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Abstract. Influence maximization (IM) is the problem of sub set selec-
tion which selects a subset of k users from the network to maximize the
aggregate influence spread in the network. The paper addresses IM prob-
lem across multiple social networks simultaneously. We propose a new
centrality measure to identify the most influential users and adopt the
independent cascade model for information dissemination. The experi-
ment results show the advantage of the proposed framework over classical
influence maximization frameworks. The results also show the superior-
ity of the proposed centrality measure over the state-of-the-art centrality
measures.
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1 Introduction

In recent years online social networks like Twitter, Flixster, Facebook, etc., are
not only used for communication and users’ interaction but also for marketing
and promotion. The advertisers utilize the word-of-mouth spreading of infor-
mation to promote a new product, idea, innovation, etc. The word-of-mouth
spreading of information in social networks leads to potential applications in
viral marketing [6], revenue maximization [34], rumor control [4,38], network
monitoring [15], and social recommendation [39]. Pedro and Matt [6] were the
first ones to introduce the IM problem in the field of viral marketing and pro-
posed a probabilistic model to identify the most influential users. Kempe et al.
[11] considered IM problem as a discrete optimization problem and proved that
the problem is NP-hard. They also proposed a hill-climbing approach, viz. greedy
algorithm.

There are a lot of users who have several accounts across online social net-
works simultaneously and have the opportunity to propagate information across
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networks. Therefore, it is necessary to focus on multiple networks simultane-
ously to identify influential users accurately. Most of the existing works only
focus on individual networks [3,14,26,27]. There is some research done in this
direction [18,24,40]. These studies consider IM problem across multiple networks
and ignore multiple product marketing simultaneously [31]. To the best of our
knowledge, Singh et al. [29] are the first to study MIM2 problem by considering
multiple products and multiple networks simultaneously. With this, we present
a centrality measure to find influential users under MIM2 framework.

Contribution. The major contributions of this paper are as follows.

— We introduce a new centrality measure to identifying seed users across the
network under IM2 framework.

— We incorporate independent cascade model (IC) [30] for information diffusion.
Also, we adopt IM2 framework [19].

— The experimental evaluation show that the superiority of proposed central-
ity measure against the compared methods. Also, the results indicate the
advantage of using IM2 framework over classical IM.

Organization. The organization of the paper is described as follows. Section 2
presents the insight and development of IM problem. Section3 explains the
model and problem definition. Section 4 presents the proposed work with analy-
sis. Section 5 describes the experimental setup and compares the performance of
proposed algorithm with baseline methods. Finally, Sect. 6 draws the conclusion
and list some future directions of research.

2 Related Work

Singh et al. [28,29] categorize the IM problem into four classes based on seed
selection problem under (1). single network (IM); (2). multiple networks (IM2),
single network with multiple products (MIM); (4). multiple networks with mul-
tiple products (MIM2). Pedro and Matt [6] and Kempe et al. [11] were the
first to study IM as an optimization problem. The application of greedy algo-
rithm is computationally inefficient due to utilization of time-consuming Monte-
Carlo simulations. There has been much research into finding influential users
efficiently such as heuristic methods [3,14,25,36], community-based methods
[17,27,37], path-based methods [2,12,13], score estimation based [1,8,10], and
sampling-based [5,20,33].

Influence maximization across networks (IM2) framework tackles the situa-
tion when some of the users have multiple accounts across networks and are able
to propagate information simultaneously. There are some studies which consider
this problem such as [18,24,40]. These methods work in two major steps: network
coupling and seed selection. The network coupling strategy first identifies over-
lapping users then couple multiple networks into a multiplex network based on
these users. The seed selection process identifies the seed nodes and propagates
influence through a diffusion model.
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Sun et al. [31] present a novel framework called multiple influence maximiza-
tion (MIM) which allows IM for multiple products simultaneously. Inspired by
the idea of IM2 and MIM, the authors of [29] introduced a unique problem of
multiple IM across multiple social networks (MIM2). They present a diffusion
degree heuristic to identify influential users under this framework. Table 1 pro-
vides and overview and comparison of existing IM algorithms.

Table 1. The theoretical overview of the existing IM approaches

Algorithm Time complexity Approximation|Problem State-of-the-art |Base
solving algorithms algorithm
perspective

Classical IM problem

Greedy [11] O(kNMTI) 1—1/e—e€ Simulation- Central, —
based MaxDegree &

Random

Knapsack O(N®) 1—1/e—e€ Simulation- - Greedy

Greedy [32] based

SP1M [13] O(kNM) 1—1/e Influence Path |Degree, —

PageRank
& Closeness

CELF [16] O(KNMT) 1—-1/e—e€ Sub- Greedy Greedy
modularity

Degree O(klog N + M) N.A. Heuristic Greedy, CELF |High Degree

Discount [3] based & Random

NewGreedy (3] O(kIM) 1 —1/e — €(r) |Snapshots CELF, Greedy |High Degree
Sampling & Random

TW Greedy [36] |O(kNMI) 1—-1/e—c¢ Simulation- KKG, SCG & Greedy
based High Degree

MIA/PMIA [2] O(Ntig + knoonig 1—1/e Influence Path Random, DD, SP1M

(n;g + log N)) Greedy &
PageRank

LDAG [1] O(Ntg + kngmg N.A. Score Greedy,SPIN, -

(mg + log N)) Estimation DD & PageRank

CELF++ [9] O(kNMI) 1—1/e—¢€ |Sub- CELF CELF
modularity

Diffusion O(N + M) N.A. Centrality DD & High High Degree

Degree [14] Based Degree

SIMPATH (8] O(kIN Py) N.A. Score High Degree, LDAG
Estimation CELF &

PageRank

IRIE [10] O(k(nopk + M)) N.A. Score Greedy & PMIA |—
Estimation

IPA [12] o(NQunvu 4 N.A. Influence Path |Greedy, DD PMIA

o

]ﬂ(% +(c—1))) & Random
kM N2 1og ()
StaticGreedy [5] |O(————5—"%) 1—1/e—¢e Snapshots DD, SP1M, PMIA
e
Sampling CELF & High
Degree

kMNZ log (]]\c’)

PRUNEDMC [20] |O *527) 1—1/e—¢ Snapshots PMIA, Random, |Greedy
Sampling IRIE & Degree

TIM [33] O(EAIFN)log Ny 1-1/e—€ |Reverse CELF++, IRIE |—

€

Reachability

& SIMPATH

(continued)
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Table 1. (continued)

Algorithm Time complexity Approximation Problem State-of-the-art |Base
solving algorithms algorithm
perspective

IM across multiple social networks problem (IM2)

BP-Greedy [22] — 1—-1/e Simulation- Betweenness, Greedy
based Degree, &
Closeness
MPMN-CELF++ |O(kNMI) N.A. Spread SIMPATH & CELF++
[41] Simulation CELF++
MPMN-SIMPATH |O(kIN Py) N.A. Rank SIMPATH & SIMPATH
[41] Refinement CELF++
ASMTC [35] o(lVe|2 +|V#)) N.A. Reverse - —
Reachability
SeedSelection-M  |— N.A. Score Degree, K-Shell |—
[7] Estimation & VoteRank
LCI [40] O((N 4+ M)N.d) N.A. Sub- Greedy Greedy

modularity

Multiple IM problem (MIM)

MIM-Greedy [31] |O(kmNMI) 1—-1/e Simulation- Random, Greedy
based Init-First &
MaxDegree
Multiple IM across multiple social networks problem (MIMZ2)
MIM2 [29] O((L+m)(M + N) + N.A. Heuristic DD, C2IM
(k + m)(M + Nlog N)) model MIM-Greedy &
MaxDegree

3 Model and Problem Definition

Let G = {G',G?,...,G'} represents a set of [ social networks where G* =
(VL E', WH;1 < i < [ is an individual network. The node set, edge set, and
influence weight set of a network G? are denoted by V¢, E'&W?. A single multi-
plex network was created by coupling these ! networks. We utilize independent
cascade (IC) model to estimate the overall spread of influence from seed nodes
S. In the IC model, there is two states: active and inactive. Initially, all the
seed nodes are active and other than seed nodes are inactive. Each active node
would have the chance to influence only their neighbors. Once a node becomes
active, it will never change its state in the future. If no node is activated in the
subsequent iteration, the diffusion process is considered to be completed.

Definition 1 (Problem Definition). Given a set of influence graphs G =
{GY,G?,... .G G = (VI EY WY, an information diffusion model, two pos-
itive integers k and 1, then influence maximization process selects a seed set
S C V of k users to mazimize the influence spread in G, i.e., o(S) =
argmax\s*\:k/\S*QVU(S*)'
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Fig. 1. The working of proposed framework

4 Proposed Work

In this section, we discuss a centrality measure for IM problem under IM2 frame-
work. Algorithm 1 works in three major steps: network coupling, seed selection
and influence propagation. Figure 1 shows the framework of proposed algorithm.

1. Network Coupling. To perform network coupling on multiple networks, we
first identify overlapping users across networks. Then network coupling [29] is
performed using overlapping users based on network topology and information
propagation capability of different relationships. With this, influence weight
w(z,y) of each edge (z,y) in coupled network is estimated as follows.

w(z,y)= Y AL, P50<P <1,0< > P <l (1)

1<i<i 1<i<i

where A% | €[0,1] and P = [P', P?,..., P'] denote adjacency value of (z,y)
in network ¢ and propagation capability of each relationship respectively.

2. Seed Selection. After network coupling, we identify influential users in cou-
pled network. To perform seed selection, we present a centrality measure to
identify the most influential users. The influence of a user is dependent on
its neighbors connection (local influence) and its own location in the network
(global influence). Pei et al. [21] have stated that the local influence of a user
is bound within its two-hop area. Therefore local influence I, (z) of a node x
can be estimated as follows.

L@ =3 H@=1+ N+ 3 INGow
Jj=0 yEN(z) (2)
1+ Dg(x) + Z De\x(y)

yEN(z)
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where Dg(x) = D(z) represents degree of node z in network G. Local influ-
ence can be calculated based on influence weight, given as follows.

L@ =1+ Y wwy+ Y Y wwy)xww:) g

yEN(z) yEN (z) zEN(y)

The location of a node is defined using coreness score which can be measured
by k-shell decomposition method [23]. The coreness centrality is a global
method for identifying vital nodes, since the process of getting coreness score
requires the global information of the network. Therefore, global influence
Ic(x) of a node x is estimated using coreness score k.(x), given as follows.

D

o) = kel (1+ D) (1
Dy

where Dy = maz(D,) denotes network degree. Now, we present centrality

measure based on local and global influence. The overall influence capacity

I(z) of a node x is defined as follows.

I I

i) = 2@ Tet) 6

mazyevIn(y)  mazyevia(y)

With this, we can select a most influential seed node x based on largest
influence capacity metric I(z) value. The adjacent nodes who are more similar
to each other, have more influence overlap in the network. Therefore, we
adopt a similarity index common neighbors to measure the similarity between
adjacent nodes. To select subsequent seed nodes, we utilize common neighbors
index CN (z,y), given as follows.

_IN@NN@)
[N(@) UN (@)

3. Influence Propagation. In order to propagate influence in coupled social
network, we incorporate IC diffusion model.

CN(z,y) (6)

4.1 Algorithm

The Algorithm 1 takes three inputs: influence graph set G, number of networks
l, and seed size k. In line 1, we initialize the seed set S with an empty set. Line
2 performs network coupling based on network topology and the importance
of a relationship. The for loop in lines 3-7 iteratively calculates the influence
capacity I(z) of each node z and also mark them as unvisited. Line 8 perform
sorting based on influence capacity of each node. The for loop in lines 9-16
iteratively select seed nodes. Line 10 selects highest influence capacity unvisited
node. Line 11 marks node x as visited. The for loop in lines 12-14 marks visited
such nodes that have common neighbors more than the threshold value. Line
15 adds a node to seed set. Line 16 increments the value of i. Finally, line 17
returns the output of the algorithm as seed set.
Returns the seed set S as output.
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Algorithm 1. C-IM2(G,k,1): Proposed Algorithm
Input: Influence graphs: G = {G’l, G2, ..., Gl}, Number of networks: 1 <14 <1,

Seed size k.
Output: Seed set S.
15«—¢
2 Cg <« Perform network coupling based on Equation 1
3 for each node x € V do
4 I (z) < Estimate local influence of node z based on Equation 3
5 Ic(z) «— Estimate global influence of node = based on Equation 4
6 I(z) — Estimate influence capacity of node = based on Equation 5
7 flaglz] < 0
8 Isort < Sort nodes in descending order based on their influence capacity I(x)
9 for i <k do
10 T argmaz (zxev\s)a(flaglz*)=0) (Lsort-z")
11 flag[z] < 1
12 for each v € N(u) do
13 if CN(u,v) > « then
14 L L flaglv] «— 1 > Influence Overlap avoidance
15 S — Su{z}
16 1+—i+1
17 Return S

4.2 Applying the Algorithm

In order to better understand the execution of proposed algorithm C-IM2, we take
a running example of Twitter network with three different type of relationship
networks: Follower, Re-tweet, and Reply Network as shown in Fig. 2. First, algo-
rithm performs coupling based on Eq. 1. Let probability vector P = [0.2,0.5,0.3]
and each edge in example graph have a unit weight. Now, we perform network
coupling. For example, the edge weight of (A4, B) in coupled multiplex network
is calculated as w(A,B) «— 1 x 0.2 + 1 x 0.5 + 1 x 0.3 « 1. Similarly,

OD—OO—EE—E
O—OF—O ©

(a) Follower Network (b) Re-tweet Network (c) Reply Network

Fig. 2. The example graph: Twitter Network
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w(A,C) «— 1 x 0.5 + 1 x 0.3 < 0.8. Figure 3 demonstrates the coupled mul-
tiplex after performing network coupling. To identify influential users, algorithm
calculates the influence capacity of each node as shown in Table 2. For example,
local influence of A is computed as I,(A) — 1 + (1 + 0.8 + 0.2) + (1 x (0.5 +
0.5) + 0.8 x (0.5 + 0.7) + 0.2 x (0.5 4+ 0.7)) < 5.2. After estimating influence
capacity of each node, the algorithm identifies most influential nodes as A and C'.

Table 2. The estimation of influence capacity of each node

Node | Local influence | Coreness score | Global influence | Influence capacity
x I () ke(x) Ic(z) I(x)

A 5.20 3 6 1

B 5.05 3 6 0.95

C 5.20 3 6 1

D 4.42 3 6 0.85

Fig. 3. The coupled multiplex graph of examplary Twitter network

5 Results and Discussion

5.1 Experimental Setup

In order to evaluate the performance of C-IM2 algorithm, we compare the influ-
ence spread of our algorithm with the state-of-the-art algorithms on real-world
networks. The propagation probability in IC model follows uniform distribu-
tion over tri-valency model, i.e., {0.1,0.01,0.001}. The distribution of activation
probability follows uniform distribution, i.e. a,(z,y) € [0,1].

5.2 Dataset

To perform experiment, we utilized three co-author networks® [40]: Network
Science (NSN), High-Energy Theory (HTN), and Condensed Matter (CMN).
The name of the authors are used to identify identical users across networks.
The statistical information of datasets is given in Table 3.

! https://www.cise.ufl.edu/research/OptimaNetSci/tools/id_inter.html.
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Table 3. The statistical information of the datasets

NSN | CMN |HTN
#Nodes | 1588 | 40420 6360
#Edges | 2742 | 175692 | 15751

5.3 Algorithm to Compare

— Random: Randomaly selects k nodes as seed nodes.

— MaxDegree: This method selects k nodes based on degree of nodes (maximal
degree nodes).

— Greedy: Selects seed nodes based on the marginal gain of nodes [11].

— Degree Discount: Selects seed based on degree and discount procedure [3].

— C-IM2: This is our proposed algorithm which selects influential nodes based
on influence capacity of nodes.

5.4 Experimental Result

This section describes the performance of C-IM2 algorithm. The influence spread
of C-IM2 is compared with baseline methods to validate the performance of the
C-IM2. The algorithm with the highest influence spread is referred to as the best
performing IM algorithm. To experiment, we utilized three real-world networks
with differently sized seed set (10-50).

Comparison of C-IM2 Under IM Framework. Figure4 illustrates the com-
parison of C-IM2 method against the compared methods. The proposed method
performs better than heuristics Random, MaxDegree, and Degree Discount. This
is because of the fact that these heuristics only consider the degree of nodes
and ignores others topological information like local influence, location in the
network, etc. Therefore, C-IM2 outperforms these methods. Also, the proposed
method has a comparable influence spread with the hill-climbing greedy method.

100 350 30
[F=—Random [F=—Random o e Naxoon
o

g:xizg[r)elsemum |-e— MaxDegree g: xzzgée.fmum
] 9 80 o0 ] Degree Discount PR | I
|-+ Greedy |+ Greedy vl

[-e—C-m2 oMz [-e—C-m2

/ 20 10004 / 1000 704 — o

3

210 P 210

2
X

3000

&

20004 2000

Spread of Influence
Spread of Influence
Spread of Influence

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Number of Seeds Number of Seeds Number of Seeds

(a) NSN (b) CMN (c) HTN

Fig. 4. The performance comparison of C-IM2 against the baseline methods in terms
of influence spread
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Advantage of IM2 Framework. Figure5 shows the performance gain of IM2
framework over traditional IM problem. The proposed algorithm performs better
than the classical IM problem. This is because of IM problem ignores the fact that
some of the social network users have multiple accounts on different networks
simultaneously while IM2 considers this assumption. Therefore, IM2 framework
is more realistic and generates more effective seed set.

5000 5000
——HTN
——CMN
4000 4 NSN
HTN+CMN+NSN

{4000

- 3000

3000

2000 {2000

Spread of Influence

1000 4 |- 1000

Number of Seeds

Fig. 5. The performance comparison of C-IM2 under IM and IM2 framework in terms
of influence spread

6 Conclusion and Future Directions

In this paper, we study the IM2 problem in the multiplex network. We perform
network coupling to form a multiplex network based on network topology and
the importance of relationship in information spreading. Then we present a new
centrality measure to identify the most influential users in the coupled multi-
plex network. Exhaustive experiments show the advantage of IM2 framework
over classical IM framework and provide a new insight into the problem. In the
future, we can extend our work to MIM2 problem with heterogeneous propa-
gation models. Also, we can add some contextual features like topical, spatial,
dynamic, etc.
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