waves. In cylindrical coordinates system r and θ are denoted
as the radial and circumferential coordinates, respectively and the z−axis is taken
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Fig. 1 Geometry of the
problem

Rigid layer
z = 0 θ  r 

Sandy layer

Z 

positive vertically downward. The region −h < z < 0 is occupied by the dry sandy
layer and the wave is assumed to propagate along the radial direction (Fig. 1).

2.1 Dynamics of Prestressed Dry Sandy Layer

AsLovewaves transmit along the radial direction r only, all the properties ofmaterials
are independent of θ . According to Biot, the dynamic equation of motion for the
prestressed dry sandy layer where body forces are neglected can be written as

∂τrθ

∂r
+ ∂τzθ

∂z
+ 2

r
τrθ − ∂

∂z
(Pe θ z) = ρ

∂2v1
∂2t

(1)

where P is symbolized as the initial compressive stress along r and ρ is the density
of the medium. τrθ and τzθ are implied as the incremental stress components for
initially stressed dry sandy layer.

The displacement components are (independent of θ ),
i.e., ur = 0, uz = 0, uθ = v1(r, z, t)
The nonzero stress components interrelated to strain components are given by

τrθ = 2Nerθ , τzθ = 2Nezθ (2)

and the relation of strain–displacement is given by

erθ = 1

2

(
∂v1
∂r

− v1
r

)
, eθ z = 1

2

∂v1
∂z

and N = η μ (3)

where η , the sandy parameter and μ, the shear modulus.
Using (2) and (3), Eq. (1) can be written as

ημ

(
∂2v

∂ r2
+ 1

r

∂v

∂r
− v

r2

)
+

(
ημ − P

2

)
∂2v

∂z2
= ρ

∂2v

∂2t
(4)
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3 Solution by Second-Order Finite Difference
Approximation Scheme

Let us revisit the dynamic equation of motion of the prestressed dry sandy layer

ημ

(
∂2v

∂ r2
+ 1

r

∂v

∂r
− v

r2

)
+

(
ημ − P

2

)
∂2v

∂z2
= ρ

∂2v

∂2t
(5)

Here the second-order finite difference scheme for spatial derivatives is considered
as follows:

∂2v

∂r2
≈ 1

h2
[−2v00,0 + v01,0 + v0−1,0

]
∂2v

∂z2
≈ 1

h2
[−2v00,0 + v00,1 + v00,−1

]
∂v

∂r
≈ 1

2h

[
v01,0 − v0−1,0

]

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)

Generally higher order finite difference on temporal derivative scheme requires
large memory and being unstable, therefore usually second-order finite difference
scheme is used for temporal derivatives, as stated below

∂2v

∂t2
≈ 1

τ 2

[−2v00,0 + v10,0 + v−1
0,0

]
(7)

where vnm, j = v(r + mh, z + jh, t + nτ), h and τ are denoted as grid size and time
step, respectively.

Using (6) and (7) into (4) we have

ημ

(
1

h2
[−2v00,0 + v01,0 + v0−1,0

] + 1

r

{
1

2h

[
v01,0 + v0−1,0

]} − 1

r2
[
v00,0

])

+
(
ημ − p

2

){ 1

h2
[−2v00,0 + v01,0 + v0−1,0

]} = ρ

{
1

τ 2

[−2v00,0 + v10,0 + v−1
0,0

]}
(8)

According the plane wave theory, let us consider

vnm, j = ei[kr (r+mh)+kz(z+ jh)−ω(t+nτ)] (9)

Substituting (9) into (8) and simplifying, we are getting

2ημ

h2
[cos(krh) − 1] + 2

(
ημ − p

2

)
h2

[cos(kzh) − 1] = 2ρ

τ 2
[cos(ωτ) − 1]
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Further simplifying, we are getting

δ = vFD

v
= 1

R π h
λ

sin−1
√

η R2A1 (10)

where A1 = sin2
(
π h

λ
cosϕ

) +
(
1 − p

2ημ

)
sin2

(
π h

λ
sin ϕ

)
,

R = v τ
h , the courant number,

kr = k cosϕ and kz = k sin ϕ , where ϕ, being the propagation angle of the plane

wave and v =
√

μ
/

ρ, the share wave velocity.
There is no dispersion if δ is equal to 1 and a large dispersion will arise if δ is far

from 1.

4 Solution by Staggered-Grid Finite Difference Scheme

For getting the solution of Eq. (4), the staggered-grid finite difference method for
spatial derivatives is used, as reported below

Dr = v′(r) = 1

h

{
c2

[
v

(
r + 3

2
h

)
− v

(
r − 3

2
h

)]
+ c1

[
v

(
r + 1

2
h

)
− v

(
r − 1

2
h

)]}

(11)

Considering the Von Neumann plane wave theory

vnm, j = ei[kr (r+mh)+kz(z+ jh)−ω(t+nτ)] (12)

where kr , kz are the wave number and ω is the angular frequency, we are getting

Drrv = − 4

h2

[{
c21 − 2c1c2

(
1 − 4 cos2

krh

2

)}
sin2

krh

2
+ c22 sin

2 3krh

2

]
(13)

Dzzv = − 4

h2

[{
c21 − 2c1c2

(
1 − 4 cos2

kzh

2

)}
sin2

kzh

2
+ c22 sin

2 3kzh

2

]
(14)

second-order finite difference scheme of temporal derivatives as

Dttv = ∂2v

∂t2
≈ 1

τ 2

[−2vt + vt+τ + vt−τ
]

(15)

Using (13)–(15) in (4), we are getting the dispersion equation as

δ = vFD

v
= 1

R π h
λ

sin−1
√

η R2 A2 (16)
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where

A2 =
[(

c21 − 2 c1c2
)
sin2

(
π
h

λ
cos ϕ

)
+ 2c1c2 sin2

(
2π

h

λ
cosϕ

)
+ c22 sin

2
(
3π

h

λ
cosϕ

)]
+

(
1 − P

2ημ

)[(
c21 − 2c1c2

)
sin2

(
π
h

λ
sin ϕ

)
+ 2c1c2 sin

2
(
2π

h

λ
sin ϕ

)
+ c22 sin

2(3π
h

λ
sin ϕ)

]

and R = v τ
h .

5 Solution of the Layer by Higher Order Finite Difference
Scheme

To improve the accuracy, the higher order finite difference scheme of spatial deriva-
tives is used as

∂2v

∂r2
≈ 1

h2

[
a0v

0
0,0 +

M∑
m=1

am(v0m,0 + v0−m,0)

]

∂2v

∂z2
≈ 1

h2

[
a0v

0
0,0 +

M∑
m=1

am(v00,m + v00,−m)

]

∂v

∂r
≈ 1

2h

[
v0m,0 − v0−m,0

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

second-order temporal derivative is

∂2v

∂t2
≈ 1

τ 2

[−2v00,0 + v10,0 + v−1
0,0

]
(18)

where vnm, j = v(r + mh, z + jh, t + nτ), h, τ are the grid size and time step, respec-
tively.

Using (17) and (18) into (4) we have

ημ

⎡
⎣ 1

h2

⎧⎨
⎩a0v

0
0,0 +

M∑
m=1

am (v0m,0 + v0−m,0)

⎫⎬
⎭ + 1

r

{
1

2h
(v0m,0 − v0−m,0)

}
− 1

r2

(
v00,0

)⎤⎦

+
(
ημ − p

2

)⎡⎣ 1

h2

⎧⎨
⎩a0v

0
0,0 +

M∑
m=1

am (v0m,0 + v0−m,0)

⎫⎬
⎭
⎤
⎦ = ρ

{
1

τ2

[
−2 v00,0 + v10,0 + v−1

0,0

]}
(19)
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According the Von Neumann solution analysis of a plane wave substituting (12)
into (19) and simplifying, we have

1

2
(1 + ξ)a0 +

M∑
m=1

am[cos(krmh) + ξ cos(kzmh)] = 1

η
R−2[cos(ωτ) − 1] (20)

where γ = P
2μ, ξ = 1 − 1

η
γ and R = v τ

h .

Using the Taylor series cosine expansion, from (20) we are getting

1

2
(1 + ξ)a0 +

M∑
m=1

am

⎡
⎣(1 + ξ) +

∞∑
j=1

(−1) j
(
cos2 j ϕ + ξ sin2 j ϕ

)
(mkh)2 j

⎤
⎦

=
⎡
⎣ ∞∑

j=1

(−1) j
1

η
R2 j−2 (kh)2 j

(2 j)!

⎤
⎦ (21)

Comparing the coefficients of k2 j , we obtain,

a0 +
M∑

m=1

2 am = 0 (22)

and

M∑
m=1

am
[(
cos2 j ϕ + ξ sin2 j ϕ

)
(m)2 j

] = 1

η
R2 j−2 (23)

where j = 1, 2,…,M.
This equation specifies that the coefficients of am are the function of ϕ. For finding

a single set of coefficients, the chosen optimal angle must be required. For obtaining
the solution of am from Eq. (23), use ϕ = π

4 . After putting the value of am in (22),
a0 can be obtained.

The dispersion equation from (20) becomes as stated below

δ = vFD

v
= 1

R π h
λ

sin−1
√

η R2A3 (24)

where A3 =
M∑

m=1
am

[
sin2

(
m π h

λ
cos ϕ

) + ξ sin2
(
m π h

λ
sin ϕ

)]
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6 Errors Analysis and Accuracy for Higher Order Finite
Difference Scheme

The error function of Eq. (23) can be written as

E =
∣∣∣∣∣∣

∞∑
j=M+1

2(−1) j

(2 j) !

{
M∑

m=1

am[cos2 j ϕ + ξ sin2 j ϕ](m)2 j − 1

η
R2 j−2

}
k2 j h2 j−2

∣∣∣∣∣∣
(25)

From Eq. (25) we observed that 2 M is the minimum power of h in the error
function, and the accuracy of this finite difference scheme is 2 Mwhen second-order
time domain finite difference approximation and 2 Mth-order space domain finite
difference approximation are used. The magnitude of errors may be decreased by
increasing of M but order of accuracy may not increase. The finite difference scheme
both in time domain and space domain have been used, the wave Eq. (4) can be
solved in both time domain and space domain simultaneously by using Eq. (19).

7 Stability Analysis for Higher Order Finite Difference
Scheme

The recursion equation of finite difference scheme can be obtained from Eq. (20) as
follows:

v10,0 =
[
ηR2(1 + ξ)a0 + 2

]
v00,0 + η R2

M∑
m=1

am
[
(v0m,0 + v0−m,0) + (1 + ξ)(v00,m + v00,−m )

]
− v−1

0,0

(26)

where γ = P
2μ, ξ = 1 − 1

η
γ and R = v τ

h
Using the conventional eigenvalue method of stability analysis, let us consider

⎡
⎢⎢⎣

p0m,m = v0m,m; q0
m,m = v−1

m,m;
U 0

m,m = (
p0m,m, q0

m,m

)T = W 0ei(krm h+kzm h);
U 1

m,m = (
p1m,m, q1

m,m

)T = W 1ei(krm h+kzm h)

⎤
⎥⎥⎦ (27)

Using Eq. (27) in Eq. (26), we obtain

W 1 = GW 0 =
[
g −1
1 0

]
W 0 (28)



174 J. Pal and A. P. Ghorai

where G is the transition matrix and

g = 2 + 2η R2
M∑

m=1

am[cos(krmh) + ξ cos(kzmh) − (ξ + 1)] (29)

The recursion relations of finite difference scheme will be stable if the absolute
values of the eigenvalues of the transition matrix are less than or equal to 1. The roots
of the eigenvalue equation λ2 − gλ+ 1 = 0 will be less than or equal to 1 if |g| ≤ 2.

Since increases of the wave number, the error generally increases, let us consider
the maximum wave number (Nyquist frequency) as

kr = kz = π

h
. (30)

Using Eq. (30) into Eq. (29), we have

g = 2 − 4ηR2(1 + ξ)

M1∑
m=1

a2m−1 (31)

where M1 = int[(M + 1)/2], int is a function to get the integer part of a value.
Therefore, the stability condition is

∣∣∣∣∣2 − 4ηR2(1 + ξ)

M1∑
m=1

a2m−1

∣∣∣∣∣ ≤ 2 (32)

So we get

R ≤
(

η(1 + ξ)

M1∑
m=1

a2m−1

)− 1
2

(33)

As a particular case if we take η = 1, γ = 0 , ξ = 1 (the case of isotropic medium
without initial stress), the stability condition is reduced to

R ≤
(
2

M1∑
m=1

a2m−1

)− 1
2

(34)

which is discussed by Liu and Sen [24, 25].
To calculate and analyze the stability of the finite difference scheme, we define

the stability factor s according to Eq. (34) as follows:
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s =
(

η(1 + ξ)

M1∑
m=1

a2m−1

)− 1
2

(35)

We calculate the variation of s with R and M.

8 Results and Discussions

Based on the dispersion Eqs. (10), (16), and (25), numerical results are provided to
show the propagation characteristics of Love waves in dry sandy layer under initial
stress. The numerical calculations have been done by taking velocity.

v = 3000, η = 1, 1.5, 2, γ = P
2μ = 0.0, 0.2, 0.4, 0.6, t = 0.0005, 0.001, 0.0015

and the propagation angel ϕ = 0, π/16, 2π/16, 3π/16, 4π/16 has been taken.
In all the figures, curves have been plotted as phase velocity vFd

v along vertical
axis against the grid points per wave length h

λ
along horizontal axis. Range of h

λ
is

taken between the value of 0.2 and 0.4.

Fig. 2 Dispersion curves of
love waves when initial stress
γ = 0 and ϕ = π/8, η = 1, v
= 3000, t = 0.001, h = 10
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Fig. 3 Dispersion curves of
love waves when initial stress
γ = 0.2 and ϕ = π/8, η = 1,
v = 3000, t = 0.001, h = 10
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Fig. 4 Dispersion curves of
love waves when initial stress
γ = 0.4 and ϕ = π/8, η = 1,
v = 3000, t = 0.001, h = 10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
v F

D
/v

h/λ

H FD
S FD
2D FD

Fig. 5 Dispersion curves of
love waves when initial stress
γ = 0.6 and ϕ = π/8, η = 1,
v = 3000, t = 0.001, h = 10
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Fig. 6 Dispersion curves of
love waves when sandy
parameter η = 1.5 and ϕ =
π/8, γ = 0.2, v = 3000, t =
0.001, h = 10
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Figures 2, 3, 4, 5, 6, 7, 8, 9, and 10 have been plotted to understand the accuracy
of three methods on the propagation of Love waves velocity in the sandy layer under
initial stress. Comparing these results, it is well understood that staggered-grid (SFD)
methodmore accurate than second-order finite difference (2DFD)method and higher
order finite difference (HFD)method ismore accurate than staggered grid and 2DFD

Fig. 7 Dispersion curves of
love waves when sandy
parameter η = 2 and ϕ =
π/8, γ = 0.2, v = 3000, t =
0.001, h = 10

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

v F
D
/v

h/λ

H FD
S FD
2D FD

Fig. 8 Dispersion curves of
love waves when
propagation angel ϕ = 0 and
η = 1, γ =0.2, v = 3000, t =
0.001, h = 10
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Fig. 9 Dispersion curves of
love waves when
propagation angel ϕ = π/16
and η = 1, γ = 0.2, v =
3000, t = 0.001, h = 10
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Fig. 10 a: Dispersion curves of love waves at γ = 0.0, for M = 6–12 and ϕ = π/8, η = 1, v =
3000, t = 0.001, h = 10. b: Dispersion curves of love waves at γ = 0.2, for M = 6–12 and ϕ =
π/8, η = 1, v = 3000, t = 0.001, h = 10.c: Dispersion curves of love waves at γ = 0.4, for M =
6–12 and ϕ = π/8, η = 1, v = 3000, t = 0.001, h = 10

because dispersion is more in second-order finite difference method than staggered
grid and higher order finite difference.

From Figs. 2, 3, 4 and 5, we observed the dispersion curves of the propagation
of Love waves in sandy layer with respect to different grid points per wavelength at
different value of initial stress parameter γ when other parameters have fixed value.
The value of γ has been taken as 0.0, 0.2, 0.4, and 0.6. Following observations and
effects are obtained under the above-considered values when other parameters are
fixed, as shown in figures:

• Here, it is observed that decrease in initial stress parameter which increases the
phase velocity of Love waves whereas the increase in initial stress parameter leads
to decrease in the phase velocity of Love waves.

• It is also found that dispersion is more for the lower values of wavelength and
becoming less when we increase the wavelength.
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• According the curves dispersion, we have noticed that higher order finite differ-
ence method (HFD) is more accurate than staggered grid and second-order finite
difference method.

Figures 3, 6, and 7 describe the effect of sandy parameter η on the velocity of
Love waves for the various values of η, i.e., 1.0, 1.5, and 2.0. Following results are
noticed:

• The curves reflect that in the presence of fixed value of velocity, initial stress,
time and propagation angel, as the value of sandy parameter η increases, the phase
velocity of Love waves also increases.

• For η = 1, the medium turn out to be perfectly elastic thereby allowing Love
waves to propagate with less velocity as compared to other values of η (i.e., 1.5,
2.0) for which the medium becomes sandy. Hence, it can be concluded that under
the above-considered values of various parameters, the possibility of Love waves
propagation in the layer is least when the upper layer is elastic as compared to the
case when the upper layer is sandy, meaning as the sandy parameter η increases,
the phase velocity of Love wave increases when other parameters are fixed.

Figures 3, 8, and 9 show the 2D dispersion curves of the various methods for dif-
ferent values of propagation angel ϕ, which demonstrates that the accuracy of higher
order is greater than that of the staggered grid and second-order finite difference
method.

Figure 10 demonstrations the 2D dispersion curves of the higher order method
for different space numbers.

From the figure, we can see that

• With the increase of wavelength, the dispersion generally increases, and the accu-
racy decreases.

• With the increase of the space point number, the dispersion decreases, and the
accuracy increases. If we increaseM, the area where δ almost equal to 1, will not
extend significantly.

• From these graphs, we noticed that when we increase initial stress parameter γ ,
phase velocity decreases.

Figure 11 displays the 2D dispersion curves by higher order finite difference
method for different space numbers and for different values of sandy parameter η.
We noticed that when η increases, the phase velocity increases and with the increases
of wavelength, the dispersion generally increases and the accuracy decreases. When
space point number increases the dispersion decreases and the accuracy increases.

Figure 12 shows the 3D dispersion curve of the higher order finite difference,
staggered grid, and second-order finite difference methods. It illustrates the effect
of initial stress on dispersion. For the second-order finite difference method, the
dispersion is more than other two methods.
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Fig. 11 a: Dispersion curves of Love waves at η = 1.5, for M = 6–12 and ϕ = π/8, γ = 0.2, v =
3000, t = 0.001, h = 10. b: Dispersion curves of love waves at η = 2, for M = 6–12 and ϕ = π/8,
γ = 0.2, v = 3000, t = 0.001, h = 10
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Fig. 12 Dispersion curves of love waves when initial stress γ = 0.0–0.6 and ϕ = π/8, η = 1, v =
3000, t = 0.001, h = 10

Studying the dispersion, we can say that higher order finite difference is more
accurate than staggeredgrid and second-order finite differencemethods.Graphs show
that when with the increases in initial stress parameter γ , phase velocity decreases.

Figure 13 shows the 3D dispersion curves for different values of sandy parameter.
When we increase the value of sandy parameter, the dispersion becomes stronger for
staggered grid and second-order finite difference method. For the higher order finite
difference method phase velocity is increases when sandy parameter increases but
changes slightly, around 1.

Figure 14 demonstrates the dispersion curves of Love waves with respect to dif-
ferent grid points per wavelength at different propagation angel ϕ. The dispersion is
lowest at least wavelength and more accurate.

Figure 15 presents the propagation of Love waves at different time steps t in
3D graph by the higher order finite difference, staggered grid, second-order finite
difference methods. There are slight changes in the phase velocity when we increase
the wavelength.

Figure 16 displays that the area for stable recursion decreases with the increase
of M.

Figures 16 and 17 displays the variation of stability factor s for different values
of R and M. It has been shown that the method is always stable as we have chosen
R ≤ 1 and more stable for lower values of R and higher values of M.
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Fig. 16 The variation of stability factor s verses R for different values of M
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Fig. 17 The variation of stability factor S verses M for different values of R

9 Summary

A numerical modeling of propagation of Love waves in dry sandy layer with initial
stress is presented. The equation of motion has been formulated following Biot. The
closed form expression for dispersion has been derived using convenient second-
order finite difference scheme, staggered-grid finite difference scheme and high-
order finite difference scheme. A comparison study using these three methods has
been done where in each case, second-order central difference operator has been
used for temporal derivatives, but second-, fourth-, and higher order spatial deriva-
tives are used for second-order finite difference scheme, staggered-grid finite dif-
ference scheme, and high-order finite difference scheme, respectively. This analysis
is presented in graphs, which show that staggered-grid finite difference scheme is
more accurate than second-order finite difference scheme and high-order finite dif-
ference scheme is more accurate than second-order finite difference scheme and
staggered-grid finite difference scheme. In each case, we have noticed that initial
stress and sandy parameter have significant effect on the propagation of Love waves.
When initial stress increases phase velocity decreases whereas when sandy parame-
ter increases, the phase velocity increases also. Error analysis and stability analysis
have been done following conventional eigenvalue method. The variation of stability
factor has been derived for Rand M (for different order finite difference schemes).
It has been shown that the method is always stable as we have considered R ≤ 1. It
is also shown graphically that it is more stable for lower values of R and for higher
order finite difference schemes.
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Traveling Wave Solutions of Some
Nonlinear Physical Models by Using
(G

′
G )-expansion Method

Sister Nivedita Swain and Jasvinder Singh Virdi

Abstract (G
′

G )-expansionmethod is exercised to find out the wave solutions of some
nonlinear evolution equations such as Chafee–Infante equation (CI), Gardner equa-
tion (GE), and Regularized long-wave equation (RLWE). This technique is straight
forward and gives more new general solutions and various types of periodic and
wave solutions, which were derived. We choose this method as it is straight, brief,
elementary and compelling, and in agreement with many other nonlinear evolution
equations (NLEEs).

Keywords Chafee–Infante (CI) equation · Gardner equation (GE) · Regularized
long-wave equation (RLWE) · Soliton

1 Introduction

Nonlinear evolution equations (NLEEs) are widely used in a variety of fields such as
condensed matter physics, chemical kinetics, nonlinear optics, fluid mechanics, and
population biology. Searching for explicit solutions of nonlinear evolution equations
by using distinct methods is the prime intent for many researchers in the past. Many
compelling methods used in past to construct exact solutions of NLEEs have been
established such as the ansatz method [1] and topological solitons by Biswas, the
truncated painleve expansion [2], the inverse scattering transform [3], the extended
tanh-function method [4], the F-expansion method [5], the sine–cosine method [6],
the Jacobi elliptic function expansion [7], the homogenous balance method [8], the
sub-ODE method [9], the rank analysis method [10], the exp-function method [11],
and so on, but above methods are not in unified character that can be used to deal
with all types of NLEEs.

In last three decades, Wang et al. [12, 13], has introduced the (G′
G )-method for a

predictable treatment of the NLEEs. In the present work, we shall use (G′
G )-method
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to obtain the exact solutions for some of the NLEEs as mentioned. Recently, it has
been used by many researchers, as example, Ebadi and Biswas (2010) applied this
to method diffusion equations [14]. Zayed et al. (2015), by using this method, has
unraveled the various expressions of NLEEs [15]. Using this method, Naher et al.
(2011), unfold the higher order Coudrey–Dodd–Gibbon equation [16]. Ozis et al
(2010) has explored the Kawahara-type equations, Alam et al. (2015) used the nobel
(G′
G ) method for gaining exact solutions of the evolutionary (1 + 1)- Kdv-mKdv

equation, and nonlinear coupled Higg’s field equation [17]. In this work, we have
discussed the following NLEEs. Consider the Chafee–Infante (CI) equation [18]

ut − uxx + λ(u3 − u) = 0

which has been used in many physical phenomena. The Gardner equation [19] is
given by

ut = uxxx + 6(u + u2)ux

which is a nonlinear evolution equation popular in hydrocarbon exploration. The
Regularized long-wave equation (RLWE) is given by

ut + ux + uux − uttx = 0.

which has been discussed in plasma waves [20].

2 The (G
′

G )-expansion Method

Here in this section, we shortly highlight the (G
′

G )-method. Let a NLEE is of the form

P(u, ut, ux , utt , uxt, uxt , . . .) = 0, (1)

where P is polynomial in u = u(x, t).

Step 1: For solutions of Eq. (1) fix up new wave variable

ξ = (x − ct), (2)

such that

u(x, t) = u(ξ). (3)

This leads to

∂

∂t
= −c

∂

∂ξ
,

∂2

∂t2
= c2

∂2

∂ξ2
,

∂

∂x
= ∂

∂ξ
,

∂2

∂x2
= ∂2

∂ξ2
. (4)
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and so on. The Eq. (4) will make to Eq. (1) to read as

P(u, uξ, uξξ, uξξξ, . . .) = 0, (5)

Now integrate above (5) and put all the constants equal zero.

Step 2: The solution of Eq. (6) can be taken by a series expansion in (G
′

G ), i.e.,

u(ξ) = αm(
G ′

G
)m + αm−1(

G ′

G
)m−1 + · · · , (6)

where G = G(ξ) holds

G ′′ + λG ′ + μG = 0. (7)

Equation (7) possess the following general soluions:

case-1
√

λ2 − 4μ > 0,

u(ξ) =
(√

λ2 − 4μ

2

)⎡

⎣Asinh(
√

λ2−4μ
2 )ξ + Bcosh(

√
λ2−4μ
2 )ξ

Acosh(
√

λ2−4μ
2 )ξ + Bsinh(

√
λ2−4μ
2 )ξ

⎤

⎦ (8)

case-2
√

λ2 − 4μ < 0,

u(ξ) =
(√

4μ − λ2

2

)⎡

⎣−Asinh(
√

4μ−λ2

2 )ξ + Bcosh(
√

4μ−λ2

2 )ξ

Acosh(
√

4μ−λ2

2 )ξ + Bsinh(
√

4μ−λ2

2 )ξ

⎤

⎦ , (9)

case-3
√

λ2 − 4μ = 0,

u(ξ) =
(

B

A + Bξ

)
. (10)

where αm , αm−1, …, α0, λ, and μ are constants and αm �= 0.

Step 3: Replacing Eq. (6) into Eq. (5) and using Eq. (7), rationalizing all terms with
the same order of (G

′
G ) together, and then equating each coefficient of the resulting

polynomial to zero yields for αm , αm−1, …, α0, c, λ, and μ.

Step 4: Substituting αm , αm−1, …, α0 and c and the general solutions of (7) into (6),
we obtain more solutions to NLEEs (1).
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3 Chafee–Infante (CI) Equation

Chafee–Infante (CI) equation is introduced by Nathaniel Chafee and Etttore Infante.
Now consider the Chafee–Infante Equation as cited in [18],

ut − uxx + λ(u3 − u) = 0. (11)

Following the recipe of Sect. 2, generating the reduced nonlinear ordinary differential
equation (NLODE)

cu′ − u′′ + λ(u3 − u) = 0. (12)

Finding balance between u′′ and u3 in Eq. (12), we get m = 1.
which leads assumptions for solution as (12) to

u(ξ) = α1

(
G ′

G

)
+ α0, α1 �= 0, (13)

which provides further

u′(ξ) = −α1

(
G ′

G

)2

− λα1

(
G ′

G

)
+ α1μ. (14)

u′′(ξ) = 2α1

(
G ′

G

)3

+ 3α1λ

(
G ′

G

)2

+ (2α1μ + α1λ
2)

(
G ′

G

)
+ α1λμ. (15)

u3(ξ) = α3
1

(
G ′

G

)3

+ 3α2
1α0

(
G ′

G

)2

+ 3α1α
2
0

(
G ′

G

)
+ α3

0. (16)

By substituting Eqs. (14)–(16) in Eq. (12) and rationalizing all terms power of G ′
G ,

Eq. (12) is transformed into another polynomial in G ′
G . Rationalizing coefficient of

this polynomial to zero yields equations for α0, α1, λ, μ, and c as

− 2α1 + λα3
1 = 0. (17)

− cα1 − 3α1λ + 3λα2
1α0 = 0. (18)

− cλα1 − (2α1μ + α1λ
2) + 3λα1α

2
0 − α1λ = 0. (19)

− cα1μ + α3
0λ = 0. (20)

Finding the solutions of above leads to
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α0 =
√

(
2

λ
)

[
c + 3λ

6

]
,α1 =

√

(
2

λ
). (21)

By using Eq. (21) in Eq. (13), we get the following solutions.

u(ξ) =
√

(
2

λ
)(
G ′

G
) +

√

(
2

λ
)

[
c + 3λ

6

]
, (22)

In Sect. 2, we get the value of (G
′

G ) in three different conditions. By using Eq. (8) in
Eq. (22), we get

1. Case-1,

u(ξ) =
√(

2

λ

)
⎡

⎢⎢
⎣

(√
λ2 − 4μ

2

) Asinh

(√
λ2−4μ
2

)
ξ + Bcosh

(√
λ2−4μ
2

)
ξ

Acosh

(√
λ2−4μ
2

)
ξ + Bsinh

(√
λ2−4μ
2

)
ξ

+
(
c + 3λ

6

)
⎤

⎥⎥
⎦ ,

(23)

2. Case-2,

u(ξ) =
√(

2

λ

)
⎡

⎢⎢
⎣

(√
4μ − λ2

2

) −Asinh

(√
4μ−λ2

2

)
ξ + Bcosh

(√
4μ−λ2

2

)
ξ

Acosh

(√
4μ−λ2

2

)
ξ + Bsinh

(√
4μ−λ2

2

)
ξ

+
(
c + 3λ

6

)
⎤

⎥⎥
⎦ ,

(24)

3. Case-3,

u(ξ) =
√(

2

λ

) [(
B

A + Bξ

)
+

(
c + 3λ

6

)]
, (25)

4 Gardner Equation

The Gardner equation is a NLEE which is very popular in hydrocarbon exploration
[19] given by (Figs. 1, 2, 3)

ut = uxxx + 6(u + u2)ux , (26)

with the argument ξ = x − ct , it is reduced to NLODE

u′′′ + (6u + 6u2 − 1)u′ = 0, (27)



192 S. N. Swain and J. S. Virdi

Fig. 1 When λ2 − 4μ > 0

Fig. 2 When λ2 − 4μ < 0

Let the solution of Eq. (27) be a polynomial in (G
′

G ) as given in Eq. (6). By making
the homogenous u′′′ and u2 in Eq. (27), leads to m = 1 which reduces the Eq. (6) in
the form

u(ξ) = α1

(
G ′

G

)
+ α0, α1 �= 0, (28)

Which immediately provides

u2 = α2
1

(
G ′

G

)2

+ 2α1α0

(
G ′

G

)
+ α2

0, (29)
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Fig. 3 When λ2 − 4μ = 0

u′ = −λα1

(
G ′

G

)
− α1μ − α1

(
G ′

G

)2

, (30)

u′′′ = −6α1

(
G ′

G

)4

− 12λα1

(
G ′

G

)3

+ (−8μα1 − 6α1λ
2
) (

G ′

G

)2

+ (−8α1μλ − αλ3
) (

G ′

G

)
− 2α1μ

2 − αλ2μ, (31)

substituting Eqs. (29)–(31) in Eq. (27) and rationalizing terms Eq. (27) yields for α0,
α1, λ, μ, and c as

− 6α3
1 − 6α1 = 0, (32)

− 12λα1 − 6α2
1 − 6λα3

1 − 2α2
1α0 = 0, (33)

− 8μα1 − 6α1λ
2 + α1 − 6λα2

1 − 6α0α1 − 6α3
1μ − 12α2

1α0λ − 6α2
0α1 = 0, (34)

− 8α1μλ − αλ3 + αλ1 − 6α2
1μ − λα0α1 − 12α2

1α0μ − 6α2
0λα1 = 0, (35)
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− 2α1μ
2 − αλ2μ + α1μ − α1α0μ − α1α

2
0μ = 0, (36)

The above algebraic equations yield

α1 = ±i,α0 = 3(λi − 1),α0 = −3(λi + 1), (37)

By using Eq. (36) in Eq. (28), we get

u1(ξ) = i

(
G′
G

)
+ 3(λi − 1), (38)

and

u2(ξ) = i

(
G′
G

)
− 3(λi + 1), (39)

1. When case-1,

u1(ξ) = i

(√
λ2 − 4μ

2

)
⎡

⎢⎢
⎣

Asinh

(√
λ2−4μ
2

)
ξ + Bcosh

(√
λ2−4μ
2

)
ξ

Acosh

(√
λ2−4μ
2

)
ξ + Bsinh

(√
λ2−4μ
2

)
ξ

⎤

⎥⎥
⎦ + 3(λi − 1),

(40)

and

u2(ξ) = i

(√
λ2 − 4μ

2

)
⎡

⎢⎢
⎣

Asinh

(√
λ2−4μ
2

)
ξ + Bcosh

(√
λ2−4μ
2

)
ξ

Acosh

(√
λ2−4μ
2

)
ξ + Bsinh

(√
λ2−4μ
2

)
ξ

⎤

⎥⎥
⎦ − 3(λi + 1),

(41)

2. Case-2,

u1(ξ) = i

(√
4μ − λ2

2

)
⎡

⎢⎢
⎣

−Asinh

(√
4μ−λ2

2

)
ξ + Bcosh

(√
4μ−λ2

2

)
ξ

Acosh

(√
4μ−λ2

2

)
ξ + Bsinh

(√
4μ−λ2

2

)
ξ

⎤

⎥⎥
⎦ + 3(λi − 1),

(42)
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and

u2(ξ) = i

(√
4μ − λ2

2

)
⎡

⎢⎢
⎣

−Asinh

(√
4μ−λ2

2

)
ξ + Bcosh

(√
4μ−λ2

2

)
ξ

Acosh

(√
4μ−λ2

2

)
ξ + Bsinh

(√
4μ−λ2

2

)
ξ

⎤

⎥⎥
⎦ − 3(λi + 1),

(43)

3. Case-3,

u1(ξ) = i

(
B

A + Bξ

)
+ 3(λi − 1), (44)

and

u2(ξ) = i

(
B

A + Bξ

)
− 3(λi + 1), (45)

5 Regularized Long-Wave Equation (RLWE)

Regularized long-wave equation is another illustration of nonlinear dispersive waves
equation. RLWE is shown to have solitary wave solutions and to govern a important
physical phenomena of shallow-water waves and plasma waves (Figs. 4, 5, 6). The

Fig. 4 When λ2 − 4μ > 0
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Fig. 5 When λ2 − 4μ < 0

Fig. 6 When λ2 − 4μ = 0

equation is given by

ut + ux + uux − uttx = 0 (46)

Following the recipe of Sect. 2, using ξ = x − ct , reduced NLODE

cu′′ + u2

2
+ u(1 − c) = 0 (47)

By balancing u′′ and u2 in Eq. (47), we get m = 2 which reduces Eq. (6) in the form
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u(ξ) = α2

(
G ′

G

)2

+ α1

(
G ′

G

)
+ α0 (48)

which immediately provides

u2 = α2
2

(
G ′

G

)4

+ 2α2α1

(
G ′

G

)3

+ (
α2
1 + 2α2α0

) (
G ′

G

)2

+ 2α1α0

(
G ′

G

)
+ α2

0

(49)

u′′(ξ) = 6α2

(
G′
G

)4

+ (2α1 + 10α2λ)

(
G′
G

)3

+(8α2μ + 3α1λ + 4α2λ
2)

(
G′
G

)2

+ (6α2λμ + 2α1μ + αλ2)

(
G′
G

)
+ 2α2μ

2 + α1λμ

(50)

By substituting Eqs. (49)–(50) in Eq. (47), we get a set of equations for α0, α1, α2,
λ, μ, and c as

6cα2 + α2
2

2
= 0 (51)

c(2α1 + 10α2λ) + α2α1 = 0 (52)

c(8α2μ + 3α1λ + 4α2λ
2) + 1

2
(α2

1 + 2α2α0) + (1 − c)α2 = 0 (53)

α1α0 + c(6α2λμ + 2α1μ + αλ2) + (1 − c)α1 = 0 (54)

(1 − c)α0 + α2
0

2
+ 2α2cμ

2 + α1λμc = 0 (55)

On solving the equations, we get

α2 = −12c, α1 = 12λ, α0 = 6c2μ − 2cμ − cαλ

12
(56)

By using Eq. (56) in Eq. (48), we get

u(ξ) = −12c

(
G ′

G

)2

+ 12λ

(
G ′

G

)
+ 6c2μ − 2cμ − cαλ

12
(57)

By using Eqs. (8)–(10), then the solutions are given by (Figs. 7, 8, 9)
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Fig. 7 When λ2 − 4μ > 0

Fig. 8 When λ2 − 4μ < 0

Fig. 9 When λ2 − 4μ = 0
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1. When case-1,

u1(ξ) = −3c(λ2 − 4μ)

⎡

⎢⎢
⎣

Asinh

(√
λ2−4μ
2

)
ξ + Bcosh

(√
λ2−4μ
2

)
ξ

Acosh

(√
λ2−4μ
2

)
ξ + Bsinh

(√
λ2−4μ
2

)
ξ

⎤

⎥⎥
⎦

2

+6λ
(√

λ2 − 4μ
)

⎡

⎢⎢
⎣

Asinh

(√
λ2−4μ
2

)
ξ + Bcosh

(√
λ2−4μ
2

)
ξ

Acosh

(√
λ2−4μ
2

)
ξ + Bsinh

(√
λ2−4μ
2

)
ξ

⎤

⎥⎥
⎦ + 6c2μ − 2cμ − cαλ

12

(58)

2. Case-2,

u2(ξ) = −3c(4μ − λ2)

⎡

⎢⎢
⎣

−Asinh

(√
4μ−λ2

2

)
ξ + Bcosh

(√
4μ−λ2

2

)
ξ

Acosh

(√
4μ−λ2

2

)
ξ + Bsinh

(√
4μ−λ2

2

)
ξ

⎤

⎥⎥
⎦

2

+6λ(4μ − λ2)

⎡

⎢⎢
⎣

−Asinh

(√
4μ−λ2

2

)
ξ + Bcosh

(√
4μ−λ2

2

)
ξ

Acosh

(√
4μ−λ2

2

)
ξ + Bsinh

(√
4μ−λ2

2

)
ξ

⎤

⎥⎥
⎦ + 6c2μ − 2cμ − cαλ

12
,

3. Case-3,

u3(ξ) = −12c

(
B

A + Bξ

)2

+ 12λ

(
B

A + Bξ

)
+ 6c2μ − 2cμ − cαλ

12
, (59)

6 Conclusion

From this, we conclude that a new (G′
G )-formalism is concise and practically well-

studied for use in the NLEEs. It is noteworthy to observe that our solutions are more
fundamental and are with arbitrary constants. These high-handed constants imply
that these solutions have rich local structures. We hope that these equations will be
practical in the future in engineering applications and advanced sciences.
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Control of Inherent Vibration of Flexible
Robotic Systems and Associated
Dynamics

Debanik Roy

Abstract The domain of Flexible Robotic Systems (FRS) is one of the unique
ensembles of robotics research that deals with various modes of vibrations, inherent
in the system. The vibration, so referred, is completely built-in type and thus it is
designed invariant. By nature, the vibration in FRS is self-propagating and does not
follow analytical modeling and rule-base in all applications. The asynchronous data
fusion, emanating out of FRS is a challenging research paradigm till date, primarily
due to the inherent characteristics in quantifying the output response of the system.
Real-time assessment of vibration signature in FRS is a prerequisite for establishing
a reliable control system for any real-life application. The paper focuses on a new
approach ofmodeling this inherent vibration of the flexible robotic system and brings
out its effect on the associated dynamics of the FRS. Besides, the paper dwells on
modeling and theoretical analysis for a novel rheological rule-base, centering on the
zone-based relative dependency of the finite numbered sensor units in combating the
inherent vibration in the flexible robot. Besides, a new proposition is developed for
assessing the decision threshold band, signaling the activation of the FRS-gripper,
using a stochastic model.

Keywords Flexible robot · Vibration · Rheology · Data fusion · Sensor ·
Hypothesis · Algorithm

1 Introduction

Characterization and dynamic analysis of Flexible Robotic Systems (FRS) is a chal-
lenging arena of today’s robotics research as the system is gaining foothold for a
variety of applications in social and medical diagnosis. Although FRS is having an
advantage of very low tare weight which is quite befitting for a large number of appli-
cations, yet the major bottleneck is its inherent vibration. This inherent vibration is a
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totally built-in type, structure independent and gets manifested in two ways, namely,
modal frequency and eigenvalue. Several designs of FRS have been attempted by the
researchers in past decade in order to alleviate this vibration but most of those trials
have been unsuccessful. The problem gets even complicated when we attempt for
multi-link design of the FRS, wherein various kinds of coupled effect and nonlinear-
ity crave in. It has been also observed that vibration in FRS is not time-dependent
and the duration and periodicity of it cannot be correlated with the task space of the
robotic system. Moreover, by nature, this vibration is self-propagating and it gets
induced to the successive member of the FRS till the end-link as well as the end-
effector/gripper. At times, vibration becomes self-generating and random too. Due
to all these characteristics, it is very difficult to obtain a generic analytical model for
the vibration in FRS. And, since modeling cannot be attempted in a generic man-
ner, usual rule-bases for adopting control algorithm for the end-applications are also
unviable.

The other issue, pertaining to analyzing this self-induced built-in vibration in FRS,
is the modality of fusing the real-time data on vibration (amplitude and frequency).
Since we need to evolve with a robust system for reducing this vibration and effect
thereon, there is a need to design a system for asynchronous data fusion. Unlike the
traditional approaches of sensory data fusion, FRS-based data fusion has another
dimension for the analysis, viz., time-period, thereby signifying real-time operation
of the FRS. In totality, this asynchronous data fusion ensemble has evolved as a
challenging open research paradigm in recent past. Proper quantification of the output
response, i.e., vibration signature is one of the challenges in executing the FRS. The
problem gets even critical whenwe need to deal withmultiple links of the FRS and/or
limited number of elemental sensor units, in contrast to traditional theories dealing
with robust structural dynamics of Industrial Robotic Systems (IRS).

In all practical applications, the vibration signature in FRS gets assessed through
multiple force sensors, spread over the links, and joints of the FRS in real time.
The sensory data, so generated, is fed to a fusion model and the outcome becomes
instrumental in establishing a reliable control system for the FRS. It is imperative
that relatively better vibration signature can be obtained by agglomerating identical
sensor units.

In this paper, we will focus on a new approach of modeling this inherent vibra-
tion of the FRS and discuss its effect on the associated dynamics of the flexible
robotic system. In fact, vibration models used hitherto in FRS have been found to
be somewhat inappropriate for real-time monitoring and control of the payload, i.e.,
the object to be gripped at the end-of-arm tooling. Besides, the dynamics effect due
to link-wise (zonal) distribution of the sensors in the FRS was largely unattended.

In answering those lacunas, the present paper dwells on the modeling, algorithm,
and theoretical analysis of a novel rheological rule-base, centering on the zone-based
relative dependency of the finite numbered sensor units in combating the inherent
vibration in the flexible robot. Besides, a new proposition is developed for assessing
the decision threshold band, signaling the activation of the FRS-gripper, using a
stochastic model.
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Control issues of FRS have gained research attention over the last few decades,
which deal with novel techniques of control of system dynamics in real time [1].
While perturbation method was tried for fine-tuning FRS-controller [2], direct real-
time feedback from strain gauges was experimented too [3]. It is true that a robust
dynamic model becomes very effective in understanding the behavior of FRS in real
time and the same becomes crucial for a multi-link FRS [4, 5]. Feliu et al. attempted
the control issue of a three degrees-of-freedomFRS using themethodology of inverse
dynamics in contrast to strain gauge-based control [6, 7]. The fuzzy learning-based
approach for control of FRSwas also reported byMoudgal et al. [8]. Specific metrics
related to reduction of system vibration of a robotic gadget were attributed by Singer
and Seering [9]. Various techniques for vibration attenuation and control in FRS
have been reported hitherto, such as sliding mode theory [10], adaptive resonant
control [11], online frequency and damping estimation [12], and integral resonant
control [13]. Dynamicmodel and simulation of FRS based on spring and rigid bodies
was established too [14]. However, modeling of the multi-link FRS using compliant
subassemblies, such as spring-dashpot-damper, remains an open research domain till
date.

It is to be noted that in experimental mode of modeling and control of in situ
vibration of FRS needs a strong encapsulation of data structure, data assimilation
and finally, statistical analysis. Attainment of optimality in data fusion and deci-
sion fusion are two important facets in this context [15, 16]. Likewise, theories of
Bayesian detection [17] and Adaptive decision [18] have been reported. Stochastic
modeling and novel hypothesis testing-based decision theory have been delineated
in [19]. Various application metrics of the developed hypothesis testing-based deci-
sion thresholding have been reported, viz., dissimilar sensor-cells in robotic gripper
sensor [20], robotic slip sensory grid [21], and field robotic sensory system [22, 23].
Based on the earlier attainments, we will propose here a new fusion rule-base for the
real-time analysis of vibration data of FRS.

The paper has been organized into seven sections. An overview of the firmware
of the multi-degrees-of-freedom FRS is presented in the next section. Details on
the possible sources of vibration in the flexible robotic system and characteristics
of such vibration have been discussed in Sect. 3. Issues related to modeling on
the real-time damping and dynamics are attributed in Sect. 4. Paradigms on data
analysis with respect to dynamic control and stability of the FRS are discussed in
Sect. 5. Simulation results for evaluating the vibration characteristics of the flexible
robot, along with its hardware (prototype), are reported in Sect. 6 and finally, Sect. 7
concludes the paper.
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2 Firmware of Multiple Degrees-of-Freedom Flexible
Robotic Systems

Although flexible robots have become favorable choice in several new applications
because of slender design, lightweight, small size envelope, and increased reacha-
bility in the workspace, yet the major bottleneck of the system lies with the effective
control of inherent vibration. A widely accepted engineering way of evaluating this
vibration is to detect and measure the deflection of the FRS-member(s) in real time.
The formulation, modeling, and instrumentation for such deflection measurement
are pre-characterized and can be adopted with the help of miniature strain gauges
and flexi-force sensors.

One important design aspect of small-sized FRS is to augment drive mechanisms
at the base of the robot, in order to reduce the tare weight of the link subassemblies.
Although it is possible to integrate miniature servomotor(s) at the respective joint-
link interface of the FRS, our experience says that such FRS will prone to have
unwarranted drooping from time to time during its actuation, which will degenerate
in additional trembling of the FRS-ensemble. Hence, even though in situ motor-
driven (direct drive) FRS is compact in hardware, it is not the ideal design choice.
In order to alleviate this problem, the optimal design approach is to use flexible
shaft for the joint actuation. Flexible shafts transmit rotary motion over, under, and
around “obstacles”. They have higher efficiencies and are more economical than
gears, universal joints, belts, and pulleys. By this modus operandi, all drive motors
will be placed at the base of the FRS and respective joint will be actuated through
flexible shaft, connected between themotor-output-shaft and the joint-shaft. Figure 1
schematically illustrates the layout of a serial-chain two-link FRS, fitted with flexible
shafts. The tapered cross section of the links has been conceived to have less weight
and better slenderness ratio. The FRS is having two links and two revolute type joints
with no joint at the wrist. While the motor tuple {M1 and M2} is located at the base
of the FRS, the motor, M3 is responsible for the operation of the micro-gripper.

Fig. 1 Layout of the serial-chain flexible manipulator with flexible shaft mechanism
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The drive for joint 1 is direct, i.e. coupled straight away with M1. The drive for
joint 2 is through the flexible shaft. The driver end (left hand side) of the flexible
shaft is the shaft of M2 and the transmission is carried over to the driven end of the
shaft (right-hand side) and thereafter to the joint. The system is to be mounted on
a customized mechanism beneath the base, namely, the part, labeled as “attachment
for base” in Fig. 1. This is a sort of prismatic mechanism, positioned on a tripod,
having linear movements along vertical Z-axis. Figure 2 illustrates a schematic view
of the mechanism.

A standard flexible shaft, as available commercially, is shown in Fig. 3a. The
major design estimation is its Length, i.e., “L” as per the sketch. The overall length
must be determined by closely approximating all bends and offsets. Also, the length
of the flexible shaft should be measured along the centerline of the shaft. In other
words, in case of flexible robot, “L” should be selected considering enough clearance
apart from the normal distance of separation between Joint 1 and Joint 2. The bend
radius (R) is an important dimension of a flexible shaft mechanism, besides other
two dimensions; namely, “X” and “Y” (refer Fig. 3b for details). While “X” is to be
selected based on the total span of transfer of drive from joint to link of the FRS;
“Y” will be instrumental in combating torsion of the flexible shaft and link thereof.

The firmware of serial-chain FRS with three links and two flexible shafts is very
crucial from the angle of system dynamics and control of vibration. Figure 4 presents

Fig. 2 Schematics of the
prismatic mechanism at
FRS-base

Fig. 3 a. Representative
view of a flexible shaft. b.
Representative critical
design of a flexible shaft
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Fig. 4 Schematic of the three-link serial-chain planar type flexible robot with two flexible shafts

the overall schematic of the design, wherein motor for the third joint (M3) will also
be at the base, along with M1 and M2. The motor responsible for the actuation of
the gripper is indexed as M4 here. The final prototype is to be made in modular
fashion ideally, so that links can be detached easily as and when required in order to
smoothen the dynamics in real time.

With reference to Figs. 1 and 4, it is to be noted that actual dimensions of the
tapered links are in mm range and much smaller than the visual impressions of
the sizes. The revolute joints need to be constructed as simple bearing-supported pin
joints, with an extended flange at the bottom. Figure 5 presents the detailed schematic
of the revolute joint to be fabricated.

Legends: A: Pin; B: Micro-Bearing (Upper Rung); C: Micro-Bearing (Lower Rung); D: 
Joint Housing; E: Adapter Plate; F: Fixing Screws; G: Extension Plate

Fig. 5 Schematic of the revolute joint assembly of FRS
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3 Sources of Vibration in Flexible Robotic System and Its
Characterization

It is to be noted that inherent vibration of the flexible robot is directly propor-
tional to the number of degrees-of-freedom of the FRS. Accordingly, combating
such vibration, in coupled form in most of the time, becomes tricky and becomes
model-dependent with input from multisensory data fusion metrics. The sources of
this built-in vibration in FRS can be categorized in two groups, viz., (a) vibration:
based on location of the members and (b) vibration: based on type of members.
Now, locationwise, sources of vibration in FRS are the following: (a) at the end-
effector; (b) at the distal link; (c) at the rotary type joints, and (d) at the flexible
shafts. The sources of vibration as per the type of FRS-members are the following:
a] truss-based; (b) beam-based; (c) cantilever-based, and d] flexure-based. Vibration
signature from the respective FRS-member, in general, will be ascertained through
an ensemble of base-matrix (for housing sensing elements) and the frame of the
member. For example, for truss-type members, it is the composite deflection that
matters and the vibration needs to be evaluated from the interlinked structure of
the particular member, as and when those are strained within elastic limit. In case
of beam-based FRS-member, the FRS-member will have microbeam and the force-
sensing mechanism will be based on beam deflection principle. Now a particular
FRS-member may have multiple beams embedded in it, each having its own char-
acterization. The placement of those beams inside the FRS-member is also another
technological challenge. Besides, layout of those “beams” should also be prefixed. A
standard way of placement of beam-members in FRS is matrix layout; either rectan-
gular or circular. Nonetheless shapes other than these two can also be thought of for
layout design, e.g. elliptical or triangular. In case of cantilever-based FRS-member,
FRS will have one or more cantilever member, having relatively larger deflection
potential at the “free” end. Cantilever-type FRS-members do possess easy potential
for affixing sensing element(s) as well as better relief at the non-fixed end. So far as
flexure-based design of FRS-member is concerned, the member will have multiple
flexible thin sub-members, which can be parked over the same supporting frame.
Flexure-members will have base sensing member in an integrated fashion. Flexure-
members must necessarily be designed as well as fabricated as thin and lightweight
as possible. Thus, selection ofmaterial andmanufacturingmethod are very important
for flexure-based design of FRS-members. The customized design of flexure-based
members should have thin section, as best as possible.

Let us take a close look at the schematics of the vibration classification in FRS,
based on the member types. Figure 6a, b present the possible variations of truss-
based and beam-based link design. Locations of the strain gauges are depicted as “=”
legend in Fig. 6 and afterward. Likewise, five possible variants of the cantilever-based
link design are illustrated schematically in Fig. 7 comprising straight, step-straight,
curvilinear, curve-straight, and arch type. By virtue of the cantilever effect, strain
gauges at the respective pickup locations are more sensitive and thus effective for
the FRS. In flexure-based link design, we have the combination of beam bending
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Fig. 6 Schematics of
a Truss-based and
b Beam-based link design of
FRS (straight, circular and
elliptical)

Fig. 7 Schematics of
cantilever-based link design
of FRS

as well as effect of cantilever together. Figure 8 schematically shows three feasible
variations of this design.

With reference to Fig. 8, while scheme (a) is just an extension of the normal
beam-based design, wherein the extended portion (BC) is responsible for creating the
flexure Likewise, for scheme (b), we have blind-type flexure member (CD), bounded
by horizontal as well as vertical beam/column members, like AB, BC, DE, and EF.
Of course, it is to be noted that there will be characteristic differences between “open-
ended” flexure member (like BC of scheme-a) and “blind-type” flexure member (like
CD of scheme-b). Deflection of strain gauges for flexure member is interesting to be
noted too. The design scheme (c) is a combination of circular beam member (BCD),
open-ended flexure member (DE), and a vertical column member (AB).
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Fig. 8 Schematics of flexure-based link design of FRS

Fig. 9 Schematics of strain gauge-based vibration signature

Strain gauges and flexi-force sensors, mounted on each link of the flexible manip-
ulator (as per design: 5 strain gauges and 2 flexi-force sensors per link) will act as
prime source of detection of the vibration in real time, backed up by indigenous
electronic circuitry hardware, as depicted in Fig. 9.

4 Modeling of the Damping and Dynamics of Flexible
Robotic System

The multidimensionality of the in situ vibration of the FRS, as detailed out in the
last section, needs subtlemathematicalmodeling. The spring-damper-dashpot design
scheme is the most optimal tool for the vibration analysis of FRS as it has inherent
uncertainties and real-time vibration control issues. As a matter of fact, this in situ
vibration-based method has become prudent in design synthesis for FRS due to its
in-built nature of the range of dimension of the parameters. Before detailing out the
modeling scheme, we need to take a closer look at the characteristics of a FRS-
member when subjected to in situ vibration (both inherent as well as external). This
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phenomenon has been simulated through the actuation of various spring-elements in
unison, which are attached to the FRS-member.

The FRS-body will have member(s) mounted on mechanical springs, in order to
realize spring-dashpot-based modeling of the FRS-member. Thus, those as-modeled
spring-mounted members will act as in situ vibration source, which will be helpful
in assessing the overall deflection of the system.

The overall FRS architecture will have decent deflection scheme: the first is the
inherent deflection/vibration of the mounting spring and the second one is the deflec-
tion of the links and joints. This conjugate deflection paradigm is the crux of the
controller design of the FRS. It is to be noted that design of the spring-elements is a
vital aspect of the design ensemble. There can be various designmodels of the spring-
elements/members, which will be mounted/fixed directly over the link of the FRS in
themodel.Another interesting feature of this spring-mountedmodeling structure is to
have couple of “branches” (just like “tree branches”) of the different spring-elements
and/or spring-dashpot system. The later design model, viz., spring vibration damper
(dashpot) system will be self-compensated and the resultant vibration, generated
thereof, will be the optimal amount required for stimulating the FRS-ensemble.

The disposition of a specific FRS-member under in situ vibration can have several
incarnations so far as damping model is concerned. Some of the feasible design
ideations of this damping model are illustrated in Fig. 10. As can be observed from
Fig. 10, two types are emerging, viz., (a) Type-I: horizontal member: spring mounted
(Design Schemes:’A’, ‘D’, ‘E’, ‘F’, ’G’, ‘H’, ‘I’) and (b) Type-II: vertical member:
spring mounted (Design schemes: ‘B’, ‘C’, ‘J’).

It is to be noted here that design option for vertical/column members are limited,
as the layout of the springs will not undergo major variations. On the other hand,
horizontal members will have number of variations possible, owing to the layout
of the spring member(s). It may also be observed that the fundamental aspect of

Fig. 10 Schematics of feasible modeling layouts of in situ vibration of FRS-member
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Fig. 11 Schematics of functionally bonded spring-elements under in situ vibration of FRS-member

the disposition of the spring metric (for horizontal members) is essentially multi-
spring type, which is the crux of the spanning layouts. Multiple springs do give
rise to options for enhanced compliance and with various permutations of spring-
layout, modeling of the flexibility of the overall FRS-structure gets boosted up.
Thus, both Type-I and Type-II model variants of vibration design play a big role will
in characterizing the overall design ensemble of the FRS. One interesting feature
of the spring-layouts shown in Fig. 10 is the individuality of the spring-elements,
irrespective of the members (horizontal or vertical) thereof.

We will now deal with another layout, wherein disposition of the spring-elements
can be functionally bonded and/or crisscrossed with fellow spring-element(s). Criss-
crossing layout is a unique call of design, wherein two spring-members are “cross-
ing” each other to form an ensemble. In other design layouts (refer Fig. 10) we have
incorporated spring-members only in one direction, i.e., the spring rheology (ten-
sion and/or compression) was based on unidirectional arrangement. In fact, this sort
of layout is entrusted to provide more subtle input to characterization of real-time
damping. Figure 11 illustrates the schematic of the spring-layouts, using horizontal
as well as vertical member. Let us now investigate other two types of design layouts
under in situ vibration-based layout, viz., “circular-member: spring-mounted” and
“elliptical member: spring-mounted”. Elliptical members will have similar design
layouts as of circular type. Possible design variants with circular and elliptical mem-
bers are schematically shown in Fig. 12a, b (a1 and a2). Most of the features of
circular-member and spring-element types (i.e. angle 2θ) remain same for elliptical
members too.

The spring-damper-dashpot design theme is the most crucial aspect of flexible
robotic systems due to its inherent uncertainty and real-time vibration control issues.
The design model of this in situ vibration system in FRS has been schematically
shown in Fig. 13.

As evident from Fig. 13, “A” and “D” have mutual sharing of kinetics, while the
effect of that will be arrested by “B” and “C”. Since this design is related to forcing
function of spring system or spring-mass-damper system, we have enough room to
imbibe the concept of interval mathematics to solve the force displacement tuple. It
is true that the principles of interval mathematics can be adapted to other categories
of designs as well, but we will explore the postulation with in situ vibration-based
method of design first. In this context, we have for each design variable, “X” in “�”
(‘�’: 3D space in real time), a close association of parametric range (end-values)
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Fig. 12 Disposition schematics of (a) Circular and (b) Elliptical spring-elements under in situ
vibration of FRS-member

Fig. 13 Real-life design
model of in situ vibration in
FRS

Legends:
A: ‘Spring' member; 
B: ‘Thin-Beam’ member; 
C: ‘Strain’ member; 
D: ‘Membrane’ member

D

C

B

A

such that {X}:→ [
X , X̄

]
or→ [Xmin, Xmax] in “�”. These two range-values of ‘”X”

will be experimentally determined and/or simulated a priori. Hence, as explained in
Fig. 13, we will have a combination of four design variables, pertaining to “A”, “B”,
“C”, and “D”, which will have following paradigms:

“A”: → {Spring-Constant} → {K}: → [
K , K̄

] → [Kmin, Kmax] ∈ �

“B” → {Thin Beam Length and Thin Beam Width} → {l}
{w} : →

[
l− l̄

w− w̄

]

→
[
lmin lmax

wmin wmax

]
�
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“C” → {Strain gauge resistance and Gauge Length} → {RSG}
{LG} : →

[
R− R̄

L− R̄

]

→
[
RSG min RSG max

LG min LG max

]
�

“D” → {Joint Strength: Membrane} → {JM}: →
[
JM , J̄M

] →
[
JMmin , JMmax

]

∈�.

The formulation and computation of these interval matrices are crucial for the
calibration of the sensing elements of the FRS.

Now, while dealing with a group of design variables like in this case of FRS, “A”,
“B”, “C”, and “D” (i.e., four variables) or in expanded fashion six variables, we can
define “Constraint Satisfaction Problem” (CSP). By definition, CSP is formulated by
a set of variables, {V } = {x1 x2 . . . xn} alongwith a set of “Constraints” or equations
{E} = {c1 c2 . . . cn} over interval domains: {[x1] [x2] . . . [xn]}. The formulation
of CSP is essentially design-specific, i.e., for a particular design of the force sensor
we will have one CSP formulated. Hence, each CSP can tackle a group of new
variables, pertaining to the tuple of {V} and {E}. Damping model can be established
mathematically using this lemma.

5 Dynamic Control and Stability of Flexible Robotic
Systems Data Analysis

The dynamic control of FRS is essentially data-driven and postulation-based, as
generated from the damping model. We have designed multisensory data space for
the FRS by adopting zone-based layout of the sensor-cells. The basic paradigm of
the sensor placement and geometrical layout has been described in detail in an earlier
workof the author on stochasticmodel-basedhypothesis testingof sensorydevices. In
real-time applications (Refer: https://ieeexplore.ieee.org/document/5262650d) [23].
In-line with the modeling facets of the author, we have proposed stochastic model-
based analysis of real-time vibration data of the FRS, by introducing the lemma
of alternative hypothesis and null hypothesis. We define “System Dampening” as
that very activity wherein the controller of FRS starts actuation and thereby initiates
the full robotic cycle by maneuvering its joints. We prefer to adhere to the bimodal
hypothesis paradigm and represent the inherent fuzziness in decision-making process
having relatively higher value of signal-to-noise ratio [19, 20, 22].

The dynamic threshold band for ascertaining the fuzziness of committing Type-I
error has been selected optimally using “Hypothesis Error Based Threshold Evalua-
tionMethod” (HEBTEM) [19],wherein user-specified value of probability of Type-I
error is fed as input. HEBTEM-based data analysis has been invoked in understand-
ing the attainment of stability of the FRS in real-time. Vibration signature of FRS-
members does affect a lot in determining the stability as veryminute variation therein
(in the order of one-thousandth) can be instrumental for dampening the FRS. The

https://ieeexplore.ieee.org/document/5262650d
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basic paradigms of this stochastic model-based data analysis, as finetuned for the
real-time control of the FRS, can be texted as follows:

(A) Layout of the sensor-cells under multiple “zones” in the hardware of the FRS:
For example, the zones can be formulated on the basis of the placement of the
sensors, viz., strain gauges, flex-force sensors, load cell and infra-red sensors.
T FRS is a he optimal number of “zones” can be decided based on the physical
disposition of the hardware, i.e., prototype FRS in the present case. As FRS is
a jointed ensemble, the good way to decide on the “zones” is by joints. Hence
we will consider a total of four zones in the model, three for the links and the
rest one for the gripper of the FRS. As per the model, there can be exchange of
data and/or data communication between two “neighboring” sensor-cells under
a particular zone.

(B) Postulation of the Alternative and Null Hypothesis: Unlike the traditional way
of defining statistical hypotheses, here, we propose to define the Alternative
Hypothesis first. Since our primemost concern is to attenuate vibration and nat-
ural trembling of the FRS in real time, we have tested our Hypothesis when the
FRS-controller achieves dampening successfully. The viability of this Alterna-
tive Hypothesis will be checked against its Null Hypothesis via Type-I error.

(C) Inception of the Sensor Data Fusion Model: We have established the Data
Fusion model using the binary sensor-score (0 or 1) of each sensor-cell amidst
all zones and the relative dependency matrix of each sensor-cell. This process
is mathematical and the lemma is computational at a particular time-instant of
actuation of the FRS.

(D) Evaluation of the Dynamic Threshold Band of the Decision-zone about the
Acceptance of the Hypothesis: The probability curve of the Alternative Hypoth-
esis does play a crucial role in evaluating this threshold band. The evaluation
semantic ismathematical and the numerical value of the threshold band depends
on the level of confidence in determining Type-I error.

The ensemble process of vibration control of FRS is dependent equally on all
of the modules, mentioned above. Nonetheless, the actual phenomena of vibration
attenuation may get vary on the choice of the Fusion Model. It has been found
from earlier test-results that zonal influence-driven data fusion model works pretty
effective in sensory data assimilation of real-life robotic systems. The practicality
involved in such modulation is imperative that drives the fusion model in making
decision on the goal of vibration control of the FRS.

6 Simulation of Flexible Robotic Systems: Analysis
of Vibration and Hardware Set-up

The serial-chain flexible robotic systems, as shown in Figs. 1 and 4, were modeled
in 3D and finite element analysis (FEA) was performed in order to obtain the natural
frequencies of vibration of the gripper under different modes. Due to the slenderness
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Fig. 14 Finite element model of the two-link serial-chain FRS: a Detailed view; bMagnified view

of the FRS designed, meshing for the FEA gets critical. Modal analysis of the FRS
was carried out with the meshed layouts in order to obtain natural frequencies of
vibration. The other important aspect that gets revealed is related to the characteristics
of vibration for a “closed-chain” structure of theFRS.Wewill examine thedifferences
in FEA-model as well as vibration signature for both serial-chain and closed-chain
FRS.Wewill also highlight the effect of this inherent vibration on the gripper-end. For
the FEA, we have selected two materials, viz., Kevlar and Carbon Fibre Reinforced
Plastic (CFRP). FEA has been made and simulated thereof for both these materials
in order to obtain the relative advantage of those in real-life firmware of the FRS.
Although closed-chain FRS is a bit advantageous for the control of inherent vibration
due to its structural robustness, serial-chain FRS is also competitive. The piece-wise
approximation of the physical domain of the FRS provides good precision even with
simple approximating functions in the FEA that was invoked. Figure 14 illustrates
the FE-model of the two-link serial-chain FRS.

Figure 15 illustrates the FEA-model of the three-link FRS. The finite element
analysis was carried out using the following data, viz. (a) modulus of elasticity
(for CFRP: 77,000,000 Psi or 531 kN/mm2 or 531 GPa and for Kevlar: 18,000,000
Psi or 125 kN/mm2 or 125 GPa); (b) Shear modulus (for CFRP: 750 N/mm2 and
for Kevlar: 1540 N/mm2); (c) Density (for CFRP: 1.75 gm/cc and for Kevlar: 1.44
gm/cc) and (d) Tensile strength (for CFRP: 820,000 Psi or 5,656 N/mm2 and for
Kevlar: 525,000 psi or 3621MPa or 3621 N/mm2). Linear 2-node “BEAM 188” (3D
linear finite strain beam) element was used for the modeling of the links of the FRS
which has got six degrees-of-freedom at each node. On the other hand, “COMBIN7”
(3D pin or revolute joint) element was used to connect the links through revolute
joints in the finite element model. Capabilities of “COMBIN7” include optimal
modeling for joint flexibility (or stiffness), friction, damping and certain control
features. Besides, this element possesses large deflection capability, by which a fixed
local coordinate system can move with the joint. In order to benchmark the vibration
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Fig. 15 Finite element model of the three-link FRS: a Overall meshing and b Zoomed view of the
mesh

signature of multi-link FRS, FEAwas carried out for closed-chain design of FRS too.
The schematic disposition of a typical closed-chain FRS, geometric design details of
its links and its ensemble mesh are presented in Fig. 16a, b, respectively. It is to be
noted that mesh-model for the joint in closed-chain FRS is crucial, unlike the case
of serial-chain FRS, which is similar to a “T-joint” (refer Fig. 17b).

Both serial-chain and closed-chain configuration of FRS have been simulated for
FEA under vibration mode in order to evaluate the natural frequencies of vibration
under different modes. Primary vibrational analysis has been made in modal solution
module, so as to identify the natural frequencies and the response behavior of the

Fig. 16 Schematic disposition of closed-chain FRS: a Overall layout and b Design details of the
links
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Fig. 17 FEA-Screenshot of the closed-chain FRS: a Ensemble mesh and bModel for the link-joint

FRS-structure to it. Modal analysis does not take any load data into account; it only
requires a constrained body having mass defined. The study has been categorized
for both CFRP and Kevlar, which educates us about the relative preference for the
selection of the material for manufacturing. Natural frequencies of vibration have
been evaluated through FEA for both two-link and three-link structure of the serial-
chain FRS as well as for the closed-chain FRS. Table 1 presents some representative
values of the natural frequency of vibration for these three layouts of the FRS. The
ensemble contains 25 data-set from the initiation of the simulation and 15 data-sets
from the trailing side. This has been made judiciously so as to bring out the relative
alteration in the numerical values of the natural frequencies of vibration. The data-set
revels that although serial 3-link FRS has got higher natural frequencies of vibration
till sixth time-step over its two-link counterpart, it gets dampened over the higher
time-steps. Closed-chain configuration of FRS shows even better result with reduced
values of the natural frequencies of vibration, barring few initial time-steps. Likewise,
Kevlar shows slightly better results over CFRP for all models of FRS so far as the
inherent vibration of the system is concerned.

The FEA-based simulation of various varieties of FRS has made a strong foun-
dation for the hardware manifestation of the systems. So far as application of the
FRS is concerned, the “end-effector” of the gripper plays a salient role. We have suc-
cessfully developed two variants of serial-chain FRS having revolute joint-actuated
three non-identical links and one miniaturized gripper at the end of the distal link.
Figures 18 and 19 illustrate the developed hardware for the FRS-variants. The FRS,
shown in Fig. 18 is actuated by servomotors placed at the joints unlike the other
hardware shown in Fig. 19, wherein the actuation has been achieved via flexible
shafts. The designs of the grippers are also novel and quite diverse from one another.
Since the prototype FRS of Fig. 18 is of a large horizontal span of 1.5 m, the photo-
graphic view is shown in four subassemblies, i.e., Fig. 18a–d. Overall disposition of
the experimental hardware of the flexible shaft-actuated FRS is shown in Fig. 19a.
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Table 1 Natural frequency of vibration of serial-chain and closed-chain flexible robotic system

Time-step Natural frequency (material: CFRP)
[Hz.]

Natural frequency (material: kevlar)
[Hz.]

Serial
2-link

Serial
3-link

Closed-
chain

Serial
2-link

Serial
3-link

Closed-
chain

1 0.24603 ×
10−3

0.80204 ×
10−4

0.0568 ×
10−3

0.04607 ×
10−3

0.14606 ×
10−3

0.42799 ×
10−2

2 0.13009 ×
10−1

15.595 45.281 0.78792 ×
10−2

0.15640 ×
10−1

24.221

3 21.529 89.759 57.458 11.515 8.3414 30.734

4 122.16 158.57 76.578 65.342 48.012 40.959

5 160.42 249.73 114.24 85.801 84.811 61.118

6 354.51 442.79 134.31 189.63 133.58 71.836

7 522.29 515.26 286.68 279.36 236.85 153.34

8 708.07 464.40 314.17 378.73 275.59 168.04

9 994.15 540.40 395.56 531.74 401.24 211.57

10 1118.4 750.12 523.89 598.22 467.63 280.21

11 1246.6 874.29 534.04 666.74 580.77 285.69

12 1664.5 1085.8 618.84 890.36 635.76 331.02

13 1753.5 1188.6 727.55 937.94 829.06 389.16

14 2003.8 1550.0 734.27 1071.8 858.04 392.74

15 2365.6 1604.2 952.97 1265.3 980.74 509.77

16 2894.7 1833.6 1161.8 1548.3 1085.3 621.38

17 2949.1 2029.1 1457.8 1577.4 1097.0 779.78

18 3082.5 2051.0 1460.3 1648.7 1360.9 781.06

19 3296.7 2544.4 1577.2 1763.3 1401.9 843.59

20 3938.4 2620.8 1837.8 2106.6 1503.3 982.96

21 4436.3 2810.5 1914.3 2372.8 1721.5 1023.9

22 4986.2 3218.6 1992.4 2667.0 1754.8 1065.7

23 5498.6 3280.7 2147.3 2941.1 2116.5 1148.6

24 5766.6 3956.9 2188.5 3084.4 2356.8 1170.5

25 6012.0 4406.3 2587.5 3215.6 2577.4 1384.0

46 18362.0 12306.0 7273.5 9821.6 6931.7 3890.4

47 19889.0 12959.0 7474.8 10638.0 7257.9 3999.3

48 20014.0 13569.0 7744.7 10705.0 7574.3 4142.4

49 20309.0 14161.0 8143.0 10863.0 7996.6 4357.0

50 20426.0 14951.0 8402.7 10926.0 8050.5 4495.1

51 21035.0 15051.0 8688.1 11251.0 8643.1 4647.0

52 22257.0 16159.0 8740.0 11905.0 8770.5 4674.7

(continued)
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Table 1 (continued)

Time-step Natural frequency (material: CFRP)
[Hz.]

Natural frequency (material: kevlar)
[Hz.]

Serial
2-link

Serial
3-link

Closed-
chain

Serial
2-link

Serial
3-link

Closed-
chain

53 22566.0 16397.0 8816.1 12070.0 9092.3 4716.5

54 23314.0 16999.0 9374.4 12470.0 9207.7 5014.1

55 24565.0 17215.0 9558.5 13140.0 9676.1 5112.7

56 26205.0 18090.0 9949.4 14016.0 10195.0 5322.1

57 26343.0 19061.0 10140.0 14090.0 10476.0 5423.8

58 26813.0 19586.0 10299.0 14341.0 10720.0 5508.6

59 26843.0 20041.0 10562.0 14358.0 10740.0 5649.4

60 27700.0 20080.0 11125.0 14816.0 11271.0 5951.1

Index: [a]: FRS-base, joint 1 & a part of FRS-first link; [b]: A part of FRS-first link, joint 2 & 
partial view of the FRS-second link; [c]: Partial views of FRS-second & FRS-third links & 
joint 3; [d]: A part of FRS-third link & mini-gripper

(b)

(a)

(d)

(c)

Fig. 18 Prototype of the three-link serial-chain “direct drive” flexible robotic system with minia-
turized gripper



220 D. Roy

(a) (b)

(c)

Fig. 19 Experimental hardware of the three-link serial-chain “flexible shaft”-driven FRS with
mini-gripper

Flexible shafts, responsible for actuating joints 2 and 3 are zoomed in Fig. 19b and
interfacing of the mini-gripper with the FRS is snapped in Fig. 19c.

7 Conclusions

We propose newmodels for in situ vibration signature of a multi-link flexible robotic
system using spring-dashpot-damper and strain gauges. The vibration characteristic
of multi-link FRS is quite different from that of single link flexible robots due to
the coupling effects of joints and flexible shafts. Although the natural frequencies
of vibration of FRS are dependent on the layout of the FRS (serial-chain vs. closed-
chain) and itsmaterial of construction, the significant contribution does emanate from
the drive system of the FRS-joints and run-time program. Scientifically ascertained
locations of augmentation of strain gauges on the FRS-links play a crucial role too in
the overall target of achieving smoother control of the system dynamics. The present
research builds up an optimal foundation for analyzing inherent vibration of flexible
robots using strain gauge-based measurement as well as stochastic model-based
fusion of sensory data.



Control of Inherent Vibration of Flexible Robotic Systems … 221

Acknowledgements Author acknowledges the help rendered byShri StianshuDas,B.Tech. student
of Indian Institute of Technology, Kharagpur in performing Finite Element Analysis of the FRS
structures as part of his internship project. The technical assistance provided by the engineers of
M/s Devendra Fabricators, Nashik, Maharashtra and M/s SVR Infotech, Pune, Maharashtra is duly
acknowledged pertaining to the fabrication of the serial-chain flexible robotic systems.

References

1. Benosman M, Vey G (2004) Control of flexible manipulators: a survey. Robotica
22(2004):533–545

2. Fraser AR, Daniel RW (1991) Perturbation techniques for flexible manipulators. Norwell, MA,
Kluwer

3. Luo ZH (1993) Direct strain feedback control of a flexible robot arm: new theoretical &
experimental results. IEEE Trans Autom Control 38(11):1610–1622

4. Chen Wen (2001) Dynamic modeling of multi-link flexible robotic manipulators. Comput
Struct 79(2):183–195

5. Feliu V, Somolinos JA, Garcia A (2003) Inverse dynamics based control system for a three
degrees-of-freedom flexible arms. IEEE Trans Robot Autom 19(6):1007–1014

6. Feliu V, Ramos F (2005) Strain gauge based control of single-link flexible very light weight
robots robust to payload changes. Mechatronics 15:547–571

7. Subudhi B, Morris AS (2002) Dynamic modeling, simulation and control of a manipulator
with flexible links and joints. Robot Auton Syst 41(4):257–270

8. Moudgal VG, Kwong WA, Passino KM, Yurkovich S (1995) Fuzzy learning control for a
flexible-link robot. IEEE Trans Fuzzy Syst 3(2):199–210

9. Singer NC, SeeringWC (1990) Preshaping command inputs to reduce system vibration. J Dyn
Syst Meas Control Trans ASME 112:76–82

10. Chen YP, Hsu HT (2001) Regulation and vibration control of an fem-based single-link flexible
arm using sliding-mode theory. J Vib Control 7(5):741–752

11. Tjahyadi H, Sammut K (2006)Multi-mode vibration control of a flexible cantilever beam using
adaptive resonant control. Smart Mater Struct 15:270–278

12. Trapero-Arenas JR,MboupM, Pereira-Gonalez E, Feliu V (2008) Online frequency and damp-
ing estimation in a single-link flexible manipulator based on algebraic identification. In: Pro-
ceedings of the 16th mediterranean conference on control and automation (IEEE). Franco, pp
338–343

13. Pereirea Emiliano, Aphale Summet Sunil, Feliu Vicente, Moheimani SOR (2011) Integral
resonant control for vibration damping and precise tip-positioning of a single-link flexible
manipulator. IEEE/ASME Trans Mechatron 16(2):232–240

14. Zhang J, Tian Y, Zhang M (2014) Dynamic model and simulation of flexible manipulator
based on spring and rigid bodies. In: Proceedings of the 2014 IEEE international conference
on robotics and biomimetics (‘ROBIO-2014’), pp 2460–2464

15. Chair Z, Varshney PK (1986) Optimal data fusion in multiple sensor detection systems. IEEE
Trans Aerosp Electron Syst AES-22(1):98–101

16. Thomopoulos SCA,ViswanathanR,BougouliasDC (1987)Optimal decision fusion inmultiple
sensor systems. IEEE Trans Aerosp Electron Syst AES-23(5):644–653

17. KamM, ChangW, Zhu Q (1991) Hardware complexity of binary distributed detection systems
with isolated local bayesian detection. IEEE Trans Syst Man Cybern SMC-21(3):565–571

18. El-Ayadi MH (2002) Nonstochastic Adaptive Decision Fusion in Distributed-Detection Sys-
tems. IEEE Trans Aerosp Electron Syst 38(4):1158–1171

19. Roy Debanik (2007) Estimation of grip force and slip behavior during robotic grasp using data
fusion and hypothesis testing: case study with a matrix sensor. J Intell Robot Syst 50(1):41–71



222 D. Roy

20. Roy D (2008) Stochastic model-based grasp synthesis: new logistics for data fusion with
dissimilar sensor-cells. In: Proceedings of the IEEE international conference on automation
and logistics (IEEE-ICAL 2008). Qingdao, China, pp 256–261

21. Roy D (2009) A new fusion rule-base for slender tactile cells in a homogeneous robotic slip
sensory grid. In: Proceedings of the IEEE international conference on robotics and biomimetics
(IEEE-ROBIO 2008). Bangkok, Thailand

22. Roy D (2009) A new fusion rule with dynamic decision threshold for heterogeneous field
gripper sensory system: Part I. In: IEEE/RSJ international conference on intelligent robots and
systems (IROS 2009). USA

23. RoyD(2009)Anew fusion rulewith dynamicdecision threshold for heterogeneousfield gripper
sensory system: Part II. In: Proceedings of the IEEE international conference on automation
and logistics (IEEE ICAL 2009). China



Some Relevant Calculations of Geometry
Function with Area Scattering Phase
Functions Related to Vegetative Radiative
Transfer Equations in the Vegetative
Canopy Scattering Medium

Goutam Kr. Biswas

Abstract The theory of Vegetative Radiative Transfer Equation (VRTE) in canopy
scattering medium is the major mathematical tool enabling researchers to investigate
and analyze mathematically essential ingredients to understand how to use remote
sensing data for the canopy vegetative medium. VRTE involves geometry functions
or G-functions associated with leaf normal distribution functions and a major con-
stituent of the important Area Scattering Phase functions (ASPF) which governs the
scattering pattern in any vegetative scatteringmedium. Almost all these functions are
mathematically defined on the basis of Leaf Normal Distribution Function (LNDF),
probability of distribution of normals to a particular leaf with respect to a particular
direction, say, zenith direction. The VRTE started its evolution on the basis of four
experimentally designed LNDFmodel with specific normalization conditions. In this
article, we have presented various new models based on previous field survey but
not reported in Biswas (JQSRT 108:197–219, 2007, [1]) and linear combinations of
basic four models of LNDF with somewhat detailed mathematical sketch of these
important mathematical functions and computer-generated simulations relevant for
the realistic problems in these fields of study.

1 Mathematical Abstraction of Canopy Scattering Medium

We consider a natural static vegetative medium, horizontally flat, with leaves having
specific shape, size, orientation, number density, etc., of the various related compo-
nents (leaves, tugs, braches and trunk). However, no special distribution of vegetable
canopies or scattering elements has been considered for simplicity. For our pur-
pose of photon transport, we restrict, as an approximation, only leaves as scattering
agents and ignore light interaction by other components of plant architecture. We
also assume thin leaf approximation with no intervention of soil reflection and gaps
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between the leaves will be considered void although the continuity of the vegetative
medium is ensured.

With this abstract picture of leaf canopymediumof depth T measured along z-axis
vertically with top defined as z = 0 when z = T defines the ground, the steady state
radiance function averaged over all wavelengths in the absence of polarization with
(or without) sources of interval radiation can be established to satisfy the following
integro-differential equation of the form [2–4]

−μ
∂ I

∂z
(z,�) + σe(z,�) I (z,�) =

∫

4π

σs(z,�,�′ → �) I (z,�′)d�′. (1)

σe(z,�) = Extinction coefficient
σs(z,�,�′ → �) = Differential Scattering coefficient
I (z,�) = Radiance function
The vector �(μ, φ) comprises azimuthal angle φ and polar angle θ = cos−1 μ

with respect to outward normal (opposite to z-axis) directed downward to the canopy
community. We shall impose restrictions in our studies in view of the complexity
of the reality of canopy medium. Before proceeding further, we shall define certain
mathematically important terms.

1.1 Leaf Area Density (LAD: UL)

The total one-sided leaf area per unit volume at anydepth z exempting lateral variation
of UL , as evident from phase symmetry already introduced is Eq. (1).

1.2 The Leaf Normal Distribution Function (LNDF
g(z,ΩL) ≡ g(z, (θL, φL))

We define the probability that a leaf have normal in direction �L(UL , φL), directed
away from top surface in a unit solid angle about �L and call it leaf normal distri-
bution function g(z,�L) ≡ g(z, (θL , φL)) suitably normalized so that the following
condition holds.

1

2π

2π∫

0

1∫

0

g(z, μL , φL)dμLdφL = 1. (2)

where μL = cos θL .
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1.3 Extinction Coefficient σe(z,Ω)

Let light enters the vegetative media in direction �. Extinction coefficient is the
probability per unit path length of travelwhen the light interactswith the leaf along�,
i.e. the probability that light photon while travelling a distance along� is intercepted
by a leaf divided by the distance. Hence

σe(z,�) = G(z,�) ·UL(z). (3)

The geometry factor G(z,�). introduced in Eq. (3) is defined as the total leaf area
per unit volume of the canopy projected perpendicular to � and can be analytically
represent in the following form: [3].

G(z,�) = 1

2π

2π∫

0

dφL

1∫

0

gL(z,�L)|� · �L |dμL . (4)

1.4 The Leaf Area Index (LAI)

This quantity is now defined [5]

L A = LAI =
h∫

z

UL(z)dz, (5)

for a thin layer with a horizontal surface area Ao, if there are N leaf elements with
a surface ao, the LAI of that layer is given b

� L A = N
ao
Ao

. (6)

1.5 Differential Scattering Coefficient (DSC:
σs(z,Ω,Ω ′ → Ω))

Let us consider a leaf with normal �L scatters radiation of intensity I (z,�′) at
any level z with initial directions incoming �′. The fraction of energy scattered or
reradiated into a direction � per unit volume at z is given by [6]
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UL(z)
∣∣�′ · �L

∣∣I (z,�′). (7)

When we integrate over all incoming �′, we get total energy reradiated or scattered
in direction � as

UL(z)
∫

4π

I (z,�′)
∣∣�′.�L

∣∣P(z,�′ → �;�L)d�
′. (8)

where Leaf Scattering Phase Function (LSPF), P(z,�′ → �;�L) describes
the probability that a leaf with inclination �L will scatter radiation from incoming
directions �′ to � at any optical depth z [6, 7].

The LSPF when integrated over all directions of photon exit gives us the albedo
for single scattering per unit leaf area

∫
P(�′ → �;�L)d� = ω. (9)

Next, if we integrate over all leaf normal �L , with consideration of g(z,�L) for �L

distributions, we get total scattered radiation by unit volume at z

UL(z)

2π

∫

4π

⎡
⎣

∫

2π

gL(z,�L)
∣∣�′,�L

∣∣P(z,�′ → �;�L)d�L

⎤
⎦I (z,�′)d�′. (10)

This scattered radiation represents the right-hand side of the equation of transfer and
by analogy, we get DSC as

σs(z,�
′ → �) = UL(z)

2π

∫

2π

gL(z,�L)
∣∣�′,�L

∣∣P(z,�′ → �;�L)d�L . (11)

1.6 Area Scattering Phase Function (ASPF)

Let us represent Area Scattering Phase Function (ASPF) as defined in [2, 3, 6],

1

π
A(�′ → �) = 1

2π

∫

2π

gL(z,�L)
∣∣�′,�L

∣∣P(z,�′ → �;�L)d�L . (12)

We further assume that gL(z,�L) is independent of z and separable in the form
gL(�L) = gL(μL)h(φL), when h(φL) = 1 meaning that azimuthal distribution is
random. Model with gL(z,�L) is still not available. Model with h(φL) �= 1 is also
not well-studied. We also have
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(�′ · �) = μμ′ + (1 − μ2)
1
2 (1 − μ′2)

1
2 cos(φ′ − φ), (13)

where �′ ≡ (μ′, φ′), � = (μ, φ).

Instead of assumingω dependent on both�′ (incoming photon direction) and�L ,
if we let ω dependent on � only, the Area Scattering Phase Function (ASPF) can be
normalized using Eqs. (6) and (12) in the following sense

1

π
=

∫

4π

d�A(�′ → �) = ωG(�′), (14)

These restriction allows us to simplify equation of transfer when we define

T (�′ → �) = 4

ω

A(�′ → �)

G(�′)
. (15)

So that Eq. (14) is normalized to unity

1

4π

∫
T (�′ → �)d� = 1. (15a)

We can now rewrite Eq. (1) in more simplified form

− μ
dI

dz
(z,�) + G(�)I (z,�) = ω

2π

∫

4π

d�′T (�′ → �)G(�′)I (z,�′)

= ω

2π

+1∫

−1

2π∫

0

T
(
(μ′, φ′) → (μ, φ)

)
G(μ′, φ′)I (z, μ′, φ′)dμ′dφ′

= ω

2π

+1∫

−1

2π∫

0

T
(
(μ′, φ′) → (μ, φ)

)
I (z, μ′, φ′)

⎡
⎣

1∫

0

2π∫

0

g
(
(μ′

L)
∣∣�L .�

′∣∣)h(φ′
L)dμ

′
Ldφ

′
L

⎤
⎦dμ′dφ′. (15b)

Equation (15b) is a two-angle problem but can be reduced to one-angle form by intro-
ducing azimuthal averaging under two conditions namely by assuming azimuthal
dependence in G function as random and second [3, 6, 8]

T (μ′ → μ) = 1

2π

2π∫

0

P
(
(μ′, φ′) → (μ, φ)

)
dφ′ = 4A(μ′ → μ)

ωG(μ′)
. (16)

Hence under (15b), (16), we can write VRTE as
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−μ
dI (z, μ)

dz
+ G(μ)I (z,�) = ω

2

+1∫

−1

dμ′T (μ′ → μ)G(μ′)I (z, μ′)dμ′. (17)

2 Optical Model for Leaf Scattering

We now concentrate on Eq. (5) [3, 9]

G(z,�) = 1

2π

2π∫

0

dφL

1∫

0

gL(z,�L)|� · �L |dμL .

Simplifying as mentioned, i.e. ignoring z-dependence and splitting gL(�L) =
gL(μL)h(φL), with random azimuthal distribution, i.e. assuming h(φL) = 1. There
exist very few diversified leaf angle measurement field data from which models
of leaf normal distribution function LNDF can be inferred thus leading to realistic
optical model formulation for LSPF. However, field survey data for four idealized
DeWitt LNDF have been proposed [10, 11] later. Although these LNDFs represent
the most idealized canopy, they really express the range of extremes that are found in
plant canopies. The Dewitt LNDF, expressed as per unit polar angle, is normalized
as (when azimuthally independent)

π
2∫

0

gL(θL)dθL = 1 (18)

or

1∫

0

gL(μL)dμL = 1. (18a)

Planophile: Mainly horizontal,

g(θL) = 2

π
(1 + cos(2θL)) (19)

or

g(μL) =
4
π
μ2

L(√
1 − μ2

L

) . (20)
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Erectophile: Mainly vertical (around 0◦ with the vertical),

g(θL) = 2

π
(1 − cos(2θL)) (21)

or

g(μL) = 4

π

(√
1 − μ2

L

)
. (22)

Plagiophile: Mainly around 45◦

g(θL) = 2

π
(1 − cos(4θL)) (23)

or

g(μL) = 16

π
μ2

L

(√
1 − μ2

L

)
. (24)

Extremophile: Mainly erect or parallel,

g(θL) = 2

π
(1 + cos(4θL)) (25)

or

g(μL) = 4

π

(
4μ4

L − 4μ2
L + 1

)
(√

1 − μ2
L

) . (26)

The expressions in (19)–(26) exclusively follows LNDF normalization condition
(18), instead of (18a). However, there exist another form of normalization for the
LNDFs (Table 1).

π
2∫

0

g(θL) sin θLdθL =
1∫

0

g(μL)dμL = 1. (18b)

In Fig. 1, we have shown the comparative studies of four classical Dewitt LNDF
models as shown in [2] but with a different program inMATLAB2014a. The LNDFs,
normalized to Eq. (18a), are given in Table 2 and in Table 3 and corresponding G-
functions are given [12]. However, there is no clear evidence from field data, so
that one may exclusively conclude that a particular canopy has exactly any one
type of the above discrete leaf distribution. Later [13], more realistic model, based
on β-distribution and two correlation parameters dependent on the Average Leaf
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Table 1 Parametric values
calculated from Eq. (51)

LNDF model Value of ℵ
Planophile 0.6062

Erectophile 0.3203

Plagiophile 0.4999

Extremophile 0.4428

Plano-extremophile 0.4943

Extremo-plano 0.4615

Plano-plagiophile 0.5590

Plagio-plano 0.3217

Erecto-plagiophile 0.2097

Plagio-erecto 0.4124

Erecto-extremophile 0.2992

Extremo-erecto 0.3922
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Fig. 1 Classical Dewitt Leaf Normal Distribution Function (LNDF) (1. ‘Radiative Transfer in
Vegetation Canopies with Anisotropic Scattering’, JQSRT, vol. 39, No. 2, pp. 115–129, (1988))

Inclination Angle (ALIA) θ̄L and its second moment, was developed although this
model does not satisfy either (18) or (18a).

Goel: [4, 7, 14, 15]

g(θL) = 2

π

�(u + v)

�(u)�(v)

(
1 − 2θL

π

)u−1(2θL
π

)v−1

, (27)

where � represents γ -function. We also have
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Table 2 LNDF normalized to Eq. (18a)

Notation g(θL ) g(μL )

Horizontal 1
sin θL

δ
(
θL − π

2

)
δ(μL − 0)

Erectophile 3
4 (1 − cos 2θL ) 3

4

(
1 − μ2

L

)
Extremophie 15

14 (1 + cos 4θL ) 15
7

(
4μ4

L − 4μ2
L + 1

)
Uniform 1 1

Plagiophilte 15
16 (1 − cos 4θL ) 15

2 μ2
L

(
1 − μ2

L

)
Spherical 2 cos θL 2μL

Planophile 3
2 (1 + cos 2θL )∗ 3μ2

L

Spherical − 3 4 cos3 θL 4μ3
L

Spherical − 4 5 cos4 θL 5μ4
L

Spherical − 5 6 cos5 θL 6μ5
L

Spherical − 6 7 cos6 θL 7μ6
L

Vertical 1
sin θL

δ(θL − 0) δ(μL − 1)

* = 3 cos θL meaning spherical-2

Table 3 G-functions corresponding to Table 1 LNDF

Model G(μ)

Horizontal 2
π

√
1 − μ2

Erectophile 3
16 (3 − μ2)

Extremophie 5
28 (3 − μ4)

Uniform 1
2

Plagiophile 5
32 (3 + μ4)

Spherical 4
3π

[
π
2 |μ| − |μ| cos−1(|μ|) + √

1 − μ2
]

Planophile 3
8 (1 + μ2)

Spherical − 3 8
5π

[
π
2 |μ| − |μ| cos−1(|μ|) + 1

3

√
1 − μ2(2 + μ2)

]

Spherical − 4 5
48 (3 + 6μ2 − μ4)

Spherical − 5 12
7π

[
π
2 |μ| − |μ| cos−1(|μ|) + 2

15

√
1 − μ2

(
4 + 9

2μ2 − μ4
)]

Spherical − 6 7
128 (5 + 15μ2 − 5μ4 + μ6)

Vertical |μ|

θ̄L = 90v

u + v
, (28)

where u and v are correlation parameters.

〈
θ̄2
L

〉 = 902v(v + 1)

(u + v)(u + v + 1)
. (29)



232 G. Kr. Biswas

A more general two parameter elliptic leaf angle distribution was proposed [16]

with modal leaf inclination θM and eccentricity ε =
√
1 −

(
a2
b2

)
, determining the

shape of the distribution as parameters, respectively. This model also denies to satisfy
Eqs. (18) and (18a).

Elliptic: [6, 5, 16, 17]

g(θL) = �√
1 − ε2 cos2(θL − θM)

, (30)

where ε and θM are eccentricity and modal leaf inclination, respectively.

� = ε

[sin(θM)p1 + (a − b) cos(θM)] , (31)

p1 = 1n

(
cos(al) + sin(a2)

cos(a2) − sin(a1)

)
, (32)

a1 = sin−1(ε cos(θM)), a2 = sin−1(ε sin(θM)). (33)

However, this continuous modal distribution fails to predict accurate mean and vari-
ance of leaf inclination for most of the above-mentioned idealized distribution except
eretophile. This modal does not work for spherical leaf, ε = 0, as claimed in [4],
which is evident from Eqs. (31)–(33).

Uniform: An analytically nice and extensively used but most unrealistic LNDF is
given by [12]

g(θL) = 1 (34)

Trigonometric: Onemore important theoretical distribution [13] but does not follow
any normalization integral stated above was reported as

g(θL) = (a + b cos(2θL) + c cos(4θL))

sin(θL)
(35)

where a, b and c are real constants. These parameters are arbitrarily introduced in
[13].

3 Proposed New Models

A realistic and efficient model requires the LNDFs to involve in its formulation
essential structural features (such as height, shape of leaves, thickness, alignment
of branches and leaves with respect to the main axis of the plant) of the respective
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plants or species of plants concerned. As far as our knowledge is concerned, no such
extensive study, except for a few limited field surveys [7] apart from those mentioned
earlier, was made during the past decades. We have introduced the following models
(36)–(49), some of which have been reported partially [18], after adopting an exten-
sive field studies in forest canopies. Here, in this note, we have completed the list
by adding some more models. The rationale behind the models are as follows. We
have noticed in our field studies that a particular canopy does not have only one type
of classical LNDF expressed through Eqs. (19)–(26) exclusively, rather it seldom
changes LNDF with height or special positions within the canopy domain. So we
have designed a linear combination of first four classical Dewitt models, taken any
two at a time.

3.1 Linearly Combined Type-1

Plano-extremophile:

g(θL) = 2.0

π
(1 + a cos(2θL) + b cos(4θL)). (36)

Extremo-Plano

g(θL) = 2.0

π
(1 + a cos(4θL) + b cos(2θL)). (36a)

Plano-plagiophile:

g(θL) = 2.0

π
(1 + a cos(2θL) − b cos(4θL)). (37)

Plagio-Plano

g(θL) = 2.0

π
(1 − a cos(4θL) + b cos(2θL)). (37a)

Erecto-plagiophile:

g(θL) = 2.0

π
(1 − a cos(2θL) − b cos(4θL)). (38)

Plagio-erecto:

g(θL) = 2.0

π
(1 − a cos(4θL) − b cos(2θL)). (38a)
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Erecto-extremophile:

g(θL) = 2.0

π
(1 − a cos(2θL) + b cos(4θL)). (39)

Extremo-Erecto:

g(θL) = 2.0

π
(1 + a cos(4θL) − b cos(2θL)). (39a)

Figures 2 and 3 represent the graphical scenario of the proposed non-classical LNDF.
In Fig. 2, we have plotted Eqs. (36), (36a), (37), (37a), whereas Fig. 3 contains
Eqs. (38), (38a), (39), (39a). However, in both cases, we have used fixed values of a
= 0.51 and b = 0.49.

3.2 Linearly Combined Type-2

These models are linear combinations of three Dewitt models.

Plano-Erecto-Extremo-1:

g(θL) = 1.0

π
[a(1 + cos(2θL)) + b(1 − cos(2θL)) + c(1 + cos(4θL))]. (40)
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Fig. 2 Proposed LNDF type-1 normalized with respect to Eq. (18). a = 0.51, b = 0.49
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Fig. 3 Proposed LNDF type-1 normalized with respect to Eq. (18). a = 0.51, b = 0.49

Plano-Erecto-Extremo-2:

g(θL) = 2.0

π
[a(1 + cos(2θL)) + b(1 − cos(2θL)) − c(1 + cos(4θL))]. (41)

Plano-Erecto-Plagio-1:

g(θL) = 2.0

π
[a(1 + cos(2θL)) − b(1 − cos(2θL)) + c(1 − cos(4θL))]. (42)

Plano-Erecto-Plagio-2:

g(θL) = 2.0

π
[a(1 + cos(2θL)) + b(1 − cos(2θL)) − c(1 − cos(4θL))]. (43)

3.3 Linearly Combined Type-3

Erecto-Extremo-Plagio-1:

g(θL) = 2.0

π
[a(1 − cos(2θL)) + b(1 + cos(4θL)) − c(1 − cos(4θL))]. (44)
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Erecto-Extremo-Plagio-2:

g(θL) = 2.0

π
[a(1 − cos(2θL)) − b(1 + cos(4θL)) + c(1 − cos(4θL))]. (45)

Plagio-Extremo-Erecto-1:

g(θL) = 2.0

π
[a(1 − cos(4θL)) − b(1 + cos(4θL)) + c(1 − cos(2θL))]. (46)

Plagio-Extremo-Erecto-2:

g(θL) = 2.0

π
[a(1 − cos(4θL)) + b(1 + cos(4θL)) − c(1 − cos(2θL))]. (47)

Extremo-Plagio-plano-1:

g(θL) = 2.0

π
[a(1 + cos(4θθL)) + b(1 − cos(4θL)) − c(1 + cos(2θL))]. (48)

Extremo-Plagio-plano-2:

g(θL) = 2.0

π
[a(1 + cos(4θL)) − b(1 − cos(4θL)) + c(1 + cos(2θL))]. (49)

The above first eight models (36)–(39a) require a+b ≤ 1.All these above first eight
LNDF models correspond to the observation that not all leaves of a tree or canopy
follow a particular type ofDewitt LNDF.We therefore assume a linear combination of
classical DeWitt LNDF and found eight involving two parameters to fit any realistic
situations and all these models satisfy normalization condition (18). The rest ten
models are linearly combined with parameters a, b, c satisfying conditions a + b +
c ≤ 1. Model (40) is found to satisfy the normalization condition (18). However,
model (41) is found to satisfy normalization condition very nearly. Instead on 1.0,
its value comes out to be 0.9400. In all the other models starting from Eqs. (41) to
(49), the normalization values are less than unity. We need to revisit these models.
For the time being, we can demand that for models in linear combination of type-3,
the Normalization condition will be given as

π
2∫

0

gL(θL)dθL ≤ 1 (50)

instead of Eqs. (18) or (18a).
Models with linear combinations of four classical LNDF do not satisfy the nor-

malization conditions either. However, one can consider models with interchanging
the parameters in the above models to fit the field data with the LNDF. In Fig. 5,
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proposed linearly combined type-2 LNDF corresponding to Eqs. (40)–(43) having
normalization conditions defined by (50) are shown with a = 0.58, b = 0.39 and c
= 0.03 as given in [18]. In Fig. 4, linearly combined LNDF type-3 corresponding to
Eqs. (44)–(49) having normalization conditions defined by (50) are shown with a, b
and c as defined above.
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3.4 Parametric Representation

Some researchers comfortably used parametric evaluation of LNDFA using the def-
inition given in [5, 19]

ℵL = ±1

2

π
2∫

0

|(1 − g(θL))|dθL . (51)

where ℵL = 0, for uniform LNDF but becomes equal to +1 or −1, for horizontal
and vertical LNDF, respectively thus leading to simpler expression for geometry
function. Another expression can also be used by defining

g(θL) = ℵL Lim
θL→(0 or 90)

δ(θL)

sin(θL)
+ (1 − ℵL). (52)

with assumption as parametric value is greater (less than) than zero, when leaf normal
angle is equal to 0 (or 90). Geometry functions in the following formwhich are direct
consequences ofEqs. (5) and (52) are derived in [5] butwehave not used it any further.

G(θ) =
{ 1

2 (1 − ℵL) + ℵL cos θ,ℵL > 0
1
2 (1 + ℵL) − 2

π
ℵL sin θ,ℵL < 0

}
(53)

Following the normalization condition (2), all LNDFs have to be properly renormal-
ized to satisfy (18a). This leads to the expressions given in [12] for g(θL) which are
presented in Tables 2 and 3. We have presented the extended set of tables from [12]
representing the LNDF and corresponding geometry functions. In doing so, the rela-
tively extreme distributions, i.e. the vertical and horizontal distributions are replaced

Table 4 Measured percentage proportion ( f (θ)) and cumulative percentage proportions (F(θ))

of Soyabin canopy [20]

Angle July 18, 1984 July 25, 1984 August 28, 1984

f (θ) F(θ) f (θ) F(θ) f (θ) F(θ)

5 5.1 5.1 1.2 1.2 3.5 3.5

15 15.9 21.0 6.4 7.6 3.6 7.1

25 17.8 38.8 10.5 18.1 7.5 14.6

35 23.8 62.6 15.5 33.6 12.9 27.5

45 17.5 80.1 19.3 52.9 16.8 44.3

55 12.0 92.1 15.1 67.0 20.9 65.2

65 4.7 96.8 16.1 83.1 13.9 79.1

75 2.0 98.8 11.5 94.6 12.0 91.1

85 1.2 100.0 4.4 100.0 8.9 100.0
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by delta distribution. From our previous field survey, we observed that the leaves of
deciduous forests are oriented mainly horizontally but not purely horizontal. In our
formulation, the expression for the LNDFs corresponds to the situation where linear
combination of a fraction of leaves in either horizontal or vertical distribution ismade
with the remaining fraction having a uniform distribution. The present formulation
considers inclination index to be of any value corresponding to any realistic situation.
One can deduce exactly the value of the inclination index from Eq. (52) directly from
any field data. However, for models (42)–(51), we have to take care of the condition
a + b + c+ ≤ 1.

Most of the experimental studies made so far confirmed our assumption of com-
bined type of LNDF [1, 17, 20] in a particular species or among various groups
of species with wide variations in the proportion of leaf angle distribution. How to
include the effect of these variations in the LNDF is a problem and no suitable math-
ematical expressions are available till date for realistic situations. However, we have
shown that these unknown parameters may be correlated to the percentage propor-
tions of real leaf angles in a particular canopy. Actual field data are shown in Tables 3
and 4. Table 4 data were partially reported in [18] (Table 5).

In Table 3, where 0 ≤ f (θL) ≤ 25◦ angular interval is chosen as planophile
LNDF distribution whereas 25◦ ≤ f (θL) ≤ 65◦ is chosen as plagiophile and rest
is as erectophile. Here, f (θL) or F(θL) corresponds to percentage and cumulative
percentage distribution. Values of ‘a’, ‘b’ and ‘c’ are chosen corresponding to the
values given in [1] as well as from Table 4. But one can be flexible in determining
the intervals according to the real situations.

In Table 1, we have calculated the parametric values of classical Dewitt LNDF
and our proposed LNDF for parametric values taken from our field studies [18].

4 G-Function Calculations for LNDF Mentioned Above

We again concentrate on Eq. (5) for numerical considerations.

G(z,�) = 1

2π

2π∫

0

dφL

1∫

0

gL(z,�L)|� · �L | dμL .

If we restrict with the assumed constraints, i.e. ignoring z-dependence and splitting
LNDF as gL(�L) = gL(μL)h(φL), with assumed random azimuthal dependence
of LNDF, i.e. h(φL) = 1, we can rewrite (5) in the following form for numerical
impressions. It has been tested that for uniform LNDF, the normalization value of
G-Function is 0.5. However, exact evaluation of all the models developed (38)–(49)
with Eq. (5) suitable simplified as stated is found to obey the normalization conditions
too. Some surface plot of normalized G-function results has been presented in the
Fig. 6.
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Fig. 6 Surface normalized G-functions for erecto-extremo-plagio corresponding to Eq. (45)

4.1 ASPF- Calculations for LNDF Mentioned Above

We can now pay attention to Eqs. (12), (14), (15), (15a) or simpler versions (15b).

1

π
A(�′ → �) = 1

2π

∫

2π

gL(z,�L)
∣∣�′,�L

∣∣P(z,�′ → �;�L)|d�L .

This function with normalization integral (14) is the most difficult task computation-
ally as it involves evolution of double integral over some restricted domain where the
integrand may change sign. The Leaf Scattering Phase Function (LSPF) introduced
in Eqs. (7)–(10) are not rotationally invariant-type function as it is in RT problem
associated with atmosphere or neutron transport theory. This is due to its sole depen-
dence on both oncoming and outgoing directions rather than on scattering angle. We
shall omit again the size dependence for simplicity. Now, the anisotropy due to bi-
Lambertian characteristics of leaf with various types of tissues sandwiched between
upper and lower epidermis and palisade parenchyma layers of tissue, generating
some shielding effect, can be well understood with the following expressions:

P(�′ → �;�L) = rL |� · �L |
π

f or (� · �L)(�
′ · �L) < 0 (54)

= tL |� · �L |
π

f or (� · �L)(�
′ · �L) > 0 (55)
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where rL & tL are reflectance and transmittance, respectively.
This bi-Lambertian model assumes the cosine distribution of reflected and trans-

mitted radiation about the leaf normal and thus, accounting for all types of scattering
within and on the leaf surface. But this model does not consider variation of leaf
normal along the surface of the leaf.

We also have LSPF normalized

1

2π

2π∫

0

1∫

−1

P(�′ → �;�Ldφ dμ. = ω = rL + tL (56)

Hence, the Associated Area Scattering Phase Function (ASPF) takes the form when
substituted in Eq. (12) resulting in the following expressions for ASPF. Equation (57)
have been evaluated for proposed new LNDF

A(�′ → �) ≡ ± 1

2π

1∫

0

2π∫

(+,−)0

(�′·�L)(�·�L)g(μL)dφL dμL . (57)

A(�′ → �) = rL(�
′�)A−(�′ → �) + tL(�

′�)A+(�′ → �). (58)

The (+,−) sign in the above integration expresses the fact that the azimuthal integra-
tion over (0− 2π ) should be done in the range where the integrand is positive (+) or
negative (−). In Equation (57) together with Eq. (58), constant reflectance and trans-
mittance values are shown in the following figures with values in indicated. All the
numerical calculations done in this note using exact kernel approach to evaluate inte-
grations with 32 points Gaussian quadrature. The (�′�) dependence of reflectance
and transmittance is suppressed as we have not used it in this note. The G-function
models described in [12] presented in Tables 2 and 3 can also be used here (Figs. 7
and 8).

5 Conclusion

We have introduced numerical experiences to associate exact field data to show that
linearly combined LNDF expresses the more accurate description of reality than
classical LNDF. We are on work to study the behaviour of these functions with
non-random azimuthal distributions.
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Wavelet Transformation Approach
for Damage Identification of Steel
Structure Model

Chandrabhan Patel, S. K. Panigrahi, Ajay Chourasia, Timir B. Roy,
Ashutosh Bagchi and Lucia Tirca

Abstract This paper presents an application of wavelet analysis for damage detec-
tion in steel structures. Wavelet analysis is a new mathematical and advanced signal
processing tool that can be used to analyze the vibration data and the damage in the
structure can be identified. It is found that spikes in the wavelet occurs either by dam-
age or striking on the structure. The observed spikes in wavelet pattern are used for
damage detection in multistory structures. A software application is developed that
can process up to six sensors data and can locate the exact location of the damage.
The application of Continuous Daubechies (Db8) wavelet in damage identification
proved to be more robust in detecting the damage location. The experiments were
conducted on a five-story steel structure at the CSIR-CBRI, Roorkee, India to verify
the proposed method using two types of accelerometers.

Keywords Damage identification · Wavelet analysis · Structural health
monitoring · Software application · Vibration data

1 Introduction

During the service life of a structure, it undergoes frequent damages which can
sometime lead to structural failure imperiling safety of inhabitants’ life. To avoid
the sudden failure of the structures at an earlier stage special focus is given to study
the appearance of damage in the structure. Nowadays, the necessity of health mon-
itoring and appropriate measures make damage identification techniques one of the
most demanding and effective research fields and allured a lot of global interests.
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The main idea of these techniques is that damage causes a change in physical proper-
ties of structure like stiffness and mass. The corresponding changes in the structure
physical properties will result in changes in the natural frequencies, damping ratios,
mode shapes, modal strain energies, or other dynamic characteristics of the system.
Therefore, the damage location and its magnitude could be identified by monitor-
ing one or more of these properties of the damaged structure. Recently, many civil
problems have been solved by using optimization techniques especially the damage
detection nonlinear inverse problems.

Vibration-based analysis has been evolved as an optimistic method for Structural
Health Monitoring (SHM) in the past three decades. The datum of vibration-based
SHM is that dynamic characteristics of a structure are a function of its mechanical
properties. Thus, the observable changes in the dynamic characteristics of the struc-
ture occur due to changes in these mechanical properties which arises because of
localized structural damage. SHM system generally measures structural dynamics
characteristics and analyzes these data in the frequency domain by performingmodal
analysis. Modal analysis-based damage detection algorithms observe signals from
multiple sensors placed on the structure.

Doebling et al. [1], and Fan andQiao [2] carried out a detailed survey for SHMand
damage detection studies on various structures. Earlier researchers have developed
variousmethods of determining the damage in the structure. Vibration-based damage
identification with advanced signal processing tools is now being used to locate the
damage in structure effectively. Advance signal processing tools like Fourier, Hilbert,
and Wavelet transform are used for analyzing the vibration data for damage identifi-
cation. Daubechies and Mallat have opened the new area of wavelet transformation
application and have defined the usability of wavelets in digital signal processing.
Previous significant research employing wavelet transformation includes local dam-
age identification in structures [3, 4]. Wavelet transformation method of damage
identification is based on variation of wavelet coefficients of time-history response
near damage. Hou et al. [5] demonstrate the approach based on wavelet transform
for SHM and damage detection. It is a general conclusion that the damage is easily
detectable for a weaker noise and severe damage. For weaker noise, it is necessary
to choose proper instrumentation/filtration technique so that sensors response may
be used for damage identification.

Sun andChang [6] used awavelet packet transform (WPT) and neural networks for
damage assessment of bridges. Amaravadi et al. [7] compared curvaturemode shapes
andwavelet transformmethodology for damage identification and suggested wavelet
transform ismore accurate than curvaturemode shape.Moyo andBrownjohn [8] used
Discrete Wavelet Transform technique to indicate the regular behavior of a bridge
structure from abrupt changes in the wavelet coefficients. The identification of first
and higher order correlation was done by Gurley et al. [9] using a CWT to contrive
filtered wavelet coherence and bi-coherence maps to observe offshore structures.
Kim and Melhem [10] used CWT and wavelet ridges for damage identification of
concrete structures.

In this paper, a wavelet transformation method is applied to locate the damage
in a five-story steel structure laboratory model. The additional amount of weight
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was added to the structure stepwise to introduce damage in terms of variation in
mass properties in the model. Due to the additional weight, physical properties of
the model have been changed and these changes have been extracted from vibration
data. Two types of accelerometers, i.e., wireless and wired accelerometers were used
to record the vibration signal.

As the extraction of the frequency component and its wavelet analysis is not an
easy process and requires lot of time and the calculations. To make the analysis
fast and effective, a toolbox of software like MATLAB can be used. Use of such
kind of toolbox allows only to analyze a single sensor time-domain data, which is
again a time-consuming process for complicated structures that associatedwithmany
number and type of the sensors. To overcome this difficulty software application is
developed that can process up to six sensors data and can locate the damage exactly.
The method proposed is verified using experiments conducted on the five-story steel
structure at the CSIR-CBRI laboratory, Roorkee, India.

2 Wavelet Theory

The Fast Fourier Transform (FFT) is used to find the frequency component in the
time-history signals which is localized only in the frequency domain and frequency
components extract only from the whole length of the signal. These type of problem
associated with FFT can be resolved with wavelet transform. A wavelet transform is
an advanced signal processing technique, which localizes acceleration signal in both
frequency and time scale [11]. Sinusoidal waves are basis function for FFT whereas
wavelet means a small localized wave centered around a given position in time with
a fast decay to zero away from the center. The basis function (Mother wavelets) for
wavelet is defined by two parameters: Scaling, measure the degree of compression
and translation, determine the time location of the wavelet. This property of wavelet
leads to a multi-resolution representation for nonstationary signals. For a wavelet of
order N, the mother wavelet function can be represented as

ϕ(n) =
N−1∑

j=0

(−1) jC j (2n + j − N + 1) (1)

C j is wavelet coefficient. The mother wavelet should satisfy the following two con-
ditions [12, 13].

+∞∫
−∞

ϕ(t) dt = 0 (2)

and
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+∞∫
−∞

|ϕ(t)|2dt < ∞ (3)

Localized events can be detected and spikes in coefficients occur due to dis-
continuity present in the signals. Continuous Wavelet Transform (CWT) maps a
one-dimensional function onto a two-dimensional function W (a, b) with scaling
parameter a and translation parameter b. Discrete wavelets transformation is useful
for decomposition, compression, and feature selection, whereas orthogonal wavelets
are suitable for damage detection [14].

Continuous Wavelet Transform (CWT) is defined as

W (a, b) = 1√
a

∫
f (t)ϕ∗

(
t − b

a

)
dt (4)

where a is scaling parameter and b is translation parameter. ϕ∗ is the complex con-
jugate of ϕ(t). When 0 < a < 1, window size is narrow and wavelet corresponds to
higher frequency component and for a > 1, wide window size and suitable for low-
frequency components. According to uncertainty principle, the resolution in time
and frequency has the following relation-

�t � f ≥ 1

4π

Therefore, time resolution is better at high frequencies and frequency resolution
at low frequencies. For inverse of wavelet to exist, basic wavelet needs to satisfy
following admissibility criteria

Cϕ = ∞∫
0

|ψ(ω)|2
|ω| dω < ∞ (5)

where ψ(ω) is Fourier Transform of ϕ(t) and can be represented as

W (a, b) = 〈
f (t), ϕ∗

a,b(t)
〉

CWT of signal f(t) can be determined by an inner product of translated and dilated
mother wavelet ϕa,b(t). Inner product represents the similarity between the signal
and the mother wavelet, i.e., degree of closeness between the two functions. CWT
needs tedious calculation efforts to determine the coefficients at each value of scale
parameter whereas Discrete Wavelet Transform (DWT) adopts dyadic scales and
translation, which discretizes the scale and translation parameters. Dyadic values of
a and b are used, i.e.,

a = am0 = 2m, b = nb0a
m
0 = n2m, b0 = 1

And the corresponding discretized wavelets ϕm,n(t) are defined as
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ϕm,n(t) = 1√
2m

ϕ

(
t − n2m

2m

)
(6)

ϕm,n(t) = 2−m/2ϕ
(
2−mt − n

)
(7)

For detection of time of frequency change during online health monitoring of
structures caused due to degradation in stiffness,DWT is verymuchhelpful.Different
wavelet families like Haar, Daubechies, Complex Gaussian, etc. are available but the
selection of appropriate wavelet to be done by analyzing the relevant results in any
application area. Though the selection is generally done by trial and error, yet by
examining the properties of wavelet one can discard many and accelerate the process
[15]. In the article, the selection of wavelet ismadewith specified vanishingmoments
and other features so that it can be used to identify the damage to any structure.

3 Damage Detection in Structure

Wavelet analysis is a promising tool that uses only damage data to identify the dam-
age in the structures whereas method like Curvature damage factor (CDF) requires
intact as well as damage data for identification of damage. Structural damage causes
the variation of the wavelet coefficients and in addition, it also finds the location
of damage by local perturbation of wavelet coefficients. Wavelet coefficients show
irregularity near the crack and this property of wavelet coefficients helps to find the
damage location in the structure. In this paper, a wavelet transformation method is
used to identify the location of damage in the five-story steel structure laboratory
model. An additional amount of weight was added to the structure to introduce dam-
age to the model. Due to the additional weight, physical properties of the model may
be changed and these changes can be extracted from the vibration data processedwith
wavelet transform. SHM is a multidisciplinary process of damage detection which
involves the acquisition of data, communication of data, advanced signal processing,
storage of processed data, and the diagnostic. In this article, vibration signatures
were recorded with unidirectional wired PCB accelerometer and triaxial wireless
G-Link accelerometer for verification purpose. Recorded data are processed with
FFT to determine the frequency mode and wavelet transform is used to determine
the damage location, which is model-based free output only approach. Processing of
time-domain data cannot be directly examined for an indication of damage, so that, to
extract frequency component from time-domain signal, a mathematical tools such as
Fourier transform,Wavelet transforms, and Hilbert transform are applied. Frequency
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Fig. 1 Instrumented steel structure laboratory model

domain analysis is not an easy process and requires a lot of time and calculations.
To make the analysis fast and effective, toolbox of software like MATLAB may be
useful but the use of such kind of toolbox allows only to analyze a single sensor
time-domain data, which is again a time-consuming process for complicated struc-
tures that associated with many number and type of the sensors. To overcome this
difficulty new software application in MATLAB is developed that can process up to
six sensors data and can locate the exact location of the damage. To verify the devel-
oped application, the experimental test was conducted on five-story steel structure
laboratory model at the CSIR-CBRI, Roorkee, India (Fig. 1). Two different types of
sensors were used to verify the physical parameters of the structure and to validate
the developed application for wavelet transformation in damage identification.

Vibration sensing unit of MICRO-STRAIN, i.e., G-Link comprised of wireless
accelerometers which can be utilized to capture synchronized vibration data from
2 km distance. At the receiver end, wireless sensing nodes were programmed for data
logging and sampling with the Node commander software. PCB wired single-axis
accelerometer is also used to capture vibration data, associated with National Instru-
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DAQ for G-link

DAQ for PCB

Sensors

Fig. 2 Sensors and data acquisition system

ment data acquisition system and NI signal express application software to record
real-time data. Instrumentation required for SHM is depicted in Fig. 2. Recorded
time-domain data of each sensor were analyzed with FFT and wavelet transform.
Steps involved in the analysis of time-domain data and identification of damage is
shown in Fig. 3.

The response of steel structure has been recordedwith different additional weights
on different floors. The acceleration time-history data were recorded for intervals
of 40 s with 3 kHz sampling frequency for PCB sensors and 256 Hz sampling
frequency for wireless G-link accelerometer for 30 s. Loads on the known floors
were varied abruptly while recording the vibration data. The vibration data were
processed using the wavelet transformation technique and the floor location was
identified successfully.
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Fig. 3 Steps involve in analysis of acceleration data

4 Program Code

A sample of program code used to analyze the vibration data using wavelet transform
methods. The code has been written to analyze up to six sensors data at the same
time and directly indicate the variation in wavelet coefficients with respect to floors
of the structures.
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file = input('Enter the file name with extension = ','s');
Data = xlsread(file); 
……
Extracted all sensors nodes 

CWTcoefficent1 = cwt(t1,1:1:100,'db8 ','plot');
a1 = abs(CWTcoefficent1);
subplot(313)
plot(xaxis, a1(8,:));
ylabel('Wavelet Coff')
hold off
pkt1 = max(a1(8,:));
…..
Similarly, for all the sensor nodes 

wtcof = [pkt1 pkt2 pkt3 pkt4 pkt5 0]
floor = [5 4 3 2 1 0];
figure;
hold on
plot(wtcof,floor,'linewidth',2);
title('Identification of Damage');
ylabel('Floors');
grid on
hold off
………

Developed MATLAB program using above code reduces manual calculation and
time consumption. Maximum value of wavelet coefficients represents the damage
location.

5 Results and Discussions

Time-history response from the structure itself shows the variation in the amplitude of
acceleration by varying the weight on different floors of the structure. The first mode
of frequency was observed to be around 12.46 Hz in the intact state and it was also
noticed that with increasing mass at different floors the modal frequency decreases.
Figure 4 represents the time-history acceleration data and it’s FFT plot obtained from
PCB accelerometer mounted on the fourth floor of the structure. Figure 5 shows
time-domain acceleration and its FFT plot for G-Link accelerometer mounted on the
same fourth floor for comparison. It was found that the first frequency mode of the
structure is the same for both types of sensors even when they are different in terms
of sensitivity.

In order to identify the damage locations using the CDF method, we need to pick
the peak of each frequency node from FFT of acceleration data. Sometimes while
plotting the FFT of acceleration data, we may get two peaks in the particular location
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Fig. 4 Time-history and FFT of 4th floor PCB accelerometer

Fig. 5 Time-history and FFT of 4th floor G-link accelerometer

as in Figs. 4 and 5, which makes the process of finding damage more difficult and
less accurate but in case of wavelet analysis, this kind of problem did not occur. So
the vibration response of the structure is analyzed with wavelet transformation by
developed MATLAB software application. It is found that Continuous Daubechies
(Db8)wavelet effectively detects the change in the physical parameter of the structure
and may indicate the location of the damage in the structure. Wavelet coefficients
matrix obtained using the Continuous Daubechies (Db8) with a scale from 1 to 100
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is depicted in Fig. 6 for PCB accelerometer on the fourth floor. The peak value
of wavelet coefficient due to damage is found approximately 0.0172. Maximum
coefficients were obtained corresponding to the location, where damage or change
in the physical state had occurred.

Similarly, wavelet coefficients have been obtained for all the five accelerometers
associated at different floors of the structure. It has been observed that wavelet coef-
ficients increase with an increase in damage. Figure 7 represents the case study in
which additional weights were added at second and fourth floor of the structure and

Fig. 6 Time-history and wavelet coefficient

Fig. 7 Variation of WT coefficient with floor level for PCB accelerometers
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Fig. 8 Variation of WT coefficient for G-link accelerometers

wavelet coefficients have been plotted with different floor levels of the structure to
identify the location of the damage. The floors where additional weights added are
clearly identified from the WT coefficient plot.

The wavelet transformation-based approach is robust in detecting the damage
location. For further verification of developed application, the time-history accel-
eration data recorded from the wireless G-Link accelerometer were analyzed with
2 kg additional weight on the third floor of the structure. The variation in wavelet
coefficients clearly indicates the location of additional weight as shown in Fig. 8.

6 Conclusion

Wavelet transformation-based damage identification approach is more accurate to
identify the location of the damage as compared to baseline methods. Change in
the value of the wavelet coefficients due to reduction or gaining of the weights can
clearly indicate the exact location of variation of structural properties/damage in
the structure. Developed MATLAB software application for a wavelet analysis can
process up to six sensors data at one time to identify the location of the damage.
Developed application reduces human efforts and fast in terms of calculations. The
developed application has been verified for two different types of accelerometers,
one with low sensitivity and another with high sensitivity. The application of Con-
tinuous Daubechies (Db8) wavelet in damage identification found to be more robust
in identifying the location of damage.
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Dynamic Analysis of Mini Climbing
Crane

Ravindra S. Bisht, S. K. Panigrahi, Dinesh Kumar, Narendra Kumar,
Pawan Kumar, Syed Saif Ali, Sameer and Ajay Chourasia

Abstract Tobridge the existing technological gap between age-old traditionalmeth-
ods and modern sophisticated cranes for material handling, the Central Building
Research Institute (CSIR-CBRI) Roorkee previously developed mini climbing crane
with a lifting capacity of 1000 kg at a maximum loading radius of one meter. The
developed crane exhibits considerable saving in construction time besides a large sav-
ing inmanpower. This machine has been awarded the best technology NRDCAward.
In this paper, the kinematic model of the mini climbing crane has been developed.
Crane workspace and boom tip trajectory are evaluated using MATLAB program-
ming by varying different geometrical and motion parameters. Modal analysis of
the full-scale mini climbing crane is performed for its overall stability. Further finite
element model (FEM) of the crane shows the load-carrying capacity of the existing
design of the mini climbing crane. The full-scale 3D CADmodel of the crane is used
in the finite element analysis (FEA) using ANSYS software. The study presented in
this paper will help further in design and development of a newer version of mobile
crane for fast civil construction work.

Keywords Mini climbing crane ·Modal analysis · Kinematic model ·Workspace
and trajectory tracking

1 Introduction

Central Building Research Institute (CSIR-CBRI) Roorkee previously developed
mini climbing crane with a lifting capacity of 1000 kg at a maximum loading radius
of one meter to a height of 11 m when the crane is standing at the ground level. This
crane has been awarded the best Technology NRDC Award and Indian patent [1] for
indigenous development. The key feature of this crane is that it lifts almost equal
amount of weight as compared to its own weight. The developed crane requires no
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anchorage with surrounding and it can easily split into a number of subassemblies
such as base, mast, ring gear, counterweight, and boom assembly for ease in shifting
from one floor/site to another. These subassemblies can be further split into various
parts and two people can easily assemble and disassemble them by bolting connec-
tions. There are two revolute joints such as luffing motion for varying boom load
radius and slewing motion all-around the ring gear axis.

The mini climbing crane is light in weight and having a new base design with
telescoping beam features to adjust the base span width. This feature provides easy
to transfer the overall load to the beam/column of building, therefore, the crane is
suitable for multistoried construction. The authors [2] have described the detailed
design features, merits and field applications of the mini climbing crane.

Thementionedmini climbing crane was presented in a paper [3] shows successful
use of the crane for multistorey building construction. There are various possibilities
of mini climbing crane to mount on truck chassis, four wheels, and expendable base
to be adopted in diversified site conditions. A project report of CSIR-CBRI Roorkee
shows [4] the detailed design calculations as per IS standards for the design and
development of mini climbing crane and shows its commercialization to various
firms of national repute. However, there is no information about the kinematic and
dynamic analysis of the crane.

Nasser [5] in his paper discussed the dynamic analysis of various cranes. The
dynamic analysis of tower cranes has been discussed by Schlott et al. [6] andWeihua
et al. [7], while Lu et al. [8] discussed the dynamic optimum design of tower crane
structures. The dynamic analysis of other types of crane has been discussed by many
researchers [9, 10]. These analyses help in reducing the number of experimental
prototypes for improvements of a better crane design.

In this paper, the kinematic model of the mini climbing crane has been developed
to evaluate boom tip trajectory and crane workspace using MATLAB programming.
Based on the detailed drawings of previously developed mini climbing crane [4], the
CAD model of various parts and full-scale assembly in Solidworks software have
been prepared for stress, and deformation analysis using ANSYS. The actual and
simplified CAD model of the mini climbing crane is almost same. Only the part
joints of the simplified model are assumed to be merged with one another using
a unified CAD model approach. However, these parts are properly connected by
welded and bolting joints in the actual CAD model of the crane. The simplified
version of full-scale CAD model is used in the finite element analysis (FEA). The
above study presented in this paper will help further in design and development of a
newer version of mini climbing crane for fast civil construction work and to bridge
the gap between the old-age traditional methods and modern costly system.

The next section gives kinematic analysis of mini climbing crane for tip trajectory
and workspace evaluation. In the third section, design features of mini climbing
crane are presented. The fourth section shows the finite element simulation of mini
climbing crane for modal, stress, and deformation analysis. Conclusions derived
from this work have been highlighted in the last section.
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2 Kinematic Analysis of Mini Climbing Crane

The mini climbing crane shown in Fig. 1 is made of five links, viz., base assembly,
mast assembly, ring gear assembly, counterweight platform, and boom assembly.
The forward kinematics is used to locate the loading hook mounted on boom tip to
place the boulders/materials on the wall structure for a given slewing (�) and luffing
(θ ) revolute joint motions.

2.1 Mathematical Model

The schematic of mini climbing crane given in Fig. 1a, b shows total six frames used
in the kinematic model to define the position and orientation of the crane links with
respect to the inertial frame. Where {0} represents an inertial frame attached to the
base leg assembly of the crane; frame {1} is located at the base of the mast assembly;
{2} represents the rotation of slewing motion located at the center of gravity (CG)
of the ring gear assembly. Frame {3} and {4} represent the relative position and
orientation of the boom assembly; where frame {5} represents the final boom tip
location for boulders placement. Joint-link parameters of the mini climbing crane
according to Denavit–Hartenberg (D–H) convention have been derived and shown
in Table 1.

{0} X0

Z0

{1} X1

Y0

Y1
Z1

Z2

Z5

Y5 X5

{5}

X2

Y2 X3

Z3

Z4

X4

Y3

Y4

{2}

{3} {4}

h1

l

h2

h3

b
Base leg assembly

Mast

Ring gear

Boom

Boom tip

Lifting load

Slewing

Luffing

(a) (b)

Fig. 1 Mini climbing crane for kinematic model, a detailed view of ring gear and boom mounting,
b overall schematic
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Table 1 Joint-link parameters of the mini climbing crane

i αi−1 ai−1 di θi

1 0 0 h1 0

2 0 0 h2 �

3 0 b h3 0

4 90° 0 0 θ

5 0 l 0 0

According to individual frame relative position and orientation, the transformation
matrix shown in Eq. (1) is used to derive individual transformation matrices using
(D–H) parameters shown in Table 1. Where cθi= cosθi and sθi = sinθi , cαi−1=
cosαi−1 sαi−i = sinαi−1, and i = 1− 5.

i−1
i T =

⎡
⎢⎢⎣

cθi ;−sθi ; 0 ; ai−1

sθi cαi−1 ; cθi cαi−1 ;−sαi−1 ;−sαi−1di
sθi sαi−1 ; cθi sαi−1 ; cαi−1 ; cαi−1di

0 ; 0 ; 0 ; 1

⎤
⎥⎥⎦ (1)

The overall transformationmatrix asmentioned in Eq. (2) for the kinematic model
is obtained by combining the individual transformation matrices

0
5T = 0

1T
1
2T

2
3T

3
4T

4
5T =

⎡
⎢⎢⎣

cψcθ −cψsθ sψ
(
lcψcθ + bcψ

)
sψcθ −sθ sψ −cψ

(
lsψcθ + bsψ

)
sθ cθ 1 (lsθ + h1 + h2 + h3)
0 0 0 1

⎤
⎥⎥⎦ (2)

where l = 4.50 m is the boom length, h1 = 2.25 m is the height of the base,
h2 = 4.50 m is the height of the mast assembly, h3 = 0.25 m represents height
location of boom joint with respect to ring gear assembly, b = 0.5 m represents
location of boom joint along the radial direction [4], c� = cos(�), cθ = cos(θ),
s� = sin(�) and sθ = sin(θ).

2.2 Boom Tip Trajectory and Workspace Analysis

AMATLABprogram is developed to simulate the boom tip trajectory andworkspace
of the mini climbing crane. The boom tip trajectory is performed using above derived
kinematic model for the three cases of boom luffing angles. The result (Fig. 2)
indicates that the crane can lift the material to heights of 9.25 m, 10.2 m, and 11 m
from its base level at different boom luffing angles 30°, 45°, and 60°, respectively.
This simulation also shows the working radius (± 4.40,± 3.70,± 2.75 m) for these
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Fig. 2 a Boom tip trajectory of mini climbing crane, b workspace of mini climbing crane for three
cases of boom angles

three cases of luffing angles when slewing (�) angle varies from 0° to 360°. Another
simulation carried out using MATLAB program shows the total workspace of the
crane with the height of the mast varies from 0 to 4.5 m for different boom angles
30°, 45°, and 60°. This shows that the workspace of the mini climbing crane is in
stationery vertical cylindrical columns for three different heights. This workspace is
similar to cylindrical configuration of robot manipulator.

3 Design Features of Mini Climbing Crane

The working model of mini climbing crane is shown in Fig. 3a. The actual CAD
model is shown in Fig. 3b and simplified model is shown in Fig. 3c. Both the CAD
models have same geometrical representations. Only the parts of simplified model
are assumed to be merged with one another using a unified CAD model approach.
However, these parts (total 344 Nos) are properly connected by welded and bolting
joints in the actual CAD model of the crane. Hence, fewer parts (total 40 Nos.)
are required to model the simplified full assembly of the crane. The design of the
mini climbing crane is modular, hence, all the parts can be quickly assembled and
disassembled with ease to shift from one floor to other. This makes the overall crane
systemveryflexible in the construction site.Mini climbing crane has a lifting capacity
of 1000 kg at a max loading radius of one meter to a maximum height of about 11 m.

Design features of mini climbing crane are widely varying according to opera-
tional requirements such as types of motion required, amount of load lifting and as
variable lifting speed and load radius. All components of mini climbing crane are
designed as per Indian standard guidelines (IS:800, IS:807, and IS:4573). Following
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Boom
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assembly

Mast

Base

Counter 
weight 
platform 

Luffing 
mechanism 
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Chair unit

Fig. 3 aWorkingmodel of previously developedmini climbing crane,CADdesignofmini climbing
crane for FEM simulation, b actual model, c simplified joint connection-based model

are the components of mini climbing crane providing luffing and slewing motions
and speed according to their function.

3.1 Base

Base of any crane plays an important role in crane stability. The base ofmini climbing
crane makes it flexible to lift load under variable load conditions. The base is made
of structural member as per IS: 808. ISMC channel is provided for better stability.
The base span can be varied as per load condition and availability of space to place
the crane. A telescopic beam is provided as shown in Fig. 3 which makes crane base
flexible to operate under available space conditions.

3.2 Mast

Mast of mini climbing crane bears hoisting load and balancing load. This load trans-
fers to the base of crane through legs and supporting structural members. Mast height
can be varied according to required height of lifting. The mast is made of MS angles
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as per IS:808. Suitable numbers of mast column are joined by bolting fasteners to
get the required height of the mast.

3.3 Ring Gear Assembly

To provide slewing motion to boom of the crane, ring gear assembly is provided.
Ring gear is fixed on the top of mast by nut bolt fasteners. Steel balls are provided
between upper ring and ring gear to facilitate slewing motion of boom. Lower ring
was tightly held with upper ring by fastening with provision of steel ball between
lower ring and ring gear. Pinion is rotated around the periphery of ring gear through
slewing motor. By this ring gear and pinion, slewing motion is provided to boom of
crane.

3.4 Luffing Mechanism

Luffing motion in mini climbing crane is provided by luffing frame, luffing pulley,
and winch drum. A winch drum is provided to wrap the wire rope and the luffing
angle is increased or decreased by wrapping or unwrapping the wire rope by the
winch drum. Maximum luffing angle may be reached to 60° to maintain its stability.

3.5 Boom Assembly

Boom of mini climbing crane is an extended arm of the crane through which load
is lifted at its tip using a lifting pulley. Boom is fabricated of steel structural ISA
angles. Boom is connected through a hinge joint to the platform of the crane. Boom
of crane is tilted maximum 60° to the horizontal.

4 Finite Element Simulation of Mini Climbing Crane

The simplifiedCADmodel ofmini climbing crane is chosen for simulation inANSYS
finite element software. Linear elasto-plastic material properties of structural steel
in given Table 2 have been used to model all the parts used in overall assembly of
the crane.
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Table 2 Material properties of structural steel

Material Young’s
modulus
(MPa)

Density
(kg/m3)

Poisson’s
ratio

Tensile
ultimate
stress (MPa)

Tensile yield
stress (MPa)

Structural
Steel

200,000 7850 0.3 460 250

4.1 Modal Analysis

The first step in any dynamic response and stability analysis is the evaluation of
natural frequencies of the system. Modal analysis of the mini climbing crane is used
to determine the vibration characteristics (natural frequencies and mode shapes) and
these inputs may be used further for dynamic analysis for structural design of the
crane.

[K ]{φi } = ω2
i [M]{φi } (3)

where inEq. (3), assemblymassmatrix [M] = ∑N
e=1[M]e which is related to element

mass matrix, [M]e = ∫
v
ρ[N ][N ]T ∂V , assembly stiffness matrix [K ] = ∑N

e=1[K ]e

which is related to element stiffness matrix, [K ]e = ∫
v
[B]T [C][B]∂V .

N = 1, 28, 660 minimum finite elements have been used in the proposed FEM
model to attain a desired level of accuracy, ρ is density, [N ] is shape function for
element, [B] is strain displacement matrix,[C] is stress–strain elasticity matrix, {φi }
= mode shape vector of mode i, and ω2

i is the eigenvalue of mode i. The first four
natural frequencies are evaluated using ANSYS finite model of mini climbing crane
and results are shown in Table 3.

Natural frequencies of first four modes are shown in Table 3. The mode shapes are
shown in Fig. 4, where arrows are indicating the mode shapes. The modal analysis
also shows that at higher natural frequency the boom tip displacement is also higher.

Table 3 First four natural
frequencies and mode shapes

Mode No. Frequency
(Hz.)

Mode shape Boom tip
deflection
(mm)

1 2.944 Chord wise
bending

1.867

2 3.155 Flap wise
bending

2.002

3 4.806 Torsion/twisting
mode

2.187

4 6.553 Flap wise
bending

2.606
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(a) 1st Mode (b) 2nd Mode (c) 3rd  Mode (d) 4th Mode

Fig. 4 Un-deformed and deformed shapes of mini climbing crane for the first four modes of
vibration

4.2 Stress and Deformation Analysis

Static analysis of mini climbing crane is performed using finite element analysis
in ANSYS software. The maximum equivalent (von Mises) stress on the crane is
205MPa approximately. Finite element analysis (FEA) shown in Fig. 5a of the crane
shows that the maximum stress is generated in luffing mechanism’s wire rope pulley.
From the maximum stress analysis, it is observed that any of the crane parts have
not been yielded yet for a maximum applied load of one ton per meter at the boom
tip. Deformation analysis shown in Fig. 5b of mini climbing crane is also performed

Fig. 5 a Maximum von Mises stress and b deformation analysis using FEA
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using finite element analysis. The maximum boom tip deflection was found 34 mm
approximately.

5 Conclusion

In this paper, the kinematic model of the mini climbing crane has been developed
to evaluate boom tip trajectory and crane workspace using MATLAB programing.
The boom tip trajectory simulation of mini climbing crane shows working radius and
corresponding height from the crane base level at different boom luffing angles for
proper placement of the lifted material/components. The workspace simulation of
mini climbing crane shows stationery vertical cylindrical columns similar to cylin-
drical configuration of robot manipulator. In the paper two types of CAD models
have been developed, one considers the actual connections and another in a simpli-
fied way by merging the connections using a unified CAD model approach. In the
simplified model, less computational efforts are required in comparison to the actual
model with no much change in simulation results.

The modal, stress, and deformation analysis of the mini climbing crane were
evaluated analytically using ANSYS software. The stress analysis shows that no
parts have been yielded at the maximum applied load, i.e., one Ton at one-meter
radius on the boom tip. The modal analysis shows the increase in magnitude of
boom tip displacement while moving from lower modes to higher modes. The study
presented in this paper will help further in simulation of a newer version of mini
climbing crane along with nonlinear material modeling of structural steel.
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CSIR-Central Building Research Institute and is being published with the permission of Director
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Seismic Qualification of In-Cell Crane
Employed in the Hot Cell of a Radio
Chemical Plant

Dharmick Kumar, Sanatana Maharana, T. Selvaraj, K. Rajan,
B. M. Ananda Rao and A. Ravisankar

Abstract In nuclear industry, due to the presence of highly acidic and radioactive
environment, all the handling and transferring operations of various systems and
its components inside the hot cell are to be carried out remotely. For this remote
handling operations, the in-cell crane is developed. During normal operation and
under postulated seismic event, the structural integrity of the in-cell crane has to be
maintained. Hence, as per the safety requirement, this system has to be seismically
qualified. This paper highlights the finite element modelling of the in-cell crane for
two different load configurations, load cases such as static and seismic; extraction
of natural frequencies and mode shapes; mode combination using CQC (Complete
Quadratic Combination) method. The seismic qualification of in-cell crane is done
as per ASME Section III, Division 1, Subsection NF and its structural integrity is
ensured.

Keywords Seismic · Static · Dynamic · ASME—NF · Material handling system ·
FRS

1 Introduction

In nuclear industry, various systems and components are installed inside the hot cell
where highly acidic and radioactive environment prevails. Handling and transferring
operations of these systems and components are to be carried out remotely inside
a shielded enclosure. To cater to this requirement, novel material handling system
(in-cell crane) for hot cell application has been developed for handling different types
of loads remotely.

The in-cell cranes used for hot cell applications are special types of cranes made
of SS and are quite different from conventional cranes. The in-cell crane is erected
inside alpha tight high-density concrete cell. Contact maintenance of the in-cell crane
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Table 1 Stress limits for Class 2 components as per ASME Section III, Division 1, Subsection NF
(considering stress limit factor)

Service limit Stress limit

σm σm + σb

Design and Level A ≤1.0 S ≤1.5 S

*Level D
≤ max

{
1.2 Sy

1.5 S

}
but < 0.7Su ≤ 1.5 × max

{
1.2Sy

1.5S

}

*Stress limit for level D service loading (class 2 components) is taken from Appendix F, F-1332 [2]
σm is membrane stress, which is the average stress across the solid section under consideration
σb is bending stress, which is the linear varying portion of the stress across the solid section under
consideration

will involve large radiation exposures. To avoid this, all the drives along with the
limit switches which require periodic maintenance are located outside the hot cell,
inside alpha tight maintenance box (drive box) for easy contact maintenance.

2 Design Criteria

The structural integrity of the in-cell crane under seismic loading has to be qualified
as per ASME Section III, Division 1, Subsection NF [1]. In-cell crane is categorized
as a safety class 2 component as per the safety classification of systems in fuel
reprocessing plant. The allowable stress limits as referred from ASME Section III,
Division 1, Subsection NF for plate and shell-type supports are given in Table 1.

3 Mathematical Modelling of the System

3.1 Response of MDOF System Subjected to Ground Motion

The equation of motion for a damped SDOF equation subjected to base excitation
can be written as

[M]{ẍ} + [C]{ẋ} + [K]{x} = −[M]ẍg{1} (1)

where

[M] is the structural mass matrix
[C] is the structural damping matrix
[K] is the structural stiffness matrix
{Ø} is the mode shape vector
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{x} is the nodal displacement vector
{ẋ} is the nodal velocity vector
{ẍ} is the nodal acceleration vector

Let {x} = {
Ø

}
X (2)

where X is the generalized displacement.
Substituting Eq. (2) into Eq. (1), we get

[M]
{
Ø

}
Ẍ + [C]

{
Ø

}
Ẋ + [K]

{
Ø

}
X = −[M]ẍg{1} (3)

Multiplying Eq. (3) with {Ø}T on both sides, we get

{
Ø

}T
[M]

{
Ø

}
Ẍ + {

Ø
}T
[C]

{
Ø

}
Ẋ + {

Ø
}T
[K]

{
Ø

}
X = −{

Ø
}T
[M]ẍg{1} (4)

Using orthogonal properties of mode shapes (all non-diagonal elements are zero),
i.e.

{
Øi

}T
[M]

{
Ø j

} = 0 for i �= j{
Øi

}T
[K]

{
Ø j

} = 0 for i �= j

Equation (4) becomes

[1]Ẍn + [2ζωn]Ẋn + [
ω2

n

]
Xn = −�nẍg (5)

where �n is themass participation factor = {Ø}T[M]{1}
{Ø}T[M]{Ø} .

In the above Eq. (5), the matrices are diagonal and hence represents ‘n’ uncoupled
equations of motion and each represents a single degree of freedom system with a
factor on right-hand side called participation factor. It means that if we know the
response of single degree of freedom system and by multiplying it with participation
factor, we can get the modal response of multi-degree of freedom system as

{ẍ}n = �n
{
Ø

}
nẌn (6)

where Ẍn are the spectral acceleration values as Sa1, Sa2, etc., respectively, at fre-
quencies f1, f2, etc.
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Fig. 1 Isometric view of the assembled model for first and second load configuration, respectively

4 Finite Element Analysis

4.1 FE Modelling

The system is modelled for two load configurations. Four noded shell element with
six degrees of freedom at each node is used for the modelling of the system. Rigid
links are modelled for the application of loads. Mapped meshing is done for the
system to avoid any degeneration.

First load configuration: In this load configuration, end carriage is at the centre of
the gantry girder and also the cross travel trolley and hook block assembly are at the
centre of the girder, i.e. loading is at the centre of the girder. Modelling of first load
configuration is shown in Fig. 1.

Second load configuration: In this load configuration, end carriage is at one end of
the gantry girder and also the trolley and hook block assembly are at one end of the
girder, i.e. loading is offset from the centre of the girder. Modelling of the second
load configuration is shown in Fig. 1.

4.2 Loading

Loading can be categorized into static loading and dynamic (seismic) loading.

Static loading: Static load includes the self weight (accounted by geometry and grav-
ity) of the system (girder, end carriage and gantry girder) (approx. mass 938.5 kg).
The mass of trolley and hook block assembly (50 kg each) plus the safe working load
(accounted by using lumped mass element of mass 500 kg) is applied on the system
as external load for the analysis. Location at which the static loading is applied is
different for the two loading configurations.

Seismic loading (dynamic): Response spectrum method is used for the seismic
analysis. Spectral accelerations values (corresponding to 3% damping at an elevation
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Fig. 2 Floor response spectrum (for 3% damping at an elevation of +5.5 m for site)

of +5.5 m for plant site) are used for response spectrum analysis and are shown in
Fig. 2.

4.3 Analysis and Code Compliance

Analysis is done for two load configurations.

Load configuration 1
Design, level A and level D service limit (static and dynamic analysis): As per design
code for crane, maximum allowable deflection is L/1200 [3], where L is the span of
the crane. Here, L = 6980 mm.

Therefore, the maximum deflection permitted = 6980/1200 = 5.82 mm.
The deformation plot of load configuration 1 under static loading is shown in

Fig. 3.
Maximumdeflection seen in themember= 2.8mm (less than allowable deflection

of 5.82 mm).
Analysis is done and the plots for primary membrane andmembrane plus bending

stress under static loading are shown in Figs. 4 and 5, respectively. The maximum
value of principal stress for the individual components are listed in Table 2.

Primary membrane and membrane plus bending plots for load configuration 1
under seismic loading are shown in Figs. 6 and 7, respectively.

Since the maximum stress and deflection values are within the allowable limits,
the structure is safe for design, level A and level D service loading.

Modal analysis: The modal analysis of the in-cell crane for load configuration
1 is carried out and the mass participation summary is presented in Table 3. Major
mode shapes in X-, Y- and Z-direction is shown in Figs. 8, 9 and 10, respectively.
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Fig. 3 Deformation plot for load configuration 1 under static loading

Fig. 4 Primary membrane stress plot for load configuration 1 under static loading
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Fig. 5 Primary membrane plus bending stress plot for load configuration 1 under static loading

Table 2 Maximum value of principal stress for individual components for load configuration 1
under static loading (Design and Level A loading condition)

Component Stress Design and level A loading Level D loading

Maximum
principal
stress (MPa)

Allowable
stress (MPa)

Maximum
principal
stress (MPa)

Allowable
stress (MPa)

Girder σm 29.4 115 98.1 204

σm + σb 32.3 172.5 123 306

End carriage σm −9.67 115 68.7 204

σm + σb 26.8 172.5 69.7 306

Gantry girder σm −13.5 115 65.2 204

σm + σb −27.7 172.5 79.7 306

Load configuration 2
Design and level A and level D service limit (static and dynamic analysis): Fig. 11
shows the deformation vector plot for load configuration 2 under static loading.

Maximum deflection permitted = 6980/1200 = 5.82 mm
Maximum deflection seen in the member = 1.515 mm (less than allowable)

Analysis is done and the plots for primary membrane andmembrane plus bending
stress under static loading are shown in Figs. 12 and 13, respectively. The maximum
value of principal stress for the individual components are listed in Table 4.

Primary membrane and membrane plus bending plots for load configuration 2
under seismic loading are shown in Figs. 14 and 15, respectively.
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Fig. 6 Primary membrane stress plot for load configuration 1 under seismic loading

Fig. 7 Primary membrane plus bending stress plot for load configuration 1 under seismic loading
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Fig. 8 Mode shape in X-direction corresponding to mode 1, frequency 7.25 Hz

Fig. 9 Mode shape in Y-direction corresponding to mode 3, frequency 9.87 Hz
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Fig. 10 Mode shape in Z-direction corresponding to mode 6, frequency 30.21 Hz

Since the maximum stress and deflection values are within the allowable limits,
the structure is safe for design, level A and level D service loading.

Modal analysis: The modal analysis of the in-cell crane for load configuration 2
is carried out and the mass participation summary of the modal analysis is presented
in Table 5.

5 Conclusion

FE model is developed simulating the actual loading conditions. Static and seismic
analysis is performed for two types of load configurations and the induced stresses
have been checked and are found to be within the allowable limit as per the code
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Fig. 11 Deformation plot for load configuration 2 under static loading

Fig. 12 Primary membrane stress plot for load configuration 2 under static loading
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Fig. 13 Primary membrane plus bending stress plot for load configuration 2 under static loading

Table 4 Maximum value of principal stress for individual components for load configuration 2
under static loading and seismic loading (Design, level A and level D loading condition)

Component Stress Design and level A loading Level D loading

Maximum
principal
stress (MPa)

Allowable
stress (MPa)

Maximum
principal
stress (MPa)

Allowable
stress (MPa)

Girder σm 15.4 115 59 204

σm + σb 32.8 172.5 62.9 306

End carriage σm −13.6 115 65.7 204

σm + σb 39.7 172.5 73.3 306

Gantry girder σm −15.3 115 49.5 204

σm + σb −25.8 172.5 62.1 306

compliance of ASME, Section III, Division 1, Subsection NF. Hence, the structural
integrity of the in-cell crane is ensured subjected to static and seismic loading con-
ditions.

Under static loading condition, the induced stresses are higher for load configura-
tion 2 in gantry girder as compared to load configuration 1. Whereas under seismic
loading condition, the induced stresses are higher for load configuration 2 in girder
as compared to load configuration 1.
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Fig. 14 Primary membrane stress plot for load configuration 2 under seismic loading

Fig. 15 Primary membrane plus bending stress plot for load configuration 2 under seismic loading
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Seismic Evaluation of Vertically
Irregular RC Buildings

Sayanti Bhattacharjee and Pradip Sarkar

Abstract Classification of seismic damage indices proposed in the published lit-
erature is popularly known as local damage indices and global damage indices.
Multiple parameters for each of them are studied to predict the seismic performance
of structures. Such a parameter is chosen in this study. For a building to fail by
ground motion excitations, certain limiting values of the above-mentioned indices
(performance-based limit states) are given in the codes and published literature. A
review of a probabilistic detailed seismic analysis, carried out for a regular and geo-
metrically irregular RC framed buildings subjected to typical site hazard, is presented
in this paper. Natural ground motions are used to verify the probability of failure of
such frames rather than using synthetic ground motion.

Keywords Natural ground motion · Stepped frame · Regression analysis · Seismic
performance

1 Introduction

A regular building is defined as a building with distributed uniform mass, stiffness,
strength, and structural form.When one ormore of these properties are nonuniformly
distributed, either individually or in combination with other properties in the vertical
direction, the building is referred to as being vertically irregular. There are various
examples of failure of such buildings during past earthquake phenomenon (Bhuj
2001, Islamabad 2005, Sikkim 2006, South Island 2011, Nepal 2015, and Taiwan
2018) due to nonuniform distribution of structural properties. For this reason, verti-
cally irregular buildings have never been much preferred by the structural engineers
for decades. The main reason behind this abundance was inadequacy in the informa-
tion given in various design codes. In the past, several design codes suggested mostly
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(b)(a)

Fig. 1 Frames selected for analysis: a eight-storey four-bay regular building; b eight-storey four-
bay stepped building

force-based analysis. But, in recent light of published research works and revised
design codes, performance-based analysis has been preferred over the former one.
Several attempts have been made to quantify the vertical irregularities (defined in
terms of mass, stiffness, in-plane discontinuity in vertical elements resisting lateral
force, vertical geometry, discontinuity in capacity-weak storey) in previous literature
[1–3]. To predict the behavior of such frames in detail and accuracy, seismic damage
indices are broadly classified as local damage parameters (LDP) and global damage
parameters (GDP). Inter-storey drift (ISD) is a local damage parameter. It has been
chosen to observe the behavior of a vertically irregular RC building (Stepped) and
compare it with a regular one (Fig. 1).

2 Selection of Vertically Irregular Building: Background
and Motivation

Various vertically irregular as well as a regular RC building frame (studied in the
present case) are shown in Fig. 2. The diagram is self-explanatory about several
classes of irregularity. All the buildings have eight storey and four bay configuration.

Stiffness Mass Geometric Regular In-plane

Fig. 2 Four vertically irregular and one regular building



Seismic Evaluation of Vertically Irregular RC Buildings 289

Table 1 List of EDPs
available in the literature

LDP GDP Reference

Displacement ductility Ductility [4]

Inter-storey drift Global drift [5]

Normalized hysteretic
energy

Normalized hysteretic
energy

[6]

Park/Ang.-indicator Park/Ang.-indicator [7]

Properties of the structural elements are kept same for both regular and irregular
frames to have ease in comparison.

In the present scenario of increasing population, irregular esthetically pleasant
buildings have become the need of the day. This irregularity caters the necessity for
parking space, sufficient daylight, and proper air circulation. Above all, in higher
seismic zones and urban areas, floor area ratio (FAR) is of a civil engineer’s concern.
To take care of all these issues, a geometrically irregular stepped frame is chosen for
this study.

3 Selection of Engineering Damage Parameter (EDP)
and Intensity Measure (IM)

Engineering damage parameters are classified as global damage parameters (GDP)
and local damageparameters (LDP). Several damageparameters are studied as shown
in Table 1. For popularity and ease of understanding, selected EDP in the present
case is inter-storey drift. Among several intensitymeasures, peak ground acceleration
(PGA) and peak ground velocity (PGV) both are equally significant. PGV is more
dominant in high-rise (more than 10 storey) and super high-rise buildings (more than
40 storeys). Thus, PGA is considered here as the earthquake intensity measure.

4 Selection of Natural Ground Motion Records

15 natural groundmotion having both horizontal and vertical components are consid-
ered in this paper [8] as shown in Table 2. These time-history data are not transformed
into spectrum consistent data. The maximum PGA is only matched with Indian stan-
dard [9].
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Table 2 List of selected ground motion records

S. no Event Magnitude PGA, g Fault type* Recording station

I II

1 Northridge (1994) 6.7 0.42 0.52 1 Beverly

2 Northridge (1994) 6.7 0.41 0.48 1 Canyon Country

3 Duzce, Turkey
(1999)

7.1 0.73 0.82 2 Bolu

4 Hector Mine
(1999)

7.1 0.27 0.34 2 Hector

5 Imperial Valley
(1940)

6.5 0.24 0.35 2 Delta

6 Imperial Valley
(1940)

6.5 0.36 0.38 2 El Centro Array
#11

7 Kocaeli, Turkey
(1999)

7.5 0.31 0.36 2 Duzce

8 Kocaeli, Turkey
(1999)

7.5 0.22 0.15 2 Arcelik

9 Landers (1992) 7.3 0.24 0.15 2 Yermo Fire
Station

10 Landers (1992) 7.3 0.28 0.42 2 Coolwater

11 Manjil, Iran
(1990)

7.4 0.51 0.5 2 Abbar

12 Superstition Hills
(1987)

6.5 0.36 0.26 2 El Centro Imp.
Co.

13 Chi-Chi, Taiwan
(1999)

7.6 0.35 0.44 1 CHY101

14 Chi-Chi, Taiwan
(1999)

7.6 0.47 0.51 1 TCU045

15 San Fernando
(1971)

6.6 0.21 0.17 1 LA-Hollywood

*1 indicates Thrust and 2 indicates Strike-slip

5 Modeling, Analysis, and Results

Modeling of the selected buildings are done by considering the uncertainties of input
random variables like concrete characteristic compressive strength (f ck), Steel yield
strength (f y), and damping ratio. Nonlinear dynamic probabilistic analysis is carried
out on these selected buildings by considering both the vertical and horizontal com-
ponents of the selected ground motions. Using ISD values obtained by the analysis,
probabilistic seismic demand models (PSDM) are developed along with fragility
curves (Figs. 3, 4, 5, and 6).
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Fig. 3 ISD of regular building under horizontal ground motion

Fig. 4 ISD of stepped building under horizontal ground motion

Inter storey drift (ISD) = Relative displacement between adjacent storeys

Storey height
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Fig. 5 ISD of regular building under bidirectional ground motion

Fig. 6 ISD of stepped building under bidirectional ground motion

5.1 Regression Analysis

Governing equation for regression analysis is given by (Table 3):

Table 3 Values showing PSDM parameters for regular and stepped frame

Frame type Ground motion components PSDM R2 βD|PGA

Regular Horizontal 3.73(PGA)1.1876 0.3012 1.28

Horizontal + vertical 3.89(PGA)1.1398 0.3439 1.11

Stepped Horizontal 4.95(PGA)1.316 0.3315 1.32

Horizontal + vertical 5.13(PGA)1.2664 0.3857 1.13
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Fig. 7 Fragility curve of
regular building under
unidirectional and
bidirectional ground motion

Fig. 8 Fragility curve of
stepped building under
unidirectional and
bidirectional ground motion

Fig. 9 Fragility curve of
regular and stepped building
under unidirectional ground
motion

EDP = a(IM)b (1)

Four fragility curves are plotted with various combinations (Regular and Stepped;
Unidirectional and bidirectional) as shown in Figs. 7, 8, 9, and 10.
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Fig. 10 Fragility curve of
regular and stepped building
under bidirectional ground
motion

6 Conclusion

Several literature have shown very less βD|PGA values for horizontal ground motion
case [5]. In this study, βD|PGA is found to be much higher. The reason behind this is
the consideration of natural ground motion instead of taking synthetic records.

Vertical component of ground motion has a negligible effect on the overall per-
formance of buildings considered here.

Probability of failure of stepped buildings are higher than regular buildings sub-
jected to earthquake forces.
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Natural Convection of Non-Newtonian
Nanofluid Flow Between Two Vertical
Parallel Plates in Uncertain Environment

U. Biswal, S. Chakraverty and B. K. Ojha

Abstract In this article, solution bounds for velocity and temperature of non-
Newtonian nanofluid flow between two vertical flat plates due to natural convection
have been investigated in uncertain environment. Governing differential equations of
the titled problem contain a physical parameter, namely, nanoparticle volume fraction
which is taken as uncertain in terms of interval. The considered problem has been
solved by Galerkin’s method where Legendre polynomials are used to approximate
the series solution. The terms in the assumed series solutions are orthogonalized by
Gram–Schmidt orthogonalization process. The interval uncertainties are converted
to crisp form by the help of parametric approach of intervals. The results obtained
by proposed method are compared in special cases, viz., with the existing results and
they are in good agreement.

Keywords Nanofluid · Non-Newtonian nanofluid · Galerkin’s method · Legendre
polynomial · Gram–Schmidt orthogonalization

1 Introduction

Nanofluids are fluid with added nanoparticles in base fluid. A new class of fluid has
been proposed by Choi and Eastman [1], that is nanofluid by suspending metallic
nanoparticles in conventional heat transfer fluids. Usually, nanoparticles are made
of carbides, metals, carbon nanotubes, or oxides. Few methods for preparation of
nanofluid may be found in review paper given by Wang and Mujumdar [2]. Due to
the importance of nanofluid in convective heat transfer, it has been taken into attention

U. Biswal (B) · S. Chakraverty · B. K. Ojha
Department of Mathematics, National Institute of Technology Rourkela,
Rourkela 769008, Odisha, India
e-mail: uddhababiswal789@gmail.com

S. Chakraverty
e-mail: sne_chak@yahoo.com

B. K. Ojha
e-mail: bkojha@nitrkl.ac.in

© Springer Nature Singapore Pte Ltd. 2020
S. Chakraverty and P. Biswas (eds.), Recent Trends in Wave Mechanics
and Vibrations, Lecture Notes in Mechanical Engineering,
https://doi.org/10.1007/978-981-15-0287-3_22

295

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0287-3_22&domain=pdf
mailto:uddhababiswal789@gmail.com
mailto:sne_chak@yahoo.com
mailto:bkojha@nitrkl.ac.in
https://doi.org/10.1007/978-981-15-0287-3_22


296 U. Biswal et al.

of many researchers in recent years. Nanofluids are being utilized in many indus-
trial applications for lubrication, heat transfer, coating, nuclear reactors, etc. Most
important class of non-Newtonian fluids are those which show an inverse proportion
of viscosity with rate of shear [3]. Many salt solutions and molten polymers come
under non-Newtonian fluids such as paint, custard, blood, honey, and toothpaste.

Due to the importance of heat transfer in many engineering applications and
physical problems, viz., geothermal system, heat exchangers, petroleum reservoirs,
etc., few researchers have studied both non-Newtonian and Newtonian fluids and
nanofluids flow in between plates. Hatami and Ganji [4] reported some results about
the natural convection of non-Newtonian nanofluid flow between two vertical par-
allel plates. Bakar et al. [5] have studied about nanofluid flow over a stretching
sheet and some thermophysical properties of nanoliquids using Buongiorno model.
Ziabakhsh and Domairry [6] have used homotopy analysis method to solve the natu-
ral convection problem of non-Newtonian fluid flow between the two plates. Kumar
et al. [7] analyzed about various existing models to figure out the value of thermal
conductivity for nanofluid. A selection algorithm for selecting appropriate model
for the viscosity of the nanofluid in different nanofluid conditions has given by
Nwosu et al. [8].

Asmentioned above, literature related to the natural convection of non-Newtonian
nanofluid already exist in crisp form. However, the range of nanoparticle volume
fraction may lie between 0 and 0.2 [5]. Nanoparticle volume fraction depends upon
the volume of real fluid and nanosolid particle and numerical value of the volume of
fluid or nanosolid particle may deviate significantly from exact value. Henceforth,
there is need to handle the present problem in uncertain environment.

The present paper aims to investigate the flow of non-Newtonian nanofluid
between two vertical parallel plates in uncertain environment. We have used
Galerkin’s Method [9, 10] to solve the titled problem. Recently Rao and Chakraverty
[11] used Galerkin’s Method to solve diffusion equation in soil pore matrix in uncer-
tain environment.

2 Interval

In general, an interval Ĩ is denoted as Ĩ = [I−, I ] where I and I denote lower and

upper bound of the interval Ĩ . Any two intervals Ĩ1 = [I 1, I 1] and Ĩ2 = [I 2, I 2] are
said to be equal, if and only if I 1 = I 2 and I 1 = I 2. Further we discussed some
basic interval arithmetic as [12, 13],

Ĩ1 ∗ Ĩ2 = [min(I 1 ∗ I 2, I 1 ∗ I 2, I 1 ∗ I 2, I 1 ∗ I 2),max(I 1 ∗ I 2, I 1 ∗ I 2, I 1 ∗ I 2, I 1 ∗ I 2)]

where “∗” represents the binary operations, viz., “+, −, ×.” The above operation
is also valid for division Ĩ1

Ĩ2
, when 0 /∈ Ĩ2.
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The radius of Ĩ is given as �I = I−I
2 and Ic = I+I

2 is center value of interval the
Ĩ .

3 Parametric Concept

In the present article, the parametric concept has been used to get crisp form of an
interval. By using parametric concept, an interval Ĩ = [I , I ] may be written as [14,
15].

Ĩ = β(I − I ) + I where β ∈ [0, 1] is a parameter.
It can also be expressed as Ĩ = 2β �I + I .

One may observe that for β = 0, Ĩ = I and for β = 1, Ĩ = I . Henceforth
by substituting β = 1 and β = 0, upper and lower bounds of the solution may be
obtained.

4 Sketch of the Problem

We have included a graphic description of the considered problem in Fig. 1. Two
vertical parallel plates are placed at x = −b and x = +b with temperatures T1 and
T2, respectively, and we have assumed that T1 > T2. A non-Newtonian nanofluid has
been considered between the parallelwalls. Here SodiumAlginate (SA) is considered
as base fluid and nano particles of Cupper (Cu) are added to it. Due to the natural
convection, this non-Newtonian nanofluid flows between the two walls. Because of

Fig. 1 Sketch of nanofluid
flow between two plates
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Table 1 Some physical properties of SA and Cu nanoparticle [4]

Material Symbol Density (kg/m3) Cp(J/kgK) Thermal conductivity
(W/mK)

Copper Cu 8933 385 401

Sodium alginate SA 989 4175 0.6376

the variation in temperature between the plates that is T1 > T2, fluid near x = −b
rises above and fluid near x = +b falls down. Thermal equilibrium case of both
the base fluid and the nanoparticles is assumed. Moreover, it is considered that there
are no slips occured between them. Some physical properties, that we have used in
considered problem are presented in Table 1 [4].

We have used Maxwell Garnetts [16] model for evaluating the effective thermal
conductivity (knf) and Brinkman model [17] for effective dynamic viscosity (μnf) of
nanofluid. According to these models

μnf = μf

(1 − φ)2.5
, (1)

knf
kf

= ks + 2kf + 2φ(ks − kf)

ks + 2kf − φ(ks − kf)
. (2)

Here φ denotes the nanoparticle volume fraction.
Further effective density (ρnf) and heat capacitance (ρCp)nf of nanofluid in terms

of physical parameter of real fluid and nanosolid particle are written as [4]

ρnf = ρf(1 − φ) + ρsφ, (3)

(ρCp)nf = (ρCp)f(1 − φ) + (ρCp)sφ. (4)

Here Cp denotes specific heat.
We define similarity variables as [18]

V = v

V0
, X = x

b
and θ = T − Tm

T1 − T2
. (5)

By using these assumptions and Eqs. (1–4), the Navier–Stokes and energy equa-
tions may be transformed to the coupled differential equations as [4]

d2V

dX2
+ 6δ(1 − φ)2.5

(
dV

dX

)2 d2V

dX2
+ θ = 0, (6)

d2θ

dX2
+ Ec Pr

(
(1 − φ)−2.5

A1

)(
dV

dX

)2

+ 2δEc Pr

(
1

A1

)(
dV

dX

)4

= 0. (7)
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with boundary conditions

V (X) = 0, θ(X) = −0.5 when X = 1 (8)

and

V (X) = 0, θ(X) = 0.5when X = −1 (9)

where Pr and Ec stand for Prandtl and Eckert number, respectively, δ stands for the
dimensionless non-Newtonian viscosity and A1 denotes ratio of thermal conductivity
of nanofluid and real fluid. These parameters have the forms given as

Ec = ρfV 2
0

(ρCp)f(θ1 − θ2)
, Pr = μf(ρCp)f

ρfKf
, δ = 6β3V 2

0

μfb2
, (10)

A1 = knf
kf

= ks + 2kf + 2φ(ks − kf)

ks + 2kf − φ(ks − kf)
. (11)

Equations (6) and (7) are governing differential equations for the titled problem
without uncertainty. Our aim is to investigate this challenging problem in uncertain
environment. Here the parameters have been taken as uncertain in terms of interval.

It may be noted that the range of nanoparticle volume fraction varies in general
between 0 and 0.2 [5]. Further, value volume fraction depends upon the volume of
included constituents and volume of fluid or nanoparticle may be taken as uncertain
value. So, there is need to handle the present problem in uncertain environment.

As such, the uncertain model for the titled problem may be obtained as

d2Ṽ

dX2
+ 6δ(1 − φ̃)2.5

(
dṼ

dX

)2
d2Ṽ

dX2
+ θ̃ = 0, (12)

d2θ̃

dX2
+ Ec Pr

(
(1 − φ̃)−2.5

Ã1

)(
dṼ

dX

)2

+ 2δEc Pr

(
1

Ã1

)(
dṼ

dX

)4

= 0. (13)

with boundary conditions

Ṽ (X) = 0, θ̃ (X) = −0.5 when X = 1 (14)

and

Ṽ (X) = 0, θ̃ (X) = 0.5 when X = −1 (15)

where “~” denotes the uncertain form.
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5 Galerkin’s Method in Uncertain Environment

In order to delineate the present method, let us consider a differential equation in
uncertain environment as

k̃1ũ
′′(x) + k̃2ũ(x) = g(x), x ∈ [a, b], (16)

with boundary conditions ũ(a) = a1, ũ(b) = b1 and k̃i , i = 1, 2 are uncertain in
terms of intervals may be taken as

k̃i = [ki , ki ], i = 1, 2.

By parametric approach, the above interval values may be represented in crisp
form as

k̃i = 2βi�ki + ki = λβi , βi ∈ [0, 1], for i = 1, 2.

where λβi represents crisp value of k̃i , for a fixed value of 0 ≤ βi ≤ 1.
Now, the assumed approximate solutions of Eq. (16) satisfying the given boundary

condition may be taken as

ũ(x) = f0(x) +
n∑

i=1

ci fi (x) (17)

where fi (x), i = 1, 2, . . ., n are linearly independent functions.
Further, by using Gram–Schmidt orthogonalization process for

f1(x), f2(x), . . . , fn(x), corresponding orthogonal polynomials may be obtained
as

ψ1(x) = f1(x)

ψ2(x) = f2(x) − τ2,1ψ1(x),

ψ3(x) = f3(x) − τ3,1ψ1(x) − τ3,2ψ2(x)

...

ψn(x) = fn(x) − τn,1ψ1(x) − τn,2ψ2(x) − · · · − τn,n−1ψn−1(x)

where τ2,1 = 〈ψ1(x), f2(x)〉
〈ψ1(x),ψ1(x)〉 , τ3,1 = 〈ψ1(x), f3(x)〉

〈ψ1(x),ψ1(x)〉 , τ3,2 = 〈ψ2(x), f3(x)〉
〈ψ2(x),ψ2(x)〉 , . . . , τn,n−1 =

〈ψn−1(x), fn(x)〉
〈ψn−1(x),ψn−1(x)〉 .

Here 〈p(x), q(x)〉 denotes inner product of p and q and it is defined as

〈p(x), q(x)〉 =
b∫
a
p(x).q(x)dx , where [a, b] is the domain of p and q.
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The approximate solution of Eq. (16) as linear combination of orthogonal func-
tions may be expressed as

ũ(x) = f0(x) +
n∑

i=1

ci ψi (x) (18)

From Eq. (16), residuals R may be obtained as

R(x; λβi ; c1, c2, . . . , cn) = λβ1

{
f ′′
0 (x) +

n∑
i=1

ciψ
′′
i (x)

}

+ λβ2

{
f0(x) +

n∑
i=1

ciψi (x)

}
− g(x), (19)

Further by orthogonalized the residual function obtained in Eq. (19) with the
orthogonal functions ψ1, ψ2, . . . ψn , we get

b∫
a

R(x; λβi ; c1, c2, . . . , cn).ψ j (x)dx = 0, j = 1, 2, 3, . . . , n (20)

Here, Eq. (20) simultaneously represent a system of n equations with n unknown
constants. From these n equations, values of c1, c2, . . . , cn can be obtained by any
standard method. By substituting these evaluated constants in Eq. (18), the approx-
imate solutions of the uncertain differential Eq. (16) may be obtained by varying
0 ≤ βi ≤ 1 for i = 1, 2.

6 Application to the Present Problem

Let us consider two functions satisfying the boundary conditions (14) and (15) as

h1(X) = (X + 1)(X − 1) (21)

and

h2(X) = −X

2
+ (X + 1)(X − 1). (22)

Therefore, trial functions with orthogonal polynomial such as Legendre polynomials
as base function may be taken as
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V (X) = (X + 1)(X − 1)(c0 + c1X + c2
1

2
(3X2 − 1) + · · · ), (23)

θ(X) = −X

2
+ (X + 1)(X − 1)(d0 + d1X + d2

1

2
(3X2 − 1) + · · · ). (24)

Let us consider three-term approximation to approximate the solution of Eqs. (12)
and (13) that is

V (X) = (X + 1)(X − 1)(c0 + c1X + c2
1

2
(3X2 − 1))

= c0(X + 1)(X − 1) + c1X (X + 1)(X − 1)

+ c2
1

2
(3X2 − 1)(X + 1)(X − 1) (25)

θ(X) = −X

2
+ (X + 1)(X − 1)(d0 + d1X + d2

1

2
(3X2 − 1))

= −X

2
+ d0(X + 1)(X − 1) + d1X (X + 1)(X − 1)

+ d2
1

2
(3X2 − 1)(X + 1)(X − 1) (26)

By comparing Eqs. (25) and (26) with (17), we will get

f1(X) = (X + 1)(X − 1),

f2(X) = X (X + 1)(X − 1),

f3(X) = 1

2
(3X2 − 1)(X + 1)(X − 1).

Here f1, f2 and f3 may not be orthogonal functions.
As such, by applying Gram–Schmidt orthogonalization process to the linearly

independent set { f1(x), f2(x), f3(x)} we have the following orthogonal functions:

ψ1(X) = (X + 1)(X − 1),

ψ2(X) = X (X + 1)(X − 1),

ψ3(X) = 3X4

2
− 12X2

7
+ 3

14
.

Now the trial solutions as combinations of orthogonal functions for the coupled
differential Eqs. (12) and (13) become

V (X) = c0(X + 1)(X − 1) + c1X (X + 1)(X − 1) + c2

(
3X4

2
− 12X2

7
+ 3

14

)
,

(27)
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θ(X) = −X

2
+ d0(X + 1)(X − 1) + d1X (X + 1)(X − 1)

+ d2

(
3X4

2
− 12X2

7
+ 3

14

)
. (28)

As governing equations for the titled problem are coupled equation, we will have
two residual functions R1 and R2 obtained as

R1 = 2c0 + 6c1X + c2

(
18X2 − 24

7

)
+ d0(X

2 − 1)

+ d1(X
3 − X) + d2

(
X4

2
− 12X2

7
+ 3

14

)

+ 6δ(1 − φ̃)2.5
{
2c0 + 6c1 + c2

(
18X2 − 24

7

)}
{
2c0X + c1(3X

2 − 1) + c2

(
6X3 − 24

7
X

)}2

(29)

R2 = 2d0 + 6d1X + d2

(
18X2 − 24

7

)

+ 2Ec Prδ
1

Ã1

{
2c0X + c1(3X

2 − 1) + c2

(
6X3 − 24

7
X

)}4

+ Ec Pr

(
1 − φ̃

)−2.5

Ã1

{
2c0X + c1(3X

2 − 1) + c2

(
6X3 − 24

7
X

)}2

(30)

By taking parametric form of the uncertain parameter φ̃ and Ã1 that is
φ̃ = [0, 0.2] = 0.2β where 0 ≤ β ≤ 1

and Ã1 = ks+2k f +0.4β(ks−k f )

ks+2k f −0.2β(ks−k f )
= A1β

where 0 ≤ β ≤ 1, crisp form of Eqs. (29) and
(30) may be written as

R1 = 2c0 + 6c1X + c2

(
18X2 − 24

7

)
+ d0(X

2 − 1) + d1(X
3 − X)

+ d2

(
X4

2
− 12X2

7
+ 3

14

)
+ 6δ(1 − 0.2β)2.5

{
2c0 + 6c1 + c2

(
18X2 − 24

7

)} {
2c0X + c1(3X

2 − 1) + c2

(
6X3 − 24

7
X

)}2

(31)



304 U. Biswal et al.

R2 = 2d0 + 6d1X + d2

(
18X2 − 24

7

)

+ 2Ec Prδ
1

A1β

{
2c0X + c1(3X

2 − 1) + c2

(
6X3 − 24

7
X

)}4

+ Ec Pr
(1 − 0.2β)−2.5

A1β

{
2c0X + c1(3X

2 − 1) + c2

(
6X3 − 24

7
X

)}2

(32)

Now by using residual functions R1 and R2 and orthogonal functions ψ1, ψ2, ψ3

in Eq. (20), we will have a system of six equations that is three equations for both
residual R1 and R2, respectively. Any standard method may be used to solve this
system for the constants c0, c1, c2, d0, d1 and d2. For different values ofβ between 0
and 1, we may get different crisp values of these constants. By substituting evaluated
values in Eqs. (27) and (28) we will get respective approximate solutions of the
coupled differential Eqs. (12) and (13).

7 Results and Discussions

By applying the proposed method for β = 1, δ = 1, Ec = 1,Pr = 1, solutions of
Eqs. (12) and (13) for Cu–SA nanofluid may be obtained as

V (X) = −0.002683486556227(X + 1)(X − 1)

+ 0.082249294354366(X + 1)(X − 1)

+ 0.000442990429666

(
3X4

2
− 12X2

7
+ 3

14

)

θ(X) = −X

2
−0.006785912764962(X + 1)(X − 1)

+ 0.000118756423476X (X + 1)(X − 1)

−0.000018891502055

(
3X4

2
− 12X2

7
+ 3

14

)

These are upper bounds for velocity and temperature profile for entitled problem
when δ = 1, Ec = 1, Pr = 1, that is for ϕ = 0.2, δ = 1, Ec = 1, Pr = 1.
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Similarly, lower bounds for velocity and temperature profile for the present prob-
lem are obtained when β = 0 and the required solutions with β = 0, δ = 1, Ec =
1, Pr = 1 are

V (X) = −0.000747565192630(X + 1)(X − 1)

+ 0.081479176409158X (X + 1)(X − 1)

+ 0.000137403956942

(
3X4

2
− 12X2

7
+ 3

14

)

θ(X) = −X

2
−0.001920327335791(X + 1)(X − 1)

+ 0.000009326215094X (X + 1)(X − 1)

−0.000006695267706

(
3X4

2
− 12X2

7
+ 3

14

)

Figures 2a, b shows the solution bounds of velocity and temperature profile for
Cu–SA nanofluid when δ = 1, Ec = 1, Pr = 1. The difference in lower and upper
bounds of temperature profile are not clearly visible in Fig. 2b. As such, for the
clear visualization of bounds for temperature profile, temperature bounds have been
plotted against X = [−0.1, 0.1] in Fig. 2c.

For validation of the proposed method, results obtained for a fixed value of β =
0.05 have been compared with existing results [4] for the corresponding crisp value
of ϕ in Fig. 3a, b.

The effects of φ on velocity and temperature values have depicted in Fig. 4a, b.
And wemay conclude that velocity is in direct proportion with nanoparticles volume
fraction whereas temperature is in inverse proportion. We have included two zoomed
boxes in Fig. 4a, b for clear visualization.

8 Conclusion

In the present article, we have given a new approach to solve natural convection
problem in uncertain environment. Galerkin’s Method with orthogonal polynomials
has been applied successfully to find the solution bounds of velocity and temperature
for the considered problem. The solution for non-Newtonian real fluid flow between
vertical parallel plates may be obtained directly by substituting β = 0. Results
obtained for a fixed value of β are in good agreement with the corresponding crisp
result by Differential Transform Method (DTM) and Least Square Method (LSM).
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(a)

(b)

(c)

Fig. 2 a Solution bounds of velocity when δ = 1, Ec = 1, Pr = 1. b Solution bounds of
temperature when δ = 1, Ec = 1, Pr = 1. c A part of (b) for X = [−0.1, 0.1]
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(a)

(b)

Fig. 3 a Velocity profile for Cu–SA nanofluid when β = 0.05 and δ = 1, Ec = 1, Pr = 1.
b Temperature plot for Cu–SA nanofluid when β = 0.05 and δ = 1, Ec = 1, Pr = 1
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(a)

(b)

Fig. 4 a Impact of φ on velocity for Cu–SA nanofluid when δ = 0.5, Ec = 0.5, Pr = 0.5.
b Impact of φ on temperature for Cu–SA nanofluid when δ = 0.5, Ec = 0.5, Pr = 0.5
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Finite Difference Solution of Diffusion
Equation Describing the Flow of Radon
Through Soil with Uncertain Parameters

T. D. Rao and S. Chakraverty

Abstract In this paper, an imprecise radon diffusion transport through soil is inves-
tigated. As few such researchers have already studied Radon diffusion problems with
crisp parameters. Due to various factors, there is a chance of impreciseness to occur
in the involved parameters of the model while doing the experiment. So handling a
differential equation with imprecise parameters is a challenging task. Accordingly,
a second-order radon diffusion equation with imprecise parameters considered as
intervals has been studied here. The solution of the considered diffusion equation
is modeled by using modified Explicit Finite Difference Method (EFDM) along
with parametric concept and for the validation, results are compared with the crisp
solutions.

Keywords Radon · Diffusion · Radiation · Parameters · Crisp · imprecise ·
Interval.

1 Introduction

Differential Equations (DEs) are a useful tool to handle various problems of science
and engineering. Such problems like radon transport mechanism in dry cracked soil
(Holford et al. [1]) are modeled by using the ordinary or partial differential equa-
tions. In general, solutions of DEs may be found by any analytical (if possible) or
numerical methods (Ames and William [2]; Langtangen [3]). Mostly, the involved
variables and parameters of DEs are in crisp form, but due to errors in calculations
or observations while doing experiment, there is a chance of impreciseness to occur
in the involved parameters. Such uncertainties considered as intervals or fuzzy num-
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bers. So, solving DEs with interval or fuzzy parameters is a challenging task. Here,
we are including few author’s work related to handling differential equations with
interval or fuzzy parameters. Kelvin [4] described fuzzy sets and various mappings
using fuzzy set values and DEs with fuzzy variables. Numerical modeling using
R-K method to handle Fuzzy Differential Equations (FDEs) was given by Parandin
[5]. An analytical model to handle higher order fuzzy and interval DEs using a new
center-based approach were given by Tapaswini and Chakraverty [6, 7]. As such
in this work, an imprecise radon diffusion equation where the involved parameters
are considered as interval is discussed. Accordingly, we are presenting few author’s
work related to radon transport mechanism. Ren [8] discussed the source and con-
trolling ways of indoor radon. Experimental analysis of 222Rn and 220Rn in various
materials of buildings are investigated by Folkerts et al. [9]. Methods for the 222Rn
exhalation and 226Ra activity in various soils are described by Escobal. [10]. The
effects of various porous parameters on the radon entry into a building by using
the numerical models has been discussed by Albarracin and Font [11]. A numerical
model used for the process of the microbubble radon transport mechanism in water is
investigated by Varhegyi et al. [12]. A new technique to handle radon diffusion coef-
ficient for the determination has been developed by Jiranek and Svoboda [13]. Radon
generation in multiphases and transport in various porous samples was investigated
by Rogers and Nielson [14]. Schery et al. [15] demonstrated the flow and diffusion
process of radon in fractured soils. Numerical modeling for the radon transport in
soil was given by Kozak et al. [16]. Renken and Kevin [17] discussed the radon
gas transport through the concrete materials. Measurement of transient-diffusion of
radon in Japanese soils and the mathematical modeling was illustrated by Sasaki
and Tomozosoil [18]. Dimbylow and Wilkinson [19] have given a new numerical
solution to radon transport through cracks in a concrete slab. Modeling of the radon
diffusion through the soil and into air was discussed by Savovic et al. [20] using
EFDM. A two-dimensional transformation method to handle fuzzy partial DEs has
been analyzed by Mikaeilvand and Khakrangin [21]. Nayak and Chakraverty [22]
investigated a numerical approach of neutron diffusion equation with uncertainty
parameters. Also, fuzzy finite element analysis to handle multigroup neutron diffu-
sion equation was discussed by Nayak and Chakraverty [23]. Bede and Gal have
given different solutions of fuzzy DEs based on generalized differentiation [24].

As such, the present section discusses the introduction. Then, the preliminaries
of the problem, interval arithmetic has been discussed in Sect. 2 and new parametric
concept of intervals is discussed in Sect. 3. Section 4 presents the procedure for
solving interval partial differential equation. Then, a brief background of the diffu-
sion equation with uncertain parameters and the numerical modeling for diffusion
equation by parametric concept is depicted in Sect. 5. In Sect. 6, numerical solutions
have been presented based on the stated procedure. Finally, the last section gives the
conclusion.
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2 Interval Arithmetic

Let m̃1 = [m1,m1] and m̃2 = [m2,m2] are any two imprecise intervals, where m1

and m1 stands for the lower and upper ends m̃1. Any two imprecise intervals are
equal if their corresponding end bounds are equal (Moore and Ramon [25]; Alefeld
et al. [26]) that is
m̃1 = m̃2 if and only if m1 = m2 and m1 = m2

The general interval operations are defined as follows:
�m̃1 = (m1−m1)

2 (radius of interval m1),

m̃1c = (m1+m1)

2 (center of interval m1),
m̃1 + m̃2 = [m1 + m2,m1 + m2],
m̃1 − m̃2 = [m1 − m2,m1 − m2],
m̃1 × m̃2 = [min(m1 × m1,m1 × m2,m1 × m2,m1 × m2), (m1 × m1,m1 × m2,

m1 × m2,m1 × m2)],
m̃1/m̃2 = [min(m1/m2,m1/m2,m1/m2,m1/m2),max(m1/m2,m1/m2,m1/m2,

m1/m2)], where m2,m2 �= 0.

3 New Parametric Concept

By parametric approach, any interval m̃1 = [m1,m1] may be represented as crisp
(Behera and Chakraverty [27]; Tapaswini and Chakraverty [28]) as
m̃1 = α(m1 − m1) + m1, where α is a parameter such that 0 ≤ α ≤ 1.

It can also be written as m̃1 = 2α�m̃1 + m1,
To obtain the lowest and highest ends of the interval in parametric form, we may

put α = 0 and 1, respectively. This may be found as

m̃1 = m1 when α = 0,

m̃1 = m1 when α = 1.

4 Imprecise Partial Differential Equations

Asmentioned in the introduction, few researchers have given various new techniques
to obtain solution of higher order imprecise partial DEs. In this work, a second-order
PDE, viz., second-order imprecise radon diffusion equation parameters considered
as interval has been handled. In this context, first describes a general second-order
PDE with imprecise parameters as intervals. The general form of a second-order
linear interval PDE may be written as

˜l0
∂2ṽ(x, t)

∂2x
+ ˜l1

∂2ṽ(x, t)

∂x∂t
+ ˜l2

∂2ṽ(x, t)

∂2t
+ ˜l3

∂ṽ(x, t)

∂x
+ ˜l4

∂ṽ(x, t)

∂t
+ ˜l5ṽ(x, t) = 0. (1)
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where boundary conditions as interval may be defined as

ṽ(x, t) = ˜b1, x = 0, t > 0,

ṽ(x, t) = ˜b2, x = L

Here, ˜l0, ˜l1, ˜l2, ˜l3, ˜l4, and ˜l5 are the coefficients considered as intervals.

Solving procedure of Imprecise Partial Differential Equations (IPDEs)

By using parametric concept, one can represent ṽ(x, t) as

ṽ(x, t) = v + 2α1�v, where α1 is a parameter such as 0 ≤ α1 ≤ 1.

Now, Eq. (1) can be rearranged as

˜l0
∂2v(x, t)

∂2x
+ ˜l1

∂2v(x, t)

∂x∂t
+ ˜l2

∂2v(x, t)

∂2t
+ ˜l3

∂v(x, t)

∂x
+ ˜l4

∂v(x, t)

∂t
+ ˜l5w(x, t)

+2β1(˜l0
∂2�v(x, t)

∂2x
+ ˜l1

∂2�v(x, t)

∂x∂t
+ ˜l2

∂2�v(x, t)

∂2t
+ ˜l3

∂�v(x, t)

∂x
+ ˜l4

∂�v(x, t)

∂t

+˜l5�v(x, t)) = 0.

(2)

where the involved coefficients˜l0,˜l1,˜l2,˜l3,˜l4,˜l5 are impricise, viz., intervals and by
using parametric concept, one can rewrite these intervals in crisp form as below

˜l0 = 2α2�˜l0 + l0,˜l1 = 2α3�˜l1 + l1,˜l2 = 2α4�˜l2 + l2,

˜l4 = 2α5�˜ll3 + l3,˜l4 = 2α6�˜l4 + l4,˜l5 = 2α7�˜l5 + 5.

where α2, α3, α4, α5, α6, α7 are parameters and 0 ≤ α2, α3, α4, α5, α6, α7 ≤ 1. By
randomly choosing these parameters from 0 to 1, one can handle the impreciseness
involved in the system.

By substituting the crisp representation of parameters˜l0,˜l1,˜l2,˜l3,˜l4,˜l5 in Eq. (2),
it gives a PDE of crisp form. Then by using FDM, difference scheme (central) for
the terms ∂2v(x,t)

∂2x , ∂2v(x,t)
∂x∂t , ∂2v(x,t)

∂2t , ∂2�v(x,t)
∂2x

∂2�v(x,t)
∂x∂t , ∂2�v(x,t)

∂2t , and difference scheme
(forward) for the terms ∂�v(x,t)

∂x , ∂�v(x,t)
∂t , ∂ṽ(x,t)

∂x
∂ṽ(x,t)

∂x is used to get the numerical
scheme of Eq. (2).

5 Background of Diffusion Equation with Uncertain
Coefficients

The detail explanation of the radon transport mechanism has been given in [1] one
may refer. For the sake of basic idea, we present a short note on the governing
diffusion equation describing the radon transport. Radon(Rn) is a radioactive inert
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gas, which flows through air and different porous mediums. The difference of radon
concentration that transports between the surface (x = 0) and the underground leads
to a diffusive radon flow toward the soil surface. In general, the radon flux(J) and
diffusion equation are represented as [1]

J = −D × ∂z(x, t)

∂x
, (3)

∂z(x, t)

∂t
= D

∂2z(x, t)

∂x2
− λ × z(x, t). (4)

Here, λ = 2.1 × 10−6s−1 is the decay constant of radon.
As described earlier that there is a chance of uncertainty to occur while doing

experiment in the coefficients, viz., diffusion coefficient(D) and rate of radon concen-
tration(z), etc, so we are considering D and c as uncertain parameters, viz., intervals.
Now, one may represent the flux with uncertainty as follows

˜J = −˜D
∂ z̃(x, t)

∂x
. (5)

where ˜D = [D, D] is diffusion coefficient with interval uncertainty in soil medium
[m2s−1] and ∂ z̃(x,t)

∂x is gradient of radon concentration z̃(x, t) = [z, z], [Bqm−3].
In general, radon decays from higher concentration levels to lower concentration

levels with external radon concentration with uncertainty, so the initial concentration
z̃0 and radon uncertain flux is zero at initial stage of radon diffusion, at time t = 0.
Radon flux increases with time, hence the initial interval condition for diffusion is
stated as follows

z̃(x, t) = [0, 0], t = 0, 0 < x < L ,

For constant decayof radon concentration, its flux eventually reach to a steady state
that wemay represent by the following boundary conditions with interval uncertainty

z̃ = [z0, z0], x = 0, t > 0,

˜J = [0, 0], X = L , t > 0.

The said differential Eq. (4) for uncertain radon diffusion as intervals may lead
to three cases depending upon the uncertainty involved in the parameters D and c.
Accordingly, one can obtain the following cases:

Case 1: The parameter D is taken as an interval and c assumed as crisp, then Eq. (4)
can be convert as below

∂z(x, t)

∂t
= ˜D

∂2z(x, t)

∂x2
− λz(x, t), (6)
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subject to initial diffusion z(x, t) = 0, t = 0, 0 < x < L and the interval boundary
conditions as

z(x, t) = z0, x = 0, t > 0,

˜J = [0, 0], X = L , t > 0.

Case 2: The parameter c taken as an interval and D considered as crisp, then Eq. (4)
can be rearranged as

∂ z̃(x, t)

∂t
= D × ∂ 2̃z(x, t)

∂x2
− λ̃z(x, t), (7)

subject to initial condition z̃(x, t) = [0, 0], t = 0, 0 < x < L and interval boundary
conditions as

z̃ = [z0, z0], x = 0, t > 0,

J = 0, X = L , t > 0.

Case 3: When both the parameters c and D taken as intervals, then Eq. (4) may be
obtained as

∂ z̃(x, t)

∂t
= ˜D × ∂ 2̃z(x, t)

∂x2
− λ × z̃(x, t), (8)

subject to initial concentration z̃(x, t) = [0, 0], t = 0, 0 < x < L and boundary
conditions as

z̃ = [z0, z0], x = 0, t > 0,

˜J = [0, 0], X = L , t > 0.

5.1 Numerical Solutions with New Multi Parameter Concept

In this work, as discussed in the introduction, EFDM along with the parametric con-
cept has been used to model the related governing diffusion equations with interval
uncertainty. By using parametric concept, the interval parameters z̃ and ˜D can be
obtained as

z̃ = [z, z] = z + 2α1�̃z, (9)

˜D = [D, D] = D + 2α2�˜D. (10)

where α1 and α2ε[0, 1].
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When α1 = 0 and α2 = 0, one can obtain the lower end of z̃ and ˜D such as z,
D. α1 = 0.5 and α2 = 0.5 gives the center (crisp) values of z̃ and ˜D such as zcenter ,
Dcenter Moreover, when α1 = 1 and α2 = 1, we may find upper ends of z̃ and ˜D
such as z and D.

Numerical Solution to Case 1: By using Eq. (10), we can rearrange Eq. (6) as
follows:

∂z(x, t)

∂t
= (D + 2α2�˜D)

∂2z(x, t)

∂x2
− λ × z(x, t). (11)

When the central difference scheme is applied to represent the term ∂2z(x,t)
∂x and a

forward difference scheme for the terms ∂z(x,t)
∂t in Eq. (11), we may get

zi, j+1 = zi−1, j d + zi, j (1 − λ�t − 2d) + zi+1, j d + 2α1e(zi−1, j − 2zi, j + zi+1, j ). (12)

where d = �t D
�x2 and e = �˜D�t

�x2 .

Here, i and j indices stand for the different discrete positions and times by step
lengths �x and �t for the coordinate axis x and t, respectively. Equation (12) rep-
resents formulas for zi, j+1 in terms of known values along the jth row.

The initial conditions can be expressed as

zi,0 = 0 f or t = 0, 0 < x < L ,

and the boundary conditions are

z0, j = z0, f or x = 0; t > 0,

zN , j = zN−1, j , f or x = L; t > 0.

Numerical Solution to Case 2: By using Eq. (9), one can represent Eq. (7) as

∂(z + 2α1�̃z)

∂t
= D

∂2(z + 2α1�̃z)

∂x2
− λ(z + 2α1�̃z). (13)

In a similar fashion, if the central difference scheme is applied for the terms ∂2z
∂x ,

∂2�z
∂x and difference scheme (forward) for the terms ∂z

∂t ,
∂�z
∂t in Eq. (13), one may

obtain

zi, j+1 + 2α1�zi+1, j = H + 2α1E, (14)

where
H = zi−1, j s + zi, j (1 − λ�t − 2s) + zi+1, j s,

E = �zi−1, j s − �zi, j (1 − λ�t − 2s) + �zi+1, j s.

with s = �t D
�x2 .
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The initial conditions can be expressed as

z̃i,0 = [0, 0] for t = 0, 0 < x < L ,

and the interval boundary conditions are

z̃0, j = [z0, z0], for x = 0; t > 0,

z̃N , j = [zN−1, j , zN−1, j ], for x = L; t > 0.

Numerical Solution to Case 3: By substituting Eqs. (9) and (10) in Eq. (8), we have

∂(z + 2α1�̃z)

∂t
= (D + 2α2�˜D)

∂2(z + 2α1�̃z)

∂x2
− λ(z + 2α1�̃z). (15)

If the central difference scheme is applied for ∂2z
∂x ,

∂2�z
∂x and difference scheme

(forward) for ∂z
∂t ,

∂�z
∂t in Eq. (15), we may get

zi, j+1 + 2α1�zi, j+1 = F + 2α1�F + 2α2G + 4α1α2�G. (16)

where
F = zi−1, j a + zi, j (1 − λ�t − 2a) + zi+1, j a,

�F = �zi−1, j a + �zi, j (1 − λ�t − 2a) + �zi+1, j a,

G = zi−1, j b − 2bzi, j + zi+1, j b,

�G = �zi−1, j b − 2b�zi, j + �zi+1, j b.

with a = D�t
�x2 and b = �D�t

�x2 .

The initial conditions can be expressed as

z̃i,0 = [0, 0] for t = 0, 0 < x < L ,

and the interval boundary conditions are

z̃0, j = [z0, z0], for x = 0; t > 0,

z̃N , j = [zN−1, j , zN−1, j ], for x = L; t > 0.
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6 Numerical Results

After applying the above described procedure to the interval imprecise radon diffu-
sion equations, the numerical results are compared here, we applied our method to
interval radon diffusion equation and we considered the geometry as same as in [1].
As such,we have considered a soil slab for that one sidewas exposed to radon concen-
tration which may be assumed to vary in interval as z̃0 = [39500, 40500] Bqm−3.
Similarly, the value ˜D = [0.004, 0.006] cm2s−1 may be considered as imprecise
intervals for the radon diffusion coefficient and L = 8 cm is taken as the vertical
length of the cylinder (soil). For the three cases, the resultant radon concentrations
are presented in the tables. In these results, the step lengths are taken as �x = 0.05
cm and �t = 0.01 s.

Byvaryingα1, α2ε[0, 1] in parametric formsof z̃, ˜Dwewill get different combina-
tions,Aftercompilingtheobtainedvaluesofvariouscombinationsof theintervalradon
diffusion equation are presented as the left, center and right bound concentrations.

Numerical Results for Case 1

As such z considered as crisp andD as interval Table 1 incorporates numerical results
of left, center, and right values of the radon concentrations, where left represents
lower radon concentrations, center for center radon concentration values, and right
for upper radon concentration values at fixed time t = 500 s. Similarly Table 2

Table 1 Left, center, and
right values of radon
concentrations at t = 500 s
for different x when D as
interval and z as crisp

x Left Center Right

0 40000 40000 40000

1 25377.87 26825.34 27914.02

2 13163.31 15308.03 17020.97

3 5593.31 7465.87 9120.22

4 1922.51 3081.32 4259.98

5 529.75 1068.42 1724.32

6 116.31 309.86 603.54

7 20.51 76.90 189.94

8 5.28 28.61 89.49

Table 2 Left, center, and
right values of radon
concentrations at t = 5000 s
for different x when D is
taken as interval and z as
crisp

x Left Center Right

0 40000 40000 40000

1 35629.79 36405.44 37039.84

2 31199.70 32760.00 34037.48

3 27114.18 29395.22 31265.76

4 23531.53 26441.24 28831.83

5 20589.02 24012.047 26829.75

6 18398.00 22201.12 25336.84

7 17040.43 21078.01 24410.73

8 16566.63 20685.75 24087.16
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Fig. 1 Left, center, and right radon concentrations when the parameter z is taken as crisp and D as
an interval

represents left, center, and right values of the radon concentrations at fixed time t =
5000 s.

Figure 1 depicts numerical values of left, center, and right radon concentrations at
different times for solving radon diffusion equation with parameter z taken as crisp
and D as interval.
Numerical Results for Case 2

The presented tables incorporates numerical results when z is taken as interval and
D as crisp. Where left represents lower radon concentrations, center for center radon
concentrations, and right for upper radon concentrations at fixed time t = 500 s, t =
5000 s (Tables3 and 4).

Figure 2 depicts numerical results left, center, and right radon concentrations at
different times for solving radon diffusion equation in soil medium with parameter
z taken as interval and D as crisp number.

Numerical Results for Case 3

The presented tables incorporates left, center, and right values of the radon con-
centrations, where left represents lower radon concentration values, center for center
radon concentration values, and right for upper radon concentration values of a radon
diffusion equation in soil with both the parameters c and D as intervals at fixed time
t = 500 s, t = 2000 s, t = 5000 s, and t = 12000 s (Tables 5, 6, 7 and 8).
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Table 3 Left, center, and
right values of radon
concentrations at t = 500 s for
different x when D is taken as
crisp and z as interval

x Left Center Right

0 39500 40000 40500

1 26490.03 26825.34 27160.66

2 15116.68 15308.03 15499.38

3 7372.55 7465.87 7559.20

4 3042.80 3081.32 3119.83

5 1055.07 1068.42 1081.78

6 305.99 309.86 313.73

7 75.93 76.90 77.86

8 28.25714 28.61 28.97

Table 4 Left, right, and
center values of radon
concentrations at t = 5000 s
for different x when D is
taken as crisp and z as
interval

x Left Center Right

0 39500 40000 40500

1 35950.38 36405.44 36860.51

2 32350.50 32760.00 33169.50

3 29027.78 29395.22 29762.66

4 26110.72 26441.24 26771.75

5 23711.89 24012.04 24312.19

6 21923.61 22201.12 22478.64

7 20814.54 21078.01 21341.49

8 20427.18 20685.75 20944.32

Table 5 Left, center, and
right values of radon
concentrations at t = 500 s
for different x when both the
parameters D and z are taken
as intervals

x Left Center Right

0 39500 40000 40500

1 25060.85 26827.15 28270.73

2 13000.75 15319.47 17271.24

3 5538.31 7524.75 9383.79

4 1987.36 3332.56 4823.70

5 942.79 1960.39 3242.61

6 219.77 597.67 1184.98

7 38.51 147.55 371.29

8 9.85 54.64 174.28
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Table 6 Left, center, and
right values of radon
concentrations at t = 2000 s
for different x when both the
parameters D and z are taken
as intervals

x Left Center Right

0 39500 40000 40500

1 32749.15 34383.22 35822.48

2 26299.65 29011.72 31348.29

3 21138.63 24705.96 27760.50

4 17759.35 21881.70 25406.31

5 16479.34 20810.70 24513.35

6 6448.118 8147.71 9601.29

7 2623.54 3316.88 3910.18

8 1664.82 2105.60 2482.93

Table 7 Left, center, and
right radon concentrations at t
= 5000 s for different x when
both the parameters D and c
are taken as intervals

x Left Center Right

0 39500 40000 40500

1 37411.17 38701.49 39692.91

2 35413.02 37459.35 38920.87

3 33810.59 36463.21 38301.72

4 32759.02 35809.51 37895.41

5 32360.13 35561.54 37741.28

6 12695.03 13953.07 14809.87

7 5179.19 5693.28 6043.53

8 3292.80 3620.02 3843.00

Table 8 Left, center, and
right radon concentrations at t
= 12000 s for different x
when both the parameters D
and z are taken as intervals

x Left Center Right

0 39500 40000 40500

1 39364.19 39957.370 40486.62

2 39234.28 39916.59 40473.82

3 39130.10 39883.88 40463.55

4 39061.73 39862.42 40456.82

5 39035.80 39854.28 40454.26

6 15321.04 15642.54 15878.13

7 6253.53 6384.86 6481.06

8 3977.17 4060.74 4121.95
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Fig. 2 Left, center, and right radon concentrations when the parameter z taken is as an interval and
D as crisp

From the above tables, it may be noted that radon concentration increases with
respect to time. More clearly, we can observe from the corresponding figures pre-
sented below

Figure 3 presents numerical view of radon diffusion equation with crisp coeffi-
cients in soil at different times [1] and Fig. 4 depicts the center(crisp)resultant values
of interval radon diffusion equation when parameters z and D are taken as same.
Figure 5 shows left, center, and right radon concentrations at different times of a
interval radon diffusion equation when both the parameters z and D are taken as
interval.

From the tables and figures, one can observe that the concentration increases with
respect to time.

It may be noted from above three cases that in case 3 when both parameters are
taken as intervals shows wider uncertain results in radon concentrations compared
to other two cases.
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Fig. 3 Radon concentration obtained by solving the diffusion equation using EFDM with crisp
parameters

Fig. 4 Radon concentration obtained by solving the diffusion equation using EFDM with interval
parameters
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Fig. 5 Lower, center, and upper radon concentrations when both the parameters c and D are taken
as intervals

7 Conclusion

In this work, we have discussed a new approach to handle the interval diffusion
equation. An EFDM along with parametric concept has been to represent interval
parameters as crisp. As such the initial concentration (z0) and diffusion coefficient
(D) are taken as intervals. Then, we have discussed all the possible cases of themodel
and respective results are compared with a simplified one-medium diffusion model
and found to be in good agreement.
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Boundary Characteristic Orthogonal
Polynomials-Based Galerkin and Least
Square Methods for Solving
Bagley–Torvik Equations

Rajarama Mohan Jena and S. Chakraverty

Abstract In this paper, efficient numerical methods for solving Bagley–Torvik (B-
T) equations with variable coefficients and three-point boundary value conditions are
considered. This model is considered as a viscoelastic behavior of geological strata,
metal, and glasses using fractional differential equations.Many viscoelasticmaterials
are proposed in which derivatives of fractional-order replace the usual time deriva-
tives of integer order. An application of such a model is the prediction of the transient
response of frequency-dependent materials. As such the titled problem is challenging
to solve using the efficient method(s). The fractional derivative is described in the
Caputo sense. First, a linearly independent set such as

{
1, x, x2, x3, . . .

}
is converted

to Boundary Characteristic Orthogonal Polynomials (BCOPS) by Gram–Schmidt
Orthogonalization process then these are used in the Galerkin and Least Square
methods to reduce B-T Equations to the linear or nonlinear system of algebraic
equations. Example problems are addressed to show the powerfulness and efficacy
of the method.

Keywords Bagley–Torvik equation · Caputo fractional derivatives · Characteristic
orthogonal polynomials · Galerkin method · Least square method

1 Introduction

Torvik and Bagley [1] proposed a fractional model after moving a rigid plate dipped
in a Newtonian fluid as follows:

a
d2u(x)

dx2
+ bDαu(x) + cu(x) = f (x), α = 3

2
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where a, b, and c are constants depending on mass and area of the plate, stiffness
of spring, fluid density, and viscosity f (x) is the external force and u(x) stands for
the displacement of the plate. The B-T Eq. (1) has been generalized as α ∈ (0, 2)
and numerical techniques have been developed for the solution of B-T equation with
initial value conditions [2–10].

Moreover, one may compute the movement of the plate at any other points in
Newtonian fluid and model multipoint boundary value problems of the B-T equa-
tion. As regards, the generalized nonlinear B-T equation with two-point boundary
conditions has been studied by Stanek [11]. Moreover, the coefficients a, b, and c
may change with the changes of fluid density and viscosity. So a, b, and c are treated
as functions of x. The following three-point boundary value problems of the B-T
equation with variable coefficients are as follows:

d2u(x)

dx
+ p(x)Dαu(x) + q(x)u(x) = f (x), 0 < α < 2, x ∈ [a, b], (2)

with boundary conditions

u(a) = a1, u(b) + λu(c) = b1, c ∈ (a, b), (3)

or

u(a) + μu(c) = a1, u(b) = b1, c ∈ (a, b), (4)

where p(x), q(x) and f (x) are known functions and a1, b1, μ, λ, c is known con-
stants.

The next part of this manuscript is prepared as follows. In Sect. 2, some essential
definitions related to the titled problem are introduced. In Sect. 3, the Gram–Schmidt
orthogonalizationprocedure is included.Boundary characteristic orthogonal galerkin
and least square methods are included in Sect. 4 and Sect. 5, respectively. Two
example problems are addressed in Sect. 6 to demonstrate the effectiveness and
accuracy of the present method. Lastly, a conclusion is drawn in Sect. 7.

2 Preliminaries

Definition 2.1 The Abel–Riemann (A-R) fractional derivative operator Dα of order
α is defined as [12, 14]

Dαu(x) =
⎧
⎨

⎩

dm

dxm u(x), α = m,

1
�(m−α)

d
dxm

x∫

0

u(t)
(x−t)α−m+1 dt, m − 1 < α < m.

(5)

where m ∈ Z+, α ∈ R+ and
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D−αu(x) = 1

�(α)

x∫

0

(x − t)α−1u(t)dt, 0 < α ≤ 1 (6)

Definition 2.2 The A-R fractional-order integration operator Jα is described as [14,
15]

Jαu(x) = 1

�(α)

x∫

0

(x − t)α−1u(t)dt, t > 0, α > 0. (7)

Following Podlubny [12] we may have

Jαtn = �(n + 1)

�(n + α + 1)
tn+α, (8)

Dαtn = �(n + 1)

�(n − α + 1)
tn−α. (9)

Definition 2.3 The Caputo fractional derivative operator Dα of order α is defined
as [12, 13]

C Dαu(x) =
⎧
⎨

⎩

1
�(m−α)

x∫

0

um (t)
(x−t)α−m+1 dt, m − 1 < α < m,

dm

dtm u(x), α = m.

(10)

Definition 2.4 [12–14]
Let m − 1 < α ≤ m ,m ∈ N then

(a) Dα
t J

α
t f (t) = f (t), (11)

(b) Jα
t D

α
t f (t) = f (t) −

m∑

k=0

f (k)
(
0+) t

k

k! , for t > 0.

3 Gram–Schmidt Orthogonalization Procedure [16–18]

Let us consider a set of linearly independent functions
(
fi (x) = xi , i = 0, 1, 2, . . .

)

in [a, b]. From these set of functions, we can construct appropriate orthogonal func-
tions using the Gram–Schmidt orthogonalization process as follows:

φ0 = f0,
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φi = fi −
i−1∑

j=0

αi jφ j , (12)

where

αi j = 〈 fi , φ j 〉
〈φ j , φ j 〉 =

∫ b
a W (x) fi (x)φ j (x)dx
∫ b
a W (x)φ j (x)φ j (x)dx

. (13)

The above procedure is valid only when the inner product exists for the interval
[a, b] concerning the weight functionW (x). Throughout the paper, we have consid-
ered W (x) = 1 for simplicity.

4 Galerkin Method Based on BCOPs

Let us consider three-point boundary value problems of the Bagley–Torvik equation
with variable coefficients as

d2u(x)

dx
+ p(x)Dαu(x) + q(x)u(x) = f (x), 0 < α < 2, x ∈ [a, b], (14)

with boundary conditions

u(a) = a1, u(b) + λu(c) = b1, c ∈ (a, b), (15)

or

u(a) + μu(c) = a1, u(b) = b1, c ∈ (a, b), (16)

We assume an approximate solution of the above differential equation satisfying
the boundary conditions and involving unknown constants c0, c1, c2, . . . , cn as

u(x) = r(x) + h(x)

(
n∑

i=0

ciφi (x)

)

, (17)

where r(x) and h(x) control the boundary conditions and φ′
i s are the BCOPs.

Substituting Eq. (17) in Eq. (14) one may get the residual R as [16–18]

R(x, c0, c1, c2, . . . , cn) = d2

dx2

(

r(x) + h(x)

(
n∑

i=0

ciφi (x)

))
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+ p(x)

(

r (α)(x) +
n∑

i=0

ci h
(α)(x)φ(α)

i (x)

)

+ q(x)

(

r(x) +
n∑

i=0

ci h(x)φi (x)

)

− f (x). (18)

Here, R is orthogonalized to the (n + 1) functions φ0, φ1, . . . , φn , which gives

b∫

a

R(x, c0, c1, c2, . . . , cn)φ j (x)dx = 0, j = 0, 1, 2, 3, . . . (19)

=
b∫

a

⎡

⎢⎢
⎣

d2

dx2

(
r(x) + h(x)

(
n∑

i=0
ciφi (x)

))
+ p(x)

(
r (α)(x) +

n∑

i=0
ci h(α)(x)φ(α)

i (x)

)
+

q(x)

(
r(x) +

n∑

i=0
ci h(x)φi (x)

)
− f (x)

⎤

⎥⎥
⎦φ j (x)dx = 0.

for j = 0, 1, 2, . . .
(20)

Equation (20) gives (n + 1) simultaneous equations in (n + 1) unknowns, which
can be solved by any standard method. Finally putting the evaluated constants
c0, c1, . . . , cn in Eq. (17), we may get the approximate solution for the original
Eq. (14).

5 Least Square Method Based on BCOPs

Again let us consider the Bagley–Torvik equation with variable coefficients as

d2u(x)

dx
+ p(x)Dαu(x) + q(x)u(x) = f (x), 0 < α < 2, x ∈ [a, b], (21)

with boundary conditions

u(a) = a1, u(b) + λu(c) = b1, c ∈ (a, b), (22)

or

u(a) + μu(c) = a1, u(b) = b1, c ∈ (a, b). (23)

We assume an approximate solution of the above equation satisfying the boundary
conditions and involving unknown constants c0, c1, c2, . . . , cn as

u(x) = r(x) + h(x)

(
n∑

i=0

ciφi (x)

)

, (24)
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where r(x) and h(x) control the boundary conditions and φ′
i s are the BCOPs.

Again substituting Eq. (24) in Eq. (21) one may get the residual R as [16–18]

R(x, c0, c1, c2, . . . , cn) = d2

dx2

(

r(x) + h(x)

(
n∑

i=0

ciφi (x)

))

+ p(x)

(

r (α)(x) +
n∑

i=0

ci h
(α)(x)φ(α)

i (x)

)

+ q(x)

(

r(x) +
n∑

i=0

ci h(x)φi (x)

)

− f (x). (25)

Let us take

S(x, c0, c1, c2, . . . , cn) =
b∫

a

{R(x, c0, c1, c2, . . . , cn)}2W (x)dx (26)

that is

S(x, c0, c1, c2, . . . , cn) =
b∫

a

⎡

⎢⎢⎢⎢⎢⎢
⎣

d2

dx2

(
r(x) + h(x)

(
n∑

i=0
ciφi (x)

))
+

p(x)

(
r (α)(x) +

n∑

i=0
ci h(α)(x)φ(α)

i (x)

)

+q(x)

(
r(x) +

n∑

i=0
ci h(x)φi (x)

)
− f (x)

⎤

⎥⎥⎥⎥⎥⎥
⎦

2

W (x)dx,

(27)

where W (x) is the weight function defined on the interval [a, b] and for our conve-
nience we have taken W (x) = 1 throughout the problems.

So, for finding the value of ci , i = 0, 1, 2, 3, . . . , nwhichminimize S is equivalent
to finding the best approximation for the solution of Eq. (21).

The minimum value of S is obtained by setting

∂S

∂ci
= 0, i = 0, 1, 2, . . . , n. (28)

Using Eq. (28) in Eq. (27) we have (n + 1) simultaneous equations in (n + 1)
unknowns,which can be solved by any standardmethod. Finally putting the evaluated
constants c0, c1, . . . , cn in Eq. (24) we may get the approximate solution for the
original Eq. (21).



Boundary Characteristic Orthogonal Polynomials … 333

6 Case Study

In this section, we implement the proposed methods to solve two examples of
Bagley–Torvik equation. Solutions of these examples are also compared with the
exact solution.

Example 1 Let us consider the three-point boundary value problem for the gener-
alized Bagley–Torvik equation [19]

{
D2u(x) + √

πx2D
3
2 u(x) +

(
1 − 4x

1
2

)
u(x) = x2 + 2,

u(0) = 0, u
(
1
5

)+ u
(

1
10

) = 1
20 ,

(29)

with x ∈ [
0, 1

5

]
.

The exact solution of the Eq. (29) is u(x) = x2.

(i) By Galerkin Method based on BCOPs

Let us consider two terms guess solution as

u(x) = r(x) + h(x)[c0φ0 + c1φ1] = r(x) + h(x)

(
1∑

i=0

ciφi

)

, (30)

where r(x) = x2, h(x) = x
(
x − 1

5

)(
x − 1

10

)
, which control the boundary conditions.

The Residual

R = D2

⎛

⎝r(x) + h(x)

⎛

⎝
1∑

i=0

ciφi

⎞

⎠

⎞

⎠+ √
πx2D

3
2

⎛

⎝r(x) + h(x)

⎛

⎝
1∑

i=0

ciφi

⎞

⎠

⎞

⎠+
(
1 − 4x0.5

)
,

⎛

⎝r(x) + h(x)

⎛

⎝
1∑

i=0

ciφi

⎞

⎠

⎞

⎠− x2 − 2, (31)

where φ0 = 1 and φ1 = x − 0.1 are the BOCPs in the domain
[
0, 1

5

]
.

Using the functions r(x), h(x), φ0, and φ1 in Eq. (31), we have

R = (0.000804916 − 0.000241475c0 + 0.0000402458c1)x
5
2

+ (−0.08c0 + 0.008c1)x
3
2 + (4.001609832c0 − 1.600643933c1)x

7
2

+ 8.80257573x
9
2 c1 +

(
x4 − 0.4x3 + 12.05x2 − 2.4020x+0.0999999999999995

)
c1

+
(
x3 − 0.3x2 + 6.02x − 0.6

)
c0. (32)
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Now using Galerkin Method BCOPs, we have

1
5∫

0

(Rφ0)dx = 0, (33)

and

1
5∫

0

(Rφ1)dx = 0, (34)

which gives the two equations as

0.00006361285324c0 + 0.004029140957c1 + 8.227871507 × 10−7 = 0 (35)

and

0.004013278139c0 + 0.000002115661834c1 + 4.571039726 × 10−8 = 0. (36)

Solving the above two linear systems of equations, we have

c0 = −0.00001128223243
c1 = −0.0002040309496

}
, (37)

So, the solution to Eq. (29) may now be written as

u(x) = r(x) + h(x)[c0φ0 + c1φ1]

= −0.0002040309496x4 + 0.00007033014741x3 + 0.9999931835x2

+ 1.824172506 × 10−7x, (38)

The numerical results of the present solution and the exact solution are shown in
Table 1. The plot of the exact and present solutions of this example has also been
presented in Fig. 1. One may see that the exact solution of Eq. (29) agrees precisely
by taking two terms only.

(ii) By Least Square Method based on BCOPs

From the above problem, the residual equation is

R = (0.000804916 − 0.000241475c0 + 0.0000402458c1)x
5
2 + (−0.08c0 + 0.008c1)x

3
2

+ (4.001609832c0 − 1.600643933c1)x
7
2 + 8.80257573x

9
2 c1

+
(
x4 − 0.4x3 + 12.05x2 − 2.4020x+0.0999999999999995

)
c1
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Table 1 Comparison of the
present solution with the
exact solution

x Present solution
n = 1

Exact solution

0.00 0.00 0.00

0.02 4.000014 × 10−4 4 × 10−4

0.04 16.000003 × 10−4 16 × 10−4

0.06 35.999989 × 10−4 36 × 10−4

0.08 63.999986 × 10−4 64 × 10−4

0.10 1 × 10−2 1 × 10−2

0.12 144.000029 × 10−4 144 × 10−4

Fig. 1 The behavior of the
exact and present solution of
Example 1

+
(
x3 − 0.3x2 + 6.02x − 0.6

)
c0 . (39)

from Eq. (27), we have

S = 0.02416010589c20 + (
0.00004870485423c1 + 5.516997793 × 10−7

)
c0

+ 0.0003394335925c21 + 5.348123125 × 10−8c1 + 6.910824182 × 10−12.

(40)

From Eq. (28), we have

∂S

∂c0
= 0,

0.04832021178c0 + 0.00004870485423c1 + 5.516997793 × 10−7 = 0, (41)

∂S

∂c1
= 0,

0.00004870485423c0 + 0.0006788671850c1 + 5.348123125 × 10−8 = 0. (42)



336 R. M. Jena and S. Chakraverty

Table 2 Comparison of the
present solution with the
exact solution

x Present solution n = 1 Exact solution

0.00 0.00 0.00

0.02 3.999985 × 10−4 4 × 10−4

0.04 15.999974 × 10−4 16 × 10−4

0.06 35.999972 × 10−4 36 × 10−4

0.08 63.999981 × 10−4 64 × 10−4

0.10 1 × 10−2 1 × 10−2

0.12 144.000024 × 10−4 144 × 10−4

Solving the above linear system of equation, we have

c0 = −0.0000113389906
c1 = −0.00007796660162

}
. (43)

The solution of original Eq. (29) may now be written as

u(x) = r(x) + h(x)[c0φ0 + c1φ1]

= −0.00007796660162x4 + 0.00001984765005x3

+ 0.9999995037x2 − 7.08466088 × 10−8x . (44)

Again the numerical results of the present solution and the exact solutions are
given in Table 2. The plot of the exact and present solutions of this example has been
depicted in Fig. 2. One may see that the exact solution of Eq. (29) is same as the
present method by taking two terms only.

Fig. 2 The behavior of the
exact and present solution of
Example 1
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Example 2 Let us consider the three-point boundary value problem for the gener-
alized Bagley–Torvik equation of variable coefficient [19]

{
D2u(x) − 5

√
πxD

1
2 u(x) + 16x

1
2 u(x) = 6x,

u(0) + 2u
(
1
10

) = 1
500 , u

(
1
5

) = 1
125

(45)

with x ∈ [
0, 1

5

]
,

The exact solution of the Eq. (45) is u(x) = x3.

(i) By Galerkin Method based on BCOPs

We consider again two terms guess solution as

u(x) = r(x) + h(x)[c0φ0 + c1φ1] = r(x) + h(x)

(
1∑

i=0

ciφi

)

, (46)

where r(x) = x3, h(x) = x
(
x − 1

5

)(
x − 1

10

)
, which control the boundary conditions.

The residual

R = D2

(

r(x) + h(x)

(
1∑

i=0

ciφi

))

− 5
√

πxD
1
2

(

r(x) + h(x)

(
1∑

i=0

ciφi

))

+
(
16x

1
2

)(

r(x) + h(x)

(
1∑

i=0

ciφi

))

− 6x, (47)

where φ0 = 1 and φ1 = x − 0.1 are the BCOPs in the domain
[
0, 1

5

]
.

Using the functions r(x), h(x), φ0, and φ1 in Eq. (47), we have

R = (−0.00321968 + 0.001287871c1 − 0.00321968c0) x
7
2

+ (0.1199597541c0 − 0.01199597541c1) x
3
2

+ (0.1331991804c1 − 0.799195082c0) x
5
2

− 2.28939391x
9
2 c1 + (−2.4x + 0.1 + 12x2)c1 + (6x − 0.6)c0 . (48)

Now by Galerkin Method based on BCOPs, we have

1∫

0

(Rφ0)dx = 0

and
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1∫

0

(Rφ1)dx = 0,

which give

0.00004091095414c0 + 0.003990955764c1 − 5.119589935 × 10−7 = 0 (49)

and

0.003991368857c0 − 2.254426072 × 10−7c1 − 3.257920868 × 10−8 = 0. (50)

Solving the above two linear systems of equations, we get

c0 = 0.000008169655751
c1 = 0.0001281960501

}
. (51)

Accordingly solution of original Eq. (45) may now be written as

u(x) = r(x) + h(x)[c0φ0 + c1φ1]

= 0.0001281960501x4 + 0.9999568916x3 + 0.00000395890578x2

− 9.29989852 × 10−8x . (52)

The numerical results of the present solution and the exact solution are given in
Table 3. The plot of the exact and present solutions of this example has been presented
in Fig. 3. One may see that the exact solution of Eq. (45) is in good agreement with
the present solution by taking two terms only.

(ii) By using Least Square Method based on BCOPs

From the above problem, the residual equation is

Table 3 Comparison of the present solution with the exact solution

x Present solution
n = 1

Exact solution

0.00 0.00 0.00

0.02 7.999399 × 10−6 8 × 10−6

0.04 64.000183 × 10−6 64 × 10−6

0.06 216.001022 × 10−6 216 × 10−6

0.08 512.001076 × 10−6 512 × 10−6

0.10 1 × 10−3 1 × 10−3

0.12 1727.99794 × 10−6 1728 × 10−6
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Fig. 3 The behavior of the
exact and present solution of
Example 2

R = (−0.00321968 + 0.001287871c1 − 0.00321968c0) x
7
2

+ (0.1199597541c0 − 0.01199597541c1) x
3
2

+ (0.1331991804c1 − 0.799195082c0) x
5
2 − 2.28939391x

9
2 c1

+ (−2.4x + 0.1 + 12x2
)
c1 + (6x − 0.6)c0 . (53)

from Eq. (27), we have

S = 0.02389672501c20 + (−0.0001433717427c1 − 3.897731001 × 10−7
)
c0

+ 3.317228577 × 10−12 + 0.0003352149388c21 − 4.043552417 × 10−8c1,
(54)

from Eq. (28), we have

∂S

∂c0
= 0,

which gives

0.04779345002c0 − 0.00001433717427c1 − 3.897731001 × 10−7 = 0, (55)

∂S

∂c1
= 0,

which gives

−0.00001433717427c0 + 0.0006704298776c1 − 4.043552417 × 10−8 = 0. (56)

Solving the above linear system of equation, we have



340 R. M. Jena and S. Chakraverty

Table 4 comparison of the
present solution with the
exact solution

x Present solution
n = 1

Exact solution

0.00 0.0 0.00

0.02 8.000960 × 10−6 8 × 10−6

0.04 64.001745 × 10−6 64 × 10−6

0.06 216.001933 × 10−6 216 × 10−6

0.08 512.001337 × 10−6 512 × 10−6

0.10 1 × 10−3 1 × 10−3

0.12 1727.998200 × 10−6 1728 × 10−6

c0 = 0.000008173511675
c1 = 0.00006048762233

}
. (57)

The Solution of original Eq. (23) may now be written as

u(x) = r(x) + h(x)[c0φ0 + c1φ1]

= 0.00006048762233x4 + 0.9999839790x3 + 5.72327614 × 10−7x2

+ 4.24949888 × 10−8x . (58)

One may see that the exact solution of Eq. (45) agrees precisely by taking two
terms. The numerical results of the present solution and the exact solution are given
in Table 4. The plot of the exact and present solutions in this example has been
depicted in Fig. 4.

Fig. 4 The behavior of the
exact and present solution of
Example 2
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7 Conclusion

From the obtained results we can draw the following conclusions:

1. The present solutions are in excellent agreement with the exact solutions.
2. The accuracy of present methods may be improved by taking more terms of

boundary characteristic orthogonal polynomials in different other problems.
3. The methods are used in linear and nonlinear fractional differential equations,

and the solutions are validated.
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Eigenvalue Problems of Structural
Dynamics Using ANN

S. K. Jeswal and S. Chakraverty

Abstract In general, dynamic analysis of a structure may lead to an eigenvalue
problem. Accordingly, a novel mechanism for solving the corresponding eigenvalue
problem has been proposed using Artificial Neural Network (ANN). In order to
validate the ANN procedure, a few example problems, such as vibration analysis of
a spring–mass system and a multistory shear building, have been examined. Further,
inverse problem, viz., the stiffness of the spring–mass system problem with known
mass has also been investigated with the help of ANN. Finally, the results obtained
from the example problem for inverse problem have also been compared with the
existing results in a special case.

Keywords Eigenvalue problem · Dynamic problem · Artificial Neural Network
(ANN)

1 Introduction

Eigenvalue problem plays an important role in understanding the behavior of vari-
ous engineering and science problems, viz., image processing, dynamic analysis of
structures, spectral clustering, and the google page rank algorithm. In this regard,
ANN is found to be helpful in solving a variety of problems nowadays.

In the field of structural engineering, the main challenge arises in designing and
analyzing the structures. Because of poor design, many structures fail. The designing
process involves various system parameters, viz., mass, geometry, material proper-
ties, boundary conditions, and external loads.

Two algorithms and associated neuron-like architectures have been discussed
by Cichocki and Unbehauen [1] for solving the eigenvalue problem. Yi et al. [2]
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investigated an ANN approach for finding the eigenvectors of a symmetric matrix.
A feed-forward neural network iterative diagonalization method (NNiDM) to find
some eigenvalues and eigenvectors of large sparse complex symmetric or Hermitian
matrix has been presented by Yu [3]. The ANN-based approach for finding the
eigenvalues with the corresponding eigenvectors of real skew-symmetric matrices
has been introduced by Tang and Li [4]. A neural network approach for solving the
generalized eigenvalue problem has been discussed by Hang et al. [5].

On the other hand, Ossandón et al. [6] proposed a numerical method based on
ANN to solve an inverse problem associated with the calculation of the Dirichlet
eigenvalues.

Tsou and Shen [7] proposed an ANN approach for structural damage detection
and identification. Kosmatopoulos et al. [8] discussed learning properties of a high-
order neural networks and applied these networks to the identification of dynamic
systems. Fuzzy finite element method has been used to investigate the static and
dynamic analysis of structures with uncertain parameters by Chakraverty and Behera
[9]. Jeswal andChakraverty [10] have given a novel ANN approach for static analysis
of structures with fuzzy parameters.

A neural network-based algorithm for solving systems of linear equations has
been given by Zhou et al. [11]. Jeswal and Chakraverty [12] discussed a novel
ANN approach for solving transcendental equation. Chakraverty and Mall [13] have
authored a book for solving an ordinary differential equation using ANN.

Although there are a few ANN approaches found in the literature to find the
eigenvalue, those are sometimes computationally inefficient and problem-dependent.
So, here we have proposed a step-by-step procedure to solve the eigenvalue problem
with respect to a structural problem.

Rest of the paper has been arranged as follows. Section 2 includes the preliminaries
of a dynamic problem. Detailed ANN procedure for finding the eigenvalue and
eigenvector has been discussed in Sect. 3. In Sect. 4, we have investigated a few
examples of structural dynamics. The inverse problem of structural dynamics has
been included in Sect. 5. Concluding remarks have been included in Sect. 6.

2 Preliminaries

The general equation for dynamic analysis of structure may be obtained as [14]

[M][ẍ] + [C][ẋ] + [K ][x] = f (t) (1)

where [M] is the mass matrix, [C] is the damping matrix, [K ] is the stiffness matrix,
and f (t) is the force.

The equation for the system in the equilibrium situation can be written as [14]

Force due to mass + forces by spring = 0
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⇒ [M][ẍ] + [K ][x] = 0 (2)

where M =

⎡
⎢⎢⎢⎢⎢⎣

m1 0 0 · · · 0
0 m2 0 · · · 0
...

...
... · · · ...

0 0 · · · mn−1 0
0 · · · · · · 0 mn

⎤
⎥⎥⎥⎥⎥⎦

and K =

⎡
⎢⎢⎢⎢⎢⎣

k1 + k2 −k2 0 · · · 0
−k2 k2 + k3 −k3 · · · 0

...
...

... · · · ...

0 · · · −kn−1 kn−1 + kn −kn
0 · · · · · · −kn kn

⎤
⎥⎥⎥⎥⎥⎦
.

Multiplying both sides of Eq. (2) by M−1, we have

I ẍ + M−1Kx = 0

After putting x = φeiwt in the above equation, it leads to an eigenvalue problem
that is

[A]{x} = λ{x} (3)

where λ is the eigenvalue, {x} is the eigenvector and [A] = M−1K is a square matrix.
The characteristic polynomial of the above eigenvalue problem can be written as

a1λ + a2λ
2 + a3λ

3 + · · · + anλ
n = c (4)

where a1, a2, · · · , an are coefficients and c is the constant. Figure 1 represents the
ANN architecture of Eq. (4).

Next, we have discussed the procedure for solving Eq. (4).

3 Proposed Method

Here, we are going to describe the ANN procedure to find the eigenvalue and eigen-
vector of the titled problem.

Figure 1 depicts the ANN architecture of Eq. (4) which consists of four layers,
that is, Layer 1 (input layer), Layers 2 and 3 (hidden layers), and Layer 4 (output
layer). Input layer comprises one linear unit node with a constant input equal to unity.
Layer 2 (first hidden layer) has a node for the linear term λ, and Layer 3 consists of
a number of nodes depending upon Eq. (4). Finally, Layer 4 consists of summation
units whose total input is the expression of the left-hand side of Eq. (4). It has been
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Fig. 1 ANN architecture of Eq. (4)

clearly shown in Fig. 1 that the weights from Layer 2 to Layer 3 are fixed depending
upon the equation. Different coefficients of Eq. (4) are taken as the weights between
Layer 3 and Layer 4. There is only variable weight joining Layer 1 to Layer 2, which
is nothing but the solution of Eq. (4). Further, a bias node connecting Layer 4 and
Wi j indicates the weights between the layers i and j.

Various weight matrices between the layers are given below:

W12 = [W (1)
12 ] = [λ]

W23 = [W (11)
23 W (12)

23 · · · W (1n)
23 ] = [

1 1 · · · 1 ]

W34 =

⎡
⎢⎢⎢⎣

W (11)
34

W (21)
34
...

W (n1)
34

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a1
a2
...

an

⎤
⎥⎥⎥⎦

The input–output relationship of the ANN architecture of neurons is given by
h = g(H), where H is the input to the neuron, g is the activation function, and h is
the output produced. The input vectors with vector notations of the different layers
(where the subscripts 2, 3, and 4 denote Layer 2, Layer 3, and Layer 4 of the network)
are given by

H2 = [H (1)
2 ] = [λ]

H3 = [ H (1)
3 H (2)

3 · · · H (n)
3 ] = [λ λ · · · λ ]

H4 = [H (1)
4 ] = [F(λ)]
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Using the activation functions, we may have

g2 = [g(1)
2 (H)] = [H ]

g3 = [ g(1)
3 (H) g(2)

3 (H) · · · g(n)
3 (H) ] = [ Hk Hk · · · Hk ]

g4 = [g(1)
4 (H)] = [tanh(H)]

and their corresponding outputs have been found as

h2 = [h(1)
2 ] = [λ]

h3 = [ h(1)
3 h(2)

3 · · · h(n)
3 ] = [λk λk · · · λk ]

h4 = [h(1)
4 ] = [tanh[F(λ)]]

3.1 Forward Pass

Using the back-propagation algorithm, the network input to the hidden neuron of
any hidden layer can be written in the form

net j =
n∑

i=1

wi j xi + b

where wi j is the weight from the ith input node to the hidden unit, xi is the input
vector, and b is the bias term. The output of that unit may be found as

i j = g(net j )

where g is the activation function. As such, this theory may be used for the ANN
architecture, and the notations defined in the previous section may be expressed as
follows.

The input to the neurons of the second layer has been written as

H (i)
2 = W (i)

12 = λ(i),where i = 1

and their corresponding output with the activation function is expressed as

h(i)
2 = g(i)

2 (H (i)
2 ) (i = 1, 2, · · · , n)

which may also be rewritten as

h(1)
2 = g(1)

2 (H (1)
2 ) = λ, h(2)

2 = g(2)
2 (H (2)

2 ) = λ, · · · , h(n)
2 = g(n)

2 (H (n)
2 ) = λ.
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Layer 3 (third layer) comprises n nodes corresponding to i = 1, 2, · · · , n. The
inputs to the n units have been expressed as

H (i)
3 = W (1i)

23 h(1)
2

The outputs of the third layer are computed as

h(1)
3 = g(1)

3 (H (1)
3 ) = λ

h(2)
3 = g(2)

3 (H (2)
3 ) = λ2

. . . . . . .

h(n)
3 = g(n)

3 (H (n)
3 ) = λn

As such, inputs to the neurons of Layer 4 (output layer) can be found as

H (i)
4 =

n∑
j=1

W ( j i)
34 h( j)

3 − C (5)

and their corresponding output after applying tanh (.) activation function may be
obtained as

h(1)
4 ≡ o1 = tanh(H (1)

4 ) = tanh[F(λ)]

3.2 Backward Pass

Different parameters of the backward pass for different layers, viz., Layer 2, Layer
3, and Layer 4 can be given as

δ2 = [δ(1)
2 ]

δ3 = [ δ(1)
3 δ

(2)
3 · · · δ

(n)
3 ]

δ4 = [δ(1)
4 ]

The ANN output in backward pass has been given by

o1 = tanh[F(λ)]

and their target output has been taken as d1 = 0 and the activation function for the
output layer is a hyperbolic tangent function whose derivative is given by

tan h′(λ) = 1 − tanh2(λ)
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Then the element of δ4 is estimated as

δ
(1)
4 = (d1 − o1) tan h

′(H (1)
4 ) = − tanh[F(λ)](1 − tanh2[F(λ)])

Using the above δ
(1)
4 values, the δ values of Layer 3 are given by

δ
(i)
3 = (W (i1)

34 δ
(1)
4 ) · (g(i)′

3 (H (i)
3 )),where i = 1, 2, · · · , n (6)

So, Eq. (6) may now be written as

δ
(1)
3 = a1[−g(F)(1 − g2(F))]
· · · · · · · · · · · ·
δ

(n)
3 = an[−g(F)(1 − g2(F))](nλn−1)

The δ values for Layer 2 have been evaluated using the δ3 values, viz.,

δ
(i)
2 =

⎛
⎝

n∑
j=1

W (i j)
23 δ

( j)
3

⎞
⎠ · (g(i)′

2 (H (i)
2 )),where i = 1 (7)

The derivative terms involved in Eq. (7) are computed as g(1)′
2 (H (1)

2 ) = 1. So now,
Eq. (7) has also been written as

δ
(1)
2 = W (11)

23 δ
(1)
3 + W (12)

23 δ
(2)
3 + · · · + W (1n)

23 δ
(n)
3

= a1[−g(F)(1 − g2(F))] + a2[−g(F)(1 − g2(F))] × 2λ + · · ·
+ an[−g(F)(1 − g2(F))](nλn−1)

3.3 Updating Weights of the Network Architecture

The weight updation for the ANN architecture (Fig. 1) can be done using the back-
propagation algorithm as

W (i)
12 = W (i)

12 + ηδ
(i)
2 , where i = 1, 2, · · · , n and η is the learning rate.

The error can be calculated as

E = 1

2
(d1 − o1)

2 = 1

2
g2[F(λ)] (8)

Differentiating Eq. (8) with respect to W (i)
12 , we get
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− ∂E

∂W (i)
12

= δ
(1)
4

∂F(λ)

∂W (i)
12

(9)

Finally, the weight update equation will be

W (i)
12 = W (i)

12 − η
∂E

∂W (i)
12

,where i = 1, 2, · · · , n

3.4 Procedure for Finding the Eigenvector

After finding the eigenvalue, if we put the eigenvalues in Eq. (3), it leads to a system
of linear equations. So, here we have discussed an algorithm to solve the linear
system whose solutions are nothing but the eigenvectors corresponding to different
eigenvalues. Hence, an ANN-based method for solving a linear system of equations
has been discussed next.

A linear system of equations has been written as

An×nx = b or
n∑
j=1

ai j x j = bi , i = 1, 2, · · · , n (10)

where A = [ai j ] is an n × n matrix, x = [x1, x2, · · · , xn]T is an n × 1 vector which
is the eigenvector of the system, and b = [b1, b2, · · · , bn]T is an n×1 known vector.

From Eq. (10), we choose AT
i = (ai1, ai2, · · · , ain) and bi as the input and target

output, respectively, of the ANN having a single-layer network model. Here, x is the
weight (eigenvector) of the ANN architecture. Figure 2 depicts the detailed ANN
architecture of the discussed problem.

Taking the above input, the target output, and weights, we train the ANN model
until the weight vector x matches the target output b.

The ANN output for the ANN architecture (Fig. 2) is given by

Fig. 2 ANN architecture for
solving the linear system
(10)
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yi = g

⎛
⎝

n∑
j=1

ai j x j

⎞
⎠ = AT

i x, i = 1, 2, · · · , n (11)

where g is the activation function. Here, the activation function is chosen as the
identity function.

The error may be calculated in the following way

ei = bi − yi (12)

Then the sum-squared error is given by

Err = 1

2

n∑
i=1

e2i (13)

The weights for the ANN architecture have been adjusted using the steepest
descent algorithm as

�x j = −η
∂Err

∂x j
= −η

∂Err

∂ei

∂ei
∂x j

= η

n∑
i=1

Erriai j (14)

and the updated weight matrix is given by

x (t+1) = x (t) + �x j , j = 1, 2, · · · , n (15)

where η is the learning rate and x (t) is the tth updated weight vector of the network.
The algorithm to find the eigenvectors is discussed next [10]

Step 1: Choose the precision tolerance, learning rate η, random weights, t = 0, and
Err = 0;

Step 2: Calculate yi = AT
i x , ei = bi − yi ;

Step 3: The sum-squared error is calculated as Err = Err + 1
2

n∑
i=1

e2i and weight-

updating formula is given by

x (t+1) = x (t) + �x j , j = 1, 2, · · · , nwhere�x j = η

n∑
i=1

Eiai j

If Err < tol, then go to Step 2, else go to Step 4.
Step 4: Print x.
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4 Numerical Result

Example 4.1 A spring–mass system [15] with three degrees of freedom has been
considered which is given in Fig. 3. The stiffness parameters are chosen as k1 =
k2 = k3 = k4 = 1N/m. The mass parameters are taken as m1 = 1kg, m2 = 2kg,
m3 = 3kg.

From Eqs. (2) and (3), after putting the values of [M] and [K ], the coefficient
matrix is calculated as

A = M−1K =
⎡
⎣

2 −1 0
−1/2 1 −1/2
0 −1/3 2/3

⎤
⎦ (16)

The characteristics polynomial for the coefficient matrix can be computed as

P(λ) =
∣∣∣∣∣∣
2 − λ −1 0
−1/

2 1 − λ −1/
2

0 −1/
3
2/
3 − λ

∣∣∣∣∣∣
= 0

⇒ 3λ3 − 11λ2 + 10λ = 2 (17)

The ANN architecture for Eq. (17) has been depicted in Fig. 4.

Fig. 3 Spring–mass system with three degrees of freedom [15]

Fig. 4 ANN architecture of Eq. (17)
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Frequency parameters (eigenvalues) computed for Eq. (17) with different param-
eters have been included in Table 1. Figures 5, 6, and 7 show the convergence plot
of different eigenvalues of Eq. (17).

The eigenvectors corresponding to different eigenvalues with different parameters
have been listed in Table 2.

Next, an example of multistory shear building has been discussed.

Example 4.2 Weconsider a 5-storey shear building structure to validate the proposed
ANN method. The stiffness parameters are taken as k1 = 20N/m, k2 = 18N/m,
k3 = 16N/m, k4 = 14N/m, and k5 = 12N/m. The mass parameters are considered
as m1 = 30 kg, m2 = 27 kg, m3 = 27 kg, m4 = 25 kg, and m5 = 18 kg.

In this case, the coefficient matrix is calculated as

A = M−1K =

⎡
⎢⎢⎢⎢⎢⎣

1.2667 −0.6 0 0 0
−0.6667 1.2592 −0.5926 0 0

0 −0.5926 1.1111 −0.5185 0
0 0 −0.56 1.04 −0.48
0 0 0 −0.6667 0.6667

⎤
⎥⎥⎥⎥⎥⎦

A 5-storey shear building structure has been depicted in Fig. 8.
In this case, the characteristics polynomial can be obtained as

Table 1 Computed eigenvalues using the ANN procedure

Eta (η) 0.1 0.1 0.1

Initial weight 1.9 0.7 0.01

Error 4.7875e−08 8.3983e−09 7.4993e−08

Number of iterations 25 30 18

Eigenvalues (λ) 2.3874 1.0000 0.2792

Fig. 5 Convergence plot of
the first eigenvalue of
Eq. (17) (λ1 = 2.3874)
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Fig. 6 Convergence plot of
the second eigenvalue of
Eq. (17) (λ2 = 1.0000)

Fig. 7 Convergence plot of
the third eigenvalue of
Eq. (17) (λ3 = 0.2792)

Table 2 Computed
eigenvector using the ANN
procedure

λ1 λ2 λ3

2.3874 1.0000 0.2792

0.0595
−0.0230
0.0045

0.0333
0.0333
−0.0333

0.0683
0.1175
0.1011

η = 0.1 η = 0.1 η = 0.1

Initial weights:
[0.1;0.1;0.1]

Initial weights:
[0.1;0.1;0.1]

Initial weights:
[0.1;0.1;0.1]

Number of
epochs: 35

Number of
epochs: 168

Number of
epochs: 120

Error: 9.0058e−11 Error: 8.9956e−11 Error: 9.7589e−11

∣∣∣∣∣∣∣∣∣∣

1.2667 − λ −0.6 0 0 0
−0.6667 1.2592 − λ −0.5926 0 0

0 −0.5926 1.1111 − λ −0.5185 0
0 0 −0.56 1.04 − λ −0.48
0 0 0 −0.6667 0.6667 − λ

∣∣∣∣∣∣∣∣∣∣
= 0

⇒ −λ5 + 5.3437λ4 − 9.9407λ3 + 7.5440λ2 − 2.0339λ + 0.0983 = 0 (18)
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Fig. 8 5-storey shear building structure

Frequency parameters (eigenvalues) and their corresponding eigenvectors have
been computed using the proposed ANN methods. Computed eigenvalues with dif-
ferent parameters have been included in Table 3. The convergence of eigenvalue
plots has been depicted in Figs. 9, 10, 11, 12, and 13. Further, their corresponding
eigenvectors have been listed in Table 4.

Table 3 Computed frequency parameters (eigenvalues) using the ANN procedure

Eta (η) 0.1 0.1 0.1 0.1 0.1

Initial weight 0.01 15 75.5 140 191

Error 8.1394e−10 9.8598e−10 9.8793e−11 9.9434e−10 9.6919e−10

Number of epochs 29 866 1449 1668 633

Eigenvalues (λ) 0.0661 0.4379 1.0289 1.6432 2.1724
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Fig. 9 Convergence plot of
the first eigenvalue of
Eq. (18) (λ1 = 0.0661)

Fig. 10 Convergence plot of
the second eigenvalue of
Eq. (18) (λ2 = 0.4379)

Fig. 11 Convergence plot of
the third eigenvalue of
Eq. (18) (λ3 = 1.0289)

Fig. 12 Convergence plot of
the fourth eigenvalue of
Eq. (18) (λ4 = 1.6432)
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Fig. 13 Convergence plot of
the fifth eigenvalue of
Eq. (18) (λ5 = 2.1724)

5 Inverse Problem

This section discusses the inverse problem, viz., for the given mass parameters,
on how we can compute the stiffness parameters. So the inverse problem of the
spring–mass system discussed in Sect. 4 (Example 4.1) has been considered. We
have found the eigenvalues and eigenvectors for Example 4.1 earlier. But if we have
the eigenvalues and their corresponding eigenvectors, the next task is to find the
coefficient matrix and stiffness matrix. Corresponding to Example 4.1 of Sect. 4, we
have three different linear systems from three different eigenvalues and eigenvectors
are as follows:

⎡
⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦

⎡
⎣

0.0595
−0.0230
0.0045

⎤
⎦ = 2.3874 ×

⎡
⎣

0.0595
−0.0230
0.0045

⎤
⎦ (19)

⎡
⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦

⎡
⎣

0.0333
0.0333

−0.0033

⎤
⎦ = 1 ×

⎡
⎣

0.0333
0.0333

−0.0033

⎤
⎦ (20)

⎡
⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦

⎡
⎣
0.0683
0.1175
0.1011

⎤
⎦ = 0.2792 ×

⎡
⎣
0.0683
0.1175
0.1011

⎤
⎦ (21)

After combining Eqs. (19), (20), and (21), we get a 9×9 linear system for finding
the different values of the coefficient matrix, which can be solved by the proposed
algorithm discussed in Sect. 3 (Subsection 3.4). The coefficient matrix A can be
found as

⎡
⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦ =

⎡
⎣

2.0013 −1.0010 0.0003
−0.4987 0.9990 −0.4997
0.0004 −0.3338 0.6666

⎤
⎦
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In the above case, the learning parameter and initial weights are chosen as η = 0.1
and [0.1;0.1;0.1;0.1;0.1;0.1;0.1;0.1;0.1], respectively.

Now, the stiffness matrix can be computed as

K = MA =
⎡
⎣

2.0013 −1.0010 0.0003
−0.9974 1.998 −0.9994
0.0012 −1.0014 1.9998

⎤
⎦

The value for the stiffness matrix is similar to the values given in Bhat and
Chakraverty [15].

6 Conclusion

This paper gives a novel ANN technique to find the eigenvalues and their correspond-
ing eigenvector. a few interesting example problems such as string mass system and
multistory shear building have been investigated. Further, the inverse problem, viz.,
the stiffness of the spring–mass system problem with known mass has also been
investigated with the help of ANN.
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Differential Quadrature Method
for Solving Fifth-Order KdV Equations

P. Karunakar and S. Chakraverty

Abstract The third- and fifth-order Korteweg–de-Vries (KdV) equations are the
commonly used models for the study of various fields of science and engineering,
viz., ShallowWaterWaves (SWW)with surface tension andmagnetoacoustic waves,
etc. It is not easy to find the analytical solutions of physical models when they are
highly nonlinear. As such, this article aims to find the numerical solutions of fifth-
orderKdVequations usingDifferential QuadratureMethod (DQM). InDQM, shifted
Legendre polynomials-based grid points have been used in finding the solution of
two types of fifth-order KdV equations. The present results by DQM are compared
with results obtained by other methods. Finally, error plot has also been incorporated
and carried out to see the effect of number of grid points on the solution of fifth-order
KdV equations.

Keywords Differential Quadrature Method · Korteweg–de-Vries equations ·
Shallow Water Waves · Shifted Legendre polynomials

1 Introduction

Korteweg and de-Vries introduced KdV equation for modeling SWW with small
and finite amplitudes in 1985 [1]. Further, different types of KdV equations are
being used by various researchers for modeling dispersive waves in fluid dynamics,
plasma physics, and quantummechanics, etc. Various methods have been introduced
by different authors for handling KdV equations. Wave motion of the Lagrangian
form of KdV equation that governs the evolution of nonlinear SWW was discussed
byOsborne et al. [2] using inverse scattering transform. Johnson [3] studied KdV and
related models for water waves. Wazwaz used Hirota’s bilinear for the investigation
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of normal form of perturbed KdV in [4] and established two-mode modified KdV
equation in [5]. Exact solutions of KdV equation with a source are presented in [6] by
Kudryashov and exact solutions of modified KdV equation with a polynomial source
are established in [7] by Kudryashov and Ivanova. Study of long-period cosine wave
dispersion in deep shallow water was conducted by Brühl and Oumeraci [8] using
nonlinear Fourier transform based on KdV equation. The perturbed KdV equation
has been handled by Selima et al. [9] for the analysis of surface waves. Goswami
et al. [10] found the solution of different types of fifth-order KdV equations occurring
in magnetoacoustic waves using Homotopy Perturbation Method [HPM].

We consider two types of fifth-order KdV equations subject initial to conditions
as below [10]

(i) ut + uux + uuxxx − uxxxxx = 0, u(x, 0) = ex (1)

(ii) ut − uux + uxxxxx = cos(x) + 2t sin(x) + t2

2
sin(2x), u(x, 0) = 0 (2)

2 Differential Quadrature Method

In this section, we briefly explain DQMproposed by Bellman et al. [11–14]. Approx-
imating partial derivatives by means of weighted sum of function values is known
as Differential Quadrature (DQ).

Let us consider a second-order nonlinear Partial Differential Equation (PDE) of
the form [11, 12]

ut (x, t) = f (x, t, u(x, t), ux (x, t), uxx (x, t), . . .), (3)

subject to initial condition

u(x, 0) = g(x) (4)

The first- and second-order spatial derivatives using differential quadrature may
be written as

ux (xi , t) =
N∑

j=1

ai j u(x j , t), i = 1, 2, 3, . . . , N , (5)

uxx (xi , t) =
N∑

j=1

bi j u(x j , t), i = 1, 2, 3, . . . , N , (6)
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System of N Ordinary Differential Equations (ODEs) may be obtained by substi-
tuting (5) and (6) in (3), as below

ut (xi , t)) = f

⎛

⎝xi , t, u(xi , t),
N∑

j=1

ai j u(x j , t),
N∑

j=1

bi j u(x j , t), . . .

⎞

⎠, (7)

subject to initial conditions

u(xi , 0) = g(xi ) (8)

The weighted coefficients ai j and bi j are to be found using N grid points xi and
these grid points depend on the considered polynomials like Legendre, Chebyshev,
etc. Shifted Legendre polynomials P∗

N (xi ) in [0, 1] have been used in the present
study for finding weighted coefficients.

The shifted Legendre polynomials [11, 12] of order N are given as

P∗
N (xi ) =

N∑

k=0

(−1)N+k (N + k)!
(N − k)!(k!)2 x

k
i

First few shifted Legendre polynomials are

P∗
0 (xi ) = 1

P∗
1 (xi ) = 2xi − 1

P∗
2 (xi ) = 6x2i − 6xi + 1

P∗
3 (xi ) = 20x3i − 30x2i + 12xi − 1

P∗
4 (xi ) = 70x4i − 140x3i + 90x2i − 20xi + 1

The weighted coefficients in terms of shifted Legendre polynomial P∗
N (xi ) [12]

are taken as follows:

ai j = P ′ ∗
N (xi )

(xi − x j )P ′ ∗
N (x j )

, i �= j (9)

and

aii = 1 − 2xi
2xi (xi − 1)

, i = j (10)

Once all ai j are obtained, then it is easy to find bi j following the below procedure.
Let us denote (5) as

∂u

∂x
= Au (11)
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where A = [ai j ]N×N .
The second-order derivative can be approximated as

∂2u

∂x2
= ∂

∂x

(
∂u

∂x

)
= ∂

∂x
(Au) = A

∂u

∂x
= A(Au) = A2u, (12)

where [bi j ] = A2.
Hence weighted coefficients bi j can be obtained by squaring A as

[
bi j

] = [
ai j

]
N×N × [

ai j
]
N×N

In the similar way weighted coefficients for third-, fourth-, fifth-… order deriva-
tives can be approximated as

[ci j ] = [ai j ]N×N × [ai j ]N×N × [ai j ]N×N ,

[di j ] = [ai j ]N×N × [ai j ]N×N × [ai j ]N×N × [ai j ]N×N

[ei j ] = [ai j ]N×N × [ai j ]N×N × [ai j ]N×N × [ai j ]N×N × [ai j ]N×N
...

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(13)

The solution of the considered problem may be obtained at selected grid points
by plugging ai j , bi j , ci j , . . . in (7) and solving the system of ordinary differential
equations using a suitable method.

3 Numerical Examples

In this section, DQM has been applied to two types of fifth-order KdV Eqs. (1) and
(2).

Example 1 Let us consider the fifth-order KdV equation given in Eq. (1), subject to
the initial condition u(x, 0) = ex .

First, we need towrite derivative term as approximating sum except the derivatives
with respect to t.

Substituting
N∑
j=1

ai j u(x j , t) for ux (x, t) in Eq. (1) we get system of ODEs as

ut (xi , t) = −u(xi , t)
N∑

j=1

ai j u(x j , t) − u(xi , t)
N∑

j=1

ci j u(x j , t) +
N∑

j=1

ei j u(x j , t)

(14)

subject to the initial conditions
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u(xi , 0) = exi , i = 1, 2, . . . , N (15)

To understand the procedure let us choose N = 7, then Eq. (14) reduces to

ut (xi , t) = −u(xi , t)
7∑

j=1

ai j u(x j , t) − u(xi , t)
7∑

j=1

ci j u(x j , t)

+
7∑

j=1

ei j u(x j , t), i = 1, 2, . . . , 7 (16)

subject to the conditions u(xi , 0) = exi , i = 1, 2, . . . , 7.
The grid points xi , i = 1, 2, . . . 7 are the roots of

P∗
7 (x) = 3432x7 − 12012x6 + 166632x5 − 11550x4

+ 4200x3 − 756x2 + 56x − 1 = 0

and these may be found as

x1 = 0.0255; x2 = 0.1292; x3 = 0.2971; x4 = 0.5;
x5 = 0.7029; x6 = 0.8001; x7 = 0.9746.

Using Eqs. (9) and (10), the weighted coefficients of the first-order derivative may
be obtained as

[ai j ] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0191 0.0319 −0.0028 −0.0001 −0.0000 −0.0000 −0.0000
−0.0029 −0.0033 0.0014 0.0001 0.0000 0.0000 0.0000
0.0048 −0.0259 −0.0010 −0.0004 −0.0000 −0.0000 −0.0000
0.0313 −0.1327 0.0557 0.0000 −0.0009 −0.0003 −0.0001
0.1222 −0.4778 0.1552 0.0274 0.0010 −0.0053 −0.0007
0.2044 −0.7812 0.2393 0.0354 0.0196 0.0019 −0.0021
0.4468 −1.6610 0.4763 0.0601 0.0189 0.0154 0.0191

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Further, the weighted coefficients of third- and fifth-order derivatives may be
computed and obtained using Eq. (13).

Plugging all theweighted coefficients in Eq. (16) and solving the systemof nonlin-
ear ordinary differential equations along with initial conditions using Runge–Kutta
method of order 4, we get the solution of Eq. (1) at selected grid points xi. The
corresponding results are presented in Table 1.

From the results presented in Table 1, it may be confirmed that solutions at par-
ticular nodes obtained by DQM for N = 7 are in good agreement with the solution
by HPM (given in Goswami et al. [10]). One may note that better solution may be
obtained by increasing the value of N.
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Table 1 DQM solution of
fifth-order KdV Eq. (1) for N
= 7 and comparison with
HPM solution [10]

xi DQM Goswami et al. [10]

0.0254 1.0256 1.0156

0.1292 1.1380 1.1266

0.2971 1.3463 1.3325

0.5000 1.6495 1.6323

0.7029 2.0232 1.9996

0.8008 2.2331 2.2051

0.9746 2.6651 2.6236

Example 2 Now, we apply DQM to fifth-order nonhomogeneous KdV equation
given in Eq. (2), subject to the initial condition u(x, 0) = 0.

By writing the derivative terms with respect to x in Eq. (2) as approximating sums
lead to have the system of ODEs as

ut (xi , t) = + u(xi , t)
N∑

j=1

ai j u(x j , t) −
N∑

j=1

ei j u(x j , t)

+ cos(xi ) + 2t sin(xi ) + t2

2
sin(2xi ) (17)

subject to the initial conditions

u(xi , 0) = 0, i = 1, 2, . . . , N (18)

Let us first take N = 4. Then Eq. (17) reduces to

ut (xi , t) = u(xi , t)
4∑

j=1

ai j u(x j , t) −
4∑

j=1

ei j u(x j , t)

+ cos(xi ) + 2t sin(xi ) + t2

2
sin(2xi ), i = 1, 2, 3, 4 (19)

The grid points xi , i = 1, 2, 3, 4 of P∗
N (x) for N = 4 are

x1 = 0.0694; x2 = 0.3301; x3 = 0.6670; x4 = 0.9306;

The weighted coefficients may be found as

[ai j ] =

⎡

⎢⎢⎣

−6.6640 −3.8364 −1.6651 −1.1612
3.8364 −0.7683 −2.9420 −1.6654
1.6651 2.9421 0.7688 −3.8376
1.1613 1.6654 3.8376 6.6640

⎤

⎥⎥⎦
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Table 2 DQM solution of
fifth-order KdV Eq. (2) for N
= 4

xi DQM solution Goswami et al. [10]

0.0694 0.1580 0.0998

0.3301 0.0823 0.0946

0.6700 0.0643 0.0784

0.9306 0.0727 0.0597

Table 3 DQM solution of
fifth-order KdV Eq. (2) for N
= 7

xi DQM solution Goswami et al. [10]

0.0254 0.1002 0.1000

0.1292 0.1005 0.0992

0.2971 0.0963 0.0956

0.5000 0.0867 0.0878

0.7029 0.0769 0.0763

0.8008 0.0701 0.0696

0.9746 0.0549 0.0562

Again, the weighted coefficients of third- and fifth-order derivatives may be
obtained using Eq. (13). Solving the system of differential Eqs. (19) using fourth-
order Runge–Kutta method we obtain solution of fifth-order KdV Eq. (2) at selected
grid points as given in Table 2.

Now we take N = 7 for estimating the solution of the fifth-order KdV Eq. (2) at
seven grid points using DQM by proceeding like Example 1. Corresponding results
are presented in Tables 3. Solution plot by the present method and HPM solution
(given in Goswami et al. [10]) are depicted in Fig. 1. Finally, error in DQM solution
comparing with solution by HPM (given in Goswami et al. [10]) has been computed
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Fig. 1 Solution of fifth-order KdV Eq. (2) using present method DQM and HPM
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Fig. 2 Absolute error for N = 7

for both the cases N = 4 and N = 7 and corresponding absolute error plots are
depicted in Fig. 2.

From Fig. 1, one may observe that the present solution using DQM is in good
agreement with HPM solution [10]. Figure 2 confirms that error in DQM solution
for N = 4 is more whereas for N = 7 it is very less. From this, it may be concluded
that for higher values of N more better results may be expected using DQM.

4 Conclusion

Numerical solutions of two types of fifth-order KdV equations have been obtained
at selected grid points using DQM. In DQM, shifted Legendre polynomials-based
grid points have been used. The obtained results confirm that solution of fifth-order
KdV equations by DQM are in good agreement with existing HPM results. Also, it
may be noted that error in DQM solution for N = 4 is more compared with HPM
solution, which is provided in [10]. But for N = 7, the solution is almost same as
HPM solution and error is very less. This may be seen in Example 2. So, large values
of N will provide better results for the fifth-order KdV equations using DQM. It may
be worth mentioning that DQM may easily be extended to solve higher order like
seventh-order KdV equations also.
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Vibration Analysis of Nonuniform
Single-Walled Carbon Nanotube Resting
on Winkler Elastic Foundation Using
DQM

Subrat Kumar Jena and S. Chakraverty

Abstract This study present frequency parameters and mode shapes of nonuniform
Single-Walled Carbon Nanotube (SWCNT) placed on Winkler elastic foundation.
Eringen’s nonlocal theory is implemented in the Euler–Bernoulli beam to inquire
size-dependent behavior of single-walled carbon nanotube. Here flexural stiffness is
assumed to vary exponentially which is responsible for making it nonuniform since
many nanoelectromechanical systems acquire geometrically nonuniformmodel. Dif-
ferential Quadrature Method (DQM) is adopted and MATLAB code has been devel-
oped to explore the tabular and graphical results for different scaling parameters. All
the standard boundary condition, viz, S-S, C-S, C-C, and C-F are taken into consider-
ation, and obtained results are compared with the well-known results available in the
literature showing excellent agreement. Also, the effects of various scaling param-
eters like nonuniform parameter, the nonlocal parameter, aspect ratio, and Winkler
modulus parameter on frequency parameters are demonstrated using numerical as
well as graphical results.

Keywords SWCNT · DQM · Flexural stiffness · Winkler elastic foundation ·
Eringen’s theory

1 Introduction

SWCNTs are allotropes of carbon having a cylindrical structure. It possesses many
peculiar properties [1] which makes it a very predominant member regarding its
application in various electromechanical systems. Tremendous application of CNT
reinforced structure can be seen in the literature [2–5]. Because of the high potential in
engineering applications, it is essential to predict the vibration characteristics of such
structure. In this regard, three approaches are there, namely, atomistic, continuum,

S. K. Jena (B) · S. Chakraverty
Department of Mathematics, National Institute of Technology, Rourkela 769008, India
e-mail: sjena430@gmail.com

S. Chakraverty
e-mail: sne_chak@yahoo.com

© Springer Nature Singapore Pte Ltd. 2020
S. Chakraverty and P. Biswas (eds.), Recent Trends in Wave Mechanics
and Vibrations, Lecture Notes in Mechanical Engineering,
https://doi.org/10.1007/978-981-15-0287-3_27

371

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0287-3_27&domain=pdf
mailto:sjena430@gmail.com
mailto:sne_chak@yahoo.com
https://doi.org/10.1007/978-981-15-0287-3_27


372 S. K. Jena and S. Chakraverty

and semi-continuum. The atomistic approach is mainly used in molecular dynamics
simulationwhich is not an ideal approach for all the cases.Again continuumapproach
is categorized into two types, viz., classical and nonclassical continuum approaches.
In the case of classical continuum approach, small-scale effects like electric force,
chemical bond, and Vanderwall’s force are neglected, but experimentally it is found
that these factors affect the vibration characteristics significantly. So for accurate
determination of vibration characteristics, many nonclassical continuum theories
have been developed, out of these theories, nonlocal theory of Eringen [6] is the
popular one. Use of Eringen’s nonlocal theory in the vibration of nanobeam can be
found in the literature [7–9].

In the year 1867,Winkler introduced the concept of theWinkler foundationmodel
which has become one of the first scenarios in this regard. Zhou [10] presented the
general solution of vibrations of beams resting on a variable Winkler elastic founda-
tion. Vibration characteristics of a beam resting on variable one- and two-parameter
elastic foundationswere studied by Eisenberger [11]. Auersch [12] investigated finite
and infinite beams placed on a Winkler elastic foundation. Elastic foundations with
Winkler–Pasternak problems may also be found in [13, 14]. Structural problems
with the elastic foundation also solved by a few other methods such as differential
transform [15], Rayleigh–Ritz [16], and Harmonic DQ [17, 18]. The vibration of
single-walled carbon nanotube placed on exponentially varying elastic foundation
was studied using DQM by Chakraverty and Jena [19]. Some other investigations
related to static and dynamical analysis of structural elements, especially nonlocal
structures can be found in [20–30].

Though some of the studies have been undertaken on Winkler elastic foundation,
the present article for the first time provides the frequency parameters and mode
shapes of nonuniform SWCNT placed on Winkler elastic foundation along with
effects of various scaling parameters on the frequency parameters.

2 Formulation of Proposed Model

Strain energy U of the SWCNT is expressed as [16]

U = 1

2

L∫

0

∫

A

σxxεxx d A dx, (1)

where L is the length of the SWCNT, σxx is the normal stress, and A is the area cross
section.

The strain-displacement relation may be given as

εxx = −z
∂2w

∂x2
, (2)
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where εxx is the normal strain and w is the transverse displacement. Using Eq. (2) in
Eq. (1), strain energy U may be expressed as [16]

U = −1

2

L∫

0

M
∂2w

∂x2
dx, (3)

whereM = ∫
A
zσxxd A is the bendingmoment. In this study, the free harmonicmotion

is considered, i.e., w = w0(x) sin ωt where ω is the natural frequency of vibration.
Using free harmonic motion in Eq. (3), we may obtain the strain energy U as

U = −1

2

L∫

0

M
d2w0

dx2
dx . (4)

The kinetic energy T may be expressed as [16]

T = 1

2

L∫

0

ρAω2w2
0 dx, (5)

where ρ is the mass density and A is the area cross section. Now the potential energy
may be given as [16].

V = 1

2

L∫

0

few0 dx, (6)

where fe = kww0 is the density of the reaction force of the Winkler elastic foun-
dation. Here kw denotes the Winkler modulus of the elastic medium. Now by using
Hamilton’s principle

∫ t
0 δT − (δU + δV ) dt = 0 and setting the coefficient of δw0

to zero, we may obtain the governing equilibrium equation as

d2M

dx2
− kww0 = −ρAω2w0 (7)

From Eringen’s nonlocal elasticity theory [6], the nonlocal constitutive relation
may be expressed as

M − μ
d2M

dx2
= −E I

d2w0

dx2
(8)
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where μ = (e0a)2 is the nonlocal parameter with e0 and a denote material constant
and internal characteristic length, respectively, I is the second moment of area and
E is Young’s modulus.

Now, the proposed exponential variation in flexural stiffness can be expressed as
[20].

E I = (E I0)e
−nx , (9)

where I0 is the second moment of inertia at the left end and n is a positive constant.
By using Eqs. (7) and (9) in Eq. (8), bending moment M may be expressed as

M = −(E I0)e
−nx d

2w0

dx2
+ μ

(−ρAω2w0 + kww0
)

(10)

Plugging Eq. (10) in the governing equilibrium Eq. (7), we have

d2

dx2

{
−(E I0)e

−nx d
2w0

dx2
+ μ

(−ρAω2w0 + kww0
)} − kww0 = −ρAω2w0 (11)

After expansion, one may obtain the governing equation in terms of displacement
as

e−nx d
4w0

dx4
− 2ne−nx d

3w0

dx3
+ n2e−nx d

2w0

dx2
− μkw

E I0

d2w0

dx2

+ ρAω2μ

E I0

d2w0

dx2
+ kww0

E I0
= ρAω2w0

E I0
(12)

Let us use some nondimensional terms, viz., X = x
L , W = w0

L , λ2 = ρAω2L4

E I0
,

Kw = kwL4

E I0
, and η = nL in order to reduce computational efforts.

Using the above nondimensional terms in Eq. (12), we obtain the nondimension-
alized form of the governing differential equation as

e−ηX d
4W

dX4
− 2ηe−ηX d

3W

dX3
+ η2e−ηX d

2W

dX2

− μ

L2
Kw

d2W

dX2
+ KwW = λ2

(
W − μ

L2

d2W

dX2

)
(13)

3 Basics of Differential Quadrature Method

Differential quadrature method is used to predict the vibration characteristics in the
present study. For more details, one may refer an interesting article by Quan and
Chang’s [31] and a very excellent book by Shu [32]. The derivatives of displacement
function W (X) at a given discrete point i may be approximated as Shu [32]
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W ′
i =

N∑
j=1

Ai jW j

W ′′
i =

N∑
j=1

Bi jW j

W ′′′
i =

N∑
j=1

Ci jW j

W IV
i =

N∑
j=1

Di jW j (14)

where i = 1, 2, . . . , N and Ai j , Bi j ,Ci j and Di j are the weighting coefficients asso-
ciated with the first, second, third, and fourth derivatives, respectively. Substituting
the value of Eq. (14) into Eq. (13), we obtain a generalized eigenvalue problem as

[S] {W } = λ2 [T ] {W } (15)

where S is the stiffness matrix and T is the mass matrix.

4 Numerical Results and Discussions

A MATLAB program is developed for DQM to solve the generalized eigenvalue
problem obtained in the Eq. (15). Following parameters are taken for the computa-
tional purpose.

E = 1TPa, L = 10 nm, h = 1 and unless mentioned
L

h
= 10.

4.1 Validation

Validation of the present method is carried out in two ways. First, we consider a
homogeneous Euler–Bernoulli beam placed onWinkler elastic foundation, i.e., non-
local parameter μ = 0 and nonuniform parameter η = 0. We compare our results

of frequency parameter
(√

λ
)
with those available in the literature [10, 15] which

are demonstrated in Tables 1, 2 and 3. Second, we consider a uniform nanobeam
which is not resting on any elastic foundation, viz., η = 0 andWk = 0. The obtained
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Table 2 Comparisons with Ref. [15] for CC case as given in [19]

Kw
√

λ1
√

λ2
√

λ3

Present Ref. [15] Present Ref. [15] Present Ref. [15]

1 4.7324 4.7324 7.8537 7.8537 10.9958 10.9958

10 4.7534 4.7534 7.8583 7.8583 10.9975 10.9975

100 4.9503 4.9503 7.9043 7.9043 11.0144 11.0144

1000 6.2239 6.2239 8.3251 8.3251 11.1790 11.1790

Table 3 Comparisons with Ref. [15] for CF case as given in [19]

Kw
√

λ1
√

λ2
√

λ3

Present Ref. [15] Present Ref. [15] Present Ref. [15]

1 1.9119 1.9119 4.6965 4.6965 7.8552 7.8552

10 2.1746 2.1746 4.7180 4.7180 7.8599 7.8599

100 3.2557 3.2557 4.9191 4.9191 7.9058 7.9058

1000 5.6407 5.6407 6.2082 6.2082 8.3264 8.3264

Table 4 Comparisons with Refs. [7–9] for SS case as given in [19]

μ Present Ref. [7] Ref. [8] Ref. [9]

0 9.8696 9.8696 9.8696 9.8696

1 9.4159 9.4159 9.4124 9.4159

2 9.0195 9.0195 9.0133 9.0195

3 8.6693 8.6693 8.6611 8.6693

4 8.3569 8.3569 8.3472 8.3569

fundamental frequency parameters (λ) are now compared with [7–9] which are pre-
sented in Table 4. From these Tables 1, 2, 3, and 4 validation of obtained results are
explored showing a close agreement with those available in the literature.

4.2 Convergence

Convergenceof the present results is exploredby analyzing the variationof grid points
for first four frequencyparameterswhich are illustrated inFig. 1 andTables 5, 6, 7, and
8. Different scaling parameters are taken for different boundary conditions, viz., (i)
SS case: η = 0.2, μ = 1 and Kw = 10 (ii) CS case: η = 0.4, μ = 2 and Kw = 20
(iii) CC case: η = 0.6, μ = 3 and Kw = 30 (iv) CF case: η = 0.8, μ = 4 and
Kw = 40. From these graphical and tabular results, one may witness a commendable
convergence after 12 grid points.
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Fig. 1 Effect of grid points on frequency parameters

Table 5 Response of grid points on the frequency parameters for SS case

N
√

λ1
√

λ2
√

λ3
√

λ4

3 2.8212

4 3.1836 5.1654

5 3.0754 6.1266 7.4805

6 3.0812 5.5863 8.8552 9.7602

7 3.0815 5.6540 7.6582 11.3058

8 3.0814 5.6520 7.8686 9.3571

9 3.0814 5.6521 7.8428 9.7518

10 3.0814 5.6520 7.8460 9.6568

11 3.0814 5.6520 7.8452 9.6753

12 3.0814 5.6520 7.8453 9.6717

13 3.0814 5.6520 7.8453 9.6721

14 3.0814 5.6520 7.8453 9.6721

15 3.0814 5.6520 7.8453 9.6721

16 3.0814 5.6520 7.8453 9.6721
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Table 6 Response of grid points on the frequency parameters for CS case

N
√

λ1
√

λ2
√

λ3
√

λ4

3 2.7636

4 3.6400 4.4092

5 3.6837 6.0784 6.2364

6 3.6709 5.7595 7.8201 8.9019

7 3.6696 5.7774 7.3861 9.5034

8 3.6705 5.7767 7.4141 8.8301

9 3.6705 5.7839 7.4418 8.6976

10 3.6705 5.7841 7.4612 8.7917

11 3.6705 5.7838 7.4620 8.8212

12 3.6705 5.7838 7.4607 8.8263

13 3.6705 5.7838 7.4607 8.8222

14 3.6705 5.7838 7.4608 8.8227

15 3.6705 5.7838 7.4608 8.8229

16 3.6705 5.7838 7.4608 8.8229

Table 7 Response of grid points on the frequency parameters for CC case

N
√

λ1
√

λ2
√

λ3
√

λ4

4 4.0364

5 3.9001 6.3522

6 4.1940 5.7624 8.8644

7 4.2350 6.0192 7.5204 11.3918

8 4.1600 6.1259 7.5904 8.9744

9 4.1618 5.8816 7.7282 9.0693

10 4.1610 5.8769 7.2479 9.1515

11 4.1608 5.8846 7.2203 8.3714

12 4.1610 5.8830 7.2463 8.3008

13 4.1610 5.8840 7.2418 8.3494

14 4.1610 5.8842 7.2436 8.3393

15 4.1610 5.8840 7.2444 8.3409

16 4.1610 5.8840 7.2437 8.3434

17 4.1610 5.8840 7.2437 8.3414

18 4.1610 5.8840 7.2437 8.3411

19 4.1610 5.8840 7.2437 8.3411
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Table 8 Response of grid points on the frequency parameters for CF case

N
√

λ1
√

λ2
√

λ3
√

λ4

4 2.6136

5 2.6217 3.8649

6 2.6213 3.9143 5.7291 7.6868

7 2.6214 3.9202 5.4548 7.3082

8 2.6214 3.9193 5.5181 6.6160

9 2.6214 3.9191 5.5194 6.6716

10 2.6214 3.9191 5.5156 6.6768

11 2.6214 3.9191 5.5152 6.6657

12 2.6214 3.9191 5.5155 6.6634

13 2.6214 3.9191 5.5155 6.6644

14 2.6214 3.9191 5.5155 6.6647

15 2.6214 3.9191 5.5155 6.6647

4.3 Effect of Nonlocal Parameter

Effect of nonlocal parameters on frequency parameters is studied extensively which
are depicted in Fig. 2 and Tables 9, 10, 11, and 12. Computations are executed by
taking various scaling parameters as η = 0.5, Kw = 100, and L = 10 nm, while
nonlocal parameters are varying from 0 to 5. From these tabular and graphical results,
it is interesting to note that the frequency parameters decrease with increase in the
nonlocal parameter except the fundamental frequency parameter of the CF case.

4.4 Effect of Nonuniform Parameter

In this subsection, the response of the nonuniform parameters η on frequency param-
eters is discussed where η is taken as 0, 0.2, 0.4, 0.6, 0.8, and 1. Tables 13, 14, 15
and 16, and Fig. 3 illustrate the response of frequency parameter to the nonuniform
parameter η for different boundary conditions. This graph is plotted with μ = 1,
L = 10 nm, and Kw = 50. It may also be noted from the results that the frequency
parameter decreases with increase in the nonuniform parameter and this decrease is
more significant in the case of higher modes.

4.5 Effect of Aspect Ratio

The impact of the aspect ratio (L/h) on the frequency parameters has been analyzed
for different L/h (10, 20, 30, 40, 50) which are depicted in Tables 17, 18, 19,
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Fig. 2 Frequency parameters versus nonlocal parameters

Table 9 Effect of the nonlocal parameter on frequency parameter for SS case

μ
√

λ1
√

λ2
√

λ3
√

λ4

0 3.6398 6.0170 8.8841 11.8128

1 3.6040 5.5767 7.6023 9.3347

2 3.5734 5.2771 6.9268 8.2998

3 3.5467 5.0555 6.4844 7.6731

4 3.5234 4.8827 6.1626 7.2348

5 3.5027 4.7432 5.9138 6.9033

Table 10 Effect of the nonlocal parameter on frequency parameter for CS case

μ
√

λ1
√

λ2
√

λ3
√

λ4

0 4.1309 6.7370 9.6259 12.5569

1 4.0568 6.1841 8.1636 9.8428

2 3.9936 5.8163 7.4143 8.7383

3 3.9390 5.5477 6.9287 8.0741

4 3.8913 5.3398 6.5773 7.6107

5 3.8493 5.1724 6.3061 7.2605
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Table 11 Effect of the nonlocal parameter on frequency parameter for CC case

μ
√

λ1
√

λ2
√

λ3
√

λ4

0 4.7040 7.4361 10.3468 13.2839

1 4.5974 6.7846 8.7267 10.3588

2 4.5058 6.3538 7.9085 9.1839

3 4.4261 6.0397 7.3817 8.4795

4 4.3561 5.7967 7.0018 7.9884

5 4.2940 5.6009 6.7090 7.6172

Table 12 Effect of the nonlocal parameter on frequency parameter for CF case

μ
√

λ1
√

λ2
√

λ3
√

λ4

0 3.2236 4.6497 7.4233 10.3375

1 3.2246 4.5366 6.7777 8.7182

2 3.2257 4.4383 6.3542 7.8975

3 3.2269 4.3518 6.0486 7.3655

4 3.2280 4.2749 5.8149 6.9783

5 3.2293 4.2058 5.6293 6.6766

Table 13 Effect of the nonuniform parameter on frequency parameter for SS case

η
√

λ1
√

λ2
√

λ3
√

λ4

0 3.4315 5.8452 8.0639 9.9289

0.2 3.3777 5.7066 7.8659 9.6832

0.4 3.3259 5.5704 7.6704 9.4400

0.6 3.2764 5.4367 7.4776 9.1994

0.8 3.2290 5.3056 7.2873 8.9617

1.0 3.1839 5.1771 7.0999 8.7269

Table 14 Effect of the nonlocal parameter on frequency parameter for CS case

η
√

λ1
√

λ2
√

λ3
√

λ4

0 4.0276 6.5107 8.6709 10.4796

0.2 3.9572 6.3566 8.4566 10.2175

0.4 3.8886 6.2052 8.2451 9.9582

0.6 3.8220 6.0565 8.0366 9.7019

0.8 3.7573 5.9105 7.8311 9.4489

1.0 3.6947 5.7673 7.6287 9.1992
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Table 15 Effect of the nonlocal parameter on frequency parameter for CC case

η
√

λ1
√

λ2
√

λ3
√

λ4

0 4.7182 7.1743 9.2740 11.0251

0.2 4.6138 6.9999 9.0452 10.7519

0.4 4.5124 6.8287 8.8195 10.4815

0.6 4.4142 6.6606 8.5969 10.2143

0.8 4.3192 6.4956 8.3775 9.9502

1.0 4.2272 6.3339 8.1614 9.6895

Table 16 Effect of the nonlocal parameter on frequency parameter for CF case

η
√

λ1
√

λ2
√

λ3
√

λ4

0 2.8113 4.6749 7.1799 9.2725

0.2 2.7877 4.5627 7.0017 9.0420

0.4 2.7688 4.4515 6.8250 8.8131

0.6 2.7545 4.3416 6.6497 8.5860

0.8 2.7442 4.2332 6.4763 8.3611

1.0 2.7373 4.1265 6.3047 8.1385

Fig. 3 Frequency parameter versus nonuniform parameter
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Table 17 Response of frequency parameter to the aspect ratio for SS case

L/h
√

λ1
√

λ2
√

λ3
√

λ4

10 3.3009 5.5032 7.5737 9.3193

20 3.3349 5.8255 8.4351 10.8627

30 3.3416 5.8975 8.6611 11.3373

40 3.3440 5.9239 8.7479 11.5304

50 3.3451 5.9363 8.7895 11.6256

Table 18 Response of frequency parameter to the aspect ratio for CS case

L/h
√

λ1
√

λ2
√

λ3
√

λ4

10 3.8550 6.1305 8.1405 9.8297

20 3.9181 6.5283 9.1138 11.5042

30 3.9306 6.6186 9.3739 12.0285

40 3.9351 6.6518 9.4743 12.2434

50 3.9372 6.6674 9.5227 12.3496

Table 19 Response of frequency parameter to the aspect ratio for CC case

L/h
√

λ1
√

λ2
√

λ3
√

λ4

10 4.4629 6.7442 8.7078 10.3475

20 4.5484 7.2089 9.7805 12.1431

30 4.5653 7.3149 10.0698 12.7106

40 4.5713 7.3538 10.1818 12.9440

50 4.5741 7.3722 10.2358 13.0596

and 20 and Fig. 4. Both the graphical and tabular results are computed with
μ = 1 nm2, Kw = 50, and η = 0.5. From this result, it is interesting to note
that fundamental frequency parameters of CF case are decreasing with an increase
in aspect ratio, but this condition is just opposite in other cases.

Table 20 Response of frequency parameter to the aspect ratio for CF case

L/h
√

λ1
√

λ2
√

λ3
√

λ4

10 2.7611 4.3964 6.7371 8.6993

20 2.7598 4.4874 7.1972 9.7717

30 2.7596 4.5053 7.3024 10.0607

40 2.7595 4.5117 7.3411 10.1726

50 2.7594 4.5147 7.3594 10.2265
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Fig. 4 Frequency parameter versus aspect ratio

4.6 Effect of Winkler Modulus Parameter

The response of Winkler modulus parameter on the frequency parameters has been
studied for all the standard boundary conditions which are illustrated in Fig. 5 and
Tables 21, 22, 23, and 24. Computational results are achieved with μ = 1 nm2,
L = 10, and η = 0.5. In this figure, (Kw) ranges from 0 to 300 with an increment
of 50. One observation is that frequency parameters are increasing with increase in
Winkler modulus parameters in all modes of all boundary conditions.

4.7 Mode Shape

Analysis of mode shapes is an essential aspect of vibrational characteristics. In this
regard, mode shapes are demonstrated in Figs. 6, 7, 8, and 9 for different modes of
SS, CS, CC, and CF. Mode shapes are computed by considering L = 10, μ = 1,
Kw = 250, and grid points N = 100. These graphs are plotted byvarying nonuniform
parameter η as −1, 0, and 1. From these figures, we may note that the amplitudes of
displacements are affected significantly by varying nonuniform parameters.



386 S. K. Jena and S. Chakraverty

Fig. 5 Frequency parameters versus Winkler modulus parameters

Table 21 Frequency parameters for different Winkler modulus parameters of SS case

Kw
√

λ1
√

λ2
√

λ3
√

λ4

0 2.8792 5.4266 7.5447 9.3039

50 3.3009 5.5032 7.5737 9.3193

100 3.6040 5.5767 7.6023 9.3347

150 3.8457 5.6475 7.6306 9.3501

200 4.0488 5.7156 7.6586 9.3653

250 4.2252 5.7814 7.6862 9.3805

Table 22 Frequency parameters for different Winkler modulus parameters of CS case

Kw
√

λ1
√

λ2
√

λ3
√

λ4

0 3.6154 6.0755 8.1172 9.8165

50 3.8550 6.1305 8.1405 9.8297

100 4.0568 6.1841 8.1636 9.8428

150 4.2323 6.2362 8.1864 9.8559

200 4.3884 6.2872 8.2091 9.8689

250 4.5293 6.3369 8.2316 9.8819
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Table 23 Frequency parameters for different Winkler modulus parameters of CC case

Kw
√

λ1
√

λ2
√

λ3
√

λ4

0 4.3151 6.7031 8.6888 10.3362

50 4.4629 6.7442 8.7078 10.3475

100 4.5974 6.7846 8.7267 10.3588

150 4.7209 6.8243 8.7454 10.3700

200 4.8355 6.8633 8.7640 10.3812

250 4.9425 6.9016 8.7826 10.3923

Table 24 Frequency parameters for different Winkler modulus parameters of CF case

Kw
√

λ1
√

λ2
√

λ3
√

λ4

0 1.6882 4.2412 6.6959 8.6802

50 2.7611 4.3964 6.7371 8.6993

100 3.2246 4.5366 6.7777 8.7182

150 3.5461 4.6649 6.8174 8.7370

200 3.7982 4.7835 6.8566 8.7557

250 4.0083 4.8938 6.8950 8.7743

Fig. 6 1st mode
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Fig. 7 2nd mode

Fig. 8 3rd mode
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Fig. 9 4th mode

5 Concluding Remarks

Free vibration analysis of nonuniform Single-Walled Carbon Nanotube (SWCNT)
placed on aWinkler elastic foundation is carried out using theDifferentialQuadrature
Method (DQM). The tabular results are incorporated with the graphical results to
demonstrate the effects of the Winkler modulus parameter, nonuniform parameter,
nonlocal parameter, and the aspect ratio on the frequency parameters. MATLAB
codes are developed, and convergence of the results are also explored. The following
conclusions are drawn from the present investigation.

I. The frequency parameter decreases with increase in the nonuniform parameter
and this decrease is more significant in the case of higher modes.

II. With increase in Winkler modulus parameters, the frequency parameters of all
modes of all boundary condition increases.

III. The clamped SWCNT possesses highest frequency parameters whereas the
cantilever SWCNT possesses the lowest among all other types of boundary
conditions.

IV. The effect of the nonlocal parameter is more in higher modes and the funda-
mental frequency parameter of the cantilever (CF) nanobeam does not decrease
with an increase in the nonlocal parameter.
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V. It is interesting to note that fundamental frequency parameters of CF case are
decreasing with an increase in aspect ratio but this condition is just opposite in
other cases.
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Artificial Neural Network Based Solution
of Fractional Vibration Model

Susmita Mall and S. Chakraverty

Abstract The purpose of the investigation is to handle the fractional vibration prob-
lem using themultilayer artificial neural network (ANN)method. Fractional calculus
has found several applications in different fields of physical systems, viz., viscoelas-
ticity, dynamics, and anomalous diffusion transport. Fractional derivatives are prac-
tically described viscoelasticity features in structural dynamics. In general, damping
models involve ordinary integer differential operators that are relatively easy to han-
dle. On the other hand, fractional derivatives give better models with respect to the
vibration systems in comparison to classical integer-order models. Here, the frac-
tional order in the damping coefficient has been considered. We have employed the
multilayer feed-forward neural architecture and error back-propagation algorithm
with unsupervised learning for minimizing the error function and modification of
the parameters (weights and biases). The results obtained by the present method are
compared with the analytical results and are found to be in good agreement.

Keywords Fractional differential equation · Vibration problem · Bagley–Torvik
problem · Artificial neural network model · Feed-forward structure ·
Back-propagation algorithm

1 Introduction

The fractional differential equations (FDEs) have drawn increasing attention due
to their important applications in various fields of science and engineering [1–5].
Fractional differential equations illustrate different types of phenomena such as heat
conduction, signal processing, electromagnetic waves, control theory of dynamical
systems, electrode–electrolyte polarization, and viscoelasticity [6–8]. The internal
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damping properties of the viscoelastic systems are properly described by FDE. In
fractional-order vibration systems, the damping forcemaybe expressed by fractional-
order derivative term whose order lies between (0, 2) [9]. In this paper, we consider
the Bagley–Torvik equations of order 1/2 and 3/2, which are modeling the equation
of motion of the rigid plate immersed in a Newtonian fluid. Generally, different types
ofwell-known numerical techniques are used to handle fractional vibration equations
(FVEs) when the problems cannot be solved by analytical methods.

Accordingly, the analytical solution of the fractional vibration problem is obtained
by using the homotopy perturbationmethod [10]. Galucio et al. used the inite element
method for solving the fractional viscoelastic model [11]. In [12], Singh provided
the numerical solution of fractional vibration problems of a large membrane using
a method based on Jacobi polynomials. Solutions of the Bagley–Torvik equation
of 0.5- and 1.5-order derivatives have been presented by Wang [13]. Palfalvi [14]
has applied the Adomian decomposition method to handle the fractionally damped
vibration equation. Gulsu et al. [15] solved the Bagley–Torvik equation arising in
fluid mechanics by using the Taylor matrix method. Although the above numerical
techniques give a good approximate solution, these methods sometimes may be
challenging for higher dimension problems. The computational complexity increases
with increase in the number of sampling points [16]. For that reason, an efficient
technique is required for the solution of fractional-order vibration equations.

During the past decades, various artificial intelligence methods, viz., artificial
neural network (ANN), have been established as a powerful technique due to their
excellent learning capacity [17, 18]. ANNs are able to solve numerous complicated
and real-world problems which cannot be handled by the standard numerical tech-
niques.Currently, a lot of attention has beendevoted to the studyof the artificial neural
network model for solving ordinary and partial differential equations [19–24]. Here,
our target is to solve fractional-order vibration equations using ANN. The ANN
approximate solutions of FDEs have many benefits compared with other computing
methods. The approximate solutions of ANN involve a single independent variable
regardless of the dimension of the problem. As such, other numerical methods are
usually iterative in nature, where we fix the step size before initiating the computa-
tion. But ANN may be used as a black box to get numerical results at any arbitrary
point in the domain, once the ANN model is trained.

In this investigation, our main aim is to solve fractional vibration problems using
multilayer ANN model. The ANN approximate solution of FVEs can be expressed
as the sum of two terms, the first part satisfies boundary or initial conditions and the
second term contains ANN output with network parameters (weights and biases).
A three-layer feed-forward neural network structure has been considered here. The
network is trained using a back-propagation unsupervised learning algorithm which
is based on the gradient descent rule. The proposed methodology has been validated
with the help of example problems, viz., Bagley–Torvik equations.

Rest of the paper is arranged as follows. In Sect. 2, we describe the fractional
vibration equation. We recall some basic definitions of fractional calculus in Sect. 3.
Section 4 illustrates ANN formulation of fractional-order initial value problems,
error estimation, and gradient computation of FDEs. Numerical examples and their
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results are incorporated in Sect. 5. Some concluding remarks are drawn in the last
section.

2 Preliminaries

Here, we recall some definitions and general concepts of fractional calculus [25–29]
for the sake of completeness.

Definition 2.1: Riemann–Liouville type FDE [26] The Riemann–Liouville type
fractional derivative of a function f : (0,∞) → R of order α > 0 is written as

Dα f (t) = dn

dtn
1

�(n − α)

t∫

0

(t − τ)n−α−1 f (τ )dτ (1)

where n = |α| + 1 and |α| is the integer part of α.

Definition 2.2: Riemann–Liouville type fractional integral [26, 27] The Rieman-
n–Liouville type fractional integral of order α > 0 of a function f : (0,∞) → R
is

I α f (t) = 1

�(α)

t∫

0

(t − τ)α−1 f (τ )dτ (2)

here, � denotes the Gamma function.

Definition 2.3: Caputo-type fractional derivative [27] TheCaputo-type derivative
of order α and α ∈ [n − 1, n) is expressed as

Dα
a f (t) = 1

�(n − α)

t∫

a

f n(τ )

(t − τ)α−n+1
dτ (3)

Definition 2.4: Conformable fractional derivative [28, 29] Let us consider a func-
tion f : [0,∞) → R and α ∈ (0, 1]. Then the conformable fractional derivative f
of order α is defined as

Tα( f (t)) = lim
ε→0

f (t + εt1−α) − f (t)

ε
(4)

For all values of t > 0 and Tα( f (t)) denotes the conformable fractional derivative
of order α.

Tα( f (t)) satisfies all the following properties:
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I. T α(t p) = pt p−α for all p ∈ R,
II. T α(η) = 0 for all constant functions η,
III. T α( f g) = f Tα(g) + gTα( f ),
IV. f is differentiable, then T α( f (t)) = t1−α d f

dt (t),

V. T α

(
1

α
tα

)
= 1

VI. T α(ect ) = ct1−αect , c ∈ R, and
VII. T α(sin bt) = bt1−α cos bt .

The properties of Conformable FDE have been used in this paper.

3 Derivation of Fractional-Order Vibration Equation

In order to understand this proposed method, let us consider a standard vibration
equation with one degree of freedom and a single fractional-order term [9]

mD2χ(t) + cDαχ(t) + kχ(t) = g(t) (5)

where m denotes the mass, k stands for the stiffness of a spring, c is the damping
coefficient, and Dαχ(t) denotes the fractional derivative of the displacement function
χ(t). The general form of the above equation of motion is

∑
i

A(pi )D
αi χ(t) = g(t) (6)

here, A(pi ) represents the characteristics of the system, viz., mass and damping-like
coefficients and pi ∈ [0, 2].

The equation of vibration in discrete form is described by Eq. (6). The continuous
form of Eq. (6) which describes the arbitrary viscoelastic damped system may be
formulated as

∫
A(p)Dαχ(t)dp = g(t) (7)

where A(p) and p represent the viscoelastic characteristics of the systems. Equa-
tion (7) is the time-invariant equation and coefficient A(p) is the time-independent
function. If A(p) is replaced by the time-dependent function, then Eq. (7) changes
to

∫
A(p, t)Dαχ(t)dp = g(t) (8)
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Fig. 1 Rigid plate of mass
m and area A immersed in a
Newtonian fluid

A

(t)χ

m

k

Equation (8) is the generalized fractional vibration equation for arbitrary vis-
coelastic system. With proper selection of coefficients A(p, t), Eq. (8) reduces to
Bagley–Torvik equation [15]

mD2χ(t) + RDαχ(t) + kχ(t) = g(t) (9)

with initial conditions χ(0) = a, χ ′(0) = b.
In the case, m is the mass of the thin rigid plate, k stands for the stiffness of

the spring, and R = 2A
√

μρ where μ,ρ denote viscosity and density of the fluid,
respectively. Figure 1 shows a thin rigid plate of mass m immersed in an infinite
Newtonian fluid. The motion of the spring does not influence the motion of the fluid.

4 Description of the Proposed Method

This section describes the general formulation of the ANNmodel for fractional-order
differential equation. Particularly, the ANN formulations for FDEs and structure of
the multilayer ANN model are incorporated in detail.

4.1 Architecture of Multilayer ANN Model
for Fractional-Order Vibration Equation

Figure 2 depicts the structure of neural network architecture for the present problem,
which contains an input layer with single input node and a bias, one hidden layer
having five hidden nodes, and an output layer which consists of one output node.
Initial weights w j ( j = 1, . . . , 5) from input to hidden layer and v j from hidden to
output layer are considered as random.
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Fig. 2 Multilayer artificial neural network architecture

4.2 ANN Formulation for Fractional-Order Differential
Equations

Let us take an FDE as

(x0D
α
x y(x)) = G(x, y(x)) (10)

subject to y(x0) = y0
where n − 1 < α ≤ n, n ∈ N .

Let yN (x,	) denote the ANN approximate solution of FDE; here, 	 is a vector
containing corresponding network parameters and x is the input data. The above FDE
is transformed into the following equation:

(x0D
α
x yN (x,	)) = G(x, yN (x,	)) (11)

The approximate solution yN (x,	) of the ANN model may be formulated as

yN (x,	) = B(x) + G(x, N (x,	)) (12)

The first term B(x) satisfies only initial\boundary conditions and the second part
G(x, N (x,	)) contains the single output N (x,	) of ANNwith input x and a vector
containing the corresponding weights 	.

A three-layer ANN structure is considered with one input node x, one hidden layer
consisting of m number of nodes, and one output node N (x,	).
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The output N (x,	) is expressed as

N (x,	) =
m∑


=1

v
ϕ(z
) (13)

where z
 = w
x+u
 andw
 is the weight from the input to lth hidden unit,v
 denotes
the weight from lth hidden unit to output unit and u
 is the bias for lth hidden node.
In this investigation, we have considered the sigmoid function ϕ(x) = 1

1+e−x as an
activation function.

The general form of the corresponding error function for the fractional-order
initial value problem is expressed as

E(x,	) =
h∑

i=1

{
(x0D

α
x yN (xi ,	)) − G(xi , yN (xi ,	))

}2
(14)

4.2.1 ANN Formulation of Fractional-Order Initial Value Problems
for α ∈ (0, 1]

Let us consider an FDE of order α ∈ (0, 1]

(t0D
α
t x(t)) = G(t, x(t)) (15)

with initial condition x(t0) = A.
The approximate solution of ANN can be written as

xN (t,	) = A + (t − t0)N (t,	) (16)

The error function for the problem is

E(t,	) =
h∑

i=1

{
(t0D

α
t x N (t i ,	)) − G(ti , xN (ti ,	))

}2
(17)

4.2.2 ANN Formulation of FDEs for α ∈ (1, 2]

The FDE of order α ∈ (1, 2] may be represent as

(t0D
α
t x(t)) = G(t, x(t))

subject to x(t0) = A, x ′(t0) = A1.
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The ANN approximate solution is expressed as

xN (t,	) = A + A1(t − t0) + (t − t0)
2N (t,	) (18)

4.3 Computation of Gradient for ANN

Unsupervised back-propagation training method is used to modify the ANN param-
eters and for minimizing the error function of the ANN. Here, we have used the
gradient descent method for updating the parameters.

wk+1

 = wk


 + �wk

 = wk


 +
(

−η
∂E(t,	)k

∂wk



)
(19)

vk+1

 = vk
 + �vk
 = vk
 +

(
−η

∂E(t,	)k

∂vk


)
(20)

where η is the learning parameter, E(t,	) is the error function, and k is the iteration
step.

For minimizing the error function E(t,	) corresponding to input values t, we
differentiate E(t,	) with respect to the parameters. Here we compute the gradient
of the output with respect to their inputs.

As such, the fractional derivatives (according to conformable fractional derivative)
of N (t,Ω) with respect to input t is written as

(t0D
α
t (N (t,	))) = v
ϕ

′(z
)w
t
1−α (21)

Let (Dα
t (N (t,	))) = Nβ denote the derivative of the output with respect to its

inputs.
The fractional derivative of Nβ with respect to the other parameters may be

obtained as (according to conformable fractional derivative rules)

∂Nβ

∂w


= v
t
1−α(ϕ′(z
) + ϕ′′(z
)w
(t) (22)

∂Nβ

∂v


= w
t
1−αϕ′(z
) (23)

∂Nβ

∂u


= w
v
t
1−αϕ′′(z
) (24)

here,
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N (t,	) =
m∑


=1

v
ϕ(z
) and z
 = w
t + u


Here our aim is to solve the Bagley–Torvik equation. As such, we now discuss
the formulation for the fractional-order vibration equation.

mD2x(t) + RDαx(t) + kx(t) = g(t) (25)

subject to x(0) = A, x ′(0) = A1.
TheANNapproximate solution is the same asEqs. (16) and (18); the error function

can be computed as shown below:

E(t,	) =
h∑

i−1

{
mD2xN (t i ,	) + RDα

t x N (t i ,	) + kxN (t i ,	) − g(t i )
}2

(26)

Differentiate xN (t,	) with respect to t, we have

dxN (t,	)

dt
= A′ + 2(t − t0)N (t,	) + (t − t0)

2 dN (t,	)

dt
(27)

d2xN (t,	)

dt2
= 2N (t,	) + 4(t − t0)

dN (t,	)

dt
+ (t − t0)

2 d
2N (t,	)

dt2
(28)

In this case, the fractional derivative of xN (t,	) with respect to t is computed as:
for α = 3/2

d3/2xN (t,	)

dt3/2
= 1√

t
+ 1√

t
2N (t,	) + t2

d3/2N (t,	)

dt3/2
(29)

for α = 1/2

d1/2xN (t,	)

dt1/2
= 1

t3/2
2N (t,	) + (t)5/2

d1/2N (t,	)

dt1/2
(30)

5 Numerical Examples and Results

In this head, the Bagley–Trovik equations have been solved and investigated using
the proposed method.

Example 1 First, we consider a nonhomogeneous Bagley–Trovik vibration equation
with m = k = R = 1 and g(t) = 1 + t (taking α = 3/2 in Eq. (25))
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Table 1 Analytical and ANN
results (Example 1)

Input values (time) Analytical
(displacement)

ANN
(displacement)

0 1.0000 1.0021

0.1000 1.1000 1.0992

0.2000 1.2000 1.1969

0.3000 1.3000 1.2929

0.4000 1.4000 1.3874

0.5000 1.5000 1.4803

0.6000 1.6000 1.6015

0.7000 1.7000 1.6912

0.8000 1.8000 1.8092

0.9000 1.9000 1.8556

1.0000 2.0000 1.9703

D2x(t) + D(3/2)
t x(t) + x(t) = 1 + t

with initial conditions x(0) = 1, x ′(0) = 1.

As discussed above, the related ANN approximate solution is

xN (t,	) = 1 + t + t2N (t,	)

The ANN is trained for ten points in the given domain and five hidden nodes
are considered. Comparison of analytical and ANN results has been cited in Table 1.
These comparisons are also depicted in Fig. 3. Bar diagram of error function between
analytical and ANN results is plotted in Fig. 4. One may see from Fig. 4 that the
analytical results are almost coinciding with our proposed ANN results.

Fig. 3 Analytical and ANN
results (Example 1)
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Fig. 4 Bar diagram of error
between analytical and ANN
results (Example 1)
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Example 2 In this example, we take the following Bagley–Torvik equation (with

α = 1/2, m = k = R = 1, and g(t) = 1 + 4
√

t
π

+ t2 in Eq. (25))

D2x(t) + D(1/2)
t x(t) + x(t) = 2 + 4

√
t

π
+ t2

subject to x(0) = 0, x ′(0) = 0.

The ANN approximate solution in this case is represented as

xN (t,	) = t2N (t,	)

We have considered ten equidistant points in the given domain [0, 1] with five
hidden nodes in the hidden layer. Table 2 shows a comparison between analytical
and ANN results. Comparison between nalytical and ANN results are also depicted
in Fig. 5. Figure 6 shows the bar diagram of the absolute error between analytical and
ANN results. From Fig. 6, we infer that our ANN simulations are in good agreement
with the analytical solutions.

6 Conclusion

In this study, the multilayer ANN model has been introduced for the numerical
solution of fractional vibration equations. Here, we have considered Bagley–Torvik
equations of 1/2 order and 3/2 order derivatives. Unsupervised back-propagation
training has been used for reducing the network error and updating the network
parameters without using any optimization techniques. Excellent agreement of the
solutions between analytical and ANN shows the reliability and powerfulness of the
present technique.
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Table 2 Analytical and ANN
results (Example 2)

Input values (time) Analytical
(displacement)

ANN
(displacement)

0 0.0000 0.0002

0.1000 0.0100 0.0101

0.2000 0.0400 0.0407

0.3000 0.0900 0.0903

0.4000 0.1600 0.1636

0.5000 0.2500 0.2574

0.6000 0.3600 0.3617

0.7000 0.4900 0.4963

0.8000 0.6400 0.6441

0.9000 0.8100 0.8089

1.0000 1.0000 1.0044

Fig. 5 Analytical and ANN
solutions (Example 2)

Fig. 6 Bar plot of error
between analytical and ANN
results (Example 2)
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Affine Approach to Solve Nonlinear
Eigenvalue Problems of Structures
with Uncertain Parameters

S. Rout and S. Chakraverty

Abstract Various science and engineering problems involve uncertainty with
respect to parameters due to different causes. The uncertain parameters may be
contemplated as closed intervals. Uncertain material parameters of structural vibra-
tion problems may produce interval mass matrices and interval stiffness matrices.
In general, dynamic problems with interval uncertainty lead to generalized interval
eigenvalue problems. Further, the inclusion of damping factor may transform the
problem to a nonlinear interval eigenvalue problems, viz., quadratic and/or cubic
eigenvalue problems. In this respect, affine arithmetic may be used to handle the
uncertainties due to the overestimation problem occurred in some of the cases of
interval arithmetic. Accordingly, this manuscript aims to deal with solving the non-
linear eigenvalue problems with interval parameters using affine arithmetic. Numer-
ical examples have been worked out to illustrate the reliability and efficiency of the
present approach.

Keywords Nonlinear eigenvalue problem · Affine arithmetic · Interval analysis ·
Interval overestimation problem · Damped spring–mass structures · Generalized
eigenvalue problem

1 Introduction

The ultimate aims of vibration analysis of structural systems are to analyze various
effects of vibration on the safety and performance of structural systems and how to
control these effects. Structural mechanics is one of the major areas where second-
order differential equations arise. Due to the discretization in structural dynamic
of different systems by the finite element method, the equation of motion arises.
In general, the dynamic equation of motion when there is an inclusion of damping
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factor may be written as

Ms̈(t) + Cṡ(t) + Ks(t) = f (t),

where M is known as the mass matrix, C is called the damping matrix, K is the
stiffness matrix, and f (t) is considered as the external force vector depending upon
time. Further, for most of the structures, the matrices K and M which are related to
strain energy and kinetic energy, respectively, are symmetric and positive definite
(Tisseur and Meebergen [1]) (Fig. 1).

The above governing equation of motion due to the dynamic analysis of structures
may be reduced to a nonlinear eigenvalue problem (particularly, quadratic eigenvalue
problem).

(λ2M + λC + K )v = 0,

where λ stands for the eigenvalue of the above quadratic eigenvalue problem and v be
the corresponding eigenvector. Nonlinear eigenvalue problems have many different
types of applications in various engineering and science problems, viz., structural
mechanics, fluid dynamics, and circuit analysis, etc.

Uncertainty is an inseparable companion of almost every measurement. While
dealing with real-world problems, occurrence of uncertainty is must. In regular prac-
tice, intervals and its arithmetic are generally used to handle the uncertain parameters.
The main obstacle while handling the uncertainty with interval analysis is its overes-
timation problem for which after interval arithmetic, the resulting interval quantities
may give larger width than exact range. To avoid this overestimation problem in case
of interval arithmetic, a new approach has been developed known as affine arithmetic
which may result in tighter width as compared to interval arithmetic.

To the best of our knowledge, there is no such work that has been done until now
for solving nonlinear eigenvalue problems by using affine arithmetic. But very few
literature are present where nonlinear eigenvalue problemswith uncertain parameters
(in term of intervals) as well as crisp parameters have been solved. Chakraverty and
Mahato [2] have solved nonlinear interval eigenvalue problems for damped spring—
mass system by using two methods, namely, linear sufficient regularity perturbation
(LSRP) method and direct sufficient regularity perturbation (DSRP) method. Tisseur
and Meerbergen [1] presented a survey on solving nonlinear eigenvalue problems

Fig. 1 One degree damped
spring–mass structural
system K

C

M

s(t)

f(t)
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having crisp parameters (particularly, quadratic eigenvalue problem) using various
numerical techniques. His works are based upon the linearization of the nonlinear
eigenvalue problems into standard and generalized eigenvalue problems. Sadangi
[3] solved interval nonlinear eigenvalue problem by the help of interval arithmetic.
Rajakumar [4] discussed Lanczos algorithm for the quadratic eigenvalue problem
in engineering applications. Johnson et al. [5] solved eigenproblems by the help
of quadratic reduction. Bauchau [6] solved the eigenvalue problem for undamped
gyroscopic systems with the help of Lanczos algorithm.

As compared to interval analysis, few literature based on interval dependency
problem, overestimation of range of intervals (while performing interval arithmetic),
and applications of affine arithmetic are available. As such, Comba and Stolfi [7] first
introduced affine arithmetic as an improved version of interval arithmetic in 1993
and after a few years, Stolfi and De Figueiredo [8] illustrated interval overestimation
problem.DeFigueiredo and Stolfi [9] presented the concept and applications of affine
arithmetic which contains the dependency problem that occured in case of interval
arithmetic. Vaccaro and Canizares [10], Gu et al. [11], and Wang et al. [12] pre-
sented affine arithmetic-based study for power flow having uncertainty. Akhmerov
[13] proposed an interval-affine Gaussian algorithm for constrained systems. A new
algorithm has been discussed by Skalna and Hladík [14] for Chebyshev minimum-
error multiplication of reduced affine forms. Shou et al. [15] investigated modified
affine arithmetic which is more accurate than centered interval arithmetic or affine
arithmetic. Soares [16] found all real solutions of nonlinear system of equations with
discontinuities by using modified affine arithmetic. Skalna [17] proposed a direct
method for solving parametric interval linear systems with non-affine dependen-
cies. Ceberio et al. [18] and Ludäscher et al. [19] handled interval-type and affine
arithmetic-type techniques for expert systems having uncertainties. Rashmi [20] pre-
sented an affine arithmetic approach to model and estimate the safety parameters of
AC transmission lines. Rump and Kashiwagi [21] described the implementation and
improvements of affine arithmetic. Miyajima and Kashiwagi [22] discussed a divid-
ing method utilizing the best multiplication in affine arithmetic.

This article is organized into five different sections. The introduction and liter-
ature survey have been discussed in the present section. Preliminary information
about nonlinear eigenvalue problem, interval arithmetic, its overestimation problem,
the concepts of affine arithmetic, conversions between affine and interval arithmetic,
and affine operations have been presented in Sect. 2. Section 3 introduces a proposed
method for calculating the eigenvalues in terms of intervals for interval nonlinear
eigenvalue problem of structures N I (λI )vI = 0. In Sect. 4, some illustrative numeri-
cal examples are discussed based on the proposed algorithm. Finally, the article ends
with overall conclusions in the last section.
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2 Preliminaries

In this section, basic definitions and terminologies about interval analysis, nonlin-
ear eigenvalue problems of structures with uncertain parameters, the overestimation
problem in case of interval arithmetic, affine arithmetic, and its binary operations
have been discussed.

2.1 Nonlinear Eigenvalue Problem

The nonlinear eigenvalue problem may be defined as

N (λ)v = 0,

whereλ is the eigenvalue of the above problem and v is the eigenvector corresponding
to the eigenvalue λ and N (λ) is the nonlinear function (matrix-valued) having crisp
parameters.

The linear eigenvalue problems, viz., generalized and standard eigenvalue prob-
lems are of the forms Av = λBv and Av = λv, respectively. From nonlinear eigen-
value problem, these linear eigenvalue problems (generalized and standard) can be
obtained by replacing N (λ) = λB − A and N (λ) = λI − A, respectively.

2.1.1 Quadratic Eigenvalue Problem

The nonlinear eigenvalue problem N (λ)v = 0 in case of crisp may be referred to as
quadratic eigenvalue problem when the degree of the polynomial function N (λ) in
λ is taken to be two. In that case, the quadratic eigenvalue problem may be defined
as

N (λ)v = (N2λ
2 + N1λ + N0)v = 0,

where the coefficients N0, N1 and N2 are considered to be square matrices having
crisp entries.

2.1.2 Cubic Eigenvalue Problem

The polynomial function N (λ) in λ having degree three may be considered as cubic
eigenvalue problem and may be defined as

N (λ)v = (N3λ
3 + N2λ

2 + N1λ + N0)v = 0,



Affine Approach to Solve Nonlinear Eigenvalue Problems … 411

where the coefficients N j for j = 0, 1, 2, 3 are considered to be square matrices
having crisp entries.

2.1.3 qth Degree Eigenvalue Problem

In a similar fashion as quadratic and cubic eigenvalue problem, the qth degree eigen-
value problem may be defined as

N (λ)v = (Nqλ
q + Nq−1λ

q−1 + · · · + N1λ + N0)v = 0,

where the coefficients N j for j = 0, 1, · · · , q are crisp square matrices.

2.2 Intervals

Interval is a floating-point representation of a real quantity p which may be denoted
as pI = [pmin, pmax] or pI = [p, p]. The intervals are subsets of the real number
set R and may be defined as pI = [p, p] = {u ∈ R|p ≤ u ≤ p}, where p, p ∈ R

and p ≤ p. The following are some of the terminologies of interval.

• Center of an interval: The interval center of an interval bound pI = [p, p] is
defined as pc = p+p

2 .
• Width of an interval: The interval width of an interval bound pI = [p, p] is defined
as pw = p − p.

• Radius of an interval: The interval radius of an interval is half of width of the
interval. Then the interval radius of an interval bound pI = [p, p] is defined as

p� = p−p

2 .
• An interval bound pI in form of its interval center (pc) and interval radius (p�)

can be represented as pI = [pc − p�, pc + p�].
• Two intervals pI = [p, p] and q I = [q, q] are said to be equal if and only if

p = q and p = q .

2.3 Interval Arithmetic

The interval arithmetic, viz., addition, multiplication, subtraction, and division, etc.,
are computed in such a fashion that each calculated interval pI is guaranteed to
contain all the corresponding ideal quantity p. That means, if some ideal quantities
p and q are known to lie in their respective intervals pI and q I , then any binary
operation p ∗ q lies in the interval pI ∗ q I .
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Consider two interval representations pI = [p, p] and q I = [q, q], then all the
interval arithmetic operations may be described as follows:

• Addition: pI + q I = [p + q, p + q].
• Subtraction: pI − q I = [p − q, p − q].
In particular, pI − pI = [p − p, p − p] �= {0}.

• Scalar multiplication: δ · pI = [δ · p, δ · p], for δ ≥ 0, δ · pI = [δ · p, δ · p], for
δ < 0.

• Multiplication: pI · q I = [min(pq, pq, pq, pq),max(pq, pq, pq, pq)].
• Reciprocal: 1

pI =
[
1
p ,

1
p

]
, provided 0 /∈ pI .

• Division: pI

q I = pI · 1
q I = [p, p] ·

[
1
q , 1

q

]
, provided 0 /∈ q I .

In particular, pI

pI =
[
p
/
p,

p
/
p

]
�= 1.

2.4 Interval Nonlinear Eigenvalue Problem

The nonlinear eigenvalue problem having uncertainties in form of intervals may be
referred to as interval nonlinear eigenvalue problem and may be defined as

N I (λI )vI = 0,

where λI is the interval eigenvalue, vI is the corresponding interval eigenvector, and
N I (λI ) is the nonlinear interval matrix-valued function. Specifically, N I (λI )may be
an interval polynomial function in λI . Depending upon the degree of λI , the interval
nonlinear eigenvalue problem may be discussed as follows.

2.4.1 Interval Quadratic Eigenvalue Problem

An interval nonlinear eigenvalue problem may be considered as interval quadratic
eigenvalue problem when the polynomial function N I (λI ) has degree two in λI . The
interval quadratic eigenvalue problem is of the form

N I (λI )vI = (N I
2 λI2 + N I

1 λI + N I
0 )vI = 0,

where the coefficients are interval square matrices given as N I
0 = [N0, N0], N I

1 =
[N1, N1], and N I

2 = [N2, N2].



Affine Approach to Solve Nonlinear Eigenvalue Problems … 413

2.4.2 Interval Cubic Eigenvalue Problem

The case in which the polynomial function N I (λI ) in λI has degree three is known
as interval cubic eigenvalue problem and may be defined as

N I (λI )vI = (N I
3 λI3 + N I

2 λI2 + N I
1 λI + N I

0 )vI = 0,

where each of the coefficients of the interval cubic eigenvalue problem is interval
square matrices given as N I

j = [N j , N j ] for j = 0, 1, 2, 3.

2.4.3 Interval qth Degree Eigenvalue Problem

The interval qth degree eigenvalue problemmay be considered in the following form
having each of the coefficients as interval square matrices given by

N I (λI )vI = (N I
q λI q + N I

q−1λ
I q−1 + · · · + N I

1 λI + N I
0 )vI = 0,

where N I
j = [N j , N j ] for j = 0, 1, . . . , q.

2.5 Interval Overestimation Problem

The formulae used for interval arithmetic assume that all the operands are indepen-
dent of each other. In the cases where the operands partially depend upon each other,
the interval of exact solutionmay be smaller than the resulting interval occurred from
that formulae. This situation is called as the “interval overestimation problem”. The
case when the expressions of the operands are more complex, the overestimation
problem becomes worse. Such as for large iterative computations, there be a rapid
growth at every stage of the resulting interval.

Let us consider one of the interval arithmetic which is responsible for its overesti-
mation problem. From the Sect. 2.2, the interval operation subtraction of an interval
pI = [p, p] with itself may be given as

pI − pI = [p − p, p − p] �= {0}.

Width of the above interval may be found as (pI − pI )w = (p− p) − (p− p) =
2(p − p).

It may be noted that, in the above case, the width of the resulting interval is twice
the width of the operand interval instead of zero.
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2.6 Affine Arithmetic

Interval overestimation problem that occurs in standard interval arithmetic is themain
cause behind the development of affine arithmetic.Affine arithmetic records the range
for each of the ideal quantities and besides this, it also keeps track of correlations
between these quantities. For this additional information, the approximation error has
been incurred in each operation of affine arithmetic. Therefore, affine arithmetic is
able to overcome the extreme increment ofwidth of the interval that occurs in standard
interval arithmetic. This benefit will help for several chained interval computations
where interval arithmetic goes through error explosion.

Let p̂ denotes the affine form of a given ideal quantity p represented by a first-
degree polynomial, then the affine form may be represented as

p̂ = p0 + p1ε1 + p2ε2 + · · · + pmεm = p0 +
m∑
j=1

p jε j ,

where the unknown symbolic real values ε j (for j = 1, 2, . . . ,m) are known as
noise symbols. The noise symbols are real variables and may be considered to lie in
a particular interval of the real line given by U = [–1, 1]. Each noise symbol arises
in a particular affine representation are independent of other noise symbols present
in that affine representation. Further, two different affine representations may have
some of the common noise symbols present in both forms. The number of noise
symbols in an affine representation may vary with other representation. New noise
symbols may also be generated during any affine arithmetic.

Further, the coefficients p j (for j = 0, 1, . . . ,m) which are associated with each
of the noise symbols ε j (for j = 1, 2, . . . ,m) in the above affine form p̂ are finite
real numbers and are known as partial deviation of the affine representation. Finally,
the coefficient p0 is called the central value of the affine form p̂.

2.7 Conversion Between Interval and Affine Arithmetic

The affine form of an interval bound pI = [p, p] may be obtained as

p̂ = p0 + pnεn,

where p0 and pn are the mid-point and half-width of the interval pI , respectively.
They are represented as

p0 =
(
p + p

2

)
and pn =

(
p − p

2

)
.
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Further, εn be the new noise symbol which is used to express the uncertainties
present in the ideal quantity of the interval pI . The new noise symbol occurred must
not be occurred in any of the existing affine forms.

Let us consider an affine form represented by

p̂ = p0 + p1ε1 + p2ε2 + · · · + pmεm = p0 +
m∑
j=1

p jε j .

The total deviation of the above-given affine may be denoted as dp and defined as

dp = |p1| + |p2| + · · · + |pm | =
m∑
j=1

∣∣p j

∣∣.

Thus, the interval bounds pI of the above affine form p̂ may be given as

pI = [p0 − dp, p0 + dp].

This is the smallest interval which contains all the possible values of the affine
p̂ in spite of the fact that each one of the noise symbols ε j ranges independently
all over the interval U = [–1, 1]. After the conversion, all the presented correlation
information in the affine form p̂ may be discarded.

2.8 Affine Operations

Consider the following two affine representations:

p̂ = p0 + p1ε1 + p2ε2 + · · · + pmεm = p0 +
m∑
j=1

p jε j ,

q̂ = q0 + q1ε1 + q2ε2 + · · · + qmεm = q0 +
m∑
j=1

q jε j .

The affine arithmetic operations can be discussed as follows (De Figueiredo and
Stolfi [9]).

• Addition: p̂ + q̂ = (p0 + q0) + ∑m
j=1 (p j + q j )ε j .

• Subtraction: p̂ − q̂ = (p0 − q0) + ∑m
j=1 (p j − q j )ε j .

In particular, p̂ − p̂ = 0.
• Scalar multiplication: δ · p̂ = δ · p0 + ∑m

j=1 (δ · p j )ε j , where δ is a real number.

• Multiplication: p̂ · q̂ =
(
p0 + ∑m

j=1 p jε j

)
·
(
q0 + ∑m

j=1 q jε j

)
(De Figueiredo

and Stolfi [9])
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= p0q0 +
m∑
j=1

(p0q j + q0 p j )ε j +
m∑
j=1

p jε j ·
m∑
j=1

q jε j .

Thus, the product of the two affine representations can be written as

p̂ · q̂ = p0q0 +
m∑
j=1

(p0q j + q0 p j )ε j + rnεn,

where

|rn| ≥
∣∣∣∣∣∣

m∑
j=1

p jε j ·
m∑
j=1

q jε j

∣∣∣∣∣∣
, ε j ∈ U.

is an upper bound for the approximation error and εn is the new noise symbol
generated during the operation.

• Division: p̂
q̂ = p̂ · 1

q̂ = p0
q0

+ 1
q̂

∑m
j=1

(
p j − p0

q0
q j

)
ε j , provided q̂ �= {0} (Skalna

[17]).
In particular, p̂

p̂ = 1.

3 Proposed Procedure

In this section, initially, the linearization procedure for nonlinear eigenvalue prob-
lem having crisp parameters (Tisseur and Meebergen [1]) and for interval nonlinear
eigenvalue problem (Chakraverty and Mahato [2]) have been discussed.

3.1 Linearization of Nonlinear Eigenvalue Problem

The qth degree eigenvalue problem for crisp parameters is of the form

N (λ)v = (Nqλ
q + Nq−1λ

q−1 + · · · + N1λ + N0)v = 0.

It may be further written as

Nqλ
qv + Nq−1λ

q−1v + · · · + N1λv + N0v = 0.

Let us now substitute v = v1 and further λv j = v j+1 for j = 1, 2, . . . , q−1 in the
above-given equation. Therefore, the given nonlinear eigenvalue problem N (λ)v =
(Nqλ

q + Nq−1λ
q−1 + · · · + N1λ + N0)v = 0 may get transformed into linear
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eigenvalue problem given as follows:

Nqλvq + Nq−1λvq−1 + · · · + N1λv1 + N0v1 = 0.

Further, the above equation may be represented in matrix form as

⎛
⎜⎜⎜⎝

−N0 0
I

. . .

0 I

⎞
⎟⎟⎟⎠ ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v1
v2
...

vq

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= λ ·

⎛
⎜⎜⎜⎝

N1 N2 · · · Nq

I 0
...

. . .
...

0 I 0

⎞
⎟⎟⎟⎠ ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v1
v2
...

vq

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

The above system may be written as a generalized eigenvalue problem

Av = λBv,

where

A =

⎛
⎜⎜⎜⎝

−N0 0
I

. . .

0 I

⎞
⎟⎟⎟⎠, v =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

v1
v2
...

vq

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

and B =

⎛
⎜⎜⎜⎝

N1 N2 · · · Nq

I 0
...

. . .
...

0 I 0

⎞
⎟⎟⎟⎠.

3.2 Linearization of Interval Nonlinear Eigenvalue Problem

The interval qth degree eigenvalue problem is of the form

N I (λI )vI = (N I
q λI q + N I

q−1λ
I q−1 + · · · + N I

1 λI + N I
0 )vI = 0.

In a similar manner, as given in the above Sect. 3.2, the interval nonlinear eigen-
value problem may be transformed as follows:

⎛
⎜⎜⎜⎝

−N I
0 0
I

. . .

0 I

⎞
⎟⎟⎟⎠ ·

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

vI1
vI2
...

vIq

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

= λ ·

⎛
⎜⎜⎜⎝

N I
1 N I

2 · · · N I
q

I 0
...

. . .
...

0 I 0

⎞
⎟⎟⎟⎠ ·

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

vI1
vI2
...

vIq

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

.

The above system formed may be written as a generalized interval eigenvalue
problem

AI vI = λI B I vI ,
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where AI and BI represent the interval matrices and vI represents the interval vector

AI =

⎛
⎜⎜⎜⎝

−N I
0 0
I

. . .

0 I

⎞
⎟⎟⎟⎠, vI =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vI1
vI2
...

vIq

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

and BI =

⎛
⎜⎜⎜⎝

N I
1 N I

2 · · · N I
q

I 0
...

. . .
...

0 I 0

⎞
⎟⎟⎟⎠.

3.3 Procedure

1. Let us consider an interval qth degree nonlinear eigenvalue problem of the form

N I (λI )vI = (N I
q λI q + N I

q−1λ
I q−1 + · · · + N I

1 λI + N I
0 )vI = 0. (1)

2. The interval qth degree nonlinear eigenvalue problem (1) may be converted to
generalized interval eigenvalue problem as given in the above Sect. 3.2. The
converted generalized eigenvalue problem may be written as

AI vI = λI B I vI (2)

where

AI =

⎛
⎜⎜⎜⎝

−N I
0 0
I

. . .

0 I

⎞
⎟⎟⎟⎠, vI =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vI1
vI2
...

vIq

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

and BI =

⎛
⎜⎜⎜⎝

N I
1 N I

2 · · · N I
q

I 0
...

. . .
...

0 I 0

⎞
⎟⎟⎟⎠.

3. Further, the generalized interval eigenvalue problem can be converted to a stan-
dard interval eigenvalue problem. It may be noted that in this work, we have
considered the case where uncertainties arise only for the matrix AI and the
entries of BI are taken as crisp. Thus, the standard interval eigenvalue problem
may be obtained as

DI vI = λI vI (3)

where the order of the matrix DI may depend upon the order of the matrices
involved in the nonlinear eigenvalue problem (1) and the order of the problem. Let
us assume that the order of the matrix DI be n × n, then we will write
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DI =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

[d11, d11] [d12, d12] · · · · · · [d1n, d1n]
[d21, d21] [d22, d22] · · · · · · [d2n, d2n]

...
...

. . .
...

...
...

. . .
...

[dn1, dn1] [dn2, dn2] · · · · · · [dnn, dnn]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, vI =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[v1, v1]
[v2, v2]

...

...

[vn, vn]

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

and λI = [λ, λ].

4. The respective center and half-width matrices of the above interval matrix and
interval vector can be found as

Dc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d(0)
11 d(0)

12 · · · · · · d(0)
1n

d(0)
21 d(0)

22 · · · · · · d(0)
2n

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
. . .

.

.

.

d(0)
n1 d(0)

n2 · · · · · · d(0)
nn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, D� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d(1)
11 d(1)

12 · · · · · · d(1)
1n

d(1)
21 d(1)

22 · · · · · · d(1)
2n

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
. . .

.

.

.

d(1)
n1 d(1)

n2 · · · · · · d(1)
nn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and vc =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(0)1
v(0)2

.

.

.

.

.

.

v(0)n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, v� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(1)1
v(1)2

.

.

.

.

.

.

v(1)n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

;

where Dc and D� are the respective center and half-width matrices of the interval
coefficient matrix DI of the standard interval eigenvalue problem (3). Similarly, vc
and v� are the respective center and half-width vectors of the interval eigenvector
vI . Also, the center and half-width of the interval eigenvalue λI are obtained as

λc = λ(0) = λ+λ

2 and λ� = λ(1) = λ−λ

2 , respectively.

5. The standard interval eigenvalue problem (3) in affine form may be written as

D̂v̂ = λ̂v̂ (4)

where D̂, v̂, and λ̂ are corresponding affine forms of the interval matrices contained
in (3), which are obtained by converting the interval elements of the matrices into
affine form by using the formula given in preliminaries (Sect. 2.6). Thus, there affine
forms are given as

D̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d(0)
11 + d(1)

11 ε11 d(0)
12 + d(1)

12 ε12 · · · · · · d(0)
1n + d(1)

1n ε1n

d(0)
21 + d(1)

21 ε21 d(0)
22 + d(1)

22 ε22 · · · · · · d(0)
2n + d(1)

2n ε2n
.
.
.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
. . .

.

.

.

d(0)
n1 + d(1)

n1 εn1 d(0)
n2 + d(1)

n2 εn2 · · · · · · d(0)
nn + d(1)

nn εnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, v̂ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(0)1 + v(1)1 εv1

v(0)2 + v(1)2 εv2
.
.
.

.

.

.

v(0)n + v(1)n εvn

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

and

λ̂ = λ(0) + λ(1)ελ.

6. After the conversion of standard interval eigenvalue problem (3) into standard
affine eigenvalue problem (4), the eigenvalues in terms of affine representation
are obtained as follows:
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det
(
D̂ − λ̂I

)
= 0 (5)

The above Eq. (5) is then written elaborately in the following fashion:

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d(0)
11 + d(1)

11 ε11 d(0)
12 + d(1)

12 ε12 · · · · · · d(0)
1n + d(1)

1n ε1n

d(0)
21 + d(1)

21 ε21 d(0)
22 + d(1)

22 ε22 · · · · · · d(0)
2n + d(1)

2n ε2n
.
.
.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
. . .

.

.

.

d(0)
n1 + d(1)

n1 εn1 d(0)
n2 + d(1)

n2 εn2 · · · · · · d(0)
nn + d(1)

nn εnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− (λ(0) + λ(1)ελ) ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · 0

0 1 · · · · · · 0
.
.
.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
. . .

.

.

.

0 0 · · · · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (6)

Further, Eq. (6) is written as

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d(0)
11 − λ(0) + d(1)

11 ε11 − λ(1)ελ d(0)
12 + d(1)

12 ε12 · · · · · · d(0)
1n + d(1)

1n ε1n

d(0)
21 + d(1)

21 ε21 d(0)
22 − λ(0) + d(1)

22 ε22 − λ(1)ελ · · · · · · d(0)
2n + d(1)

2n ε2n
.
.
.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
. . .

.

.

.

d(0)
n1 + d(1)

n1 εn1 d(0)
n2 + d(1)

n2 εn2 · · · · · · d(0)
nn − λ(0) + d(1)

nn εnn − λ(1)ελ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0

(7)

7. By calculating the above determinant value and comparing the central value of
the affine representation from both the sides, a polynomial in λ(0) of degree n
may be obtained. By solving this polynomial, the central values λ(0) of all the
eigenvalues can be obtained.

8. Lastly, the total deviationof equationof the affine terms (summationover absolute
values of the coefficients of noise symbols) in (7) has been computed as given
in the preliminaries in Sect. 2.6 and it has been compared from both the sides
of that Eq. (7). Thus substituting the central value λ(0), we may able to calculate
λ(1), which may give the affine form of eigenvalues of the nonlinear eigenvalue
problems as

λ̂ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ
(0)
1 + λ

(1)
1 ελ1

λ
(0)
2 + λ

(1)
2 ελ2

...

λ(0)
n + λ(1)

n ελn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

9. Using the conversion formula of an affine representation to its interval quantity
as given in the preliminaries Sect. 2.6, the interval eigenvalue of the nonlinear
eigenvalue problems with uncertainties may be evaluated.
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4 Numerical Examples

The present section contains two interval matrix-valued nonlinear eigenvalue prob-
lems of structural systems having damping factor under several dynamic conditions.
In the initial case, a quadratic eigenvalue problem may be considered in which the
coefficientmatrices are 2×2 interval-valuedmatrices. For the second one, a structural
problem having damped spring–mass system has been discussed. In this case, all the
mass, damping, and stiffness matrices are 3× 3 interval-valued matrices. Finally, in
both the problems, the results have been compared with the result by adopting the
method that has been done by Sadangi [3] using interval arithmetic.

Example 4.1 Let us consider an interval quadratic eigenvalue problem N I (λI )vI =
(N I

2 λI2 + N I
1 λI + N I

0 )vI = 0, where the coefficients are taken as 2 × 2 interval
matrices given as follows. Particularly, here the coefficient matrix N I

0 may be con-
sidered to have uncertainties and the other two coefficient matrices N I

1 and N I
2 may

be taken as crisps.

N I
0 =

(
[4.75, 5.25] [2.9, 3.1]
[2.9, 3.1] [4.75, 5.25]

)
, N I

1 =
(

[4, 4] [2, 2]
[2, 2] [4, 4]

)
and N I

2 =
(

[1, 1] [0, 0]
[0, 0] [1, 1]

)
.

As given in Sect. 3.2, after converting the above interval quadratic eigenvalue
problem, a generalized interval eigenvalue problem may be generated. The general-
ized interval eigenvalue problem can be found as

AI vI = λI B I vI ,

where

AI =

⎛
⎜⎜⎜⎝

[−5.25, −4.75] [−3.1, −2.9] [0, 0] [0, 0]
[−3.1, −2.9] [−5.25, −4.75] [0, 0] [0, 0]

[0, 0] [0, 0] [1, 1] [0, 0]
[0, 0] [0, 0] [0, 0] [1, 1]

⎞
⎟⎟⎟⎠ and BI =

⎛
⎜⎜⎜⎝

[4, 4] [2, 2] [1, 1] [0, 0]
[2, 2] [4, 4] [0, 0] [1, 1]
[1, 1] [0, 0] [0, 0] [0, 0]
[0, 0] [1, 1] [0, 0] [0, 0]

⎞
⎟⎟⎟⎠.

Further, it can be transformed to the standard interval eigenvalue problem given
as

⎛
⎜⎜⎝

[0, 0] [0, 0] [1, 1] [0, 0]
[0, 0] [0, 0] [0, 0] [1, 1]

[−5.25,−4.75] [−3.1,−2.9] [−4,−4] [0, 0]
[−3.1,−2.9] [−5.25,−4.75] [0, 0] [−4,−4]

⎞
⎟⎟⎠ ·

⎧⎪⎪⎨
⎪⎪⎩

vI1
vI2
vI3
vI4

⎫⎪⎪⎬
⎪⎪⎭

= λI ·

⎧⎪⎪⎨
⎪⎪⎩

vI1
vI2
vI3
vI4

⎫⎪⎪⎬
⎪⎪⎭

.

The affine form of the above standard interval eigenvalue problem can be obtained
as
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Table 1 Comparison of interval eigenvalues of interval nonlinear eigenvalue problem

λI for Example 4.1

i By using AA By using IA

λi λi λi λi

1 −0.5983 −0.5727 −0.6399 −0.5337

2 −2 + 1.9209i −2 + 2.0791i −2 + 1.9105i −2 + 2.0857i

3 −2 − 2.0791i −2 − 1.9209i −2 − 2.0857i −2 − 1.9105i

4 −3.4273 −3.4011 −3.4663 −3.3601

⎛
⎜⎜⎝

0 0 1 + 0ε1 0
0 0 0 1 + 0ε2

−5 + 0.25ε3 −3 + 0.1ε4 −4 + 0ε5 0
−3 + 0.1ε6 −5 + 0.25ε7 0 −4 + 0ε8

⎞
⎟⎟⎠ ·

⎧⎪⎪⎨
⎪⎪⎩

v̂1
v̂2
v̂3
v̂4

⎫⎪⎪⎬
⎪⎪⎭

= λ̂ ·

⎧⎪⎪⎨
⎪⎪⎩

v̂1
v̂2
v̂3
v̂4

⎫⎪⎪⎬
⎪⎪⎭

,

where v̂ j for j = 1, 2, 3, 4 are the affine formof interval eigenvectors corresponding
to each interval eigenvalue and λ̂ denotes the affine eigenvalue and may be written
as λ̂ = (λ(0) + λ(1)ελ).

Adopting the proposed procedure given in Sect. 3.3, the results can be computed
in affine form and later, may be converted into intervals. Further, the results are
compared with the solution given by Sadangi [3] by interval arithmetic by adopting
the procedure that has been done. Corresponding results are given in Table 1.

From the Table 1, it may be observed that the eigenvalues of the nonlinear interval
eigenvalue problem from the present method (using affine arithmetic) yield tighter
bounds when the results are compared with the results which have been solved by
using regular interval arithmetic.

Example 4.2 Let us consider an interval quadratic interval eigenvalue problem
N I (λI )vI = (MIλI2 + C IλI + K I )vI = 0 from a damped spring–mass system
where all the coefficients of the problemmay be taken as 3×3 interval-valued matri-
ces. In particular for simple understanding of the problem, the uncertainties may be
considered and only the case of stiffness matrix and the damping matrix may be
taken as a 3 × 3 matrix with crisp entries and finally, the mass matrix is considered
to be an identity matrix.

K I =
⎛
⎜⎝

[14.7, 15.3] [−5.1, −4.9] [0, 0]
[−5.1, −4.9] [14.7, 15.3] [−5.1, −4.9]

[0, 0] [−5.1, −4.9] [14.7, 15.3]

⎞
⎟⎠,C I =

⎛
⎜⎝

[30, 30] [−10, −10] [0, 0]
[−10, −10] [30, 30] [−10, −10]

[0, 0] [−10, −10] [30, 30]

⎞
⎟⎠ and

MI =
⎛
⎜⎝

[1, 1] [0, 0] [0, 0]
[0, 0] [1, 1] [0, 0]
[0, 0] [0, 0] [1, 1]

⎞
⎟⎠.

Adopting Sect. 3.2, the above interval quadratic eigenvalue problem can be trans-
formed into a generalized interval eigenvalue problem, which may be obtained as
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AI vI = λI B I vI ,

where

AI =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

[−15.3,−14.7] [4.9, 5.1] [0, 0] [0, 0] [0, 0] [0, 0]
[4.9, 5.1] [−15.3,−14.7] [4.9, 5.1] [0, 0] [0, 0] [0, 0]

[0, 0] [4.9, 5.1] [−15.3,−14.7] [0, 0] [0, 0] [0, 0]
[0, 0] [0, 0] [0, 0] [1, 1] [0, 0] [0, 0]
[0, 0] [0, 0] [0, 0] [0, 0] [1, 1] [0, 0]
[0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [1, 1]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
and

BI =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

[30, 30] [−10,−10] [0, 0] [1, 1] [0, 0] [0, 0]
[−10,−10] [30, 30] [−10,−10] [0, 0] [1, 1] [0, 0]

[0, 0] [−10,−10] [30, 30] [0, 0] [0, 0] [1, 1]
[1, 1] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]
[0, 0] [1, 1] [0, 0] [0, 0] [0, 0] [0, 0]
[0, 0] [0, 0] [1, 1] [0, 0] [0, 0] [0, 0]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Further, it may be converted into the standard interval eigenvalue problem given
as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

[0, 0] [0, 0] [0, 0] [1, 1] [0, 0] [0, 0]
[0, 0] [0, 0] [0, 0] [0, 0] [1, 1] [0, 0]
[0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [1, 1]

[−15.3, −14.7] [4.9, 5.1] [0, 0] [−30, −30] [10, 10] [0, 0]
[4.9, 5.1] [−15.3, −14.7] [4.9, 5.1] [10, 10] [−30, −30] [10, 10]

[0, 0] [4.9, 5.1] [−15.3, −14.7] [0, 0] [10, 10] [−30, −30]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vI1
vI2
vI3
vI4
vI5
vI6

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= λI ·

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vI1
vI2
vI3
vI4
vI5
vI6

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The affine form of the above standard interval eigenvalue problem can be found
as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 + 0ε1 0 0

0 0 0 0 1 + 0ε2 0

0 0 0 0 0 1 + 0ε3
−15 + 0.3ε4 5 + 0.1ε5 0 −30 + 0ε6 10 + 0ε7 0

5 + 0.1ε8 −15 + 0.3ε9 5 + 0.1ε10 10 + 0ε11 −30 + 0ε12 10 + 0ε13
0 5 + 0.1ε14 −15 + 0.3ε15 0 10 + 0ε16 −30 + 0ε17

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̂1
v̂2
v̂3
v̂4
v̂5
v̂6

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

= λ̂ ·

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̂1
v̂2
v̂3
v̂4
v̂5
v̂6

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where λ̂ denotes the affine eigenvalue which may be written as λ̂ = (λ(0) + λ(1)ελ)

and v̂ j for j = 1, . . . , 6 are the affine representation of interval eigenvectors corre-
sponding to each interval eigenvalue.

Adopting the proposed method given in Sect. 3.3, the affine eigenvalues λ̂ are
computed and further, they are converted into the interval solutions and compared
with the solution by interval arithmetic by adopting the procedure that has been done
by Sadangi [3]. Corresponding results are given in Table 2.
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Table 2 Comparison of interval eigenvalues of interval nonlinear eigenvalue problem

λI for Example 4.2

i By using AA By using IA

λi λi λi λi

1 −43.6333 −43.6400 −43.6327 −43.6400

2 −29.5017 −29.4965 −29.5017 −29.4810

3 −15.3705 −15.3022 −15.3707 −15.3112

4 −0.5328 −0.4975 −0.5467 −0.4871

5 −0.5190 −0.4983 −0.5190 −0.4983

6 −0.5092 −0.5021 −0.5092 −0.5021

From Table 2, it can be noticed that the resulting eigenvalues of the nonlinear
interval eigenvalue problem by solving from present approach (using affine arith-
metic) yield tighter bounds when the results are compared with the results which
have been solved by using regular interval arithmetic given in Sadangi [3].

5 Conclusion

Themain goal of the current work has been to propose an efficient method for solving
nonlinear eigenvalue problem of structural mechanics containing uncertainties with
the help of affine arithmetic. The affine arithmetic is used to study the behavior of
the solution obtained from the proposed approach. Using few illustrative examples
of structures, it has been demonstrated that the proposed method is efficient for solv-
ing the nonlinear eigenvalue problems of structures with uncertainty as compared to
existing methods based on interval arithmetic involved in various science and engi-
neering problems. On the whole, affine arithmetic proves to be a good compromise
between efficiency and complexity.
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Speech Emotion Recognition Using
Neural Network and Wavelet Features

Tanmoy Roy, Tshilidzi Marwala and S. Chakraverty

Abstract Human speech which is generated through the vibration of the vocal cord
gets affected by the emotional state of the speaker. Accurate recognition of different
emotions concealed in human speech is a significant factor toward further improve-
ment of the quality of Human–Computer Interaction (HCI). But the satisfactory level
of accuracy is not yet achieved mainly because there is no well-accepted standard
feature set. Emotions are hard to distinguish from speech even by human and that
is why the standard feature set is difficult to extract. This paper presents a model to
classify emotions from speech signals with high accuracy compared to the present
state of the art. The speech dataset used in this experiment where speech recordings
that are specifically labeled with different emotions of the speakers. A wavelet-based
novel feature set is extracted from speech signals and then a Neural Network (NN)
with a single hidden layer is trained on the feature set for classification of different
emotions. The feature set is a newly introduced one and for the first time it is being
tested with NN architecture and classification results are also compared with the
results of other prominent classification techniques.

Keywords Speech emotion recognition · Neural network · Wavelet · Feature
extraction
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1 Introduction

Recent advancements of Automatic Speech Recognition (ASR) has made a signifi-
cant impact on the HumanMachine Interaction (HCI) systems by making it possible
for humans to strike nearly natural spoken conversations with the machines (e.g.,
robots like Sophia, Erica). But are those conversations natural? The answer is no
because an important factor called “emotion” is missing in those conversations.
Human speech is actually the glottal wave generated due to the vibration of the vocal
folds and speech signals get affected by emotion states of the speaker. Speech Emo-
tion Recognition (SER) is a field of study where methods are being developed to
extract human emotions concealed in the speech signals so that machines can under-
stand our emotions from the speech itself. But after more than 20years of research,
a satisfactory level of accuracy is not yet achieved.

SER study classifies different emotions concealed in the speech utterances by
applying classification techniques fromMachine Learning (ML) field. Speech signal
like other signals contains various types of information which needs to be extracted
as features for further processing. In SER those extracted features play a significant
role in the performance of the SER systems since the selection of features eventually
affects classification performance. Different speech features and combinations of
those have been used by the researchers so far but there is no consensus on a specific
feature set that can be considered best. As a result, a wide range of features are being
used for SER and new feature sets are being proposed by researchers (Fig. 1).

We have categorized existing speech features into five groups based on the pre-
vious work of Ayadi [1]. Researchers have tried most of the features in different
combinations in SER systems for emotion classification [2–4] have used continuous
features and recommend this feature set, whereas [5–8] recommend spectral features.
But the classification accuracy achieved so far with various feature sets is not up to
the mark and not ready for industrial use. So, Siri or Alexa is not really ready to read
our moods from our voices.

Proper selection of the classification model is an important phase in SER systems
because it will be selected based on the feature set.While it is required tomaintain the

Fig. 1 Category of features used for SER



Speech Emotion Recognition Using Neural Network … 429

sequence of the speech signals then it is required to deploy classification techniques
like Hidden Markov Model (HMM) [9, 10] or Long Short-Term Memory (LSTM)-
based Deep Learning (DL) [5, 6] methods. Researchers also deployed Gaussian
Mixture Model (GMM) [7] and Support Vector Machine (SVM) [8, 11]. Following
the research works it is observed that finding suitable classification technique was the
main focus of SER researchers and less priority was given to develop SER specific
feature sets. Interestinglymost of the common feature sets used so far are successfully
used in Automatic Speech Recognition (ASR), either directly or derived. But ASR
and SER should not be considered as a similar problem because a human can express
their emotions in many ways and they could have a unique sequence of events. Thus,
in SER we cannot have grammars like in case of ASR. So, we should consider those
speech characteristics as features which can represent the emotions concealed in
human speech rather than considering it as a sequence. ASR features are very good
at tracking the variations in speech properties but SER requires features which can
represent the emotional states of the speakers well. Researchers [10, 12–14] also
mentioned the need to divert from regular ASR features for SER.

In this work, we are working with a new feature set to overcome the difficulties
faced in SER feature selection. We have tried to find that characteristic of speech
utteranceswhich could be able to represent the emotional content in amore prominent
way. Experiences in different emotional states of human are very speaker-specific
which can be expressed uniquely by different speakers. The new feature set tried
to overcome this specification by extracting the differences of different emotional
states from the corresponding speaker’s neutral state. With the application of Dis-
crete Wavelet Transform (DWT) and dissimilarity measure, this new feature set is
developed.

Artificial Neural Network (ANN) is used for the classification task in this work.
Since the feature set is not sequential in nature we can deploy simple ANN architec-
ture to demonstrate that the feature set is effective enough and no DL architecture is
required to achieve comparable classification accuracy. Also, ANN results are com-
pared with other very popular classification techniques like Support Vector Classifier
(SVC), K-Nearest Neighbors (KNN), and Naive Bayes (NB) to establish the rele-
vance of the feature set.

2 Description of the Proposed SER Model

SER involves many stages which are shown in Fig. 2. In the initial stage, speech
dataset needs to be acquired which is recorded to capture different human emotions.
The speech recordings need to be processed to suit the actual processing. Then
possible features are selected and, if required, some features are engineered according
to the requirement. And based on the feature selection scheme features are extracted.
In the next, step classification technique is selected based on the feature set and
finally, classification is performed to get the emotional state of the speaker. We will
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Fig. 2 Steps involved in a SER system

describe the feature set and the classification technique in detail in the following
sections.

2.1 Feature Set Description

This work is based on a novel feature set which is specifically developed for SER.
That feature set is described in detail in this section. A discrete speech signal S is
defined as follows:

S = {sn}n∈N where {sn} = {s1, s2, . . . , sn},
{sn} ∈ R

(1)

and assume N be the length of S.
The signal in Eq.1 is decomposed into trend and fluctuation subsignals using

Discrete Wavelet Transform (DWT) [15]. We have taken five Daubechies wavelet
transforms db6, db8, db10, db12, and db14 until level 4. The transformation for
level 1 can be described as a mapping S �−→ (t1| f1) where t1 and f1 are the 1-level
trend and fluctuation subsignals, respectively, whose length is half of the length
of S, i.e., N/2. At the level-2 of DWT the trend subsignal of level-1, i.e., t1 is
further broken down into trend and fluctuation signals so that t1 �−→ (t2| f2). Level-2
transformation is defined as S �−→ (t2| f2| f1) where t2 and f2 are level-2 trend and
fluctuation signals, respectively, with length N/4. So, in similar way at level-4 the
DWT is defined as

S �−→ (t4| f4| f3| f2| f1) (2)

where t4 and f4 are level-4 trend and fluctuation subsignals, respectively, with length
N/16 and f3 is the level-3 fluctuation subsignal with length N/8. Thus, from each
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Fig. 3 The figure shows how IE values of 4-level db6trend subsignal for Happy and Angry
emotions which are varying around the Neutral state

4-level DWT of S, five subsignals are retrieved and from all the five DWTs we have
considered ,i.e., db6, db8, db10, db12, and db14 we will get 25 subsignals.

In the next step Information Entropy (IE) of the trend and fluctuation signals
are computed. Information Entropy (IE) is an expected measure of the information
content in a signal. IE is low when there is ordered activity (like sine waves) and
entropy is high when there is random activity [16]. IE of a sequence Q of length n is
defined as (see. [17]) E(Q) = ∑n

i=1 p(qi ) log10 p(qi ) where Q = {q1, q2, . . . , qn}
is a set of random phenomena, and p(qi ) is the probability of a random phenomenon
qi . Using this formula, a set of IE values for each frame of the subsignals is retrieved
as the entropy sequence for that subsignal.

t4 �→ {te4k }, f j �→ { f e jk } (3)

where j = {1, 2, 3}, m is the number of frames into which the subsignals are broken
down, k = {1, 2, . . . ,m}, and te4k , f e jk are the entropy values at the kth frame of the
trend and fluctuation subsignals, respectively. Figure3 shows how IE of happy and
angry utterances vary around neutral state for trend subsignal.

The feature set derivation takes a unique approach by computing the similarity
between IE values each emotional states of a speaker from the corresponding neutral
state of the same speaker. Suppose, we are extracting features from an angry emo-
tional state utterance of speaker S1. For that the neutral and angry state utterances
of speaker S1 are first broken down till IE sequences similar to Eq.3. So, for both
angry and neutral utterances, there will be 25 IE sequences each. Then, Euclidean
distance is computed between every 25 sequences of neutral and angry utterances.
So, we have now 25 distance measures.
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There are two more attributes that are computed one is covariance and another is
correlation coefficient of the IE sequences, each giving 25 values making it 50 more
values. Apart from 75 values, the gender of speaker and length ratio between neutral
and angry utterance is also considered which makes the total number of features 77.

2.2 Classification Technique

Now, we will discuss the architecture of the Neural Network (NN) we have used.
The input layer dimension is 77 because we have 77 number of features, so each
data point will have 77 dimensions. So, the input vector X is defined as X ∈ R

77×1.
Then there is a single hidden layer with 100 nodes. Thus, the weight matrix Wh of
the hidden layer is defined asWh ∈ R

77×100. So, the input to the hidden layer I h can
be defined as

I h = (Wh)T X, where I h ∈ R
100×1 (4)

The input to hidden layer I h now needs to be transformed using a nonlinear
function called activation function. This activation function introduces nonlinearity
to the model so that we can get important patterns to classify the data points (Fig. 4).

The hidden layer activation function for this model is chosen to be Rectifier Linear
Unit (ReLU) mathematically defined as

ReLU (x) = max(0, x)

ReLu is a simple yet effective activation function which is widely used in various
NN and Deep Neural Network architectures.

So, the output of the hidden layer (Lh) is then the transformation of I h in Eq.4
by ReLU function

Lh = relu(I h), where Lh ∈ R
100×1 (5)

Fig. 4 Shape of a Rectifier
Linear Unit function
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Fig. 5 Shape of a sigmoid
function

The weight matrix for output layer (Wo) will be defined as Wo ∈ R
100×1 and the

input to output layer (I o) can be defined as

I o = (Wo)T Lh, where I o ∈ R (6)

The input to the output layer I o again needs to be transformed with a nonlinear
function to get the predicted output of the model and probability value is required
for further verification with actual labels (Fig. 5).

In the model, the output layer activation function is Sigmoid which is mathemat-
ically defined as

sigmoid(x) = 1

1 + e−x

This is widely used for output layers in binary classification problems because
it gives results which can be considered as a probability as it is within the possible
range of probability values.

So, the final output of the output layer (Lo) is defined as

Lo = sigmoid(I o), where Lo ∈ R (7)

Now, the desired output for the output layer (Y ) is the corresponding label of
the data point. Here the labels are discretized to be either 0 or 1. So, the actual
deviation from expected result needs to be computed and here comes the concept of
cost functions which actually measures the deviation. Here, we have used the binary
cross entropy or negative log-loss function as a cost function (C) defined as follows:

C(Lo,Y ) = −
∑

i

Lo
i log(Yi ) (8)

Next, it is required to measure how sensitive is the cost function (C) with respect
to the weights. This is required because weights are the only components of the
system which could be tweaked to get the best classification prediction. So, we will
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take the partial derivative of C with respect to the weights Wo, i.e., ∂C/∂Wo. This
partial derivative can be further broken down based on chain rule as follows:

∂C

∂Wo
= ∂ I o

∂Wo
× ∂Lo

∂ I o
× ∂C

∂Lo
(9)

where ∂ I o/∂Wo = Lh , ∂Lo/∂ I o = sigmoid ′(I o), and ∂C/∂Lo = Lo − Y .
So, Eq.9 shows that some small change inWo will affect the I o which will affect

the Lo and eventually the cost C gets affected. So, ∂C/∂Wo is dependent on all the
weights of the hidden layer as well because I o is a function of Lh which in turn
depends on Wh . So, in this way, the impacts of the previous layer weights on the
cost function can be extracted by applying chain rule and officially termed as error
backpropagation. Based on the propagated errors, weights are updated to check in
next iteration how much the C is changing and whether C is actually reducing since
the objective is to minimize C .

All the steps described so far in this section was for a single data point to track
the error in prediction and update the weights accordingly toward achieving cos
minimization.When thewhole dataset is considered for optimization there is a strong
need for a standard algorithm rather than doing the whole process on an ad hoc basis.
That is why a popular optimization technique specialized for NN called adam is used
to update the weights based on the errors propagated backward. adam is a gradient
descent-based optimization method specially it uses stochastic gradient descent .

Three widely used classification techniques Support Vector Classifier (SVC) with
Radial Basis Function (RBF) kernel, Gaussian Naive Bayes (GNB), and K-Nearest
Neighbor (KNN) are also tested on the feature set for comparing NN classification
results. These three classifiers take different approaches. SVC is based on the prin-
ciple of finding the separating hyperplane. GNB is based on Bayes theorem using
the concepts of posterior probability and likelihood. And KNN is based on distance
or similarity measure and majority voting.

3 Experiment

For the experiment, we have used an English language dataset called Ryerson Audio-
visual Database of Emotional Speech and Song (RAVDESS) [18]. Seven emotional
states are considered for this work and short codes for the emotions are used through-
out this article are clam (CA), happy (HA), sad (SA), angry (AN), fear (FE), disgust
(DI), and surprise (SU).

Wehave approached the problemas a binary classification problemby considering
two emotion labels at a time. Data has been split into training, testing and validation
datasets using stratification with 10 splits. Stratification split is used to reduce the
extent of overfitting in the classification model and moreover, the stratification split
is done in such a way so that each fold can represent the whole dataset. The folds
are used for cross-validation to measure the performance of the classifier.
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Fig. 6 Design of the neural network

The ANNmodel we used as shown in Fig. 6 is having 77 input nodes, 100 hidden
nodes, and one output node. The design is explained in detail in Sect. 2.2. Here, we
will explain some of the hyperparameters of the model. First of all, we used epoch as
100, which means the model sees the whole dataset 100 times. Next, the batch si ze
is 40 so that after every 40 records the weights gets updated. How, the model loss
and accuracy has converged with each epoch both for training and testing can be
observed in Fig. 7.

The other three classifiers also have some hyperparameters which need to be
mentioned here. For KNN the distance metric is chosen as neighbors = 5 and
Manhattan. For SVC with RBF kernel hyper-params are selected as C = 10 and
gamma = 0.001. GNB is a very simple model and does not have hyper-params.
Proper selection of hyper-params is very important for getting optimal results from
the classification models.

4 Results and Discussions

Classification accuracy of the model is shown in Fig. 8. Average accuracy achieved
is more than 80% while some accuracy crosses 90%. We have also compared the
results with three well-known classifications methods SVC, GNB, and KNN and
comparative results are shown in Fig. 9. Results show that the NN model performs
better than other techniques.

It is observed that some of the emotion pairs are hard to separate using this feature
set and as a result the classification accuracy is low. For example happy and fear is
hard to separate with 74.83%, 65.92%, 67.79%, and 59.95% using ANN, KNN,
SVM, and GNB respectively. Research results also support the fact that human ear
also gets deceived sometimes in separating emotions from speech [19, 20].

Theproposedmodel demonstrates promising results compared to existing research
findings by [5, 6, 8, 21]. Average accuracy achieved is more than 80% and in some
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Fig. 7 The figure shows how model accuracy and loss changes with each epoch for testing and
training

cases, it exceeded 90%whereas [5, 6, 13] has achieved 63.89 and 57.91%maximum
accuracy. Moreover, this model reduced the dimensionality by manifolds compared
to even more than thousands. And finally, computation and processing capability
was much less than compared to deep learning models. We have used AMD 1.9Gz
CPU (4 cores) and 6GB of memory to be specific.
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Fig. 8 ANN classification accuracy

Fig. 9 Accuracy comparision between ANN, SVM, KNN, and GNB

5 Conclusion

A novel classification model for SER is proposed in this work. Application of neu-
ral network model using the new wavelet-based feature set has produced promising
results compared to contemporary research results. The NN model developed here
is a simple one to show the novelty of the feature set that the feature set can per-
form reasonably well even with simple models and no complicated DL architecture
is required.Applying DL architecture should improve classification accuracy even
more. Results are even compared with other popular classification techniques. The
proposed model is capable of addressing high dimensionality, high-computation
time, and resource issues of SER along with high accuracy.

There is a plan to apply deep learning architecture to improve the classification
accuracy even further so that the industrial implementation of this model is possible
in near future. There is lot of scopes left to enhance the feature set further by adding
new features and possibly by introducing generativemethods to create a good volume
of artificially created data to carry this trend of SER research further for better results.
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Solution of an Integro-Differential
Equation by Double Interval Spherical
Harmonic Method

Mrityunjoy Ghosh

Abstract The equation of Radiative Transfer for coherent scattering atmosphere
was developed byWoolley and Stibbs. The equation of Radiative Transfer for coher-
ent scattering which is an integro-differential equation has been solved by various
methods. The Double Interval Spherical HarmonicMethod introduced effectively by
Wilson and Sen has already been used by Ghosh and Karanjai to solve the equation
of Radiative Transfer in coherent isotropic scattering atmosphere as well as coher-
ent anisotropic scattering atmosphere with Pommraning phase function. The Double
Interval Spherical Harmonic Method has been successfully used in this paper to
solve the equation of Radiative Transfer for coherent anisotropic scattering atmo-
sphere with planetary phase function.

Keywords Radiative Transfer · Coherent scattering · Anisotropic scattering ·
Spherical harmonic method

AMS Subject classification: 85A25

1 Introduction

The Spherical Harmonic Method has been widely used to solve various problems of
Radiative Transfer and Newton transport. Eddington [1] and Gratton [3] introduced
the Single Interval Spherical Harmonic Method. But Kourganoff [4] showed that
certain arbitrariness arises in the solution of the equation of Radiative Transfer and
Newton transport by using the Single Interval Spherical Harmonic Method. Willson
and Sen [7, 8] solved certain problems of Radiative Transfer and Newton transport
by applying the Double Interval Spherical Harmonic Method. Ghosh and Karanjai
[2] have used the samemethod to solve the equation of transfer for anisotropic coher-
ent scattering. Raychaudhuri and Karanjai [5, 6] modified the Spherical Harmonic
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Method given by Willson and Sen [7, 8] and solved the same Radiative Transfer
problem in plane and spherical geometry using the modified form of SHM. Here, we
solved the equation of transfer for coherent anisotropic scattering atmosphere with
planetary phase function following the method of Willson and Sen [7, 8].

2 The Equations and Boundary Conditions

The equation of transfer for anisotropic coherent anisotropic scattering is given by [9]

μ
d I (τ, μ)

dτ
= (1 + η)I (τ, μ) − (1 − ε)η

2

∫ 1

−1
p(μ,μ′)I (τ, μ′)dμ′

−(1 + εη)(a + bτ), (1)

where I (τ, μ) is the specific intensity of radiation at an optical depth τ , given by

τ =
∫ ∞

z
kρdz,

k being the coefficient of scattering and ρ, the density, η is the ratio of the line to the
continuous absorption coefficient ,ε is the coefficient of thermal emission.μ = cosθ ,
where θ is the angle made by radiation with the outward drown normal and p(μ,μ′)
is the phase function.
Here, we demonstrate the method with particular reference to the planetary phase
function which given by

p(μ,μ′) = 1 + ωμμ′.

The equation of transfer (1) is to be solved subject to the boundary conditions,
(a) the atmosphere receives no incident radiation from outside at the free surface
τ = 0.

I (0, μ) ≡ 0, f or − 1 ≤ μ ≤ 0, (2)

(b) the convergence of the intensity as τ → ∞,

I (τ, μ)e−τ → 0, as τ → ∞. (3)

To obtain the solution of integro-differential equation, we represent I (τ, μ) by two
different expansions I+(τ, μ) and I−(τ, μ) for μ in the intervals (0,1) and (−1,0)
respectively in the form [7, 8].

I+(τ, μ) = Aτ +
l0∑
l=0

(2l + 1)I+
l (τ )μPl(2μ − 1), f or 0 ≤ μ ≤ 1, (4)
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I−(τ, μ) = Aτ +
l0∑
l=0

(2l + 1)I−
l (τ )μPl(2μ + 1), f or − 1 ≤ μ ≤ 0, (5)

where constant term A, I+
l (τ ), and I−

l (τ ) are to be determined.
The equation of transfer in the present representation is equivalent to

μ
d I+(τ, μ)

dτ
= (1 + η)I+(τ, μ) − 1 − ε

2
η

[∫ 0

−1
p(μ,μ′)I−(τ, μ)dμ

+
∫ 1

0
p(μ,μ′)I+(τ, μ)dμ

]
− (1 + εη)(a + bτ), (6)

μ
d I−(τ, μ)

dτ
= (1 + η)I−(τ, μ) − 1 − ε

2
η

[∫ 0

−1
p(μ,μ′)I−(τ, μ)dμ

+
∫ 1

0
p(μ,μ′)I+(τ, μ)dμ

]
− (1 + εη)(a + bτ). (7)

Putting the value of p(μ,μ′), Eqs. (6) and (7) can be written as

μ
d I+(τ, μ)

dτ
= (1 + η)I+(τ, μ) − (1 − ε)η

[
Aτ + I+

0 − I−
0 + I+

1 + I−
1

4

]

− (1 − ε)ηωμ

2

[
1

3
{I+

0 + I−
0 } + 1

2
{I+

1 − I−
1 } + 1

6
{I+

2 + I−
2 }

]

−(1 + εη)(a + bτ), (8)

μ
d I−(τ, μ)

dτ
= (1 + η)I−(τ, μ) − (1 − ε)η

[
Aτ + I+

0 − I−
0 + I+

1 + I−
1

4

]

− (1 − ε)ηωμ

2

[
1

3
{I+

0 + I−
0 } + 1

2
{I+

1 − I−
1 } + 1

6
{I+

2 + I−
2 }

]

−(1 + εη)(a + bτ). (9)

To take the advantages due to orthogonality of Pl(2μ − 1) in (0,1) and Pl(2μ + 1)
in (−1,0), we have to multiply Eqs. (8) and (9) by Pl(2μ − 1) and Pl(2μ + 1)
respectively and integrate over μ in their respective ranges and use the recurrence
formulae

μPl(2μ ± 1) = 1

2l + 1

[
l + 1

2
Pl+1(2μ ± 1) ∓ 2l + 1

2
Pl(2μ ± 1)

+ l

2
Pl−1(2μ ± 1)

]
, (10)
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we obtain

1

4(2l + 1)

[
l2 − l

2l − 1
I+′
l−2 + 2l I+′

l−1 + 12l3 + 18l2 − 2l − 4

(2l + 3)(2l − 1)
I+′
l + 2(l + 1)I+′

l+1

+ l2 + 3l + 2

2l + 3
l+′
l+2

]
+ A

∫ 1

0
μPl (2μ − 1)dμ = 1 + η

2(2l + 1)

[
l I+l−1 + (2l + 1)I+l

+ (l + 1)I+l+1

]
+ [(1 + η) − (1 − ε)η]Aτδ0l − δ0l

4
(1 − ε)η[I+0 − I−0 + I+1 + I−1 ]

+ (1 − ε)ηω

12

[
2(I+0 + I−0 ) + 3(I+1 − I−1 ) + (I+2 + I−2 )

] ∫ 1

0
μPl (2μ − 1)dμ

−(1 + εη)(a + bτ)δ0l (11)

and

1

4(2l + 1)

[
l2 − l

2l − 1
I−′
l−2 − 2l I−′

l−1 + 12l3 + 18l2 − 2l − 4

(2l + 3)(2l − 1)
I−′
l − 2(l + 1)I−′

l+1

+ l2 + 3l + 2

2l + 3
l−′
l+2

]
+ A

∫ 0

−1
μPl (2μ + 1)dμ = 1 + η

2(2l + 1)

[
l I−l−1 − (2l + 1)I−l

+ (l + 1)I−l+1

]
+ [(1 + η) − (1 − ε)η]Aτδ0l − δ0l

4
(1 − ε)η[I+0 − I−0 + I+1 + I−1 ]

− (1 − ε)ηω

12

[
2(I+0 + I−0 ) + 3(I+1 − I−1 ) + (I+2 + I−2 )

] ∫ 0

−1
μPl (2μ + 1)dμ

−(1 + εη)(a + bτ)δ0l . (12)

Separating the above equations for l = 0 and l = 1 from the rest of equations in
Eqs. (11) and (12), we can write

For l = 0,
1
4

(
4
3 I

+′
0 + 2I+′

1 + 2
3 I

+′
2

)
+ A

2 = (1 + εη)Aτ + 1+η

2 (I+
0 + I+

1 )

− (1−ε)η

4 (I+
0 − I−

0 + I+
1 + I−

1 ) − (1−ε)ηω

24

[
2(I+

0 + I−
1 )

+3(I+
1 − I−

1 ) + (I+
2 + I−

2 )
] − (1 + εη)(a + bτ).

For l = 1,
1
12

(
2I+′

0 + 24
5 I+′

1 + 4I+′
2 + 6

5 I
+′
3

)
+ A

6 = (1+η)

6 (I+
0 + 3I+

1 + 2I+
2 )

− (1−ε)ηω

72

[
2(I+

0 + I−
0 ) + 3(I+

1 − I−
1 ) + (I+

2 + I−
2 )

]
.

For l �= 0, 1,
1

4(2l+1)

[
l2−l
2l−1 I

+′
l−2 + 2l I+′

l−1 + 12l3+18l2−2l−4
(2l+3)(2l−1) I+′

l + 2(l + 1)I+′
l+1 + l2+3l+2

2l+3 l+
′

l+2

]

= 1+η

2(2l+1)

[
l I+

l−1 + (2l + 1)I+
l + (l + 1)I+

l+1

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(13)
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For l = 0,
1
4

(
4
3 I

−′
0 − 2I−′

1 + 2
3 I

−′
2

)
− A

2 = 1+η

2 (−I−
0 + I−

1 )

+(1 + εη)Aτ − (1−ε)η

4 (I+
0 − I−

0 + I+
1 + I−

1 ) + (1−ε)ηω

24

[
2(I+

0 + I−
0 )

+ 3(I+
1 − I−

1 ) + (I+
2 + I−

2 )
] − (1 + εη)(a + bτ).

For l = 1,
1
12

(
−2I−′

0 + 24
5 I−′

1 − 4I−′
2 + 6

5 I
−′
3

)
+ A

6 = (1+η)

6 (I−
0 − 3I−

1 + 2I−
2 )

− (1−ε)ηω

72

[
2(I+

0 + I−
0 ) + 3(I+

1 − I−
1 ) + (I+

2 + I−
2 )

]
.

For l �= 0, 1,
1

4(2l+1)

[
l2−l
2l−1 I

−′
l−2 − 2l I−′

l−1 + 12l3+18l2−2l−4
(2l+3)(2l−1) I−′

l − 2(l + 1)I−′
l+1 + l2+3l+2

2l+3 l−
′

l+2

]

= 1+η

2(2l+1)

[
l I−

l−1 − (2l + 1)I−
l + (l + 1)I−

l+1

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(14)

Now taking ε = 0,

For l = 0,(
4
3 I

+′
0 + 2I+′

1 + 2
3 I

+′
2

)
− 2(I+

0 + I+
1 ) − η(I+

0 + I−
0 + I+

1 − I−
1 )

+ ηω

6 [2(I+
0 + I−

0 ) + 3(I+
1 − I−

1 ) + (I+
2 + I−

2 )] = A(4τ − 2) − 4(a + bτ).

For l = 1,(
2I+′

0 + 24
5 I+′

1 + 4I+′
2 + 6

5 I
+′
3

)
− 2(1 + η)(I+

0 + 3I+
1 + 2I+

2 )

+ ηω

6 [2(I+
0 + I−

0 ) + 3(I+
1 − I−

1 ) + (I+
2 + I−

2 )] = −2A.

For l �= 0, 1,[
l2−l
2l−1 I

+′
l−2 + 2l I+′

l−1 + 12l3+18l2−2l−4
(2l+3)(2l−1) I+′

l + 2(l + 1)I+′
l+1 + l2+3l+2

2l+3 l+
′

l+2

]

−2(1 + η)
[
l I+

l−1 + (2l + 1)I+
l + (l + 1)I+

l+1

] = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(15)

For l = 0,(
4
3 I

−′
0 − 2I−′

1 + 2
3 I

−′
2

)
− 2(−I−

0 + I−
1 ) − η(I+

0 + I−
0 + I+

1 − I−
1 )

− ηω

6 [2(I+
0 + I−

0 ) + 3(I+
1 − I−

1 ) + (I+
2 + I−

2 )] = A(4τ + 2) − 4(a + bτ).

For l = 1,(
−2I−′

0 + 24
5 I−′

1 − 4I−′
2 + 6

5 I
−′
3

)
− 2(1 + η)(I−

0 − 3I−
1 + 2I−

2 )

+ ηω

6 [2(I+
0 + I−

0 ) + 3(I+
1 − I−

1 ) + (I+
2 + I−

2 )] = −2A.

For l �= 0, 1,[
l2−l
2l−1 I

−′
l−2 − 2l I−′

l−1 + 12l3+18l2−2l−4
(2l+3)(2l−1) I−′

l − 2(l + 1)I−′
l+1 + l2+3l+2

2l+3 l−
′

l+2

]

−(1 + η)[l I−
l−1 − (2l + 1)I−

l + (l + 1)I−
l+1] = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(16)

The above differential Eqs. (15) and (16) are to be solved in the desired approxi-
mation with the boundary conditions stated in Eqs. (2) and (3) which may be restated
as
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I−
l (0) = 0, (17)

I+
l (τ )e−τ → 0,

I−
l (τ )e−τ → 0,

}
as τ → ∞. (18)

3 Solutions

It is assumed that when we are working in the lth approximation

I+
l+1 = I−

l+1 = 0

We take the trial solution as

I+
l (τ ) = A(gl,αe−kτ + gl,β),

I−
l (τ ) = A(hl,αe−kτ + hl,β).

}
(19)

where A, gl,α , gl,β , hl,α , and hl,β are constants to be determined.
Substituting in Eqs. (15) and (16) and equating the coefficient of exp(−kτ) and
constant terms separately, we obtain Eqs. (20), (21), and (22)

(
2 + η − ηω

3 + 4k
3

)
g0,α + (

2 + η − ηω

2 + 2k
)
g1,α + (− ηω

6 + 2k
3

)
g2,α

+ (
η − ηω

3

)
h0,α + (−η + ηω

2

)
h1,α − ηω

6 h2,α = 0,(
2 + 2η − ηω

3 + 2k
)
g0,α + (

6 + 6η − ηω

2 + 24
5 k

)
g1,α

+ (
4 + 4η − ηω

6 + 4k
)
g2,α + 6k

5 g3,α − ηω

3 h0,α + ηω

2 h1,α − ηω

6 h2,α = 0,
l2−l
2l−1kgl−2,α + 2l(1 + η + k)gl−1,α + [2(1 + η)(2l + 1)

+ 12l3+18l2−2l−4
(2l+3)(2l−1) k

]
gl,α + 2(l + 1)(1 + η + k)gl+1,α + l2+3l+2

2l+3 kgl+2,α = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(20)

and
(
2 + η − ηω

3 − 4k
3

)
h0,α + (−2 − η + ηω

2 + 2k
)
h1,α − (

ηω

6 + 2k
3

)
h2,α

+ (
η − ηω

3

)
g0,α + (

η − ηω

2

)
g1,α − ηω

2 g2,α = 0,(−2 − 2η + ηω

3 + 2k
)
h0,α + (

6 + 6η − ηω

2 − 24
5 k

)
h1,α

+ (−4 − 4η + ηω

6 + 4k
)
h2,α − 6k

5 h3,α + ηω

3 g0,α + ηω

2 g1,α + ηω

6 g2,α = 0,
l2−l
2l−1khl−2,α + 2l(1 + η − k)hl−1,α + [2(1 + η)(2l + 1)

− 12l3+18l2−2l−4
(2l+3)(2l−1) k

]
hl,α − 2(l + 1)(1 + η − k)hl+1,α − l2+3l+2

2l+3 khl+2,α = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(21)
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and (
2 + η − ηω

3

)
g0,β + (

2 + η − ηω
2

)
g1,β − ηω

6 g2,β
+ (

η − ηω
3

)
h0,β + (−η + ηω

2

)
h1,β − ηω

6 h2,β = 2 + 4a
A ,(

η − ηω
3

)
g0,β + (

η − ηω
2

)
g1,β − ηω

6 g2,β
+ (

2 + η − ηω
3

)
h0,β + (−2 − η + ηω

2

)
h1,β − ηω

6 h2,β = 2 − 4a
A ,(

2 + 2η − ηω
3

)
g0,β + (

6 + 6η − ηω
2

)
g1,β + (

4 + 4η − ηω
6

)
g2,β

− ηω
3 h0,β + ηω

2 h1,β − ηω
6 h2,β = 2,

ηω
3 g0,β + ηω

2 g1,β + ηω
6 g2,β + (−2 − 2η + ηω

3 )h0,β
+ (

6 + 6η − ηω
2

)
h1,β + (−4 − 4η + ηω

6

)
h2,β = −2,

lgl−1,β + (2l + 1)gl,β + (l + 1)gl+1,β = 0,

lhl−1,β − (2l + 1)hl,β + (l + 1)hl+1,β = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(22)

Now using the boundary condition (18), we can write the solution as

I+
l (τ ) =

n−1∑
r=1

g(r)
l,αe

−kr τ + gl,β , (23)

I−
l (τ ) =

n−1∑
r=1

h(r)
l,αe

−kr τ + hl,β . (24)

And from (17) we have

n−1∑
r=1

h(r)
l,α + hl,β = 0. (25)

where kr are the positive roots of the determinant obtained from Eqs. (20) and (21).

4 First Approximation

We name the solution as the first approximation when l0 = 1. In this case from Eqs.
(15) and (16), we have

(
4
3 I

+′
0 + 2I+′

1

)
− 2(I+

0 + I+
1 ) − η(I+

0 + I−
0 + I+

1 − I−
1 )

+ ηω
6 [2(I+

0 + I−
0 ) + 3(I+

1 − I−
1 )] = A(4τ − 2) − 4(a + bτ),(

2I+′
0 + 24

5 I+′
1

)
− 2(1 + η)(I+

0 + 3I+
1 ) + ηω

6 [2(I+
0 + I−

0 ) + 3(I+
1 − I−

1 )]
= −2A,(
4
3 I

−′
0 − 2I−′

1

)
− 2(−I−

0 + I−
1 ) − η(I+

0 + I−
0 + I+

1 − I−
1 )

− ηω
6 [2(I+

0 + I−
0 ) + 3(I+

1 − I−
1 )] = A(4τ + 2) − 4(a + bτ),(

−2I−′
0 + 24

5 I−′
1

)
− 2(1 + η)(I−

0 − 3I−
1 ) + ηω

6 [2(I+
0 + I−

0 ) + 3(I+
1 − I−

1 )]
= −2A,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(26)



446 M. Ghosh

where

I+(τ, μ) = Aτ + I+
0 (τ )μ + 3I+

1 (τ )μP1(2μ − 1), 0 ≤ μ ≤ 1

I−(τ, μ) = Aτ + I−
0 (τ )μ + 3I−

1 (τ )μP1(2μ + 1),−1 ≤ μ ≤ 0.

}
(27)

When substituted in Eqs. (20) and (21) and when the coefficient of e−kτ and constant
term are equated, we obtain

(
2 + η − ηω

3 + 4k
3

)
g0,α + (

2 + η − ηω

2 + 2k
)
g1,α + (

η − ηω

3

)
h0,α

+ (−η + ηω

2

)
h1,α = 0,(

2 + 2η − ηω

3 + 2k
)
g0,α + (

6 + 6η − ηω

2 + 24
5 k

)
g1,α

− ηω

3 h0,α + ηω

2 h1,α = 0,(
2 + η − ηω

3 − 4k
3

)
h0,α + (−2 − η + ηω

2 + 2k
)
h1,α + (

η − ηω

3

)
g0,α

+ (
η − ηω

2

)
g1,α = 0,(−2 − 2η + ηω

3 + 2k
)
h0,α + (

6 + 6η − ηω

2 − 24
5 k

)
h1,α

+ ηω

3 g0,α + ηω

2 g1,α = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(28)

and
(
2 + η − ηω

3

)
g0,β + (

2 + η − ηω

2

)
g1,β + (

η − ηω

3

)
h0,β + (−η + ηω

2

)
h1,β

= 2 + 4a
A ,(

η − ηω

3

)
g0,β + (

η − ηω

2

)
g1,β + (

2 + η − ηω

3

)
h0,β + (−2 − η + ηω

2

)
h1,β

= 2 − 4a
A ,(

2 + 2η − ηω

3

)
g0,β + (

6 + 6η − ηω

2

)
g1,β − ηω

3 h0,β + ηω

2 h1,β = 2,
ηω

3 g0,β + ηω

2 g1,β + (−2 − 2η + ηω

3

)
h0,β + (

6 + 6η − ηω

2

)
h1,β = −2,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
(29)

The values of kwhichwillmake the above set of Eq. (28) consistent could be obtained
by evaluating the determinantal equation

�(k) =

∣∣∣∣∣∣∣∣∣

2 + η − ηω
3 + 4k

3 2 + η − ηω
2 + 2k η − ηω

3 −η + ηω
3

η − ηω
3 η − ηω

2 2 + η + ηω
3 − 4k

3 −2 − η + ηω
2 + 2k

2 + 2η − ηω
3 + 2k 6 + 6η − ηω

2 + 24k
5 − ηω

3
ηω
2

ηω
3

ηω
2 −2 − 2η + ηω

3 + 2k 6 + 6η − ηω
2 − 24k

5

∣∣∣∣∣∣∣∣∣
= 0,

(30)
which gives

64 −1344

25
k2 + 144

25
k4 + 192η − 1824

25
k2η + 192η2 − 96

5
k2η2

+64η3 − 64

3
ηω + 128

25
k2ηω − 128

3
η2ω − 64

3
η3ω = 0. (31)

To satisfy the boundary condition (3), the positive root corresponding to the above
equation is obtained by using the boundary condition (2) as well as (17) at the free
surface, we obtain
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ω η = 1 η = 7.3
0.00 k1 = 2.05125, k2 = 4.59627 k1 = 4.99667, k2 = 15.9520
0.25 k1 = 2.01082, k2 = 4.58996 k1 = 4.80792, k2 = 15.9592
0.50 k1 = 1.96928, k2 = 4.58378 k1 = 4.61184, k2 = 15.9662
0.75 k1 = 1.92657, k2 = 4.57766 k1 = 4.40744, k2 = 15.9731
1.00 k1 = 1.88260, k2 = 4.57168 k1 = 4.40744, k2 = 15.9731

h(1)
0,α + h(2)

0,α + h0,β = 0,

h(1)
1,α + h(2)

1,α + h1,β = 0.

⎫⎬
⎭ (32)

Using the boundary condition (3) as well as (18), we can express the solution as

I+
l (τ ) = A[g(1)

l,αe
−k1τ + g(2)

l,αe
−k2τ + gl,β],

I−
l (τ ) = A[h(1)

l,αe
−k1τ + h(2)

l,αe
−k2τ + hl,β]. (33)

From Eqs. (28), (29), and (32) and taking η = 1, ω = 0.5, we obtain the following
values:

g(1)
0,α = 0.142644 − 0.269443

a

A
,

g(1)
1,α = −0.055706 + 0.105218

a

A
,

h(1)
0,α = −0.463778 + 0.876506

a

A
,

h(1)
1,α = 0.029913 − 0.055703

a

A
,

g(2)
0,α = 0.001708 − 0.184098

a

A
,

g(2)
1,α = −0.000671 + 0.072346

a

A
,

h(2)
0,α = −0.016383 + 1.765939

a

A
,

h(2)
1,α = −0.00860 + 0.92880

a

A
,

g0,β = 0.751446 + 1.867083
a

A
,

g1,β = −0.067637 − 0.627988
a

A
,

h0,β = 0.480845 − 2.644112
a

A
,

h1,β = −0.0022556 − 0.875682
a

A
.
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4.1 Determination of Source Function and Law of Darkening

The mean intensity is given by

B(τ ) = 1

2

∫ 1

−1
I (τ, μ′)dμ′

= 1

2

{∫ 0

−1
I−(τ, μ′)dμ′ +

∫ 1

0
I+(τ, μ′)dμ′

}

= 3

4
F[τ + q(τ )]. (34)

where F is the astrophysical flux and q(τ ) is the Hopf function.
Therefore

B(τ ) = Aτ + 1

4
(I+

0 − I−
0 + I+

1 + I−
1 )

= Aτ + A

4

[{
g(1)
0,α − h(1)

0,α + g(1)
1,α + h(1)

1,α

}
e−k1τ

+
{
g(2)
0,α − h(2)

0,α + g(2)
1,α + h(2)

1,α

}
e−k2τ

+ (
g0,β − h0,β + g1,β + h1,β

)]

= Aτ + A

4

[{
0.580629 − 1.096434

a

A

}
e−1.96928τ

+
{
0.00882 − 0.949811

a

A

}
e−4.58378τ

+
{
0.180408 + 3.007525

a

A

}]
. (35)

Comparing Eqs. (34) and (35), we have

A = 3

4
F. (36)

Again,

F = 2
∫ 1

−1
I (τ, μ)μdμ,

= 2

[∫ 0

−1
I−(τ, μ)μdμ +

∫ 1

0
I+(τ, μ)μdμ

]

= 2

3
(I+

0 + I−
0 ) + (I+

1 − I−
1 ), (37)
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i.e.,

3F = A
[(

2g(1)
0,α + 2h(1)

0,α + 3g(1)
1,α − 3h(1)

1,α

)
e−k1τ

+
(
2g(2)

0,α + 2h(2)
0,α + 3g(2)

1,α − 3h(2)
1,α

)
e−k2τ

+ (
2g0,β + 2h0,β + 3g1,β − 3h1,β

)]
. (38)

Now from Eqs. (36) and (38)

a

A
= 1.670661 + 0.899125 e−1.96928τ + 0.005563 e−4.58378τ

1.696889 e−1.96928τ + 0.59708 e−4.58378τ − 0.810976
. (39)

Here, the source function is given by

	(τ, μ) = 1

2

∫ 1

−1
p(μ,μ′)I (τ, μ)dμ, (40)

Here, for the case of planetary phase function

	(τ, μ) = 1

2

∫ 1

−1
(1 + ωμμ′)I (τ, μ)dμ

= 1

2

∫ 1

−1
I (τ, μ)dμ + 1

2
ωμ

∫ 1

−1
I (τ, μ)dμ

= J (τ ) + ωμH(τ ), (41)

where

J (τ ) = 1

2

∫ 1

−1
I (τ, μ)dμ

= 1

2

[∫ 0

−1
I−(τ, μ)dμ +

∫ 1

0
I+(τ, μ)dμ

]

= 3

4
Fτ + 1

4
(I+

0 − I−
0 + I+

1 + I−
1 )

= 3

4
Fτ + A

4

[{
0.580629 − 1.096434

a

A

}
e−1.96928τ

+
{
0.00882 − 0.949811

a

A

}
e−4.58378τ

+
{
0.180408 + 3.007525

a

A

}]
(42)
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and

H(τ ) = 1

2

∫ 1

−1
μI (τ, μ)dμ

= 1

2

[∫ 0

−1
μI−(τ, μ)dμ +

∫ 1

0
μI+(τ, μ)dμ

]

= 1

6
(I+

0 + I−
0 ) + 1

4
(I+

1 − I−
1 )

=
[{

−0.07493 + 0.141407
a

A

}
e−1.96928τ

+
{
−0.000464 + 0.0497567

a

A

}
e−4.58378τ

+
{
0.1941116 − 0.0675813

a

A

}]
. (43)

The law of darkening is obtained using the relation

I (0, μ) =
∫ ∞

0
	(τ, μ)e− τ

μ
dτ

μ

=
∫ ∞

0
[J (τ ) + ωμH(τ )] e− τ

μ
dτ

μ
. (44)

5 Second Approximation

Separating the equations for l = 0, 1, and 2, we get the following set of equations
for l0 = 2 from Eqs. (15) and (16)

(
4
3 I

+′
0 + 2I+′

1 + 2
3 I

+′
2

)
− 2(I+

0 + I+
1 ) − η(I+

0 + I−
0 + I+

1 − I−
1 )

+ ηω

6 [2(I+
0 + I−

0 ) + 3(I+
1 − I−

1 ) + (I+
2 + I−

2 )]
= A(4τ − 2) − 4(a + bτ).(
4
3 I

−′
0 − 2I−′

1 + 2
3 I

−′
2

)
− 2(−I−

0 + I−
1 ) − η(I+

0 + I−
0 + I+

1 − I−
1 )

− ηω

6 [2(I+
0 + I−

0 ) + 3(I+
1 − I−

1 ) + (I+
2 + I−

2 )]
= A(4τ + 2) − 4(a + bτ).(
2I+′

0 + 24
5 I+′

1 + 4I+′
2

)
− 2(1 + η)(I+

0 + 3I+
1 + 2I+

2 )

+ ηω

6 [2(I+
0 + I−

0 ) + 3(I+
1 − I−

1 ) + (I+
2 + I−

2 )] = −2A.(
−2I−′

0 + 24
5 I−′

1 − 4I−′
2

)
− 2(1 + η)(I−

0 − 3I−
1 + 2I−

2 )

+ ηω

6 [2(I+
0 + I−

0 ) + 3(I+
1 − I−

1 ) + (I+
2 + I−

2 )] = −2A.(
1
3 I

+′
0 + 2I+′

1 + 80
21 I

+′
2

)
− (1 + η)(2I+

1 + 5I+
2 ) = 0,(

1
3 I

−′
0 − 2I−′

1 + 80
21 I

−′
2

)
+ 2(1 + η)(2I−

1 − 5I−
2 ) = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(45)
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where
I+(τ, μ) = Aτ + I+

0 (τ )μ + 3I+
1 (τ )μP1(2μ − 1)

+5I+
2 (τ )μP2(2μ − 1),

I−(τ, μ) = Aτ + I−
0 (τ )μ + 3I−

1 (τ )μP1(2μ + 1)

+5I−
2 (τ )μP2(2μ + 1)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(46)

As seen previously, we take the trial solution as

I+
l (τ ) = A(gl,αe−kτ + gl,β)

I−
l (τ ) = A(hl,αe−kτ + hl,β)

}
(47)

where A, gl,α, gl,β , hl,α, andhl,β are constants to be determined.
When substituted in Eq. (45) and when the coefficient of e−kτ and constant term are
equated, we obtain

(
2 + η − ηω

3 + 4k
3

)
g0,α + (

2 + η − ηω

2 + 2k
)
g1,α + (− ηω

6 + 2k
3

)
g2,α

+ (
η − ηω

3

)
h0,α + (−η + ηω

2

)
h1,α − ηω

6 h2,α = 0,(
2 + 2η − ηω

3 + 2k
)
g0,α + (

6 + 6η − ηω

2 + 24
5 k

)
g1,α

+ (
4 + 4η − ηω

6 + 4k
)
g2,α + 6k

5 g3,α − ηω

3 h0,α
+ ηω

2 h1,α − ηω

6 h2,α = 0,(
2 + η − ηω

3 − 4k
3

)
h0,α + (−2 − η + ηω

2 + 2k
)
h1,α − (

ηω

6 + 2k
3

)
h2,α

+ (
η − ηω

3

)
g0,α + (

η − ηω

2

)
g1,α − ηω

2 g2,α = 0,(−2 − 2η + ηω

3 + 2k
)
h0,α + (

6 + 6η − ηω

2 − 24
5 k

)
h1,α

+ (−4 − 4η + ηω

6 + 4k
)
h2,α − 6k

5 h3,α + ηω

3 g0,α
+ ηω

2 g1,α + ηω

6 g2,α = 0,
k
3g0,α + (2 + 2η + 2k)g1,α + 5

(
1 + η + 16k

21

)
g2,α = 0,

k
3h0,α + (2 + 2η − 2k)h1,α + 5

(
1 + η − 16k

21

)
h2,α = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(48)

and
(
2 + η − ηω

3

)
g0,β + (

2 + η − ηω

2

)
g1,β − ηω

6 g2,β
+ (

η − ηω

3

)
h0,β + (−η + ηω

2

)
h1,β − ηω

6 h2,β = 2 + 4a
A ,(

η − ηω

3

)
g0,β + (

η − ηω

2

)
g1,β − ηω

6 g2,β
+ (

2 + η − ηω

3

)
h0,β + (−2 − η + ηω

2

)
h1,β − ηω

6 h2,β = 2 − 4a
A ,(

2 + 2η − ηω

3

)
g0,β + (

6 + 6η − ηω

2

)
g1,β + (

4 + 4η − ηω

6

)
g2,β

− ηω

3 h0,β + ηω

2 h1,β − ηω

6 h2,β = 2,
ηω

3 g0,β + ηω

2 g1,β + ηω

6 g2,β + (−2 − 2η + ηω

3

)
h0,β

+ (
6 + 6η − ηω

2

)
h1,β + (−4 − 4η + ηω

6

)
h2,β = −2

2g1,β + 5g2,β = 0,

2h1,β − 5h2,β = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(49)
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The above set of Eq. (48) has a nontrivial solution if the determinant of the coefficient
is zero, that is

�(k) =
∣∣∣∣�1 �2

�3 �4

∣∣∣∣ = 0. (50)

where

�1 =

∣∣∣∣∣∣∣
2 + η − ηω

3 + 4k
3 2 + η − ηω

2 + 2k − ηω

6 + 2k
3

η − ηω

3 η − ηω

2 − ηω

6

2 + 2η − ηω

3 + 2k 6 + 6η − ηω

2 + 24k
5 4 + 4η − ηω

6 + 4k

∣∣∣∣∣∣∣
,

�2 =

∣∣∣∣∣∣∣
η − ηω

3 −η + ηω

2 − ηω

6

2 + η + ηω

3 − 4k
3 −2 − η + ηω

2 + 2k − ηω

6 − 2k
3

− ηω

3
ηω

2 − ηω

6

∣∣∣∣∣∣∣
,

�3 =

∣∣∣∣∣∣∣

ηω

3
ηω

2
ηω

6
k
3 2 + 2η + 2k 5 + 5η + 80k

21

0 0 0

∣∣∣∣∣∣∣
,

�4 =

∣∣∣∣∣∣∣
−2 − 2η + ηω

3 + 2k 6 + 6η − ηω

2 − 24k
5 −4 − 4η + ηω

6 + 4k

0 0 0
k
3 2 + 2η − 2k 5 + 5η − 80k

21

∣∣∣∣∣∣∣
.

Since we have to satisfy the boundary condition (3), the only positive root corre-
sponding to the above equation (taking η = 1, ω = 0.5) is given by k=4.1129.
Using the boundary condition at the free surface (2), we obtain

h0,α + h0,β = 0,

h1,α + h1,β = 0,

h2,α + h2,β = 0.

⎫⎪⎬
⎪⎭ (51)

From Eqs. (48), (49), and (51), we obtain

g0,α = 0.069168 − 0.512512
a

A

g1,α = −0.038739 + 0.286638
a

A

g2,α = 0.014870 − 0.109845
a

A

h0,α = −0.379701 + 2.853877
a

A
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h1,α = −0.164636 + 1.251054
a

A

h2,α = 0.036292 − 0.363071
a

A

g0,β = 0.795220 + 2.056688
a

A

g1,β = −0.112230 − 0.943149
a

A

g2,β = 0.044892 + 0.377261
a

A

h0,β = 0.473086 − 2.958114
a

A

h1,β = 0.027836 − 1.277830
a

A

h2,β = −0.006441 + 0.45680
a

A

Hence

B(τ ) = Aτ + 1

4
[I+

0 − I−
0 + I+

1 + I−
1 ]

= Aτ + A

4

[
(g0α − h0,α + g1,α + h1,α)e−kτ

+(g0β − h0,β + g1,β + h1,β)
]

= Aτ + A

4

[(
0.245494 − 1.828697

a

A

)
e−4.1129τ

+
(
0.23774 + 2.793823

a

A

)]
(52)

As in the first approximation, we find A = 3
4 F.

Here, for the case of planetary phase function, the source function is

	(τ, μ) = J (τ ) + ωμH(τ ), (53)

where

J (τ ) = 3

4
Fτ + A

4

[(
0.245494 − 1.828697

a

A

)
e−4.1129τ

+
(
0.23774 + 2.793823

a

A

)]
(54)

and

H(τ ) =
[(

−0.016018 + 0.10971383
a

A

)
e−4.1129τ

+
(
0.179572 + 0.0029377

a

A

)]
(55)
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and law of darkening can be obtained by using (54) and (55) similarly as in the first
approximation which is given in Eq. (44).

6 Conclusion

Thus the integro-differential equation of Radiative Transfer for coherent anisotropic
scattering atmosphere with planetary phase function has been solved successfully by
the method of Double Interval Spherical Harmonic Method and the results can be
verified by taking ω = 0 with the problem of isotropic scattering.
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Abstract The dynamical systems in various science and engineering problems are
often governed by nonlinear equations (differential equations). Due to insufficiency
and incompleteness of system information, the parameters in such equations may
have uncertainty. Interval analysis serves as an efficient tool for handling uncertainties
in terms of closed intervals. One of the major problems with interval analysis is
handling “dependency problems” for computation of the tightest range of solution
enclosure or exact enclosure. Such dependency problems are often observed while
dealing with complex nonlinear equations. In this regard, initially, two test problems
comprising interval nonlinear equations are considered. TheSet Inversion via Interval
Analysis (SIVIA) along with the Monte Carlo approach is used to compute the exact
enclosure of the test problems. Further, the efficiency of the proposed approach has
also been verified for solving nonlinear differential equation (Van der Pol oscillator)
subject to interval initial conditions.
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1 Introduction

Various vibration problems in science and engineering disciplines, viz., structural
mechanics, control theory, seismology, physics, and biology may be expressed in
terms of nonlinear equations, system of nonlinear equations, and nonlinear differ-
ential equations. Generally, the parameters in such equations deal with precise vari-
ables. But, the insufficiency and incompleteness of the system information often
led to parameters or variables with imprecision or uncertainty. For instance, let us
consider a nonlinear damped spring–mass system as given in Fig. 1 governed by the
equation,

mẍ + cẋ + α ẋ2 + kx + βx3 = f (t) (1)

where m, c, and k are respectively mass, damping, and stiffness of the nonlinear
system. Here, the external force applied on the system is f (t) with damping force
fd = cẋ + α ẋ2 and spring force fs = kx + βx3.
The uncertainty of the material properties in Eq. (1) led to the uncertain nonlinear

differential equation. Such uncertainties may be modeled either using probabilistic
approach, interval computation or fuzzy set theory. In case of nonavailability of
sufficient experimental data, probabilistic methodsmay not be able to deliver reliable
results. Moreover, in fuzzy set theory, a fuzzy number is expressed in terms of closed
intervals through the α-cut approach. As such, interval analysis has emerged as a
powerful tool for various practical problems in handling the uncertainties.

In the early 1960s, the pioneer concept related to interval computations, functions,
matrices, integral, and differential equations has been started by Moore [12–14].
System of equations, algebraic eigenvalue problems, and second-order initial and
boundary value problems have been discussed by Alefeld and Herzberger [2]. Guar-
anteed interval computations with respect to set approximations, parameter, and state
estimation with applications in robust control and robotics are addressed by Jaulin
et al. [10]. While dealing with interval computations, one of the major obstacles is
to handle the “dependency problems” effectively such that the tightest enclosure of
solution bound may be obtained. Such dependency problems often occur in dealing
with systems governed by complex nonlinear equations which lead to overestima-
tion of solution bounds. The dependency problem due to overestimation (wrapping
effect) has been studied by Krämer [11] with respect to generalized interval arith-
metic proposed by Hansen [9]. The other approach for the reduction of overestima-

Fig. 1 Damped spring–mass
system
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tion while handling dependency problem may be performed using contractors [10],
affine arithmetic [16], and/or parametric forms. As such, the present work proceeds
with the introduction section. The preliminaries of classical arithmetic of interval
analysis (IA) along with its application for two complex nonlinear equations com-
prising imprecise variables are considered in Sect. 2. The Set Inversion via Interval
Analysis (SIVIA) along with the Monte Carlo approach is then used to compute the
exact enclosure of the two test problems in Sect. 3. Further, the proposed approach
has also been verified for computing validated enclosure of nonlinear differential
equation (Van der Pol oscillator) subject to interval initial conditions in Sect. 4.

2 Classical Interval Computations

Interval analysis deals with interval computations on a set of closed intervals IR of
real line R, in order to obtain the tightest bound or enclosure for uncertain systems.
A closed interval [x] ∈ IR is denoted by [x] = [x, x] such that

[x] = [x, x] = {t | x ≤ t ≤ x, where x, x ∈ R}.

Here, x = inf[x] is the inifimum or lower bound of [x] and x = sup[x] is the supre-
mum or upper bound of [x]. The width and center of [x] may be referred to as
[x]w = x − x and [x]c = x+x

2 , respectively.
Basic operations using classical interval arithmetic given in Moore et al. [14] are

illustrated as follows:

• Addition: [x] + [y] = [x + y, x + y]
• Subtraction: [x] − [y] = [x − y, x − y]
• Multiplication: [x] · [y] = [min{S· ([x], [y])},max{S· ([x], [y])}],
where S· ([x], [y]) = {x y, x y, x y, x y}

• Division: [x]/[y] =
{[

x, x
] ·

[
1
y ,

1
y

]
, 0 /∈ [y, y],

(−∞,∞) , 0 ∈ [y, y]
• Power:

– If n > 0 is an odd number, then [x]n = [
xn, xn

]
– If n > 0 is an even number, then [x]n =

⎧⎨
⎩

[
xn, xn

]
, [x] > 0[

xn, xn
]
, [x] < 0

[0,max{xn, xn}], 0 ∈ [x]
Then, we have illustrated two test examples for the implementation of basic interval
arithmetic in Examples 1 and 2.

Example 1 Compute the bound [z1] satisfying constraint

z1 = x1y1 + x1y3 + x3y1 (2)
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such that x1 + x2 + x3 = 1 and y1 + y2 + y3 = 1. Here, x1 ∈ [x1] = [0.2, 0.3], x2 ∈
[x2] = [0.1, 0.2], y1 ∈ [y1] = [0.4, 0.6], and y2 ∈ [y2] = [0.2, 0.3].
Using classical IA, the bounds [x3] and [y3] are initially estimated as

[x3] ∼ 1 − [x1] − [x2] = [0.5, 0.7] and [y3] ∼ 1 − [y1] − [y2] = [0.1, 0.4]

respectively with respect to the constraints x1 + x2 + x3 = 1 and y1 + y2 + y3 = 1.
Then, the bound [z1] is obtained as

[z1]IA ∼ [x1] · [y1] + [x1] · [y3] + [x3] · [y1] = [0.30, 0.72]. (3)

Further, we have considered a more complicated nonlinear constraint in Example 2,
related to problems of multi-criteria decision-making under imprecise scores given
in Dezert et al. [7].

Example 2 [7] Compute the bound [z2] satisfying constraint

z2 = z1 + x21 y2
x1 + y2

+ y21 x2
y1 + x2

(4)

such that x1 ∈ [0.2, 0.3], x2 ∈ [0.1, 0.2], y1 ∈ [0.4, 0.6], and y2 ∈ [0.2, 0.3].
Here, the bound of [z2] is obtained as

[z2]IA ∼ [z1]IA + [x1]2[y2]
[x1] + [y2] + [y1]2[x2]

[y1] + [x2] = [0.3333, 0.9315]. (5)

The enclosures obtained in Eqs. (3) and (5) have been compared with enclosures
obtained using the Monte Carlo simulation in Table1.

Here, the Monte Carlo simulation approach using uniformly distributed 100,000
independent random sample values of variables x1, x2, y1, and y2 have been con-
sidered, where x1 ∼ U ([x1]), x2 ∼ U ([x2]), y1 ∼ U ([y1]), and y2 ∼ U ([y2]). From
Table1, it is worth mentioning that the bounds for i = 1, 2 satisfy

[zi ]MC ⊂ [zi ]IA.

In case of more sample values, the Monte Carlo simulation may yield better interval
enclosure with respect to the constraints (2) and (4), but such approach is inefficient
with respect to computational time. So, we may consider the problem in handling

Table 1 Interval bounds of
z1 and z2

i Interval bounds

[zi ]IA [zi ]MC

1 [0.30, 0.72] [0.3850, 0.5935]
2 [0.3333, 0.9315] [0.4617, 0.6825]
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interval computations as to interpret the tightest or the exact enclosure [zi ] of zi that
satisfies

[zi ]MC ⊂ [zi ] ⊂ [zi ]IA (6)

such that

inf [zi ]IA ≤ inf [zi ] ≤ inf [zi ]MC and sup [zi ]MC ≤ sup [zi ] ≤ sup [zi ]IA (7)

or zIAi ≤ zi ≤ zMC
i and zMC

i ≤ zi ≤ zIAi . (8)

Although in the above computations, the interval arithmetic looks simple for basic
operations with intervals and seems appealing, the “dependency problem” is a major
obstacle when complicated expressions have to be computed in order to find the
tightest enclosure. In this regard, the dependency effect has been discussed in detail
in the next section.

2.1 Dependency Problem in IA

Variable or parameter dependency problem in IA is generally exhibited when we
have more than one occurrence of imprecise parameter in the governing constraint.
For instance, in case of the nonlinear constraint

z = x2 + y2 for x ∈ [0.1, 0.5] and y ∈ [−0.6, 0.1],

the occurrence of each imprecise variable x and y is once. The computation
of enclosure with respect to constraint z = x2 + y2 using classical IA results
in [z]IA = [0.01, 0.61] which is found equivalent to the Monte Carlo simulation
of x ∼ U ([0.1, 0.5]), y ∼ U ([−0.6, 0.1]) for 100,000 sample values that yields
[z]MC = [0.01, 0.61]. But, the complexity occurs while dealing with complex non-
linear constraints as given in Examples 1 and 2, where the dependency effect is
exhibited due to multiple occurrences of imprecise variables.

The dependency effect may be reduced by replacing the constraint given in Eq.
(2) with an equivalent simpler constraint having less (or none) redundant variables.
For instance, the equivalent constraint

z1 = (1 − x2)y2 + x3y1 (9)

results in a better enclosure approximation [z1]IA = [0.34, 0.66]. Here, the interval
bound [0.34, 0.66] is contained in the bound [0.30, 0.72] obtained using the equiv-
alent constraint given in Eq. (2). But, on the other hand, an equivalent constraint

z1 = (1 − y2)x1 + (1 − x2)y1 − x1y1 (10)
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results in an overestimated bound [z1]IA = [0.28, 0.70]. Due to such dependency,
the interval bounds often yield overestimation of the tightest enclosure. Similar,
dependency effect is exhibited while computing [z2]IA for constraints z2 = z1 +(

1
x1 y2

+ 1
x21

)−1 + y21 x2
y1+x2

and z2 = z1 + x21 y2
x1+y2

+
(

1
y1x2

+ 1
y21

)−1
with respect to (4). As

such, identificationof constraint yielding the tightest enclosure is cumbersome. In this
regard, the problem formulation for reduction of overestimation due to dependency
effect has been carried out in the next section.

2.1.1 Problem Formulation

The main aim in the present work is to compute the tightest enclosure
[
zi , zi

]
or

exact enclosure such that [zi ]MC ∼ [zi ]IA or

zIAi = zi = zMC
i and zMC

i = zi = zIAi . (11)

associatedwith some nonlinear constraint zi = f (x1, x2, y1, y2), where xi ∈ [xi ] and
yi ∈ [yi ] for i = 1, 2. In this regard, the SIVIA Monte Carlo approach based on the
set inversion using interval computations and the Monte Carlo simulation has been
proposed to estimate exact bounds in the next section.

3 SIVIA Monte Carlo Approach

Initially, the general procedure of SIVIA has been incorporated in Sect. 3.1 followed
by contractors in Sect. 3.2. Finally, the combination of SIVIA with the Monte Carlo
approach has been performed in Sect. 3.3.

3.1 SIVIA

Set inversion of a typical set X ⊂ R
m with respect to function f : Rm → R

n is
expressed as

X = f −1(Y) = {x ∈ R
m | f (x) ∈ Y}

whereY ⊂ R
n . In case of SIVIA [10], an initial search set [x0] is assumed containing

the required set X. Then, using sub-pavings as given in Fig. 2, the desired enclosure
of solution set X is obtained based on the inclusion properties:

1. Case I: [ f ]([x]) ⊂ Y =⇒ [x] ⊂ X, then [x] is a solution,
2. Case II: [ f ]([x]) ∩ Y = φ =⇒ [x] ∩ X = φ, then [x] is not a solution,
3. Case III: [ f ]([x]) ∩ Y 
= φ and [ f ]([x]) 
⊂ Y then, [x] is an undetermined solu-

tion.
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Fig. 2 Set Inversion via Interval Analysis

The detailed illustration of set computation using SIVIA based on regular sub-
pavings, bisections, etc., may be found in [10]. The sub-pavings in SIVIA may be
improved with the usage of contractors discussed in the next section.

3.2 Contractor

Contractor: [3, 10] A contractor C associated with a set X ⊂ R
n over domain D is

an operator
C : IRn → IR

n

satisfying the following properties:

– Contraction: C([x]) ⊂ [x], ∀[x] ∈ IR
n ,

– Completeness: C([x]) ∩ X = [x] ∩ X, ∀[x] ∈ IR
n .

The pictorial representation of implementation of a contractor over the set X ⊂ R
2

is illustrated in Fig. 3.
There exist various types of contractors, viz., fixed-point, forward–backward,

Newton, and Gauss–Seidel contractors. Contractor based set inversion of leminscate

Fig. 3 Contraction of [x]
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Fig. 4 SIVIA of leminscate
curve with width [2, 3]

curve (x2 + y2)2 + a2(x2 − y2) = 0 having width a ∈ [2, 3] has been obtained
based on the PyIbex library [6] and depicted in Fig. 4, where the initial search set is
[−4, 4] × [−4, 4].

In order to perform the SIVIA Monte Carlo approach, we have used forward–
backward andfixed-point contractors.Detailed implementationof forward–backward
and fixed-point contractors have been incorporated in the Appendix.

3.3 SIVIA Monte Carlo

SIVIA Monte Carlo is a two-form iterative methodology that includes implementa-
tion of SIVIA using contractor programming and the Monte Carlo simulation till the
exact enclosure is obtained satisfying (11). In this regard, the iterative procedure is
incorporated in Algorithm 1 with respect to constraint z = f (x1, x2, . . . , xn) such
that each xi ∈ [xi ] ∈ IR for i = 1, 2, . . . , n. Here, the initial search set containing
the exact enclosure is assumed as [z0].

Algorithm 1: Implementation of SIVIA Monte Carlo approach

Input: [xi ] for i = 1, 2, . . . , n; Initial domain [x] = {[x1], [x2], . . . , [xn]} ∈ D;
Initial search set [z0]

Step 1: Compute enclosure using Monte Carlo
zMC = mcl([x]) and zMC = mcu([x])

Step 2: Compute enclosure using contractors
zIA = Ctcl([x], [z0]) and zIA = Ctcu([x], [z0])

Step 3: Improve lower and upper range of z
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z ∈ [
zIA, zMC

]
and z ∈ [

zMC, zIA
]

Step 4: Compute improved lower [x] = [ f ]−1(
[
zIA, zMC

]
) and

upper [x] = [ f ]−1(
[
zMC, zIA

]
) domains using SIVIA

[x], [x]=SIVIA([x], [ f ], [z0], ε)
Step 5: Repeat steps 1 to 3 for domains [x] and [x]
Step 6: Repeat step 4 for different domains [x] and [x]
Step 7: Iterate steps 4 and 5 till z = zIA ∼ zMC and z = zMC ∼ zIA

Output: [z, z]

In Algorithm 1, mcl(·),mcu(·) are functions that compute the minimum and
maximum function values with respect to domain [x] ∈ D. Then, Ctcl(·),Ctcu(·)
uses forward–backward contractor along with fixed-point contractor for computing
interval enclosure based on classical IA. Further, SIVIA(·) computes the set inversion
for domain [x] ∈ D based on constraint function f with precision ε.

Let us again consider the Examples 1 and 2 in order to compute the exact enclosure
using the SIVIA Monte Carlo in Example 3.

Example 3 Compute the interval bounds for the constraints

z1 = x1y1 + x1y3 + x3y1 and z2 = z1 + x21 y2
x1 + y2

+ y21 x2
y1 + x2

using the SIVIA Monte Carlo such that x1 + x2 + x3 = 1 and y1 + y2 + y3 =
1. Again, x1 ∈ [x1] = [0.2, 0.3], x2 ∈ [x2] = [0.1, 0.2], y1 ∈ [y1] = [0.4, 0.6], and
y2 ∈ [y2] = [0.2, 0.3]. Using Algorithm 1 for SIVIA precision ε = 0.001 and differ-
ent sample values, viz., 100,000, 1000, 100, 10, the tightest enclosures with respect to

constraints z1 = x1y1 + x1y3 + x3y1 and z2 = z1 + x21 y2
x1+y2

+ y21 x2
y1+x2

for different sam-
ple values are obtained and incorporated in Tables2 and 3, respectively.

It may be observed from Table2 that the SIVIA Monte Carlo method iteratively
converges to the exact enclosure [0.38, 0.6] (up to two decimals) even for fewer
sample values, viz., 100 and 10. Also, it may be noted that the iterative enclosures
converge to exact bound though the computational time increases from 5.1388 to
9.511 s for different samples ranging from 100,000 to 10, respectively. From Table2,
the proposedmethod seems appealing as even for fewer sample values the convergent
or exact solution bound is achieved.Many practical application problems do not yield
sufficient data and sometimes the availability of large data is cost effective, in such
cases, the proposed method may be used to obtain exact enclosure and the increase
in the computational time may be neglected.

Similar observations of exact enclosure convergence may be found in Table3 with
respect to different sample values. Moreover, due to the complexity of the constraint
(4), the required computational time 24.847 s for [z2] is comparatively higher than
time 9.511 s required for [z1]. Further, a nonlinear differential equation with respect
to dynamic problems has been considered in the next section for verification and
effectiveness of the SIVIA Monte Carlo approach.
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Table 2 Interval enclosure of z1
Iterations SIVIA (0.001 precision) and Monte Carlo samples

100,000 samples 1000 samples

z1 ∈ z1 ∈ z1 ∈ z1 ∈
1 [0.3796, 0.385] [0.5935, 0.6007] [0.3796, 0.3850] [0.5935, 0.6007]
2 [0.3796, 0.3807] [0.5993, 0.6007] [0.3796, 0.3822] [0.5971, 0.6007]
3 [0.3796, 0.3801] [0.5999, 0.6006] [0.3796, 0.3808] [0.5987, 0.6008]
4 – – [0.3797, 0.3803] [0.5995, 0.6007]
[z1] [0.38, 0.6] [0.38, 0.6]
Time (s) 5.1388 5.5936

Iterations 100 samples 10 samples

z1 ∈ z1 ∈ z1 ∈ z1 ∈
1 [0.3796, 0.385] [0.5935, 0.6007] [0.3796, 0.385] [0.5935, 0.6007]
2 [0.3796, 0.3833] [0.5965, 0.6007] [0.3796, 0.384] [0.5945, 0.6007]
3 [0.3797, 0.3817] [0.5982, 0.6007] [0.3796, 0.3836] [0.595, 0.6007]
4 [0.3797, 0.3814] [0.5989, 0.6007] [0.3797, 0.3829] [0.5971, 0.6007]
5 [0.3797, 0.3808] [0.5995, 0.6006] [0.3797, 0.3811] [0.5977, 0.6007]
6 [0.3797, 0.3805] [0.5996, 0.6006] [0.3797, 0.3808] [0.5978, 0.6006]
7 – – [0.3797, 0.3805] [0.5988, 0.6006]
[z1] [0.38, 0.6] [0.38, 0.6]
Time (s) 6.0616 9.511

4 Nonlinear Oscillator

Sometimes, dynamic problems are governed by mẍ + cẋ + kx = f (t) having non-
linear stiffness (k1x + k2x2 + · · · ) which result in nonlinear differential equations
(nonlinear oscillators). In case of uncertain nonlinear oscillators, the SIVIA Monte
Carlo method has been implemented using nonlinear equations obtained based on
the Runge–Kutta fourth-order method [4, 8]. As such, the enclosure obtained in the
present section yields a validated enclosure rather than the tightest bound. There
exist several validated interval methods and solvers in DynIbex [15] and CAPD [5]
libraries for obtaining validated bounds.

Example 4 Consider the Van der Pol equation (crisp or precise case given in Akbari
et al. [1]),

ẍ(t) + 0.15
(
1 − x2

)
ẋ + 1.44x = 0 (12)

subject to uncertain initial conditions x(0) ∈ [0.1, 0.3] and ẋ(0) = 0.

The system of the first-order differential equation corresponding to (12) is obtained
as
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Table 3 Interval enclosure of z2
Iterations SIVIA (0.001 precision) and Monte Carlo samples

100,000 samples 1000 samples

z2 ∈ z2 ∈ z2 ∈ z2 ∈
1 [0.4565, 0.4617] [0.6825, 0.6889] [0.4565, 0.4617] [0.6825, 0.6889]
2 [0.4565, 0.4581] [0.6869, 0.6887] [0.4565, 0.4591] [0.6859, 0.6887]
3 [0.4566, 0.4575] [0.6872, 0.6886] [0.4565, 0.4579] [0.6864, 0.6887]
4 – – [0.4565, 0.4577] [0.6867, 0.6887]
5 – – [0.4565, 0.4575] [0.6869, 0.6887]
6 – – [0.4565, 0.4574] [0.687, 0.6889]
[z2] [0.46, 0.69] [0.46, 0.69]
Time (s) 6.7797 7.5464

Iterations 100 samples 10 samples

z2 ∈ z2 ∈ z2 ∈ z2 ∈
1 [0.4565, 0.4617] [0.6825, 0.6889] [0.3796, 0.385] [0.5935, 0.6007]
2 [0.4565, 0.4609] [0.6826, 0.6887] [0.4565, 0.4609] [0.6854, 0.6887]
3 [0.4565, 0.4599] [0.6858, 0.6887] [0.4565, 0.4601] [0.6828, 0.6886]
4 [0.4566, 0.4578] [0.6863, 0.6885] [0.4565, 0.4589] [0.6836, 0.6886]
5 [0.4566, 0.4577] [0.6864, 0.6891] [0.4565, 0.4584] [0.6839, 0.6885]
6 [0.4566, 0.4576] [0.6866, 0.689] [0.4565, 0.4581] [0.685, 0.6885]
7 [0.4566, 0.4574] [0.6867, 0.689] [0.4565, 0.4577] [0.6856, 0.6885]
8 – – [0.4565, 0.4575] [0.686, 0.6885]
9 – – [0.4566, 0.4574] [0.6865, 0.6884]
[z2] [0.46, 0.69] [0.46, 0.69]
Time (s) 9.2454 24.847

u̇ = v = fu(t, u, v)

v̇ = 0.15(u2 − 1)v − 1.44u = fv(t, u, v)

subject to initial conditions u(0) ∈ [0.1, 0.3] and v(0) = 0. Using Runge–Kutta
fourth-order method, the nonlinear constraints involved in the computation of (12)
are

un+1 = un + h

6
(k1 + 2k2 + 2k3 + k4) (13)

vn+1 = vn + h

6
(l1 + 2l2 + 2l3 + l4) (14)

where
k1 = h fu(tn, un, vn), l1 = h fv(tn, un, vn),
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Table 4 Instantaneous solution enclosure of x(t)|t=T

T Enclosures

[x](T ) = [u](T ) [v](T )

0.1 [0.0993, 0.2979] [−0.0428,−0.0143]

0.2 [0.0972, 0.2915] [−0.0844,−0.0281]

0.3 [0.0937, 0.281] [−0.1242,−0.0413]

Fig. 5 Enclosure of x(t) for t ∈ [0, 1]

k2 = h fu

(
tn + h

2
, un + k1

2
, vn + l1

2

)
, l2 = h fv

(
tn + h

2
, un + k1

2
, vn + l1

2

)
,

k3 = h fu

(
tn + h

2
, un + k2

2
, vn + l2

2

)
, l3 = h fv

(
tn + h

2
, un + k2

2
, vn + l2

2

)
,

k4 = h fu (tn + h, un + k3, vn + l3) and l4 = h fv (tn + h, un + k3, vn + l3) .

Using Algorithm 1 with respect to constraints (13), and (14), the validated enclosure
of x(t)|t=T is obtained and incorporated in Table4 and Fig. 5.
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5 Conclusion

Generally, dynamical systems occurring in various science and engineering prob-
lems are governed by nonlinear equations or nonlinear differential equations. An
iterative procedure based on SIVIA and the Monte Carlo method has been proposed
for the computation of exact enclosure of nonlinear equations having imprecise or
uncertain variables. The effectiveness of the SIVIA Monte Carlo method has also
been verified based on the considered test problems that yield exact enclosures even
with respect to very few sample values. So, the method may be well implemented in
the computation of exact enclosures of various nonlinear equations irrespective of
the dependency problem. Further, the method has also been implemented to compute
validated enclosure in case of Van der Pol oscillator. Accordingly, the method may
be applied to other practical problems governed by nonlinear system of equations or
nonlinear differential equations involving uncertain parameters.

Appendix

Forward–backward contractor: The forward–backward contractor is based on
constraint f (x) = 0 where x ∈ [x] and [x] ∈ IR

n which is illustrated using an exam-
ple problem.

Example A1 Perform forward–backward contractor subject to constraintw = 2u +
v where [w] = [3, 20], [u] = [−10, 5], and [v] = [0, 4].
Here, the constraint w = 2u + v may be expressed in terms of function f as
f (u, v, w) = w − 2u − v. Further, the possible different forms of the constraint
that may be written are

u = w − v

2

v = w − 2u

w = 2u + v

The forward–backward steps are then followed with respect to classical interval
computations mentioned in Sect. 2 as

[u] ∩
( [w] − [v]

2

)
= [−10, 5] ∩

( [3, 20] − [0, 4]
2

)
= [−0.5, 5]

[v] ∩ ([w] − 2[u]) = [0, 4] ∩ ([3, 20] − 2[−0.5, 5]) = [0, 4]

[w] ∩ (2[u] + [v]) = [3, 20] ∩ (2[−0.5, 5] + [0, 4]) = [3, 14]
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As such, the new interval bounds are [w] = [3, 14], [u] = [−0.5, 5], and [v] = [0, 4].
Fixed-point contractor: Afixed-point contraction associatedwithψ is implemented
with respect to the constraint f (x) = 0 as x = ψ([x]), where x ∈ [x] ∈ IR

n . The
fixed-point contractor with respect to constraint u2 + 2u + 1 = 0 is performed as

u ∈ [u] and u = ψ(u) =⇒ u ∈ [u] and u ∈ ψ([u])
=⇒ u ∈ [u] ∩ [ψ]([u])

In case of the implementation of forward–backward contractor along with fixed-
point contractor helps in the computation of the forward–backward contractor until
the fixed interval is reached.
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