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Abstract

Oscillations, having indispensible roles in the dynamics of various cellular and
subcellular processes, are ubiquitous in biological systems. Construction of novel
genetic oscillators is one of the key aspects of synthetic biology research. In
this chapter, we have examined the underlying design principles of a variety of
synthetic oscillators. We have first reviewed the oscillations in natural systems
and then specified the basic characteristics of genetic oscillators. Computational
methods used for the in silico studies of biological oscillators are described, and a
list of software and tools being used is given. We have further discussed about the
ten synthetic oscillators and presented a brief summary of the computational and
experimental strategies involved in their realizations. This chapter is concluded
by providing the hands-on exercises for numerical simulations of two synthetic
oscillators.
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7.1 Introduction

Synthetic biology is a rapidly expanding field of research in biological sciences that
aims to establish engineering rules for the forward synthesis of cellular functions
(Purcell et al. 2010). Construction of the new systems, devices, and biological
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parts and redesigning of an existing biological system are the main thrust areas
of synthetic biology. The credit of the introduction of synthetic biology research
field is given to the two landmark publications: (i) genetic toggle switch (Gardner
et al. 2000) and (ii) repressilator (Elowitz and Leibler 2000) that are the classic
examples of artificial gene regulatory circuits, published in the beginning of the
year 2000. Synthetic biology includes the combination of in silico and in vitro
and sometimes in vivo analyses integrating the concepts of biology, mathematics,
and engineering toward empowering the development of novel approaches and
systematic frameworks for exploring the phenotypic behavior of a given regulatory
network (Stricker et al. 2008).

Oscillations, i.e. the periodic waveform representing quantitative changes in any
cyclic process (Winfree 2001), are one of the essential characteristics of all life
forms and are ubiquitous in living systems. Most common routines of our life,
e.g. periodic heartbeat and breathing, follow oscillatory behavior. Oscillations are
observed at every time scale in biological systems, such as calcium dynamics in
seconds, glycolytic oscillations in minutes, circadian clock in hours, and hormonal
oscillations in days and months (Maini 1996). These oscillations are derived from
several regulatory mechanisms that control the variety of dynamics occurring in
living systems. The interval between two reference points in a wave signifies the
time period of oscillation, which constitutes its most important feature (Winfree
2001). From the most primordial bacteria to the advanced life forms, rhythmic
regulatory systems play a critical role in the emergence, evolution, and existence
of life on earth. In order to capture these oscillations and understanding the science
behind them, it was the need of era to develop theoretical models of these oscillatory
networks. Synthetic biology aims to design the natural systems that can mimic the
biological processes in order to get quantitative as well as qualitative understanding
and deeper insights about the rate-limiting steps of various regulatory processes. In
this chapter, we discuss biological oscillators and their existence in various forms of
nature, computational and molecular approaches being employed for designing and
studying these oscillations, tools and software available for exploring this concept,
and the recent updates on the current state of research work in this field of science.

7.2 Oscillations in Nature

Oscillations are distributed throughout nature in one or the other form. They can
exist on years’ scale in the form of galactic motion or on microscopic scale as
neutrino movement inside an element (Shaviv et al. 2014; Maltoni et al. 2004).
The cycle of seasonal variation sheds the rays of periodicity in natural environment.
Importance of these oscillations can be related to the very fundamental phenomenon
of our daily life, day, and dawn (Kruse and Jülicher 2005). The cycle of day and
night gives the hint that periodicity is an essential element of our life. The formation
of a complete multicellular body from a single-cell “zygote” is a result of multiple
cell division cycles. Heart, a vital organ in mammals, also follows rhythmic behavior
generating a particular pattern of oscillations while supplying blood to various
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Table 7.1 Natural biological oscillators

Biological rhythm Approximate time period

Neural oscillations Millisecond
Cardiac rhythms Second
Calcium and glycolytic oscillations Minute
Mitotic and hormonal oscillations Hour
Circadian oscillations Day
Menstruation cycles Month
Circannual cycle Years

body parts. Several regulatory mechanisms of the body, like circadian rhythms and
menstrual cycle, are also common examples of biological oscillations (Karpman and
Sadovskaya 1964). The external stimuli are also important in generating frequencies
in some of the biological processes. The membrane ion current is an example of such
biological frequencies that occur via resonance of stereocilia present over the hair
cell of inner ear (Fettiplace 2017). A variety of natural oscillators with their time
scale are listed in Table 7.1.

7.3 Underlying Principles of Genetic Oscillations

Oscillation can be defined as a repetitive variation of a measure with respect to time,
between two different states. Oscillations are the cyclic changes in a measurable
quantity that exhibit a waveform of a relatively constant period (Winfree 2001).
Oscillations are ubiquitous in nature; e.g., nervous system, heartbeat, respiration,
circadian rhythms, and menstruation are all following a cyclic pattern (Cardon and
Iberall 1970). In many of the cellular processes, oscillations play a vital role; such
as axonemes of cilia in a cytoskeleton structure, oscillations in the concentration
of Min protein play an important role in site selection for the division in some
bacteria, and circadian clocks also find their basis on the genetic oscillators. The
dynamic nature of cellular interacting components and their collective behavior
to achieve self-organization can lead to the emergence of oscillations (Kruse and
Jülicher 2005). The temporal or spatial oscillations are majorly controlled via five
elements, i.e. (i) time delay, (ii) nonlinearity in regulation, (iii) negative feedback,
(iv) positive feedback, and (v) noise (Cao et al. 2016).

(i) Time delays are explained as the amount of time associated between the sensing
of some disturbance and the production of a response against it. These time
delays for different processes vary in a wide range. For example, various
hormonal and neural activities control the rate of heartbeat and blood pressure.
Every activity has an effective delay of time for response (Glass et al. 1988).

(ii) The living systems are nonlinear in nature, which means there is no equivalent
response to the external and individual inputs (Janson 2012). Nonlinearity
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in the dynamic systems gives rise to the spontaneous oscillations, which are
also known as “active oscillations.” Most of the biological systems follow
nonlinearity as they allow a continuous exchange of energy between the system
and its surrounding environment, thus falling under this category. Biological
systems generally exhibit spontaneous oscillations (Janson 2012).

(iii) Negative feedback is observed when the output of a reaction affects its own
progress in such a way so as to reduce the output. Although these negative
feedback circuits are the fundamental requirement for generating oscillations,
in many cases these are unable to produce oscillations on their own (Cao et al.
2016). In order to generate persistent oscillations, negative feedback loops may
have to be combined with time delays or to be coupled with positive feedback
loops (Cao et al. 2016).

(iv) The positive feedback circuit is simply a closed circuit in which output
enhances the input value and vice versa (Zeigler et al. 2019) and thereby
causing an increase in perturbations as a result of small disturbance on a
circuit (Zeigler et al. 2019). These positive feedback loops in combination
with negative feedback can generate several dynamical behaviors, like excitable
pulses and bistability (Cao et al. 2016).

(v) Noise can be simply defined as random fluctuations (Tsimring 2014) and
can affect a circuit in both, positive and negative, ways. An independent
negative feedback loop is more prone to noise compared to an integrated
negative–positive feedback loop (Bratsun et al. 2005). Sometimes, noise is
also considered as a source of oscillations when any active feedback loop
is missing (Simakov and Pérez-Mercader 2013). These elements play a vital
role in modulating the oscillatory dynamics of a biological circuit, as they can
enhance or damp the oscillations based on network architecture.

7.4 Computational Approaches to Study Biological
Oscillations

In order to develop in silico models for studying the biological oscillations, the
underlying biological reactions have to be developed in the form of differential
equations that in turn have to be simulated to observe the emerging dynamical
behavior (Singh 2015). Mathematical models can mimic the biological systems,
under a given set of conditions for a defined time period. There are majorly two
approaches to solve these mathematical models, i.e., deterministic and stochastic
approaches. In deterministic method, the outcome of the models is completely
dependent on the initial conditions and the given parameter values. Deterministic
models mostly solve differential equations without introducing any random fluctu-
ations. The output of a deterministic system is fixed if it is provided with particular
input values, irrespective of the number of times it is iterated. Thus, deterministic
methods model the changes in the state of a system with time as a continuous
process, which can be predicted by solving coupled ODEs. In case of stochastic
models, randomness is introduced, which tries to give a tint of natural systems in
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mathematical models (Chandran et al. 2008). Also, deterministic models are found
to have an increase in error rate with reduction in rate of reaction or lowering
the protein concentration. Natural systems, generally, operate under the influence
of noise resulting from random events. Therefore, in order to monitor the effect
of noise on mathematical models describing a biological system, randomness is
to be incorporated and such methods are known as stochastic methods (Hahl and
Kremling 2016). These stochastic simulation methods, also known as Monte Carlo
methods, are probability-based models. The output values of stochastic models
may vary with number of iterations irrespective of same input for all simulation
runs. These stochastic models consider uncertainty as an important factor in their
calculations. The deterministic approach is usually taken into consideration when
we expect a determined output for a specific input, but in case we have to study a
system with inherent noise, most preferred method is stochastic modeling. In the
following, we briefly describe the RK4 method and Gillespie’s algorithms that are
the two well-studied methods for deterministic and stochastic approach to solving
mathematical models, respectively.

7.4.1 Runge–Kutta Method

This method is one of the well-studied methods of numerical simulations given by
two German mathematicians, Carl Runge and Wilhelm Kutta, in the year 1900. The
fourth order of the Runge–Kutta method also known as RK4 is generally considered
as a simple and reliable numerical solution for differential equations by introducing
a definite time step for a given time period. It involves the calculation of four values
of slopes against the one slope calculation strategy of Euler method for solving
ordinary differential equations over a range of time using a fixed value of time
step. In this method, the ordinary differential equations (ODEs) are integrated by
a trial time step that helps in reducing the error terms of lower order. For solving
differential equation using RK4, we need to write the reaction rates in the form of
ODEs for each species y under consideration with the known initial values of y,
i.e. y0.

First-order ODEs can be constructed by further assuming the M chemical
reactions, in which the N chemical species are interacting, as continuous processes.

dy1

dt
= f1 (y1, . . . yn)

dy2

dt
= f2 (y1, . . . yn)

dyn

dt
= fn (y1, . . . yn)
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These equations are known as coupled rate-reaction equations, where fi deter-
mines the rate constant of the ith chemical reaction.

In the following, we provide the basic RK4 algorithm for a single rate equation
that may be extended for the coupled rate equations. Suppose, for a particular
species y, dy

dt
= f (t, y) with value of y (at time t0) = y0 is known. This method

is used to calculate the approximate value of y at given time point t, by calculating
four values of slopes, as following.

k1 = h ∗ f (tn, yn)

k2 = h ∗ f

(
tn + h

2
, yn + k1

2

)

k3 = h ∗ f

(
tn + h

2
, yn + k2

2

)

k4 = h ∗ f (tn + h, yn + k3)

where n = 0, 1, 2, 3, . . .
(

t−t0
h

)
and h is the step size.

yn+1 = yn + k1

6
+ k2

3
+ k3

3
+ k4

6
+ O

(
h5

)

This calculates the value of y at next time step (yn + 1) from the value of y at
the previous one (yn). k1 gives the value of increment on the basis of value of the
function at the beginning, i.e. tn. k2 gives the value of increment on the basis of
slope k1 at the midpoint using tn + h

2 . k3 gives the value of increment on the basis of
slope k2 at the midpoint using tn + h

2 . k4 gives the value of increment on the basis
of slope k3 in the end using tn + h.

7.4.2 Gillespie’s Algorithm (Stochastic Method)

Biological processes involve the dynamics of large number of molecular events
with intrinsic noise. The dynamics of such processes involve concentration of all
molecules involved at nanomolar concentrations. Thus, a probabilistic model of
such systems gives a closer and accurate insight about dynamics of molecular
systems. D. T. Gillespie in 1977 proposed a stochastic method for simulating the
effects of inherent intrinsic noise in the dynamics of systems with low molecular
concentrations (Gillespie 1977). Unlike deterministic method, this algorithm is
based on a single ordinary differential equation known as “Master equation” and
is proposed as a solution of the “Master equation.” This algorithm is derived on the
basis of Monte Carlo approach to solve the dynamics of a system mathematically
over a certain time period, but the time increment is not defined by definite steps.
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This method attempts to solve the problem in which a fixed volume V contains
the mixture of N number of different chemical species that are interacting with each
other with the M number of different chemical reactions. The molecule number of
each species at an initial time is given as Xi, and we have to find the population
of this species at a given later time. To simulate the set of reactions that were
represented as the coupled differential equations in the previous section, Gillespie’s
method provides the answers of two basic questions: (i) When the next reaction will
occur, and (ii) Which reaction will it be? The basic methodology of the Gillespie’s
algorithm is described in the following schema.

• Enter the initial value of Xi(t0) for each Xi where i = 1, 2, 3,..., N and t0 = 0.
• For each reaction, enter the values of reaction probabilities cν , where

(ν = 1, 2, .., M).
• For each reaction, define the molecular combination functions hν , where

(ν = 1, 2, .., M).
• Compute the values of reaction propensities aν = hνcν where (ν = 1, 2, . . . , M).

• Also calculate a0 =
M∑

ν=1
aν .

• Using a uniform random number generator, get two random numbers r1 and r2.

• Define τ =
(

1
a0

)
ln

(
1
r1

)
.

• Define an integer μ such that,
μ−1∑
ν=1

aν < r2a0 ≤
μ∑

ν=1
aν .

• Update all the Xi according to the μ.
• Set t = t + τ and n = n + 1.

Value of τ gives the time interval after which a reaction will occur and μ indicates
which reaction it will be. The process is to be iterated till the final time up to which
simulation is to be performed.

7.5 Tools and Software to Simulate Biological Oscillations

A large number of biological systems have been studied by designing their
mathematical models that can mimic the underlying dynamics of the natural system
under study. Synthetic biological oscillators are, in general, designed first using a
mathematical modeling approach, and the obtained results are then validated using
in vitro as well as in vivo experiments. These mathematical models are composed
of reaction rate equations based on the biochemical processes responsible for the
emerging dynamics in the biological system under study. These equations can be
solved stochastically or by converting them into ordinary differential equations
(ODEs). There are various tools and software available, provided by paid and free
repositories, which can be used to simulate the dynamics of these mathematical
models of biological systems and to further analyze their biological significance.
Few of these software and tools are listed in Table 7.2.



106 A. Panghalia and V. Singh

Table 7.2 Various tools and software for generating and analyzing the mathematical models

Name Availability Weblink

ASCEND Free http://ascend4.org/Main_Page
GNU Octave Free https://www.gnu.org/software/octave/
Scilab Free https://www.scilab.org/
Wolfram Mathematica Free http://www.wolfram.com/mathematica/
Simmer Free https://arxiv.org/abs/1705.09746
COPASI Free http://copasi.org/
SAGE Paid http://www.sageofathens.com/
XPPAUT Free http://www.math.pitt.edu/~bard/xpp/xpp.html
MATLAB Paid https://www.mathworks.com/products/matlab.html
CellDesigner Free http://www.celldesigner.org/
TinkerCell Free http://www.tinkercell.com/

7.6 A Brief Overview of the Various Synthetic Biological
Oscillators

Repressilator is the first-ever-designed synthetic biological system in which oscilla-
tions were observed in the constituent protein concentrations (Elowitz and Leibler
2000). Before the realization of repressilator, there were few theoretical studies
examining the onset of oscillations in biological systems that provided the basis for
understanding the underlying basic concepts for successful realization of a synthetic
oscillator, such as synthetic genetic oscillator by Goodwin in 1965 (Goodwin
1965), genetic feedback repressor solved using Boolean modeling by Fraser in
1974 (Fraser and Tiwari 1974), molecular basis of periodic cellular rhythms by
Goldbeter in 1997 (Goldbeter 1997), and two-gene oscillator by Smolen in 1998
(Smolen et al. 1998). In approximately 20 years of post repressilator synthetic
biology research, significant work is done in the development and understanding
of synthetic biological oscillators. In the following, we provide a brief summary of
ten synthetic oscillators.

7.6.1 Goodwin Oscillator

Goodwin oscillator (Goodwin 1965) is known as the first synthetic genetic oscillator
that was proposed with a theoretical model and studied computationally over
50 years ago. In this model, there is only one gene that represses the expression
of itself as shown in Fig. 7.1a.

Li represents the gene locus transcribing mRNA (denoted by Xi) that in com-
bination with the ribosome forms polysome (R) that helps in the production of
its proteins (Yi). The protein formed is assumed as an enzyme that helps in the
metabolic transformation and gives rise to the metabolic species Mi that in turn

http://ascend4.org/Main_Page
https://www.gnu.org/software/octave/
https://www.scilab.org/
http://www.wolfram.com/mathematica/
https://arxiv.org/abs/1705.09746
http://copasi.org/
http://www.sageofathens.com/
http://www.math.pitt.edu/{~}bard/xpp/xpp.html
https://www.mathworks.com/products/matlab.html
http://www.celldesigner.org/
http://www.tinkercell.com/
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Fig. 7.1 (a) Topology of single-gene oscillator, which represses itself. (b) Simulation results of
the Goodwin oscillator. Figure (b) reproduced with permission from Goodwin (1965) © (1965)
Elsevier Ltd

lowers down the expression of gene (Li) by repressing it. Following equations give
the dynamics of this system.

dXi

dt
= ai

Ai + kiYi

− bi

dYi

dt
= αiXi − βi

Here, Xi represents the concentration of mRNA and Yi represents the concentra-
tion of protein. The oscillations produced from the numerical simulations of these
equations are shown in Fig. 7.1b.

7.6.2 Smolen’s Oscillator

Smolen’s oscillator (Smolen et al. 1998) is a simple kinetic model that examines
the dynamic activity of the gene regulatory systems including autoregulation,
phosphorylation, and dimerization of transcription factors along with noise and
feedback. There are two genes in this oscillator. The first gene (A) promotes the
transcription of second gene (B) and also its own transcription, and the second gene
represses the transcription of first gene as well as its own transcription as shown in
Fig. 7.2a.

In this model, signal-transduction pathway was considered in which stimuli
leads in the formation of the homodimer and the phosphorylation of TFs, those
bind with the specific responsive-element DNA sequences (TF-REs). Dimer of
phosphorylated TF-A protein binds to TF-RE and activates the transcription of tf-
a and tf-r genes which forms the TF-A and TF-R proteins. The rate constants for
degradation of TF-A and TF-R are represented by k1,d, and k2,d respectively. TF-R
protein represses the transcription of the tf-r gene by binding to TF-RE, whereas it
represses the transcription of the tf-r gene by competitively inhibiting the binding
of TF-A to TF-RE as shown in Fig. 7.2b.
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Fig. 7.2 (a) Topology of Smolen’s oscillator. (b) Schematic representation of the Smolen’s
oscillator. (c) Oscillations obtained by the numerical simulations of the Smolen’s oscillator. (d)
Oscillations obtained in the experimental conditions. Figures (b), (c), (d) are adopted from Smolen
et al. (1998)

7.6.2.1 ODEs for the In Silico Implementation of Smolen’s Oscillator
Here, KR,d represents the dissociation constant of TF-R from TF-REs. k1, f , and k2, f

are the maximal synthesis rates. k1,d and k2,d are the rate constants of degradation,
and K2,d represents the dissociation constant of TF-A from TF-REs.

d[T F−A]
dt

= k1,f [T F−A]2

[T F−A]2+K1,d(1+[T F−R]/KR,d)
− k1,d [T F − A] + r1,bas
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d [T F − R]

dt
= k2,f [T F − A]2

[T F − A]2 + K2,d

(
1 + [T F − R] /KR,d

) − k2,d [T F − R]

r1, bas gives the basal rate due to which an activator is synthesized at a negligible
concentration of dimer. k1,d gives the rate constant of the first-order degradation of
TF-A. Oscillations were readily generated by this model as shown in Fig. 7.2c.

7.6.3 Repressilator

The theoretical framework of repressilator was developed in 1974, using discrete
Boolean simulations as an extension of the Goodwin’s oscillator (Fraser and Tiwari
1974). It may be explained as a regulatory network of three genes, in which each
gene represses the expression of its successor gene in a cyclic manner (Elowitz
and Leibler 2000). LacI protein from Escherichia coli inhibits the transcription of
the TetR gene. The expression of cI gene from λ phage is inhibited by the second
repressor protein named TetR of Tn10 transposon. Finally, cI which is the third
repressor protein inhibits the transcription of LacI gene and completes the cycle
shown in Fig. 7.3a, b.

7.6.3.1 ODEs for the In Silico Implementation of Repressilator
Following six-coupled first-order differential equations determine the dynamics of
this system. Here, pi represents the concentration of repressor proteins and mi

represents the concentration of their corresponding mRNAs. Each of these is con-
sidered as the continuous dynamic variables (i is LacI, TetR, and cI, respectively).

dmi

dt
= −mi + α(

1 + pn
j

) + α0

dpi

dt
= −β (pi − mi)

(
i = l < cI, tetR, cI
j = cI, lacI, tetR

)

Where, α0 gives the protein copy number produced by a given promoter type in each
cell when the saturated amount of repressor is present and α + α0 is the protein
copies when the repressor is absent. The ratio of decay rates of protein to mRNA
is denoted by β and n is the Hill coefficient. Using these six coupled differential
equations corresponding to three mRNAs and their repressor proteins, oscillations
were obtained by in silico ODEs simulation as shown in Fig. 7.3c that were also
successfully reproduced in the in vitro experiments shown in Fig. 7.3d.
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Fig. 7.3 (a) Topology of repressilator in which the every gene represses the transcription of
its successor. (b) Repressilator network. (c) Simulations of ODEs of repressilator genes. (d)
Oscillation shown in living bacteria. Figures (b), (c), (d) are reproduced with permission from
(Elowitz and Leibler 2000) © (2000) Macmillan Magazines Ltd

7.6.4 Genetic Relaxation Oscillator

The topology of this oscillator consists of various nodes that were linked with the
activating and repressing links Chaos (Hasty et al. 2001). The transcription of gene
A and gene B is upregulated by gene A at the lower concentration of its protein.
The transcription of the first gene (A) and second gene (B) is regulated by gene A
via variable promoter, and the transcription of gene A is repressed by gene B via
degradation as shown in Fig. 7.4a.

There are two plasmids which are used to control the repressor (X) and RcsA
(Y) production by using the PRM promoter as shown in Fig. 7.4b. Both the plasmids
are turned on by the activity of repressor at PRM. The concentration of RcsA
starts increasing as the promoter gets activated, which leads to the reduction of the
concentration of repressor.
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Fig. 7.4 (a) Topology of amplified variable link oscillator. (b) Working of amplified variable
link oscillator. (c) Simulation generated for amplified variable link oscillator. Figures (b), (c) are
reproduced with permission from Hasty et al. (2001) © (2001) American Institute of Physics

7.6.4.1 ODEs for the In Silico Implementation of Genetic Relaxation
Oscillator

In the given equations, x and y represent the quantity and mx and my are the copy
numbers of the plasmid of cI and RcsA, respectively.

dx

dt
= mxf (x) − γxx − γxyxy

dy

dt
= myf (x) − ãyy

γx and γy represent the degradation of cI and RcsA and γxy shows the degradation
rate of cI by RcsA. Simulations of the ODEs give the oscillations as shown in
Fig. 7.4c.

7.6.5 Amplified Negative Feedback Oscillator

The previously studied oscillators, like the Goodwin oscillator and repressilator,
were based on the negative feedback cycle only. The amplified negative feedback
oscillator (Atkinson et al. 2003) was proposed to showcase the usage of positive
feedback loops in the expression of oscillations. It comprises two genes (A and B):
one gene (A) activates the self-transcription via positive feedback and also promotes
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Fig. 7.5 (a) Topology of amplified negative feedback oscillator. (b) Schematic working of
amplified negative feedback oscillator. (c) Simulation generated for amplified negative feedback
oscillator. (d) Dynamics obtained in the experimental conditions. Figures (b), (c), (d) are
reproduced with permission from Atkinson et al. (2003) © (2003) Cell Press

the transcription of the second gene (B). Simultaneously, the transcription of the first
gene is repressed by the second gene as shown in Fig. 7.5a.

7.6.5.1 ODEs for the In Silico Implementation of Amplified Negative
Feedback Oscillator

The concentrations of various components of a network are represented by xi, and
the concentrations of proteins and mRNAs are represented by the even and odd-
numbered variables, respectively.

dx(2k−1)

dt
= β(2k−1)

(
f(2k−1) − x(2k−1)

)

dx(2k)

dt
= β2k (x2k−1 − x2k) for k = 1, 2, (3)
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Here, fi (transcriptional rate of three phases) and β i (numerous rates which
describe constants) are described by the two equations. There are two modules
in this network: one is NRI that encodes the activator and second is LacI that
encodes the repressor. Encoding NRI is fused with glnG to the control region on
the promoter of glnA as shown in Fig. 7.5b to construct the module which acts as an
activator to the oscillator. The regulation of promoter was done in the presence of
two phosphorylated NRI-binding sites (NRIp) which are upstream to the promoter
and form enhancer, and two LacI operators one of which is present downstream
of promoter and other is upstream of enhancer. The oscillations are obtained by in
silico ODEs simulation as shown in Fig. 7.5c.

7.6.6 Metabolator

Metabolator (Fung et al. 2005) is reported as the first oscillator in which along
with the genes, metabolites also constitute the main components of its circuitry.
It consists of two genes (A and B), gene B produces an enzyme which can covert
one metabolic pool named M2 to another pool named M1 and the transcription of
this gene B is also activated by M2. At the same time, another enzyme is produced
by the gene A which enables the conversion of the M1 pool to the M2 pool, and
the M2 represses the transcription of this gene A. Moreover, there is an influx and
efflux from the M1 and M2 pools, respectively, as shown in Fig. 7.6c. The topology
of this oscillator (metabolator) is schematically represented in Fig. 7.6b as a gene
regulatory network.

Gene A and B repress themselves by activating the M2 and also activate each
other as shown in Fig. 7.6b. This concept was implemented by modeling with ODEs
and Chemical Langevin Equations (CLEs) which represent a GFP reporter (Fung et
al. 2005). Due to an increase and decrease in the M2 pool, the two genes repress
their activity as a result of which these two genes regulate the activity of each other.

7.6.6.1 ODEs for the In Silico Implementation of Metabolator

d AcCoA

dt
= VAcs − VPta − Vgly − VTCA

d AcP

dt
= VPta − VAck

d OAc−

dt
= VAck − VAcE − VAcs

d HOAc

dt
= VAcE − Vout
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Fig. 7.6 (a) Schematic GRN diagram and (b) topology of metabolator. (c) Conceptual view of
metabolator. (d) In silico simulations in high glycolytic flux. (e) Fluorescence trajectory of single
cell. Figures (d), (e) are reproduced with permission from Fung et al. (2005) © (2005) Nature
Publishing Group

The concentration of three key proteins was determined by:

d LacI

dt
= RLacI − Rd,LacI

d Pta

dt
= RPta − Rd,Pta

d Acs

dt
= RAcs − Rd,Acs

The mathematical analysis showed that the oscillations as shown in Fig. 7.6d
were produced through a Hopf bifurcation. Here, Vi represents the expression of
rate of reaction of Glycolytic flux (Vgly), Acs flux (VAcs), Pta flux (VPta), flux to
TCA (VTCA), flux for the AcP and OAc− reaction (VAck), equilibrium of acid base
for acetic acid (VAcE), HOAc transport rate (Vout), and RLacI, RPta, RAcs, represent
the synthesis rate of LacI, Pta, and Acs, respectively. Rd,= (X = LacI, Pta, and Acs)
represents the degradation rate of LacI, Pta, and Acs. It was observed that for the
presence of oscillations, a high inflow rate is required which can be abolished by the
high concentration of M2. The number of relative gene copies has also affected the



7 Design Principles of Synthetic Biological Oscillators 115

Fig. 7.7 (a) Topology of Hasty’s two-gene oscillator. (b) Schematic working of Hasty’s two-gene
oscillator. (c) Bistable oscillations generated for Hasty’s two-gene oscillator. (d) Experimental
fluorescence trajectories of single cell. Figures (b), (c), (d) are reproduced with permission from
Stricker et al. (2008) © (2008) Macmillan Publishers Limited

production of oscillations, while the amplitude variation created by the addition of
noise is found by the CLE simulations.

7.6.7 Two Genes Based Oscillator

This oscillator (Stricker et al. 2008) contains two genes as shown in Fig. 7.7a. Gene
A, which is the first gene, promotes itself and also of the second gene. Gene B, the
second gene, represses itself and also the transcription of gene A. This tendency of
self-repression in gene B is the major factor which makes the difference between the
topology of Hasty’s two-gene oscillator and amplified negative feedback oscillator.

E. coli components were used for the development of this oscillator consisting of
a hybrid promoter named as Plac/ara-1, which constitutes the araBAD promoter’s
activation operator site which is placed in its start site, and lacZYA promoter’s
repression operator site and placed to the upstream end and downstream end of
the start site. AraC protein helps in activation when arabinose is present, and LacI
protein acts as a repressor when isopropyl b-D-1-thiogalactopyranoside (IPTG) is
absent.
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Three co-regulated transcription modules were formed by placing the araC, lacI,
and yemGFP (monomeric yeast-enhanced green fluorescent protein) genes that are
controlled by three identical copies of the promoter Plac/ara-1. When arabinose
and IPTG are added, it activates the promoter which causes the transcription of
each component and the presence of arabinose results in the increase of AraC,
which corresponds to a positive feedback loop due to which the activity of the
promoter gets increased. At the same time, promoter activity gets decreased due to
the increased production of LacI, which results in the formation of linked negative
feedback loop as shown in Fig. 7.7b. The oscillatory behavior can be driven by the
differential activity of these two feedback loops (Stricker et al. 2008).

7.6.7.1 Modeling of Two-Gene Oscillator Using the Stochastic Approach
The dynamics of the promoter is based on the following equations.

P
a/r
0,j + a2

ka→ P
a/r
1,j and

P
a/r
1,j

k−a→ P
a/r
0,j + a2 j ∈ {0, 1, 2}

P
a/r

i,0 + r4
2kr→ P

a/r

i,1 and

P
a/r

i,1
k−r→ P

a/r

i,0 + r4 i ∈ {0, 1}

P
a/r
i,1 + r4

kr→ P
a/r
i,2 and

P
a/r

i,2
2k−r→ P

a/r

i,1 + r4 i ∈ {0, 1}

P
a/r

1,2
kl→ P

a/r

L,2 + a2

P
a/r
0,2

kl→ P
a/r
L,2

P
a/r

L,0
kul→ P

a/r

0,0

Here, P
a/r

0,j shows the status of the promoter on the plasmid of activator (a)
and repressor (r) with AraC dimer (a2) and LacI tetramer (r4) bound. Where
i ∈ {0, 1} and j ∈ {0, 1, 2}. In the next step, the set of reaction is for the transcription,
translation, folding of protein, and multimerization of each gene and protein. Due
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to the space constraints, all the reactions are not given here. Interested readers may
find the detailed reactions in the supplementary file of original article (Stricker et al.
2008).

7.6.8 Mammalian Oscillators

This is an oscillator (Tigges et al. 2009) that is executed in the eukaryotic system
to understand their regulatory mechanism, which consists of an expression unit
of sense–antisense that encodes for the tetracycline-dependent transactivator (tTA)
that is triggered by pristinamycin-dependent transactivator (PIT) as shown in Fig.
7.8c. It comprises two genes: gene A and gene B from which both sense and
antisense transcriptions occur from one of the gene. The protein is formed due to the
translation of sense transcript which results in the feedback to itself along with the
activation of the second gene (B). The translation of the antisense transcript from
the first gene (A) is activated by the second gene (B). The transcript is not translated
to protein, but it represses the production of sense protein at the translational level,

Fig. 7.8 (a) Topology of oscillator and (b) oscillator as an example of amplified negative feedback
topology. (c) A cellular process considered for the mathematical model. (d) Simulation results of
the ODEs of Fussenegger oscillators. (e) Oscillations of the oscillator as observed by the time lapse
fluorescence analysis. Figures (c), (d), (e) are reproduced with permission from Tigges et al. (2009)
© (2009) Macmillan Publishers Limited
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due to which negative feedback loop is completed as shown in Fig. 7.8a. Therefore,
this Fussenegger oscillator is also a type of amplified negative feedback oscillator,
shown in Fig. 7.8b. Moreover, there are delays in the repressive effect which are
the extra step involved in a negative feedback loop. ODEs and Gillespie simulations
were used for the implementation of this oscillator. These models examined the
interaction of RNA polymerases that transcribe the sense and antisense transcripts,
which may act as an important repercussion to the repression of sense–antisense
strands. After many improvement rounds, a final model is generated by the extensive
parameter estimation of data from in vivo analysis.

7.6.8.1 ODEs for the In Silico Implementation of Oscillator
The model is generated by considering the production and degradation of tTA and
PIT. The ODEs for the system are written as follows:

dTm

dt
= G1.rT − k1AmTm + AT m. (k2kDAm) − kDT mTm

dTp

dt
= kT L.Tm − kDTp.Tp

dPm

dt
= G2.rT − kDPm.Pm

dPp

dt
= kT L.Pm − kDPp.Pp

dAm

dt
= G1.rP − k1AmTm + AT m. (k2kDT m) − kDAmAm

dATp

dt
= k1.Am.Tm − AT m. (k2 + kDT m + kDAm)

dGm

dt
= G3.rT − kDGm.Gm

dGp

dt
= kT L.Gm − (

k3 + kDGp

)
.Gp

dGa

dt
= k3.Gp − kDGp.Ga

In the given ODEs, Tm is the concentration of mRNA of tTA, Tp is the
concentration of protein of tTA, Pm is the mRNA concentration of PIT, Pp is the
protein concentration of PIT, Am is the antisense mRNA of tTA, TAm is the complex
of sense–antisense mRNA, Gm is the GFP in mRNA, Gp and Ga represent the
inactive and active GFP, respectively.
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7.6.9 Two-Switch Negative Feedback Oscillator

This oscillator (Kim and Winfree 2011) consists of two switches both consisting
of a synthetic DNA (each having a regulatory domain, a promoter region, and an
output domain), inhibitory molecule, and an activator. An input signal controls these
synthetic switches. These switches operate at a particular threshold in response to
the input signal of the respective switch. These responses derive from the different
hybridization of DNA and RNA molecules, i.e. activation, inhibition, annihilation,
and release. The OFF switch consists of a double-stranded DNA having an
incomplete promoter region for RNA polymerase as shown in Fig. 7.9b. When a

Fig. 7.9 (a) Topology of two-switch negative feedback oscillator. (b) Schematic circuit diagrams
of two-switch negative feedback oscillator. (c) Oscillation observed by fluorescence analysis.
Figures (b), (c) are adopted from Kim and Winfree (2011) © (2011) EMBO and Macmillan
Publishers Limited
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single-stranded DNA activator (A) binds to the DNA molecule, it completes the
promoter region due to which this switch gets ON (activation). An inhibitor strand
of either single-stranded DNA (dI) or single-stranded RNA (rI) molecule can bind
to the free floating activators of either single-stranded DNA (A) or single-stranded
RNA (rA) that are complementary to the inhibitors resulting in the formation of
the activator-inhibitor complex which is functionally inactive (annihilation). The
free activator strands can reduce the inhibitory strands concentration resulting in
the availability of only that strand which had high initial concentration. On the
addition of inhibitory strands, if the amount of inhibitory strands rises above the
amount of free activators, the switch gets OFF (inhibition). There is a toehold region
of DNA inhibitor (dI) on A.dI complex that allows the binding of RNA activator
(rA) releasing the DNA activator (A) to activate the target switch (release) due
to the toehold-mediated strand displacement reaction. An inhibitable switch or an
activatable switch is formed by assembly of the four hybridization reactions on the
basis of the concentration of DNA inhibitor or activator strand.

7.6.9.1 ODEs for the In Silico Implementation

d [rA1]

dt
= kp. [T 12A2] − kd. [rA1]

d [rI1]

dt
= kp. [T 21A1] − kd. [rI2]

Here, kp and kd are the rate constants of the RNAP and RNaseH, respectively. A
change in state of switches is governed by the hybridization reactions depending on
the amount of presence of the amount of X. The steady-state response of a switch to
the RNA input can be approximated by Hill functions.

τ
d [T 12A2]

dt
= [

T 12tot]
⎛
⎜⎝ 1

1 +
(

[rI1]
KI

)n

⎞
⎟⎠ − [T 12A2]

τ
d [T 21A1]

dt
= [

T 21tot]
⎛
⎜⎝ 1

1 +
(

[rA1]
KA

)n

⎞
⎟⎠ − [T 21A1]

Where, n and m represent the Hill exponents, τ shows the relaxation time for
the hybridization reaction, and KA and KI represent the threshold set by the
DNA activator and DNA inhibitor, respectively. Tij represents the sum of the
concentrations of ON-state switch [TijAj] and OFF-state switch [TjiAi], and T21tot

gives the sum of all the concentrations of species of [TijAj] and [TjiAi]. We
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Fig. 7.10 (a) Topology of the dual-feedback consortium oscillator. (b) Circuit diagrams of both
the activator and repressor strains of the dual-feedback consortium oscillator. (c) Oscillations
observed in fluorescence analysis. Figures (b), (c) are adopted from Chen et al. (2015) © (2015)
AAAS

are omitting the details of the other equations because of the space constraints.
Furthermore, positive-feedback loop was also added to study the modularity, and a
ring oscillator having three switches was developed and analyzed (Kim and Winfree
2011).

7.6.10 Dual-Feedback ConsortiumOscillator

This oscillator was designed primarily to address the challenge of developing a
microbial system which shows the population-level behaviors in synthetic biology
using the mechanisms of cell signaling for regulation of gene expression. This
consortium consists of two different types of cells: activator strain (A) and repressor
strain (B) (Chen et al. 2015). Both of these cell types produce two distinct cell-
signaling molecules as shown in Fig. 7.10b. These molecules regulate the gene
expressions in the cells of both types of strains. The population-level oscillations
were produced by these two strains when they were cultured together.
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In this model, a signaling molecule C4–homoserine lactone (C4-HSL) is pro-
duced by the activator strain which enhances the rate of transcription of rhII and
cfp genes, regulated by the different copies of hybrid promoter PrhI/lac, and also
enhances the rate of transcription of target gene in repressor strain. Whereas in the
repressor strain, 3-OHC14-HSL is produced as a signaling molecule which inhibits
the transcription of cinI (regulated by PrhI/lac) and rhIR regulated by Pcin/lac as well
as represses the target genes in repressor strains by production of repressor LacI as
shown in Fig. 7.10b. A coupled negative–positive feedback loop is formed by the
two signaling molecules formation mechanisms when these two strains were grown
with each other. Furthermore, an enzyme AiiA is produced when both strains were
active, which inhibits the formation of both of the signaling molecules.

7.6.10.1 ODEs for the In Silico Implementation of Dual-Feedback
ConsortiumOscillator

Here, Fa and Yr represent the productions of reporter proteins CFP and YFP,
respectively. The Fa production and Yr productions are directly proportional to the
PrhI/lac and Pcin/lac promoter’s activity, respectively.

dFa

dt
= ηF 0+ηF 1(Hτ

a /KH)
nH

1+(Hτ
a /KH)

nH +(Lτ
a/KL)

nL
+ dCFa

KC+Ra+Aa+La+Fa+Ma
− dFa − mFa

dMa

dt
= mFa − dCFa

KC + Ra + Aa + La + Fa + Ma

− dMa

dYr

dt
= ηY0+ηY1(I τ

r /KI )
nI

1+(I τ
r /KI )

nI +(Lτ
r /KL)

nL
+ dCYr

KC+Rr+Ar+Lr+Yr+Mr
− dY r − mYr

dMr

dt
= mYr − dCMr

KC + Rr + Ar + Lr + Yr + Mr

− dMr

Ma represents the mature CFP, and Mr represents the mature YFP, which is
described by first-order reaction. ηF0 and ηF1 show the basal and final rates of
production of CFP, where ηY0 and ηY1 show the basal and final rates of production
of YFP. The rate of production of C4-HSL and 3-OHC14-HSL is given by Ha and
Ir, respectively. τ represents the time delay. KH and KL represent the EC50 of C4
and IC50 for LacI, respectively. nH is the Hill-coefficient of C4, and nL is the Hill-
coefficient of LacI. Due to space constraints, we are not detailing here the complete
set of equations. Interested researchers may find the details in the original research
article describing the construction and realization of this consortium (Chen et al.
2015).
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7.7 Hands-On Exercises

In order to practice the simulation of synthetic oscillators, two exercises (using
XPPAUT software in a windows machine) are given below in a step-by-step manner.

For that, we need to first download and install XPPAUT following instructions
given in http://www.math.pitt.edu/~bard/xpp/xpp.html. Downloaded folder is to be
unzipped and to be copied into C:/ drive. One needs to install an X-Window System
Server also, if not preinstalled. Xming is one such server that can be installed
from https://sourceforge.net/projects/xming/. Input file for the XPPAUT is to be
developed as given in the following format and to be saved with an .ode extension.

7.7.1 Sample .ode File for Simulating the Dynamics of Goodwin’s
Oscillator

dx

dt
=

(
a

(S + k ∗ y)

)
− b

dy

dt
= (a1 ∗ x) − b1

param a = 72, S = 36, k = 1, b = 2, a1 = 1, b1 = 0

init x = 7, y = −10

done

7.7.2 Sample .ode File for Simulating the Dynamics
of Repressilator

dm1

dt
= −m1 + a(

1 + p3ˆn
) + a1

dp1

dt
= −b ∗ (p1 − m1)

dm2

dt
= −m2 + a(

1 + p1ˆn
) + a1

dp2

dt
= −b ∗ (p2 − m2)

http://www.math.pitt.edu/{~}bard/xpp/xpp.html
https://sourceforge.net/projects/xming/
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dm3

dt
= −m3 + a(

1 + p2ˆn
) + a1

dp3

dt
= −b ∗ (p3 − m3)

#parameters

param a = 10, a1 = 0.01, b = 0.2, n = 2

#initial conditions

init m1 = 0.2,m2 = 0.3,m3 = 0.4, p1 = 0.1, p2 = 0.1, p3 = 0.5

@bound = 10, 000

done

The above given file contains all the differential equations of Goodwin’s
oscillator and repressilator, initial conditions (init), parameters (param), time step
(dt), total run time (total), xplot (x-axis), and yplot (y-axis).

7.7.2.1 Steps for Running the Input Files Using XPPAUT

• Copy the shortcut of XPPAUT to the desktop.
• Run the XMING.
• Drag your file “∗.ode” to the shortcut. This will open the file in XPPAUT.
• Set your x-axis from xi vs t option.
• Set your initial run conditions from InitialConds > Range option.
• Go to Window/zoom option and choose fit to see the dynamics.

Once run, one should get the dynamics of Goodwin’s oscillator and repressilator,
as shown in the Figs. 7.11a, b, respectively.
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