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Abstract. We study fuzzy context-free grammars (FCFG), fuzzy
context-free languages (FCFL) and fuzzy pushdown automata (FPDA)
valued in lattice-ordered monoids. Inspired by the ideas of crisp cases, we
get similar results, but some of them depend on commutative law. Par-
ticularly, we give two proofs of the closure under homomorphic inverse of
FCFL when lattice-ordered monoids are commutative. Comparing with
the classical method, we show that the improved proof is more efficient.
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1 Introduction

The characterization of formal languages is a very important aspect of research
in the classical computation theory. For example, regular languages can be char-
acterized by some finite automata, regular expressions and regular grammars.
However, the problem of vagueness and imprecision are frequently encountered
in the study of natural languages. In order to represent the imprecision of natu-
ral languages, various fuzzy languages have been proposed. By introducing the
concept of fuzziness into the structure of formal grammars, the concept of fuzzy
automata was introduced by Santos [22,23] as early as in the late 1960s, and
after the concept of fuzzy grammar was introduced by Lee and Zadeh [13,14].
There are amount of work on fuzzy languages, such as the relationships between
fuzzy grammars and fuzzy languages, the relations of fuzzy automata and fuzzy
language, and the algebraic properties of fuzzy languages [2,17,18]. As a further
extension, Kim et al. put forward one type of L-fuzzy grammar based on the
distributive lattice and Boolean lattice, another type of L-fuzzy grammar based
on lattice-ordered monoid by assigning the element of lattice to the rewriting
rules of a formal grammar [11]. Gerla also studied fuzzy grammars and recur-
sively enumerable fuzzy languages, and proved that a fuzzy language can be
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generated by a fuzzy grammar if and only if it is recursively enumerable [6].
As one of the generators of fuzzy languages, fuzzy grammars have been used
to solve some important questions such as intelligent interface design (Senay)
[25], lexical analysis, clinical monitoring (Steimann and Adlassning) [26], neural
networks (Giles et al.) [19], and pattern recognition (Depalma and Yau) [4]. It
is known that the context-free grammars are powerful than regular grammars,
also the classical pushdown automata and finite automata [9,24]. Therefore,
fuzzy pushdown automata and fuzzy context-free grammars were discussed in
[3,12,16,24,27,28] and automata theory based on residuated lattice-valued logic
has been investigated recently [21,28]. It is shown that their many properties
are similar to classical pushdown automata, context-free grammars and context-
free languages. In particular, we can get a much more efficient way to prove the
closure under homomorphic inverse of fuzzy context-free languages.

In this paper, fuzzy context-free languages whose codomain forms a com-
mutative lattice-ordered monoid L are studied. Furthermore, we show that the
homomorphic inverse of fuzzy context-free languages are also fuzzy context-free
languages by two ways, and the latter is much more efficient than the former by
comparison.

The rest of the paper is arranged as follows. In Sect. 2, we introduce lattice-
ordered monoids and give some examples. In Sect. 3, we discuss fuzzy context-free
grammars, fuzzy context-free languages and their relationships. Section 4 studies
the fuzzy pushdown automata valued in a lattice-ordered monoid L. In Sect. 5,
comparing with the classical cases, we give an improved proof of the closure
under homomorphic inverse of fuzzy context-free languages, which increases the
efficiency of operation. Finally, some conclusions are concerned in Sect. 6.

2 Lattice-Ordered Monoids

We first introduce the definition of lattice-ordered monoid and give some exam-
ples.

Definition 2.1. Given a lattice L, we use ∨,∧ to represent the supremum oper-
ation and infimum operation on L, respectively. We need L to have the least and
largest elements in the paper, which will be denoted as 0, 1, respectively. Assume
that there is a binary operation • (we call it multiplication) on L such that
(L, •, e) is a monoid with identity e ∈ L.

We call L an po-monoid (some modification of the notion of partially ordered
monoid in [5]) if it satisfies the following two conditions for any a, b, x ∈ L,

(1) ∀a ∈ L, a • 0 = 0 • a = 0,
(2) a ≤ b ⇒ a • x ≤ b • x and x • a ≤ x • b.

And we call L a lattice-ordered monoid or l-monoid if L is a po-monoid and
it satisfies the distributive laws, i.e.,

(3) ∀a, b, c ∈ L, a • (b ∨ c) = (a • b) ∨ (a • c) and (b ∨ c) • a = (b • a) ∨ (c • a).
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Moreover, if L is a complete lattice, and it satisfies the following infinite
distributive laws,

(4) a • (
∨

t bt) =
∨

t(a • bt) and (
∨

t bt) • a =
∨

t(bt • a),

where T is an index set, then we call L a quantale. If the distributive laws in (3)
holds only for countable set {bt}t∈T then L is called a countable lattice-ordered
monoid.

We call the lattice-ordered monoid (L, •,∨) is commutative, if a • b = b • a
holds for any a, b ∈ L. For a lattice-ordered monoid, we only concern the multi-
plication • and finite supremum operation ∨, in what follows, a lattice-ordered
is denoted as (L, •,∨). If we deal with the subalgebra L1 of a lattice-ordered
monoid(L, •,∨), it means that L1 is a nonempty subset of L and L1 is closed
under the multiplication and finite supremum of L. We do not concern with the
infimum operation in L1.

The followings are discussed on the lattice-ordered monoid L without special
instructions.

Example 2.1.

(1) Let (L,∧,∨) be a distributive lattice, and let ∧ = •, then L is a lattice-
ordered monoid, and the identity of multiplication is 1.

(2) Let (L, •,∨) be a lattice-ordered monoid, the identity is e. We use L(n) to
denote all n × n matrices with values in L. The multiplication, denote as ◦,
is defined as Sup−• composition; and ∨ is the pointwise-∨. That is, for two
n×n matrices, A = (aij), B = (bij), with values in L, let A◦B = C = (cij),
then cij = ∨n

k=1(aik • bkj) and let A ∨ B = D = (dij), dij = aij ∨ bij. Then
(L(n), ◦,∨) is also a lattice-ordered monoid, the identity is the diagonal-
matrix E = diag(e, · · · , e), with e as the diagonal element. In general, the
multiplication on L(n) is not commutative, even if the multiplication on L
is commutative.

(3) Let • be any uninorm on [0,1]. If 0•1 = 0, then([0, 1], •,∨) is a commutative
lattice-ordered monoid. In particular, if • is a t-norm on [0,1], then 0 • 1 =
0, then ([0, 1], •,∨) is a commutative lattice-ordered monoid with identity
e = 1.

(4) Complete residuated lattices are special kinds of quantales, where its multi-
plication is commutative and the identity is the same as the largest element.

3 Fuzzy Grammars

In this section, we study fuzzy context-free grammars, fuzzy context-free lan-
guages and their relationships.

Definition 3.1. Fuzzy grammar is a four tuple G = (N,T, P, S), where N is
a finite nonterminal alphabet and its elements are called variables; T is a finite
terminal alphabet, N ∩ T = ∅; S ∈ N is a start symbol; P is a finite alphabet
of fuzzy productions u →ρ v, where u ∈ (N

⋃
T )∗N(N

⋃
T )∗, v ∈ (N

⋃
T )∗,

and ρ ∈ L − {0} represents the membership value of rewriting rule u → v. We
suppose S only appears in the left of fuzzy production u → v.
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For u1, · · · , un ∈ (N
⋃

T )∗, if u1 ⇒ρ1 u2 ⇒ρ2 · · · ⇒ρn−1 un, then un called
the derivation chain from u1, denoted as u1 ⇒ρ

∗ un, where ρ = ρ1 •ρ2 •· · ·•ρn−1.

Definition 3.2. The fuzzy language L(G) : T ∗ → L generated by fuzzy grammar
G is defined as, for any θ ∈ T ∗,

L(G)(θ) = ∨{ρ|S ⇒ρ
∗ θ}.

Fuzzy grammar, also called type 0 grammar or fuzzy phrase grammar, it is
further classified as follows.

Suppose that G = (N,T, P, S) is a fuzzy grammar, then

(1) G is called fuzzy context-sensitive grammar (FCSG) or type 1 grammar, if
for any u →ρ v ∈ P , there is |u| ≤ |v|. And L(G) is called fuzzy context-
sensitive language (FCSL).

(2) G is called fuzzy context-free grammar (FCFG) or type 2 grammar, if for
any u →ρ v ∈ P , there is |u| ≤ |v| and u ∈ N . And L(G) is called fuzzy
context-free language (FCFL).

(3) G is called fuzzy regular grammar (FRG) or type 3 grammar, if for any
u →ρ v ∈ P , there is u ∈ N and v ∈ TB, B ∈ N ∪{ε}, or u = S, v = ε. And
L(G) is called fuzzy context-free language (FRL).

In the paper, we only concern with the fuzzy context-free grammar.

Definition 3.3. Suppose that G = (N,T, P, S) is a fuzzy context-free grammar,
then G is called fuzzy Chomsky normal form (FCNF) if for any production for-
mula of G they have the form:

A →ρ BC or A →ρ a or S →ρ ε,

where A,B,C ∈ N, a ∈ T, ρ ∈ L − {0}.
Theorem 4.1. For any fuzzy context-free grammar, there is an equivalent Chom-
sky normal form.

4 Fuzzy Pushdown Automata

Now, we give the fuzzy pushdown automata valued in a lattice-ordered monoid
L.

Definition 4.1. Fuzzy pushdown automata (FPDA) is a seven tuple M =
(Q,Σ, Γ, δ, q0, Z0, F ), where Q,Σ, Γ are nonempty finite sets, and they rep-
resent state sets, input alphabet, stack alphabet, respectively. q0 ∈ Q,Z0 ∈ Γ
represent initial state and start symbol. F : Q → L is a fuzzy final state,
δ : Q × (Σ ∪ {ε}) × Γ → F (Q × Γ ∗) which image is a finite fuzzy subset of
Q × Γ ∗ is called fuzzy transition function.
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For any p, q ∈ Q,σ ∈ Σ,Z ∈ Γ, γ ∈ Γ ∗, δ(q, σ, Z)(p, γ) means the possible
degree that automata can enter next state p and the top stack letter Z transfer
to γ when current state is q, the top stack letter is Z and the input symbol is σ.
Similarly, δ(q, ε, Z)(p, γ) means the possible degree that the automata turn to
the next state p and the top stack letter Z transfer to γ when current state is q,
the top stack letter is Z and the input symbol is empty string. What’s more, for
any (q, w, γ) ∈ Q × Σ∗ × Γ ∗, it is called a instantaneous description of M and
ID for short, it means that M is on the current state q, w is the untreated input
string and M is focusing on the first character of w, the string in the stack is γ.

For α, β ∈ Γ ∗, β is the tail of α if there exists γ ∈ Γ ∗ such that α = γβ,
denoted β ≤ α and γ = α \ β, head(β) is the first character of β. Then we give
the extension ∇ of δ as follows.

Definition 4.2. Given a fuzzy pushdown automata M = (Q,Σ, Γ, δ, q0, Z0, F ),
we define the fuzzy relation ∇ in Q × Σ∗ × Γ ∗ as,

∇((p, w, β), (q, v, α)) =

⎧
⎨

⎩

δ(p, ε, head(β))(q, α \ tail(β)), v = w, tail(β) ≤ α,
δ(p, head(w), head(β)(q, α \ tail(β)), v = tail(w), tail(β) ≤ α,
0, otherwise.

∇∗ is defined as the reflexive and transitive closure of ∇. The reflexive and
transitive closure of fuzzy relation R in set Q is defined as R∗ = I ∪ R ∪ R ◦ R ∪
· · · ∪ Rn ∪ · · · , where ◦ is Sup − • composition of fuzzy relations.

Definition 4.3. Given a fuzzy pushdown automata M = (Q,Σ, Γ, δ, q0, Z0, F ),
for all θ ∈ Σ∗,
(1) The fuzzy language accepted by M by final state is defined as,

L(M)(θ) =
∨

q∈Q,γ∈Γ ∗
[∇∗((q0, θ, Z0), (q, ε, γ)) • F (q)].

(2) The fuzzy language accepted by M by empty stack is defined as,

N(M)(θ) =
∨

q∈Q

∇∗((q0, θ, Z0), (q, ε, ε)).

Theorem 4.1. For an FPDA that accepts a fuzzy language L by empty stack,
there exists another FPDA that accepts L by final states. And the vise versa.

Corollary 4.1. The fuzzy final states can be taken as crisp states when the
FPDA accept fuzzy language by the final state.

Theorem 4.2. For a fuzzy language, it can be accepted by an FPDA iff the
fuzzy language is FCFL.
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5 The Properties of Fuzzy Context-Free Language

this section, we investigate some properties of fuzzy context-free languages, and
except the closure under homomorphic inverse, the proofs of other conclusions
are similar to the classical conditions, so we don’t give their proofs in this paper.

Definition 5.1. Let f, g be any fuzzy context-free language on Σ∗ that valued
in a lattice-ordered monoid L, and a ∈ L, θ ∈ Σ∗, then we defined the operations
as follows:

(1) The scalar product of a and f , denoted af and fa, is defined as, (af)(θ) =
a • f(θ) and (fa)(θ) = f(θ) • a.

(2) The union of f1 and f2, denoted f1 ∪f2, is defined as, (f1 ∪f2)(θ) = f1(θ)∨
f2(θ).

(3) The concatenation of f1 and f2, denoted f1f2, is defined as, (f1f2)(θ) =∨
θ1θ2=θ[f1(θ1) • f2(θ2)]. And then the concatenation operation satisfies the

associative laws.

Definition 5.2. Let Σ,Δ be finite nonempty character sets, φ : Σ → F (Δ∗)
is a mapping, and φ is called fuzzy context-free substitution if φ(σ) is a fuzzy
context-free language of Δ for any σ ∈ Σ.

Given a mapping φ : Σ → F (Δ∗), then φ can be extended on Σ∗ by the way
as follows,

(1) φ(ε) = { 1
ε};

(2) ∀θ ∈ Σ∗,∀σ ∈ Σ,φ(θσ) = φ(θ)φ(σ).

Then we extend φ on F (Σ∗), denoted as, φ : F (Σ∗) → F (Δ∗), and ∀h ∈
F (Σ∗),∀ω ∈ Δ∗,

φ(h)(ω) =
∨

θ∈Σ∗
[h(θ) • φ(θ)(ω)].

Definition 5.3. A mapping φ : Σ → F (Δ∗) is called fuzzy homomorphism, if
for any σ ∈ Σ, there exists unique w ∈ Σ∗, a ∈ L − {0} such that φ(σ) = a

w .
For the above mapping φ and σ ∈ Σ, we can define two mappings φ1 : Σ → Δ∗

and φ2 : Σ → L as, φ1(σ) = w, φ2(σ) = a, respectively. Then φ1 is the usual
homomorphism, therefore, ∀σ ∈ Σ,φ(σ) = φ2(σ)

φ1(σ)
.

Then we can extend φ1 and φ2 on Σ∗ as, ∀θ = σ1 · · · σk ∈ Σ∗, φ1(σ1 · · · σk) =
φ1(σ1) · · · φ1(σk), and φ2(σ1 · · · σk) = φ2(σ1) • · · · • φ2(σk). Besides, we declare
that φ1(ε) = ε, φ2(ε) = e.

Thus, we can extend φ on F (Σ∗) as,

∀g ∈ F (Σ∗), ∀ω ∈ Δ∗, φ(g)(ω) = ∨{g(θ) • φ2(θ)|φ1(θ) = ω},

at the same time, we define the inverse mapping φ−1 : F (Δ∗) → F (Σ∗) as,

∀h ∈ F (Δ∗), ∀θ ∈ Σ∗, φ−1(h)(θ) = h(φ1(θ)) • φ2(θ).
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Theorem 5.1. Any FCFL is still an FCFL under the fuzzy context-free
substitution.

By the extensive definition of fuzzy homomorphism, we know that fuzzy
context-free homomorphism is a special type of fuzzy context-free substitution,
so we can get the following conclusion.

Corollary 5.1. Suppose that φ : Σ → F (Δ∗) is a fuzzy homomorphism, then
φ(f) is an FCFL on Δ if f is an FCFL on Σ.

That is to say, fuzzy context-free languages are closed under the fuzzy homo-
morphism, now we consider the fuzzy homomorphic inverse of fuzzy context-free
languages in Definition 5.2. Suppose that f is a fuzzy context-free language on
Δ, φ : Σ → F (Δ∗) is a fuzzy homomorphism, then f can be described by a fuzzy
context-free grammar and accepted by a fuzzy pushdown automata. If φ−1(f) is
a fuzzy context-free language, there must be a fuzzy context-free grammar and a
fuzzy pushdown automata corresponding to it. Here we only consider designing
a fuzzy pushdown automata to accept it. Assume that M2 is a fuzzy pushdown
automata that accepts f . We need construct a fuzzy pushdown automata M1

which can simulate the processing of M2 to φ1(a) when M1 reads character a.
But, we can’t ignore the degree of the processing, that is φ2(a). For one thing, we
need to store φ1(a) in the finite controller of M1, and the degree of this process
is φ2(a). For another thing, φ1(a) is a string, we need to simulate the process
of M2 to φ1(a). Now we give two ways to complete the process, and the second
solution is an improved way.

(1) We can use an empty move of M1 to simulate the process of M2 to each
character of φ1(a), and M2 running |φ1(a)| steps when it finished processing
φ1(a). This way is similar to the process of classical case, but what we should
concern about is just the possible degree each transition of M2.

(2) We can use an empty move of M1 to simulate the process of M2 to the
whole string φ1(a), then let M1 remember the state and stack letter, which
are M turns to after it finished processing φ1(a). In the process, the possible
transition degree of M1 is just the possible degree that M2 processed string
φ1(a).

Remark 5.1. From the definition of ∇∗, it is clearly that if M =
(Q,Σ, Γ, δ, q0, Z0, F ) is a fuzzy pushdown automata, p, q ∈ Q,x, y ∈ Σ∗, α, β ∈
Γ ∗, then ∇∗((q, x, α), (p, y, β)) = ∇∗((q, xω, α), (p, yω, β)) holds for any ω ∈ Σ∗.

We will frequently use the fact to prove the following theorem.

Theorem 5.2. If L is commutative, then the homomorphic inverse of FCFL is
FCFL.

Proof I. Let f be a fuzzy context-free language of Δ, φ : Σ → F (Δ∗) is
a fuzzy homomorphism. Then there is a fuzzy pushdown automata M2 =
(Q2,Δ, Γ, δ2, q0, Z0, {qf}) which accepts f , that is, for any θ in Δ∗, f(θ) =
L(M2)(θ) =

∨
γ∈Γ ∗ ∇∗

2 ((q0, θ, Z0), (qf , ε, γ)). Now we construct a fuzzy push-
down automata M1 = (Q1,Δ, Γ, δ1, [q0, ε], Z0, [qf , ε]) as,
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(1) Q1 = {[q, x]|∀a ∈ Σ
⋃{ε}, x is a suffix of φ1(a)}, where the number of the

suffix of φ1(a) is finite, and Q2 is a finite set, so Q1 is finite.
(2) ∀q ∈ Q2, a ∈ Σ

⋃{ε}, Z ∈ Γ, δ1([q, ε], a, Z)([q, φ1(a)], Z) = φ2(a).
(3) ∀q, p ∈ Q2, u ∈ Σ ∪ {ε}, γ ∈ Γ ∗, δ1([q, ux], ε, Z)([p, x], γ) = δ2(q, u, Z)(p, γ),

and for other cases, δ1 = 0.

Therefore, if θ = ε, then

L(M1)(ε) =
∨

γ∈Γ ∗
∇∗

1(([q0, ε], ε, Z0), ([qf , ε], ε, γ))

=
∨

γ∈Γ ∗
∇1(([q0, ε], ε, Z0), ([q0, φ1(ε)], ε, Z0)) • ∇1(([q0, φ1(ε)], ε, Z0), ([qf , ε], ε, γ))

=
∨

γ∈Γ ∗
δ1([q0, ε], ε, Z0)([q0, φ1(ε)], Z0) • δ1([q0, φ1(ε)], ε, Z0)([qf , ε], γ)

=
∨

γ∈Γ ∗
∇∗

2((q0, φ1(ε), Z0), (qf , ε, γ)) • φ2(ε)

= f(φ1(ε)) • φ2(ε)

= φ−1(f)(ε).

Note that for any θ ∈ Σ+, let θ = a1 · · · an, ai ∈ Σ, φ1(ai) = bi1 · · · bim,
i = 1, 2, ..., n, |φ1(ai)| = m, then φ1(θ) = φ1(a1) · · · φ1(an), φ2(θ) = φ2(a1) • · · · •
φ2(an), therefore,

L(M1)(θ) =
∨

γ∈Γ ∗
∇∗

1(([q0, ε], θ, Z0), ([qf , ε], ε, γ))

=
∨

γi∈Γ ∗,qi∈Q2

[∇1(([q0, ε], a1 · · · an, Z0), ([q0, φ1(a1)], a2 · · · an, Z0))

• ∇1(([q0, φ1(a1)], εa2 · · · an, Z0), ([q1, ε], a2 · · · an, γ1))]

• [∇1(([q1, ε], a2 · · · an, γ1), ([q1, φ1(a2)], a3 · · · an, γ1))

• ∇1(([q1, φ1(a2)], εa3 · · · an, γ1), ([q2, ε], a3 · · · an, γ2))] • · · ·

• [∇1(([qn−1, ε], an, γn−1), ([qn−1, φ1(an)], ε, γn−1))

• ∇1(([qn−1, φ1(an)], ε, γn−1), ([qf , ε], ε, γ))]

=
∨

γ,γi∈Γ ∗,qi∈Q2

[δ1(([q0, ε], a1, Z0)([q0, φ1(a1)], Z0)

• δ1([q0, b11 · · · b1m], ε, Z0)([q1, ε], γ1)] • · · ·
• [δ1([qn−1, ε], an, γn−1)([qn−1, φ1(an)], γn−1)

• δ1([qn−1, bn1 · · · bnm], ε, γn−1)([qf , ε], γ)]

=
∨

γ,γi∈Γ ∗,qi,qij∈Q2

[φ2(a1) • δ1([q0, b11 · · · b1m], ε, Z0)([q01, b12 · · · b1m], γ01)

• δ1([q01, b12 · · · b1m], ε, γ01)([q02, b13 · · · b1m], γ02) • · · ·
• δ1([q0(m−1), b1m], ε, γ0(m−1))([q1, ε], γ1)]
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• · · · •
φ2(an) • [δ1([qn−1, bn1 · · · bnm], ε, γ(n−1))([q(n−1),1, bn2 · · · bnm], γ(n−1),1)

• δ1([q(n−1),1, bn2 · · · bnm], ε, γ(n−1),1)([q(n−1),2, bn3 · · · bnm], γ(n−1),2) • · · ·
• δ1([q(n−1)(m−1), bnm], ε, γ(n−1)(m−1))([qf , ε], γ)]

=
∨

γ,γi∈Γ ∗,qi,qij∈Q2

[δ2(q0, b11, Z0)(q01, γ01) • δ2(q01, b12, γ01)(q02, γ02) • · · ·

• δ2(q0,(m−1), b1m, γ0,(m−1))(q1, γ1)]

• · · · •
[δ2(qn−1, bn1, γn−1)(q(n−1),1, γ(n−1),1) • δ2(q(n−1),1, bn2, γ(n−1),1)(q(n−1),2, γ(n−1),2) • · · ·
• δ2(q(n−1)(m−1), bnm, γ(n−1)(m−1))(qf , γ)]

• [φ2(a1) • · · · • φ2(an)]

=
∨

γ,γi∈Γ ∗,qi∈Q2

[∇∗
2((q0, b11 · · · b1m, Z0), (q1, ε, γ1))]

• [∇∗
2((q1, b21 · · · b2m, γ10), (q2, ε, γ2))] • · · ·

• [∇∗
2((qn−1, bn1 · · · bnm, γn−1), (qf , ε, γ))]

• [φ2(a1) • · · · • φ2(an)]

=
∨

γ,γi∈Γ ∗,qi∈Q2

[∇∗
2((q0, φ1(a1), Z0), (q1, ε, γ1))

• ∇∗
2((q1, φ1(a2), γ1), (q2, ε, γ2)) • · · ·

• ∇∗
2((qn−1, φ1(an), γn−1), (qf , ε, γ))]

• [φ2(a1) • · · · • φ2(an)]

=
∨

γ,γi∈Γ ∗,qi∈Q2

[∇∗
2((q0, φ1(a1)φ1(a2) · · · φ1(an), Z0), (q1, εφ1(a2) · · · φ1(an), γ1))

• ∇∗
2((q1, φ1(a2)φ1(a3) · · · φ1(an), γ1), (q2, εφ1(a3) · · · φ1(an), γ2)) • · · ·

• ∇∗
2((qn−1, φ1(an), γn−1), (qf , ε, γ))] • φ2(θ)

=
∨

γ∈Γ ∗
[∇∗

2((q0, φ1(a1) · · · φ1(an), Z0), (qf , ε, γ))] • φ2(θ)

= f(φ1(θ)) • φ2(θ)

= φ−1(f)(θ).

Thus, L(M1) = φ−1(f).

Proof II. Let f be a fuzzy context-free language of Δ, φ : Σ → F (Δ∗)
is a fuzzy homomorphism. Then there is a fuzzy pushdown automata M2 =
(Q2,Δ, Γ, δ2, q0, Z0, {qf}) which accepts f . Now we construct a fuzzy pushdown
automata M1 = (Q1,Δ, Γ, δ1, [q0, ε], Z0, [qf , ε]) as,

(1) Q1 = {[q, x]|∀a ∈ Σ
⋃{ε}, x = φ1(a)}, where the number of φ1(a) is finite,

and Q2 is a finite set, so Q1 is finite.
(2) ∀q ∈ Q2, a ∈ Σ

⋃{ε}, Z ∈ Γ, δ1([q, ε], a, Z)([q, φ1(a)], Z) = φ2(a),
(3) ∀q, p ∈ Q2, γ ∈ Γ ∗, δ1([q, φ1(a)], ε, Z)([p, ε], γ) = ∇∗

2((q, φ1(a), Z), (p, ε, γ)),
and for other cases, δ1 = 0.
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Now we prove that L(M1) = φ−1(f). First, if θ = ε, then

L(M1)(ε) =
∨

γ∈Γ ∗
∇∗

1(([q0, ε], ε, Z0), ([qf , ε], ε, γ))

=
∨

γ∈Γ ∗
∇1(([q0, ε], ε, Z0), ([q0, φ1(ε)], ε, Z0)) • ∇1(([q0, φ1(ε)], ε, Z0), ([qf , ε], ε, γ))

=
∨

γ∈Γ ∗
∇∗

2((q0, φ1(ε), Z0), (qf , ε, γ)) • φ2(ε)

= f(φ1(ε)) • φ2(ε)

= φ−1(f)(ε).

Note that for any θ ∈ Σ+, let θ = a1 · · · an, ai ∈ Σ, i = 1, 2, ..., n, φ1(θ) =
φ1(a1) · · · φ1(an), φ2(θ) = φ2(a1) • · · · • φ2(an), then

L(M1)(θ) =
∨

γ∈Γ ∗
∇∗

1(([q0, ε], θ, Z0), ([qf , ε], ε, γ))

=
∨

γi∈Γ ∗,qi∈Q2

[∇1(([q0, ε], a1 · · · an, Z0), ([q0, φ1(a1)], a2 · · · an, Z0))

• ∇1(([q0, φ1(a1)], εa2 · · · an, Z0), ([q1, ε], a2 · · · an, γ1))]
• [∇1(([q1, ε], a2 · · · an, γ1), ([q1, φ1(a2)], a3 · · · an, γ1))
• ∇1(([q1, φ1(a2)], εa3 · · · an, γ1), ([q2, ε], a3 · · · an, γ2))] • · · ·
• [∇1(([qn−1, ε], an, γn−1), ([qn−1, φ1(an)], ε, γn−1))
• ∇1(([qn−1, φ1(an)], ε, γn−1), ([qf , ε], ε, γ))]

=
∨

γ,γi∈Γ ∗,qi∈Q2

[δ1([q0, ε], a1, Z0)([q0, φ1(a1)], Z0)

• δ1([q0, φ1(a1)], ε, Z0)([q1, ε], γ1)]
• [δ1([q1, ε], a2, γ1)([q1, φ1(a2)], γ1)
• δ1([q1, φ1(a2)], ε, γ1)([q2, ε], γ2)] • · · ·

• [δ1([qn−1, ε], an, γn−1)([qn−1, φ1(an)], γn−1)
• δ1([qn−1, φ1(an)], ε, γn−1)([qf , ε], γ)]

=
∨

γ,γi∈Γ ∗,qi∈Q2

[∇∗
2((q0, φ1(a1), Z0), (q1, ε, γ1))

• ∇∗
2((q1, φ1(a2), γ1), (q2, ε, γ2)) • · · ·

• ∇∗
2((qn−1, φ1(an), γn−1), (qf , ε, γ))]

• [φ2(a1) • · · · • φ2(an)]

=
∨

γ,γi∈Γ ∗,qi∈Q2

[∇∗
2((q0, φ1(a1)φ1(a2) · · · φ1(an), Z0), (q1, εφ1(a2) · · · φ1(an), γ1))

• ∇∗
2((q1, φ1(a2)φ1(a3) · · · φ1(an), γ1), (q2, εφ1(a3) · · · φ1(an), γ2)) • · · ·

• ∇∗
2((qn−1, φ1(an), γn−1), (qf , ε, γ))] • φ2(θ)
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=
∨

γ∈Γ ∗
[∇∗

2((q0, φ1(a1) · · · φ1(an), Z0), (qf , ε, γ))] • φ2(θ)

= f(φ1(θ)) • φ2(θ)

= φ−1(f)(θ).

Thus, L(M1) = φ−1(f).
Clearly, the second solution is much more efficient than the first one. Let

|Q2|, |Σ| represent the number of their elements, respectively. For any ai ∈
Σ,φ1(ai) ∈ Δ∗, |φ1(ai)| represents the number of its suffixes. Then we need
m = |Q2| × |Σ| × ∏

ai∈Σ |φ1(ai)| steps in the proof I, while we just need
n = |Q2| × |Σ| steps in the proof II, that is, n � m, which means that the
improved proof has greatly improved the efficiency of operation. From two dif-
ferent proofs above, it can be seen that the construction of new state sets is a
particularly essential step and the key to improve the efficiency.

6 Conclusion

In this paper, we have studied fuzzy context-free grammars (FCFG), fuzzy
context-free languages(FCFL) and fuzzy pushdown automata(FPDA) whose
condomain forms a lattice-ordered monoid L. Some important conclusions are
obtained. Particularly, if L is commutative, we show an improved proof of the
closure under homomorphic inverse of fuzzy context-free languages, which has
greatly improved the efficiency of the operation by comparing with the classi-
cal method. Undoubtedly, much more work remains to be completed along this
line. There may be more special properties of fuzzy context-free languages on
lattice-ordered monoids.
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