
Chapter 17
Emerging Research Trends and New
Horizons

17.1 Introduction

The upcoming new horizons and recent research trends in Big Data Analytics frame-
works, techniques and algorithms are as reflected in research papers recently pub-
lished in conferences such as ACM International Conference on Knowledge Dis-
covery and Data Mining (ACM SIG KDD), SIAM International Conference on
Data Mining (SDM), IEEE International Conference on Data Engineering (ICDE)
and ACM International Conference on Information and Knowledge Management
(CIKM). In this chapter, we shall survey the research trends and the possible new
horizons coming up in Big Data Analytics.

Current research areas include data mining, pattern recognition, natural language
processing, business intelligence, collective intelligence, machine intelligence and
web intelligence.

17.2 Data Mining

Data mining problems of interest include outlier detection, community detection,
sequential pattern mining, network clustering, feature extraction, causal inference,
parallel and distributed mining and predictive analytics. The problem of representing
complex training data in a simple form suitable for statistical analysis permeates
a host of applications, including network traffic and medical and biological data
analysis, social webmining, e-Commerce, recommender systems and computational
advertising.
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17.3 Data Streams, Dynamic Network Analysis
and Adversarial Learning

The literature taking into account the management of uncertain data at scale focuses
on the management of streaming and dynamic data, likely to be changing in time. In
this chapter, we shall survey the state-of-the-art in adversarial machine learning and
dynamic network analysis for Big Data samples [1–3].

Adversarial learning [4–7] accounts for changes to data by an intelligent adver-
sary. Dynamic network analysis accounts for changes to data modeling real-world
phenomena as complex networks in time. The dynamic data usually considered is
either physical measurements or the World Wide Web data at different levels of
granularity and complicity. With the emergence of Big Data systems in computer
science, research into adversarial learning and dynamic networks borrow ideas from
a wide spectrum of subjects such as mathematics, statistics, physics, computer sci-
ence and social science. Thus, the research method evaluating the computational
machine learning, data mining and data analytics models varies by research area.
However, the common elements of Knowledge Discovery in Databases (KDD) pro-
cess and algorithm design are seen in all the models. Here, the algorithmic design is
concerned with reducing the computational complexity of implicit patterns found in
the data. Such patterns are compressed in terms of computer programs with corre-
sponding inputs and expected outputs. The program design is then specified in terms
of approaches and improvements to existing algorithms and systems used in data
analytics.

17.4 Algorithms for Big Data

The existing algorithms designed to handle very large volumes of data by indexing
and search are not optimum for tasks requiring more precise and accurate analysis.
In a static context, within time windows and tasks concern the study and analysis
of incremental, heterogeneous data over search spaces issued from complex random
processes.

17.5 Dynamic Data Streams

Dynamic data streams impose new challenges on the analytic methodologies since it
is usually impossible to store an entire high-dimensional data streamor to scan itmul-
tiple times due to its tremendous volume and changing dynamics of the underlying
data destruction over time.
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17.6 Dynamic Network Analysis

Dynamic networks are an emerging topic of research in the area of graph mining.
The edges and vertices of a graph can change over time. This is called a dynamic
network which needs to be analyzed. The network can also be modeled as properties
computed over one or more of weighted or un-weighted, directed or undirected;
homogenous or heterogeneous networks found in the real world. Common sources
and examples for dynamic networks are biological networks, Internet networks,
bibliographic networks, email networks, health networks and road networks.

A variety of classical data mining techniques can be adapted for dynamic net-
work analysis. Such techniques include classification, clustering, associations and
inference under supervised and unsupervised learning categories.

Applications of dynamic network analysis can be found extensively in sys-
tem diagnosis, financial markets, industrial surveillance, computer networks, space
telemetry and information networks.

Research challenges in applying dynamic networks techniques include the algo-
rithmic ability to deal with multidimensional data analysis, temporal data analysis,
complex data type recognition and supervised classification learning.

17.7 Outlier Detection in Time-Evolving Networks

Outlier detection in the time-evolving networks, a special case of dynamic networks
is a focus area in research. A data structure to summarize the changes in a time-
evolving network is provided in [8]. In [9], an algorithm that evaluates the changes
in a time-evolving network is proposed. In [8], stochastic guarantees on the per-
formance of the data structure are presented by designing mathematical theorems
on set properties and hash properties. In [9], a search algorithm is proposed which
uses local optimization algorithm for searching dense blocks of tensors. The search
criteria in the algorithm are defined in terms of certain statistics that are of interest
in a real-world tensor. The input data may be represented as both a complex network
and a complex tensor. Therefore, for dynamic network analysis, the graph search
techniques based on optimization criteria become very much relevant. Both [8] and
[9] deal in networks with a notion of change over time periods or ontologies or both.
The accuracy of the data structure proposed in [8] depends on its ability to summarize
the underlying data stream. For the definition of outlier given in terms of edge cuts in
the graph, [8] provides approximate guarantees on the performance of the proposed
data structure. The performance guarantees vary and depend upon sampling bias in
reservoir sampling procedure and hashing procedure. The accuracy of algorithm pre-
pared in [8] depends on the suitability of proposed statistical evaluation metrics for
various complex networks. There, metrics may be readily applicable to data mining
methods from tensor decompositions but not for data mining methods derived from
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graph search. Thus, the reliability of statistics in [9] may be guaranteed only after
significant amount of data preparation.

Adopting static network analysis techniques, static sequence analysis techniques
and static set analysis techniques to a dynamic network is an emerging area of
research. With the increasing emergence and availability of dynamic networks in
application areas such as social networks or bio informatics networks, the relevance of
techniques of mining and analysis of dynamic networks is only increasing gradually.

17.8 Research Challenges

The emerging research challenging includes the generalizing of the data mining
methods for various data types combining structured and unstructured data, devel-
oping online versions of data mining methods and also formulating network analysis
problems in the context of various application domains. The deployment of parallel
and distributed data mining algorithms suitable for large changing datasets synthe-
sized frommultiple structured data sources may be useful in addressing these above-
identified research problems. Examples of such data sources include Microsoft Aca-
demic Graph Network, Internet Movie Database, Wikimedia Commons, Web Data
Commons, Apache Foundation Mail Archives and Git Hub Code Repositories.

17.9 Literature Review of Research in Dynamic Networks

We will now review the existing research literature on dynamic network analysis
and adversarial learning. The papers reviewed in this section have been ordered by
the ideas relevant for Knowledge Discovery in Databases (KDD) with an emphasis
on dynamic network analysis and adversarial learning. KDD is a research method-
ology and thought process recommended for developing a data mining algorithm
and solution. KDD has been formalized as the specification of Cross-Industry Stan-
dard Process for Data Mining (CRISP-DM). In its simplest form, KDD has three
steps—preprocessing, modeling, post-processing—that must be addressed by any
data mining method.

17.10 Dynamic Network Analysis

For dynamic network analysis, the properties or dynamics of the network to be
modeled need to be defined. This is possible by sampling the dynamic network to
be able to represent changes in the network. The changes are statistically quantified
by certain validation metrics defined on the sample. The ideas of sampling, change
detection, validation metrics affect the preprocessing and post-processing phases of
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the KDD process. Once a suitable sample is available, we need to define the data
miningmodel to bebuilt on the current sample that is thenvalidatedon future samples.
The elements of the dataminingmodel include the type of the input complex network
(such as a labeled network) and the data mining problem (such as evolutionary
clustering and block modeling) that is being solved. The proposed solution of the
data mining problem is then packaged and presented for real-world usage (through
event mining, for instance). Thus, this literature review progresses along the lines
of preprocessing with sampling and validation metrics, post-processing for change
detection and event mining over labeled graphs that is then modeled as the data
mining problems of evolutionary clustering and block modeling.

We conclude the literature review with a discussion on the existing data mining
algorithms suitable for dynamic network analysis by summarizing the research gaps
discussed in survey papers and books.

17.11 Sampling [8]

In [8], the authors discuss a sampling procedure to compress structural summaries
underlying data stream of networks. The data used in the paper is from co-authorship
networks and social media networks. The sampling is a modification of the well-
known reservoir sampling procedure. In compressing the data, outlier detection is
defined as identifying graph objects which contain unusual bridging edges.

This definition of outlier detection generalizes to unusual connectivity structure
among different nodes foundwith respect to the historical connectivity structure. The
algorithm maintains the information about the connected components dynamically
during stream processing. The connected components are dynamically tracked by
using the spanning forests of each of the edge samples.

Each outlier is assumed to satisfy a general condition on the structural criteria
referred to as set monotonicity. Set monotonicity is determined as stochastic stopping
criteria by examining the behavior of the edges in the individual graph objects. Set
monotonicity is suitable for processing stream objects that can be examined at most
once during the computation. The algorithm not only dynamically maintains node
partitioning for the graph stream but also maintains a statistical model for outlier
determination. Reservoir sampling is used to create data partitions that are then sorted
by hashing with fixed random hash function. A current hash threshold is maintained
to make decisions on whether or not incoming elements are to be included in the
reservoir. The algorithm processes the edges in the reservoir in decreasing order of
the hash function value until we are satisfied that the resulting reservoir is the smallest
possible set which satisfies the stopping constraint. In the algorithm, current sample
is the only set we need for any future decisions about reservoir sample maintenance.

The output partitions represent densely connected nodes with a small number of
bridge edges. A cross-validation approach is used to model the likelihood statistics in
a more robust way that avoids over fitting of the likelihood statistics to the particular
structure induced by a reservoir sample. The paper presents first known real-time
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and dynamic method for outlier detection in graph streams with structural statistics.
The problems addressed in the paper are comparable to distance-based or density-
based methods for outlier detection in multidimensional data. Adaptations of such
research work are suitable for Big Data structures constructed around subgraphs. A
subgraph is stated to be more suitable for Big Data mining. While it may not be
possible to construct a statistically robust model on the basis of edge presence or
absence between individual nodes, it may be possible to create a statistically more
robust model for groups of nodes which correspond to the partitions. The paper’s
focus is on graph partitioning and reservoir sampling by estimating moments of
data stream. Both partition sizes and interaction sizes are considered for estimating
moments. Thus, possible extensions to the paper are in the direction of sampling with
ensemble methods and estimation of higher-order moments. Furthermore, the paper
uses only co-authorship networks. The methods in paper can be extended toward
various kinds of heterogeneous networks, by and dynamic networks considering
semantic features also in addition to other features.

17.12 Validation Metrics [9]

The authors in [9] discuss a tensor search algorithm applied to pattern discovery
applications. The tensor is constructed with an intention of modeling suspicious
behavior in twitter networks. The search algorithm finds dense blocks across modes
and dimensions of the tensor. The tensor is used to represent high-dimensional fea-
tures in the original dataset. The outlier detection algorithm then computes dense
subgraphs or labeled subsets of tensor. The output of algorithm is used for anomaly
or fraud detection. The search algorithm does a greedy search of the tensor by param-
eterizing the tensor dimensions in terms of validation metrics defined on subgraph
densities. The notion of density is defined in terms of mass and sparsity of the tensor
dimensions. The subgraph density is assumed to be generated from an underlying
probability model generating a random graph. Specifically, the Erdos-Renyi model is
assumed to be the ideal probability density function for tensor density. Then discrete
data distribution actually found in the tensor is measured against the ideal probability
density function using KL divergence. The local greedy search method estimating
density is an alternatingmaximization procedure. The procedure searches eachmode
of the tensor for changes while assuming the remaining modes in tensor are fixed.
The dynamics of the network are measured by the output of the search method on
both un-weighted and weighted graphs.

The statistics proposed in the paper are useful for feature extraction, evolutionary
clustering, eventminingon labeled graphs andheterogeneous networks. The statistics
are also useful for parallel data mining on the cloud provided issues in parallelizing
the sparse matrix representations in search algorithm are well understood. The tensor
search method in the paper is comparable to tensor decomposition methods where
high-order singular values represent the importance of the dense block found in the
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tensor. The statistical metrics of mass and size proposed in the paper are related to
notion of singular values in tensor decomposition.

However, all the statistics in the paper put together generalize low-rank matrices
found in tensor decompositions. The method proposed in paper is suitable for Big
Data algorithms. The algorithm is suitable for dynamic, big, distributed processing
of streaming data. The algorithm can be extended by constrained optimization and
multiobjective optimization methods. To apply the method to a particular domain
of application, we need to define the features, patterns and labels in the dataset that
can act as constraints on static and streaming data. The alternating maximization
procedure is comparable to coordinate descent in optimization methods. That is
why, the proposed local search can be considered to be one step in the more general
expectation–maximization procedure for searching tensors. To evaluate various block
modeling methods with the proposed statistics, alternatives to KL divergence can be
studied to measure distance between probability distributions.

17.13 Change Detection [10]

The authors of [10] propose a graph compression algorithm on a series of graphs
where each graph is represented as an adjacency matrix. The algorithm takes into
account both the community structures, as well as their change points in time, in
order to achieve a concise description of the data. Standard benchmark graph data is
used to evaluate the algorithm. The compression algorithm is derived from the Max-
imum Description Length (MDL) principle. Intuitively, the encoding objective tries
to decompose graph into subgraphs or cliques that are either fully connected or fully
disconnected. Specifically, MDL is used to define the objective function quantifying
the cost of encoding an adjacency matrix as a binary matrix compression prob-
lem. The changes across compressed graphs are summarized by a cross-association
method. The cross-association method incrementally summarizes tensor streams (or
high-order graph streams) as smaller core tensor streams and projection matrices.
The compression algorithm is a lossy compression that results in loss of information
while capturing changes across graphs. The fundamental trade-off is between the
number of bits needed to describe the communities and the number of bits needed
to describe the individual edges in the stream. This algorithm belongs to the class of
graph compression algorithms that use community discovery and optimization algo-
rithms to compress the changes in graphs. Thus, the main challenge in the algorithm
is to define objective function over a series of graphs and select corresponding objec-
tive function, search method in a parametric model. The objective function estimates
the number of bits needed to encode the full graph stream (partition, community and
edge) so far in space and time.

An alternating minimization method coupled with an incremental segmentation
process performs the overall search over space and time. Such algorithms can be
adapted into parallel, distributed algorithms over complex, dynamic networks. Such
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an adaptation would have to be benchmarked for the often competing objectives—
accuracy, speed and scale. If the compression algorithm defines the compression
objective in terms of both rows and columns of the adjacency matrix, the algo-
rithm can be adapted for information-theoretic correlation and biclustering-driven
compression. Thus, various methods for grouping communities and time segments
constitute future work in the paper. A data stream management system can also aid
with data retrieval in the algorithm.

17.14 Labeled Graphs [11]

In [11], the authors discuss structural anomaly detection using numeric features.
A TCP/IP access control database and a ATM bank transaction database are used
as the input data. The anomalous security patterns investigated by the algorithm
include temporal patterns, repetitive access patterns, displacement patterns and out-
of-sequence patterns. The distribution of edge weights in a graph is used to compute
anomaly scores. The edge weights, in turn, are computed from a structural function
defined on the numeric labels on vertex or edge in a labeled graph. An anomaly
is defined with reference to infrequent substructures in the graph. The infrequent
substructures are computed by matching against frequent subgraphs. The anomaly
scores are computed as parametric statistics from a Gaussian mixture model. In
general, the anomaly scores can be computed by various data mining models defined
in the context of various graph structures. Themodels can be determined by tradeoffs
in accuracy and efficiency of the algorithm. The proposed dataminingmodel is useful
for forensic analysis of graph transaction databases and online detection of anomalies
using dynamic graphs. The proposed algorithm is extensible to dynamic graphs and
Big Data. For extending the algorithm, a variety of feature extraction techniques
in general and unsupervised discretization methods, in particular, can be defined
for vertex and edge attributes on the graph. Both parametric and non-parametric
anomaly scoring models can also be investigated as an extension to the algorithm.
As an extension to the model, a distance and density-based clustering can be used to
snapshot clustering quality, social stability and sociability of objects computed from
the anomaly scores.

17.15 Event Mining [12]

In [12], the authors define community dynamics and event mining in a time-evolving
network. Events are summarized in terms of the heaviest dynamic subgraphs com-
puted over a time sequence. The heaviest dynamic subgraph is supposed to indicate
the behavior of an edge among neighbors in a graph. A search heuristic is used to
compute local and global anomaly scores for an edge. In the search heuristic, edge
behavior conditioned by neighborhood is generalized to a heavy subgraph. Then
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heavy subgraph behavior is studied over a time sequence. The computed network
can be correlated with external events for semantic event mining in time-evolving
networks. By mining the full history of a large road network, a typical application
of such event mining would compute a comprehensive summary of all unusual traf-
fic congestions and their time of occurrence, and report it to the police or to urban
planners.

Community dynamics and evolution in event mining is an active area of research.
Naive adaptations of existing methods for dynamic network analysis are inefficient
on large problem instances. So, futureworkwould involve designing efficientways to
summarize the heaviest dynamic subgraphs. In such a subgraph, significant anoma-
lous regionswould involve very large-scale neighborhood search for both the heaviest
subgraph and the maximum score subsequence. Thus, data mining issues include the
need to reduce network scans and generate effective initial solutions (seeds) for the
search heuristic to converge onto a globally optimum solution. Rather than a mini-
mum spanning tree, an arbitrary shaped subgraph may also be defined to summarize
the current graph in search algorithm.

17.16 Evolutionary Clustering

The authors of [13] propose an evolutionary bibliographic network summarization
algorithm. The algorithm does iterative ranking and agglomerative evolutionary clus-
tering according to an underlying probabilistic generative model. In the probabilistic
generative model, an expectation–maximization estimates prior probabilities while
maximum likelihood algorithm estimates posterior probabilities. A heterogeneous
bibliographic information network is input to the algorithm where vertices corre-
spond to different entities in the information network. For example, in DBLP Graphs
the vertices are taken to be author, conference, paper and term. In general, the
approach is suitable for star schema-based diagnosis of heterogeneous information
networks. To introduce a temporal smoothness approach into the graph analysis, the
core idea in proposed approach toward agglomerative evolutionary clustering is to
cluster the entire entity or group of related objects as a whole, rather than clustering
of individual types separately.

Such evolutionary clustering is combined with careful evolutionary diagnosis and
metrics to determinemerges and splits of different topical areas, authorship evolution
and topical evolution. The new vector space model proposed in the algorithm can
be leveraged for similarity computation and object assignment. Algorithmic trade-
offs exist between clustering quality and clustering consistency across time. The
paper summarizes a sequence of graphs as a sequence of trees such that trees repre-
sent high-quality clusters. The maximum likelihood-based tree estimation model is
only suitable for log-linear probabilities found in the dataset. This approach can be
extended to nonlinear estimation of probabilities using probabilistic graphical mod-
els. Specifically, conditional random fields and dynamic Bayesian networks are well
suited for mixing multiple probability generation mechanisms. The cluster evolution
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metrics may also be adapted for quantifying the appearance and disappearance rate
of objects across different time granularities. Also, to be adapted for complex net-
work analysis, the approach needs to incorporate variable number of clusters across
different time periods. This would be possible by diagnosing of features in the clus-
ters across time. Looking into the clustering methods for data streams is a direction
for improving the proposed algorithm. Commonly used clustering methods include
partitioning clustering, hierarchical clustering, model-driven clustering, biclustering
and multilevel clustering. Another possible extension is to integrate the evolutionary
clustering with research into mixed membership stochastic block models used for
iterative search and optimization.

17.17 Block Modeling [14]

Block modeling methods are a generalization of community detection and graph
clustering methods. Reference [14] gives a block modeling method suitable for ver-
tex, edge, subgraph data distributions found in a temporal graph. The blockmodeling
is done with respect to validation metrics on weighted graphs as well as un-weighted
graphs. The metrics are defined as objective functions measuring data distribution.
These objectives are defined over subspaces and clusters to consider both local and
global optimization criteria. The solution to the optimization problem is found by
tensor decomposition methods. The solution of optimization can be used to measure
changes in data distribution as well as compare changes across multiple levels of
data. As future work, the proposed validation metrics on dynamic networks can be
integrated with static graph mining algorithms. For example, graph distance metrics
can be used to sequentially compare graphs by creating a time series of network
changes from adjacent periods. The time series then act as the data distribution for
the proposed validationmetrics. Sensitivity functions and reconstruction errors in the
data distribution can also be used as optimization objectives. These various objec-
tives can be combined using multiobjective optimization measures. The solution to
multiobjective optimization can then be found in terms of metaheuristic search that
converges onto a globally optimum solution. Another topic for investigation is the
encoding, indexing and retrieval of spatiotemporal networks as high-dimensional
time series data distributions.

17.18 Surveys on Dynamic Networks

References [1–3] provide a comprehensive survey of the most recent developments
in dynamic network analysis, evolutionary network analysis and temporal data anal-
ysis. Presently, the focus is on discussing the problems of outlier detection methods
over complex networks with reference to these survey papers. Reference [3] classi-
fies anomaly detection algorithms in dynamic networks by the types of anomalies
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they detect—nodes, edges, subgraphs and events. For each of these methods, the
available graph mining models are community-based models, compression-based
models, decomposition-based models, clustering-based models, probability-based
models, sequence-based models and time-based models. The above papers summa-
rized fall into the categories of decomposition-based models, compression-based
models, clustering-based models and probability-based models. Such models are an
interesting extension to the emerging methods on graph behavior, change detection,
event mining, outlier detection and evolution over dynamic networks. The features
detecting spatiotemporal properties for machine learning over dynamic networks are
commonly obtained from samples, trees, clusters, wavelets, kernels, splines, nets, fil-
ters, wrappers and factors in data series, sequences, graphs and networks. Reference
[1] overviews the vast literature on graph evolution analysis by assuming the dynamic
networks are composed of data streams. In data streammining, all dataminingmodels
must be adapted to the one-pass constraint and high dimensionality of data streams.
Thus, evolution analysis on data streams focuses on either modeling the change in
data stream or correcting for results in data mining, or both. Direct evolution analysis
is closely related to the problem of outlier detection in temporal networks because
temporal outliers are often defined as abrupt change points. By this definition of
outlier detection, most data mining problems such as clustering, classification, asso-
ciation rule mining can be generalized to network data. In the context of evolutionary
graphs, additional graph-specific problems suitable for outlier detection include link
prediction, preferential attachment, counting triangles, spectral methods, shortest
path methods, graph matching, graph clustering, dense pattern mining and graph
classification. Aggarwal and Subbian [1] also give an interesting summary of appli-
cation domains for complex network analysis. These application domains include
World Wide Web, Telecommunication Networks, Communication Networks, Road
Networks, Recommendations, Social Network Events, Blog Evolution, Computer
Systems, News Networks, Bibliographic Networks and Biological Networks. Future
work in these domains includes content-centric analysis, co-evolution of the content
with network structure, collective classification and domain problems to streaming
networks. In this context, system structure and network topology can be studied
by outlier detection methods. Gupta et al. [2] are focused on outlier detection for
temporal data. Thus, the data under discussion may or may not be graph data. The
temporal data collection mechanisms are classified into data streams, spatiotemporal
data, distributed streams, temporal networks and time series data, generated by a
multitude of applications. In this context, outlier detection has been studied on high-
dimensional data, uncertain data, streaming data, network data and time series data.
A common characteristic in all these problem formulations is that temporal conti-
nuity has key role in formulations of anomalous changes, sequences and patterns in
the data. The paper then goes on to summarize the various outlier detection methods
by four facets important to data mining and computational algorithms: Time series
versus Multidimensional Data Facet, the Point versus Window Facet, the Data Type
Facet and the Supervision Facet. The paper also provides an extensive section on
applications and usage scenarios of outlier detection in dynamic networks. These
scenarios span Environmental Sensor Data, Industrial Sensor Data, Surveillance and



328 17 Emerging Research Trends and New Horizons

Trajectory Data, Computer Networks Data, Biological Data, Astronomy Data, Web
Data, Information Network Data and Economics Time Series Data. Thus, the exist-
ing survey papers on dynamic network analysis are focused on particular application
domain or on a single research area. The assumptions made by various data min-
ing models in each data mining model for dynamic network analysis are critical for
design and analysis of computational algorithms.

17.19 Adversarial Learning—Secure Machine Learning
[4–7, 15, 16]

Many algorithms in use today are not provably secure. Adversarial learning is con-
cerned with making machine learning algorithms secure. Here, security is measured
in terms of an objective function which also considers the reliability, diversity and
significance of the algorithm. Thus, the objective of adversarial learning is to show
that a specificmachine learning algorithmor a dataminingmodel or an analytics solu-
tion can be made insecure only with an impractical amount of computational work.
Adversarial learning assumes that the underlying pattern in the data is non-stationary
when training or testing this algorithm. In the context of such non-stationary data,
the standard machine learning assumption of identically distributed data is violated.

Furthermore, it is assumed that the non-stationary data is caused by an intelligent
adversary who is attacking the algorithms. In other words, the feature test data is the
data generated at application time to minimize a cost function.

Thus, adversarial learning incorporates defense mechanisms into the algorithmic
design and action. Thus, in literature, the analysis frameworks for adversarial learning
specify the learning and attack processes in terms of the corresponding objective
functions.

The attack processes also specify the attacker’s constraints and optimal attack
policy. The learning processes also specify the algorithm’s gain and attacker’s gain
under the optimal attack policy.

Adversarial learning has application in areas such as spam filtering, virus detec-
tion intrusion detection, fraud detection, biometric authentication, network protocol
verification, computed advertising, recommender systems, social media web mining
and performance monitoring.

Improvements to the existing status of adversarial learning are concerned with
dynamic features and regularized parameters computed while processing high-
dimensional data for correlations. Such correlations may exist between one and
more of samples, features, constraints, indicators and classes in computational algo-
rithms. With changing spatiotemporal data, these correlations also change within the
purview of conflicting goals of data mining algorithms such as accuracy, robustness,
efficiency and scalability. Such conflicting properties of the algorithms are cast in the
garb of a search and optimization framework finding the best (linear and nonlinear)
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decision boundaries between classes of interest. The objective function of the opti-
mization algorithm may have either open or closed-form solutions. The objective of
optimization can be either one or multiple objectives functions. Deep learning over
time has been found to be susceptible to adversarial examples. Thus, applying the
ideas of adversarial learning tomake robust deep learning algorithms is an interesting
area of research.

In terms of machine learning, the supervision facet of deep learning algorithms
connects the data analytics output of dynamic networks and adversarial learning since
single or multiple adversaries must learn about the classifier using some condition
of prior knowledge, observation and experimentation formulated as cost functions
or loss functions or utility functions or payoff functions.

The supervision over time facet of deep learning is also observed in related areas of
research like dictionary learning, representation learning, semi-supervised learning,
similarity learning, ensemble learning, online learning and transfer learning.

To discuss computational complexity of such kinds of machine learning, adver-
sarial learning and dynamic network analysis, we can use ideas from game theory,
linear algebra, causal inference, information theory and graph theory. The features
(of networks, sets, sequences and series) for adversarial learning can also be obtained
from complex networks, dynamic networks and knowledge graphs.

Ideas for feature extraction can be obtained from research into data mining prob-
lems like biclustering, structure similarity search, quasi cliques mining, dense sub-
graph discovery, multilevel graph partitioning, hypo-graph partitioning, agglomera-
tive and divisive graph clustering.

17.20 Conclusion and Future Emerging Direction

In this chapter, we have surveyed in detail the current research trends and also identi-
fied the future emerging trends of research in Big Data Analytics. Evidently, some of
the future emerging, critical research directions are in Adversarial Machine Learning
in the context of dynamic networks.

17.21 Review Questions

1. What are the various data mining techniques and what are their application
domains?

2. What is data streaming?
3. What is Adversarial Machine Learning?
4. What is dynamic network analysis? Explain.
5. How Adversarial Machine Learning and dynamic network analysis are related?
6. What algorithms of data mining can be adopted for dynamic network analysis?
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7. What are the application domains for (a) dynamic network analysis? (b) What
are the research challenges in applying them?

8. What are the various outline detection and analysis techniques in dynamic net-
works?

9. How states network analysis techniques, state sequence analysis techniques
and state set analysis techniques are applicable to dynamic network analysis
problems?

10. What is practical real-life illustration of dynamic networks?
11. What are the existing research challenges in Big Data Analytics?
12. Explain salient features of approaches in literature for research in dynamic

network analysis.
13. Explain how dynamic network analysis can be made? What are the salient

features?
14. Explain sampling.
15. Explain validation metrics.
16. Explain block modeling.
17. How secure machine learning can be adopted in adversarial conditions?
18. What is Adversarial Security Mechanism?
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