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Abstract
Soil acts as a sink for a number of organic and inorganic pollutants, through 
which these enter into the food chain and become a potential source of human 
diseases. Heavy metal (Cd, Cu, Cr, Fe, Ni, Pb, Zn) and metalloid (As, Sb) con-
tamination of soil resources is increasing due to natural and anthropogenic activ-
ities. Currently, metal(loid) accumulation is one of the most serious environmental 
concerns owing to their toxicity to crops. Agronomic crops, mainly cereals 
(wheat, Triticum aestivum; maize, Zea mays; rice, Oryza sativa), are cultivated 
on large area and, thereby, are more vulnerable to metal(loid) toxicity, affecting 
crop growth (seed germination, root/shoot length, and biomass), physiology 
(water relation, pigmentation, photosynthetic machinery), and metabolic pro-
cesses (reactive oxygen species (ROS), lipid peroxidation, protein degradation). 
However, to counter these anomalies, crops are equipped with antioxidants 
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(CAT, POD, SOD, APX, GR, proline, phenolics) to detoxify metal-induced ROS 
and proteins (phytochelatins, PCs; metallothioneins, MTs) to sequester 
metal(loid)s. Thus, further insight into these processes is important to exploit 
better metal-contaminated areas for raising crops, generate revenue, and feed 
ever-increasing population. Therefore, we present an overview of heavy 
metal(loid) pollution in soil; their toxicity to cereals (wheat, maize, rice) at mor-
phological, physiological, and cellular levels; and their tolerance mechanisms. 
At the end, we explore the symbiotic association of cereal crops to a microbe in 
scavenging metal toxicity.

Keywords
Cereal crops · Metal(loid) toxicity · Reactive oxygen species · Antioxidants · 
PGPB

Abbreviations

AI acid invertase
APX ascorbate peroxidase
AsA ascorbic acid
ATP adenosine triphosphate
CAT catalase
CCA copper-chromium-arsenic
DHAR dehydroascorbate reductase
ETS electron transport system
GDH glutamate dehydrogenase
GOGAT glutamine oxoglutarate aminotransferase
GPOD guaiacol peroxidase
GR glutathione reductase
GST glutathione-S-transferase
HMW high molecular weight
IAA indole-3-acetic acid
IBA indole butyric acid
MDA malondialdehyde
MDHAR monodehydroascorbate reductase
MT metallothioneins
NAA naphthaleneacetic acid
POD peroxidase
SOD superoxide dismutase
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14.1  Introduction

Soil contamination and metal pollution are the most imperative concerns in the 
industrialized world due to harmful effects on the biological system (Kisku et al. 
2000). Heavy metals and metal(loid)s include cadmium (Cd), copper (Cu), chro-
mium (Cr), iron (Fe), nickel (Ni), lead (Pb), zinc (Zn), arsenic (As), selenium (Se), 
and antimony (Sb) (Yadav 2010). Plants obtain the necessary and beneficial nutri-
ents from organic matter or soil; however, the plants can also uptake and accumulate 
nonessential toxic metal(loid)s when these are bioavailable in soil (Kisku et  al. 
2000; Houshm and Moraghebi 2011). Heavy metal(loid)s are present in the soil 
naturally due to weathering of minerals, erosion, and volcanic activities; in addition 
to them, anthropogenic activities such as mining, electroplating, wood preservation, 
pesticides, industrial effluent, and fossil-fuel burning are also polluting our environ-
ment and thus have adverse impact on the biological entities (Alloway 2013). Heavy 
metals and their oxides are long persistent after their introduction and change their 
chemical forms with the varying bioavailability in most of cases; they do not 
undergo microbial or chemical degradation. Soil contamination by the heavy metals 
has a risk and adverse impact on human health by the direct ingestion or contact 
with contaminated soil, through the food chain or drinking the contaminated water 
(Alloway 2013; Singh et al. 2011). The main reasons for the toxicity of the metal-
loids are the mining process, manufacturing of the synthetic product, and their uses. 
Landfill sites and old orchards have a potential risk of arsenic due to excessive use 
of insecticide in the past for different purposes and the dumping of industrial haz-
ardous waste or chemical waste (Alloway 2013).

Heavy metal(loid)s do not perform any known physiological function in the 
plants. Some metals are necessary for normal growth and required for the metabo-
lism of the plants such as Co, Cu, Fe, Mn, Mo, Ni, and Zn, but they can harm when 
the concentration of any element is higher than the optimal level (Penna and Nikalje 
2018; Alloway 2013; Krantev et al. 2008). The heavy metal contamination not only 
has an adverse impact on different constraints relating to plant quality and its yields 
but also alters the population size, composition, and activity of microbial commu-
nity residing in the rhizosphere (Alloway 2013). Metals influenced the enzyme 
activities by the different approaches due to the disparate chemical affinities of the 
enzymes in the soil system; for example, the Cd toxicity is higher toward enzymes 
than Pb because it has greater mobility and lesser affinity to the soil colloids (Verma 
and Dubey 2003). Cr (IV) is a highly toxic and strong oxidizing agent, and its high 
concentration can cause harmful effects on the microbial cell metabolism (Shanker 
et al. 2005). Heavy metals can also affect the microbial reproduction in the com-
posting process and cause morphological and physiological changes (Alloway 
2013; Shanker et al. 2005).

Abiotic stresses such as heavy metal(loid)s, drought, salinity, water logging or 
flooding, and extreme temperature have adverse impacts on germination, growth, 
development, and seed quality of field crops; in some cases, these stresses reduced 
production rate up to 60% (Chapagain et al. 2017). On the other hand, global food 
production requirements increase day by day that would double in 2050 to meet the 
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needs of the growing population. Hence, one of the best way to ensure food security 
for the future generation is to develop the various stress-tolerant crop varieties. 
Extensive increase in the intensity and frequency of tremendous weather event and 
unpredictable monsoon rainfall has caused intense and frequent cycles of drought 
and flood. Rising temperature causes water stress condition and heat; predomi-
nantly, regions like arid and semiarid consequentially reduce agriculture productiv-
ity. Heavy metal(loid) stress also caused a decrease in plant nutrient contents, leaf 
area, shoot growth, root length, dry matter production, and seed germination effects 
of many cereal crops such as wheat, maize, and rice (Ahmad et al. 2015; Chapagain 
et al. 2017). Seed germination and seedling growth of wheat and maize cultivars 
were reduced on exposure to Cd (Ahmad et al. 2012, 2013).

Cadmium has adverse effects on photosynthetic rate, chlorophyll content, and 
intracellular CO2 concentration (Krantev et al. 2008; Alloway 2013). The other met-
als such as Ni, Cu, Mn, and Zn also reduce photosynthetic efficiency by decreasing 
chlorophyll pigments (Krantev et  al. 2008; Penna and Nikalje 2018). Chromium 
inhibits cell division, severely disturbs the cell cycle, and also reduces the root 
growth in the plants at the cellular level (Hu et  al. 2014). Different crop plants 
(wheat, rice, maize) are very sensitive to metal stress; thus, some plants are referred 
as non-accumulator plants, whereas some plants are hyperaccumulators (Brassica 
sp., Salix sp., Alyssum sp.) and are able to tolerate toxic metals at higher level. Plant 
species can manage metal(loid) pollution through one or combination of these 
mechanisms: (i) remove the toxic metal(loid)s from the soil, (ii) avoid uptake of 
metal(loid)s to the plant roots, (iii) minimize the competition between metal(loid)s 
and fundamental nutrients that are required for the growth and development of the 
plants, and finally (iv) prevent movement of toxic metals into shoots. The most 
important thing is to be identifying the heavy metal fraction, controlling reaction 
mechanism, and monitoring the activities of metals and their bioavailability to the 
plants (Penna and Nikalje 2018).

Toxicity of metals also obstructs nitrogen metabolism, which is the important 
physiological processes that play a vital role in the growth and development of 
plants (Ma et  al. 2017). Nitrate metabolism, inhibition of nitrate uptake, and its 
transportation are severely affected by Cd, which changes the primary nitrogen 
assimilation processes (Benavides et al. 2005). Plants are synthesizing and secreting 
many hormones which can improve plant tolerance against abiotic stresses 
(Chapagain et al. 2017; Penna and Nikalje 2018). Toxicity of metal(loid)s affects 
plant growth and development directly by causing oxidative stress and cytoplasmic 
enzyme inhibition, and indirectly, disturb ion homeostasis in plants, and excessive 
reactive oxygen species (ROS) to oxidize biomolecules in the plant (Wang and 
Zhou 2005; Chapagain et al. 2017). Production of the ROS is due to the effect of any 
type of stress. Mostly, the ROS is produced in the chloroplast, peroxisomes, and 
mitochondria. The heavy metal accumulation is the consequence of the disruption 
of CO2 in the chloroplast so that it reduced the electron transport chain in the pho-
tosynthetic process and production of ROS. In the plant metabolism, ROS plays a 
dual function under optimum concentration; they are involved in various physiolog-
ical processes and act as stress sensor. The fate of ROS totally depends on the 
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scavenging system if the ROS scavenges efficiently so that it works as a signaling 
molecule. If the production of ROS is much higher and cannot be regulated to the 
scavenging system, it becomes toxic (Wrzaczek et  al. 2013; Penna and Nikalje 
2018). The antioxidant mechanism protects cells from detrimental effects of 
ROS. The antioxidant system includes enzymatic component that consists of gluta-
thione reductase (GR), catalase (CAT), superoxide dismutase (SOD), ascorbate per-
oxidase (APX), etc. The antioxidant enzymes are used for the mitigation of induced 
damages of metals. It is well known that ROS generation increased by metals and in 
response the activity of antioxidant enzymes (POD, SOD, APX)  also increased 
(Yang et al. 2011; Penna and Nikalje 2018).

The cereal crops (wheat, maize, and rice) are staple foods in different parts of the 
world; therefore, in this chapter, we discuss the toxic effects of metal(loid)s to cereal 
crops and find out the tolerance mechanisms they have to rectify metal(loid) stress. 
We also identify the role of plant growth-promoting bacteria (PGPB) and cereal 
interaction for the alleviation of metal(loid) stress.

14.2  Pollution of Metal(loid)s in Soil

The terrestrial environment is the principal sink of heavy metal(loid)s coming from 
geogenic and anthropogenic sources (Fig. 14.1). Metalloids such as As and Se are 
mainly accumulated in soil through natural resources; for instance, 45,000 tons of 
As is released in the environment through burning of coal on annual basis; igneous 
rocks contributed 100 mg As kg−1 while manganese ores 15,000 mg As kg−1 (Bolan 
et al. 2014); similarly, Se-rich shales, limestones, and mudstones are the source of 
Se in soils found in the USA and India (Bolan et al. 2014).

Many countries in the world are poorly designed and implement the environment 
act; thereby, they are facing the problem of heavy metal(loid) accumulation in the 
terrestrial and aquatic environment. Those having frequent use of lead gasoline have 
the problem of Pb accumulation in air and soil (Wuana and Okieimen 2011). Lead 
is a toxic element, it is present in rocks (1–150 mg kg−1), and thereby, it has been 
included in new European REACH Regulation (EC1907/2006) (Kushwaha et  al. 
2018). Some countries are using intensive pesticides (Bordeaux mixture), and phos-
phate fertilizer (rock phosphate) has been reported for Cu, Cd, and Pb pollution 
(Wuana and Okieimen 2011; Bolan et al. 2014). The mixture of copper-chromium- 
arsenic (CCA) is being used for preservation of wood in the USA; Cr is also fre-
quently used for the treatment of tanneries (Bolan et al. 2014; Robinson et al. 2006). 
Soil irrigated with wastewater was contaminated with heavy metals (Cd 5, Co 13, 
Pb 21, Cr 33, Cu 43, Mn 64, and Zn 83 mg kg−1 soil) in Lahore, Pakistan (Mahmood 
and Malik 2014). They further reported the health hazard impact of these metals 
especially Cd and Mn via consumption of leafy vegetables cultivated in metal- 
contaminated soils. Heavy metal(loid)s can be divided into three distinguished haz-
ardous classes on the basis of their toxicological profile; for instance, Dutch has 
divided metal(loid)s on the basis of their toxicity in soil (Vodyanitskii 2016): (i) 
highly hazardous (Cd, Be, Se, Sb (< 1 mg kg−1 soil)), (ii) moderately hazardous (As, 
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Ba, Cu, Cr, Hg, Ni, V (1–10 mg kg−1soil)), and iii) low hazardous (Co, Ce, Pb, Zn 
(> 10 mg kg−1 soil)). Heavy metal(loid) contamination in soils of various countries 
has been summarized in Table 14.1. The soils of Ghana, the European Union, and 
Greece were contaminated with As, whereas Bangladesh soil was contaminated 
with Cd higher than the values of these metals in world soil (Table 14.1). Similarly, 
river basin of Columbia showed higher levels of Cu, Ni, and Zn, whereas agricul-
tural soils of Khyber Pakhtunkhwa, Pakistan, showed higher values of Zn than their 
respective world level (Table 14.1).

Fig. 14.1 Sources of heavy metal(loid)s and their toxic effects on cereal crops
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14.3  Metal(loid) Toxicity to Cereal Crops

Heavy metals and metalloids are ubiquitous in the environment; however, they 
affect crops mainly due to their contamination in soil and water. The farmers are 
using untreated industrial effluent to irrigate fields, chemical fertilizers, and pesti-
cides to increase economic yield at the cost of soil pollution and quality. The expo-
sures of heavy metal(loid)s to cereal crops are causing morphological, physiological, 
and metabolic changes which are elaborated here (Fig. 14.1).

14.3.1  Morphological Effects of Metal(loid)s

Heavy metal(loid) toxicity severely affected the plant growth and development 
more than any other environmental stress. Heavy metal toxicity has decreased mor-
phological attributes of cereal crops and also caused genotoxicity. It is essential for 
metals to be available in sufficient amount in soil for plant uptake; once it is accu-
mulated in plants through either H+/ATPase pump or Ca channels, it disrupts the 
synthesis of enzymes and proteins that inhibit seed germination and growth of 
plants (Kushwaha et al. 2018). They further reported that Pb toxicity also limits leaf 
water contents, stomatal closure, and mineral nutrients. It is reported that heavy 
metal (Pb) has decreased the seed germination, root/shoot length, and biomass of 
many cereal crops such as maize (Ghani 2010; Hussain et  al. 2013; Singh et  al. 
2015), wheat (Yang et al. 2010; Lamhamdi et al. 2013; Ramesar et al. 2014), and 
rice (Gautam et al. 2010; Khan et al. 2018). Verma and Dubey (2003) examined the 
effect of high dose of Pb (1000 mM) to rice seedlings that caused a reduction in 
shoot/root length (31–40%) and shoot/root fresh weight (29–43%). Very recently, 
Khan et al. (2018) determined the toxicity of Pb to rice crop cultivated in nutrient- 
sufficient or nutrient-deficient conditions. They observed Pb toxicity to aerial part of 
rice; however, it did not cause any toxicity to belowground part of rice under a 
limited supply of essential nutrients. The short-term effects of Pb on wheat seedling 
were observed by Lamhamdi et al. (2011), while long-term effects were reported by 
Ramesar et al. (2014). They concluded that this metal has reduced seedling growth 
of wheat at either short- or long-term Pb exposure.

Leaf concentration determines the toxicity of Cd; Lux et al. (2011) reported that 
Cd causes toxicity to plants if its concentration in the leaf is >10 μg g−1. They also 
noted the toxic effects of Cd on root anatomy of the plant that is due to high accu-
mulation of this metal in plant roots. Seed germination and initial growth stages of 
wheat are very crucial and sensitive to Cd toxicity (Ahmad et al. 2012, 2013). Many 
investigations reported that Cd has decreased root/shoot length, biomass, and chlo-
rophyll content of cereals (Ahmad et al. 2016; Rizwan et al. 2016; Ansarypour and 
Shahpiri 2017). However, in some cases due to a higher concentration of Cd, crops 
showed phytotoxic symptoms such as browning of roots, leaf epinasty, and leaf 
chlorosis and necrosis (Dong et al. 2005; Lux et al. 2011). Cadmium-induced geno-
toxicity damages DNA, growth, and mineral uptake in plants (Benavides et  al. 
2005); in another study, Cd caused an acute reduction in growth, biomass, and water 
contents in sorghum (Roy et al. 2016).
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Higher Cr accumulation may cause inhibition in seed germination and thus cause 
a reduction in crop growth (Adrees et al. 2015; Tripathi et al. 2015). Chromium has 
caused the oxidative stress in cereal crops that disturbs not only the biochemical but 
also the morphological functions of plants, resulting into loss of economic yield of 
crops (Ma et al. 2017; Handa et al. 2017). Mathur et al. (2016) examined the effects 
of Cr on wheat and noted that growth of wheat is inhibited due to impairment of 
photosynthetic and internal metabolic machinery. Wyszkowski and Radziemska 
(2013) reported negative effects of Cr on growth and biomass of oat.

Previous studies revealed that germinating seeds and seedling growth of rice 
were decreased due to toxicities of metalloids in hydroponic (Khan and Gupta 
2018). Among these metal(loid)s, arsenic (As) toxicity becomes a worldwide envi-
ronmental problem (Zhao et al. 2009). Zhang et al. (2016) exposed the resistant and 
sensitive cultivars of rice to As in a pot experiment with and without mycorrhiza. 
They found less accumulation of As in grains of resistant rice cultivars as compared 
to sensitive; however, flooding conditions promote the As accumulation in resistant 
cultivar when compared with aerobic conditions (Zhang et al. 2016). The authors 
urged the farmers to adopt these agronomic (water management) and genetic 
engineering- cum-breeding techniques to avoid As toxicity to rice (Zhang et  al. 
2016). An excellent review has been published by Islam et al. (2016a) elucidating 
the toxicity of As in rice. They argued that rice is more efficient at accumulating As 
in grains as compared to other cereals, and thereby, this is prone to relatively greater 
As toxicity in terms of growth and quality of rice grain. However, at the same time, 
the authors address some management practices to reduce As toxicity in rice. 
Arsenic was loaded into crop cells following the same route as followed by the 
essential elements and has caused morphological and metabolic effects on cereal 
crops (Abedin and Meharg 2002; Zhao et al. 2009). It has reported that As caused 
severe damage to root/shoot biomass, seed germination, and economic yield of 
crops (Abedin and Meharg 2002; Armendariz et al. 2016). Maize seedlings were 
exposed to 0–5  mg As L−1 in hydroponics for 5  days (Stoeva et  al. 2003); they 
observed a significant reduction in maize growth, biomass, and leaf area. Similar to 
other metalloids, selenium (Se) stress decreased growth and biomass of lowland 
rice (Mostofa et al. 2017).

14.3.2  Physiological Effects of Metal(loid)s

Lead (Pb) toxicity has caused a significant reduction in chlorophyll contents of 
wheat (Lamhamdi et al. 2013; Ramesar et al. 2014) and maize (Singh et al. 2015), 
and the effect was aggravated with elevated concentrations of Pb. Similarly, Zn 
stress significantly decreased chlorophyll a and b of wheat leaves (Li et al. 2013). It 
has been reported that Pb stress generated ROS in many crops (Fahr et al. 2013); 
consequently, it increased malondialdehyde (MDA) and H2O2 contents in wheat 
(Kaur et al. 2012). Similar kind of effects was reported in other studies; for example, 
MDA concentration has increased in maize (Gupta et al. 2009), rice (Thakur et al. 
2017), and wheat (Yang et al. 2011; Kaur et al. 2012) in hydroponics under different 
Pb concentrations and time of exposure. The increased MDA and H2O2 contents in 
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wheat and maize are rectified in plants by activating internal antioxidative system 
(Kaur et al. 2013, 2015; Singh et al. 2015). However, the ability of cereal crops to 
respond to Pb toxicity and detoxification mechanisms varies with growth conditions 
and plant species.

Cadmium ions cause inhibition in physiological machinery of cereal crops that 
decrease plant strength and hamper cereal crop growth (Nahakpam and Shah 2011; 
Ahmad et al. 2015, 2016). Leaf chlorosis, reduction in seed germination, growth 
and cell division, and limited uptake of water, phosphorus, and nitrogen in cereal 
crops are some common causes of Cd toxicity (Benavides et al. 2005; Lux et al. 
2011; Shah et al. 2013). The presence of Cd2+ is associated with the occurrence of 
oxidative stress (Nahakpam and Shah 2011; Ahmad et al. 2016). Also recently, it 
was demonstrated that Cd2+ causes a series of ROS generation, viz., hydrogen per-
oxide, superoxide anion, and hydroperoxides in crop cells (Garnier et  al. 2006). 
Effects of Cd toxicity are employed to the plasma membrane within the cell of the 
crop (Lux et al. 2011). Cd2+ when taken up by the roots is moved to xylem cells 
through an apoplastic or a symplastic pathway for its transportation into leaves (Lux 
et al. 2011); however, most of this metal is restricted at roots (Ahmad et al. 2014). 
Such accumulation and translocation of Cd2+ in roots to leaves differ considerably 
among species and even among varieties of the same species. Mostly, Cd2+ gets 
deposited and binds largely in the cell walls adjacent to the plasma membrane and 
to the endomembrane compartments; however, in leaves, Cd2+ is found to accumu-
late in vacuoles as well (Jin et al. 2015; Liu and Kottke 2004). The first visible effect 
of Cd toxicity was an enhancement of vacuolation in the meristematic cells and the 
appearance of electron-dense granules between the cell wall and plasma lemma in 
plant roots (Liu and Kottke 2004). At high concentration of Cd2+, the cell death 
occurs owing to severe plasmolysis, shrinkage of cytoplasm, and reduction in a 
number of ribosomes and mitochondrial cristae (Liu and Kottke 2004).

Cr largely targeted the green pigments and photosystem and inhibited carbon 
assimilation in wheat (Ali et al. 2015; Mathur et al. 2016). The process of photosyn-
thesis, enzymatic reactions, and chlorophyll (a, b, and carotenoids) content of maize 
were inhibited in the presence of Cr in the growth media (Islam et  al. 2016b). 
Similar to other metals, Cr generates ROS in plants that cause specific damage, and 
sometimes, it spreads to whole-plant level (Anjum et al. 2014; Gill et al. 2016); this 
condition causes severe destruction in physiological processes of plants due to oxi-
dative stress, which oxidizes proteins, lipids, and nucleic acid and inhibits enzymes 
leading to cell death in cereal crops (Adrees et al. 2015).

Selenium has generated ROS such as H2O2 and damaged cell membrane of rice 
plant by the production of high-lipid peroxidation that ultimately hampered the 
morphology of rice (Mostofa et al. 2017). ROS are considered as an indicator of 
stress in plants, and thus, it acts as signaling molecules (Wrzaczek et al. 2013; Luo 
et al. 2016). Higher concentration and accumulation of Se in crops decreased the 
amount of green chloroplasts and degradation of the organelles in plant root cells 
(Ślusarczyk et al. 2015). The increased lipid peroxidation in wheat seedlings and 
enhanced antioxidant activity in barley are indicators of ROS generation and accu-
mulation in these cereals cultivated in Se-contaminated media (Akbulut and Cakır 
2010; Łabanowska et al. 2012). The inhibition of green pigments, reduction in water 
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contents, enhanced production of hydrogen peroxide, and lipid peroxidation are the 
major consequences of Se stress in lowland rice plant (Mostofa et al. 2017). They 
also noted that rice plant in Se stress showed upregulation of some antioxidant 
enzymes (SOD, GPX) while downregulation of others (AsA, CAT, GR). Selenium 
caused toxicity to cereal crops due to attachment of Se to Cys/Met complex in pro-
tein chain and resulted in formation of selenoproteins (SeCys/SeMet); this complex 
impairs protein functioning. The formation of SeCys complex is more detrimental 
to protein synthesis than SeMet, the former having more toxic nature; however, both 
complexes are very reactive and easily deprotonated and inhibit enzyme functions 
(Hondal et al. 2012). The other studies reported specific inhibition of glutathione 
synthesis in model plants in response to Se stress (Hugouvieux et al. 2009; Grant 
et al. 2011).

The As exposure to maize seedlings causes a significant reduction in green pig-
ments that lead to lower efficiency of photosynthetic machinery (Stoeva et al. 2003); 
the As stress also increased lipid peroxidation and antioxidant enzyme peroxidase 
activity in the same plant. The As toxicity to maize seedlings is rendered due to 
metabolic impairment in maize cell for uptake of phosphate ions which are known 
analogue of arsenate ion and share the same path to enter in root cell and are trans-
ported to shoot (Stoeva et al. 2003; Smith et al. 2010). Another reason to this toxic-
ity is the conversion of As (V) to As (III) in the cytoplasm of plant cell (Meharg and 
Hartley-Whitaker 2002; Stoeva et al. 2003), which causes cellular damage through 
generation of ROS, inhibiting enzymes and proteins (Meharg and Hartley-Whitaker 
2002; Smith et al. 2010).

14.3.3  Metabolic Effects of Metal(loid)s

In cereal crop, toxic effects of Cd on metabolism have been observed, for instance, 
reduced uptake of nutrient (Sandalio et  al. 2001), hampering of various enzyme 
activities (Obata and Umebayashi 1993), and production of oxidative stress 
(Romero-Puertas et al. 1999; Sandalio et al. 2001), including changes in enzymes of 
the antioxidant defense system (Benavides et al. 2005). Cd also decreased the accu-
mulation of nitrate and its transport from roots to shoots, by damaging the nitrate 
reductase activity in the shoots of the plant. Cadmium also decreased the process of 
absorption of nitrogen fixation and primary ammonia in plants during Cd treatments 
(Balestrasse et al. 2001). Cadmium produces changes in the functionality of mem-
branes by destroying lipid peroxidation and disturbances in chloroplast metabolism 
by damaging chlorophyll biosynthesis and decreasing the activity of enzymes 
involved in CO2 fixation.

Wheat seedlings are exposed to Pb stress in hydroponics to determine its effect 
on nutrient uptake and metabolic products (Lamhamdi et  al. 2013). They found 
decreased uptake of nutrients (Ca, Mg, Cu, Zn) and synthesis of proteins while 
increased Mn in wheat under Pb stress. Kaur et al. (2012) reported membrane insta-
bility and alteration in enzyme activities in wheat in response to Pb stress. Heavy 
metal stress (Ni, Cd, Pb, Zn) inhibits phosphorylation reaction and impairs electron 
transport system in the plant (Romanowska et  al. 2002, 2006); another study 
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reported alterations in dictyosomes, endoplasmic reticulum, and mitochondrial cris-
tae under Pb stress (Jiang and Liu 2010). The chromosome damage and decreased 
in mitotic and cell division in maize cells are the consequences of Pb stress (Jiang 
and Liu 2000). The exposure of C3 and C4 plants to Pb oxidized many important 
substrates of Calvin cycle in mitochondria which affects respiration rate of maize 
and barley (Romanowska et al. 2002); moreover, Pb stress triggers ATP production 
in these cereals (Romanowska et al. 2002, 2006).

The scientist identified many biomarkers in plants to quantify metal stress. 
Among them, phytochelatins are the most common proteins produced in plants in 
response to heavy metals. Keltjens and van Beusichem (1998) reported the toxicity 
of Cd and Cu on maize and wheat metabolic activities. They observed a close asso-
ciation of Cd and PC contents in plant tissues; thereby, they considered PC as a 
biomarker of Cd stress in these cereals. Cadmium exposure to sorghum increases or 
decreases the expression of many proteins responsible for the metabolism of carbo-
hydrates and protein synthesis. These factors have a major role in lowering of 
growth and biomass of sorghum (Roy et al. 2016). The high concentration of Zn in 
the growth media caused inhibition in kinase and dehydrogenase enzymes in wheat 
roots (Li et al. 2013); however, Zn stress does not affect hydrogen peroxide, MDA, 
and SOD activities in leaves of wheat. The Cu exposure to cereal crops induced 
metabolic and anatomical changes; for instance, it induced lipid peroxidation in 
wheat, maize, and rice (Adrees et al. 2015).

The high concentration of Cr decreased NO3-N and increased accumulation of 
total N in oat (Wyszkowski and Radziemska 2013). The toxic effect of Cr on the 
yield of barley was also reported that was due to decreased accumulation of N com-
pounds in this cereal crop (Wyszkowski and Radziemska 2010); interestingly, the 
same study compared the toxic effect of Cr on maize which showed tolerance com-
pared to barley. This tolerance was due to greater accumulation of NH4-N in maize. 
Exposure of plants to Cr-induced changes in their metabolic activities; in some 
cases, it disturbs hydrolytic enzymes (amylase) during seed germination, nitrate and 
nitrite reductases essential for nitrogen metabolism, and carbohydrate metabolism 
in plant leaves (Singh et al. 2013). The other studies also reported similar effects of 
Cr on nitrogen metabolism (Kumar and Joshi 2008); they observed reduced activi-
ties of urease, nitrate/nitrite reductases, glutamate synthase, and dehydrogenase in 
root and shoot of sorghum. Twenty-two different kinds of proteins were identified 
in maize exposed to Cr stress, of which six proteins were associated with sugar 
metabolism, three proteins were related to stress tolerance, and four were respon-
sible for antioxidant production (Labra et al. 2006). Similarly, Ding et al. (2009) 
reported Cr-induced activities of protein kinase in maize, which is inactivated upon 
production of hydrogen peroxide scavenger. The activity of NO- and Ca-dependent 
kinase increased in maize exposed to Cr, and it followed the ZmMPK5 pathway for 
expression of these enzymes (Ding et  al. 2009). Based on microarray analysis, 
Dubey et al. (2010) found up- and downregulation of genes in rice grown under Cr 
stress; these genes were involved in metabolism, transport of sugar and nutrients, 
and homeostasis of Cr stress by either production of antioxidant enzymes or 
osmolytes.

I. Ahmad et al.



247

Łabanowska et  al. (2012) investigated Polish and Finnish wheat seedlings 
exposed to Se for a two-day period. They observed increased metabolism of carbo-
hydrates and enzymatic antioxidants in Polish than Finnish wheat that might be the 
reason for better Se tolerance in Polish-originated wheat cultivars. Selenium in the 
form of selenate is metabolized in chloroplasts via sulfur reduction process, and its 
toxicity is mainly due to alteration of cysteine to selenocysteine in proteins. The 
formation of the process of nonspecific selenoproteins in iron-sulfur clusters has 
reduced the rate of photosynthetic electron transport in selenate-treated wheat plants 
(Hondal et al. 2012). So, evidence from previous studies suggests that Se toxicity 
can also be increased due to the ability to catalyze the process of the oxidation of 
thiols and to generate ROS (Hondal et al. 2012). Selenium stress in rice plant inhib-
its the activity of glyoxalases and causes toxicity of methylglyoxal to rice (Mostofa 
et al. 2017). They also found Se toxicity on the synthesis of proteins, reducing sug-
ars and enzymatic antioxidants in rice. Lipid peroxidation, denaturation, and disrup-
tion of many enzymes and processes in the model plant Arabidopsis were due to 
Se-induced oxidative stress (Hugouvieux et al. 2009), and moreover, it inhibits the 
accumulation of APX, POD, and ETS in plant cells.

Another important metalloid is As; many studies have reported metabolic-level 
toxicity of As in crops including cereals (Stoeva et  al. 2003; Smith et  al. 2010). 
Normally, As is transported to plant shoot, usually arsenite following the silicon 
while arsenate following the phosphate pathway (Meharg and Hartley-Whitaker 
2002; Zhao et al. 2009; Zhu and Rosen 2009). The SH groups of proteins are mainly 
influenced by As, and thus, it causes conformational changes in the structure of 
proteins in plant cells (Van Assche and Clijsters 1990; Delnomdedieu et al. 1994). 
The metabolic response of six rice lines exposed to As revealed accumulation of 
phytochelatins in roots and grain while no production observed in leaves; instead, 
glutathione activity increased in leaves (Heuschele et al. 2017); similarly, As-induced 
lipid peroxidation and peroxidase activity were observed in maize seedlings (Stoeva 
et al. 2003). Studies revealed that inorganic As is converted into organic form in rice 
grains; for instance, Marin et al. (1992) noted that rice seedlings exposed to organic 
and inorganic forms of As showed that the former is a dominant species in rice 
grain. The summary of the physiological and metabolic effects of metal(loid)s on 
cereal crops is given in Fig. 14.1.

14.4  Responses of Plants to Heavy Metal Stress

Plants are usually immobile, and therefore, they have to face unwanted environmen-
tal variations. Cereal plants have to evolve a large number of strategies ranging from 
physiological and biochemical to maintain adverse effects of metal(loid) toxicity. 
These plants recognize stress signal and then transduce and transmit the signal into 
the cell and activate the response to offset the unwanted effects of stress by rede-
signing the biochemical processes of plant cell (Fig. 14.2). Understanding the varia-
tions in the signal transduction in plants in response to metal(loid) stress is difficult 
at the whole-plant level. This might be possible to monitor initial responses like 
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metabolite accumulation, oxidative stress, and transcriptomic and proteomic 
changes, and this will help in the recognition of changes that occur in cereal plants 
after heavy metal stress exposure. The similarity between heavy metals and essen-
tial plant growth elements causes competition in absorption from the soil. The pres-
ence of heavy metal(loid)s in soil competes with phosphorous and zinc and restricts 
their absorption from soil to plants which cause a nutrient deficiency. Heavy 
metal(loid)s bind with functional protein sulfhydryl group and disturb its function 
essential for normal plant growth and function (Lux et  al. 2011; DalCorso et  al. 
2013; Sharma et al. 2016).

In some plants like cereal (barley), metal toxicity symptoms are similar to drought 
stress symptoms, and therefore, overexpression of genes related to water stress toler-
ance is the basic mechanism adopted by these plants that enable them to withstand 
metal stress (Tamas et al. 2010). Restricted seed germination and growth of seedling 
in wheat, decreased photosynthetic activity, chloroplast membrane damage, limited 
enzymatic activity, reduced plumule and radical growth, imbalanced protein metabo-
lism, and nutrient status are the responses of cereal plants when exposed to heavy 
metal stress (Ahsan et al. 2010; Li et al. 2013; Ahmad et al. 2012; Ahmad et al. 2015; 
Singh et al. 2015, 2018). Suppression in root growth due to prolonged cell cycle and 
decreased cell division (decreased mitotic activity) has been reported in many cereal 
crops under metal stress (Jiang and Liu 2000; Kikui et al. 2005; Lux et al. 2011; 
Hayat et al. 2012; Anjum et al. 2014). The copper toxicity alters auxin distribution 

Fig. 14.2 Possible defense mechanism activities in cereals to mitigate heavy metal(loid) stress
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restricted root growth that causes limitation in water and nutrient uptake, and ulti-
mately, it reduced shoot growth of cereals (Wang and Zhou 2005).

Cereal plants adopt following basic three types of mechanisms to mitigate the 
effects of heavy metal stress. These include physiological, biochemical, and mor-
phological adaptations: i) Physiological adaptations are osmolyte accumulation, 
higher leaf gas exchange, regulation of leaf water and chlorophyll contents, and 
vascular development; ii) biochemical strategies utilized by plants are the regulation 
of antioxidant production system and biosynthesis of enzymes. These physiological 
and biochemical changes help the cereal plants to tolerate toxic effects of heavy 
metal stress and lead to iii) morphological developments like leaf development, root 
and shoot length improvement, leaf cell proliferation, and better seed germination 
and increased the fresh and dry weight of plants (Shahzad et al. 2018). The follow-
ing section elaborated the salient mechanisms reported in cereals and related plant 
species to dilute the effect of heavy metal(loid) toxicity.

14.4.1  Enzymatic Antioxidants

Plants experiencing stress usually generated ROS which are hunted by the produc-
tion of enzymatic and nonenzymatic antioxidants (Dat et al. 2000). The phytohor-
mone (brassinosteroids, BRs), e.g., 24-epibrassinolide (EBL), regulates the 
antioxidant production system of plants and helps to tolerate metal stress (Sharma 
and Bhardwaj 2007; Allagulova et al. 2015; Shahzad et al. 2018). Allagulova et al. 
(2015) investigated the effect of EBL hormone to mitigate Cd stress in wheat. They 
observed dehydrin protein accumulation in wheat seedlings is responsible for Cd 
tolerance. Regulation of chlorophyll contents, photosynthetic activity, and osmolyte 
production was accompanied due to phytohormone, i.e., EBL produced by plants 
under metal stress to tolerate heavy metal toxicity (Hayat et al. 2007). The cereal 
plants adopted many defense mechanisms to mitigate metal stress: the scientists 
noted enhanced production of enzymatic antioxidants (SOD, APX, CAT, GPOD) in 
root, shoot, and leaves of wheat, maize, and rice (Kaur et al. 2012; Islam et al. 2014; 
Ali et al. 2015; Kaur et al. 2015; Khan and Gupta 2018) and synthesis of EBL- 
hormone- induced dehydrin and steroidal compounds (Allagulova et  al. 2015; 
Shahzad et al. 2018). Superoxide radicals are mutated to H2O2 due to the action of 
SOD, and H2O2 is further scavenged by CAT and APX (Gill and Tutija 2010). 
Increase in CAT, SOD, GPX, and GSH-PX in rice and brassica was observed in 
response to Cr and Ni stress (Arora et al. 2010; Sharma et al. 2016). Increased nitro-
gen metabolism due to increased activity of nitrate reductase and nitrite reductase; 
increased carboxylase and oxygenase activity; and increase in activity of glutamine 
synthetase, glutamate dehydrogenase, glutamine oxoglutarate aminotransferase 
(GOGAT), and glutamate dehydrogenase (GDH) has a vital role in detoxification of 
toxicants produced in metal-stressed plants. Enhanced protease activity is another 
phenomenon that takes place to cope with heavy metal stress. Toxicity of As in rice 
is ameliorated by the enhanced production of antioxidants (SOD, CAT, GPX, GST) 
in shoot and root (Khan and Gupta 2018).
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14.4.2  Nonenzymatic Antioxidants

Along with enzymatic antioxidants, cereal plants possess a nonenzymatic antioxi-
dant system to combat with deleterious effects of heavy metal exposure. Ascorbic 
acid is an important nonenzymatic compound produced in plants under metal stress 
(Gill and Tuteja 2010; Hasanuzzaman et al. 2012). It is used as a reducing agent by 
the enzyme ascorbate peroxidase to detoxify H2O2 in the ascorbate-glutathione 
cycle. Furthermore, ascorbic acid improves tolerance of plants to metal stress by 
protecting proteins and lipids and offsets the toxic effects on growth and physiology 
of plants (Akram et al. 2017). These mechanisms are also observed in other plant 
species: for instance, enhanced activity of carbonic anhydrase and monodehydro-
ascorbate reductase (MDHAR) of ascorbate-glutathione cycle (Hayat et al. 2007; 
Yadav et al. 2018). The AsA is an important nonenzymatic antioxidant to alleviate 
metal stress, but it is oxidized to MDHA. Thanks to nature, plants have ascorbate- 
glutathione cycle which converted MDHA to AsA by the hormone MDHAR in the 
presence of NADPH. Maintenance of AsA pool is brought about by the increased 
activity of this enzyme. Toxic electrophiles are produced in plants under metal 
stress, and increased activity of glutathione-S-transferase (GST) has been found to 
be important in detoxification of these electrophiles (Edwards et  al. 2000). 
Upregulation of genes encoding antioxidants like DHAR, GR, GST-1, and GSH-S 
was observed in previous study, and overexpression of stress-related genes in plants 
under metal stress suggested the role of upregulation and expression level in detoxi-
fication of stress-related toxicants and in enhancing the tolerance level of plants 
(Ashraf et al. 2010; Zhang et al. 2015). Glutathione is also capable of reducing ROS 
via the ascorbate-glutathione cycle by the action of GR as it converts GSSG to GSH 
at the expense of NADPH (Gill and Tuteja 2010; Foyer and Noctor 2011).

Phenolics are another important group of nonenzymatic antioxidants having at 
least one aromatic ring (C6) bearing one or more hydroxyl groups. Biosynthesis of 
phenolic compounds in wheat, maize, and barley under heavy metals like Ni, Al, 
and Cd, respectively, has been reported (Michalak 2006). Phenolic compounds 
have –OH and –COOH groups which may bind metals and lipid alkoxyl radicals 
and limit metal-induced oxidative stress. However, this activity directly relies on 
the number and position of –OH group in the molecules (Michalak 2006). Various 
types of peroxidases (POX) are operating in the plant system of which some use 
ascorbate or phenol to donate an electron. These perform a vital role in lignin for-
mation in the plant cell wall that has restricted Cd entry into the plant by develop-
ing physical barrier (Loix et al. 2017).

Organic acids like acetic and citric acid produced biologically in plants have a 
carboxylic group in their structure and possess the ability to chelate heavy metal 
ions. Citric acid mobilizes the heavy metals in the rhizosphere and facilitates the 
phytoremediation process (Gao et  al. 2010). It has been reported that citric acid 
induced protection by activating host antioxidant system against metal(loid) stress 
(Freitas et al. 2013). Synthesis and exudation of citric acid in wheat (Tahir et al. 
2015) while cysteine and proline in rice (Khan and Gupta 2018) have been reported 
previously to overcome the oxidative stress induced by the metal(loid)s. Amino 
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acids like alanine, proline, cysteine, methionine, glutamine, and aspartic acid were 
produced in response to metal stress (Bhatia et  al. 2005). Roots synthesize and 
deposit callose that helps them in restricting the entry of heavy metals into roots and 
thus avoid negative effects. Sequestration and stabilization of metals at the root level 
is an important strategy to avoid or protect shoot from metal-induced oxidative 
stress (Singh and Pandey 2011; Feigl et  al. 2013). Auxin has a vital role in the 
improvement of root system properties like enhanced root length and root area to 
absorb more water and essential ions (Tahir et  al. 2015). In metal-contaminated 
soils, cereal plants produce auxin compounds like indole-3-acetic acid (IAA), indole 
butyric acid (IBA), and naphthaleneacetic acid (NAA) to combat with osmotic 
stress caused by metal toxicity.

14.4.3  Protein

The activity of ATPase soluble proteins and nucleic acids mitigates the toxic effects 
of metal(loid) in plants (Ashraf and Foolad 2007; Choudhary et al. 2011; Madhan 
et al. 2014). Lipid peroxidation occurs in plants under metal stress, and plants pro-
duced membrane proteins that degrade ROS and minimize the effects of lipid peroxi-
dation (Cao et  al. 2005). Increase in free proline contents is another mechanism 
adopted by plants to tolerate metal stress. In the presence of elevated levels of heavy 
metals, plants synthesize two types of proteins, i.e., phytochelatins (PC) to chelate 
metal ions and metallothioneins (MT) in the cytosol for sequestration of metals in the 
vacuole (Hassan et al. 2017). The synthesis of S-rich proteins is known to induce 
stress tolerance in plants (Zagorchev et al. 2013); such kinds of proteins have been 
reported previously for sequestration and detoxification of metal(loid)s in plants 
(Clemens 2006; Viehweger 2014). In addition to heavy metal chelation and accumu-
lation, PC also has a critical role in antioxidant production, homeostasis of metal 
ions, and complexation of metals with PCs (Jabeen et al. 2009; Furini 2012; Hasan 
et al. 2017). The heavy metal(loid)s sequestered by PC are transported from cytosol 
to the vacuole by ATP-dependent vacuolar pumps (V-ATPase and VPPase) and a set 
of tonoplast transporters (Sharma et  al. 2016; Hassan et  al. 2017). The advanced 
RNA-Seq and de novo transcriptome analysis revealed metal detoxification in plant 
cells is due to metal gene–encoded natural resistance-associated macrophage pro-
teins (NRAMPs), permeases, and ATPases (Xu et  al. 2015; Sharma et  al. 2016; 
Hasan et al. 2017). Recently, Khan and Gupta (2018) identified various genes and 
proteins (NR, PH1, Apase, KAT1) that involved in upregulation of nutrients in rice 
plant under As stress. These genes along with the antioxidant defense system might 
involve in As detoxification in rice. In another study, various rice elite lines were 
screened against As stress (Heuschele et al. 2017). They found that synthesis of cys-
teine and phytochelatin proteins is involved in sequestration of As in rice tissue.

Metallothioneins (MT) are cysteine-rich proteins which can detoxify metal(loid)s 
through cellular sequestration and protection from oxidative damage (Kang 2006; 
Capdevila and Atrian 2011; Hassinen et al. 2011; Hossain et al. 2012; Hasan et al. 
2017). The mechanism for ROS hunting is not yet clear; however, it is advocated that 
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metals are detached from MT-metal complex and replaced with MT-ROS complex 
that might alleviate metal-induced oxidative stress in plants (Hassinen et al. 2011; 
Hasan et al. 2017). Ansarypour and Shahpiri (2017) investigated the role of rice MT 
isoform-OsMTl-1b against Cd stress tolerance in Saccharomyces cerevisiae. They 
conferred that isoform of MT-induced tolerance in this yeast against Cd stress. In 
addition to these mechanisms, proteins also have a role in repairing of damaged pro-
teins, tolerance of endoplasmic reticulum, heavy metal stress-induced denatured pro-
teins, and autophagy in heavy metal-stressed plants (Hasan et al. 2017).

14.5  Crop-Microbe Interactions Under Metal and Metalloid 
Stress

Around the globe, abiotic stresses like salinity drought and metal/metalloid pose a 
challenge to the sustainable production of crop plants (Ahmad et al. 2012; Ditta 
2013; Naveed et al. 2014). In the course of time, demand for food has forced the 
farming community toward intensive farming which is the production of more and 
more crops without taking care of the health of soil-plant continuum. This farming 
practice has deteriorated the vital component of ecosystem, i.e., soil-plant contin-
uum with metal and metalloids with the application of different amendments 
(Gajdos et al. 2012). In order to cope with this situation, several phytoremediation 
strategies have been employed like phytoextraction and phytostabilization (Sessitsch 
et al. 2013). Another strategy that could be employed is the use of rhizospheric bac-
teria associated with plants that are well renowned for their plant growth promotion 
effect under normal (Ditta et al. 2015; Ditta and Khalid 2016; Ditta et al. 2018) and 
abiotic stress conditions (Ahmad et al. 2012, 2013, 2014, 2016).

Plant growth-promoting microorganisms especially plant-associated bacteria, 
i.e., rhizobacteria, improve growth and yield of various crop plants. In literature, 
various researchers around the world have reviewed their role under abiotic stresses 
like heavy metals (Glick 2010; Ma et al. 2011; Rajkumar et al. 2012; Sessitsch et al. 
2013). It has been found that these bacteria not only enhance the plant growth but 
also employ certain mechanisms which help increase/decrease the availability of 
metals and metalloids under heavy metal stress. The plant growth-promoting mech-
anisms include the provision of micro- and macronutrients through the production 
of phytohormones, siderophores, etc. (Glick 2010; Ma et al. 2011; Rajkumar et al. 
2012). The mechanisms related with increasing the availability of heavy metals in 
the soil include the secretion of certain organic acids which lower the rhizospheric 
pH. The low pH is suitable for improving the availability of heavy metals in the soil 
and ultimately helps in phytoextraction. Similarly, solubilization of metal minerals 
via lowering the pH of rhizosphere by increasing the release of root exudates results 
in more root growth and surface area for more phytoextraction of heavy metals 
(Sessitsch et al. 2013; Ullah et al. 2015; Sharma and Archana 2016). With the pas-
sage of time and advancement in technology, certain bacteria have been isolated that 
have the ability to reduce the availability of certain heavy metals via certain mecha-
nisms, i.e., phytostabilization and bioaccumulation. In phytostabilization, the 
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Table 14.2 Plant growth promoting bacteria–induced metal stress tolerance in cereals

Cereal 
crop Metal(loid)s Effect of bacterial inoculation on cereal crops References
Maize Cd Cd accumulated primarily in the roots and transported 

to the shoots was rather low
Gajdos et al. 
(2012)

Maize Cd Plants inoculated with bacterial strains exhibited 
greater root-to-shoot ratio and dry biomass in 
Cd-contaminated soil, caused a marked increase in 
Cd uptake. Bacterial strains were efficient colonizer

Ahmad et al. 
(2016)

Maize Cd Immobilization and low translocation to the shoots 
reduced metal accumulation

Moreira et al. 
(2014)

Maize Cd Promoted root and shoot length and dry biomass Sangthong 
et al. (2016)

Maize 
and 
wheat

Cd Significantly reduced the suppressive effect of Cd on 
growth and physiology

Ahmad et al. 
(2014)

Maize 
and 
wheat

Cd Improved growth and yield parameters through 
phosphate solubilization, IAA, siderophores, ACC 
deaminase activity

Jiang et al. 
(2008)

Maize Cr Enhanced Cr tolerance in maize seedlings by 
decreasing Cr uptake from root to shoot, reduced 
oxidative stress by elevating the activities of 
enzymatic and nonenzymatic antioxidant, improved 
carbohydrate metabolism under Cr stress

Islam et al. 
(2016b)

Wheat Hg Growth parameters and relative water content were 
significantly higher and vice versa for proline 
content, electrolyte leakage, and malondialdehyde 
content (shoots and roots) in inoculated plants 
compared to uninoculated plants under stress 
condition

Gontia- 
Mishra et al. 
(2016)

Maize Pb Decreased soil pH which resulted in more 
accumulation of Pb in shoot

Hadi and 
Bano (2010)

Maize Pb Improved growth and yield parameters through 
phosphate solubilization, IAA, siderophores, ACC 
deaminase activity

Jiang et al. 
(2008)

Maize Pb Inoculated plants had maximal growth and yield 
parameters, photosynthetic pigments, proline, protein, 
peroxidase, glutathione-S-transferase, and catalase, 
while these plants had minimal Pb uptake in root and 
shoot

Hassan et al. 
(2014)

Wheat Zn Inoculation improved the uptake of P and N in wheat 
plants with an increase in leaf chlorophyll, total 
soluble protein, and plant biomass production

Islam et al. 
(2014)

Wheat Zn Increased various growth parameters, photosynthetic 
pigments, Zn content in plant, various compatible 
solutes such as proline content (30–65%), total 
soluble sugar (9–49%), total protein (16–52%), and 
decreased the malondialdehyde (MDA) content 
(38–47%) as compared to control, illustrating its 
protective effect under metal-induced oxidative stress

Singh et al. 
(2018)

(continued)
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bacteria help in immobilization of heavy metal, thereby decreasing their availability 
to the crop plants (Vangronsveld and Cunningham 1998; Zhang et al. 2012). In case 
of bioaccumulation, there are bacteria which have the ability to tolerate certain lev-
els of heavy metals via accumulation of metals in their cell wall (Hussein et  al. 
2011; Govarthanan et al. 2016). Also, there are reports about microbial biotransfor-
mation of heavy metals from one form to another nontoxic form (Qian et al. 2012; 
Babu et al. 2013) (Table 14.2).

Keeping in view the scope and limitations of this chapter, reports about the impact 
of different rhizospheric metal/metalloid-resistant and plant growth–promoting 
bacteria on growth and yield of rice, maize, and wheat under different metal/
metalloid stresses are given in Table 14.1. Under different heavy metal stresses, 
inoculation with heavy metal–resistant bacteria significantly improved growth, 
physiological, and yield parameters of maize, wheat, and rice through phosphate 
solubilization, scavenging reactive oxygen species, ACC deaminase activity, and 
decreasing rhizospheric pH through the production of organic acids (Jiang et al. 
2008; Hadi and Bano 2010; Hassan et al. 2014). More specifically, under cad-
mium stress, the accumulation of Cd was reduced, and plant growth and yield 
were enhanced with the inoculation of Cd-resistant plant growth-promoting bac-
teria (Jiang et  al. 2008; Gajdos et  al. 2012; Ahmad et  al. 2014; Moreira et  al. 
2014; Ahmad et al. 2016; Sangthong et al. 2016).

Table 14.2 (continued)

Cereal 
crop Metal(loid)s Effect of bacterial inoculation on cereal crops References
Wheat Cd, As Significantly reduced water-soluble Cd and As 

concentrations, and increased pH and NH4
+ 

concentration in the soil filtrate

Wang et al. 
(2018)

Maize Cr, Pb Siderophore promoted plant growth under Cr and Pb 
stress

Braud et al. 
(2010)

Wheat Cd, Cr Polymeric substances immobilized metals and 
decreased their uptake

Joshi and 
Juwarkar 
(2009)

Maize Cu, Pb The dry biomass of roots of inoculated plants grown 
with 2007 mg Cu kg−1 and 585 mg Pb kg−1 was 
increased by 28% and 20%, respectively

Rizvi and 
Khan (2018)

Barley Cr, Co, Hg, 
Cd, Pb

Increased germination rate and growth parameters of 
barley under Cr, Co, Hg, Cd, and Pb stress

Bensidhoum 
et al. (2016)

Wheat Cd, Cr, Cu, 
Mn, Ni

Inoculation decreased biological accumulation 
coefficient (BAC) as well as translocation factor (TF) 
for Cd, Cr, Cu, Mn, and Ni

Hassan et al. 
(2017)

Rice Cd, Pb, As Inoculation significantly improved the activities of 
protease and amylase, increased relative root 
elongation, germination percentage, root-to-shoot 
ratio, and overall biomass. Bacterial strains also 
decreased superoxide dismutase activity and 
malondialdehyde levels

Pandey et al. 
(2013)
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14.6  Conclusion and Perspectives

Heavy metal(loid) contamination of soil is ubiquitous, and reports have confirmed 
their augmentation across the globe. It is a major threat for sustainable production 
of crops especially cereals (rice, wheat, and maize) provide food for almost 3/4 of 
the world population. Metal(loid)s have toxic effects on cereals starting from seed 
germination to maturity; these show toxic effects to cereals at morphological, physi-
ological, and metabolic levels. The most common factor is ROS generation in cere-
als under metal(loid) stress; however, these crops are equipped with ROS scavenging 
system (i.e., production of antioxidants and proteins, mineral, and ionic regulations) 
to mitigate metal(loid) stress. Another tool is the application of metal(loid)-resistant 
microbes to cereals. They have P-solubilization, IAA, ACC deaminase, and sidero-
phore productions which are known to mitigate metal(loid) stress through a variety 
of mechanisms. However, their impact authenticity remains to be explored under 
natural/field conditions. Moreover, there have been many reports stating concerns 
about the shelf life of these metal/metalloid-resistant bacteria in biofertilizers. 
Therefore, it would be more imperative to explore how to increase their shelf life or 
more special microbes having the ability to survive under natural conditions. We 
suggest that genetic engineering approach may prove beneficial in this regard.
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