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Abstract. For interfering signals overlap with normal signals in both
time and frequency domain, it is difficult to detect them. Therefore,
this paper proposes a novel bidirectional recurrent neural network-based
interference detection method. By utilizing the ability of recurrent neural
network of extracting the nonlinear features of the time series context,
the model can get a prediction of following signal samples and calculate
the difference between prediction signal and original signal to do inter-
ference detection. The proposed method can achieve a better sensitivity
and determine the exact location of the complete interfering signal. In the
experiment part, we demonstrate the efficacy of this method in multiple
typical scenarios of time–frequency overlapped wireless signals.

1 Introduction

The development of wireless communication makes it be widely used in various
fields, but the electromagnetic environment is complex and changeable, and the
reliability of the communication system is still threatened by interference. There-
fore, the anti-interference technology is necessary to ensure the communication
reliability, and the interference detection technology is the basis and key of the
communication anti-interference technology.

The purpose of interference detection is to determine whether there are inter-
fering signals in received signals and then feed back to the transmitter or com-
mand center to take effective anti-interference measures. Traditional wireless
interference detection approaches include time domain and transform domain-
based energy detection algorithm (e.g., consecutive mean excision (CME) and
forward consecutive mean excision (FCME)). Some approaches analyze the
received signal strength indicator (RSSI) samples in the frequency and time
domain [1,2] or to perform a cyclostationary signal analysis and blind signal
detection and other spectrum sensing techniques [3]. These methods can well
detect many kinds of interfering signals. However, there are many interfering
signals whose power is small and frequency is the same as original signals in the
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actual communication environment. When these interfering signals are superim-
posed on the original signal, the time and the frequency domain features do not
change significantly. We call these interfering signals as time–frequency over-
lapped signals. Obviously, the time–frequency overlapped signals are hard to
detect by above methods.

The research found that the neural network can better extract the time and
frequency domain feature of signals. The feature can be used as signal fingerprint
to classify signals [4,5]; therefore, many interference detection methods based on
deep learning emerged in recent years. A sequential autoencoder framework is
introduced to distinguish normal and interfering signal in [6]. They calculate
the difference between original signals and reconstructed signals by autoencoder
framework. In [7,8], predicting future signals from known signals by utilizing the
prediction function of recurrent neural network and then taking the difference
between original and predictive signals as a feature to do interference detection.
However, these methods have not good detection performance under low signal-
to-interference-plus-noise ratio (SINR) conditions, especially for time–frequency
overlapped interfering signals.

In this paper, we present a bidirectional recurrent neural network (BI-RNN)-
based interference detection structure, which can utilize the correlation between
the front and back sampling points to predict the data of the intermediate posi-
tion. The structure can do bidirectional training and has the better prediction
performance; hence, the difference between predictive and original signals at the
interference-containing part is larger. And then in prediction process, we adopt
special training labels for noise reduction; therefore, the detection accuracy is
improved under low SINR condition. Finally, in the detection process, we use
the feature correlation classification instead of simply taking a decision thresh-
old, which reduces the contingency of the decision process and can completely
identify the complete interfering signal.

The rest of this paper is organized as follows. In Sect. 2, the interfering signal
and the principle of interference detection are described. Then, the neural net-
work model and the special training method are explained in Sect. 3. Section 4
shows the performance of interference detection and analysis of influencing fac-
tors. Finally, Sect. 5 concludes the paper and suggests future work.

2 Problem Formulation

When there is no interference, the received signal can be represented by Eqs. 1,
and 2 and the received signal contains interference.

r(t) = s(t) + n(t), (1)

rj(t) = s(t) + n(t) + j(t). (2)

where s(t) is a carrier signal transmitted by transmitter, n(t) represents noise,
and j(t) is a interfering signal(In this paper, we consider j(t) as the time–
frequency overlapped interfering signal.) The aim of interference detection is
to find the exact position of j(t).



Recurrent Neural Detection of Time–Frequency Overlapped . . . 69

As shown in Fig. 1, a predictor f is trained by normal signal r and we can get
the predictive signal r̂ from f . Then, calculate the difference e between r and r̂
by Eq. 3 and e can be considered as a feature to train a classifier for interference
detection. Similarly, when the interference-containing signal rj uses f to predict,
we can get the predictive signal r̂j and the difference ej is calculated by Eq. 4. It
is obvious that ej is greater than e, because the presence of interference destroys
the correlation of the original signal, which makes f unable to accurately predict
the interference-containing signal. Finally, the classifier can find interfering signal
based on the difference between e and ej .

e = |r − r̂| , (3)

ej = |rj − r̂j | . (4)

Fig. 1. General process of interference detection

3 BI-RNN-Based Prediction of Time Series Signal

It can be seen from Sect. 2 that the core of the interference detection method
proposed in this paper is the construction of prediction model. Research shows
that RNN can extract the nonlinear features of time series [9], so choose RNN
predictor here. As a special RNN, bidirectional Long Short-Term Memory (BI-
LSTM) adds a set of weight parameters for backward calculation; therefore, it
can also utilize the data information after the sample points to be predicted
for prediction. For that reason, we built the BI-LSTM-based model for signal
prediction.

3.1 Prediction Model

At the very beginning, we should preprocess the signal into a form
suitable for BI-LSTM. Supposing the time series of received signal is
Y =

{

y1, y2, y3, . . . , yt, y(t+1), . . . , y(M)

}

, choose Ytrain =
{

y1, y2, y3, . . . , yt,

y(t+C+1), . . . , y(M)

}

as training set (C and M are fixed values)
and Ylabel =

{

y(t+1), y(t+2), . . . , y(t+C)

}

as label to predict Ypre =
{

̂(y(t+1)), ̂(y(t+2)), . . . , ̂(y(t+C))
}

. Through a lot of iterations calculation, the net-
work will constantly adjust the weights to make Ylabel and Ypre closer and closer.
Then the computed Yerror is used to determine if it is interference-containing sig-
nal. Yerror is defined as Yerror = |Ylabel − Ypre|.
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The specific process of signal prediction is shown as Fig. 2. Divide N time-
banks of M time steps shifting by C time steps between adjacent chunks. If the
total signal sampling points is T , we can calculate the number of time-banks by
N = T−M

C + 1.
For each time-bank, remove p consecutive sample points inside, and set the

remaining sample points as one input. So the output from each input is the
predictive p samples, and the output from the N inputs is a continuous pre-
dictive signal. In theory, the larger the value of M , the better the prediction
performance. In Fig. 2, we set M = 110 and p = 1.

The reason why we use BI-LSTM is that BI-LSTM adds a delay between
the input and the target to give the network some time to add future context
information for prediction [10,11]. The hidden layers of the Bi-LSTM store two
sets of parameters, one for forward calculation and the other for backward calcu-
lation, and the final outputs depend on both parameters. But experiments have
shown that when the sequence after the predicted value is too long, the network
will pay more attention on the behind part and the predictive performance will
worsen. Therefore, should choose the appropriate value (here we set 10). In order
to verify the validity of the proposed method, we compared it with the predictive
model of LSTM mentioned in [7]. The BI-LSTM predictive model is described
as follows.

• The stacked BI-LSTM sequence predictor model is implemented with a 3-
layer BI-LSTM followed by a fully connected layer culminating in a linear
activation for output. The dropout between each layer is 0.2 and chooses
mean squared error loss function (MSE) as the loss function. Besides, the
number of hidden layer is 128, and batch size is 64.

Fig. 2. Stacked BI-LSTM prediction
model for signal prediction

Fig. 3. Predictive signal by using BI-
LSTM
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3.2 Model Training for Noiseless Prediction

During the research, it was found that when the SINR is relatively small, the
network extract the signal features hardly; therefore, the predictive signal and
the original signal are very different. The implementation of speech enhance-
ment uses LSTM by learning the correlation between noisy signals and noiseless
signals in [12]; hence, we are inspired by speech enhancement to propose a novel
training method which can improve the prediction performance under low SINR
conditions. We call this prediction process as noiseless prediction.

In noiseless prediction, the training data is the received signal with noise,
but the input label during training is the corresponding noiseless signal sampling
point. This method makes the network focus only on the correlation of the signal
itself, regardless of the irregularity of noise; therefore, the output is closer to the
noiseless signal. Figure 3 depicts the digital modulation signal predicted by BI-
LSTM, when the SINR = 6 db. The first picture is the original signal without
noise for comparison, and then the second is the predictive signal when use
noise signal as label, and the third is the predictive signal when use noiseless
signal as label. From the figure, we can see that noiseless prediction model has
better predictive performance than the noisy prediction model.

3.3 Prediction Performance

To measure the effectiveness of different neural network, the mean absolute errors
(MAE) and mean absolute percentage errors (MAPE) are computed in Eqs. 5
and 6:

MAE =
1
n

n
∑

i=1

|xi − x̂i| , (5)

MAPE =
1
n

n
∑

i=1

∣

∣

∣

∣

xi − x̂i

xi

∣

∣

∣

∣

. (6)

where xi is the actual signal sampling point at ith, x̂i is the predictive signal
sampling point, and n is the total number of test signal sampling points.

All the predictive result of different models in this section trained and tested
multiple times to eliminate outliers. We compare the prediction performance of
LSTM, BI-LSTM and the case of noiseless prediction in Table 1.

We can see from Table 1 that the prediction result is getting better with
the increase of SINR, but the influence becomes less obvious when the SINR
reaches a certain level. This proves that Gaussian white noise does interfere with
the learning ability of the network. In addition, the performance of BI-LSTM
model is better than that of LSTM, although not obvious, which indicates that
the sequence correlation after a certain signal sampling point will affect the
prediction result of model. Finally, we can also see that noiseless prediction
obtains the best results, especially under low SINR condition. This proves that
noiseless prediction does have good denoise ability.
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Table 1. Prediction performance of three models

Performance

Model SINR 0 db 4 db 8 db 12 db 16 db

LSTM MAE 0.437 0.422 0.277 0.203 0.118

MAPE 0.796 0.950 0.623 0.456 0.278

BI-LSTM (noisy prediction) MAE 0.565 0.413 0.267 0.168 0.109

MAPE 1.099 0.945 0.620 0.454 0.275

BI-LSTM (noiseless prediction) MAE 0.257 0.205 0.163 0.103 0.07

MAPE 0.592 0.548 0.361 0.248 0.146

Figure 4a shows the comparison of original signal and predictive signal based
on digital modulation when the SINR = 12 db. Similarly, Fig. 4b demonstrates
the case of FM modulation. We can find from the pictures that the difference
between the predictive signal and the original noiseless signal in the normal part
is much smaller than in the interference-containing part. So the difference of
predictive signal and original signal can be used for interference detection.

(a) (b)

Fig. 4. a is the difference between predictive signal and original signal (digital mod-
ulation), and b is the difference between predictive signal and original signal (analog
modulation)

4 Interference Detection

4.1 Classifier for Interference Detection

The features calculated by Sect. 3 can be used for interference detection. In
order to overcome the factor of sample imbalance, select support vector data
description (SVDD) here.
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During the detection process, it is found that when the bias of each sampling
point is used as the feature to train SVDD classifier, it is hard to determine the
specific location of interference signal. So the feature is windowed according to
the time step and is detected according to the waveform and correlations of the
plurality of feature points to overcome the contingency. The windowing process
is expressed as Fig. 5a. The length of the window (Wlen) we selected is 10, and
the step size (Step) is 1 here. The experimental results are shown in Fig. 5b. The
part marked with purple in the first picture is the interference-containing signal.
The second picture shows the result of test. The part with a value of −1 is the
signal that is judged to be interference, and the part with a value of 1 is the
signal that is judged to be normal. It can be seen that most of the interference
signal sampling points can be detected.

(a)
(b)

Fig. 5. a is the windowing process, and b is the interference detection performance at
12 db (QPSK modulation)

In order to evaluate performance comprehensively, four typical experimental
scenarios are set as follows, which represent various types of interference that may
occur in the actual communication system. In addition, to reduce the influence
of the amplitude, we have done the amplitude normalization on each signal.

• Normal signal is interfered by interference signal with different modulation
mode:

1. The 16QAM signal is normal and the superimposed QPSK signal with the
same sampling rate, symbol rate, and carrier rate is interference (QAM-
QPSK).

2. The 16QAM signal is normal and the superimposed FM signal is interference
(QAM-FM).

3. The FM signal is normal, and the superimposed DSSS signal is interference
(FM-DSSS).

• Normal signal is interfered by interference signal with different symbol rates:

4. The 16QAM signal is normal, and the superimposed 16QAM signal with only
different symbol rate is interference (QAM-QAM).
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4.2 Performance Evaluation

We repeat these experiences in three models above-mentioned and get Fig. 6
which show the F1 score of the performance of three models under different
SINR. F1score is calculated as F1score = 2PR

P+R (where P represents precision and
R represents recall). Obviously, when using the noiseless signal as label, we get
the best performance, especially at low SINR. In the case of noise label, although
the MAE and MAPE values of Bi-LSTM are smaller than those of LSTM, the
detection accuracy is not much higher.

(a) (b) (c) (d)

Fig. 6. Interference detection performance of three models: a is the detection perfor-
mance of QAM-FM signal, b is the detection performance of QAM-QPSK signal, c is
the detection performance of QAM-QAM signal, d is the detection performance of
FM-DSSS signal

(a) (b) (c) (d)

Fig. 7. Interference detection performance of BI-LSTM (noiseless prediction) under
different evaluation criteria: a is the detection performance of QAM-FM signal, b is
the detection performance of QAM-QPSK signal, c is the detection performance of
QAM-QAM signal, d is the detection performance of FM-DSSS signal

Figure 7 shows the experimental results of BI-LSTM when the noiseless sig-
nal as label. We can see that the detection precision and recall significantly be
improved with the increase of SINR. Almost all the interferences are determined
to be normal when the SINR = 0 db. When the SINR is higher than 6 db, perfect
detection performance is achieved. Among the four scenarios, only the QAM
interference with different symbol rates is the most difficultly to detect. The
DSSS interference in FM modulation is the most easily to detect, which shows
that the signal of digital modulation is hard to predict because of the randomness
of its own symbols.
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5 Conclusion

In this paper, a more robust method is proposed for wireless signal interference
detection at low SINR and is capable of localizing to each interference signal
sampling point. The results show that the model can implement the interfer-
ence detection which not applicable to traditional methods, and the detection
accuracy is better than other neural network models in the time–frequency over-
lapped interfering signal. We believe the result can be used in interference detec-
tion in complex communication environments. However, the experiment proves
that the detection result is relatively poor for the case where the SINR is lower
than 6 db. So we will work on how to improve detection performance under low
SINR condition next.
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