
Chapter 3
Analytics Models for Data Science

3.1 Introduction

The ultimate goal of data science is to turn raw data into data products. Data analytics
is the science of examining the raw data with the purpose of making correct decisions
by drawing meaningful conclusions. The key differences of traditional analytics
versus Big Data Analytics are shown in Table 3.1.

3.2 Data Models

Data model is a process of arriving at the diagram for deep understanding, organizing
and storing the data for service, access and use. The process of representing the data

Table 3.1 Traditional analytics versus Big Data Analytics

Concept Traditional analytics Big Data Analytics

Focus on • Descriptive analytics
• Diagnosis analytics

• Predictive analytics
• Data science
• Innovate with machine learning

Datasets • Limited datasets
• Less types of data
• Cleansed data
• Structured data

• Large-scale/unlimited datasets
• More types of data
• Raw data
• Semi-structured/unstructured data

Data models • Simple data models • Complex data models

Data architecture • Centralized database architecture
in which complex and large
problems are solved in a single
system

• Distributive database architecture
in which complex and large
problems are solved by dividing
into many chunks

Data schema • Fixed/static schema for data
storage

• Dynamic schema for data storage
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in a pictorial format helps the business and the technology experts to understand the
data and get to know how to use the data. This section deals with data science and
four computing models of data analytics.

3.2.1 Data Products

Data products define which type of profiles would be desirable to deliver the resul-
tant data products that are collected during data gathering process. Data gathering
normally involves collecting unstructured data from various sources. As an example,
this process could involve acquiring raw data or reviews from a web site by writing
a crawler. Three types of data products are as follows:

• Data used to predict,
• Data used to recommend,
• Data used to benchmark.

3.2.2 Data Munging

Data munging, sometimes referred to as data wrangling, is the process of converting
and mapping data from one format (raw data) to another format (desired format)
with the purpose of making it more suitable, easier and valuable for analytics. Once
data retrial is done from any source, for example, from the web, it needs to be stored
in an easy to use format. Suppose a data source provides reviews in terms of rating
in stars (1–5 stars); this can be mapped with the response variable of the form x
∈ {1, 2, 3, 4, 5}. Another data source provides reviews using thumb rating system,
thumbs-up and thumbs-down; this can be inferred with a response variable of the
form x ∈ {positive, negative} (Fig. 3.1). In order to make a combined decision,
first data source response (five-point star rating) representation has to be converted
to the second form (two-point logical rating), by considering one and two stars as

Fig. 3.1 Thumb and star
rating system
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negative and three, four and five stars as positive. This process often requires more
time allocation to be delivered with good quality.

3.2.3 Descriptive Analytics

Descriptive analytics is the process of summarizing historical data and identifying
patterns and trends. It allows for detailed investigation to response questions such as
‘what has happened?’ and ‘what is currently happening?’ This type of analytics uses
historical and real-time data for insights on how to approach the future. The purpose
of descriptive analytics is to observe the causes/reasons behind the past success or
failure.

The descriptive analysis of data provides the following:

• Information about the certainty/uncertainty of the data,
• Indications of unexpected patterns,
• Estimates and summaries and organize them in graphs, charts and tables and
• Considerable observations for doing formal analysis.

Once the data is grouped, different statistical measures are used for analyzing data
and drawing conclusions. The data was analyzed descriptively in terms of

1. Measures of probability,
2. Measures of central tendency,
3. Measures of variability,
4. Measures of divergence from normality,
5. Graphical representation.

A measure of central tendency indicates the central value of distribution which
comprisesmean,medianandmode.However, the central value alone is not adequate
to completely describe the distribution. We require a measure of the spread/scatter
of actual data besides the measures of centrality. The standard deviation is more
accurate to find the measure of dispersion. The degree of dispersion is measured
by the measures of variability, and that may vary from one distribution to another.
Descriptive analysis is essential by the way it helps to determine the normality of
the distribution. A measure of divergence from normality comprises standard devi-
ation, skewness and kurtosis. A measure of probability includes standard error of
mean and fiduciary limits used to set up limits for a given degree of confidence. Sta-
tistical techniques can be applied for inferential analysis, to draw inferences/ make
predictions from the data. Graphic methods are used for translating numerical facts
into more realistic and understandable form.
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3.2.4 Predictive Analytics

Predictive analytics is defined to have datamodeling formaking confident predictions
about the future or any unknown events using business forecasting and simulation
which depends upon the observed past occurrences. These address the questions of
‘what will happen?’ and ‘why will it happen?’

Predictive model uses statistical methods to analyze current and historical facts
for making predictions [1]. Predictive analytics is used in actuarial science, capacity
planning, e-commerce, financial services, insurance, Internet security, marketing,
medical and health care, pharmaceuticals, retail sales, transportation, telecommuni-
cations, supply chain and other fields. Applications of predictive analytics in business
intelligence comprise customer segmentation, risk assessment, churn prevention,
sales forecasting, market analysis, financial modeling, etc.

Predictive modeling process is divided into three phases: plan, build and imple-
ment. Planning includes scoping and preparing. Predictive modeling process for a
wide range of businesses is depicted well in Fig. 3.2.

To build a predictive model, one must set clear objectives, cleanse and organize
the data, perform data treatment including missing values and outlier fixing, make a
descriptive analysis of the data with statistical distributions and create datasets used
for the model building. This may take around 40% of the overall time. The subphases

Fig. 3.2 Predictive modeling process
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of build the model are model and validate. Here, you will write model code, build
the model, calculate scores and validate the data. This is the part that can be left with
the data scientists or technical analysts. This might take around 20% of the overall
time. The subphases of action are deploy, assess and monitor. It involves deploy and
apply the model, generate ranking scores for customers or products (most popular
product), use the model outcomes for business purpose, estimate model performance
and monitor the model. This might take around 40% of the overall time.

Sentiment analysis is the most commonmodel of predictive analytics. This model
takes plain text as input and provides sentiment score as output which in turn deter-
mines whether the sentiment is neutral, positive or negative. The best example of
predictive analytics is to compute the credit score that helps financial institutions
like banking sectors to decide the probability of a customer paying credit bills on
time. Other models for performing predictive analytics are

• Time series analysis,
• Econometric analysis,
• Decision trees,
• Naive Bayes classifier,
• Ensembles,
• Boosting,
• Support vector machines,
• Linear and logistic regression,
• Artificial neural network,
• Natural language processing,
• Machine learning.

3.2.5 Data Science

Data science is a field associated with data capturing, cleansing, preparation, align-
ment and analysis to extract information from the data to solve any kind of problem.
It is a combination of statistics, mathematics and programming. One way of assess-
ing how an organization currently interacts with data and determines where they
fit to achieve increasingly accurate hindsight, insight and foresight and its different
ecosystems in four fundamental ways [2] (i) descriptive analytics, (ii) diagnostic ana-
lytics, (iii) predictive analytics and (iv) prescriptive analytics by Gartner’s analytics
maturity model is illustrated in Fig. 3.3.

The four types of analytics [3] and their association along with the dimensions
from rule-based to probability-based and the dimensions of time (past, present and
future) are depicted in Fig. 3.4.

The focus of the top left and the bottom right quadrants, i.e., diagnostic and
prescriptive analytics, is past and future, while the focus of the bottom left and top
right quadrants, i.e., descriptive and predictive analytics, is past and future. The
summary is provided in Table 3.2.
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Fig. 3.3 Gartner’s analytics maturity model

Fig. 3.4 Four types of analytics

Table 3.2 Key differences of four types of analytics

Descriptive analytics Diagnostic analytics Predictive analytics Prescriptive analytics

Backward focus Backward focus Forward focus Forward focus

Rule-based Probability-based Probability-based Rule-based

Live data that is
comprehensive,
accurate and good
visualization

Find out the root
cause of the problem
and remove all
confusing
information

Historical pattern to
predict specific
outcomes using
algorithms

Applying advanced
analytical techniques
to make specific
recommendations
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Consider an example of the story of The Jungle Book. Baloo a bear hired a data
analyst (Mowgli) to help find his food honey. Mowgli had access to a large database,
which consisted of data about the jungle, road map, its creatures, mountains, trees,
bushes, places of honey and events happening in the jungle. Mowgli presented Baloo
with a detailed report summarizing where he found honey in the last six months,
which helped Baloo decide where to go for hunting next; this process is called
descriptive analytics.

Subsequently, Mowgli has estimated the probability of finding honey at certain
places with a given time, using advanced machine learning techniques. This is pre-
dictive analytics. Next, Mowgli has identified and presented the areas that are not
fit for hunting by finding their root cause why the places are not suitable. This is
diagnostic analytics. Further, Mowgli has explored a set of possible actions and sug-
gested/recommended actions for getting more honey. This is prescriptive analytics.
Also, he identified shortest routes in the jungle for Baloo to minimize his efforts in
finding food. This is called as optimization. We already had enough discussion on
descriptive and predicative analytics; further let go through the explanatory details
of diagnostic and prescriptive analytics.

Diagnostic Analytics
It is a form of analytics which examines data to answer the question ‘why did it
happen?’ It is kind of root cause analysis that focuses on the processes and causes,
key factors and unseen patterns.

Steps for diagnostic analytics:

(i) Identify the worthy problem for investigation.
(ii) Perform the Analysis: This step finds a statistically valid relationship between

two datasets, where the upturn or downturn occurs. Diagnostic analytics can
be done by the following techniques

• Multiregression,
• Self-organizing maps,
• Cluster and factor analysis,
• Bayesian clustering,
• k-nearest neighbors,
• Principal component analysis,
• Graph and affinity analysis.

(iii) Filter the Diagnoses: Analyst must identify the single or at most two influential
factors from the set of possible causes.

Prescriptive Analytics
This model determines what actions to take in order to change undesirable trends.
Prescriptive analytics is defined as deriving optimal planning decisions given the
predicted future and addressing questions such as ‘what shall we do?’ and ‘why
shall we do it?’ Prescriptive analytics is based on [4]
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• Optimization that helps achieving the best outcomes,
• Stochastic optimization that helps understanding how to identify data uncertainties
to make better decisions and accomplish the best outcome.

Prescriptive analytics is a combination of data, business rules and mathematical
models. It uses optimization and simulation models such as sensitivity and scenario
analysis, linear and nonlinear programming and Monte Carlo simulation.

3.2.6 Network Science

In networked systems, standardized graph-theoretic methods are used for analyzing
data. These methods have the assumption that we precisely know the microscopic
details such as how the nodes are interconnected with each other. Mapping network
topologies can be costly, time consuming, inaccurate, and the resources they demand
are often unaffordable, because the datasets comprised billions of nodes and hundreds
of billions of links in large decentralized systems like Internet. This problem can be
addressed by combining methods from statistical physics and random graph theory.

The following steps are used for analyzing large-scale networked systems [5]:

Step 1: To compute the aggregate statistics of interest. It includes the number of
nodes, the density of links, the distribution of node degrees, diameter of a
network, shortest path length between pair of nodes, correlations between
neighboring nodes, clustering coefficient, connectedness, node centrality
and node influence. In distributed systems, this can be computed and esti-
mated efficiently by sensible sampling techniques.

Step 2: To determine the statistical entropy ensembles. This can be achieved by
probability spaces by assigning probabilities to all possible network realiza-
tions that are consistent with the given aggregate statistics using analytical
tools like computational statistics methods of metropolis sampling.

Step 3: Finally, derive the anticipated properties of a system based on aggregate
statistics of its network topology.

3.3 Computing Models

Big data grows super-fast in four dimensions (4Vs: volume, variety, velocity and
veracity) and needs advanced data structures, new models for extracting the details
and novel algorithmic approach for computation. This section focuses on data struc-
ture for big data, feature engineering and computational algorithm.
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3.3.1 Data Structures for Big Data

In big data, special data structures are required to handle huge dataset. Hash tables,
train/atrain and tree-based structures like B trees and K-D trees are best suited for
handling big data.

Hash table
Hash tables use hash function to compute the index and map keys to values. Prob-
abilistic data structures play a vital role in approximate algorithm implementation
in big data [6]. These data structures use hash functions to randomize the items and
support set operations such as union and intersection and therefore can be easily par-
allelized. This section deals with four commonly used probabilistic data structures:
membership query—Bloom filter, HyperLogLog, count–min sketch and MinHash
[7].

Membership Query—Bloom filter
A Bloom filter proposed by Burton Howard Bloom in 1970 is a space-efficient
probabilistic data structure that allows one to reduce the number of exact checks,
which is used to test whether an element is ‘a member’ or ‘not a member’ of a
set. Here, the query returns the probability with the result either ‘may be in set’ or
‘definitely not in set.’

Bit vector is the base data structure for a Bloom filter. Each empty Bloom filter is
a bit array of ‘m’ bits and is initially unset.

0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12

When an element is added to the filter, it is hashed by ‘k’ functions, h1, h2 …
hk mod by ‘m’, resulting in ‘k’ indices into the bit array, and the respective index is
set to ‘1’ [8]. Figure 3.5 shows how the array gets updated for the element with five
distinct hashing functions h1, h2, h3, h4 and h5.

To query the membership of an element, we hash the element again with the same
hashing functions and check if each corresponding bit is set. If any one of them is
zero, then conclude the element is not present.

Suppose you are generating an online account for a shoppingWeb site, and you are
asked to enter a username during sign-up; as you entered, you will get an immediate
response, ‘Username already exists.’ Bloom filter data structure can perform this
task very quickly by searching from the millions of registered users.

Consider you want to add a username ‘Smilie’ into the dataset and five hash
functions, h1, h2, h3, h4 and h5 are applied on the string. First apply the hash function
as follows
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Fig. 3.5 Bloom filter hashing

h1(“Smilie”)%13 = 10
h2(“Smilie”)%13 = 4
h3(“Smilie”)%13 = 0
h4(“Smilie”)%13 = 11
h5(“Smilie”)%13 = 6

Set the bits to 1 for the indices 10, 4, 0, 11 and 6 as given in Fig. 3.6.
Similarly, enter the next username ‘Laughie’ by applying the same hash functions.

h1(“Laughie”)%13 = 3
h2(“Laughie”)%13 = 5
h3(“Laughie”)%13 = 8
h4(“Laughie”)%13 = 10
h5(“Laughie”)%13 = 12

Set the bits to 1 for the indices 3, 5, 8, 10 and 12 as given in Fig. 3.7.
Now check the availability of the username ‘Smilie’ is presented in filter or not.

For performing this task, apply hashing using h1, h2, h3, h4 and h5 functions on the
string and check if all these indices are set to 1. If all the corresponding bits are set,
then the string is ‘probably present.’ If any one of them indicates 0, then the string
is ‘definitely not present.’

Perhaps you will have a query, why this uncertainty of ‘probably present’, why
not ‘definitely present’? Let us consider another new username ‘Bean.’ Suppose we
want to check whether ‘Bean’ is available or not. The result after applying the hash
functions h1, h2, h3, h4 and h5 is as follows

h1(“Bean”)%13 = 6
h2(“Bean”)%13 = 4
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Fig. 3.6 Bloom filter after inserting a string ‘Smilie’

Fig. 3.7 Bloom filter after inserting a string ‘Laughie’
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h3(“Bean”)%13 = 0
h4(“Bean”)%13 = 11
h5(“Bean”)%13 = 12

If we check the bit array after applying hash function to the string ‘Bean,’ bits at
these indices are set to 1 but the string ‘Bean’ was never added earlier to the Bloom
filter. As the indices are already set by some other elements, Bloom filter incorrectly
claims that ‘Bean’ is present and thus will generate a false-positive result (Fig. 3.8).

We can diminish the probability of false-positive result by controlling the size of
the Bloom filter.

• More size/space decrease false positives.
• More number of hash functions lesser false positives.

Consider a set element A = {a1, a2, …, an} of n elements. Bloom filter defines
membership information with a bit vector ‘V ’ of length ‘m’. For this, ‘k’ hash func-
tions, h1, h2, h3 … hk with hi : X{1 . . .m}, are used and the procedure is described
below.

Procedure BloomFilter (ai elements in set Arr, hash-functions hj, integer m)
filter = Initialize m bits to 0
foreach ai in Arr:
foreach hash-function hj:
filter[hj(ai)] = 1

end foreach
end foreach

return filter

Fig. 3.8 Bloom filter for searching a string ‘Bean’
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Probability of false positivity ‘P’ can be calculated as:

P =
(
1 −

[
1 − 1

m

]kn
)k

where

‘m’ is the size of bit array,
‘k’ is the number of hash functions and
‘n’ is the number of expected elements to be inserted.

Size of bit array ‘m’ can be calculated as [9]:

m = n ln P

(ln 2)2

Optimum number of hash functions ‘k’ can be calculated as:

k = m

n
ln 2

where ‘k’ must be a positive integer.

Cardinality—HyperLogLog
HyperLogLog (HLL) is an extension of LogLog algorithm derived from Flajolet—
Martin algorithm (1984). It is a probabilistic data structure used to estimate the
cardinality of a dataset to solve the count-distinct problem, approximating the num-
ber of unique elements in a multiset. It required an amount of memory proportional
to the cardinality for calculating the exact cardinality of a multiset, which is not
practical for huge datasets. HLL algorithm uses significantly less memory at the cost
of obtaining only an approximation of the cardinality [10]. As its name implies, HLL
requires O(log2log2n) memory where n is the cardinality of the dataset.

HyperLogLog algorithm is used to estimate how many unique items are in a list.
Suppose a web page has billions of users and we want to compute the number of
unique visits to our web page. A naive approach would be to store each distinctive
user id in a set, and then the size of the set would be considered by cardinality. When
we are dealing with enormous volumes of datasets, counting cardinality by the said
way will be ineffective because the dataset will occupy a lot of memory. But if we do
not need the exact number of distinct visits, then we can use HLL as it was designed
for estimating the count of billions of unique values.

Four main operations of HLL are:

1. Add a new element to the set.
2. Count for obtaining the cardinality of the set.
3. Merge for obtaining the union of two sets.
4. Cardinality of the intersection.
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HyperLogLog [11]
def add(cookie_id: String): Unit
def cardinality( ):
//|A|

def merge(other: HyperLogLog):
//|A ∪ B|

def intersect(other: HyperLogLog):
//|A ∩ B| = |A| + |B| − |A ∪ B|

Frequency—Count–Min sketch
The count–min sketch (CM sketch) is a probabilistic data structure which is pro-
posed by G. Cormode and S. Muthukrishnan that assists as a frequency table of
events/elements in a stream of data. CM sketch maps events to frequencies using
hash functions, but unlike a hash table it uses only sublinear space to count fre-
quencies due to collisions [12]. The actual sketch data structure is a matrix with w
columns and d rows [13]. Each row is mapped with a hash function as in Fig. 3.9.

Fig. 3.9 Count–min data structure
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Initially, set all the cell values to 0.

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

When an element arrives, it is hashed with the hash function for each row and the
corresponding values in the cells (row d and column w) will be incremented by one.

Let us assume elements arrive one after another and the hashes for the first element
f 1 are: h1(f 1) = 6, h2(f 1) = 2, h3(f 1) = 5, h4(f 1) = 1 and h5(f 1) = 7. The following
table shows the matrix current state after incrementing the values.

Let us continue to add the second element f 2, h1(f 2) = 5, h2(f 2) = 1, h3(f 2) = 5,
h4(f 2) = 8 and h5(f 2) = 4, and the table is altered as
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In our contrived example, almost element f 2 hashes map to distinct counters, with
an exception being the collision of h3(f 1) and h3(f 2). Because of getting the same
hash value, the fifth counter of h3 now holds the value 2.

The CM sketch is used to solve the approximate Heavy Hitters (HH) problem
[14]. The goal of HH problem is to find all elements that occur at least n/k times in
the array. It has lots of applications.

1. Computing popular products,
2. Computing frequent search queries,
3. Identifying heavy TCP flows and
4. Identifying volatile stocks.

As hash functions are cheap to compute and produce, accessing, reading orwriting
the data structure is performed in constant time. The recent research in count–min log
sketch which was proposed byG. Pitel and G. Fouquier (2015) essentially substitutes
CMsketch linear registerswith logarithmic ones to reduce the relative error and allow
higher counts without necessary to increase the width of counter registers.

Similarity—MinHash
Similarity is a numerical measurement to check how two objects are alike. The essen-
tial steps for finding similarity are: (i) Shingling is a process of converting documents,
emails, etc., to sets, (ii) min-hashing reflects the set similarity by converting large
sets to short signature sets, and (iii) locality sensitive hashing focuses on pairs of
signatures likely to be similar (Fig. 3.10).

Fig. 3.10 Steps for finding similarity
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Fig. 3.11 Jaccard similarity

MinHash was invented by Andrei Broder (1997) and quickly estimates how sim-
ilar two sets are. Initially, AltaVista search engine used MinHash scheme to detect
and eliminate the duplicate web pages from the search results. It is also applied in
association rule learning and clustering documents by similarity of their set of words.
It is used to find pairs that are ‘near duplicates’ from a large number of text docu-
ments. The applications are to locate or approximate mirror web sites, plagiarism
check, web spam detection, ordering of words, finding similar news articles from
many news sites, etc.

MinHash provides a fast approximation to the Jaccard similarity [15]. The Jaccard
similarity of two sets is the size of their intersection divided by size of their union
(Fig. 3.11).

J (A, B) = |A ∩ B|
|A ∪ B|

If the sets are identical, then J = 1; if they do not share any member, then J = 0;
if they are somewhere in between, then 0 ≤ J ≤ 1.

MinHash uses hashing function to quickly estimate Jaccard similarities. Here, the
hash function (h) maps the members of A and B to different integers. hmin(S) finds
the member ‘x’ that results the lowest of a set S. It can be computed by passing every
member of a set S through the hash function h. The concept is to condense the large
sets of unique shingles into much smaller representations called ‘signatures.’ We
can use these signatures alone to measure the similarity between documents. These
signatures do not give the exact similarity, but the estimates they provide are close.

Consider the below input shingle matrix where column represents documents and
rows represent shingles.
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Define a hash function h as by permuting the matrix rows randomly. Let
perm1 = (12345), perm2 = (54321) and perm3 = (34512). The MinHash func-
tion hmin(S) = the first row in the permuted order in which column C has ‘1’; i.e.,
find the index that the first ‘1’ appears for the permuted order.

For the first permutation Perm1 (12345), first ‘1’ appears in column 1, 2 and 1.
For the second permutation Perm2 (54321), first ‘1’ appears in column 2, 1 and 2.
Similarly for the third permutation Perm3 (34512), first ‘1’ appears in column 1, 3
and 2. The signature matrix [16] after applying hash function is as follows.

Perm1 = (12345) 1 2 1

perm2 = (54321) 2 1 2

perm3 = (34512) 1 3 2

The similarity of signature matrix can be calculated by the number of similar
documents (s)/no. of documents (d). The similarity matrix is as follows.
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Fig. 3.12 Min-hashing

1, 2 1, 3 2, 3

col/col
( |A∩B|

|A∪B|
)

0/5 = 0 2/4 = 0.5 1/4 = 0.25

sig/sig (s/d) 0/3 = 0 2/3 = 0.67 0/3 = 0

The other representation (the same sequence of permutation will be considered
for calculation) of signature matrix for the given input matrix is as follows:

Perm1 = (12345) 1 2 1

perm2 = (54321) 4 5 4

perm3 = (34512) 3 5 4

Another way of representing signature matrix for the given input matrix is as
follows. Consider 7 × 4 input matrix with three permutations after applying hash
functions, perm1 = (3472615), perm2 = (4213675), perm3 = (2376154), and the
corresponding 3× 4 signature matrix is given in Fig. 3.12. Here, the signature matrix
is formed by elements of the permutation based on first element to map a ‘1’ value
from the element sequence start at 1. First row of the signature matrix is formed from
the first element 1 with row value (1 0 1 0). Second element 2 with row values (0 1 0
1) can replace the above with (1 2 1 2). The row gets completed if there is no more
‘0’s. Second row of the signature matrix is formed from the first element (0 1 0 1)
which will be further replaced as (2 1 0 1), and then third column ‘0’ is updated with
4 since fourth element of the permutation is the first to map ‘1’.

With min-hashing, we can effectively solve the problem of space complexity by
eliminating the sparseness and at the same time preserve the similarity.

Tree-based Data Structure
The purpose of a tree is to store naturally hierarchical information, such as a file
system. B trees, M trees, R trees (R*, R+ and X tree), T trees, K-D trees, predicate
trees, LSM trees and fractal tree are the different forms of trees to handle big data.
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B trees are efficient data structure for storing big data and fast retrieval. It was
proposed by Rudolf Bayer for maintaining large database. In a binary tree, each node
has at most two children, and time complexity for performing any search operation
is O(log2 N). B tree is a variation of binary tree, which is a self-balancing tree, each
node can haveM children, whereM is called fan-out or branching factor, and because
of its large branching factor it is considered as one of the fastest data structures. It
thus attains a time complexity of O(logM N) for each search operation.

B tree is a one-dimensional index structure that does not work well and is not
suitable for spatial data because search space is multidimensional. To resolve this
issue, a dynamic data structure R tree was proposed by Antonin Guttman in 1982
for the spatial searching. Consider massive data that cannot fit in main memory.
When the number of keys is high, the data is read in the form of blocks from the
disk. So, disk access time is higher than main memory access time. The main motive
of using B trees is to decrease the number of disk accesses by using a hierarchical
index structure. Internal nodes may join and split whenever a node is inserted or
deleted because range is fixed. This may require rebalancing of tree after insertion
and deletion.

The order in B tree is defined as the maximum number of children for each node.
A B tree of order ‘n’ (Fig. 3.13) has the following properties [17]:

1. A B tree is defined by minimum degree ‘n’ that depends upon the disk block
size.

2. Every node has maximum ‘n’ and minimum ‘n/2’ children.
3. A non-leaf node has ‘n’ children, and it contains ‘n − 1’ keys.
4. All leaves are at the same level.
5. All keys of a node are sorted in increasing order. The children between two keys

‘k1’ and ‘k2’ contain the keys in the range from ‘k1’ and ‘k2’.
6. Time complexity to search, insert and delete in a B tree is O(logM N).

K-D Trees
A K-D tree or K-dimensional tree was invented by Jon Bentley in 1970 and is a
binary search tree data structure for organizing some number of points in a ‘K’-
dimensional space. They are very useful for performing range search and nearest

Fig. 3.13 A B tree of order 5
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neighbor search. K-D trees have several applications, including classifying astro-
nomical objects, computer animation, speedup neural networks, data mining and
image retrieval.

The algorithms to insert and search are same as BST with an exception at the root
we use the x-coordinate. If the point to be inserted has a smaller x-coordinate value
than the root, go left; otherwise go right. At the next level, we use the y-coordinate,
and then at the next level we use the x-coordinate, and so forth [18].

Let us consider the root has an x-aligned plane, then all its children would have
y-aligned planes, all its grandchildren would have x-aligned planes, all its great-
grandchildren would have y-aligned planes and the sequence alternatively continues
like this. For example, insert the points (5, 7), (17, 15), (13, 16), (6, 12), (9, 1), (2,
8) and (10, 19) in an empty K-D tree, where K = 2. The process of insertion is as
follows:

• Insert (5, 7): Initially, as the tree is empty, make (5, 7) as the root node and X-
aligned.

• Insert (17, 15): During insertion firstly compare the new node point with the root
node point. Since root node is X-aligned, the X-coordinate value will be used for
comparison for determining the new node to be inserted as left subtree or right
subtree. If X-coordinate value of the new point is less than X-coordinate value of
the root node point, then insert the new node as a left subtree else insert it as a
right subtree. Here, (17, 15) is greater than (5, 7), this will be inserted as the right
subtree of (5, 7) and is Y-aligned.

• Insert (13, 16): X-coordinate value of this point is greater than X-coordinate value
of root node point. So, this will lie in the right subtree of (5, 7). Then, compare
Y-coordinate value of this point with (17, 15). As Y-coordinate value is greater
than (17, 15), insert it as a right subtree.
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• Similarly insert (6, 12).

• Insert other points (9, 1), (2, 8) and (10, 19).

The status of 2-D tree after inserting elements (5, 7), (17, 15), (13, 16), (6, 12),
(9, 1), (2, 8) and (10, 19) is given in Fig. 3.14 and the corresponding plotted graph
is shown in (Fig. 3.15).

Algorithm for insertion
Insert (Keypoint key, KDTreeNode t, int level)
{

typekey key[];
if (t = = null)
t = new KDTreeNode (key)

else if (key = = t.data)
Error // Duplicate, already exist

else if (key[level] < t.data[level])
t.left = insert (key, t.left, (level + 1) % D)

else
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Fig. 3.14 2-D tree after
insertion

Fig. 3.15 K-D tree with a plotted graph

t.right = insert (key, t.right, (level + 1) % D)
//D-Dimension;

return t

}

The process of deletion is as follows: If a target node (node to be deleted) is a
leaf node, simply delete it. If a target node has a right child as not NULL, then find
the minimum of current node’s dimension (X or Y ) in right subtree, replace the node
with minimum point, and delete the target node. Else if a target node has left child as
not NULL, then find minimum of current node’s dimension in left subtree, replace
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Fig. 3.16 K-D tree after deletion of X-coordinate point

the node with minimum point, delete the target node, and then make the new left
subtree as right child of current node [19].

• Delete (5, 7): Since right child is not NULL and dimension of node is x, we find the
node with minimum x value in right subtree. The node (6, 12) has the minimum x
value, and we replace (5, 7) with (6, 12) and then delete (5, 7) (Fig. 3.16).

• Delete (17, 15): Since right child is not NULL and dimension of node is y, we find
the node with minimum y value in right subtree. The node (13, 16) has a minimum
y value, and we replace (17, 15) with (13, 16) and delete (17, 15) (Fig. 3.17).

• Delete (17, 15)—no right subtree: Since right child is NULL and dimension of
node is y, we find the node with minimum y value in left subtree. The node (9, 1)
has a minimum y value, and we replace (17, 15) with (9, 1) and delete (17, 15).
Finally, we have to modify the tree by making new left subtree as right subtree of
(9, 1) (Fig. 3.18).

Fig. 3.17 K-D tree after deletion of Y-coordinate point
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Fig. 3.18 K-D tree after deletion of Y-coordinate point with NULL right tree

Algorithm for finding a minimum

Keypoint findmin (KDTreeNode t, int d, int level)
{

if (t = = NULL)  // empty tree 
return NULL 

// t splits on a same dimension; search only in left subtree 
if (level = = d)

if (t.left = = NULL)
return t.data 

else 
return findmin (t.left, d, (level+1)%D)

// t splits on a different dimension; search both subtrees 
else

return minimum (t.data, 
findmin (t.left, d, (level+1)%D),  
findmin (t.right, d, (level+1)%D))       

}
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Algorithm for deletion:

Keypoint delete (Keypoint key, KDTreeNode t, int level)
{

if (t = = NULL)
//element not found! 

next_level= (level+1)%D
if( key = = t.data)  

// find min(level) from right subtree
if (t.right != NULL)

t.data = findmin (t.right, level, next_level)
t.right = delete (t.data, t.right, next_level) 

 // swap subtrees and use min(level) from new right: 
else if (t.left != NULL)

t.data = findmin (t.left, level, next_level) 
t.right = delete (t.data, t.left, next_level)

else 
t = = null // leaf node, just remove it

// search for the point 
else if( key[level] < t.data[level])

t.left = delete (key, t.left, next_level) 
else 

t.right = delete (key, t.right, next_level)
return t

}

K-D trees are useful for performing nearest neighbor (NN) search and range
search. The NN search is used to locate the point in the tree that is closest to a given
input point. We can get k-nearest neighbors, k approximate nearest neighbors, all
neighbors within specified radius and all neighbors within a box. This search can be
done efficiently by speedily eliminating large portions of the search space. A range
search finds the points lie within the range of parameters.

Train and Atrian
Big data in most of the cases deals with heterogeneity types of data including struc-
tured, semi-structured and unstructured data. ‘r-train’ for handling homogeneous data
structure and ‘r-atrain’ for handling heterogeneous data structure have been intro-
duced exclusively for dealing large volume of complex data. Both the data structures
‘r-train’ (‘train,’ in short) and ‘r-atrain’ (‘atrain,’ in short), where r is a natural num-
ber, are new types of robust dynamic data structures which can store big data in an
efficient and flexible way (Biswas [20]).
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3.3.2 Feature Engineering for Structured Data

Feature engineering is a subset of the data processing component, where necessary
features are analyzed and selected. It is vital and challenging to extract and select
the right data for analysis from the huge dataset.

3.3.2.1 Feature Construction

Feature construction is a process that findsmissing information about the associations
between features and expanding the feature space by generating additional features
that is useful for prediction and clustering. It involves automatic transformation of
a given set of original input features to create a new set of powerful features by
revealing the hidden patterns and that helps better achievement of improvements in
accuracy and comprehensibility.

3.3.2.2 Feature Extraction

Feature extraction uses functional mapping to extract a set of new features from
existing features. It is a process of transforming the original features into a lower-
dimensional space. The ultimate goal of feature extraction process is to find a least set
of new features through some transformation based on performance measures. Sev-
eral algorithms exist for feature extraction. A feedforward neural network approach
and principal component analysis (PCA) algorithms play a vital role in feature extrac-
tion by replacing original ‘n’ attributes by other set of ‘m’ new features.

3.3.2.3 Feature Selection

Feature selection is a data preprocessing step that selects a subset of features from the
existing original features without a transformation for classification and data mining
tasks. It is a process of choosing a subset of ‘m’ features from the original set of
‘n’ features, where m ≤ n. The role of feature selection is to optimize the predictive
accuracy and speed up the process of learning algorithm results by reducing the
feature space.

Algorithms for feature selection:

1. Exhaustive and Complete Approaches

Branch and Bound (BB): This technique of selection guaranteed to find and give
the optimal feature subset without checking all possible subsets. Branching is the
construction process of tree, and bounding is the process of finding optimal feature
set by traversing the constructed tree [21]. First start from the full set of original
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features, and then remove features using depth-first strategy. Three features reduced
to two features as depicted in Fig. 3.19.

For each tree level, a limited number of subtrees are generated by deleting one
feature from the set of features from the parent node (Fig. 3.20).

2. Heuristic Approaches

In order to select a subset of available features by removing unnecessary features to
the categorization task novel heuristic algorithms such as sequential forward selec-
tion, sequential backward search and their hybrid algorithms are used.

Fig. 3.19 Subtree generation using BB

No. of levels = n-r = 5-2 = 3
No. of leaf nodes = nCr = 5C3 = 10 

Fig. 3.20 Reduce five features into two features using BB
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Sequential Forward Search (SFS): Sequential forward method started with an
empty set and gradually increased by adding one best feature at a time. Starting from
the empty set, it sequentially adds the new feature x+ that maximizes (Yk + x+) when
combined with the existing features Yk .

Steps for SFS:

1. Start with an empty set Y 0 = {∅}.
2. Select the next best feature x+ = arg x /∈ Yk max J(Yk + x).
3. Update Yk+1 = Yk + x+; k = k + 1.
4. Go to step 2.

Sequential Backward Search (SBS): SBS is initiated with a full set and gradually
reduced by removing one worst feature at a time. Starting from the full set, it sequen-
tially removes the unwanted feature x− that least reduces the value of the objective
function (Y − x−).

Steps for SBS:

1. Start with the full set Y 0 = X.
2. Remove the worst feature x− = arg x ∈ Yk max J(Yk − x).
3. Update Yk+1 = Yk − x− = Yk − x−; k = k + 1.
4. Go to step 2.

Bidirectional Search (BDS): BDS is a parallel implementation of SFS and SBS.
SFS is executed from the empty set, whereas SBS is executed from the full set. In
BDS, features already selected by SFS are not removed by SBS as well as features
already removed by SBS are not selected by SFS to guarantee the SFS and SBS
converge to the same solution.

3. Non-deterministic Approaches

In this stochastic approach, features are not sequentially addedor removed froma sub-
set. These allow search to follow feature subsets that are randomly generated. Genet-
ics algorithms and simulated annealing are two often-mentioned methods. Other
stochastic algorithms are Las Vegas Filter (LVF) and Las Vegas Wrapper (LVW).
LVF is a random procedure to generate random subsets and evaluation procedure
that checks that is each subset satisfies the chosen measure. One of the parameters
here is an inconsistency rate.

4. Instance-based Approaches

ReliefF is a multivariate or instance-based method that chooses the features that are
the most distinct among other classes. ReliefF ranks and selects top-scoring features
for feature selection by calculating a feature score for each feature. ReliefF feature
scoring is based on the identification of feature value differences between nearest
neighbor instance pairs.
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3.3.2.4 Feature Learning

Representation learning or feature learning is a set of techniques that automatically
transform the input data to the representations needed for feature detection or clas-
sification [22]. This removes the cumbersome of manual feature engineering by
allowing a machine to both learn and use the features to perform specific machine
learning tasks.

It can be either supervised or unsupervised feature learning. Supervised learning
features are learned with labeled input data and are the process of predicting an
output variable (Y ) from input variables (X) using suitable algorithm to learn the
mapping function from the input to the output; the examples include supervisedneural
networks, multilayer perceptron and supervised dictionary learning. In unsupervised
feature learning, features are learned with unlabeled input data and are used to find
hidden structure in the data; the examples include dictionary learning, independent
component analysis, autoencoders, matrix factorization and other clustering forms.

3.3.2.5 Ensemble Learning

Ensemble learning is a machine learning model where the same problem can be
solved by training multiple learners [23]. Ensemble learning model tries to build a
set of hypotheses and combine them to use. Ensemble learning algorithms are general
methods that enhance the accuracy of predictive or classification models.

Ensemble learning techniques
Bagging: It gets its name because it combines bootstrapping and aggregation to
form an ensemble model. Bagging implements similar learners on small sample
populations by taking an average of all predictions. In generalized bagging, different
learners can be used on a different population. This helps us to reduce the variance
error. The process of bagging is depicted in Fig. 3.21.

Random forestmodel is a good example of bagging. Random forestmodels decide
where to split based on a random selection of features rather than splitting the same
features at each node throughout. This level of differentiation gives a better ensem-
ble aggregation producing a more accurate predictor results. Final prediction by
aggregating the results from different tress is depicted in Fig. 3.22.

Boosting: It is an iterative technique which adjusts the weight of an observa-
tion in each iteration based on the previous last classification. That is, it tries to
increase/decrease the weight of the observation if it was wrongly or imperfectly
classified. Boosting in general aims to decrease the bias error and builds strong
predictive models.

Stacking: It is a combining model which combines output from different learn-
ers [24]. This decreases bias or variance error depending on merging the learners
(Fig. 3.23).



3.3 Computing Models 77

Fig. 3.21 Bagging

Fig. 3.22 Bagging—random forest [28]
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Fig. 3.23 Stacking

3.3.3 Computational Algorithm

Businesses are increasingly relying on the analysis of their massive amount of data to
predict consumer response and recommend products to their customers. However, to
analyze such enormous data a number of algorithms have been built for data scientists
to create analytic platforms. Classification, regression and similarity matching are
the fundamental principles on which many of the algorithms are used in applied data
science to address big data issues.

There are a number of algorithms that exist; however, the most commonly used
algorithms [25] are

• K-means clustering,
• Association rule mining,
• Linear regression,
• Logistic regression,
• C4.5,
• Support vector machine (SVM),
• Apriori,
• Expectation–maximization (EM),
• AdaBoost and
• Naïve Bayesian.

3.3.4 Programming Models

Programming model is an abstraction over existing machinery or infrastructure. It
is a model of computation to write computer programs effectively and efficiently
over distributed file systems using big data and easy to cope up with all the potential
issues using a set of abstract runtime libraries and programming languages.

Necessary requirements for big data programming models include the following.
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1. Support big data operations.

• Split volumes of data.
• Access data fast.
• Distribute computations to nodes.
• Combine when done.

2. Handle fault tolerance.

• Replicate data partitions.
• Recover files when needed.

3. Enable scale-out by adding more racks.
4. Optimized for specific data types such as document, graph, table, key values,

streams and multimedia.

MapReduce, message passing, directed acyclic graph, workflow, bulk syn-
chronous parallel and SQL-like are the standard programming models for analyzing
large dataset.

3.3.5 Parallel Programming

Data analysis with parallel programming is used for analyzing data using parallel
processes that run concurrently on multiple computers. Here, the entire dataset is
divided into smaller chunks and sent toworkers, where a similar parallel computation
takes place on those chunks of data, the results are further accrued back, and finally
the result is computed. Map and Reduce applications are generally linearly scalable
to thousands of nodes because Map and Reduce functions are designed to facilitate
parallelism [26].

Map and Reduce
TheMapandReduce is a newparallel processing frameworkwith twomain functions,
namely (i) Map function and (ii) Reduce function in functional programming. In the
Map Phase, the Map function ‘f ’ is applied to every data ‘chunk’ that produces
an intermediate key–value pair. All intermediate pairs are then grouped based on a
common intermediate key and passed into the Reduce function. In the Reduce Phase,
the Reduce function ‘g’ is applied once to all values with the same key. Hadoop is
its open-source implementation on a single computing node or on cluster of nodes.
The structure of Map and Reduce is given in Fig. 3.24.
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Fig. 3.24 Map and Reduce structure [29]

3.3.6 Functional Programming

In functional programming, the computation is considered as an elegance of build-
ing a structure and elements including programming interfaces and calculation of
functions that applied on input data sources [27]. Here, the programming provides
framework for declarations or expressions and functional inputs, instead of writ-
ing computing statements. Functional programs are simpler to write, understand,
maintain and also easy to debug. Compared to OOP, functional programs are more
compact and in-built for data-driven applications. Spark, Flink and SQL-like are the
example framework for functional programming.

3.3.7 Distributed Programming

Analytics using big data technologies enable to make better human- and machine-
level decisions in a fast and predictable way. Distributed computing principles are the
keys to big data technologies and analytics that associated with predictive modeling,
storage, access, transfer and visualization of data. Hadoop supports distributed com-
puting using MapReduce that uses HDFS—Hadoop Distributed File System that is
aimed for job distribution, balancing, recovery, scheduler, etc.
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3.4 Conclusion

The art of modeling involves selecting the right datasets, variables, algorithms and
appropriate techniques to format data for solving any kind of business problems in an
efficient way. An analytical model estimates or classifies data values by essentially
drawing a line of conclusion through data points. When the model is applied to new
data, it predicts outcomes based on historical patterns. The applications of Big Data
Analytics assist all analytics professionals, statisticians and data scientists to analyze
dynamic and large volumes of data that are often left untapped by conventional
business intelligence and analytics programs. Use of Big Data Analytics can produce
big value to business by reducing complex datasets to actionable business intelligence
by making more accurate business decisions.

3.5 Review Questions

1. Compare and contrast four types of analytics.
2. Discuss the biggest dataset you have worked with, in terms of training set size,

algorithm implemented in production mode to process billions of transactions.
3. Explain any two data structures to handle big data with example.
4. Differentiate count–min sketch and MinHash data structures.
5. Why feature selection is important in data analysis?
6. Suppose you are using a bagging-based algorithm say a random forest in model

building. Describe its process of generating hundreds of trees (say T1, T2… Tn)
and aggregating the results.

7. Illustrate with example any two ensemble learning techniques.
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