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Abstract We show that vertices part of a physical cluster (determined per the edges
that connect the vertices) in a complex real-world network need not be similar on the
basis of the values incurred for node-levelmetrics (say, centralitymetrics).We adapt a
recently proposed approach (based on unit-disk graphs) to determine logical clusters
comprising of vertices of similar values for node-level metrics, but need not be
physically connected to each other. We use the Louvain algorithm to determine both
the physical and logical clusters on the respective graphs. We employ the Silhouette
Index measure to evaluate the similarity of the vertices in the physical and logical
clusters. When tested on a suite of 50 social and biological network graphs on the
basis of neighborhood and/or shortest path-driven centrality metrics, we observe the
Silhouette Index of the logical clusters to be significantly larger than that of the
physical clusters.

Keywords Logical clusters · Physical clusters · Centrality metrics · Silhouette
index · Complex network analysis

1 Introduction

Clustering (also referred to as community detection) is a critical component of com-
plex network analysis. In the traditional sense, a cluster (community) in a network
comprises a group of vertices that are more connected to each other than to ver-
tices outside the cluster [1]. We refer to such clusters as physical clusters. Several
clustering algorithms (like Girvan–Newman algorithm [2], Louvain algorithm [3],
and neighborhood-overlap-based greedy algorithm [4]) are available in the literature
to determine physical clusters of vertices of larger modularity. A physical cluster
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is considered to be more modular [1] if it has high intra-cluster density and low
inter-cluster density.

With the objective of maximizing edge-based intra-cluster density, it is difficult
to expect a clustering algorithm to group vertices that are similar to each other.
Similarity of vertices is typically assessed on the basis of node-level metrics that
could be topology or domain-driven. Centrality metrics are classical examples for
topology-based metrics that quantify the extent to which a node is important on
the basis of its location in the network [1]. The centrality metrics are used as the
node-level metrics for our analysis in this paper.We consider the following centrality
metrics: neighborhood-driven degree (DEG) [1] and eigenvector (EVC) [5] centrality
metrics and the shortest path-driven betweenness (BWC) [6, 7] and closeness (CLC)
centrality metrics [8, 9]. For more details on the centrality metrics, the interested
reader is referred to [10]. The analysis presented in this paper could be seamlessly
extended to any combination of domain-driven or topology-driven metrics as well.

In Fig. 1, we show a motivating example graph wherein the tuple next to a vertex
represents the degree (DEG) and eigenvector centralities (EVC) of the vertex. Any
well-known clustering algorithm in the literature would determine the two physical
clusters in sub Fig. 1a that have high modularity (larger intra-cluster density and
lower inter-cluster density). However, a closer look at the tuples for the vertices
within a physical cluster would indicate less similarity among the vertices on the
basis of their DEG and EVC values. On the other hand, in sub Fig. 1b, we show
two clusters each of which comprises vertices that are exactly similar on the basis of
their DEG and EVC values. The two clusters in sub Fig. 1b are not very modular (the
inter-cluster density is even larger than the intra-cluster density), but each of these
clusters would be more cohesive (i.e., comprised of vertices that are similar) on the
basis of their DEG and EVC values.

We propose the following approach (more details are in Sect. 2) to determine such
cohesive clusters of similar vertices in real-world network graphs. We distribute
the vertices in a coordinate system whose coordinates are the normalized values
of the node-level (centrality) metrics of the vertices. For such a logical topology,

(a) (b)

Fig. 1 Example graph: physical modular clusters versus logical clusters of similar vertices. a Phys-
ical clusters (larger intra-cluster density, but lower vertex similarity). b Logical clusters (lower
intra-cluster density, but larger vertex similarity)
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we iteratively attempt to connect the vertices together (an edge exists between two
vertices if the Euclidean distance between their normalized coordinate values is
within a threshold) in the form of a unit-disk graph. We use a binary search approach
to identify the minimum value for the threshold distance that would connect together
the vertices in the unit-disk graph.We run the Louvain clustering algorithm [3] on the
connected unit-disk graph to determine one or more (logical) clusters whose member
vertices are more similar compared to the vertices in the physical clusters obtained
by running the Louvain algorithm on the corresponding real-world network graph.
We use the Silhouette Index [11] measure to assess the similarity of the vertices in the
logical clusters vis-a-vis the physical clusters with respect to the centrality metrics
considered. In a recent work [12], we have successfully used the unit-disk graph and
binary search-based approach to quantify the similarity between any two vertices in
a network (in the form of ametric called the node similarity index). Our hypothesis in
this research is that for a set of centrality metrics, the Silhouette Index of the logical
clusters would be larger than the Silhouette Index of the physical clusters.

The rest of the paper is organized as follows: In Sect. 2, we explain the approach
to determine logical clusters of similar vertices on the basis of node-level (centrality)
metrics. In Sect. 3, we explain the formulation for the Silhouette Index measure. In
Sect. 4, we test our hypothesis on a suite of 25 biological networks and 25 social
networks on the basis of three sets of centrality metrics: (DEG, EVC); (BWC, CLC),
and (DEG, EVC, BWC, CLC). We present and analyze the Silhouette Index results
for the physical clusters and logical clusters obtained for the different combinations
of centrality metrics. Section 5 presents our conclusions and outline plans for future
work.

2 Logical Clusters of Similar Vertices

Wedescribe the sequence of steps (see Fig. 2) involved in determining logical clusters
of similar vertices (for k centrality metrics) in a real-world network graph.

Step (i): Construction of a Logical Topology: Let the number of centrality metrics
considered for logical clustering of a real-world network graph be k. To get started,
for each of the k metrics, we determine their raw centrality values (see Fig. 2a) and
then independently normalize them (using the square root of the sum of the squares
of the raw values). Following this, we build a logical topology (k-dimensional coor-
dinate system) of the vertices wherein the coordinates of a vertex are its normalized
centrality values (ranging from 0 to 1). See Fig. 2b.
Step (ii): Binary Search Algorithm to Deduce a Connected Unit-Disk Graph:
We attempt to deduce (through a sequence of iterations) a unit-disk graph that would
connect all the vertices in the logical topology at a minimum threshold distance for
an edge to exist. For a set of k centrality metrics, the threshold could range from
(0,…,

√
k); if the threshold distance is

√
k, we will have a unit-disk graph that is sure

to be connected (completely connected indeed!), but not connected at a threshold
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Fig. 2 Example to illustrate the computation of the logical clusters and their evaluation
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distance of 0 (unless all the vertices are co-located). We use this observation as the
basis to run a binary search algorithm to determine the minimum possible value for
the threshold distance to obtain a connected unit-disk graph [12]. We start the binary
search algorithm with the left index set to 0 and the right index set to

√
k and go

through a sequence of iterations (see Fig. 2c).
Across all the iterations, the following invariant is maintained: If the threshold dis-
tance value corresponds to the left index, the unit-disk graph is not connected; if the
threshold distance value corresponds to the right index, the unit-disk graph is con-
nected. In each iteration, we first determine the middle index as the average of the
left index and right index, and seek to construct a unit-disk graph with the threshold
distance value corresponding to the middle index. If such a unit-disk graph is con-
nected, we set the right index to the value of the middle index; otherwise, we set the
left index to the value of the middle index. We continue the iterations until the right
index and left index differ not more than a cutoff parameter (∈). We use ∈ = 0.001
for all the analysis conducted in this paper. We set the minimum threshold distance
to correspond to the value of the right index in the last iteration of the algorithm.
Step (iii): Logical Clustering of the Connected Unit-Disk Graph: On the con-
nected unit-disk graph obtained for a minimum threshold distance, we run the Lou-
vain community detection algorithm [3] to determine (logical) clusters of vertices
that have a larger intra-cluster density (and a lower inter-cluster density) in the unit-
disk graph. The vertices within a logical cluster are expected to be more similar to
each other. The Louvain algorithm (a hierarchical community detection algorithm) is
designed to identify highly modular communities. To determine the logical clusters
using the Louvain algorithm, the weight of an edge in the connected unit-disk graph
is the Euclidean distance between their corresponding normalized coordinate values.
Note that the edge weights for the real-world network graphs are “1” when we run
the Louvain algorithm to determine the physical clusters.

3 Silhouette Index

We use the Silhouette Index [11] measure (ranges from −1 to 1) to evaluate the
extent of similarity among the vertices of the physical clusters and logical clusters
with respect to the normalized centrality values of the vertices. The larger the values
for the Silhouette Index for a cluster, the more similar are the vertices within the
cluster with respect to the centrality metrics in consideration. The Silhouette Index
for a cluster is the average of the Silhouette Index values of its member vertices.
The Silhouette Index for a network is the weighted average of the Silhouette Index
values of its clusters. The Silhouette Index for a vertex i in a cluster Ck is calculated
as per formulation (1). Here, di,min is the minimum of the average of the Euclidean
distances for vertex i to vertices in the other clusters; di,Ck represents the average of
the Euclidean distances for vertex i to vertices in its own cluster. A negative Silhouette
Index for a vertex is an indication that the vertex is not in the appropriate cluster.
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A negative Silhouette Index for a cluster is an indication that its member vertices
should have been in other cluster(s) for better cohesiveness.

Silhouette Index(i) = di,min − di,Ck

max
{
di,min, di,Ck

} (1)

4 Evaluation on Real-World Networks

In this section, we test our hypothesis on a suite of 25 biological network graphs and
25 social network graphs of diverse degree distributions and present the results of
the Silhouette Index measure evaluated for the physical clusters and logical clusters
obtained by running the Louvain algorithm (per the approaches described in the ear-
lier sections). The biological networks analyzed are either gene–gene interaction net-
works, protein–protein interaction networks, interactions between different animal
species in a particular area, etc. The social networks analyzed comprise acquaintance
networks that capture the association between two users in a social network over a
certain time period and friendship networks for which no such time period is used
to capture association between two users.

In Fig. 3, we visually present some of the fundamental statistical information for
the biological networks and social networks (for more details, see [12]). The number
of nodes in the biological networks ranges from 62 to 2,640 with a median of 813.
The number of nodes in the social networks ranges from 22 to 1,882 with a median
of 75. The spectral radius ratio for node degree (λsp ≥ 1) [13] for a network graph
is the ratio of the principal eigenvalue [5] of the adjacency matrix for the graph and
the average node degree; the larger the λsp value, the larger the variation in node
degree. The edge density (0 ≤ ρedge ≤ 1) is calculated as the ratio of the actual
number of edges in the network and the maximum possible number of edges in the
network (which is N(N − 1)/2 for a network of N nodes). The biological networks
are characteristic of having larger λsp values and lower ρedge values; on the other
hand, social networks are characteristic of having smaller λsp values and larger ρedge

values. For more details on the individual real-world networks analyzed in each of
these domains, the interested reader is referred to [12].

Fig. 3 Statistics for the biological and social networks
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In Figs. 4 and 5, we present and visually compare the Silhouette Index values for
the physical vs. logical clusters on the basis of the neighborhood-based (DEG, EVC);
the shortest path-based (BWC, CLC), and all the four centrality metrics together
(DEG, EVC, BWC, CLC). We observe all the data points to be above the dotted
diagonal line, indicating that the Silhouette Index values for the logical clusters for
all the real-world networks are appreciably larger than the Silhouette Index values
for the physical clusters. For each coordinate system and for each network category,
we measure (see Fig. 6a for a comparative bar chart) the average of the difference
in the Silhouette Index values for the logical clusters versus physical clusters. We
observe the biological networks to incur larger average difference in the Silhouette
Index values for all the three coordinate systems. The (DEG, EVC) coordinate sys-
tem incurs, respectively, the lowest (for social networks) and largest (for biological
networks) values for the average difference in the Silhouette Indexes for the logical
versus physical clusters. We also measure the median (see Fig. 6b for a compara-
tive bar chart) of the Silhouette Index values for the physical clusters versus logical
clusters. Through Figs. 4,5, and 6, we observe the Silhouette Index values for the
physical (logical) clusters in the biological networks to be relatively lower (larger)
than those in the social networks.

(DEG, EVC) (BWC, CLC) (DEG, EVC, BWC, CLC)

Fig. 4 Biological networks: Silhouette Index values for the physical versus logical clusters

(DEG, EVC) (BWC, CLC) (DEG, EVC, BWC, CLC)

Fig. 5 Social networks: Silhouette Index values for the physical versus logical clusters
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(a) (b)

Fig. 6 Statistical comparison of the Silhouette Index values. aAvg. difference in the social networks
biological networks Silhouette Index values. bMedian of the Silhouette Index values

5 Conclusions

We show that logical clusters of vertices could bemore cohesivewith respect to node-
level centrality metrics compared to physical clusters of vertices in complex real-
world network graphs. In this pursuit, we adapt a recently proposed unit-disk graph
approach (for node similarity assessment) [12] to determine such logical clusters
of similar vertices. We applied the approach on a suite of 25 biological networks
and 25 social networks and evaluated the extent of similarity of the vertices in the
logical clusters versus physical clusters using the Silhouette Index measure with
respect to three combinations of centrality metrics (DEG, EVC), (BWC, CLC), and
(DEG, EVC, BWC, CLC). For each combination, we observe all the 50 real-world
network graphs to incur significantly larger Silhouette Index values for the logical
clusters compared to the physical clusters. We observe the biological networks to
show a relatively larger difference in the Silhouette Index values between the logical
clusters and physical clusters. Likewise, the (BWC, CLC) coordinate system has
been observed to incur relatively larger Silhouette Index values for several real-
world networks. In future, we plan to extend the unit-disk graph approach for outlier
detection in complex networks and large datasets.
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