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Abstract. This paper presents a quadratic constraint acquisition
method to address the problem of finite position generation of planar
mechanisms, with the benefit of simultaneous determination of type
and dimensions. The key to this approach is the development of gen-
eral mathematical formulations of quadratic curve constraints that are
not directly dependent on the complete choice of a planar mechanism
type. The Homotopy algorithm is applied to extract the geometric con-
straints and then the type and dimensions of their corresponding 1-DOF
mechanisms can be obtained. Two examples are provided at the end of
the paper to demonstrate the validity of the proposed method.
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1 Introduction

Ever since the development of modern kinematics, mechanism synthesis for
motion generation has always been widely studied by many researchers [1–3].
The existing and long-standing approach is to decompose the synthesis problem
into type synthesis–the selection of mechanism type for a given task require-
ment and dimensional synthesis–the determination of dimensions of a selected
mechanism type from the numerical aspect of the task requirement.

The current state of art in kinematics and mechanism design is predicated on
creating artificial boundaries between planar mechanisms that apparently facil-
itate selection of the type of linkage mechanisms during the synthesis process.
However, this convenience comes at a great price of picking the wrong type at
an early stage of the design process. Before carrying out the dimensional syn-
thesis, one has to reach at a decision regarding the type of mechanism to be
employed for a specified motion requirement. While dimensional synthesis has
been a subject amenable to mathematical treatments, identifying a mechanism
type that matches with a given motion task is often driven by the designer’s
past kinematic experience. Therefore, in order to bridge the gap between type
and dimensional synthesis, researchers have been working towards combining
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the two processes that is driven by the analysis of a given task. Hayes [4] earlier
adopted kinematic-mapping theory to carry out simultaneous type and dimen-
sional synthesis of four-bar linkages for motion approximation problem. Lately,
Ge and Zhao [5–7] combined the kinematic-mapping theory with algebraic fitting
to provide a new integrated synthesis method for the motion synthesis problem
of planar four-bar and six-bar linkages.

However, the aforementioned works mainly focus on four-bar or six-bar link-
ages with acquisition of simple geometric constraints of line and circle. In this
paper, the acquisition of quadratic constraints can be used for the type and
dimensional determination of planar mechanisms that go well beyond the limi-
tation of four-bar or six-bar linkages. In addition, we present a unified framework
for generating mechanism motion for a combination of positions and engineering
constraint (installation position).

2 Basic Geometric Constraint

According to the kinematic characteristics of planar mechanisms, the constraint
elements can be divided into points, straight-lines, circles, circular-arcs, ellipses,
hyperbolas, parabolas, etc. Moreover, the mathematical expressions of these con-
straints can be obtained easily from plane geometry. Figure 1 shows that one
point can be constrained by straight-line, circle, circular-arc, ellipse, hyperbola,
and parabola, and also enumerates some 1-DOF mechanisms, and they are clas-
sified based on the type of geometric constraints they generated. For example,
a circle or a circular-arc can be easily realized with a revolute joint. Ref. [8]
has given out a comprehensive discussion on the generation of planar algebraic
curves utilizing planar mechanisms.

3 Unified Mathematical Model for Mixed Poses
and Practical Constraints

As shown in Fig. 2, the planar motion of a rigid body can be represented as
d(dx, dy) and θ, where d denotes the Cartesian coordinates of a point on the
moving rigid body, and θ represents the rotational angle of the rigid body. Then
for given planar poses represented as a group of Cartesian space parameters
(dx, dy, θ), the planar displacement of the rigid body can be expressed with
homogeneous coordinates as

[X1 X2 X3]T = H[x1 x2 x3]T =

⎡
⎣

cosθ −sinθ dx
sinθ cosθ dy

0 0 1

⎤
⎦ [x1 x2 x3]T (1)

Also the algebraic equation of a general quadratic curve is

a0x
2 + a1y

2 + a2xy + a3x + a4y + a5 = 0 (2)
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(1) straight-line constraint (2) straight-line-generating mechanisms

(3) circle constraint (4) circle-generating mechanisms

(5) circular-arc constraint (6) circular-arc-generating mechanisms

(7) ellipse constraint (8) ellipse-generating mechanisms

(9) hyperbola constraint (10) hyperbola-generating mechanisms

(11) parabola constraint (12) parabola-generating mechanisms

Fig. 1. Geometric constraints and their generating mechanisms
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Fig. 2. A planar displacement

The corresponding expression using homogeneous coordinate is

a0X
2
1 + a1X

2
2 + a2X1X2 + a3X1X3 + a4X2X3 + a5X

2
3 = 0 (3)

It’s clear that Eq. (3) contains 9 unknowns, including 6 unknown coeffi-
cients a0 ∼ a5 and 3 position coordinates X1 ∼ X3. For planar mechanisms,
let X3 = x3 = 1; for quadratic curves, since the constant term does not change
the character of the curve, but only affects the position. For the convenience of
calculation, let a5 = 1. So Eq. (3) can be simplified as

a0X
2
1 + a1X

2
2 + a2X1X2 + a3X1 + a4X2 + 1 = 0 (4)

According to Eq. (1) and the above discussion
⎧
⎨
⎩

X1 = cos θx1 − sin θx2 + dx
X2 = sin θx2 + cos θx1 + dy
X3 = 1

(5)

Substitute X1,X2,X3 into Eq. (3) to get the constraint equation for the
prescribed pose as follows

a0d
2
x + a2dxdy + a3dx + a1d

2
y + a4dy + (2a0x1 + a2x2) dx cos θ

+ (a2x1 − 2a0x2) dx sin θ + (2a1x2x + a2x1) dy cos θ
+ (2a1x1 − a2x2) dy sin θ +

(
a1x

2
2 + a2x1x2 + a0x

2
1 + 1

)
cos2 θ

+
(
a2x

2
1 − a2x

2
2 − a0x1x2 + a1x1x2

)
cos θ sin θ

+ (a3x1 + a4x2) cos θ +
(
a1x

2
1 − a2x1x2 + a0x

2
2 + 1

)
sin2 θ

+ (a4x1 − a3x2) sin θ = 0

(6)

Since Homotopy algorithm is adopted for the solution, according to the
characteristics of the algorithm, the number of equations and the number of
unknowns in the system must be equal, so the number of prescribed poses should
not exceed seven. Therefore, this paper mainly studies the situations that the
number of prescribed poses is five or six.

When the number of prescribed poses is six or five, the number of constraint
equations obtained from the prescribed poses is also six or five(less than seven),
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and it is necessary to increase constraint equation to solve the unknown param-
eters. It can be seen from the Sect. 2 that the positions of fixed pivots of the
generating mechanism are often determined by the positions of the focus, vertex
and geometric center of the curve. Hence, additional constraints of mechanism
installing positions could be imposed on the planar motion to construct the
equation system.

Six Poses. For the six poses, the corresponding homogeneous coordinates are
⎧
⎨
⎩

X1i = cos θix1 − sin θix2 + dxi
X2i = sin θix2 + cos θix1 + dyi
X3i = 1

(7)

Therefore, the system to be solved is
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a0X
2
11 + a1X

2
21 + a2X11X21 + a3X11 + a4X21 + 1 = 0

a0X
2
12 + a1X

2
22 + a2X12X22 + a3X12 + a4X22 + 1 = 0

...
a0X

2
1i + a1X

2
2i + a2X1iX2i + a3X1i + a4X2i + 1 = 0

f(a0, . . . , a4) = 0

(8)

where i = 1, 2, . . . , 6; f(a0, . . . , a4) = 0 is the constraint equation for the mech-
anism installing position.

Five Poses. For the five poses, the corresponding homogeneous coordinates are
the same as Eq. (7). And the system to be solved is

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a0X
2
11 + a1X

2
21 + a2X11X21 + a3X11 + a4X21 + 1 = 0

a0X
2
12 + a1X

2
22 + a2X12X22 + a3X12 + a4X22 + 1 = 0

...
a0X

2
1i + a1X

2
2i + a2X1iX2i + a3X1i + a4X2i + 1 = 0

f1(a0, . . . , a4) = 0
f2(a0, . . . , a4) = 0

(9)

where i = 1, 2, . . . , 5; f1(a0, . . . , a4) = 0 and f2(a0, . . . , a4) = 0 are the constraint
equations for mechanism installing positions.

In this paper, HOM4PS2 [9], which is a polyhedral homotopy solver, is used
in the actual solving process. In addition to HOM4PS2, there are other free
homotopy packages, including PHCpack [10], POLSYSGLP [11], Bertini [12], etc.

4 Constraint Equation for Mechanism Installation
Position

According to Sect. 3, when the number of prescribed poses is seven, a finite
number of solutions satisfying the design conditions can be obtained from the
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constraint equations directly, and then the corresponding generating-mechanism
can be obtained. When the number of prescribed poses is less than seven, the
number of equations is less than the number of unknown parameters, and there
are infinite solutions. In this case, additional constraints should be imposed on
the coordinates of special points(geometric center, focus, vertex, ...) for different
geometric constraints, thus limiting the mechanism installing positions. There-
fore, in the design of planar mechanisms, not only the prescribed poses are
realized, but also the problem that the constraint of the mechanism installing
position is considered. The motion synthesis problem of five and six poses is also
transformed into the motion synthesis problem for mixed-task which includes
five poses or six poses. Now we give the coordinates of the special points of each
quadratic curve.

Circle: From Eq.(2), the coordinates of the circle center can be expressed as
{

xo = − a3
2a0

yo = − a4
2a0

(10)

Ellipse: For ellipse, the fixed pivots are generally located at the two foci or
the geometric center. Therefore, the coordinates of the two foci and geometric
center of an ellipse are

⎧
⎪⎪⎨
⎪⎪⎩

xF =
a2a4−2a1a3±

√
2T

(
a1−a0+

√
(a1−a0)

2+a2
2

)
−a2

2

4a0a1−a2
2

yF =
a2a3−2a0a4∓ |a2|

a2

√
2T

(
a0−a1+

√
(a1−a0)

2+a2
2

)
−a2

2

4a0a1−a2
2

(11)

{
xo = a2a4−2a1a3

4a0a1−a2
2

yo = a2a3−2a0a4
4a0a1−a2

2

(12)

where T = a0a
2
4 + a1a

2
3 − a2a3a4 + a5(a2

2 − 4a0a1).
Hyperbola: For hyperbola, the fixed pivots also install on the two foci or

geometric center. So coordinates of the foci and geometric center of a hyperbola
are ⎧

⎪⎪⎨
⎪⎪⎩

xF =
a2a4−2a1a3±

√
2T

(
a1−a0+

√
(a1−a0)

2+a2
2

)
4a0a1−a2

2

yF =
a2a3−2a0a4∓ |a2|

a2

√
2T

(
a0−a1+

√
(a1−a0)

2+a2
2

)
4a0a1−a2

2

(13)

{
xo = a2a4−2a1a3

4a0a1−a2
2

yo = a2a3−2a0a4
4a0a1−a2

2

(14)

Parabola: For generating a parabola trajectory, the fixed pivots usually are
located at the focus or vertex. Hereby, the coordinates of the focus and vertex
of a parabola are⎧

⎪⎪⎨
⎪⎪⎩

xF =
√
a1[a2

3+a2
4−4a3(a0+a1)]

4
(
a3

√
a1− |a2|

a2
a4

√
a0

)
(a0+a1)

− a3
2(a0+a1)

yF =
√
a0[a2

3+a2
4−4a5(a0+a1)]

4
(
a4

√
a0− |a2|

a2
a3

√
a1

)
(a0+a1)

− a4
2(a0+a1)

(15)
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⎧
⎨
⎩

xv =
−2PQ

√
a0+

|a2|
a2

(P 2−4a5)√
a1

4Q(a0+a1)

yv =
−2

|a2|
a2

PQ
√
a1−(P 2−4a5)√

a0

4Q(a0+a1)

(16)

where P =
a3

√
a0+

|a2|
a2

a4
√
a1

a0+a1
, Q =

|a2|
a2

a3
√
a1−a4

√
a0

a0+a1
.

Constraints of installing position. When these special points are on a straight
line, their coordinates satisfy the linear equation

L1x + L2y + L3 = 0 (17)

By substituting the coordinates of the above special points, i.e., setting x =
xo, xF , xv and y = yo, yF , yv respectively, the constraint equation for mechanism
installing position can be acquired, that is f(a0, . . . , a4) = 0.

5 Examples

5.1 Six-Pose Synthesis

In this section, we give six prescribed poses and apply the above design method
for mechanism synthesis. Table 1 lists the six prescribed poses.

Table 1. Six prescribed poses

i dxi dyi θi

1 24.5693 4.9954 91.23◦

2 23.2742 3.5226 81.11◦

3 22.3892 −0.5111 73.04◦

4 21.0779 −5.3117 72.37◦

5 20.1899 −9.7120 77.77◦

6 19.9957 −13.1093 87.50◦

Since there are only six prescribed poses, we choose to constrain the center
of the circle and the geometric center of the ellipse to make the fixed pivots of
the generating mechanisms always be on the line y = −4x+75. Substituting the
coordinates of the geometric center of the ellipse(Eq. (12)) into the linear equa-
tion, the constraint equation for the installing position of the ellipse-generating
mechanism can be obtained as

f(a0, . . . , a4) = 4a2a4 − 8a1a3 + a2a3 − 2a0a4 − 300a0a1 + 75a2
2 = 0 (18)

The coefficient equation system for this six poses example can be obtained by
substituting Eq. (18) into Eq. (8). And there are 19 solutions to the coefficient
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equation system, among which there are two solutions that meet the require-
ments, as shown in Table 2.

The equations of the two geometric constraints can be obtained as
{

0.00087x2 + 0.00087y2 − 0.0435x + 0.0435y + 1 = 0
0.0045x2 + 0.0062y2 − 0.0031xy − 0.0875x − 0.0410y + 1 = 0 (19)

According to these two geometric constraint equations, a planar mechanism
can be designed as shown in Fig. 3, where the dotted lines are the geometric
constraint curves. It can be seen that in order to meet the prescribed pose
requirement, the planar motion of the mechanism is constrained by both a circle
and an ellipse.

Table 2. Two valid solutions for six-pose synthesis

order a0 a1 a2 a3 a4 a5

1 0.00087 0.00087 0 −0.0435 0.0435 1

2 0.0045 0.0062 −0.0031 −0.0875 −0.0410 1

Fig. 3. The synthesized mechanism for
six poses

Fig. 4. The synthesized planar mecha-
nism for five poses

5.2 Five-Pose Synthesis

In this section, we will apply the above design method for five-pose synthesis.
Table 3 lists the five prescribed poses.
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Table 3. Five prescribed poses

i dxi dyi θi

1 13.9998 23.9425 84.77◦

2 8.4020 18.4442 81.74◦

3 7.2165 16.1040 79.17◦

4 7.1967 13.6239 78.68◦

5 8.6238 11.1009 81.41◦

Because there are only five prescribed poses, we choose to constrain the center
of the circle and the geometric center of the hyperbola to make the fixed pivots
of the generating mechanisms always be on the line y = 3x/2. Substituting
the coordinates of circle center (Eq. (10)) into the linear equation y = 3x/2, the
constraint equation for the installing position of the circle-generating mechanism
can be obtained as

f1(a0, a1, . . . , a4) = 3a3 − 2a4 = 0 (20)

the constraint equation for installing positions of the hyperbola-generating mech-
anism can be obtained by substituting Eq. (14) into the linear equation as:

f2(a0, . . . , a4) = 2a2a3 − 4a0a4 − 3a2a4 + 6a1a3 = 0 (21)

The coefficient equation system for this example can be obtained by substi-
tuting Eqs. (20) and (21) into Eq. (9). And there are 15 solutions to the system,
among which there are two solutions that meet the requirements, as shown in
Table 4.

Table 4. Two valid solutions for five-pose synthesis

order a0 a1 a2 a3 a4 a5

1 0.00083 0.00083 0 −0.0333 −0.0500 1

2 −0.0625 0.1111 0 0 0 1

The equations of the two geometric constraints can be obtained as
{

0.00083x2 + 0.00083y2 − 0.0333x − 0.0500y + 1 = 0
−0.0625x2 + 0.1111y2 + 1 = 0 (22)

According to these two geometric constraint equations, a planar mechanism
can be designed as shown in Fig. 4. It can be seen that in order to meet the
prescribed pose requirement, the planar motion of the mechanism is constrained
by both a hyperbola and a circle.
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6 Conclusion

In this paper, we mainly focus on the finite position generation of planar mech-
anism based on quadratic constraints acquisition. With the use of quadratic
curves representing type and dimensions of a variety of planar mechanism, we
manage to build a unified mathematical framework for realizing a combina-
tion of task poses and engineering constraints. Through Homotopy algorithm,
the feasible quadratic constraints can be efficiently identified and then matched
with their corresponding mechanisms, thus enabling the simultaneous type and
dimensional synthesis. Finally, the feasibility of the method is verified by two
synthesis examples of six poses and five poses.
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