
Detecting Denial-of-Service Attacks
Using sFlow

Shivaraj Hublikar, Vijaya Eligar and Arun Kakhandki

Abstract This paper addresses how to detect denial-of-service attacks using sFlow.
Denial-of-service (DoS) attack is a critical security challenge in software-defined
network (SDN). In DoS attack, the network bandwidth is acquired by disrupting
the services of the server by abruptly increasing the traffic and making the server
unavailable for other users. The most challenging problem of DoS attack is to detect
the attack almost instantly and in a precise manner. This paper presents the detection
of DoS attacks by using sFlow analyzer, a SDNs flowmonitoring tool. In the event of
any attack, sFlow collects sample packets from network traffic, analyzes suspicious
behavior and creates handling rules which are then sent to the controller. Implemen-
tation of DoS attack is carried out by emulating a typical network in Mininet and
integrating this with sFlow analyzer. Through the simulated results, the potential
DoS victims and attackers are quickly found.

Keywords Bandwidth detection · DoS attack · SDN · sFlow

1 Introduction

In a traditional data network, devices are structured into data-plane and control-
plane which are local. If there are ten devices in a network, then each device has
its own data-plane and control-plane that are having all the relevant information
regarding forwarding tables. The data-plane comprises of switches,while the control-
plane comprises of controllers of different types. Networking device will get the

S. Hublikar · V. Eligar (B)
KLE Technological University, Hubballi, India
e-mail: vijayaeligar@bvb.edu

S. Hublikar
e-mail: shivaraj@bvb.edu

A. Kakhandki
KLSs VDRIT, Haliyal, India
e-mail: bvbarun@gmail.com

© Springer Nature Singapore Pte Ltd. 2020
G. Ranganathan et al. (eds.), Inventive Communication and Computational
Technologies, Lecture Notes in Networks and Systems 89,
https://doi.org/10.1007/978-981-15-0146-3_46

483

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0146-3_46&domain=pdf
mailto:vijayaeligar@bvb.edu
mailto:shivaraj@bvb.edu
mailto:bvbarun@gmail.com
https://doi.org/10.1007/978-981-15-0146-3_46


484 S. Hublikar et al.

Fig. 1 Traditional network and SDN [11]

packets which are decided by forwarding tables. Since the demand of traditional
networks is increasing, working on topology is complex [5]. Even though traditional
networks are global and very popular, they have various drawbacks. Firstly, there is no
scope to extend the network if a new feature or a protocol is to be added. Secondly,
any new command cannot be accepted to improve the functionality of traditional
networks since it is not programmable. Thirdly, cost of the network is effectively high
since each device contains both data-plane and control-plane. Different topologies
of the network are not possible since the traditional network is configured with
set of predefined rules during the manufacture. Furthermore, the physical network
infrastructure cannot be fully utilized since arranging the traditional network with
predefined polices becomes complicated and error prone.

Recent trends such as machine learning, artificial intelligence, cyber security,
internet of things (IoT) andmobile traffic have heavy trafficwhich cannot bemanaged
by the network. SDN manages the overall network programmatically. SDN is very
unique from the traditional networks which provide entire central control over the
network by separating the control-plane and the data-plane as shown in Fig. 1.

SDN manages the network by centrally controlling the devices which greatly
utilize and improve the networkmanagement. This network has data-planewithin the
device for sharing the forwarding data, whereas the control-plane is connected with
separate device called controller which handles the information. SDN is categorized
into three parts, controllers, southbound application program interfaces (APIs) and
northbound (APIs). Controller, which is the programmable central system, controls
the entire network which has the information of all the resources (like switches
and routers) connected to this network. Switches and routers are the information
devices which require southbound APIs as the medium for the controllers to transfer
the data packets. OpenFlow is standard protocol used in southbound APIs. SDN
uses northbound APIs to manage the traffic which is monitored by the network
administrators to communicate with applications shown in Fig. 2.



Detecting Denial-of-Service Attacks Using sFlow 485

Fig. 2 SDN controller

Fig. 3 Open switch
architecture

1.1 OpenFlow

OpenFlow is a standard protocol that provides communication and interface between
control-plane and data-plane in SDN. The data packets are transferred between
devices which have to maintain traffic routing flows that is managed by the Open-
Flow protocol. Each SDN device needs to maintain the set of Flow-tables that is
controlled by OpenFlow switch. The incoming packets are controlled by the switch
which are installed by the control-plane that maintains communication channel and
also contains the Flow-table rules [1]. Figure3 presents the logical structure of an
OpenFlow switch. When there is a mismatch in the Flow-tables that does not match
with any existing flow rules, the mismatch flows try to trigger forwarding plane to the
controller which reduces the bandwidth and memory. The limited communication
bandwidth between the control and data-planes could be a bottleneck of the whole
network, and lead to security problems. Todays commercial OpenFlow switches
only support cable connection to the controller. The practical connection bandwidth
is tested to be less than 10Mbps.

Research in SDN and DoS attacks is predominantly focused on detection of the
attack. In July 2001, Internet infrastructure was hit worldwide by DoS attack worms
named Code Red and NIMDA. Network scanning was used by Code Red Worm to
attack the network at a rapid propagation rate to detect and exploit Internet Informa-
tion Server (IIS) automatically. This DoS attack consumed huge bandwidth which
affected lot of network devices. The attack was complex since the attack came from
various sources of IP addresses for which packet analyzing was a big task. In order
to mitigate or limit the damage to network resources, content filtering of some type
were performed.



486 S. Hublikar et al.

In [2], the authors propose a mechanism that avoids the overloading of switch
TCAMs along with controller and control channel bandwidth and a solution called
SLICOTS, which mitigates a type of flooding attack TCPSYN in SDN. It is built on
top of the controller in order to monitor the network traffic related to TCP requests.

This paper is organized as follows. Section2 discusses DoS attacks on SDN.
Section3 presents the DoS detection method based on sFlow tool. Section4 demon-
strates the method to detect DoS attacks. The simulation results and discussion are
presented in Sect. 5 followed by conclusion in Sect. 6.

2 DoS Attack

DoSattack causes serious impact on the computing system.DoSattacks deny services
to valid users by completely consuming the target resources. DoS attacks are usually
initiated by an individual or group of individuals exploiting aspects of the Internet
Protocol to deny other users from legitimate access to systems and information. The
router hosts are disconnected if forwarding packets are stopped by router. The recent
applications which are targets to these attacks areWeb servers, mail servers and other
services [6].

In [9], the authors explain SDN-aimed DoS attacks (data-to-control-plane satura-
tion attacks). The attacker first sends the packets which do not match the packets in
the Flow-tables by generating table-miss packets without the order with some or all
fields, which does not match with existing flow rules on the target switch as shown
in Fig. 4. Then, the attacker launches DoS attacks on the SDN network by flooding
with large amount of table-miss packets. These table-miss packets will targetmassive
packet in messages from the switch to the controller, and consume their communi-
cation bandwidth, CPU computation and memory in both control- and data-planes
[2].

Fig. 4 DoS attack



Detecting Denial-of-Service Attacks Using sFlow 487

DoS attacks can be of various types:

• Destructive: Attacks which destroy the device to prevent the proper operation of
function, such as deleting or changing properties or information and power supply.

• Resource consumption: Attacks which try to reduce the ability of the device to
perform effectively by opening many simultaneous connections to a single device.

• Bandwidth consumption: Attacks which attempt to affect the bandwidth capacity
of the network device.

This paper aims to concentrate on bandwidth attack which is done using sFlow
tool. When any DoS attack is detected, sFlow generates flow rules by analyzing
samples of packets collected from the network traffic to be sent to the controller. In
this work, security services are developed to protect networks against different type
of network attacks for third parties like servers. A DoS attacker attacks the network
by providing enormous flooding traffic in a short time to a server by increasing flow
so that the server gets disconnected.

3 sFlow

sFlow helps tomonitor the network, that develops variousways of handling the traffic
flows, and to improve the performance of the network which consist of switches
and routers. sFlow [12] is an open-source sampling tool used for measuring the
traffic which is compatible with OpenFlow network. It consists of sFlow agents and
collector. The sFlow agent captures traffic statistics from the device which is under
observation that uses sampling technology. sFlow datagrams immediately forward
the sampled traffic statistics to a sFlow collector for analysis. The main task of the
two modules is listed below.

1. sFlow Collector: It is a server where sFlow datagrams are collected and stored.
2. sFlow Analyzer: It provides real-time overview of the network traffic flow by

analyzing the received datagrams by analyzing the irregularities of the network
parameters and detailed information. sFlow agents send a stream of sFlow sam-
plings continuously to the collector where they are analyzed to supply a real-time,
network-wide view of traffic flows.

3.1 Integration of Mininet and sFlow

Network simulators play an important role by evaluating network topologies of dif-
ferent types over a small scale. Many network simulators like Mininet, GNS3 and
EsiNet are available.Mininet is used here which is an open-source network simulator
used to generate traffic and analyze its flow.

Mininet [8] is an open-source network emulator and is a command line interface
(CLI) and enabled simulator which supports the use of analysis tools like the sFlow,



488 S. Hublikar et al.

NetFlow and RMON. Mininet creates virtual switch, hosts, links and controllers on
a single Linux kernel with a single command. Custom topologies are created using
Mininet. It simulates a real machine and can create different hosts. The limitation of
Mininet is that it does not have OpenFlow controller and it runs on slower links (10
or 100 Mbps).

According to [7], these simulators provide a platform to set a network topology
as a replication to the real-world environment about analysis and detection of the
attacks using Mininet and sFlow. The analysis is done in a number of steps in the
tool, which are listed here.

1. Start.sh will run the shell script command to run the sFlow application.
2. In another window, Mininet topology will execute. The ping command is run to

check the connectivity between the hosts of the topology created. A zero percent-
age drop depicts the complete connectivity between the hosts.

3. For accessing the sFlow trend GUI, a local host is created using the command:
localhost: 8008.

4. A typical command in Mininet for detection of attack is given as:
http://localhost:8008/app/mininet-dashboard/html/. It provides an approach to run
a SDN Controller along with it.

4 Implementation

In this section, the implementation of the network is discussed. Initially, sFlow-RT
is created to receive a continuous flow of data that is sent from the network devices
and converted into metrics. As soon as the flow reaches certain predefined metric
level, it is sent to an analyzer. Next, using the Mininet command, a topology is built
with link bandwidths of 10 Mbps. Finally, the output is the link between two hosts.

In order to make it easier to get started, the latest release of sFlow-RT includes
a Mininet helper script sflow.py that automates sFlow configuration. The following
example shows how to use the script and build a simple application in Python.

The various steps to detect the flows in a Mininet topology created in Linux
environment using sFlow-RT are listed here and shown in Fig. 5.

1. sFlow-RT: sFlow-RT is an open-source tool that has an embeddedOpenFlowcon-
troller, allowingmonitoring and flow insertions toOpenFlow supporting switches.
It analyzes certain events of interest, raise triggers and apply traffic handling rules
to a particular controller. In order to analyze sFlow-RT flows and react on traffic
changes, it has to be configured to work together with the existing network.

2. For Creating Mininet: In a second terminal, add the—custom argument to the
Mininet command line. The following command builds a depth ‘2’ tree topology
with link bandwidths of 10 Mbit/s.
cd sflow-rt
sudo mn –custom extras/sflow.py –link tc, bw=10 –topo tree, depth=2, fanout=2.
The response of the tool after creating the topology is shown in Fig. 6. The sflow.py



Detecting Denial-of-Service Attacks Using sFlow 489

Fig. 5 Starting sFlow

Fig. 6 Creating topology

script extends Mininet, automatically enabling sFlow on each of the switches in
the topology, and posting a JSON representation of the Mininet topology using
sFlow-RT.

5 Results and Discussion

Whenever the network is simulated without any attack, bandwidth between the two
hosts maintained at 9.63 Mbps. When a DOS attack is initiated on the network, the
bandwidth falls to 30 kbps. The bandwidth has reduced fromMbits to kbits due to the
DoS attack which has increased the datarate. This resulted in the decreased system
performance. The GUI output of the DoS detection is shown in Fig. 7. Here, sFlow
is initiated in the local host to detect the DoS attack when host h1 pings h2. As more
number of packets are sent, DoS attack is detected.



490 S. Hublikar et al.

Fig. 7 DoS attack detected

6 Conclusion

DoS attack was detected by acquiring network bandwidth and disrupting the services
of the server by abruptly increasing the traffic by making the server unavailable for
other users. DoS attack was detected using the sFlow tool. In case of any attack,
sFlow collects sample packets from network traffic, analyzes suspicious behavior
and creates handling rules which are then sent to the controller. Implementation of
DoS attack is carried out by emulating a typical network in Mininet and integrating
this with sFlow analyzer. The results indicate efficient identification of DoS attack
by using sFlow.

References

1. Ambrosin M, Conti M, De Gaspari F, Poovendran R (2017) Lineswitch: tackling control plane
saturation attacks in software-defined networking. IEEE/ACMTrans Netw (TON) 25(2):1206–
1219

2. Dridi L, Zhani MF (2018) A holistic approach to mitigating DOS attacks in SDN networks.
Int J Netw Manag 28(1):e1996

3. Jyothirmai P, Raj JS, Smys S (2017) Secured self organizing network architecture in wireless
personal networks. Wirel Pers Commun 96(4):5603–5620

4. Nugraha M, Paramita I, Musa A, Choi D, Cho B (2014) Utilizing OpenFlow and sFlow to
detect and mitigate SYN flooding attack, 17(8):988–994

5. Ombase PM et al (2017) Survey on DOS attack challenges in software defined networking. Int
J Comput App 975:8887

6. Othman RA (2000) Understanding the various types of denial of service attack. Bus Week
Online. Accessed 12 Feb 2000

7. Peter: Mininet flow analytics. https://blog.sflow.com/2016/05/mininet-flow-analytics.html.
Accessed 10 Jan 2019

8. ScarlatoM. Networkmonitoring in software defined networking (thesis). Accessed 30 Jul 2014

https://blog.sflow.com/2016/05/mininet-flow-analytics.html


Detecting Denial-of-Service Attacks Using sFlow 491

9. Shang G, Zhe P, Bin X, Aiqun H, Kui R (2017) Flooddefender: protecting data and control
plane resources under SDN-aimed DOS attacks. In: INFOCOM 2017-IEEE conference on
computer communications. IEEE, pp 1–9

10. Sridhar S, Smys S (2016) A hybrid multilevel authentication scheme for private cloud environ-
ment. In: 2016 10th international conference on intelligent systems and control (ISCO). IEEE,
pp 1–5

11. Stallings W (2015) Foundations of modern networking: SDN, NFV, QoE, IoT, and Cloud.
Addison-Wesley Professional

12. Swapna AI, Reza MRH, Aion MK (2016) Security analysis of software defined wireless net-
work monitoring with sFlow and FlowVisor. In: International conference on communication
and electronics systems (ICCES). IEEE, pp 1–7


	 Detecting Denial-of-Service Attacks Using sFlow
	1 Introduction
	1.1 OpenFlow

	2 DoS Attack
	3 sFlow
	3.1 Integration of Mininet and sFlow

	4 Implementation
	5 Results and Discussion
	6 Conclusion
	References




