
A Guideline for Object Detection Using
Convolutional Neural Networks

Xingguo Zhang, Guoyue Chen(&), Kazuki Saruta, and Yuki Terata

Akita Prefectural University, 84-4 Aza Ebinokuchi Tsuchiya, Yurihonjo City
015-0055, Japan

chen@akita-pu.ac.jp

Abstract. The main purpose of object detection is to detect and locate specific
targets from images. The traditional detection methods are usually complex and
require prior knowledge of the detection target. In this paper, we will introduce
how to use convolutional neural networks to perform object detection from
image. This is one of the important areas of computer vision. In order to build up
to object detection, we first learn about how we can get the object localization or
landmark by a neural network. And then I will give the detail of sliding win-
dows detection algorithm and introduce how to use the convolutional imple-
mentation of sliding windows to speed up the process. Then we will introduce
the transfer learning and how to prepare your own learning data for training
networks.

Keywords: Object detection � Bounding box � Transfer learning

1 Introduction

The main purpose of object detection is to detect and locate specific targets from
images. The traditional detection model usually represents the target object by hand-
craft features and then predicts the category and location by classifier [1]. These
methods are usually intuitive and easy to understand. However, the design of these
methods is often complex and requires prior knowledge of the detection target. In
addition, it is highly dependent on specific tasks and has poor portability. Once the
detection target changes significantly, it is necessary to redesign the algorithm.

In recent years, with the improvement of hardware and algorithm, convolutional
neural networks (ConvNet) have achieved great success in image classification, which
led researchers to study its effects in other areas of computer vision. The early algo-
rithm based on deep learning is generally divided into three steps, selecting the object
candidate region (proposal), extracting the features of the candidate region, and finally
putting the extracted features into the classifier to predict the object category. In 2014,
Girshick designed the R-CNN model [2] based on ConvNet. The mean average pre-
cision (mAP) of this model in the object detection task of PASCAL VOC [3] was
62.4%, which was nearly 20% higher than the traditional algorithm. He et al. proposed
Spatial Pyramid Pooling Net (SPP net) [4], which only performed convolution oper-
ation on the whole picture once and added pyramid pooling layer after convolution
layer, so as to fix the feature map to the required size. This greatly saves time, reducing

© Springer Nature Singapore Pte Ltd. 2020
Q. Liang et al. (Eds.): Artificial Intelligence in China, LNEE 572, pp. 157–164, 2020.
https://doi.org/10.1007/978-981-15-0187-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0187-6_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0187-6_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0187-6_18&domain=pdf

the processing time of single-frame image to 2.5 s. However, SPP net failed to opti-
mize the hard disk storage space of R-CNN. To address the issue, Girshic proposed the
Fast R-CNN [5].

Fast R-CNN proposed a multitask loss function, which adds the loss of target
positioning to the traditional loss function to correct the position information. After
that, Ren et al. designed the structure of Faster R-CNN [6] and used the ConvNet to
generate candidate regions directly. Faster R-CNN realizes end-to-end training and
realizes real-time detection. On this basis, some improved methods such as region-
based fully convolutional networks (R-FCN) [7], Mask R-CNN [8] have been proposed
successively. However, most of these methods are based on the three-step strategy of
candidate region selection, feature extraction, and classification.

After that, some researchers proposed the regression-based object detection
method, which was represented by YOLO [9, 10], SSD [11], etc. These methods only
use one ConvNet for detection and use the regression method to correct the object
location, making the detection speed much faster than the candidate region-based
detection methods such as Faster R-CNN. However, their disadvantages are large
localization error, which is mainly because it is very difficult to get an accurate location
by regression directly in the absence of proposal regions. In the training, there will be a
wide range jitter of the bounding box and the losses function is hard to converge. In
addition, the detection performance often becomes poor when multiple adjacent small
objects appear. The rest of this paper, I will focus on the key techniques used in object
detection using ConvNet.

2 Convolutional Implementation of Sliding Windows

In this section, we will introduce to build a convolutional neural network to imple-
mentation of sliding windows. The traditional sliding window method is very slow due
to a lot of repeated convolution computation. In this part, let us see how we can
improve the processing speed by using the convolutional implementation of sliding
windows.

Firstly, let us see how we can transform fully connected layers into convolutional
layers. For illustrative purposes, let us see a simple network as shown in Fig. 1a. Our
object detection algorithm inputs 14 � 14 � 3 images, then 16 of 3 � 3 filters are
used to map the inputs images from 14 � 14 � 3 to 10 � 10 � 16, then does a 2 � 2
max pooling to reduce it to 4 � 4 � 16, then has a fully connected layer to connect
512 units, and then finally, outputs y using a softmax layer. Here, we assume that there
are four categories, which are pedestrian, car, traffic light, and background. Then y
have four units, corresponding to the crossed probabilities of the four classes that the
softmax unit is classifying among. And the four classes could be pedestrian, car, traffic
lights, or background.

158 X. Zhang et al.

Now, let us show you how these fully connected layers can be turned into con-
volutional layers. As shown in Fig. 1b, the first few layers of the ConvNet have the
same structure. After that, to implement the convolutional layer, we use 512 of
5 � 5 � 16 filters to do the convolution, and the output dimension is going to be
1 � 1 � 512. In mathematically, this is the same as a fully connected layer, because
each of these 512 nodes has a filter of dimension 5 � 5 � 16, and so each of those 512
values is some arbitrary linear function of these 5 � 5 � 16 activations from the
previous layer.

Finally, we are going to use four of 1 � 1 � 512 filters by a softmax activation to
get a 1 � 1 � 4 volume as the output of this network. So, this shows how you can take
these fully connected layers and implement those using convolutional layers, and these
fully connected layers are now implemented as 1 � 1 � 512 and 1 � 1 � 4 volumes.

When the size of the test image we inputted changed to 16 � 16 � 3, assume our
trained detection window is still 14 � 14 (shown in Fig. 2a). So in the original sliding
windows algorithm, you might want to input the first 14 � 14 regions into a ConvNet
and run that once to generate a classification 0 or 1. Then slide the window to the right
by a stride = 2 pixels to get the second rectangular area, and run the whole ConvNet for
this window to get another label 0 or 1. Then repeat this process by slide the window
until get the output of lower right window. You will find for this small input image, we
run this ConvNet from above four times in order to get four labels. But we can see that
many of the operations by these four ConvNet are highly duplicated. So what the
convolutional implementation of sliding windows does is it allows these four forward
passes of the ConvNet to share a lot of computation.

As shown in Fig. 2b, you can take the ConvNet and just run it by the same
5 � 5 � 16 filters with same parameters, and you can get a 12 � 12 � 16 output
volume, and then do the max pool same as before, get a 6 � 6 � 16 output, run

Fig. 1. Convolutional implementation for fully connected layers

A Guideline for Object Detection Using Convolutional … 159

through your same 400 of 5 � 5 filters to get a 2 � 2 � 400 volume output. So, now
instead of a 1 � 1 � 400 volume, you can get a 2 � 2 � 400 volume. Do that one
more time, now you are left with a 2 � 2 � 4 output volume instead of 1 � 1 � 4.
So, in this final output layer, which turns out the upper left 1 � 1 � 4 subset gives you
the result of running in the upper left corner 14 � 14 regions of input image, the upper
right 1 � 1 � 4 volume gives you the upper right result and same argument for the
lower left and right 1 � 1 � 4 volume. If you step through all the steps of the cal-
culation, you will find that the value of each cell is the same as if you cut out each
region and input it to ConvNet.

So, what this convolutional implementation does is you need not run forward
propagation on four subsets of the input image independently. We only need to do
forward propagation once for the entire image and share a lot of the computation in the
regions of the image that is common. You can refer to [12] to get more details about
this part.

3 Transfer Learning

When your network is ready, prepare training data for learning. The process of opti-
mizing the neural network is to find the value of each layer of parameters that minimize
the output of the loss function. But if you do a little bit of calculation, you will find that
there are huge parameters in a neural network that needs to be trained, i. e, a medium-
sized vgg-16 network [13] has at least 1.5 � 107 parameters.

If you have a new network that needs to be trained from scratch, then you have to
prepare a lot of training samples, such as a database like ImageNet [14], MS COCO

Fig. 2. Object detection by convolutional implementation

160 X. Zhang et al.

[15], etc. And, you probably need a high-performance GPU computing cluster, and
sometimes, this training takes several weeks or even months to make the output of the
loss function converge.

So, how can we train neural networks to develop our own image processing
applications without such a GPU computing cluster or lots of training samples? One
solution is transfer learning. Transfer learning is to transfer the model parameters that
have been learned from other places to the new model to help train the new model.

Due to the explosive growth of research related to neural network in recent years,
people often associate transfer learning with training of neural network. These two
concepts are unrelated at the beginning. Transfer learning is a branch of machine
learning, and many transfer methods did not need to use neural network. But now,
people find that deep neural network model has strong transferability. Because DNN is
a hierarchical representation of data obtained through pretrain and then classified with
high-level semantic classification. The low-level semantic features (such as texture,
edge, color information, etc.) are at the bottom of the model. Such features are actually
invariable in different classification tasks, and the real difference is the high-level
features.

If you apply the same network architecture to implement a vision task, you can
usually download weights that someone else has trained on the same network as
initialization, rather than training it from random values. And use transfer learning to
sort of transfer knowledge from some of these very large public data sets to our own
problem. Usually, this transfer process can greatly reduce the convergence time of the
model.

Let us see an example of medical image recognition, as shown in Fig. 3. If we need
building a cell detector to recognize colon cancer histology images, we were prepared
to recognize four clinically meaningful cells: epithelial nuclei, inflammatory nuclei,
fibroblasts, and miscellaneous nuclei. And we assume that each cropped image patch
contains only one cell. So, we have a classification problem with four classes. But our

Epithelial Nuclei

Inflammatory Nuclei

Fibroblast Nuclei

Miscellaneous Nuclei Hidden layer Softmax layer

Weight downloaded from the Internet

Transfer learningTraining images

Fig. 3. A sample of transfer learning

A Guideline for Object Detection Using Convolutional … 161

training set is small. Then we would better download some open-source implemen-
tation of a neural network and download not just the code, but also the weights of this
network. There are a lot of networks; you can download that have been trained on, i.e.,
the ImageNet dataset, which has 1000 different classes. The network typically contains
a softmax layer used as the output layer, which contains 1000 units. You usually need
to modify the softmax layer and create your own softmax unit that outputs epithelial,
inflammatory, fibroblasts, or miscellaneous.

Since our training dataset is small, we would better freeze the first few layers of the
neural network and then just train the parameters associated with finial several layers.
For most machine vision tasks, the first few layers of the network are usually used to
extract common fundamental features of input images, such as edges, gradients, etc.
And by using the pretrained weights, we can get very good performance even with a
small data sets. Many current deep learning frameworks support using parameters to
specify training or freezing the weights associated with a particular layer. This method
is usually used to solve the problem of overfitting caused by insufficient training data.
But if you have enough data, you could use the downloaded weights just as initial-
ization to replace random initialization. And then you can do gradient descent training,
updating all the weights in all the layers to train the whole network.

This is the transfer learning for the training of ConvNet. In practice, because many
network weights are publicly available on the internet, you can easily download these
open source weights that someone else has spent weeks working with a large com-
puting device to initialize your network model. This will greatly improve your work
efficiency. You can refer to [16] for more details.

4 Generate Training Dataset

When your network is built, you need to provide the image it will use to train a new
detection classifier. Most deep neural network models require at least hundreds of
images to train a detection classifier. Many computer vision researchers are willing to
share their data online, i.e., ImageNet. And other researchers can also train their
algorithms on these databases

To train a robust classifier, the training images should have random objects in the
image along with the desired objects and should have a variety of backgrounds and
lighting conditions. There should be some images where the desired object is partially
obscured, overlapped with something else, or only halfway in the picture. Make sure
the images are not too large. The larger the images are, the longer it will take to train
the classifier. As my advice, the images size should be less than 200 KB each, and their
resolution should not be more than 1280 � 720.

In practice, after you have all the pictures you need, we usually use 80% of them as
the training images and 20% of them as testing images. Make sure there are a variety of
pictures in both directories of the training and testing data.

With all the pictures gathered, it is time to label the desired objects in every picture.
LabelImg [17] is a tool for labeling images, and its GitHub page has very clear
instructions on how to install and use it. Once you have labeled each image, there will

162 X. Zhang et al.

be generated one *.xml file for each image in the images directory. These will be used
to train the new object detection classifier.

5 Conclusion

Object detection has been developing rapidly in the field of computer vision and has
repeatedly created amazing achievements. The ConvNet has a strong versatility and
portability, and it is widely used in robot, autonomous driving, medical assistance, etc.
This chapter focuses on several core problems in object detection: object localization,
sliding windows object detection, and transfer learning. In addition, we also introduced
how to classify and locate cells in medical image by ConvNet.

In summary, the success of ConvNet in recent years mainly depends on three
pillars: data, model, and calculation power. A large amount of manually annotated data
makes it possible to conduct supervised training. A deeper and larger model improves
the recognition ability of the neural network. The combination with GPU and the rapid
development of computer hardware makes large-scale training become time-saving and
effective. However, the research on ConvNet is just beginning, and many aspects need
further study.

At present, ConvNet needs training samples of tens of thousands or even millions
of levels, and the training process for such a large number of samples is also extremely
long. And in many areas, it is very expensive to obtain large numbers of precisely
labeled samples. How to generate a good neural network from a small amount of data
will be the future research direction. How to get satisfactory performance by train a
small amount of dataset will be the future research direction.

In addition, the trend is that the deeper the network, the better the performance of
ConvNet, and some networks even reach thousands of layers. However, as the network
deepens, overfitting and gradient disappeared become more serious. Although the
research such as residual network [18], etc., is devoted to solving such problems, the
large model also limits the application of ConvNet on common devices, especially
mobile devices. The ConvNet needs to optimize the structural design to find more
efficient neurons and structural units.

References

1. Wang X, Han TX, Yan S (2009) An HOG-LBP human detector with partial occlusion
handling. In: 2009 IEEE 12th international conference on computer vision, Sept 2009,
pp 32–39

2. Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object
detection and semantic segmentation. In: Proceedings of the IEEE computer society
conference on computer vision and pattern recognition, pp 580–587

3. Everingham M, Gool L, Williams CKI, Winn J, Zisserman A (2009) The pascal visual object
classes (VOC) challenge. Int J Comput Vis 88(2):303–338

4. He K, Zhang X, Ren S, Sun J (2015) Spatial pyramid pooling in deep convolutional
networks for visual recognition. IEEE Trans Pattern Anal Mach Intell 346–361

A Guideline for Object Detection Using Convolutional … 163

5. Girshick R (2015) Fast R-CNN. In: Proceedings of the IEEE international conference on
computer vision, pp 1440–1448

6. Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection
with region proposal networks. IEEE Trans Pattern Anal Mach Intell 6:1137–1149

7. Dai J, Li Y, He K, Sun J (2016) R-FCN: object detection via region-based fully
convolutional networks. Adv Neural Inf Process Syst 379–387

8. He K, Gkioxari G, Dollar P, Girshick R (2017) Mask R-CNN. In: Proceedings of the IEEE
international conference on computer vision, pp 2980–2988

9. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time
object detection. In: Proceedings of IEEE conference on computer vision and pattern
recognition, pp 779–788

10. Redmon J, Farhadi A (2017) YOLO9000: better, faster, stronger. In: IEEE conference on
computer vision and pattern recognition, CVPR 2017, pp 7263–7271

11. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) SSD: single shot
multibox detector. In: European conference on computer vision, pp 21–37

12. Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2013) OverFeat: integrated
recognition, localization and detection using convolutional networks. arXiv Prepr. arXiv

13. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE conference on computer vision and pattern
recognition

14. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) ImageNet: a large-scale
hierarchical image database. In: 2009 IEEE conference on computer vision and pattern
recognition

15. Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014)
Microsoft COCO: common objects in context. In: Lecture Notes in Computer science
(including subseries Lecture Notes in Artificial intelligence and lecture notes in
bioinformatics)

16. Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural
networks? Adv Neural Inf Process Syst 3320–3328

17. Tzutalin (2015) LabelImg. https://github.com/tzutalin/labelImg
18. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE

conference on computer vision and pattern recognition, pp 770–778

164 X. Zhang et al.

https://github.com/tzutalin/labelImg

	A Guideline for Object Detection Using Convolutional Neural Networks
	Abstract
	1 1 Introduction
	2 2 Convolutional Implementation of Sliding Windows
	3 3 Transfer Learning
	4 4 Generate Training Dataset
	5 5 Conclusion
	References

