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Abstract Electromagnetic field analysis is the basis for solving the engineering
coupled electromagnetic and thermal field problems. Based on the low-frequency
Maxwell’s equations, some key problems concerning the formulations and
numerical implementations of typical 3-D eddy current analysis methods, using
different potential sets, such as A-V-A (or employing a reduced vector magnetic
potential A, to convert to A,-V-A,) and T-¥-Y, are briefly explained. Furthermore,
the numerical solvers based on different potential sets have been developed by the
author’s group and verified in the Testing Electromagnetic Analysis Methods
(TEAM) benchmarking practices. In this chapter, the Galerkin weighted residual
method, a key technique in numerical implementation, is elaborated, and the
effectiveness of edge element, for example, in effectively reducing computational
cost in industrial applications is discussed. Strengthening the theoretical basis of
finite element analysis of electromagnetic fields and correctly understanding the
significance of the combination of advanced numerical computation with accurate
material property modeling will be more helpful in improving the effectiveness of
modeling and simulation and further promoting the use of simulation in industrial
applications.
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2.1 Introduction

The related problems involved in engineering electromagnetic and thermal fields
are often highly complex. For example, in power transmission and transformation
engineering, the critical heating and cooling issues of large power transformers are
closely linked to the coupling of electromagnetic field, temperature field and the oil
flow field of forced movement. In addition, the influence of temperature, and even
stress, must also be considered in electromagnetic property modeling of materials
and components, such as nonlinearity, anisotropy and hysteresis of various mate-
rials that are inherently complex. However, people do not leave themselves help-
less, always trying to solve complex problems, step by step. Moreover, in order to
solve the thermal field problem, the power loss, that is the heating source, must be
accurately determined first, so electromagnetic field analysis is the basis for solving
the problems related to coupled electromagnetic and thermal fields.

There are many classical literatures and monographs on the numerical compu-
tation of engineering electromagnetic fields [1-27]. The governing equations of the
commonly used eddy current calculations, which can all be derived from Maxwell’s
equations, and appropriate boundary conditions, gauge and information of field
source configuration are introduced to form a definite solution problem. The state
variables used may be the field quantities to be solved, such as electric field
intensity E and magnetic field intensity H, or the vector potential and scalar
potential, as well as potential sets thereof.

The finite element method (FEM) is a mature numerical method in industrial
applications and is also the main numerical calculation method used in this book.
Finite element, as a specialized term, first appeared in 1960 [3]. The usability of
finite element was first demonstrated by O. C. Zienkiewicz in the late 1960s and
was quickly extended to many application fields in the 1970s.

As far as electrical engineering is concerned, although A. M. Winslow adopted
the complete concept of finite element as early as 1967 [6], the finite element
method in its present form was applied and popularized by P. P. Silvester and his
colleagues two years later [7]. At that time, the element type was mainly nodal
element (or node-based element), the edge element (or edge-based element) was
first proposed by Fraeijs de Veubeke [4], with its variable defined differently from
nodal element, and the constraint of normal continuity of variables along the edge
of the element was removed. Raviart and Thomas solved the two-dimensional
problem by using the edge element method in 1977, and J. C. Nedelec established a
3-D mixed element model including edge elements and nodal elements by using
tetrahedron and hexahedron elements in 1980 [8]. Since the early 1980s, the rapid
development of edge element has attracted extensive attention from the interna-
tional computational electromagnetics community, particularly in theory, numerical
implementation and application [26-53]. Moreover, in some applications, the edge
element shows its irreplaceable advantages. At the Compumag-1997, in Brazil, a
specially arranged discussion meeting on edge element was held. A. Bossavit,
Z. Cendes, T. V. Yioultsis, J. P. Webb and G. Mur shared their views in the
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discussions, which basically reflected the international computational electromag-
netics community’s understanding of all aspects of edge element. The theory and
practice of edge element have been quite mature, promising a broad prospect of its
academic and industrial application.

Edge element and nodal element are two main members of the finite element
family and have achieved success in applications. As pointed out by the researchers,
they do not replace each other and tend to develop in parallel. It is also shown in
research and application that the combination of the two may be more promising,
i.e., vector potentials are represented by edge elements, and scalar potentials are
represented by nodal elements.

After a very brief review of the FEM as the foundation of electromagnetic and
thermal field modeling, this chapter follows the low-frequency Maxwell’s equa-
tions, introduces several eddy current analysis methods based on various potential
sets [24, 25], deduces the basic formulation and numerical implementation and
explores the internal relations among various algorithms. The edge element is also
briefly discussed and compared with the nodal element, based on the discrete data
for the same problem (e.g., total degrees of freedom, number of nonzero entries in
the coefficient matrix, etc.). Moreover, based on a typical A-V-A method, the main
derivation process is demonstrated.

Finally, it should be emphasized that the solid theoretical basis for the finite
element analysis of electromagnetic fields, the efficient methods of computation, the
accurate modeling of material properties and the tight link between them are most
important in improving the effectiveness of modeling and simulation and further
promoting the use of simulation in industrial applications.

2.2 Maxwell’s Equations

The Maxwell’s equations created by J. C. Maxwell (1831-1879) consist of the
following four basic equations:

oD
VXH—J'FE (2.1)
V-B=0 (2.2)

OB
VXE__E (2.3)

V - D = p (whenignoring the effect of accumulated charge in the conductor p = 0)
(2.4)
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The fifth equation can be obtained from the above equations, that is, taking
divergence to the first equation and using the result of the fourth equation, it is
derived that

ap

V-J=- o (2.5)
which satisfies the following constitutive equations:
B =uH (2.6)
D =¢E (2.7)
J=0cE (2.8)

The low-frequency electromagnetic and thermal field are the main research
project in this book. %—? in (2.1) can be omitted under the condition of low fre-

quency, considering constitutive relation (2.8), and (2.1) can be rewritten as
V xH =cE (2.9)
In general, the phasor form of Eq. (2.1) is
V x H = (¢ +jew)E (2.10)

In the case of low frequency, the second right-hand term of (2.10) can be
ignored.

The basic equations related to the complete low-frequency electromagnetic field
include the field differential equation and the constitutive equations. Nowadays,
with the development of international computational electromagnetics and its
application, a series of electromagnetic field analysis methods, based on various
“potential sets”, have been highly developed and very mature. However, the
electromagnetic properties of all the materials involved in the constitutive equations
of the basic equations have become the focus of attention.

The material property parameters, o, ¢ and u, relate the basic field quantities J,
D, E, B and H. Because of the urgent need of scientific research and industrial
application, modern material modeling technology endows “g-¢-u” with more
connotation, such as nonlinearity, time asymmetry, anisotropy and so on. The
modeling of electrical, magnetic and thermal properties of electrical engineering
materials under standard and non-standard conditions is the basic guarantee for
performing effective electromagnetic and thermal analysis. Therefore, both,
advanced methods of computation and advanced material models are required.

The material modeling under complex conditions, the implementation and val-
idation of efficient algorithms are interdependent. It is very complicated to model
the electromagnetic and other properties of materials under the actual conditions.
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The real working conditions of component materials are usually different from the
artificially imposed “standard” conditions for testing the properties of materials. In
addition, the properties of materials often depend on external conditions such as
temperature, frequency and stress, and the real excitation conditions are much more
complicated than the imposed “standard” excitation conditions. The natural ques-
tion is how to properly evaluate the engineering effectiveness of the standard
property data and how to correctly handle the calculation results based on the
standard property data. The author does not believe that the more complex the
problem being studied, the better; however, the measurement and prediction of the
“working characteristics” of materials and components under complex conditions is
critical to ensuring the effectiveness of modeling and simulation. See Chaps. 7-11
of this book for further details on material modeling.

2.3 Governing Equations for Analysis of Low-Frequency
Eddy Current Problems

In the 1980s, the methods of calculating 3-D eddy currents based on various
potential sets were fully discussed. The A-V-A and T-y-y are two basic eddy
current analysis methods, in which A and T are magnetic vector potential and
current vector potential, and V and ¥ are electric scalar potential and magnetic
scalar potential, respectively [24, 25].

A-V-A can easily solve general complex problems, such as nonlinearity, multiply
connected regions, multi-subdomains and non-uniform conductivity in conducting
regions, which are often encountered in electrical engineering. In the implemen-
tation of Galerkin, the interface conditions are naturally met. However, it still has
the following disadvantages: It uses vector potentials in the eddy current-free
regions, requiring a large amount of memory and a long CPU time. Further research
suggests that while A-V-A based on nodal element uses magnetic vector potential
A in the entire domain, when the Coulomb gauge condition is implemented by
inserting penalty function term in the governing equation and there is a great
difference in the magnetic permeability between the conducting region and the
non-conducting region, the continuity of A and the discontinuity of permeability u
at the interface will force V - A at the interface to jump, which will lead to the
decrease of accuracy at the interface. For this reason, O. Biro and others proposed
to make the normal component A,, of A discontinuous at the interface to solve this
difficulty [27].

T-y-y is another effective method for eddy current analysis. However, despite
the many advantages the traditional T-y/-y has, such as fewer unknowns and simple
numerical implementation, it generally cannot solve the problems of multiply
connected regions. There have been some remedies, for example, filling holes in the
multiply connected domain with extremely low-conductivity materials, artificially
transforming the multiply connected problems into simply connected ones.
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Table 2.1 Dual relations of equations of A-V-A and T-y-y in conducting regions

Methods A-V-A T-v-¥
Definition of B=V xA J=VXxT
vector potential
i 1 1
Governing H=-VxA E=-VxT
equations in u o
conducting o VxH=VxT
; E=—— A
region V x 8t(v>< ) Vx(H-T)=0
VX(E+%—A):0 H-T=-Ve¢
M g H=T-Vy
E+—=-VV
+ ot
0A
E=——-VV
ot

VxiVxA+a(f +VV)=0

VxIvxT+2(uT-Vy)=0

For nodal elements, Coulomb
gauge is adopted and penalty
function term is introduced

~viv.a
u
1 1
Vx-VxA-— (V—(V-A))
It It

+a(8—A +vv/> =0
ot

it is derived that from V- J =0

For nodal elements, Coulomb gauge
is adopted and penalty function term
is introduced

1
-V-V.T
g
1 1
VX7V><T—<V7(V~T)>
a g

0
o (T = V) =0
it is derived that from V - B =0

V- (u(T = Vi) =0

V- (—o(@ +VV)) =0

There are also handling means such as so-called cutting surface or auxiliary coils
arranged around the holes (see Sect. 4.4 of Chap. 4 of this book) to solve the
problem of “multiply connected” in the traditional 7-¥-¥. The systematic evalu-
ation, comparison and discussion of various eddy current analysis methods and
element types have been found in many references, which are of great significance
for in-depth understanding of the advantages and disadvantages of various methods
and correct selection of analysis methods.

The derivation of governing equations for A-V-A and T-¥-YV is of typical sig-
nificance, and the derivation of governing equations for the corresponding con-
ducting regions is shown in Table 2.1.

The dual relationship between A-V-A and T-/-y can be clearly seen from
Table 2.1, and even the derivation steps are completely coherent. The derivation
process of A-V-A based on nodal element using Galerkin weighted residual tech-
nique is shown in Appendix.

It should be pointed out that in order to simplify the finite element
pre-processing of complex excitation sources and improve the calculation accuracy,
relevant reduced potentials are often used in the development of eddy current
analysis software based on T-¥-¥ and A-V-A potential sets. For instance, in A-V-A,
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a reduced magnetic vector potential, A,, is adopted, i.e., converting it to A,-V-4,; in
the implementation of T-V-¥, a reduced magnetic scalar potential ¢ is adopted,
ie., T-p-¢ [24, 25].

24 A,-V-A,-Based Method

A,-V-A, [25] can simplify the 3-D grid meshing of complex excitation source
structure and eliminate the error caused by inaccurate excitation conditions due to
the difference between the grid and the source structure entity, reducing the amount
of grid and the computing cost. The numerical solver based on A,-V-A, potential set
has been developed by the author and applied to the calculation of loss, magnetic
flux density at designated position and interlinkage flux in the conducting com-
ponent of the Testing Electromagnetic Analysis Methods (TEAM) Problem 21
benchmark models (the updated version of Problem 21 Family is posted at www.
compumag.org/team), which has been validated through repeated comparisons of
calculation and measurement results. Refer to the results of Chap. 12 of this book.

There is no substantial difference in the numerical implementation between A,-
V-A, and A-V-A. Where the total magnetic vector potential A is divided into two
parts, i.e., the total magnetic vector potential A at any point in the field is syn-
thesized by the contribution A of the excitation source and all contributions A,
other than the contribution of source

A=A, +A, (2.11)

where A is defined as being generated only by the excitation source in free space,
which can be derived by Biot Savart Law, while A, is a contribution other than the
contribution of excitation source, which is an unknown variable to be solved and is
called the reduced magnetic vector potential. A; can be derived from (2.12)

o [ idl

= 2.12
ST 4n r ( )

Based on the magnetic field intensity H, generated by the excitation source, it
can be calculated by Eq. (2.13) that is

1 dl xr
ST Ag r3

(2.13)

Problems needing attention in the numerical implementation and application of
A,-V-A, are as follows:

(1) When establishing the tangential continuity condition H X n of magnetic field
intensity based on nodal elements, attention should be paid to the relationship
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of A = A, + Ay, that is, the total magnetic vector potential is composed of two
components;

(2) Similarly, based on the far field boundary (or magnetic symmetry plane) of
nodal element, B,, = 0 is expressed as

(A, +A) xn=0 (2.14)
Far field boundary H; = 0 is expressed as
(A, +A) - n=0 (2.15)
At infinitely far points
A +A;=0 (2.16)

(3) The application practice shows that it is very important to calculate Ag and H,
correctly. In order to confirm the accuracy of the calculation, A and H; can be
calculated according to Egs. (2.12) and (2.13), respectively, and By can be
calculated based on Ay and Hj, respectively, i.e.,

By = 1oH, (2.17)
Bo =V x A, (2.18)

Then compare the results of By obtained according to Eqgs. (2.17) and (2.18).

2.5 Scalar and Vector Galerkin Weight Function

Galerkin weighted residual method is one of the weighted residual techniques, and
it is one of the key techniques in the numerical implementation of 3-D eddy current
analysis method based on various potential sets (combination of vector potentials
and scalar potentials).

After the Galerkin method was put forward in 1915, the weighted residual
technique has gone through more than 40 years of development. The Galerkin
method, integral method, subdomain method, least square method, moment method
and other processing techniques were successively put forward and were collec-
tively summarized as the weighted residual method by S. H. Crandall in 1956 [15].

As well known, the finite element method is an approximation of the actual
continuous physical field. Taking the nodal element as an example, let the number
of nodes be N,,, and the state variable ¢ can be expressed by the variable value ¢;
and the shape function N; (or experimental function) of the node as
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Nn

o= N, (2.19)

i=1

As an approximate solution, it is impossible to accurately satisfy the governing
equation, and the resulting error is called the residual R(¢). It is necessary to find a
weight function, for example, W, to force the inner product of the residual and the
weight function to be zero, i.e.,

(R(p),W;) =0, i=12,...,N, (2.20)

This means that the residual is equal to O in the sense of weighted average. When
the weight function W; is consistent with the shape function N; used, it is known as
the Galerkin weighted residual method.

In the references on 3-D eddy current analysis, the weighted residual technique
is widely used in numerical implementations. Galerkin method is used to deal with
the vector eddy current equation, sometimes the scalar weight function W; is used,
and more often the vector weight function N; is used. The formula derivation of
nodal element based on scalar weight function and vector weight function shows
that they present only differences in forms because the results obtained are com-
pletely consistent. The vector weight function makes the expression simple, and the
scalar weight function has the advantages of clear hierarchy and easy deduction.

For the detailed deduction of Galerkin process based on edge element, it is
suggested to refer to the related references [17]. Section 2.7 of this chapter only
gives a comparison between the nodal element and the edge element with respect to
Galerkin’s residual.

2.6 Discussion on Edge Elements

A. Bossavit has made the following penetrating elaboration: In short, the finite
element shall not be viewed in isolation; the finite element is expected to be used to
approximately all the potentials and fields involved in Maxwell’s equations, such as
edge elements, nodal elements, facet elements and volume elements, which can be
regarded as a consistent expression system, called the family of cell elements.

The edge element is closely related to the corresponding nodal elements. The
difference between edge element and nodal element in discretization is a shape
function. It can be said that if the analysis software based on edge element (nodal
element) has been developed separately, it is not difficult to develop the software of
new nodal element (edge element).

The application of edge element in electromagnetic field was pioneered by the
French research group represented by A. Bossavit. Since the 1980s, edge element
has been widely used in the field of electromagnetic fields. When it comes to the
starting point of the development of edge elements, it is necessary to trace back the
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history of the development of H-ys. In H-}, the magnetic field intensity H is
directly used as the state variable in the eddy current region, instead of the tradi-
tional use of a certain potential, e.g., magnetic vector potential A, and magnetic
scalar potential i is used in the non-eddy current region. Since the magnetic field
intensity H is used as the state variable, the required field quantity can be directly
obtained, and it also has the advantages of easy handling of nonlinear problems (the
permeability reflecting the nonlinearity of the material is not embedded in the
differential operator). If the magnetic vector potential A is used as the state variable,
the problem is that the coupling of A-y generates a coefficient matrix that is either
asymmetric or indefinite. However, if H-jy of nodal element is adopted, it will be
difficult to deal with the tangential continuity of the coupling between eddy current
region (H) and non-eddy current region (1). It is in such a background that the edge
element enters the field of computational electromagnetics.

The appearance of the edge element has attracted great attention in the field of
computational electromagnetics and a great deal of research in theory, numerical
implementation and gauge condition. Based on typical examples and very specific
cases, a comprehensive and in-depth comparison is made between the edge element
and the nodal element, and the advantages and disadvantages of edge element are
discussed [28, 48]. It should be noted that Z. Ren and K. Shao et al. proposed
hybrid FEM-BIM formulation and edge—nodal coupled model in 1990s, as well as
related application [37, 51-53].

This chapter has made a systematic comparison of the two kinds of finite ele-
ments in another monograph [54] and pointed out that the role of nodal elements
and edge elements should be correctly evaluated. Although the edge element has
advantages over the nodal element in dealing with the problem of uniform or
non-uniform regions (especially the latter), however, it is exaggerated to think that
the edge element can surpass the nodal element in solving any difficulties
encountered in electromagnetic field analysis, and that the accurate solution can be
obtained only by using edge elements. It depends on what problems are being
solved and what state variables are being used. We should consider the advantages
of the edge element, as well as its disadvantages in some occasions or limitations in
application. As G. Mur said, the point here is that when the right solution is derived,
and it should be attributed to the applied finite element method, not to the edge
element [28].

In edge element, when the magnetic vector potential A is a state variable, the
normal continuity of magnetic flux density and current density (B and J) is strictly
guaranteed because the tangential component of A at the element interface is
continuous, while the tangential continuity of magnetic field intensity and electric
field intensity (H and E) can only be weakly satisfied. When the magnetic field
intensity H is a state variable, the continuity condition of the magnetic field
intensity is strictly guaranteed because the tangential component of H at the element
interface is continuous, while the normal continuity of the magnetic flux density
(B) also can only be weakly satisfied.
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Besides, further research shows that if the continuity condition of the excitation
current density cannot be strictly guaranteed, the convergence of the solution cannot
be achieved through general ICCG methods when the edge element is used [30, 44].

It is hoped that these discussions will contribute to a better understanding of
edge elements.

2.7 Comparison of Basic Equations and Galerkin
Residuals of Nodal Elements and Edge Elements

When solving a problem related to low-frequency electromagnetic field, the basic
equations in the conducting region may be different due to the different types of
elements used. For example, the A-V based on nodal elements uses magnetic vector
potential A and electric scalar potential V in the conducting region, wherein each
node contains four unknowns which requires four equations, and the basic equation
consists of a vector equation and a scalar equation. However, based on the basic
equation of the edge element, as shown in Table 2.2, when no electric scalar
potential V is introduced, only the magnetic vector potential A is used. Therefore,
there is only one vector equation and no scalar equation corresponding to the nodal
element.

In addition, the gradient term of the electric scalar potential V in the expression
G, of Galerkin residual of the corresponding edge element will not appear, which is
different from the expression G, of Galerkin residual of the nodal element.
Naturally, for the edge element, there is no expression G, of Galerkin residual
corresponding to the nodal element, as shown in Table 2.2.

It should be pointed out that (1) For nodal elements, using scalar weight function
N; and vector weight function N; will get the same results in Galerkin weighted
residual processing [54]; (2) Although the weight functions N; in the nodal element
residual G, (when vector weight function is used) and the edge element residual G,
are written using the same vector symbol, as shown in Table 2.2, their contents are
completely different. Appendix shows the formulation of A-V-A and Galerkin
weighted residual processing.

2.8 Comparison of Nonzero Entries and Total Unknowns
in Coefficient Matrix

The total unknowns and the number of nonzero entries in the coefficient matrix vary
with the calculation method, the type of finite element (e.g., nodal element or edge
element) and the ratio o of the number of elements in the conducting region to the
number of elements in the entire solved domain, which directly affects the computer
memory requirement and CPU time.
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This section proposes a method to estimate the total number of both the
unknowns and the nonzero entries in the coefficient matrix for the same problem but
using either edge elements or nodal elements and examines the effectiveness of
edge elements by comparing the estimated results [49].

Only the A-V-A (also known as A-¢) based on the brick element is taken as an
example in the following analysis and comparison. It is assumed that the number of
elements in the solved domain is so large that the reduction of unknowns due to the
processing of boundary conditions can be ignored, and the use of gauge condition is
not considered.

2.8.1 Unknowns and Number of Nonzero Entries in Matrix

2.8.1.1 Nodal Element

For a regular hexahedron (brick), the node number of an element is 8, and a node
belongs to 8 elements, as shown in Fig. 2.1a. When the number of elements is very
large, the average node number per element is 1 (=8/8). Therefore, the total number
of elements ne and the total number of nodes nt have the following relationship:

nt = ne (2.21)

In the nodal element-based A-V-A, each node in the conducting region Rj has
four unknowns, i.e., the electric scalar potential V and three components of
magnetic vector potential A, while in the air region Ro, each node has three
unknowns, namely three components of A. Therefore, the total unknowns nu can be
expressed as

(a) Nodal element (b) Edge element

Fig. 2.1 Nodal element and edge element
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nu(nodal,A—V—A) = dont +3 (1 — a)nt (2.22)

= (o +3)ne
where o represents the percentage of the number of elements in the conducting
region Rj to the total number of elements in the solution region (Rj + Ro). It is
noted that the relation of nt = ne under the condition that a large number of brick
elements are introduced in Eq. (2.22). Since the node number associated with a
node i is 27, as shown in Fig. 2.1a, the unknowns associated with node i in the
conducting region are 27 x4, while the unknowns associated with a node i in the air
region are 27x3. In the case of nodal element, the number nz (nodal, A-V-A) of
nonzero entries in the coefficient matrix can be expressed as

nz(nodal,A—V—A) = dont x 27 x 4 +3(1 — o)nt x 27 x 3

=27(70+ 9)ne (2.23)

2.8.1.2 Edge Element

The number of edges in a brick element is 12, and the number of elements sharing
one edge is 4, as shown in Fig. 2.1b. When the number of elements is very large,
the average number of edges per element is 3 (=12/4). Therefore, the total number
of elements ne and the total number of edges nh have the following relationship:

nh = 3ne (2.24)

In A-V-A using edge element, V can be set to zero [29]. Only one component of
the magnetic vector potential A is defined on one edge. For example, only the
y component Ayi is defined on the i-th edge, as shown in Fig. 2.1b. Therefore, the
total unknowns nu (edge, A-V-A) can be expressed as

nu(edge,A—V—A) = nh+ ant = 3ne + ont

2.25

= (a+3)ne (2.25)

Here, the total number of edges associated with the i-th edge is 33, while the

number of nodes associated with this edge is 18, as shown in Fig. 2.1b. Therefore,
the total number of nonzero entries nz (edge, A-V-A) is

nz(edge,A—V—A) = 3ne x 33+ ant x 18 = (99 + 18a)ne (2.26)

where the meanings of ne, « and nt are the same as before.
According to the same approach, the number of unknowns in 7-¥-¥ (also
known as T-Q) and the number of nonzero entries in the matrix can be estimated.
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2.8.2 Comparison of Nonzero Entries and Total Unknowns
in Matrix

Equations (2.22) and (2.25) show that the total unknowns of the
regular-hexahedron nodal element and the regular-hexahedron edge element are
equal under the condition that the influence of the treatment of boundary conditions
(possibly leading to a decrease in the unknowns) is not taken into account.

However, Egs. (2.23) and (2.26) indicate that the numbers of nonzero entries in
the element matrices are far from being equal.

The estimation method proposed in this section is verified by a 3-D eddy current
verification model [50] proposed by IEEJ (IEE of Japan). IEEJ eddy current model
is a section of square core surrounded and excited by a coil with a race track-shaped
cross section. The core and the exciting coil are equal in height, and a square
aluminum plate is symmetrically placed above and below the core and the exciting
coil; the aluminum plate can be either with hole or without hole. See Fig. 2.2 for the
structure and size, material property parameters and excitation ampere turns of the
model of the aluminum plate with hole.

The model is calculated by A-V-A and T-V-¥ and two types of elements (nodal
element and edge element), respectively. See Table 2.3 for numerical computation
data and CPU time.

The comparison of computation data of the same problem, two types of elements
and two analysis methods shown in Table 2.3 can be summarized as follows:

(1) The total unknowns of A-V-A and T-¥-¥ are nearly equal, the number of
unknowns of the nodal elements is slightly larger than that of the edge ele-
ments, and the increment is about 2—-5%.

(2) The difference in the number of nonzero entries in the coefficient matrix is
larger. The number of nonzero entries in the matrix of nodal elements in A-V-
A is about 2.7 times that of edge elements, while the number of nonzero entries
in the matrix of nodal elements in 7-¥-¥ is about 1.5 times that of edge

elements.
) ) aluminum plate »
ferrite core (0=3.215%10"S/m) |
(14,=3000) \
25 \ 150 25 e 300/ -l
) I - hole -
. 2| ) lII:"im S ey N —
coll = [ —— =0 1201 (O L P =
1000At rms S \/ S| i . 7| &
( ms) m - S r 2 H ol ] I e
1 ==
" \_spas 1
4+~ FR2S v 1
1 ZE VRS — T

Fig. 2.2 Verification model (IEEJ)
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(3) The difference in the memory requirement of the computer is larger. The
memory requirement of the nodal element in A-V-A is about 2.5 times that of
the edge elements, while the memory requirement ratio in 7-¥-¥ is more than
1.5 times.

(4) The CPU time of the nodal element in A-V-A is 5.5-6.5 times that of the edge
element, while the ratio of the CPU times in T-¥-¥ is 1.8-4.5 times or above.

Memory requirements, depending on the total unknowns of the problem to be
solved and the number of nonzero entries in the finite element coefficient matrix,
may become a “bottleneck” when using simulation in industrial applications. The
above discussion is based on brick element. It is easy to understand that the number
of nonzero entries in the coefficient matrix is related to the number of elements
associated with nodes and edges. One of the hexahedron nodal elements is asso-
ciated with eight brick elements, while one edge of the hexahedron edge element is
associated with only four brick elements. Therefore, the “density” of nonzero
entries in the coefficient matrix of edge elements is smaller than that of nodal
elements.

2.9 Concluding Remarks

In this chapter, based on the fundamental equations of low-frequency electro-
magnetic fields, the dual relation between A-V-A and T-y-ys, as the basic eddy
current analysis methods, is discussed, and the numerical implementation process of
the Galerkin weighted residual method is deduced. The two most important
members of the finite element family, nodal element and edge element are com-
pared in multi-aspects, revealing their differences and internal relations. All the
deductions of the formulation and the numerical implementation based on typical
potential sets, in an easy to understand way, and the related discussions on the
development and progress of the finite element method are of help for finite element
investigation and application.

Taking the brick element used in large-scale finite element analysis as an
example, when the edge element and the nodal element have the same mesh, the
number of unknowns is similar between the two; however, the number of nonzero
entries in the coefficient matrix of the edge element is significantly smaller than that
of the nodal element. Therefore, the CPU time required in general is less, indicating
that the edge element can effectively reduce the computing cost.

Furthermore, the combination of advanced numerical computation and accurate
material property modeling is emphasized in order to improve the effectiveness of
modeling and simulation and to promote the large-scale industrial application.

Acknowledgements This work was supported in part by the Natural Science Foundation of
China (no. 59277296 and no. 59924035). In particular, the author appreciates the support of the
leaders concerned and thanks all the colleagues for joint development of 3-D eddy current field
solvers for years.
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Appendix: Formulation of A-V-A and Galerkin Weighted
Residual Processing

The Galerkin’s weighted residual processing is demonstrated based on the potential
set of A-V-A using nodal element. Although the model shown in Fig. 2.3 looks
simple, but it does not lose generality. For the more general case, there is no
substantial difference or difficulty in the derivation process here. This is helpful for
knowing basic derivation process.

Basic Model of A-V-A

In the A-V-A model, A (magnetic vector potential) and V (electric scalar potential)
are used in the conductor—eddy current region, and only the magnetic vector
potential A is used outside the conducting region.

Where ¢ and p are the conductivity and permeability of the conducting material,
respectively, and the magnetic anisotropy and nonlinearity needed to be considered.
In the non-conducting region, the conductivity ¢ is zero, and the relative perme-
ability u, is equal to 1.

The symbols in Fig. 2.3 are given the following meanings:

Fig. 2.3 A-V-A model
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o non-eddy current region, Q: eddy current region

S interface between eddy current region and non-eddy current region

n  exterior normal unit vector of conductor surface in eddy current region

n’  internal normal unit vector of conductor surface in eddy current region, where

n'=-n (2.27)

I': The outer boundary of the whole solution domain, including generally the
following two types:

I:Hxn=0 (2.28)
Iy:B-n=0 (2.29)

A magnetic vector potential (Wb/m)
V  integral quantity of electric scalar potential V' to time (Vs)

V= / V'de (2.30)

permeability of conductor (H/m)
o Conductor conductivity (S/m), where the material is set to electric linear and ¢ is
constant

=

Considering that the permeability of the material in the eddy current region of
conductor is treated as anisotropic in any direction, its general tensor form is

Moy Ry Hyg
N R (2.31)
Hox /“Lzy Hez

The reluctivity of the material should, therefore, be expressed as follows:

v=[a"

It should be pointed out that only for the sake of simplicity of deduction, the
anisotropic permeability in the following formula is simply written as u, and the
anisotropic reluctivity is simply written as %

Definition: B =V x A.
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Governing Equation of A-V-A

The governing equations of A-V-A are as follows:

Eddy Current Region

1 1 A  _ oV
VXV xA—[V—V-A]—&-a(E-i-VE)—O (2.32)

c

In square brackets of Eq. (2.32) is a penalty function term to enforce the zero
divergence condition, the same below, where p. needs to be isotropic to ensure the
symmetry of the coefficient matrix. p. can be determined by the permeability of
neighboring elements and updated during iteration.

0A 21

Non-Eddy Current Region

1 1
VXx—VxA-V—V-A=0 (2.34)
Ho Ho

where py: permeability in air.

Galerkin Weighted Residual Processing
Galerkin Residuals

The Galerkin weighted residual technique is applied to (2.32)—(2.34), and the
continuity condition of the boundary field quantity (B, H) is considered.

(Bl —Bz) -n=0 (235)
(H —Hy) xn=0 (2.36)

The discretization equation is derived. The subscripts 1 and 2 indicate both sides
of the interface.
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The Galerkin residuals corresponding to (2.32) and (2.33), using scalar weight
function, are, respectively, as follows:

R1:/ (VX “VXxA-V— VA+0(8—A+V8V)>dv (2.37)
Q

U ot ot
Ry = /N,V : a<—%“: - v%‘;)dv (2.38)
o

where N; is a scalar weight function. For ease of derivation, R, is rewritten sepa-
rately as three terms

1
Ry = /NiV X VA (2.39)

1
Rp = —/N,V—v Ady (2.40)

Ris = /Na( %‘:)d (2.41)

Residuals Processing

Eddy Current Region

For (2.39), the vector formulation is
1 1 1
VX |N—-—VXA|=VN; x—-VxA+NV x-VXxA (2.42)
u u u
(2.42) is sorted out to:
1 1 1
NV Xx-VXxA=VXx|[N-VxA]—-VN x-VxA (2.43)
H H K
Substituting (2.43) into (2.39)

1 1
R :/vx <NiV xA)dv—/VNi x =V x Ady (2.44)
u u
Q
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The vector formulation is

/andv:j{nxads
Q

s

(2.44) can be rewritten as follows:

1 1
Rll:7?{Ninx—VxAds—/VN,»x—VxAdv (2.45)
u I

s

Apparently, n X iV x A = n x H is the tangential component of the magnetic

field intensity at the interface. According to the continuity condition of the tan-
gential component of the magnetic field intensity at the interface, the surface
integral in (2.45) will be canceled from each other with the corresponding surface
integral in the non-eddy current region o derived from (2.34), and then (2.45)
contains only the volume integral term, i.e.,

Rllz—/VNinv x A dv (246)
u
Q

The vector formulation is

'k (2.47)
74

1 1 (0A, OA 1 (0A, OA 1 (0A, OA
S U A (P Oy, L (0 OA\ . 1 (O04y  Ods 24
,uvx ,ux(ay BZ)H_M),(BZ 8x>1+uz<8x 8y>k (2.48)

With the result of (2.47) and (2.48),

1
R11 :—/VN[X—V x Adv
u
Q

. / 10ON; (0A, 0Ac\ 10N; (0A. OA, davli
B u, 0y \ 0x 0Oy By 9z \ 0z Ox Y

Q |
- - (2.49)

B /l@Ni GAZ_% _l@Ni %_QAX vl
u, 0z \ 0y 0Oz p, Ox \ Ox Oy I

LQ i

(e onony oo _on), |,
fy Ox \ 0z Ox w0y \ 0y 0Oz

LQ
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For (2.40), the vector formulation is
V(ed) = dVe+cVd
which leads to

V<NiiV-A> ZVNiiV'A‘i‘NiV(iV'A) (2.50)

(& Cc c

(2.50) is sorted out to:

1 1 1
N,~V<M—V~A> V(Niu—V-A>VN,-—V-A (2.51)

He

Substituting (2.51) into (2.40):

c

1 1
Ri :_/V<N,-—V-A)dv+ /VNi#—V-Adv (2.52)
Q Q ¢

The vector formulation is
/ Vedy = ]{ cnds
Q s

The following form can be derived from (2.40):

1 1
RIZ:—%Ni<—V-A)ndS+/VNi'M—V'AdV (253)
. o (4

He
s

The continuity at the interface (%V -A) becomes a natural interface condition.
The surface integral of (2.53) will be canceled with the surface integral of (2.34), so
only the volume integral term of

1
Q ¢

The vector formulation is

1 1 (0A, OA 0A
VA= — Rl AT 2.55
ucv uc<8x+8y+BZ> (2.55)
ON; ON;. ON;
=ty - 2.
VN, o i+ ay_] + BE (2.56)
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Substituting (2.55) and (2.56) into (2.54):

1
R12 = /VNI—V -Adv

0A, 8A) + 0A,
5}6

(2.57)

LON; (DA, DA, | DAL
Ox ady 0z Y

iaN,' O0A, 4 %A (9A 0A, dvk
Ox Oy 0z

For (2.41), we get
v [om (% 2 (%))
B= e Tax\ar )
Q
0A, O (0V ,
o (G5 (5))Jo e
Q
0A, 0 [0V
+/UN<& ‘o (&))dk
Q

Three components of the Galerkin residual of (2.32) can be obtained by syn-
thesizing (2.49), (2.57) and (2.58):

pe (L (2 00y on on,_0n)),
e u, Oy \ Ox Oy py 0z \ 0z Ox
o)

+/i8Ni 3Ax+8Ay+8AZ d
U, Ox \ Ox ady 0z Y (2.59)
Q

8A o (oV
Q
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R __/ L ONi (04, 0A)\ 1 ONi (04, 0AN
o u. 0z \dy 0z w, Ox \ Ox Oy
Q
_A'_/iaNi an+%+% d
U, Oy \ Ox Jdy 0z Y (2.60)
Q
0A o [0V
N; Y+ — (=) ])d
+/“ <8t +8y<8t>) !
Q
ho e (L o) Lo o _ony),
“ u, Ox \ 0z  Ox w0y \dy 0z
o )

n /i@Ni O0A, n 0A, v 0A, dv
U, Oz \ Ox dy 0z (2.61)
Q

BA o [0V
Q
To deduce R, the vector formulation is
0A 9% 0A ov
o[ o)

0A ov
5 (o5 -5(5)))
(2.62) is sorted out to:

o o)) - (<)

0A ov
— VN, . O'(—E— V<§>)
Substituting (2.63) into (2.38)

e [ () f o)
_ ]{N(_%‘_v(g_f)) -nds—!VN,»-a(—%—?—V(%—Y))dv

(2.64)

(2.62)

(2.63)
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According to the conductor surface condition of J, = 0, the surface integral term
of (2.64) is zero, i.e.,

ROZ—/VN,"O'<—%—?—V(88—‘:>>(1V (265)
Q

Upon a simple vector operation, (2.65) can be rewritten as
R—/a ON; 8Ax+28_v dv+/a ON; BAy+28_V dv
0 ox \ ot ox\ ot gy \ ot oy \ ot
Q Q
n / ON; (0A, . 9 (oV d
oz \or Ta\or)))™
Q

(2.66)

Non-Eddy Current Region

In non-eddy current region w, conductivity ¢ = 0; the third term in (2.59), (2.60)
and (2.61) will disappear, and u = po, based on the above deduction, the corre-
sponding Galerkin residuals of (2.34) are as

R,__/ 10N (94, OA\ _ LON (9A, 9A)\
x Uy Oy \ Ox Oy Uy 0z \ 0z  Ox

[0

+ /iaNi A | 04y | 0A, >4
Uy Ox \ Ox Ay 0z
R (L0 (2 0n) Lom o8, on),
v to 0z \ 9y 0z o Ox \ Ox 9y Y
¢ 2.
P (o o ok, 269
o Oy \ Ox Jy 0z
o (L0 (00 ony Low o on,
T Uy Ox \ 0z  Ox U Oy \ 9y 0Oz
¢ (2.69)

+/iaNi an+%+% dv
Uo Oz \ Ox ~ Oy 0z

w
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On the treatment of complicated material properties in the formulation and
numerical implementation based on the potential sets, and the measurement and
prediction of the corresponding material properties, can be found in the related
chapters of this book or other related literatures.
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