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Preface

The history of agriculture has played a major role in human development, as agri-
cultural progress has been a crucial factor in worldwide socioeconomic change. 
Since the ancient civilizations, human being has been trying to explore new food 
crops. In the course of time, the demands for foods are increasing, and people are 
trying to rely on formal cropping practices. Agronomic crops fulfill most of the 
basic demands of human life such as food, fuel, fiber, medicine, etc. Based on the 
uses of crops, agronomic crops have been classified on different types such as cere-
als, pulses, oil crops, fodder crops, green manuring crops, sugar crops, narcotic 
crops, beverage crops, etc. Plant breeders have been developing many improved 
varieties of such crops every year to boost up the global production. However, in 
most of the cases, yield gaps exist in the farmers’ fields due to the lack of proper 
agronomic management.

Crop management, therefore, becomes an integral part of food production. 
“Agronomy” is such a solution to make the crop field capable of securing the poten-
tial yield. Literally, it means the art of managing fields, and technically, it means the 
science and economics of crop production by the management of farmland. On the 
other hand, it is the art and science in production and improvement of field crops 
with the proper use of soil fertility, water, labor, and other factors related to crop 
production. Agronomy is the management of land for the cultivation of crop plants. 
The central theme of agronomy is the soil-plant-environment interrelationship. 
Both soil resources and climate have been changing globally, which makes crop 
production challenging. The basic agronomic principles can ensure the maximum 
yield from a crop variety, such as proper land preparation, selection of quality seeds 
and suitable varieties, proper water management, nutrient management, accurate 
pest management, proper harvesting, and postharvest operations. However, these 
activities should be chosen based on several factors like crop varieties, land types, 
agroclimate, etc. Choosing suitable cropping patterns and practicing crop rotation 
and multiple cropping also play an important role in enhancing land-use efficiency 
and crop stands.

Agricultural practices such as irrigation, crop rotation, fertilizers, and pesticides 
were developed long ago but have made great strides in the past century. Due to the 
global climate change, agronomic crops have been suffering from various abiotic 
and biotic stresses like salinity, drought, floods, toxic metals/metalloids, extreme 
temperatures, atmospheric pollutants, UV radiations, pests, etc. A substantial 
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portion of crop yield is being declined every year due to the adverse effect of 
stresses. Therefore, researchers are trying to address these problems and working to 
explore the stress tolerance mechanisms and manipulating adaptive features.

The knowledge of agronomic crops is essential for all agricultural graduates and 
scientists, not only with a view to understanding their cultivation practices but also 
with the objectives to know many academic and scientific details of each crop. This 
book covers comprehensive information on the advanced production of agronomic 
crops. Attempts have been made to cover all important field crops. Latest aspects 
about the cultivation practices, varieties, resource management, plant protection 
along with quality aspects, and postharvest practices are discussed in a crisp man-
ner. The book must be immensely useful to all graduate students, faculty, and 
researchers in the field of agronomy and crop science.

This is the third volume (Stress Responses and Tolerance) of the three-volume 
book Agronomic Crops. In this volume, agronomic crops response and tolerance to 
stresses and the advances in research in improving agronomic crops under climate 
change are presented.

I would like to give special thanks to the authors for their outstanding and timely 
work in producing such fine chapters. We are highly thankful to Dr. Mamta Kapila 
(Senior Editor, Life Science) and Ms. Raman Shukla (Senior Editorial Assistant) 
Springer, India for their prompt responses during the acquisition. We are also thank-
ful to Daniel Ignatius Jagadisan, Project Coordinator of this book, and all other 
editorial staffs for their precious help in formatting and incorporating editorial 
changes in the manuscripts. Special thanks to Taufika Islam Anee, Dr. Md. Mahabub 
Alam, Mr. Abdul Awal Chowdhury Masud, Naznin Ahmed, and Tonusree Saha, 
Department of Agronomy, Sher-e-Bangla Agricultural University, Bangladesh, for 
their generous help in formatting the manuscripts. The editors and contributing 
authors hope that this book will include a practical update on our knowledge for the 
role of plant nutrients in abiotic stress tolerance.

Dhaka, Bangladesh Mirza Hasanuzzaman
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Abstract
The escalating worldwide need for agricultural products accounts for twofold 
increase in crop yield by 2050. The agronomic crops especially wheat, maize, 
rice, barley, sugarcane, etc. contribute greatly to human food. The various envi-
ronmental conditions impact the yield of agronomic crops globally. Complicating 
the problem, abiotic stresses especially temperature, heavy metal, drought, water, 
and salt stress induce toxicity in agronomic crops. Exposure to different abiotic 
stresses severely affects growth, morphology, productivity, and performance of 
crops all through the growing period. Further, increased generation of reactive 
oxygen species under stressful conditions might be linked to the decreased yield 
and development of agronomic crops. This chapter discusses an overview on the 
types of abiotic stress in crop plants and their effect on growth and morphologi-
cal parameters. Additionally, inherent tolerance mechanisms adapted by agro-
nomic crops to combat abiotic stress are also discussed briefly in this chapter.
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CH4 methane
CO2 carbon dioxide
GPX guaiacol peroxidase
GR glutathione reductase
H2O2 hydrogen peroxide
MDA malondialdehyde
NaCl sodium chloride
O2 oxygen
O2

•− superoxide radical
OH• hydroxyl radical
ROS reactive oxygen species
SOD superoxide dismutase

1.1  Introduction

Climate change is a major threat to agriculture sector. Agronomic crops such as 
wheat (Triticum aestivum), rice (Oryza sativa), maize (Zea mays), sugarcane 
(Saccharum officinarum), and barley (Hordeum vulgare) belong to family Poaceae 
or grass family which is agriculturally most important and satisfy the food demand 
of people worldwide. They provide a source of carbohydrates in human diet and 
also contribute in maintaining ecological stability. Among the different agronomic 
crops, maize is ranked first followed by rice and wheat in terms of production. The 
extremely changing environments severely affect the agriculture sector globally. 
Both the natural and anthropogenic activities lead to increased stress that hampers 
crop production. Many reports evidenced decline in yield of different agronomic 
crops especially wheat, rice, and maize in different parts of the world due to 
increased water, temperature, and salinity stress (Prasad et al. 2008a, b; Wang and 
Frei 2011). The global mean temperature is rising at an alarming rate of 0.3 °C, and 
it is predicted that it is likely to rise further to 1–3 °C by 2025 (Khan et al. 2013). 
Further, with elevated temperature the requirement of water for irrigation is esti-
mated to increase by nearly 40–250% (Woznicki et al. 2015). The global yields of 
wheat, rice, and maize have been reported to get reduced by ~6.0%, 3.2%, and 7.4% 
with each °C rise in temperature (Zhao et  al. 2017). Besides, high temperature, 
drought, salinity, floods, and cold waves cause severe economic losses worldwide. 
Moreover, with incrementing world population that is expected to reach to 9 billion 
in 2050, the major global challenge of future would be to ensure food security.

Agronomic crops are exposed to different abiotic stresses like drought, salinity, 
heavy metal, temperature, and waterlogging that cause huge economic loss. They 
negatively impact the growth and physiology of crops globally. Drought stress has 
been documented to cause significant reduction in growth, relative water content, 
and chlorophyll content in maize cultivars (Efeoǧlu et al. 2009). Salinity stress has 
been reported to inhibit growth and physiology of different crop species such as 
cotton (Plaut and Federman 1991) and barley (Rawson 1986) by altering the 
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activities of various metabolic enzymes (Khan and Panda 2008). Further, elevated 
temperature is deleterious to crop yield and can reduce agricultural productivity 
(Schauberger et al. 2017). Asseng et al. (2015) documented that the production of 
wheat decreased with rising temperature. Heavy metal toxicity is also a serious 
problem worldwide. Excessive accumulation of metal in plant impedes crop pro-
ductivity by causing detrimental effect on growth and morphological parameters 
such as seed germination, growth, and photosynthesis (Shahid et al. 2015). Further, 
waterlogging stress limits crop yield globally. It has been reported to reduce plant 
height, tillers, and root and shoot biomass in barley (Luan et al. 2018) and cotton 
(Zhang et al. 2017).

The increased incidence of abiotic stress leads to generation of reactive oxygen 
species (ROS) that might be responsible for adverse effect on growth and morphol-
ogy of agronomic crops. Further, the reduction in yield and productivity of crops 
might be related to elevated amount of ROS. This chapter includes an overview on 
different types of abiotic stresses in agronomic crops and their effect on growth and 
morphological parameters in agronomic crops. Additionally, inherent tolerance 
mechanisms adapted by agronomic crops to combat abiotic stresses are also dis-
cussed briefly in this chapter.

1.2  Abiotic Stress and Their Effect on Growth 
and Morphological Parameters of Agronomic Crops

Plants are exposed to multitude of abiotic stresses such as drought, heavy metal, 
temperature, salinity, and waterlogging stress that adversely affect the growth 
and physiology of crops leading to reduction in yield. These stresses produce 
harmful chemical species known as reactive oxygen species (ROS) that restrict 
different metabolic pathways thereby limiting crop productivity. This section 
deals with different abiotic stresses and their impact on growth and morphology 
of agronomic crops.

1.2.1  Drought Stress

Drought stress causes huge loss in crop production and is an important threat to 
world food security. It is a major abiotic stress factor that affects the plant growth 
and development. Drought stress arises due to reduced available water in soil and 
continuous loss of water from plant through transpiration. Plants growing in regions 
that have low water availability face severe affect of stress on growth. Further, with 
changing climatic conditions and global warming, the harmful effects of drought 
stress are going to increase rapidly. The incrementing human population can lead to 
severe shortage of water in the future. Drought stress significantly harms the agri-
culture sector by restricting crop yield and production globally (Chaves and Oliveira 
2004). It alters the growth, morphology, and physiology of many agriculturally 
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important plants. For example, leaf water potential and relative water content 
decreased in wheat in response to elevated drought stress (Siddique et al. 2000).

Drought stress has been reported to impede the growth and morphology of sev-
eral agronomic crops. It is a critical factor during initial period of plant growth and 
development (Jaleel et al. 2009). The first effect of drought stress impeded germina-
tion (Harris et al. 2002). Under severe water stress, cell division, expansion, and 
elongation get damaged resulting in reduced growth and yield of crops (Hussain 
et al. 2008). In maize genotypes, water deficit conditions reduced the growth of the 
plant (Kamara et al. 2003). Water stress significantly impaired stem length in soy-
bean (Zhang et  al. 2004), rice (Mostajeran and Rahimi-Eichi 2009), and barley 
(Samarah 2005). Further, Alexieva et al. (2001) reported relative water content to be 
a major factor responsible for decreased growth in crop plants under drought 
conditions.

Drought stress drastically decreased number of leaves per plant and leaf size 
which largely depends upon water balance or turgor pressure of leaf (Anjum et al. 
2011). For example, Hütsch et al. (2015) reported reduced leaf area in maize plants 
growing under stressed conditions. The reduction in leaf area might be due to the 
inhibition of leaf expansion (Rucker et al. 1995). Drought stress has been reported 
to induce reduction in fresh and dry weight of crop plants (Farooq et  al. 2009). 
Efeoǧlu et al. (2009) observed decreased fresh and dry biomass in three maize cul-
tivars under water deficit conditions. Likewise, Saleem (2003) noticed decreased 
biomass production, plant height, ear length, grain yield in durum, and bread wheat 
under drought stress.

1.2.2  Temperature Stress

Temperature stress, both low (chilling stress) and high (heat stress), has been recog-
nized as a major harm to crop plants worldwide. Temperature is an important factor 
governing plant growth and development (Hatfield and Prueger 2015). According to 
IPCC (2007) during the next 30–50 years, the temperature is expected to rise by 
2–3 °C. The continuous emission of greenhouse gases like carbon dioxide (CO2), 
methane (CH4), and chlorofluorocarbons (CFCs) is one of the major reasons con-
tributing to elevated global temperature worldwide (Shah et al. 2011). These extreme 
environmental conditions are likely to increase under future climatic scenarios 
(Barlow et al. 2015). Many reports suggested the effect of temperature stress on 
both the vegetative and reproductive growth stages of crop plants that severely 
impact the yield of the crop (Hatfield et al. 2011).

High temperature significantly affects the growth and development of agronomic 
crops (Wheeler et al. 2000; Prasad et al. 2008a, b). It damages the photosynthetic 
apparatus, reduces leaf photosynthetic yield, and affects cellular metabolism in 
plants (Prasad et  al. 2008a, b). Long-term exposure of high-temperature (42 °C) 
stress inhibited the development of root and first leaves in wheat seedlings (Savicka 
and Škute 2010). The authors found that exposure to high-temperature stress caused 
increased production of O2

•− that leads to elevated concentration of MDA which 
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might be responsible for reduced root growth (Savicka and Škute 2010). Similarly, 
Shah et al. (2011) reported that increased temperature affects emergence, ripening, 
and harvesting stages of rice. Further, they found that elevated night temperature is 
more responsible for reduced rice yield (Shah et al. 2011). Earlier, Yoshida (1978, 
1981) also observed delayed emergence and poor growth of rice seedling upon 
exposure to high-temperature stress.

Cold stress or low-temperature stress interrupts plant’s metabolic pathways and 
adversely affects its growth and development. It has been reported to significantly 
limit crop distribution and productivity (Tian et al. 2011). Low-temperature stress 
has been reported to affect rice seedlings due to increased concentration of stress- 
related proteins in response to stress (Hashimoto and Komatsu 2007). Cheng et al. 
(2010) investigated the effect of chilling stress on soybean seeds and found that 
exposure to low temperature caused poor germination, reduced seedling emergence, 
decreased seedling vigor, and caused severe loss of crop yield. Similarly, Aghaee 
et al. (2011) reported decreased stomatal conductance and dry matter accumulation 
in two rice genotypes in response to cold stress. Low-temperature stress has been 
reported to reduce growth in sorghum seedlings (Abbas 2012).

1.2.3  Salinity Stress

Salinity stress or salt stress harm one-third of the agricultural fields on Earth due to 
very high temperature and poor irrigation practices (Shibli et al. 2007). It has ham-
pered 30% of irrigated and 6% of total land area (Chaves et al. 2009). Since there is 
scarcity of available water, saline water is therefore used for irrigation purposes. 
According to FAO (2005), salt stress affects 831 million hectares of agricultural 
land globally. It is the most common and harmful abiotic stresses that affect crop 
yield worldwide (Amjad et al. 2014). Salinity stress is followed by symptoms of 
physiological water stress similar to drought stress in plants (Chaves et al. 2009). 
Moreover, plants exposed to salinity stress also encounter osmotic stress (Sanchez 
et al. 2007). Many reports suggest the effect of salinity stress on growth, develop-
ment, and physiology of plants (Hussain et al. 2013; Mustafa et al. 2014).

Amirjani (2011) exposed rice seedlings to 200mM NaCl for 14 days and observed 
its effect on growth and relative water content of plant. The author found that shoot 
length, fresh and dry weight, and relative leaf water content of rice seedlings 
decreased in response to salt stress (Amirjani 2011). Soil salinity significantly 
reduced crop yield. Accumulations of ions in higher concentration in shoot tissues 
cause toxic effect on plants. Tavakkoli et al. (2011) observed that high concentration 
of Na+, Cl−, and NaCl reduced growth of barley; however, the reduction was more 
in response to NaCl treatment compared to Na+ and Cl− exposure alone. Moreover, 
authors found reduced stomatal conductance and uptake of K+ and Ca2+ in barley 
plants exposed to salinity stress (Tavakkoli et al. 2011). Nemati et al. (2011) reported 
decreased total dry weight in two genotypes of rice upon application of NaCl.

Bakht et al. (2011) conducted experiments to study the effect of NaCl on maize 
cultivars and found that exposure to salinity stress significantly affected 
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germination, emergence, plant height, shoot fresh weight, dry weight, and leaf area 
of plant. They observed that salt stress has negative effect on growth and develop-
ment of both maize cultivars (Bakht et al. 2011). Further, Akbarimoghaddam et al. 
(2011) evaluated the effect of salinity stress on seed germination and seedling 
growth of six bread wheat cultivars and found that seed germination and dry weight 
decreased in all the wheat cultivars due to accumulation of toxic ions in the plant 
tissue. The reduction in growth caused by salinity stress might be due to the 
increased formation of reactive oxygen species (ROS) like singlet oxygen (1O2), 
H2O2, and hydroxyl radicals (OH·) (Mishra et al. 2013).

1.2.4  Heavy Metal Stress

Soil contamination by heavy metals is a serious threat worldwide (Sidhu et  al. 
2017a, b). Rapid industrialization, harmful mining activities, and intensive agricul-
tural practices caused accumulation of heavy metals in the environment. Natural 
sources such as volcanic eruptions, forest fires, and soil erosion also add heavy met-
als to the soil environment (Sidhu et al. 2017a). Some heavy metals such as copper, 
manganese, and zinc are essential micronutrients, and others like lead and cadmium 
are nonessential elements. Essential elements are required in small amount by plants 
for normal growth and activity; however, they are toxic at elevated concentrations 
(Wuana and Okieimen 2011). Excessive concentration of heavy metals in soil above 
their threshold limit poses serious concern to plants, animals, and human health. 
Since heavy metals are nonbiodegradable, they remain in soil for a long time, 
thereby causing reduction in crop yield (Sidhu et al. 2017a). An elevated amount of 
heavy metals in soil cause severe toxicity symptoms in plants that lead to reduced 
growth and photosynthesis in plants (Mahmood et al. 2007; Ghani 2010).

Heavy metals strongly influence growth and development of agronomic crops 
(Mahmood et al. 2007). A study was conducted by Mahmood et al. (2007) to find 
out the effect of different heavy metals on growth of cereal crops. The authors 
observed that application of copper (Cu), zinc (Zn), lead (Pb), magnesium (Mg), 
and sodium (Na) exerted negative effect on the seed germination, total root num-
bers, root length, shoot length, and root-shoot ratio of barley, rice, and wheat 
(Mahmood et al. 2007). This might be due to the heavy metal-induced oxidative 
stress that causes reduction in enzyme activities that leads to lowering of seed meta-
bolic processes involved in seed germination (Ayaz and Kadioglu 1997). Similarly, 
Ghani (2010) reported decreased growth and protein content in maize seedlings in 
response to exposure of Mn (manganese), Pb, Cd (cadmium), Cr (chromium), and 
Co (cobalt).

Excessive accumulation of heavy metals causes adverse effect on growth of 
crops. For example, Thounaojam et al. (2012) observed gradual decrease in root and 
shoot growth of rice seedlings with increasing concentration of Cu. This might be 
attributed to increased amount of H2O2 and lipid peroxidation that cause oxidative 
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stress in plant tissues in response to elevated accumulation of Cu (Thounaojam et al. 
2012). Further, Ahmad et al. (2012) reported effect of Cd toxicity on growth of four 
wheat cultivars and found that exposure to high concentration of Cd decreased root 
length, shoot length, percent germination, and germination index in all the 
cultivars.

1.2.5  Waterlogging Stress

Soil structure has a huge impact on waterlogging of soils. Excessive rainfall causes 
waterlogging stress in soil that severely affects the gaseous exchange between soil 
and water. It hampers the crop production and yield worldwide. Insufficient oxygen 
supply to roots for respiration is the main reason for lowered yield under water-
logged environment (Linkemer et  al. 1998). Sallam and Scott (1987) reported 
reduced root growth and nodulation in soybean and attributed this to the inadequate 
amount of O2 which inhibits nitrogen and mineral uptake.

Waterlogging stress restricted growth of winter wheat that resulted in decreased 
shoot dry weight and grain yield (Dickin and Wright 2008). Studies have shown that 
waterlogging stress increased leaf senescence, damaged photosynthetic pigments, 
and inhibited photosynthetic rate of plants (Smethurst et al. 2005). Winter wheat 
was found to be most sensitive to waterlogging stress after germination and affected 
the shoot numbers in plant (Cannell et  al. 1980). Further, Grzesiak et  al. (1999) 
found that waterlogging stress caused small number and reduced dry matter of lat-
eral branching as compared to control in maize plants. The root and shoot growth 
and chlorophyll content of six barley genotypes were negatively affected by water-
logging stress (Pang et  al. 2004). It also affected growth and development and 
decreased the plant morphology (plant height, ear height, and leaf area index) and 
ear characteristics of maize (Ren et al. 2014).

1.3  Tolerance Mechanisms

Exposure of crops to unfavorable conditions such as drought, temperature, salin-
ity, heavy metal, and waterlogging caused severe harm to both growth and mor-
phology of agronomic crops. Further, these abiotic stresses lead to reduction in 
crop production and yield. This might be attributed to increased concentration of 
toxic reactive oxygen species, i.e., H2O2, O2

•–, OH•, etc. These ROS produced in 
response to abiotic stresses might be responsible for reduced growth and mor-
phology of plants. They target proteins, lipids, RNA, and DNA and cause irrepa-
rable damage to plant metabolic pathways (Petrov et  al. 2015). Plants adopt 
various tolerance mechanisms to combat abiotic stress-induced decrease in mor-
phology. They have systematic antioxidant machinery with different enzymatic 
[superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidize (APX), 
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guaiacol peroxidize (GPX), and glutathione reductase (GR)] and nonenzymatic 
[ascorbic acid (AsA), reduced glutathione (GSH), carotenoids, and flavonoids] 
antioxidants. The antioxidant machinery helps in scavenging ROS generated 
under different stressful conditions. Various researchers have reported increased 
activity of antioxidant enzymes to tolerate increased production of ROS generated 
in response to abiotic stresses (Sidhu et al. 2016, 2017b).

1.4  Conclusion

The increased incidence of abiotic stresses harms the growth and development of 
agronomic crops worldwide. These abiotic stresses, viz., temperature, salinity, 
drought, heavy metal, and waterlogging, reduce the yield of crops and cause huge 
economic losses globally. Plants have also adopted various strategies to combat 
these stresses and to mitigate increased ROS generation. However, future research 
is needed to find out the effect of these abiotic stresses on genes that are responsible 
for growth of crops.
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Abstract
Rice (Oryza sativa L.) is an important staple food for nearly half of the world 
population. It is extremely variable in phenology which depends strongly on 
cultivars and prevailing environmental conditions. During the last three decades, 
rice production is showing a declining trend, and it is expected to continue 
because of anthropogenic practices involving emission of greenhouse gases 
(GHGs) that contribute to the global climate change. The weather and climate 
variability directly influence the phenological development of rice such as can-
opy radiation capture, biomass production, seed germination, crop duration and 
maturation, and grain yield that lead to food insecurity. The warnings in weather 
episodes modify rice cultivars to grow in vulnerable situations and even changes 
in agronomic management practices. In rice, plant developmental responses to 
elevated temperature vary significantly at all vegetative and reproductive stages. 
Due to high temperature, vapor pressure deficit increased and enhances evapora-
tion from the anthers which results in anther dehiscence, reduced pollination, 
pollen germination, and pollen tube growth. Increase in CO2 concentration in the 
atmosphere increases the grain yield in rice to an extent, but further CO2 eleva-
tion shows negative result. In addition, high temperature contradicts the positive 
effects of CO2 fertilization on plant. However, rice is relatively more tolerant to 
weather variability during germination and active tillering and toward maturity 
but sensitive during early vegetative and reproductive stages. Reproductive pro-
cesses in rice especially flowering stage show greater sensitivity to drought than 
do vegetative processes. Hence, appropriate mitigation strategies need to be 
adopted on sustainable basis to combat the menaces in crop cultivation and to 
feed the population explosion.
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Abbreviations

(NH4)2 SO4 Ammonium sulfate
AWD alternate wetting and drying
CH4 methane
CO(NH)2 urea
CO2 carbon dioxide
FAO Food and Agricultural Organization
GHGs greenhouse gases
HNT high night temperature
IPCC Intergovermental Panel on Climate Change
IRRI International Rice Research Institute
LAI leaf area index
N2O nitrous oxide
RH relative humidity

2.1  Introduction

Rice (Oryza sativa L.) has been a staple food for nearly half of the world population. 
It is one of the three most important staple crops in the world as it provides 35–80% 
of total calorie intake (providing 27% of dietary energy and 20% of dietary carbo-
hydrate) to around 3 billion people (Wassmann et al. 2009; FAO 2004). More than 
90% of global rice is produced and consumed in Asia where China and India account 
for more than half of the world’s rice area and along with Indonesia consume more 
than three-fourths of the global rice production (FAOSTAT 2010). Rice is grown 
under wide range of geographical locations in tropical, subtropical, and temperate 
regions at latitudes ranging from 35 0S to 53 0N and at elevations of 0–2000  m 
(Yoshida 1981) and hence is extremely variable in phenology (duration from germi-
nation to flowering) which also depends strongly on cultivars and the prevailing 
environmental conditions (Tripathi et al. 2016). Based on the different agroecologi-
cal zones and the production system used, productivity of rice varies among coun-
tries as well as within the same country (Ntanos and Koutroubas 2002).

Globally, intensive farming methods are now being followed in rice which 
depends heavily on high-yielding varieties, chemical fertilizer application, and irri-
gation. During the last three decades, rice production is showing a waning tendency 
and is expected to continue as these anthropogenic practices have given birth to 
emission of GHGs like the CO2, CH4, and N2O emissions (IPCC 2014); 
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deforestation in upland rice production under slash-and-burn shifting cultivation is 
also considered contributors to global climate changes (Nguyen and Ferrero 2006). 
Carbon dioxide is released largely from microbial decay or burning of plant litter 
and soil organic matter (Janzen 2004; Smith 2004). Since 2000, anthropogenic CO2 
emissions have risen by more than 3% annually where as methane is the major end 
product of anaerobic fermentation from submerged soils to the atmosphere having 
>20 times more heat absorption capacity than CO2 (Stigter and Winarto 2013). On 
the other hand, N2O emissions have global warming potential of about 300 times 
higher than CO2 which is the most important threat to the ozone layer in this twenty- 
first century (Ravishankara et al. 2009). These short-term weather warming compo-
nents like CO2, temperature, and unpredictable rainfall affect plants at the level of 
molecular function, developmental processes, and morphological and physiological 
traits that bring about a gradual shift in the fruiting and flowering season of rice 
(Tripathi and Singh 2013) distressing the food security aspects of the world (Poudel 
and Kotani 2013).

In this chapter, we will discuss the factors and intensity of the climatic variables 
and their consequences on rice production, productivity, and yield. Appropriate 
strategies need to be developed to combat the menaces in crop cultivation and to 
feed the population explosion.

2.2  Weather and Climate Variability

Weather and climate variability have great influences on the rice cropping season. 
Weather anomalies like increase in global mean maximum and minimum tempera-
ture can accelerate the phenological development (Lansigan et al. 2000; Tao et al. 
2006; Shimono et al. 2010) leading to earlier senescence, decrease in canopy radia-
tion capture and biomass (Ishii et  al. 2011), crop duration, and maturity. Such 
increases in temperature also have substantial consequences on precipitation and its 
intensity (Sun and Huang 2011) affecting the sequences of dry or wet days espe-
cially drought and flood episodes in both the tropics and the subtropics during all 
crop growth stages of rice (Vadez et al. 2013). Delay in the onset of rain affects 
timing of initiation of the cropping season, particularly in rainfed areas of the world. 
The regions with year-round distribution of rainfall may exhibit overlaps in rice 
planting and harvesting operations, shattering of grains, on-field germination, and 
reduction in grain yield of rice. Precipitation fluctuation has significant long- and 
short-term impacts and affects the region’s rice production that leads to food inse-
curity (Koudahe et al. 2018). These warnings in weather episodes modify rice culti-
vars to grow in vulnerable situations and even changes in agronomic management 
practices including fertilizer use, irrigation, and control of pests and diseases lead-
ing to serious social and economic implications (Geng and Cady 1991; Hossain 
1997). Farming system response is more critical with regard to sudden fluctuations 
in weather rather than gradual, long-term climatic shifts, and adaptation is geared 
up more by occurrence of climate extremes (Murdiyarso 1998).

2 Impact of Climate Variability on Phenology of Rice
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2.2.1  Effect of Elevated CO2

The global atmospheric CO2 concentration has been increasing day by day, and it 
has noteworthy impacts on physiology and quality of plants such as photosynthesis, 
nutrient uptake along with translocation, enzymatic activity, nutritive value, etc. 
(Ainsworth et al. 2007). Increase in CO2 concentration increases the grain yield in 
rice to an extent, but excess CO2 elevation reduces the yield (Bugbee et al. 1994). 
Hence, higher CO2 have undesirable impacts on rice production and quality.

The effects of elevated CO2 change the density and size of stomata as well as leaf 
morphology (Pedersen et al. 2009). The alterations in plant development also occur 
for elevated CO2 due to increase in flux of carbohydrates and related metabolites and 
by the action of glucose which acts as signaling molecule (Gray and Brady 2016). 
Taub et al. (2008) reported that the protein concentrations in rice may be affected by 
elevated CO2 (540–958 mmol/mol−1). During reproductive stage, rate and duration of 
grain filling are also reduced due to CO2 enrichment (Hu et al. 2007) which causes 
poor grain filling and grain chalkiness. Besides this, elevated CO2 decreases brown 
rice percentage and head rice percentage and induces the ratio of amylose to amylo-
pectin in grain (Jing Li-quan et al. 2016). The yield augmentation in rice under higher 
CO2 concentration is due to CO2 fertilization, increased tiller numbers, LAI, photo-
synthesis, and enhanced water use efficiency (Saseendran et al. 1999). Goufo et al. 
(2014) found that concentration of α-linolenic acid increased, but linoleic and 
γ-linolenic acids decreased due to elevated CO2. However, high temperature can result 
in the rise of leaf surface temperature which affects photosynthesis and root growth of 
plant; hence, it is expected to contradict the positive effects of CO2 fertilization in rice 
(Gu et al. 2010; Poudel and Kotani 2013).

2.2.2  Effect of Temperature Variability

The phenology of rice is influenced by the environment conditions in a certain 
range; the optimum temperature for maximum photosynthesis in rice is 25–30 °C 
for daytime and 20 °C for night time (IRRI 1997). Yano et al. (2007) reported that 
an increase in temperature leads to a decrease in vegetative phase. Baker et  al. 
(1992) and Sun and Huang (2011) confirmed that in tropical regions, the effect of 
the temperature rise due to climate change is probably less compared to temperate 
region as it increases near or above the optimum temperature range for the physio-
logical activities of rice. Such warming reduces crop duration, alters photosynthate 
partitioning to economic products, and increases respiration and evapotranspiration 
by disrupting water, ion, and organic solute movement across plant membranes.

In rice, plant developmental responses to elevated temperature vary significantly 
at all vegetative and reproductive stages – seedling, booting, and heading to flower-
ing stages (Nishiyama 1976). At vegetative stage, peak biomass development takes 
place at 33 °C, while grain formation and yield are adversely affected by tempera-
tures above 25 °C (Matsushima et al. 1964; Baker et al. 1995). Elevated air and soil 
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temperature imbalances leaf function by change in gas exchange properties, electro-
lytic leakage from leaves (Halford 2009), reduced heat dissipation from leaf surface 
(Zhang et al. 2015), reduced root development, and critical root functions including 
respiration and nutrient uptake by roots (Atkin et al. 2000).

During panicle emergence, higher temperature causes spikelet sterility owing to 
heat injury. Flowering to anthesis for a duration of 5–7 days is extremely sensitive 
to high-temperature stress (Jagadish et  al. 2007). Rice flowers open for approxi-
mately 45 mins; fertilization completes within 1.5–4 h after anthesis (Cho 1956) 
during which a series of heat stress-sensitive processes such as anther dehiscence, 
pollination, pollen germination, and pollen tube growth occur (Jagadish et al. 2010; 
Matsui et al. 1999, 2001; Yoshida 1981). High temperature during this period results 
in increased vapor pressure deficit, enhancing evaporation from the anthers, thereby 
depriving the crucial moisture needed for pollen grain swelling which results in 
anther dehiscence. Pollen viability decreases to zero at midday temperatures of 
40 °C (Kim et al. 1996) and ultimately leads to floral bud abortion (Guilioni et al. 
1997), hence lowering seed-set.

At grain filling stage, high temperature also affects the accumulation of dry mat-
ter, carbon, and nitrogen (Kim et al. 2013) in the kernel (Kobayashi et al. 2007). 
Elevated temperatures have been found to cause lower amylose content which 
determines the grain quality in rice (Terao et al. 2005). Variation in amylase content 
leads to decreased hardiness or increased stickiness of rice grains at warmer tem-
peratures (Counce et al. 2005).

Increased heat tolerance is most needed in O. sativa compared to O. glaberrima, 
which exhibits peak anthesis during late morning till mid-afternoon (Yoshida et al. 
1981) exposing the heat-sensitive reproductive organs to high temperatures invari-
ably leading to increased spikelet sterility (Jagadish et al. 2008; Prasad et al. 2006). 
The japonica varieties require lower temperature for ripening than indica varieties 
(Krishnan et al. 2011).

In temperate regions, increased air temperatures hasten rice development, 
thereby shortening the time from transplanting (or direct seeding) to harvesting 
and reducing the total time for photosynthesis and grain development (Neue and 
Sass 1994).

An increase in high night temperature from 27 °C to 32 °C causes the crop pro-
duction to decrease due to lower translocation efficiency of assimilates as a result of 
higher respiration rate of up to 40% in rice leaves and drop in photosynthesis 
(Mohammed and Tarpley 2009b) with decrease in leaf chlorophyll and leaf nitrogen 
content in rice. This affects the grain filling phase, seed-set, milling quality, grain 
dimensions, and starch branching in rice (Counce et  al. 2005; Mohammed and 
Tarpley 2009a, 2010). Night temperature is predicted to increase at a faster rate than 
day temperatures due to less radiant heat loss because of increased cloudiness 
(Alward et al. 1999).

Rice is a low-temperature-sensitive crop; thus, low temperatures below 15 °C 
restrict seed germination and delay transplanting date; large day and night tempera-
ture difference of 1–3  °C induces rice blast, specially in upland rice (Luo et  al. 
1995), interrupts plant growth (Baker et  al. 1990), and reduces yield (Shimono 
2011).

2 Impact of Climate Variability on Phenology of Rice
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2.2.3  Effect of Relative Humidity (RH)

Humidity also plays an important role in rice yield. Optimum RH for rice cultiva-
tion lies between 60% and 80% (Nguyen 2003). Physiological influences of RH 
include water relations of plant and indirectly affect leaf growth, photosynthesis, 
pollination, occurrence of diseases, and finally economic yield (Yan et al. 2010). 
During vegetative phase, RH had little effect on root-shoot dry matter ratio (Hirai 
et al. 1992). When RH is low, the duration from transplanting to panicle initiation 
reduces (Sunil 2000) and transpiration increases causing water deficits due to partial 
or full closure of stomata. Besides, mesophyll resistance also increases blocking 
entry of CO2 which indirectly affects photosynthesis. The effects of temperature on 
rice may be intermingled with those of RH and solar radiation. The mean RH during 
rice cultivation is generally negatively associated with solar radiation. At reproduc-
tive stage, RH below 40% inhibits flowering (Vijayakumar 1996), but spikelet ste-
rility at high air temperatures increases with increased humidity (Nishiyama and 
Satake 1981; Matsui et al. 1997). High humidity of 88% at 35 °C decreases fertility 
percentages, and the degree of decline differs among the cultivars. Under high 
humidity at 31  °C, pollination is cultivar dependent but not fertility percentage. 
Matsui et al. (1997) showed that fertility of spikelets at 37.5 °C was highest at 45% 
RH followed by that at 60% RH and lowest at 80% RH. So, high humidity increases 
the percentage of spikelet with only a few pollen grains on the stigmas and lowers 
the fertility. Similarly, low humidity can promote spikelet sterility under high tem-
perature (Matsushima et al. 1982).

Lower RH of 60% at 38 °C leads to a higher vapor pressure deficit of 2.65 facili-
tating the plant to exploit its transpiration cooling ability (Jagadish 2007; Jagadish 
et al. 2007). A combination of high temperatures (32–36 °C) with low RH (55–60%) 
and high RH (85–90%) recorded a 1.5 °C increase in spikelet temperature and high 
spikelet sterility (Weerakoon et al. 2008; Abeysiriwardena et al. 2002). The increased 
humidity and wind velocity due to climate change have immense impacts on the 
viability of pollens in rice (Matsui et al. 2005; Jablonski et al. 2007).

2.2.4  Effect of Rainfall

The initiation of a cropping season is determined largely by the start of the rainy 
season particularly in rainfed areas. An increase in the level, timing, and variability 
of precipitation may benefit the semiarid and other water-scarce areas due to 
increase of soil moisture but can aggravate the problem of waterlogging in rainfed 
areas (Schlenker and Lobell 2010). A positive relation is observed between water 
supply and plant water need from seedling to heading stage in rice, but flowering to 
dough stage and maturity to harvesting experience a negative relation between rain-
fall and fertile grain formation. Consequences like formation of unfilled grains, loss 
in quality of grain (Baker et al. 1990), delay in harvesting for waterlogged or wet 
field conditions, and reduction of crop yield (Sreenivasan and Banerjee 1973) are 
noticed.
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2.2.5  Effect of Salinity

Rice is a glycophytic plant. Rice is relatively more tolerant during germination and 
active tillering and toward maturity but sensitive during early vegetative and repro-
ductive stages. Presently, the increasing threat of salinity is an important issue. As a 
result of sea level rise, large areas of coastal wetlands may be affected by flooding 
and salinity in the next 50 to 100 years. Sea level rise will increase salinity encroach-
ment in coastal and deltaic areas that have previously been favorable for rice 
production.

At vegetative stage, salinity stress affects seed germination, seedling growth, leaf 
size, shoot growth, shoot and root length, shoot dry weight, shoot fresh weight, and 
number of tillers per plant (Gupta and Huang 2014). Stress during reproductive 
stages delays heading in rice and decreases spikelet number, percent of sterile flo-
rets, and pollen viability which negatively affects a number of yield components 
that determine the grain yield (Khatun and Flowers 1995; Grattan et al. 2002; Singh 
et al. 2004).

2.2.6  Effect of Drought

Drought stress is the largest constraint to rice production in the rainfed systems 
(Datta et al. 1975) affecting 10 million ha of upland rice and over 13 million ha of 
rainfed lowland rice in Asia alone. Drought is a water stress or water-limited condi-
tion related to insufficient soil moisture available to support average crop produc-
tion (Pandey et  al. 2007). The response of rice to water stress depends on the 
duration and severity of the stress (Araus et al. 2002; Bartels and Souer 2004) and 
the developmental stage (Zhu et al. 2005).

Water stress is characterized by  reduction of water content, diminished leaf 
water potential, turgor pressure, and stomatal activity, reduced rate of cell enlarge-
ment which leads to stomatal closure and limitation of gas exchange (Singh et al. 
2012). Reproductive processes in rice especially flowering stage show greater 
sensitivity to drought than do vegetative processes, and male reproductive devel-
opment is more drought sensitive than female reproductive development (Gray 
and Brady 2016). Water stress during vegetative stage affects morphological char-
acters in rice like tiller number, LAI, apparent canopy photosynthetic rate, and 
leaf nitrogen and increases ratio of root to shoot biomass (Poorter and Nagel 
2000) and root length density (Cruz et al. 1986), while mild water stress at repro-
ductive stage will delay panicle initiation, exertion, and development by 10 days 
which slow downs the rate of development of inflorescence, or lead to partial or 
complete inhibition of flowering (Saini and Westgate 1999). Water stress during 
flowering is more serious and devastating because the anther size is reduced and 
shriveled, and the pollen loses its viability (Sheoran and Saini 1996)  causing 
flower abortion, grain abscission, and increased percentage of unfilled grains.
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2.3  Adaptation and Mitigation Strategies

2.3.1  CO2 Emission

Agriculture is expected to help slow down the CO2 increase in the atmosphere by 
sequestering part of it in soil organic matter and by producing suitable biomass as a 
substitute for fossil fuel.

 (a) The sustainable-biochar concept: Biochar is a recalcitrant form of carbon and 
suitable as a soil amendment, biofuel through pyrolysis of biomass/feedstock, 
and straw and husk in case of rice. This means that there is more carbon being 
removed from the atmosphere than would have been released to heat the atmo-
sphere. Slow decay of biochar in soils returns a small amount of CO2 to the 
atmosphere directly through combustion of bio-oil and syngas use in transport 
activities and domestic purposes (Woolf et al. 2010). The conversion to biochar 
locks the carbon in a stable form that will not react with oxygen to produce CO2.

 (b) Land use management: Soil organic matter of cropland can be increased either 
by the addition of biomass or feedstock or when the decomposition rates of 
biomass are reduced. Conversion from plow till to no-till with residue mulch or 
crop residue input to the soil and other conservation tillage practices is a viable 
option for SOC sequestration (Lal 2004); as it does away with drastic soil dis-
turbance and improves soil organic matter in the surface layers, higher cropping 
intensity through intercropping especially in bare fallows increases the photo-
synthetic input, thereby “sequestering” C or building C “sinks.”

 (c) Agronomic practices: Carbon emissions decreased substantially in the produc-
tion system where less synthetic fertilizer or chemical pesticides is used. Pulse- 
based cropping systems reduce the loss of soil organic carbon and nitrogen 
compared with cereal-based cropping systems (Gan et al. 2014). Also practic-
ing relay cropping to use residual moisture, integrated cropping systems over 
monoculture systems through early seeding, optimum plant establishment, and 
proper crop sequencing can increase rice productivity without increasing pro-
duction inputs due to the improved diversity of the microbial populations (Yang 
et al. 2014) and the function of microbial communities in the soil (Cruz et al. 
2012), thus decaying the biomass slowly and depositing more carbon to the soil 
sink.

2.3.2  CH4 Emission

The production and release of CH4 gas can best be reduced by:

 (a) Practice of midseason drainage instead of continuous flooding: The effect of 
midseason drainage is in controlling nitrogen absorption, keeping oxidative soil 
condition, increasing productivity and quality of rice, and decreasing methane 
emissions (Nagata 2010). Flooded rice culture with puddling and transplanting 
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is considered one of the major sources of emission and accounts for 10–20% of 
total global annual CH4 emissions (Humpreys et al. 2006). Water drained mainly 
during reproductive period for 7–10 days can reduce methane production and 
emission (Nagata 2010). Wassmann et al. (2009) reported that midseason drain-
age and intermittent irrigation through alternate wetting and drying (AWD) 
method reduce methane emission by over 40%.

 (b) Crop establishment methods: It is done by growing rice under nonflooded con-
ditions like adoption of SRI method of rice cultivation or with aeration like 
dry-seeded rice like “aerobic rice” or upland rice cultivation (Chauhan and 
Mahajan 2013).

 (c) Fertilizer management: Inhibitory effect of sulfate in CH4 formation causes 
10–67% reduction in methane emission when ammonium sulfate is used instead 
of urea (EEAA 1999; Wassmann et al. 2000).

2.3.3  N2O Emission

Paddy fields are a major source of N2O emission accounting for about 13–24% of 
annual global N2O emission (Olivier et al. 1998; Kroeze et al. 1999; Mosier et al. 
1998). N2O from rice fields is associated with soil water content and nitrogen status 
(Wang et al. 2011; Skinner et al. 2014).

 (a) Nitrogenous fertilizers: Application of nitrate (NO3–N) fertilizers, e.g., calcium 
ammonium nitrate (CAN), in crops with aerobic conditions and ammonium 
(NH4–N) fertilizers, e.g., ammonium sulfate, and urea in wetland crops helps 
reduce the nitrous oxide emission (Pathak and Nedwell 2001).

 (b) Use of low C:N organic manure and biogas slurry: The decomposition of straw 
with high C/N ratio causes immobilization of fertilizer N that is required by soil 
microbes for nitrification and denitrification processes in which N2O is pro-
duced (Bronson et al. 1997). Direct-seeded rice crop with conservation practice 
of brown manuring must be avoided because the addition of organic matter to 
soil increased the decomposition rate which resulted in higher emission of N2O.

2.3.4  Water Management

Rice consumes almost 50% of irrigation water used for all crops, and the water 
stress or drought condition needs to be combat by increasing water use efficiency 
and rainwater harvesting in irrigated agriculture to extend the cropping period.

 (a) It can be achieved through reducing the losses caused by seepage, percolation, 
and evaporation. Laser land leveling and crack plowing help to reduce bypass 
flow along with bund maintenance (Chauhan et al. 2012).

 (b) Cai et al. (1997) reported comparatively low N2O fluxes in continuously flooded 
fields, but high N2O fluxes just after the water table are lowered or drained as 
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aeration of continuously flooded rice fields releases the trapped N2O in the soil 
solution and provides favorable conditions for N2O production. Thus, there is a 
need to develop water management practices in such a way that soil redox 
potential can be kept at an intermediate range (−100 to +200 mV) to minimize 
emissions of both CH4 and N2O (Hou et al. 2000).

2.3.5  Crop Management

O’Toole and Chang (1978) recommended the use of early maturing rice varieties as 
a strategy in unstable production areas, by shifting planting dates (Lansigan et al. 
2000); ratooning for shorter growing periods due to unpredictable rainfall and 
proper seed and seedbed establishment; planting lodging-resistant, non-shattering, 
and waterlogged-resistant varieties for flood-prone areas; and establishing wind-
breaks in dry land areas (Pantastico and Cardenas 1980).

2.3.6  Genetic Aspects

 (a) Gene resources that can benefit from rising CO2 concentration have been report-
edly found in rice varieties, such as IR8, Dular, etc.

 (b) Induction of the early morning flowering gene from Oryza officinalis into O. 
sativa has positive effect on reducing the spikelet sterility under high- 
temperature areas (Sheehy et al. 2007; Ishimaru et al. 2010; Hirabayashi et al. 
2015).

 (c) Approximately 15–20 million ha of rice-growing areas are submergence-prone 
because of sea level rise and salinity stress in coastal areas (Nicholls and 
Cazenave 2010). Submergence-tolerant varieties such as Swarna-Sub1 and 
IR64- Sub1 and salinity-tolerant genotypes for flood-prone areas, maintenance 
of whole plant and shoot water status, and mechanisms like Na+ exclusion or 
maintenance of potassium in developing tissues and rapidly growing leaves 
contribute to salt tolerance in rice varieties (Yeo et al. 1990).

 (d) Inclusion of characteristics like deep root system, leaf rolling, cuticle wax, posi-
tion of stomata, and rapid recovering ability will help rice plants to survive 
under water stress condition and to sustain productivity (Singh et al. 2012).
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Abstract
Sugarcane (Saccharum species hybrids) is a long duration, high-water-requiring 
agroeconomic crop cultivated in various climatic conditions. Being a long dura-
tion crop, it faces vagaries of climate all the year-round affecting plant growth 
and development, synthesis of sugar, its accumulation and recovery, and ratoon-
ing ability. Climate change brings an increase in greenhouse gases (GHGs), tem-
perature, extreme events, drought, heavy rainfall, western disturbance, changes 
in the level of the sea, etc. and culminates into multiple abiotic stresses affecting 
soil health, growth, and development of cane and its chemical composition, rip-
ening, and availability of the seed cane. Besides, it aggravates some other abiotic 
and biotic stresses augmenting the losses further. But, sugarcane is relatively 
more resilient to abiotic stresses probably due to some natural endowments like 
a good deal of compensatory ability, C4 photosynthesis, higher-temperature 
optima for most of the growth processes except sugar accumulation, higher 
water-use efficiency, and genetic components from Saccharum spontaneum. All 
these characteristics impart tolerance in sugarcane to various abiotic stresses and 
carbon sequestration as phytoliths, etc. which helps reduce the damaging impact 
of various abiotic stresses. Further, the development of climate-resilient sugar-
cane varieties and technological interventions for stress management may miti-
gate the impact of climate change-induced multiple abiotic stresses and sustain 
sugarcane and sugar productivity. Physiological interventions like inducing 
drought hardiness, deeper root system, reduction of heat load by trash mulching, 
increasing the age of the crop at the advent of moisture stress, organic matter 
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amendment in the soil, nutrient management, managing rhizospheric salinity/
alkalinity, etc. also contribute to elevate its stress tolerance. A number of genes, 
molecular markers, and miRNAs related with abiotic stress response also con-
tribute to the resilience of sugarcane to abiotic stresses.

Keywords
Climate change · Abiotic Stress · miRNA · Stress tolerance

Abbreviations

ABA abscisic acid
ABF ABRE binding factor
ABRE ABA-responsive element
Adh1 alcohol dehydrogenase
ALDH5F1 aldehyde dehydrogenase
ANPs anaerobic proteins
APX ascorbate peroxidase
AREB ABRE-binding protein
AS asparagine synthase
bZIP basic leucine zipper
cAPX cytosolic ascorbate peroxidase
CAT catalase
CDPK calcium-dependent protein kinase
DHAR dehydroascorbate reductase
DHNs dehydrins
DRE dehydration-responsive cis-acting element
DREB DRE-binding protein
ERF ethylene-responsive element-binding factor
GB glycine betaine
GBF1 G-box-binding factor-1
GPOX guaiacol peroxidase
GR glutathione reductase
GSHS1 glutathione synthase
GST1 glutathione-S-transferase
IGS indole 3-glycerol phosphate synthase
LEA late embryogenesis abundant
MAPK mitogen-activated protein kinase
MDA malondialdehyde
miRNA microRNA
MYB myeloblastosis
MYC myelocytomatosis
NADP-ME NADP malic enzyme
NIPs NOD 26-like intrinsic proteins
OAT ornithine aminotransferase
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P5CS Δ1-pyrroline-5-carboxylate synthase
PCK phosphoenolpyruvate carboxykinase
PEPcase phosphoenolpyruvate carboxylase
PIN1 polar auxin transport gene
PIPs plasma membrane-intrinsic proteins
PLD phospholipase D
POD peroxidase
POX proline oxidase
PPDK pyruvate phosphate dikinase
ROS reactive oxygen species
Rubisco ribulose- 1, 5-biphosphate carboxylase
SAM S-adenosyl methionine
ScMYB2 sugarcane R2R3-Myb gene
SIPs small basic intrinsic proteins
SOD superoxide dismutase
SOS salt overly sensitive
TAPX thylakoid ascorbate peroxidases
TFs transcription factors
TIPs tonoplast intrinsic proteins
TSase Grifola frondosa trehalose synthase

3.1  Introduction

Sugarcane is derived from hybridization of Saccharum species and is extensively 
grown in over 120 countries across the world not only for sugar but also to obtain 
other sugar by-products. It is estimated that approximately 70% of the world sugar 
production is derived from sugarcane, while the rest is derived from sugar beet cul-
tivated in temperate regions. Because of the limited amount of fossil fuel and 
increasing world population, there is an agreement among scientists and govern-
ment ministerial officials to incorporate lignocellulosic biomass as a feedstock for 
biofuel production and amplify the production. Right now, the sugarcane yield is 
capable in providing the largest amount of lignocellulosic biomass than any other 
crop species together with potential bioenergy feedstock crops named as Miscanthus 
and switch grass. Due to all the superior traits of sugarcane as a lignocellulosic 
biomass feedstock crop, commercial sugarcane hybrids have been adopted for bio-
fuel production along with sugar production. However, their cultivation is affected 
by abiotic stresses in sugarcane-growing countries. Abiotic stresses such as drought, 
salinity, flood, and high and low temperature including nutrient stress affect sugar-
cane and result in a major loss in terms of productivity, lignocellulosic biomass, as 
well as downstream products of the sugar industry (Table 3.1). Most research find-
ings suggest osmotic stresses like drought, salinity, and low-temperature stress are 
often interconnected to each other and impose an osmotic stress that can lead to 
turgor loss. For instance, both drought and salinity are manifested by formerly 
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osmotic stress, resulting in the disruption of homeostasis and ion distribution in the 
cell (Serrano et al. 1999; Zhu 2001a), and low temperature may immediately give 
rise to mechanical constraints, alterations in actions of macromolecules, and reduced 
osmotic potential in the cellular environment. Two major strategies can be distin-
guished: stress avoidance and stress tolerance (Levitt 1980). Stress avoidance 
includes a variety of protective mechanisms that delay or prevent the negative 
impact of a stress factor on a plant. In contrast, stress tolerance is the potential of a 
plant to acclimatize a stressful situation. Drought avoidance in sugarcane includes 
decreased stomatal conductance, rolling of leaf and senescence, and impairment of 
growth, while drought tolerance is characterized by a higher content of chlorophyll, 
higher stomatal conductance, photosynthesis, and maintenance of growth and 
osmotic adjustment. Plants recover soil water potential by the accumulation of com-
patible solutes and antioxidant system during osmotic stress (Moussa and Abdel- 
Aziz 2008).

A number of abiotic stress tolerance genes and proteins have been identified in 
plants. These genes are divided into three groups: (1) genes encoding products that 
instantly protect plant cells against stresses such as heat stress proteins (HSPs) or 
chaperones, aquaporins (water channel proteins), LEA protein, osmolytes, anti-
freezing proteins, detoxification enzymes, and free-radical scavengers (Bray et al. 
2000); (2) those that are involved in regulation of gene expression such as protein 
kinases MAPK, MAPKKK, CDPK (Ludwig et al. 2004), SOS kinase (Zhu 2001b), 
and phospholipases (Frank et al. 2000) and transcriptional factors such as MYB, 
MYC, NAC, and bZIP (Choi et al. 2000; Shinozaki and Yamaguchi-Shinozaki 2000; 
Shinozaki and Yamaguchi-Shinozaki. 2007); and (3) those that are involved in water 
and ion uptake and transport (Blumwald 2000).

Table 3.1 Drought stress responses in sugarcane

S.N. Physiological responses Biochemical responses
Molecular 
responses

1 Root signal recognition at 
the shoot

Reduced photochemical activity Drought responsive 
gene expression

2 Turgor loss Reduced activity of RuBisco, PEP 
carboxylase, NADP malic enzyme 
(NADP-ME), pyruvate phosphate 
dikinase (PPDK)

Increased 
expression of ABA 
biosynthetic genes

3 Impairment of osmotic 
adjustment

Accumulation of compatible solutes 
such as proline, trehalose, 
polyamines

Increased gene 
expression of 
ABA-responsive 
genes

4 Decreased transpiration rate 
due to closure of stomata 
(low stomatal conductance)

Increase in antioxidative enzymes 
such as SOD, CAT, and APX

Synthesis of specific 
proteins such as 
LEA, etc.

5 Decreased CO2/O2 ratio Decease in accumulation of ROS
6 Reduced photosynthetic 

rate
7 Reduced growth
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The dehydrin proteins (DHNs) classified as a group of LEA proteins typically 
accumulate in embryogenesis or in vegetative part in response to dehydrative forces 
like drought, salinity, and freezing (Close 1997). Osmolytes, that is, organic solutes 
and inorganic ions, play a key role in osmotic adjustment. Organic solutes known as 
compatible solutes include sugars, proline, polyols, quaternary ammonium com-
pounds like glycine betaine, and other low molecular weight metabolites that lower 
or balance the osmotic potential of intracellular and extracellular ions to tolerate 
osmotic stresses. Inorganic ions mainly Na+, Ca+, K+, and Cl− also make a great 
contribution in osmotic adjustment (OA) (Chen and Jiang 2010). The organic com-
patible solutes besides OA play a role in stabilization of enzymes/proteins and in 
protection of membrane integrity (Yancey et al. 1982; Bohnert and Jensen 1996; 
Yeo 1998). However, its synthesis occurs at an energy cost (Raven 1985) and may 
be one of the causes of a decrease in plant growth. A study from phylogenetic analy-
sis (Johanson and Gustavsson 2002) suggested plant aquaporins widely distributed 
in higher plants are classified into four main subfamilies, PIPs, TIPs, SIPs, and 
NIPs. The MIPs are extensively studied since their significance ranges from animal 
physiology to osmoadaptation of microbes and plants (Ayadi et al. 2011). The aqua-
porins or major intrinsic proteins (MIPs) are proteins assembling water channels in 
the cell membrane and facilitate the bidirectional water transport. Along with this 
function, these proteins are also concerned with many plant metabolic processes, 
together with the acquisition of nutrients, cell growth, carbon fixation, cell signal-
ing, and variety of stress responses (Maurel 2007; Besse et al. 2011). The aquapo-
rins also permit infiltration of small molecules such as glycerol (Gerbeau et  al. 
1999), urea (Liu et al. 2003), CO2 (Uehleln et al. 2003), ammonia (Loqu’e et al. 
2005), boric acid (Dordas et al. 2000), H2O2 (Henzler and Steudle 2000), and even 
arsenic (Bienert et al. 2008). The role of miRNA is considerably studied in the regu-
lation of abiotic stress in sugarcane (Patade and Suprasanna 2010; Thiebut et al. 
2012; Gentile et al. 2015; Yang et al. 2017).

3.2  Morphological and Physiological Responses to Drought

Sugarcane development is divided into four development stages: germination, the 
development of buds and shoot (30–35 days); tillering, the formation of secondary 
and tertiary tillers (initiating approximately on 48th day after planting and lasting 
up to 120 days); grand growth, the development and growth of tillers with height 
gain (stem elongation) and basal sugar accumulation (taking up to 9 month from 
planting); and maturity, C4 photo assimilation and increased sugar synthesis, end-
ing until the harvesting period. Sugarcane tillering and grand growth phases are 
recognized as drought sensitive due to high requirement of water for growth 
(Ramesh 2000; Machado et al. 2009; Lakshmanan and Robinson 2014). At tillering 
and grand growth phase, the relationship of water content, and the respective physi-
ological responses can be used to identify and distinguish between sugarcane geno-
types that is either tolerant or drought sensitive (Endres et al. 2010). On the other 
hand, as compared to  stem growth phase,  moderate water stress at the maturity 
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phase has positive effects on sucrose accumulation, since photosynthesis is less 
sensitive to water stress in the maturity phase, and channeling the assimilation of 
CO2 to sucrose is accumulated in the stalk (Inman-Bamber 2004). Severe drought 
stress affects the whole sugarcane morphology and physiology, albeit both responses, 
in turn, vary according to the genotype, duration (rapid or gradual), and intensity 
(severe or mild) of stress as well as the type of the tissue affected (Bartels and 
Sunkar 2005; Smit and Singels 2006; Da Graça et al. 2010; Inman-Bamber et al. 
2012). Physiological responses in sugarcane are recognized as interruption of cell 
division and cell elongation (Machado et al. 2009), rolling of leaf, closing of sto-
mata, inhibition of stalk and leaf growth, leaf senescence, and reduced leaf area 
(Inman-Bamber and Smith 2005; Inman-Bamber et al. 2012); stem and leaf elonga-
tions are also affected by growth processes (Inman-Bamber 2004; Inman-Bamber 
et al. 2008). Drought stress is firstly sensed by the root, and the development of the 
root is affected but relatively less than the above ground biomass. During moderate 
water deficit stress response, stomatal limitations occur in sugarcane which cause a 
reduction in stomatal conductance (gs), transpiration rate (E), internal CO2 concen-
tration (Ci), and C4 photosynthesis (Du et al. 1996; Inman-Bamber and Smith 2005; 
Silva et al. 2007; Da Graça et al. 2010; Endres et al. 2010; Medeiros et al. 2013; 
Basnayake et  al. 2015). However, including the above responses, stalk and leaf 
growth inhibition is the foremost common early adaptation when sugarcane plants 
are exposed to mild to moderate dehydration (Inman-Bamber and Smith 2005). 
Additionally, water stress responsible for both nonstomatal and stomatal limitations 
has been reported due to impairment of photosynthesis in sugarcane (Ribeiro et al. 
2013). These kinds of effects occur when the experience of drought stress is severe 
(Basnayake et al. 2015). Drought causes a reduction in photosynthetic rate princi-
pally due to decreased activity of PEPcase and Rubisco enzymes (Du et al. 1996; 
Inman-Bamber and Smith 2005; Lakshmanan and Robinson 2014). In unstressed 
state, low content of sugar in the leaf is helpful to photosynthetic activity, whereas 
high sugar content shows moderate effect on CO2 fixation (Goldschmidt and Huber 
1992). This is important that the rate of photosynthesis is also influenced by sugar 
accumulation in the sugarcane leaves (McCormick et al. 2008).

3.3  Biochemical Drought Responses in Sugarcane

In C4 plants, some facts suggested that photosynthesis is very susceptible to water 
deficit stress (Ghannoum 2009). Du et al. (1998) revealed the activities of different 
C4 photosynthetic enzymes, viz., PEPcase, NADP-ME, Rubisco, and fructose 1,6 
bisphosphate, and observed the 2 to 4 times decreased activity under drought condi-
tions, whereas the activity of PPDK declined 9.1 times in C4 plant, sugarcane. The 
efficiency of CO2 fixation in C4 plants may have three forms of decarboxylation 
metabolism identified by three enzymes, while in sugarcane facts suggest the pres-
ence of two enzymes, NADP-ME and PCK, where PCK forms decarboxylation that 
appeared to prevail over NADP-ME (Ghannoum 2009). The C4 metabolism plants 
such as sugarcane can probably face a hot and dry environment by dropping the 
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photorespiration rate and losing water. Despite the process that assists CO2 fixation 
in sugarcane, other plant species are also susceptible to water deficit. Plants under 
drought lower carbon assimilation rate which facilitates an insufficient sink for elec-
trons generated in the electron transport chain and therefore oxidative stress due to 
overproduction of reactive oxygen species (ROS) (Edreva 2005). Antioxidant sys-
tem imparts the drought tolerance through scavenging free radicals by the accumu-
lation of compatible solutes and antioxidant molecules (Vilela et al. 2017). In plants, 
both enzymatic and nonenzymatic antioxidant systems have been found. The non-
enzymatic antioxidant system includes compounds such as ascorbate (AsA), gluta-
thione (GSH), alkaloids, phenols, tocopherols, and carotenoids (Grat˜ao et al. 2005). 
The enzymes are comprised of superoxide dismutase (SOD), catalase (CAT), ascor-
bate peroxidase (APX), guaiacol peroxidase (GPOX), and glutathione reductase 
(GR) (Martins et al. 2011). The enzyme CAT is responsible for the reduction of 
H2O2 to H2O and O2, and a decline in peroxidase activity is considered a limiting 
step to ROS neutralization in sugarcane (Chagas et al. 2008). Activities of SOD, 
CAT, APX, GPOX, and GR were changed according to variety and stress intensity 
in sugarcane (Cia et al. 2012). Madhav et al. (2017) reported the increased enzy-
matic activity of peroxidases and SOD during water stress in sugarcane. The accu-
mulation of the osmolytes, trehalose, and proline also contributes to the reduction of 
the damage caused by the accumulation of ROS and is associated with drought tol-
erance in sugarcane (Zhang et al. 2006; Molinari et al. 2007; Guimarães et al. 2008). 
Sales et al. (2012) reported an increase in starch hydrolysis, leading to higher levels 
of soluble sugars that helped sustain carbon supply even in a reduced CO2 fixation 
condition, facilitating growth recovery after stress.

3.4  Drought-Responsive Genes in Sugarcane

Drought stress affects morphological and functional characters in plants, eventually 
becoming one of the main hindrances to sustainable agricultural production glob-
ally. In a plant cell, the scarcity of water content provokes a complex phenomenon 
of molecular responses, involving stress perception and initiation of signal trans-
duction cascade as a consequence of physiological, cellular, and morphological 
changes (Bray 1993), including closing of stomata, reduced cell growth and photo-
synthesis, and activation of cellular respiration. Transcription factors expressed by 
SP83–2847 moderately resistant variety indicate that abscisic acid (ABA)-dependent 
and ABA-independent pathways are presented for drought-responsive gene expres-
sion. In ABA-dependent pathways, genes have an ABA-responsive element (ABRE) 
with an affinity for myeloblastosis (MYB) and basic leucine zipper (bZIP) domain 
transcription factors that signal for expression of specific genes involved in plant 
stress response. In ABA-independent pathway, the transcription factor dehydration- 
responsive cis-acting element (DRE) binds to DRE-binding protein (DREB) and 
triggers gene expression (Shinozaki and Yamaguchi-Shinozaki 2007; Yoshida et al. 
2014). The drought-responsive gene expression has also been reported in the regula-
tion of auxin (Swapna and Hemaprabha 2012) and salicylic acid (Almeida et al. 
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2013). The ABA-responsive element (AREB) and ABRE binding factor (ABF) are 
members of the bZIP superfamily of transcription factor (TFs), and the DREBs are 
members of APETALA2 (AP2)/ERF, which are known to be involved in abiotic 
stress responses in Arabidopsis and grasses (Nakashima et al. 2009; Mizoi et al. 
2012). According to Schlögl et al. (2008), ABA regulates six bZIPs, with two genes 
being upregulated (ScbZIP29 and ScbZIP31) and four genes downregulated 
(ScbZIP21, ScbZIP24, ScbZIP70, and ScbZIP79) in sugarcane plants exposed to 
ABA in  vitro. The expressed genes in sugarcane included those that respond to 
drought through auxin-dependent manner using IGS and PIN1 and ABA-
independent manner. Abscisic acid-independent pathway DREB genes regulate 
plant defense mechanism via SOD, DHAR, cAPX, GST1, GSHS1 (glutathione syn-
thase), and encoding different drought protein kinase (Prokin) genes and ABA-
dependent group of proteins, viz., LEA 3 (Swapna and Hemaprabha 2012). 
Rodrigues et  al. (2009) demonstrated increased expression of a gene encoding a 
peroxidase in a drought-tolerant sugarcane cultivar. Wang et al. (2015) suggested 
that TAPX gene expressed in roots, stems, and leaves of sugarcane, but the most in 
leaves, plays a role in sugarcane response to drought, salt, and other stresses. 
Swapna Simon and Hemaprabha (2010) reported SOD and IGS genes expressed 
under drought-tolerant sugarcane variety Co 740 and clones of CoC 671. The genes 
encoding for polyamine oxidase, cytochrome- c-oxidase, SAM-decarboxylase, and 
thioredoxins have been found upregulated in sugarcane under drought environment 
which are involved in the regulation of the intracellular redox status (Prabu et al. 
2011). In response to foliar application of salicylic acid, expression of genes respon-
sible for synthesis/expression of trehalose 5-phosphate and sucrose phosphate was 
involved under drought stress in sugarcane (Almeida et  al. 2013). The role of 
SoSnRk2.1 gene of sugarcane is subject for more research and upregulated under 
drought stress (Qin-Liang et al. 2013; Phan et al. 2016). Proline synthesis is cata-
lyzed by rate-limiting enzyme P5CS. In sugarcane, P5CS (SoP5CS) gene was iso-
lated and plays a role in water deficit stress noticed in transgenic sugarcane (Li et al. 
2018). It was noticed that under drought state, sugarcane is connected to elevated 
levels of N and K in the leaves and stems, and greater accumulations of K and P in 
the shoot (da Silva et al. 2017). Several gene expression studies have been carried 
out in sugarcane. Gene like Grifola frondosa trehalose synthase (TSase) expressed 
in drought-tolerant genotypes in sugarcane was reported (Zhang et al. 2006).

There are numerous expressed sequence Tags (EST) related to stress-responsive 
gene sequences that have been submitted to the SUCEST and SASRI databases. 
Gupta et al. (2010) identified 25 clusters of the gene in sugarcane associated with 
water deficit stress using real-time reverse transcription-PCR profiling of selected 
EST clusters. The most recent report was carried out by Iskandar et al. (2011) that 
investigated  that the expression of eight stress-related genes – P5CS, OAT, AS, 
PST5 (sugar transport gene), TF1, LEA, POX, and dehydrins – was correlated with 
the sucrose content in the sugarcane culm and whether such genes were also 
responsive to water deficit stress. Microarray-based expression profile study of 
15,593 sugarcane genes describes that 1501 genes were differentially expressed of 
which 821 genes were upregulated and 680 genes were downregulated in different 
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water level condition in sugarcane variety (GT21) (Li et al. 2016). Microarray and 
RNAseq analysis in sugarcane genotype suggested that 10 genes were differen-
tially expressed using the qPCR analysis, of which three genes’ transcript profile 
was found to correlate with drought tolerance. These genes were lipoxygenase 
(ScLOX) (plays a role as a precursor of biosynthesis of jasmonic acid, and current 
study describes their role in drought resistance), dehydrin (related to water deficit 
stress as well as maintenance of turgor cells) and dirigent-jacalin (which correlated 
to biotic and abiotic stresses along with jasmonic acid) (Andrade et al. 2014). The 
role of aquaporins in roots of sugarcane is noticed under drought (da Silva et al. 
2013). The transcripts encoding sugarcane aquaporins have only slightly been 
illustrated, in spite of their important physiological influence and contribution in 
numerous biological processes in the course of plant growth and acclimation in 
response to biotic and abiotic stresses (Maure et al. 2008; Lembke et al. 2012). 
Such genes may be very useful in transgenic studies linked to sugarcane (Andrade 
et al. 2014). The Scdr1 gene of sugarcane conferring tolerance under drought is 
also useful in providing salt and drought tolerance in tobacco (Begcy et al. 2012). 
Sugarcane R2R3-MYB (ScMYB2) gene plays an important role during drought 
(Guo et  al. 2017). SoDip22 gene in sugarcane leaves is identified as drought- 
responsive gene. The identification of genes encoding structural proteins directly 
related to the establishment of drought tolerance could be useful in developing 
genetic markers to select tolerant and/or sensitive genotypes. This helps to obtain 
improved cultivars by direct manipulation (transgenic) or classical breeding. 
Drought tolerance would also contribute to reduce irrigation and water use (Rocha 
et al. 2007).

3.4.1  Lipid Peroxidation

A correlation between water stress tolerance and lower levels of lipid peroxidation 
was suggested (Cia et al. 2012; Sales et al. 2015). High levels of H2O2 generated due 
to an increase in lipid peroxidation were observed during the initial growth phase in 
young sugarcane plants under severe water stress (Boaretto et al. 2014). Lipid per-
oxidation may meet important criteria to recognize water-tolerant cultivars of sug-
arcane (Abbas et al. 2014).

3.5  Salt Stress in Sugarcane

Salinity affects the productivity of various crops by exerting the greatest effects on 
agriculture across the world and imposes morphological, physiological, biochemi-
cal, and molecular changes (Munns 2005). Physiological process is hindered by 
salinity chiefly photosynthesis via a reduction in leaf area, chlorophyll content, and 
stomatal conductance and to a lesser extent through a decrease in photosystem II 
efficiency. The adverse effects of salinity on plant development are more profound 
during the reproductive phase. Saccharum species differ in their response to soil 
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salinity and acidity, and, the germination and early growth stages are more sensitive 
to these stresses than later stages of crop growth; moreover, ratoon crop is more 
sensitive to salinity than plant crop. According to Zhu (2001a), tolerance to salinity 
depends on the interrelations among the biochemical pathways involved in detoxi-
fication, homeostasis, and growth regulation. First, accumulated ROS are removed 
via synthesis of important compounds, such as osmolytes and various proteins that 
reduce the intracellular concentration of ROS. Concurrently, ionic homeostasis is 
pulled off via the compartmentalization of ions in vacuoles. Finally, the expression 
of important genes is regulated to efficiently maintain plant growth and high pro-
ductivity. Although sugarcane is sturdily affected due to salt stress, the fact concern-
ing the cellular, biochemical, and molecular mechanisms in response to salt stress 
lacks in sugarcane. In current existence, the available information concerning the 
mechanism essential to tolerance of sugarcane to salt stress has increased. These 
current studies might be important in response to salt stress; in particular, proteins 
associated with carbohydrate metabolism and energy might be involved in the 
response of sugarcane to salt stress (Patade et  al. 2012; Pacheco et  al. 2013). 
Passamani et al. (2017) reported that by proteome analysis, proteins, such as CDPK, 
photosystem I, PLD, and glyceraldehyde-3-phosphate dehydrogenase, were plenti-
ful in the sugarcane micropropagated shoot RB855536 cultivar under salt stress. 
Thus, proteomic-based study will be supportive to the identification and under-
standing of the salt stress-induced response mechanisms in sugarcane. In addition, 
the information obtained through differential protein analysis might be used in 
modern breeding programs for the production of new cultivars (Agrawal et  al. 
2012). A β1,3-glucanase D family gene ScGluD2 is noticed in induced form against 
salt, H2O2, and heavy metal stress (Su et al. 2016a).

However, understanding the plant’s response to salt stress is difficult because the 
morphological characteristics of plants, which present differences among species, 
particularly among the root systems of different species, represent an important 
aspect of the tolerance mechanisms. Thus, the combination of molecular and mor-
phological differences between sensitive and tolerant cultivars makes it difficult to 
determine the specific role of each tolerance factor.

3.6  Low-Temperature Stress

Sugarcane is cultivated in tropical and subtropical regions where cold stress is not 
very common, but lower yields and reduced industrial quality of the plants are 
observed when it occurs. Under cold stress, the root length and root volume were 
significantly lowered, and with the prolongation of cold stress, the root activity of 
sugarcane varieties decreased significantly (Sun et al. 2016). Chilling and freezing 
stresses differ from each other according to effect. First has a direct effect of low 
temperature on cells, whereas freezing often acts indirectly via damaging cells due 
to dehydration. Sugarcane susceptibility to cold injury, either by chilling or freez-
ing, is the primary factor limiting the distribution of the crop to within 30 °C of the 
equator. The optimum temperature for growth is about 35 °C. The development of 
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cold stress tolerance in sugarcane is of great importance for improving production, 
but it is hindered by the lack of more precise physiological knowledge. Cold- 
induced genes can also be induced by drought stress, and these genes are also regu-
lated by the ABA (Nogueira et  al. 2003) and sometimes not sensitive to ABA 
treatment. This indicates the existence of both dependent and independent ABA 
regulatory pathways with respect to the transcriptional control of the response to 
drought and cold (Shinozaki and Yamaguchi-Shinozaki 1996). Exogenous abscisic 
acid plays a major role during low-temperature stress in sugarcane (Huang et al. 
2015). Nogueira et al. (2003) identified 34 cold-responsive ESTs, of which 20 were 
novel cold-responsive genes (COR) including cellulose synthase, ABI3-interacting 
protein 2, a negative transcription regulator, phosphate transporter, and others iden-
tified as unknown genes in Saccharum species (cv SP80–3280) using EST profiling 
studies (Nogueira et al. 2003). The expression of SsNAC23 (member of NAC tran-
scription factor) was induced in sugarcane plants when exposed to low temperatures 
(4 °C), and thioredoxin acts as an interacting protein (Ditt et al. 2011). The expres-
sion of MIPs such as SspNIC2 was observed more during cold stress in cold- 
resistant cultivar (TUS05–05) of Saccharum spontaneum (Park et al. 2015). Under 
cold stress, the contents of malondialdehyde (MDA), proline, soluble sugar, and 
soluble protein and the activities of SOD and peroxidase (POD) were initially 
increased and then decreased, especially in the cold-susceptible sugarcane variety 
(Sun et al. 2016). Therefore, these parameters were closely related to the cold resis-
tance of different sugarcane varieties.

3.7  Heat Stress Tolerance

Heat stress gravely diminishes the germination and early seedling development in 
various plants together with sugarcane crop (Wahid et al. 2008, 2010). Even though 
a tropical plant needs comparatively higher temperatures for growth, sugarcane 
shows heat sensitivity above 36 °C as manifested from its reduced growth and water 
relations (Wahid et al. 2010). High-temperature stress is a widely occurring prob-
lem in many sugarcane-growing countries and affects the growth and development 
of sugarcane. Plant age and intensity of heat play an important role during heat 
stress (Wahid et al. 2007). The noticeable sign of heat injury includes rolling of leaf, 
dehydration, chlorosis, tip burning, photosynthesis, respiration, and other metabolic 
activities. Heat stress applied to sugarcane abridged the Hill reaction, chlorophyll 
fluorescence, and electron flow at PSII (Ebrahim et  al. 1998). Plants gradually 
exposed to heat stress indicated an accumulation of several heat-stable proteins. 
Most common molecular response of plants submitted to heat stress is the expres-
sion of HSPs, which have a fairly wide range of molecular masses (10–250 kDa). 
The DHNs are water-soluble proteins, rich in glycine and charged polar amino 
acids, and free of cysteine, and tryptophan is also observed during heat stress. Wahid 
et al. (2007) reported heat stress-induced expression of three DHNs in sugarcane 
with apparent molecular masses of 21, 23, and 27 kDa, appearing between 48 and 
72  h. The former one matched with the molecular mass of DHN4 of barley cv. 
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Morex. The latter two matched with DHN11 and DHN8 of cv. Dicktoo, which were 
expressed during freezing stress (Zhu et al. 2000). There is also increasing evidence 
for considerable interlinking between the responses to heat stress and oxidative 
stress. Enzymatic antioxidants as well overcome heat stress-induced oxidative dam-
age in sugarcane (Jain et  al. 2007). Srivastava et  al. (2012) reported that higher 
expression of CAT and APX enzymes under high temperature in the leaves of heat- 
tolerant sugarcane genotypes might protect them from ROS such as hydrogen per-
oxide (H2O2), superoxide (O2

•−), and hydroxyl radicals (OH•) produced after 
exposure to high temperature. Wahid and Close (2007) reported that, despite ample 
water supply to roots, water potential and its components were severely affected in 
sugarcane leaves under heat stress. As a heat tolerance strategy, sugarcane showed 
the synthesis of primary and secondary metabolites. A study showed that soaking 
with GB and proline had an indirect function in the improvement of bud growth 
under heat treatment (Rasheed et al. 2011). However, Heat tolerance mechanism is 
rather less unspoken in sugarcane.

3.8  Waterlogging Stress in Sugarcane

Waterlogging or excess water is one of the abiotic stresses responsible for a loss in 
potential productivity of crop plants. Sugarcane is moderately tolerant to flooding 
and waterlogging. It was experienced that sugarcane crop is very susceptible in the 
first 3 to 4 months to waterlogging, while comparatively tolerant at 5–9 months to 
waterlogging stress. Some physiological changes in sugarcane observed during 
waterlogging stress are (1) transpiration rates decreased due to stomatal closure, (2) 
rate of photosynthesis is considerably reduced presumably due to the lessening of 
effective leaf area, (3) crop growth rates are significantly shortened in waterlogging 
stress, and (4) higher respiration rate of submerged organs compared to leaves. The 
flood stress on crops is divided into two situations (Van Toai et al. 2001). The first 
situation is flooding or waterlogging in which only the root of crop is flooded, and 
the second situation is the complete submergence or submergence, in which whole 
plant or part of the plant is completely flooded. Some destructive situations that can 
be sensed by flooding plants are owing to the turn-down of gaseous interchange 
between the soil environment and air, subsequently hypoxia condition for roots and 
reduction in the rate of air diffusion. Moreover, the flooding stress has an influence 
on the physiological process such as photosynthesis, root permeability, and the 
absorption of water and nutrition. Varieties that can grow in the flooding land also 
adapt to develop some adjustment in morphology (Winkel et al. 2014). To overcome 
hypoxia and anoxia under flood, the expression of various candidate genes such as 
zinc finger protein (Mo17), aldehyde dehydrogenase 5F1 (ALDH5F1), alcohol 
dehydrogenase (Adh1), ACC oxidase, submergence-induced anaerobic proteins 
(ANPs), and G-box binding factor-1 (GBF1) (Gomathi et al. 2014) have also been 
reported in sugarcane along with other plants. The ANPs significantly impart their 
function under flood and are associated with the following activities: pH regulation, 
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starch breakdown, aerenchyma tissue formation, free radical scavenging enzymes, 
signal perception (ethylene receptor) and transduction, and other unidentified 
function.

3.9  Role of miRNA in Abiotic Stress in Sugarcane

Several miRNAs which are also part of gene regulation during environmental stress 
in plant species have been studied (Sunkar and Zhu 2004). The role of miRNA 
observed during abiotic stress (Patade and Suprasanna 2010; Thiebut et al. 2012; 
Gentile et al. 2015; Yang et al. 2017) and the expression profile of miRNA were also 
studied in sugarcane. Numbers of drought-responsive miRNA transcripts have been 
noticed in sugarcane via high-throughput small RNA deep sequencing. A report 
suggested that in most of the situation, miR396 and miR171 were observed as 
expressed (Gentile et  al. 2015). The expression of miR159 at transcript level is 
observed as regulated under short-term osmotic stress induced by NaCl or PEG in 
sugarcane. It has also been suggested that the MYB, one of the expected targets of 
miR159, was concurrently up- or downregulated with the down- or upregulation of 
the miRNA, respectively, and MYB act as the target of miR159 (Patade and 
Suprasanna 2010). Thiebaut et  al. (2012), using stem loop RT-PCR, found that 
miR319 was upregulated in sugarcane plants exposed to 4 °C for 24 h. The expres-
sion profile of miR319 was more during cold stress in both roots and shoots. The 
expressions of miRNA transcripts were also regulated under ABA treatment. 
Bottino et al. (2013) suggested that miRNA can also play an important role in the 
response to salinity in sugarcane cultivar. The five transcripts of miR5671, miR5054, 
miR5783, miR5221, and miR6478 have target gene sites and thereby play roles in 
regulation of the mitogen-activated protein kinase (MAPK) signaling pathway and 
plant hormone signal transduction in smut-resistant and susceptible sugarcane vari-
ety (Su et  al. 2016b). The expression level of  miRNA 156 was found to have 
increased in cold, salt, and drought stress in sugarcane (Yang et al. 2017). These 
studies suggested that miRNA potentially plays a major role during abiotic stresses.

3.10  Conclusion

Sugarcane is an agroeconomic crop resilient to climatic changes in nature by abiotic 
stressful conditions like temperature stress (cold and heat), mineral stress (salinity), 
and water availability stress (waterlogging and drought). Due to its resilient nature, 
it has mechanism  to counteract weather imposed stresses to sustain productivity. 
Various stress-responsive hormones, enzymes, and genes are involved in signaling 
cascade in sugarcane. From physiological viewpoint, components involved in the 
photosynthetic process are primarily affected by water availability stress, tempera-
ture stress, and salinity stress in sugarcane crop like other crops. Hormonal mole-
cules such as ethylene, jasmonic acid, salicylic acid, and ABA have been considerably 
studied in drought stress in sugarcane. It has been suggested that proline 
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accumulation in sugarcane under drought situation appears as an important bio-
chemical marker of drought susceptibility than the activities of antioxidant enzymes. 
The role of ABA is also observed in cold stress in sugarcane. Participation of candi-
date genes like zinc finger protein (Mo17), aldehyde dehydrogenase 5F1 
(ALDH5F1), alcohol dehydrogenase (Adh1), ACC oxidase, submergence-induced 
ANPs, and GBF1 are also studied in flood stress in sugarcane. Briefly, a numbers of 
genes, enzymes, transcription factors, and cellular miRNA transcripts have been 
identified in sugarcane to actively respond to abiotic stress. The mechanism of how 
these genes exactly respond to abiotic stress is unclear till date in sugarcane. A pro-
posed mechanism may be early cell perception to environmental stimulus and 
induction of kinases or proteins which will stimulate the upregulation of genes 
involved in the stress response. This will lead to the function of second messenger 
and induction of physiological stimuli like stomatal closure and ion homeostasis, 
and then this signal will induce TFs in a hormonal-dependent manner like the 
drought in ABA-dependent and ABA-independent manner or auxin/salicylic acid. 
This induces the antioxidant system to reduce abiotic stress. Recently, the high-
throughput techniques have provided an anticipated approach for improving abiotic 
stress tolerance in sugarcane, but it is undoubtedly clear that this attempt will require 
close connection among the scientists of different plant fields with “omics” 
approach, particularly in the field of proteomics and metabolomics.
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Abstract
Salt stress is an abiotic stress wherein high concentrations of sodium and chlo-
ride ions present in the soil affect sugar beet productivity. About 13% of the land 
in the world is affected by such soils. Growth of mesophyll cells under such a 
situation is affected as there is decrease in uptake of water and nutrients along 
with toxicity of either sodium or chloride ions or both. Sugar beet (Beta vulgaris 
L.), a short-duration crop, besides being tolerant to salt stress, also reclaims 
saline soil in which it is grown. Under salt stress condition, yield of sugar beet is 
hampered when electrical conductivity is >7 dsm−1. In sugar beet, several mor-
phological, physiological as well as biochemical changes have been observed 
under response to salt stress. Nutritional imbalance, alteration in leaf character-
istics, less water potential in plant, decline in fresh weight of shoots, etc., are 
some of its responses under salt stress conditions. Furthermore, this crop pos-
sesses adaptive properties such as osmotic adjustment, accumulation of proline, 
glycine betaine and lipid peroxidation, etc., which helps the crop in surviving 
under such a situation for giving better productivity. Management practices have 
also been suggested for minimizing the effect of salt stress making it a sustain-
able crop under salt stress conditions.
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Abbreviations

APOX ascorbate peroxidase
BADH betaine aldehyde dehydrogenase
CAT catalase
EC electrical conductivity
GPX glutathione peroxidase
POX peroxidase
PS II photosystem II
RuBP ribulose biphosphate
SOD superoxide dismutase

4.1  Introduction

Salinity or salt stress in soil is one of the well-known and important constrains in 
agricultural crops all over the world (Wang et al. 2019). It is one of the important 
abiotic stresses wherein the concentration of the salt in soil is increased naturally and 
precipitation of salt content can be insufficient for leaching (Zhao et al. 2007). Soils 
of hot and dry regions in the world possess saline soils having low agricultural pro-
spective (Glick et al. 2007). Munns (2002) had revealed that 13% of world’s land has 
been affected by salt stress. Different people had defined salinity in different ways. 
According to Ponnamperuma (1984), a saline soil is defined as the one possessing 
rich content of salt in root zone of the plant and plant’s growth under such a condition 
is compelled. Also, USDA salinity laboratory has defined it as one having an electri-
cal conductivity (EC) of 4 dsm−1 or greater. According to Epstein and Rains (1987), 
salinity in soil is associated with high concentration of dissolved ions such as sodium 
ions, calcium ions, etc. However, the most acceptable definition of salinity has been 
given by FAO in 1996 according to which saline soils are the ones possessing EC of 
4 dSm−1 or greater while strong saline soils are the one which have EC greater than 
15 dSm−1. Natural and/or human induced are two types of salt stress which are being 
generally observed. The former one occurs basically due to longer period of accumu-
lation of salts in soil by the two natural processes, viz., weathering of rocks contain-
ing salts and deposition of oceanic salt due to winds and rains, while the latter one is 
due to action of humans wherein the balance of water applied in soil and water which 
is uptaken by the crops gets disturbed (Garg and Manchanda 2008). Many reasons 
could be behind this type of salt stress like cleaning up of lands and planting of 
annual crops in place of perennial plants, insufficient drainage system and usage of 
water rich in salts for irrigating crops. Salt stress is a global problem covering larger 
areas in the world and crops grown under such a condition is a major challenge for 
the farmers as cultivation of crops leads to excessive intake of salts which results in 
causing injury to crop (Frazen 2007; Rengasamy 2010). Crops grown under salt 
stress condition vary not only in showing different response toward such condition 
but even in coping up with it. This variation differs not only from one species to 
another but also from one genotype to another (Munns 2002). It is well known that 
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salt stress condition affects the physiological and metabolic activities of crops lead-
ing to hampering of growth, yield and productivity (Ashraf and Harris 2004).

Sugar beet is one among the three sources used for the production of sugar 
worldwide. Around 21.5% of the sugar produced from the cultivation in fifty-seven 
countries in the world is obtained from this crop. It is a rich source for alcohol pro-
duction having a capacity of 4400  lha−1 against a production of 3900  lha−1 from 
cane (Shrivastava et  al. 2013). Sugar beet  (Beta vulgaris L.), belonging to 
Chenopodiaceae family, is a well-known salt-tolerant crop (Yang et  al. 2012; 
Wedeking et al. 2017) having a tolerance power of 9.5 m mhos/cm toward salt stress 
(Shrivastava et al. 2013). In comparison to other crops such as 6.0 for paddy, 4.4 for 
sugarcane and 2.4 for wheat, this salt-tolerant ability is very high. It is a halophyte 
that acts as a scavenger for sodium salts by removing about 500 kg of sodium salts 
per hectare per season in saline soils (Shrivastava et al. 2013). Yield of this crop 
declines only when the salt concentration in soil exceeds an EC of >7 dSm−1 (Maas 
1990). Due to its salt-tolerant capability, it is well known to be economically grown 
in reclaimed soils (Khandil et al. 2017).

4.2  Mechanism of Salt Tolerance in Sugar Beet

Several studies have revealed the tolerance mechanism in salt stress condition 
(Lindhauer et al. 1990; Marschner 1995; Koyro and Huchzermeyer 1997; Eisa and 
Ali 2005). In general, for salt tolerance, plant adopts three mechanism, viz., osmotic 
tolerance, tissue tolerance and ion exclusion. Lindhauer et al. (1990) and Marschner 
(1995) illustrated that this crop has natural endowment for tolerating salt stress 
where the plant intakes the salty water from the soil and transports it to its shoots 
assisting in maintaining the osmotic balance, but this in turn may lead to either tox-
icity in crop or disturbance in nutritional balance, while Koyro and Huchzermeyer 
(1997) revealed that it is the capability of the sugar beet crop to accumulate soluble 
sugars in its root that helps in regulating the osmotic potential under salt stress con-
dition. This is the reason why exposure to salt stress during germination and early 
stages of growth show pronounced effect on the crop as the photosynthesis activity 
is very low which in turn causes low amount of sugar production in roots (Eisa and 
Ali 2005). Another reason for salt tolerance in sugar beet is the building up of 
sodium and potassium ions in vacuolar and cytoplasmic region of the cells which 
plays a role in osmotic regulation under such situation in this crop (Subaarao et al. 
2001; Ghoulam et al. 2002). As per Flowers (1988), it is the sodium ions that get 
absorbed and accumulated in the leaf tissues of sugar beet where the former play 
roles in regulating and adapting its osmotic potential with soil. Wang et al. (2019) 
had also found another reason for sugar beet tolerance towards salt stress by identi-
fying 47 differentially expressed proteins in sugar beet roots and 56 in its leaves 
under such situation that play important role in tolerant cultivars.

Belonging to halophyte group, sugar beet is also known to use the controlled 
mechanism for the uptake of sodium and chloride ions into the vacuolar space of the 
cells for intake of water by the plant (Glenn and Brown 1999). The study of Flowers 
and Colmer (2008) revealed that the tolerance power bestowed in halophytes is due 
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to controlled mechanism of uptake of ions, cellular compartmentalization of ions, 
and production of organic solutes.

Also, association of salt stress and potassium ions has been revealed under such a 
condition. There is a decrease in the amount of potassium ions due to the osmotic 
regulation mechanism adopted by sugar beet under such condition (Lindhaeur et al. 
1990). Ghoulam et al. (2002) had revealed its high capability pertaining to osmotic 
adjustment by production of inorganic ions like Na+, K+ (Mari et al. 2018) and Cl− 
ions as a response mechanism to salt stress condition. This makes sugar beet crop the 
most suitable one for uncultivated lands, especially the barren ones. In saline tracts 
of Sunderbans, studies had revealed that this crop may be used as a remunerative one 
after cultivation of paddy giving a yield of 50 t ha−1 (Shrivastava et al. 2013).

4.3  Response of Salt Stress in Sugar Beet

Salt stress is a limiting factor for production of any crop. This results in retarding the 
growth and yield of crop. When excess amount of salt is consumed/uptaken by the 
plant, it hampers the uptake process of water and nutrients through roots from the 
soil (Frazen 2007). Khan et al. (1995) have shown various reasons behind the inhib-
itory effect caused by salt stress condition like ion toxicity, disturbance in the nutri-
tional balance, reduction in efficiency of processes of photosynthesis and enzymatic 
action as well as other associated processes (Fig.  4.1). During flowering, beets 
showed early flowering which is associated with reduction in dry matter, increase in 
ratio between root and shoot, and increase in size of leaf, thereby contributing to 
decrease in beet yield under salt stress condition (Maghsoudi and Maghsoudi 2008).

Biochemical response

Salt
stress

Low lipid peroxidation
concentration
Increase in proline content
Higher activities of
antioxidant enzyme
Increase in glycine betaine

Small leaves
Thicker width
Reduced leaf area
Decrease relative water
content
Accumulation of inorganic
ions

Decrease in root length
Higher rate of solute
leakage

Less water potential
Nutritional disorders
Accumulation of ions

Decrease in fresh weight

Reduced photosynthesis
rate
Decrease stomatal
conductance

Physiological response

Fig. 4.1 Morphological, biochemical, and physiological response in sugar beet under salt stress 
condition

V. Misra et al.



53

Under salt stress conditions, a number of alterations in biochemical and morpho-
logical attributes have been observed in this crop like in nutrient level, proline con-
tent, leaf area, leaf number, etc., which in turn affect the yield and productivity of 
this crop (El-Wakeel 1993; Kaffka et al. 1999; Taghizadegan et al. 2019).

4.3.1  Germination Response on Sugar Beet Grown Under Salt 
Stress Condition

Several studies indicate that sugar beet grows well under salt stress conditions (Yang 
and Houng 2012). But Jamil et al. (2006) have shown that this crop is also sensitive 
to salt stress at germination, shoot emergence and seedling stage as a result of toxic-
ity of ions in spite of the general known reason of osmotic alteration (Ghoulam and 
Fares 2001). Variation in the concentration of sodium chloride levels causes a nega-
tive effect on germination of seeds as water-absorbing capability is hampered in 
seeds (Mostafavi 2012; Dodd and Donovan 1999). Growth response in shoots and 
roots of sugar beet under such condition, with respect to germination, is the first 
response to be looked at as it establishes the base of good crop production, root 
length and yield (Bhattacharjee 2008). Inhibition in cell division process and 
increase in the growing point are the two reasons behind it (Maghsoudi and 
Maghsoudi 2008).

4.3.2  Nutrient Status

Water quality and nutrient status are mainly concerned for good production of sugar 
beet in most of the soils. In salt stress condition, it is known that growth of sugar 
beet is hampered due to the imbalance of nutrients in their tissues (El-Etriby 2000). 
Even if calcareous soils possess rich salt content, low nutrient availability, espe-
cially in N, P, K, Zn, Fe, and Mn in plants grown in such soils, has been reported 
(Armin and Asgharipour 2011). Under salt stress condition, when sodium and chlo-
ride ion concentrations were increased, a decrease in potassium ions was observed 
(Shehbata et al. 2000; Ghoulam et al. 2002) as there is decrease in uptake of potas-
sium ions from soil (Reda et al. 1980). Also, level of N ions in shoots, roots, and 
leaves of this crop under such condition has been reported to be significantly reduced 
(Flowers 1985; Warne et al. 1990). The reason behind such effect is that under such 
condition, when the sodium ion level increases, it causes efflux of K ions which 
results in lowering of the ratio between K+ and Na+. When Cl− ions increased, it 
competes with the nitrous ions leading to a reduction in the absorption of these ions 
(Chinnusamy et al. 2005). On the other hand, an increase in P content in leaves in 
such condition in sugar beet has been seen which contributes to the delay in growth 
of the crop. On general basis under salt stress condition, plant stimulates to absorb 
P ions which may cause P toxicity when absorbed by the plants in excessive amounts 
(Alam et al. 2016; Ren et al. 2012; Zhou et al. 2008).
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4.3.3  Growth and Productivity Response of Sugar Beet 
Under Salt Stress Condition

4.3.3.1  Response of Root
The most important parameter in such a condition to be looked for is the response 
of sugar beet root under salt stress condition. This is because roots come in direct 
contact with soil and any disturbance in the soil concentration will affect either the 
root’s length or diameter or its survival to some or great extent. Zhu (2002) had 
shown that when salt concentration is increased in root zone, then it affects the 
growth of the plant due to lack of water in cells. This happens so because there is 
less water potential, nutritional disorders, and buildup of toxic ions under such con-
dition (Zhu 2002). It is known that under salt stress condition generally, root length 
was decreased. The performance of H30917 genotype showed the longest root 
length, whereas H30973 genotype showed the shortest among the cultivars tested. 
Another way in which the roots respond in such a situation is when the concentra-
tion of NaCl is high and then the solutes leak out from the roots at a higher rate by 
affecting membrane permeability (Ghanoum et al. 2002).

4.3.3.2  Response of Shoot
Shoots of sugar beet plant also respond to an increase or decrease in salt concentra-
tion in the soils. A decrease in fresh weight of shoots by 36% was observed when 
there is a moderate salt stress condition (less than 125 mM). Wakeel et al. (2010) 
had shown that large amount of sodium ion accumulation in beet shoots (about 
75%) is only seen when it is supplied with fertilizer possessing sodium ions.

4.3.3.3  Response of Leaf
Salt stress condition in sugar beet crop also causes alterations in leaf morphological 
parameters. Leaf number was relatively lesser affected under such conditions com-
pared to leaf area (Ghoulam and Fares 2001) as decrease in leaf area is due to inhibi-
tion of expansion of leaves under salt stress condition and reduction in size of cells 
and cell number (De-Herralde et al. 1998; Dadkhah and Grrifiths 2006). Studies have 
also shown that the reason behind reduction in leaf area is lesser loss in water in the 
process of transpiration resulting in small leaves and thicker width under such condi-
tions (Witkwski and Lamont 1991). It has also been reported that the amount leaf 
area is reduced at a certain amount of salt stress condition and the same amount is 
increased in leaf sodium chloride concentration (Munns and Termaat 1986). 
Hajiboland et al. (2009) had revealed that leaf area under such condition in plants 
increases transitionally at initial phases of growth; however at later ones, this gets 
decreased. Ghoulam et al. (2002) have also illustrated that under salt stress condition, 
sugar beet leaf shows a decrease in relative water content. Reports suggested that the 
effect of salt stress was clearly evident on leaf area than on dry weight as under such 
a situation higher accumulation of Na and Cl ions occurs in shoots through transpira-
tion flow that results in the highest accumulation of oldest leaf leading to death 
(Greenway and Munns 1980). An increase in leaf thickness was also seen when salt 
concentrations were increased which is correlated to enhancement in the amount of 
sodium and chloride ions in leaf blades, petioles and also roots of sugar beet (Geng 
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et al. 2011). Under salt stress conditions, leaves accumulate more inorganic ions in 
many sugar beet varieties like Zwaanpoly, Kawemegapoly, Top, Desprezpoly, and 
Nejma which are known to be includers (Ghoulam et al. 2002).

4.3.3.4  Physiological Response
Photosynthesis is an important physiological process for any crop and also for sugar 
beet. Crop grown in salt stress conditions alters the photosynthetic process. Sugar 
beet grown in salt stress condition shows a decrease in area of photosynthesis due to 
less leaf area and biomass weight as mentioned earlier (Yang et al. 2008). The rate of 
photosynthesis was increased at initial stages of growth in two sugar beet cultivars, 
viz., Monirac and Kawemegapoly, when grown under such condition, but when the 
time duration increases, there was no change in carbon fixation process in Monirac, 
whereas in Kawemegapoly, it decreased significantly (Zviplaut 1989). Association 
between photosynthesis and shoot growth has also been observed as decrease in pho-
tosynthesis area will hamper the shoot growth as well as its development (Campbell 
and Nishio 2000). Everard et al. (1994) had illustrated that a decrease in photosyn-
thesis rate also affects the stomatal conductance which results in limiting the avail-
ability of carbon dioxide to the plant for the process of carboxylation. It has been also 
known that under salt conditions chlorophyll content may also be affected. Studies 
have shown that in sugar beet cultivars, under salt stress conditions, significant dif-
ferences were observed in fluorescence measurement of chlorophyll content indicat-
ing that energy translocation rate may be restricted to some extent (Long and Hallgern 
1993). Furthermore, reduction in level of Fv/Fm was also seen indicating that there 
might be hindrance in RuBP regeneration as ample amount of electron translocates 
from PS II under saline condition (Abbas et al. 2014).

4.3.3.5  Biochemical Response
For adaptation of plants in salt stress conditions, osmotic adjustment is a crucial 
regulatory mechanism (Volkmar et al. 1998). Under such a situation, plants accu-
mulate several organic solutes like glycine betaine, proline, free amino acids, 
organic acids and soluble sugars or their derivatives so as to sustain the turgidity of 
the cells (Flowers and Colmer 2008). These organic solutes play crucial roles in 
physiological processing of any crop (Fig. 4.1). For instance, the soluble sugars are 
known for their functioning in maintaining the cell membrane integrity when saline 
conditions are high. Soluble sugars are even recognized as a sensitive aspect under 
salt stress condition (Tuteja 2007).

4.3.3.5.1 Lipid Peroxidation and Enzyme Activity
Lipid peroxidation is an active antioxidant enzyme that uses oxygen ion for the 
production of superoxide radical (Fridovic, 1986). In salt stress condition, sugar 
beet (B. vulgaris) and wild beet (B. maritime) showed lower lipid peroxidation con-
centration as compared to beet grown in normal condition. This may be due to 
higher activities of antioxidant enzymes like superoxide dismutase (SOD) and cata-
lase (CAT) that help in the prevention of damage to cells (Scandalios 1993). It has 
been illustrated that wild species of sugar beet had hereditary character as well as 
tolerating power for salt stress due to enhancement in the leakage of solutes that 
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helps in improving protection from oxidative damage (Bor et al. 2003). In such a 
case, wild sugar beet leaves possess higher constitutive activities of SOD and 
induced activities of antioxidants like peroxidase (POX), ascorbate peroxidase 
(APOX) and CAT. Superoxide dismutase is a well-known metalloenzyme used for 
protecting against cellular damage (Feng et  al. 2016). The antioxidant enzymes 
found in the leaves under salt stress show effectiveness in preventing the cellular 
damage especially SOD and CAT (Scandalios 1993). But it is not true in case of B. 
maritima as under salt stress condition, there is an increase in lipid peroxidation 
particularly when the concentration was 500 mM for 12 days. This in turn causes 
enhancement in permeability of membrane; as a result of which, there is an increase 
in solute concentration. This, on overall basis, decreases the resistivity of sugar beet 
under such a situation. Higher activity of SOD was also seen in B. maritima in spite 
of lower ratio of salt-induced SOD activity. This indicated that wild sugar beet had 
higher potential to resist the oxidative damage without increasing its SOD activity. 
Peroxidase is another enzyme that play a role in scavenging hydrogen peroxide 
present in chloroplast. This is produced by dismutation of oxygen molecule cata-
lyzed by SOD (Asada et al. 1987). No difference in response of POX activity was 
reported in the wild and commercial cultivated beet as in both cases increase in POX 
activity was observed when concentration of salt lies under 150  mM and 
500 mM. But variation in the induction of activity of this enzyme under salt stress 
was seen in both the cultivars; in wild ones, it was higher, while in commercial ones, 
it was not so high. Ascorbate peroxidase enzyme is important for detoxification of 
hydrogen peroxide (H2O2) as it uses ascorbate for reducing H2O2 (Asada et  al. 
1987). Generally, overexpression of this gene leads to higher protection against oxi-
dative damage. In wild types of sugar beet, both SOD and APOX activities were 
increased. Even the CAT activities were higher in wild beet cultivars as compared 
to commercial ones. Catalase is also known for playing an important part in protec-
tion against cellular damage. Similarly, glutathione peroxidase (GPX) enzyme too 
plays a role in the same pathway (Mitler et al. 2004).

4.3.3.5.2 Proline
Proline plays an important role in protection of cytomembrane system and even 
retains the structure of intracellular enzymes (Hong et al. 2000). At 6000 mg NaCl 
per kg in soil, proline content increases significantly in this crop. Grzik (1996) had 
shown that when salt stress levels increase, this soluble organic solute level also 
increased that might result in tolerance to plants cultivated in such a condition. 
Delauney and Verma (1993) revealed two pathways for the formation of proline 
content in plants, i.e., one is via glutamate, while the other is via ornithine.

4.3.3.5.3 Glycine Betaine
It is well known that members of the Chenopodiaceae family (sugar beet, spinach, 
etc.) produce large amounts of glycine betaine (Catusse et al. 2008) as a response to 
salt stress condition. Zheng et al. (2015) had revealed the production of betaine in 
many salt-tolerant crops. Sugar beet plant (in roots and leaves) showed relatively 
higher increase in betaine aldehyde dehydrogenase (BADH) by two–four folds with 
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the increase in salt levels (from 0 to 500 mM) in water supply for irrigation (McCue 
and Hanson 1991). Hanson and Rhodes (1983) revealed the synthesis pathway of 
glycine betaine in leaves of sugar beet crop under salt stress condition. Studies sug-
gested that under such a situation, glycine betaine concentration was increased indi-
cating their role in coping up the problem of osmotic disturbance. This even may 
suppress the functioning of nitrogenous compounds formed other than it (McCue 
and Hanson 1992; Colmer et al. 1996).

4.4  Approaches for Overcoming the Effect of Salt Stress 
in Sugar Beet

Approaches have been tried for enhancing the tolerance capability in sugar beet for 
salt stress conditions. Application of potassium as a fertilizer in sugar beet is one 
such approach (Sarkar and Ghosh 1989). Also, external intake of potassium ions by 
sugar beet plants in salt stress condition also enhances the tolerance power. The role 
of potassium ions in sugar beet plants has been clearly illustrated in many studies 
and has shown the association of potassium ions with sucrose, total soluble solids 
and purity coefficient of juice of sugar beet (El-Maghraby et al. 1998; Khalil et al. 
2001). Photosynthesis rate, sucrose translocation, and sucrose accumulation in roots 
were enhanced after application of K fertilizer which may be due to the role of K in 
enhancing metabolic activity of beet (metabolic activity of carbohydrate and nitro-
gen, transpiration, and water-absorbing capacity) (El-Hawary 1994a, b; Bondok 
1996; El-Etreiby 2000). El-Harriri and Gobarh (2001) had also shown that with the 
usage of K fertilizer in sugar beet grown under salt stress condition, quality and 
quantity of sugar in beet roots were improved significantly. Dry weight of leaves 
and top of sugar beet was revealed to increase after application of potassium fertil-
izer. Application of phosphorus also showed increase in fresh weight of root and 
shoot (Hussain et  al. 2014). In addition, application of gibberellic acid (GA3) in 
such a condition also helped in minimizing the effect on sugar beet.

4.5  Conclusion

Sugar beet is a secondary crop used for production of about 20% of sugar from 45 
countries (four continents) of the world majorly where sugarcane cultivation is not 
possible. Sugar beet is largely grown in temperate climates, but now it is being 
moved to subtropical parts of the world for fulfilling the further enhanced needs of 
sugar and ethanol production and minimizing the burden on sugarcane crop. Salt 
stress is a crucial problem for most of the areas of the world which has hampered 
the agricultural productivity. Sugar beet is the one used for sustainable growth and 
production under salt stress condition due to the natural ability possessed by it for 
tolerating the osmotic potential by having a tolerance power of 9.5  m mhos/cm 
towards salt stress. The mechanism involved is the absorption of sodium ions from 
soil to leaves where it gets accumulated in their tissues mainly in the vacuolar 
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spaces. Besides, it also reclaims the saline soil by removing 500 kg of sodium salts 
per hectare per season from salt-affected marginal lands, thereby making it suitable 
for other crop cultivation. Furthermore, this crop will act as boon to agriculture in 
salt-affected marginal lands.
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Abstract
Drought (water stress) is one of the most important stresses that occurs widely in 
agricultural fields and can affect different aspects of crop growth, development, 
and metabolism. There are several reasons of drought stress in agriculture fields, 
including low rainfall or irrigation, high and low temperature, high intensity of 
light, high EC (electrical conductivity) due to salinity and fertilizer misapplica-
tion, etc. Plant water potential and turgor decline in dehydration condition; there-
fore, plant cells could not do normal functions and inducing all drought stress 
aspects in plants. In addition, it can negatively affect quantity and quality of 
growth and yield in crops. Plants are sessile organisms and must tolerate environ-
mental stresses; hence, they have developed various mechanisms for resistance 
to stresses such as drought stress. Moreover, as plants are multicellular organ-
isms, their responses to environmental stresses such as drought are complex. 
Generally, plant resistance to environmental stress is divided into two main strat-
egies: stress avoidance and stress tolerance. Besides tolerance, avoidance is one 
of the common drought resistance mechanisms in annual plants. Escape from 
stress conditions is the strategy for plant growth under drought condition that is 
less important in agronomic plants. The alteration in resistance capacity of crops’ 
seeds and young seedlings by priming methods, production of tolerant crops by 
traditional breeding methods, and the generation of transgenic plants by gene 
manipulation are useful procedures to minimize the negative effects of drought 
on agronomic products. In addition, several strategies for drought management 
in agricultural fields on multiple levels can be effective.
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Abbreviation

5-HTP 5-hydroxy-L-tryptophan
ABA abscisic acid
AFLP amplified fragment length polymorphism
ALA 5-aminolevulinic acid
AM arbuscular mycorhizal fungi
APX ascorbate peroxidase
BABA β-aminobutyric acid
BR brassinosteroid
CAT catalase
CPK Ca2+-dependent protein kinase
EC electrical conductivity
ERF ethylene response factors
GABA γ- aminobutyric acid
Gas Gibberellins
GB glycine betaine
GR glutathione reductase
GSH glutathione
H2O2 hydrogen peroxide
IAA indole-3- acetic acid
JA jasmonic acid
L-DOPA L-3,4-dihydroxyphenylalanine
LEA late embryogenesis abundant
LMW low molecular weight
MGDG monogalactosyldiacylglycerol
O2

•− superoxide radical
OH hydroxyl radical
P5CR pyrroline-5-carboxylate reductase
PEG polyethylene glycol
PM-ATPase plasma membrane ATPase
POD peroxidase
PP2Cs protein phosphatase 2Cs
QTL quantitative trait loci
RAPDs random amplified polymorphic DNA
RCS reactive carbonyl species
RFLPs restriction fragment length polymorphisms
RNS reactive nitrogen species
RO alkoxy radicals
ROS reactive oxygen species
RSS reactive sulfur species
RuBisCO ribulose bisphosphate carboxylase/oxygenase
RWC relative water content
SA salicylic acid
SCARs sequence characteristic amplified regions
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SnRK2s SNF1-related protein kinase 2s
SOD superoxide dismutase
SSRs simple sequence repeats
TF transcription factors
VOCs volatile organic compounds

5.1  Introduction

Under agricultural conditions, plants are often exposed to various environmental 
stresses such as drought stress. Drought is one of the most important and common 
abiotic stress factors for agronomic plants in many parts of the world, especially in 
arid and semiarid areas (Madhava et al. 2006). “Drought” is a general term usually 
used to describe a relatively long period without rainfall and derives from an agri-
cultural context (Salehi-lisar et  al. 2012). There are several reasons for a water- 
deficit condition in agronomic plants, such as low irrigation, high electrical 
conductivity (EC) due to salinity, fertilizer misapplication, high temperature, high 
intensity of light, dry wind, and so on (Dai 2012; Mafakheri et al. 2010; Shao et al. 
2008a; Trujillo et al. 2008). Water accounts for between 80% and 95% of the fresh 
biomass of nonwoody plants and plays an important role in many aspects of plant 
growth, development, metabolism, and so on (Hirt and Shinozaki 2004; Salehi-lisar 
et al. 2012). In many conditions there is enough water in the soil, but plants cannot 
uptake it. This type of water stress is called a pseudo-drought or physiological 
drought (Arbona et al. 2013; Ashraf et al. 2009). Drought stress is a multidimen-
sional stress and generally leads to changes in the physiological, morphological, 
ecological, biochemical, and molecular traits of plants (Bhargava and Sawant 2013; 
Farooq et al. 2009; Shao et al. 2008a). In addition, it can negatively affect the quan-
tity and quality of plant growth and yield (Jaleel et al. 2009; Nezhadahmadi et al. 
2013; Zlatev and Lidon 2012). Plant responses to a water deficit depend on the 
length and severity of the water deficiency as well as the plant species, age, and 
developmental stage (Madhava et al. 2006). Many plants have developed resistance 
mechanisms to tolerate drought stress, but these mechanisms are varied and depend 
on the plant species. In addition to drought tolerance, drought avoidance is another 
common drought escaping mechanism in annual crops (Ashraf et al. 2009; Madhava 
et  al. 2006; Salehi-lisar et  al. 2012). Scientists have tested different methods for 
improving plants’ capacity for drought resistance such as traditional breeding meth-
ods (Nezhadahmadi et al. 2013; Rana et al. 2013), transgenic technology (Khan et al. 
2011; Nakashima et al. 2014; Xoconostle-Cazares et al. 2010), priming methods 
(Mondal and Bose 2014; Paparella et al. 2015), and so on. However, each method 
has some problems and limitations because of the complexity of drought effects on 
plants and the plants’ responses to the drought. In addition, several strategies for 
drought management in agricultural fields could be useful in order to minimize the 
effects of drought on plants, especially on crops. Although the terms “drought,” 
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“water deficit,” “dehydration,” and “water stress” can address different issues, in 
this text we will use these terms to mean an inadequate water supply for plants.

5.2  Concept of Drought

5.2.1  General Aspects

Global warming influences air temperature as well as amount and distribution of 
precipitation and is one of the most important reasons of drought expansion. The 
climatic variability and more frequent periods of extreme conditions for water avail-
ability result in drought for the organisms, particularly plants (Dai 2012; Trenberth 
et al. 2014). Drought (water stress) is one of the most important stresses that occurs 
widely in agricultural fields (Keyvan 2010; Rahdari and Hoseini 2012; Rana et al. 
2013; Zlatev and Lidon 2012) and can affect different aspects of crop growth, devel-
opment, and metabolism (Rahdari and Hoseini 2012; Rana et al. 2013; Zlatev and 
Lidon 2012). “Drought” is a general term for the description of atmospheric or 
weather phenomena and is commonly explained as a relatively long period without 
rainfall (Bray 2001; Dai 2012; Jaleel et al. 2009; Shao et al. 2008a). Drought is dif-
ficult to define; it can be described from several viewpoints, such as meteorological, 
agricultural, hydrological, and socioeconomic (Barriopedro et al. 2012; Dai 2012; 
Jaleel et al. 2009; Rahdari and Hoseini 2012). However, from agricultural viewpoint 
it has special importance due to effects on agronomic productions. Drought stress in 
agronomic conditions occurs when the soil moisture is decreasing at a certain time 
leading to a decline in the available water for plants (Dai 2012; Keyvan 2010). 
Basically, when the water potential of the soil is lower than the water potential of 
plants, drought stress occurs. Mostly, the atmospheric conditions cause a continu-
ous water deficit by transpiration or evaporation in agricultural fields (Dai 2012; 
Mafakheri et al. 2010; Shao et al. 2008a; Trenberth et al. 2014). Therefore, an agri-
cultural drought comes after a meteorological drought (Barriopedro et al. 2012; Dai 
2012; Jaleel et al. 2009). Usually, under normal conditions, drought is not a disaster 
in many regions, but it could be an important problem when humans’ feeding is 
water-dependent (Kheradmand et al. 2014). In addition, in some regions rainfall is 
adequate, but nonuniform precipitation leads to water stress in plants.

5.2.2  Drought Stress in Agronomic Crops

Drought occurs worldwide every year; therefore, it has become important in the 
agronomic plants especially under arid and semiarid climates. The effects of drought 
on the crop yields are well known; however, the water-deficit effects at the bio-
chemical and molecular levels are not considerably understood yet. All plants have 
some degree of tolerance to water stress, but the extent varies from species to spe-
cies (Nezhadahmadi et  al. 2013; Salehi-lisar and Bakhshayeshan-Agdam 2016). 

S. Y. Salehi-Lisar and H. Bakhshayeshan-Agdam



67

Agronomic plants are more susceptible to water stress than wild-type species. 
Studies show that crop plants have lost its resistance to environmental stresses such 
as drought during traditional plant breeding and desirable trait selection (Bhargava 
and Sawant 2013; Ding et  al. 2013; Farooq et  al. 2009; Nakashima et  al. 2014; 
Nezhadahmadi et al. 2013; Rana et al. 2013; Xoconostle- Cazares et al. 2010). On 
the other hand, crop and medicinal plants supply feed and health of human beings, 
respectively. Hence, drought stress effects on crops and its management in agricul-
tural fields have become more important today than in the past.

5.3  Drought Stress Causes in Agricultural Fields

Generally, the alterations in rainfall patterns due to global climate changes lead to 
increases in drought condition worldwide (Arbona et al. 2013; Dai 2012; Mishra 
and Singh 2011; Nezhadahmadi et al. 2013). Although global climate alterations are 
the main factor triggering drought stress (Mishra and Singh 2011; Rana et al. 2013), 
there are many other reasons for drought, such as low irrigation, high EC due to 
salinity, fertilizer misapplication, high temperature, high intensity of light, dry 
wind, and so on. In addition, these factors increase water losses from plants and 
subsequently facilitate plant exposure to water stress (Dai 2012; Mafakheri et al. 
2010; Salehi-lisar et al. 2012; Shao et al. 2008a; Trenberth et al. 2014). Sometimes 
drought does not occur truly because of a water deficit in the environment. In some 
cases, there is enough water in the soil, but several soil factors, such as salinity, low 
soil temperatures, and flooding, prevent or decrease water uptake by roots and sub-
sequently lead to water stress in plants. This type of drought is called pseudo- 
drought or physiological drought, and the atmospheric conditions are not determining 
factors in this type of drought (Arbona et al. 2013).

5.4  Effects of Drought Stress in Crops

5.4.1  Crop Growth and Yield

Drought severely reduces plant growth and development by influencing different 
physiological and biochemical aspect (Bhargava and Sawant 2013; Farooq et  al. 
2009; Rahdari and Hoseini 2012; Shao et al. 2008a). In addition, drought can nega-
tively affect the quantity and quality of growth and yield of plants, especially crops 
(Jaleel et al. 2009; Nezhadahmadi et al. 2013; Zlatev and Lidon 2012). Plant growth 
and development are dependent to cell division-, elongation-, and differentiation. 
All of these phases are affected under drought conditions by loss of turgor and sub-
sequently disordered enzyme activities and decreased energy supply from photo-
synthesis (Bhargava and Sawant 2013; Ding et al. 2013; Jaleel et al. 2009; Keyvan 
2010; Osakabe et al. 2014; Shao et al. 2008a). Plant water potential and turgor are 
reduced in dehydration conditions; therefore, plant cells cannot perform their nor-
mal functions (Keyvan 2010; Rahdari and Hoseini 2012). Turgor reduction leads to 
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suppressed cell expansion and growth. Cell expansion and growth are necessary 
phenomena for the initial phase of plant growth and establishment (Barriopedro 
et  al. 2012; Keyvan 2010). Growth decline in vegetative phase of crops leads to 
negative effects on reproductive phase and finally reduced the quantity and quality 
of crop yield (Farooq et al. 2009; Rahdari and Hoseini 2012; Shao et al. 2008a).

5.4.2  Morphological and Anatomical Characteristics

Morphological changes are consequence of a wide spectrum of physiological effects 
of drought stress on plants (Chernyad’ev 2005; Jaleel et al. 2009; Keyvan 2010; 
Mafakheri et al. 2010; Nezhadahmadi et al. 2013). The morphological acclimation 
strategy usually includes smaller leaf area to decrease the transpiration and larger 
root system to enhance the water uptake capacity (Chernyad’ev 2005; Jaleel et al. 
2009; Mafakheri et al. 2010; Salehi-lisar et al. 2012; Shao et al. 2008a). The anat-
omy of a leaf and its ultrastructure are altered by water stress (Hirt and Shinozaki 
2004; Madhava et al. 2006; Salehi-lisar et al. 2012). A decrease in leaves’ size, a 
lower aperture and a decrease in the number of stomata, cell wall thickening, cutini-
zation of the leaf surface and developed conductive system (increase in the number 
of large vessels), submersion of stomata in succulent and xerophyte plants, and the 
formation of tube leaves in cereals are some alterations that occur in plants exposed 
to drought (Chernyad’ev 2005; Jaleel et al. 2009; Keyvan 2010; Mafakheri et al. 
2010; Nezhadahmadi et al. 2013; Shao et al. 2008a). Leaf senescence is a key devel-
opmental process which occurs naturally during plant maturation, but premature 
leaf senescence was observed in water-deficit situations. In leaf-forage crops, pre-
mature leaf senescence is a main reason of yield loss of these crops (Farooq et al. 
2009; Shao et al. 2008a). Optimal leaf area development before leaf senescence and 
optimum stomatal density and opening are essential factors for optimal photosyn-
thesis in plants (Jaleel et  al. 2009). Therefore, net photosynthesis under drought 
stress is reduced due to a low leaf area and an increase in leaf senescence (Ding 
et al. 2013; Mishra and Singh 2011; Shao et al. 2008a; Zare et al. 2011). The main 
effect of drought stress on plant morphology is size reduction. A low photosynthesis 
rate is one of the most important factors involving in the reduction of plant size and 
biomass production (Farooq et al. 2009; Franco 2011; Shao et al. 2008a; Zare et al. 
2011). In order to increase water uptake under dehydration conditions, plants 
expand their roots and produce a ramified root system (Akhtar and Nazir 2013; 
Bhargava and Sawant 2013; Farooq et al. 2009; Franco 2011; Jaleel et al. 2009; 
Rahdari and Hoseini 2012). An increased biomass allocation to roots under drought 
situations and an expansion of the plant’s root system generally lead to a higher 
capacity for water uptake (Bhargava and Sawant 2013; Farooq et al. 2009; Franco 
2011; Shao et al. 2008a). Accordingly, despite reducing the shoot growth, the root 
growth is not significantly reduced under a mild water deficit. Therefore, under 
dehydration conditions, the root-to-shoot ratios of plants usually increase; however, 
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the total biomasses of plants are reduced considerably (Akhtar and Nazir 2013; 
Jaleel et al. 2009; Salehi-lisar et al. 2012; Shao et al. 2008a; Zare et al. 2011).

5.4.3  Plant-Water Relationships and Ion Uptake

The relative water content (RWC), leaf water potential, stomatal resistance, transpi-
ration rate, leaf temperature, and canopy temperature are important factors in plant- 
water relationships (Bhargava and Sawant 2013; Farooq et al. 2009; Keyvan 2010; 
Shao et al. 2008a; Zlatev and Lidon 2012). Relative water content reduction is the 
earliest effect of drought on crop plants (Farooq et al. 2009). A decrease in the leaf 
water potential due to low RWC leads to stomatal closing. A higher stomatal resis-
tance decreases the transpiration rate and finally leads to increases in the leaf tem-
perature, because transpiration is the main factor controlling the leaf temperature 
(Arbona et al. 2013; Farooq et al. 2009; Mafakheri et al. 2010; Sapeta et al. 2013). 
Higher temperatures of leaves can lead to denaturation of proteins especially 
enzymes and changes in membrane permeability which can influence different 
aspects of metabolism such as the synthesis of important macromolecules including 
amino acids and proteins, photosynthesis, respiration, ion uptake, and mineral nutri-
tion (Bhargava and Sawant 2013; Rana et al. 2013; Salehi-lisar et al. 2012; Sapeta 
et al. 2013; Zlatev and Lidon 2012). Water stress affects plant mineral nutrition and 
disrupts ion homeostasis in crops due to increasing leaf temperature and stomatal 
resistance and changes cell metabolism (Akhtar and Nazir 2013; Bray 2001; 
Kheradmand et  al. 2014). Generally, decreasing water availability under water 
stress conditions limits the total nutrient availability in soil, decreases the nutrient 
uptake by roots, and finally reduces their tissue concentrations in crops (Farooq 
et al. 2009; Kheradmand et al. 2014). Changing nutrient uptake by the root and their 
transport to the shoots is an important effect of water deficit on plants. Generally, 
drought stress leads to an increase in N and causes a reduction in the P and PO4

3− 
contents in the plant tissue because of lowered PO4

3− mobility as a result of lower 
water availability, and has no definitive effects on the K concentration in plants 
(Akhtar and Nazir 2013; Farooq et al. 2009; Shao et al. 2008a). A decrease in the Ca 
content of plants has been reported by many researchers as well (Akhtar and Nazir 
2013; Bhargava and Sawant 2013). The cell membrane is one of the earliest targets 
of many stresses such as drought. Membrane stability in the roots plays an essential 
role in the appropriate mineral nutrition of plants. Therefore, preservation of the 
membrane stability is a very important factor in plant resistance to drought. Damage 
of cell membranes under water-deficit conditions is an important factor leading to 
disruption of ion homeostasis in plants (Farooq et al. 2009; Kheradmand et al. 2014; 
Rahdari and Hoseini 2012; Salehi-lisar et al. 2012).
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5.4.4  Plant Metabolism

Carbon metabolism is one of the most important metabolism pathways in plants. A 
reduction and/or inhibition of photosynthesis is one of the main effects of drought 
on plant metabolism (Bhargava and Sawant 2013; Bray 2001; Keyvan 2010; 
Nezhadahmadi et al. 2013). The reasons of these effects are decrease in the leaf 
expansion rate and a low leaf surface, an increase in leaf temperature, impaired 
photosynthetic machinery, and premature leaf senescence (Bhargava and Sawant 
2013; Farooq et al. 2009; Zare et al. 2011). Stomatal and nonstomatal factors can be 
effective in reducing and/or inhibiting photosynthesis under water-deficit situations 
(Bray 2001; Sapeta et al. 2013; Zlatev and Lidon 2012). Carbon dioxide limitations 
due to prolonged stomatal closure, especially under light saturation conditions, lead 
to the accumulation of reduced photosynthetic electron transport components. The 
accumulation of these compounds can reduce molecular oxygen and give rise to the 
production of reactive oxygen species (ROS), resulting in oxidative damage in chlo-
roplasts (Arbona et al. 2013; Bhargava and Sawant 2013; Osakabe et al. 2014; Shao 
et al. 2008a; Xoconostle-Cazares et al. 2010; Zlatev and Lidon 2012). Low CO2 
uptake due to stomatal closure decreased the photosynthesis rate due to reduced 
activity of enzymes involved in CO2 reduction (Calvin cycle, dark reactions). The 
lower activity of dark reactions could lead to imbalances between the light and dark 
reactions of photosynthesis and ROS accumulation in chloroplasts (Bhargava and 
Sawant 2013; Farooq et al. 2009; Nezhadahmadi et al. 2013). Besides, the ROS can 
damage the photosynthetic apparatus, including thylakoid membranes, photosyn-
thetic pigments, and enzymes (Bhargava and Sawant 2013; Farooq et  al. 2009; 
Salehi-lisar et al. 2012). A decrease in the chlorophyll content of leaves under water 
stress is another factor involved in the reduction of the photosynthesis rate (Keyvan 
2010; Rahdari and Hoseini 2012; Sapeta et al. 2013). Despite inhibiting photosyn-
thesis under water-deficit, carbon- rich molecules such as soluble carbohydrates 
(hexose, sucrose, trehalose, mannitol), amino acids (proline), organic acids (malate, 
fumarate, citrate), and structural compounds (cellulose and lignin) increase within 
plant tissues during drought stress. Many of these compounds act as compatible 
solutes and protect subcellular structures against effects of water deficit (Muller 
et  al. 2011). According to the literature reports, carotenoids are less sensitive to 
water stress than chlorophylls. However, unlike chlorophylls, an increase in xantho-
phyll pigments such as zeaxanthin and antheraxanthin in plants under water stress 
has been reported. Carotenoids as low molecular weight (LMW) antioxidant metab-
olites play a protective role in plants under stress, and some of these pigments are 
involved in the xanthophyll cycle, which is involved in ROS detoxification 
(Chernyad’ev 2005; Farooq et  al. 2009; Jaleel et  al. 2009; Nezhadahmadi et  al. 
2013). The key enzyme for carbon metabolism in the Calvin cycle is ribulose 
bisphosphate carboxylase/oxygenase (RuBisCO) (Farooq et al. 2009; Salehi-lisar 
et al. 2012). The amount and activity of RuBisCO decrease rapidly under water-
deficit conditions. This effect is evident in all studied crops, but the severity of the 
decrease is species- dependent (Chernyad’ev 2005; Farooq et al. 2009; Salehi-lisar 
et  al. 2012). A decline in RuBisCO activity is caused by the acidification of 
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chloroplast stroma, a lack of the substrate for carboxylation (CO2 and ribulose 
bisphosphate), a reduction in the amount and/or activity of the coupling factor 
(ATPase, ATP synthase), structural alterations of chloroplasts and RuBisCO, and 
release of RuBisCO from damaged plastids (Akhtar and Nazir 2013; Bhargava and 
Sawant 2013; Chernyad’ev 2005; Farooq et  al. 2009; Zlatev and Lidon 2012). 
In  addition to RuBisCO, activities of some other enzymes involved in carbon 
metabolism, such as phosphoenolpyruvate carboxylase, NADP-malic enzyme, 
fructose- 1,6- bisphosphatase, NADP-glyceraldehyde phosphate dehydrogenase, 
phosphoribulokinase, sucrose phosphate synthase, and pyruvate orthophosphate 
dikinase, decrease linearly with lowered leaf water potential under drought condi-
tions (Chernyad’ev 2005; Farooq et  al. 2009; Salehi-lisar et  al. 2012). Drought 
stress also disrupts the cyclic and noncyclic types of electron transport in the light 
reactions of photosynthesis (Bhargava and Sawant 2013). A lower electron transport 
rate negatively affects the photophosphorylation process (ATP biosynthesis) (Akhtar 
and Nazir 2013; Bhargava and Sawant 2013; Chernyad’ev 2005) as well as the 
NADPH/H+ reduction (Chernyad’ev 2005; Farooq et  al. 2009; Salehi- lisar et  al. 
2012). These alterations cumulatively disrupt the photosynthetic apparatus under 
water stress conditions (Bhargava and Sawant 2013; Chernyad’ev 2005). Both pho-
tosystems, PSI and PSII in chloroplasts, are affected by water-deficit conditions 
mainly due to a lower electron transport rate and the accumulation of ROS (Bhargava 
and Sawant 2013; Chernyad’ev 2005). Drought stress leads to a disturbance in the 
association between membrane lipids and proteins as well as decreases the mem-
brane-bound enzyme activity and transport capacity of the bilayer (Farooq et  al. 
2009; Kheradmand et al. 2014). Monogalactosyldiacylglycerol (MGDG) is a major 
leaf glycolipid and that content decreases after plant exposure to drought. The 
MGDG is the most important component of the chloroplast membrane; accordingly, 
its lower content leads to destruction of the chloroplast membrane and negatively 
affects photosynthesis (Farooq et  al. 2009; Mafakheri et  al. 2010; Rahdari and 
Hoseini 2012; Salehi-lisar et al. 2012). Plant growth and development, as well as 
environmental conditions influence the respiration rate. Under water-deficit condi-
tions, a change can occur in carbon metabolism as a result of diminished photosyn-
thesis and active respiration. A plant’s growth rate is determined precisely by 
photosynthetic CO2 assimilation and the respiration ratio (Bhargava and Sawant 
2013; Ding et al. 2013; Farooq et al. 2009; Keyvan 2010). Under drought stress, the 
tricarboxylic acid (TCA) cycle and ATP biosynthesis in the mitochondria are nega-
tively affected and lead to a decrease in the respiration rate (Arbona et al. 2013; 
Bhargava and Sawant 2013; Farooq et al. 2009). There are two mitochondrial elec-
tron transport pathways from ubiquinone to oxygen in plants. The alternative path-
way branches from the cytochrome pathway and transfers electrons to oxygen 
directly by alternative oxidase (Bhargava and Sawant 2013; Farooq et  al. 2009). 
When plants are exposed to the drought stress, they produce ROS in the mitochon-
dria. These free radicals could damage cellular components (Arbona et al. 2013; 
Labudda and Safiul Azam 2014). Alternative oxidase activity could be useful in 
maintaining normal levels of metabolites and reducing ROS production by transfer-
ring electrons to O2 and production of H2O2 (Akhtar and Nazir 2013; Bhargava and 
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Sawant 2013; Farooq et al. 2009). Functional changes in photosynthesis and respi-
ration spread to all parts of the cell and finally cause a change in the metabolism of 
the whole plant, and drought stress was induced in physiological level.

5.4.5  Osmotic Adjustment

Plants synthesize compounds such as proteins and amino acids and accumulate some 
minerals in response to water-deficit situation (Nezhadahmadi et al. 2013; Rahdari 
and Hoseini 2012). Drought conditions change the quantity and quality of plant pro-
teins (Chernyad’ev 2005; Farooq et al. 2009; Rahdari and Hoseini 2012). Typically, 
the protein content decreases under a water deficit due to suppression of their synthe-
sis (Bernacchia and Furini 2004; Chernyad’ev 2005; Nezhadahmadi et  al. 2013; 
Salehi-lisar et al. 2012). However, the synthesis of some proteins and enzymes such 
as late embryogenesis abundant proteins or LEA proteins; proteases; enzymes 
required for the biosynthesis of various osmotic compatible compounds (osmopro-
tectants); enzymes involved in the detoxification of ROS including superoxide dis-
mutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and 
glutathione reductase (GR); and protein factors involved in the regulation of signal 
transduction and gene expression increases under drought stress (Ding et al. 2013; 
Farooq et  al. 2009; Labudda and SafiulAzam 2014; Nezhadahmadi et  al. 2013; 
Rahdari and Hoseini 2012; Xoconostle-Cazares et al. 2010; Zlatev and Lidon 2012). 
The accumulation of compatible solutes (osmoprotectants in some texts) in order to 
provide osmotic adaptation (osmotic regulation and osmotic adjustment) is a well-
known mechanism for plant resistance to drought and some other stress such as 
salinity (Ashraf et al. 2009; Hirt and Shinozaki 2004; Madhava et al. 2006; Salehi-
lisar et al. 2012). Compatible solutes have a low molecular weight and can accumu-
late at high concentrations without having damaging effects on the cell components 
and metabolism (Rahdari and Hoseini 2012; Xoconostle-Cazares et al. 2010). The 
accumulation of compatible solutes increases the cellular osmotic pressure and trig-
gers water uptake from soil. In addition, compatible solutes regulate the osmotic 
balance between the vacuole and the cytosol, maintain the turgor pressure and water 
content of cells, and protect against water loss from plants because of their high lipo-
philicity. Also, they might replace water molecules around nucleic acids, proteins 
(like enzymes), and membranes during water shortages. Compatible solutes might 
prevent interactions between ions (at a high concentration) with cellular components 
by replacing the water molecules around these components and protecting against 
the destabilization of important macromolecules (Ashraf et  al. 2009; Hirt and 
Shinozaki 2004; Madhava et  al. 2006; Salehi-lisar et  al. 2012). Some compatible 
solutes have antioxidative activity (Salehi-lisar and Bakhshayeshan-Agdam 2016). 
Compatible solutes are divided into five major groups (Arbona et  al. 2013; Bray 
2001; Ding et al. 2013; Farooq et al. 2009; Rangan et al. 2014; Xoconostle-Cazares 
et al. 2010).
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5.4.5.1  Sugars
Sugars, including monosaccharides (e.g., fructose and glucose) and di- and oligo-
saccharides (e.g., sucrose, trehalose, and raffinose), are accumulated in the leaves of 
different crops under drought stress. Sugars may represent a major part of all com-
patible solutes in the plant cells; for example, the osmotic potential of sorghum tis-
sues is containing over 40–50% sugar (Jones et al. 1981). Sugars provide the carbon 
and energy required for normal functions of plant metabolism as well as plant 
growth and development after water-deficit elimination. Sugars especially accumu-
lated when the utilization of carbohydrates by metabolism is reduced. For example, 
fructans are a reserve source of carbohydrates and can protect plants against severe 
drought stress. These carbohydrates accumulate especially in the vacuoles (Munns 
and Weir 1981). Similarly, trehalose is important for drought resistance in 
dehydration- tolerant plants (Vinocur and Altman 2005).

5.4.5.2  Amino Acids
Some amino acids such as proline and citrulline are important organic compounds 
involved in osmotic adaptation. The proline accumulation as an amino acid is a typi-
cal response in plants, eubacteria, protozoa, and marine invertebrates exposed to the 
various stresses. Proline accumulation was frequently reported under water-deficit 
situation in plants. Proline level under drought stress can increase over 100 times 
greater than that in the control, but the accumulation capacity differs from species 
to species (Verbruggen and Hermans 2008). Drought increases cell proline levels in 
two ways: by increasing proline synthesis and by decreasing the activity of enzymes 
involved in its degradation. Low turgor pressure is the first reason for proline accu-
mulation under drought stress. There are close relationships between proline accu-
mulation and plant resistance to drought stress (Keyvan 2010; Rahdari and Hoseini 
2012). Many researchers have reported that proline has an important role in osmotic 
regulation. Proline accumulation and that of other osmoprotectants lead to a lower 
water potential of cells and hence help water uptake from soil under drought condi-
tions (Bray 2001; Farooq et al. 2009). In addition, proline protects cell components 
from oxidative stress, and its biosynthesis and degradation process play important 
roles in balancing the energy and reducing equivalent between chloroplasts and 
mitochondria (Salehi-lisar et al. 2012). During proline generation and destruction 
pathways, NADPH/H+ oxidizes to NADP+ in chloroplasts and NAD+ reduces to 
NADH/H in mitochondria, respectively. The NADPH/H+ oxidation in chloroplasts 
reduces the ROS generation because of the consumption of excess electrons. In 
addition, NADH/H+ oxidation in mitochondria is necessary for energy supply for 
cells as well as for recovery processes after stress (Mafakheri et al. 2010; Rahdari 
and Hoseini 2012; Salehi-lisar et al. 2012). The upregulation of proline biosynthesis 
depends on the activity of enzymes such as pyrroline-5-carboxylate reductase 
(P5CR) and pyrroline-5-carboxylate synthetase (Nounjana et al. 2012). Moreover, 
the level of proline in plants is controlled by proline dehydrogenase activity, which 
is inhibited under stress conditions, and therefore the content of proline increases 
(Peng et  al. 1996). Proline is not the only compatible solute or osmoprotectant 
whose production and accumulation are induced under water-deficit conditions.

5 Agronomic Crop Responses and Tolerance to Drought Stress



74

5.4.5.3  Onium Compounds
Onium compounds are including tertiary and quaternary ammonium (such as gly-
cine-betaine), as well as sulfonium compounds (such as 3-dimethylsulfoniopropio-
nate). Betaines, a well-known onium compounds, are quaternary ammonium 
compounds from which glycine betaine (GB) is accumulated in the largest quanti-
ties and has important physiological functions in the plant cells (Singh et al. 2015). 
Glycine betaine has multiple functions in the plant cells under drought stress such 
as stabilizing the enzyme’s quaternary structure and maintaining the membrane 
integrity (Sakamoto and Murata 2000). It contributes to osmoregulation directly as 
well as indirectly by protecting the membrane stability, which is necessary for nor-
mal functions of channels and ion carriers and consequently maintaining cell 
homeostasis (Ashraf and Foolad 2007). The protective role against reactive oxygen 
species has also been proven (Einset et al. 2007).

5.4.5.4  Polyols and Sugar Alcohols
Polyols (e.g., mannitol, pinitol, glycerol, and sorbitol), sometimes also called sugar 
alcohols, generally have one of two following structures: (1) a cyclic structure, such 
as myoinositol and pinitol, or (2) a linear structure, which matches sorbitol, xylitol, 
mannitol, and ribitol (Tari et al. 2010). Polyols play key role in the regulation of 
osmotic balance in the plant cells. They provide significant protection of plant struc-
tures against indirect effects during drought stresses. The recent studies have 
revealed that polyol molecules improve plant growth and development under water-
deficit condition (Li et al. 2011). For example, sorbitol as a polyol is produced in 
parallel with sucrose during photosynthesis and serves as carbon and energy trans-
location compound between sources and sinks (Jain et al. 2010).

5.4.5.5  Polyamines
Polyamines (e.g., putrescine, spermidine, and spermine) are small aliphatic organic 
molecules that contain two or more amino groups. They are involving in different 
physiological processes such as cell division, growth, and differentiation (Minguet 
et al. 2008). Polyamines in plant cells were found free or conjugated with phenolic 
compounds or with proteins and nucleic acids (Gill and Tuteja 2010). The metabo-
lism of polyamines is associated with ethylene generation, which can be important 
in responses to drought stress. Polyamine accumulation under drought stress condi-
tions has been reported in many crop species (Hussain et al. 2011). Besides, poly-
amines are components of the antioxidant system and play key role in ROS 
scavenging (Kuznetsov et al. 2007).

In addition to compatible compounds, in some cases plants accumulate specific 
inorganic ions such as K+, Na+, and Cl− in order to maintain the intracellular water 
potential (Rauf et al. 2014; Salehi-lisar et al. 2012).
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5.4.6  Molecular Effects

A complex set of genes are involving in plant responses to drought stress (Bernacchia 
and Furini 2004; Bhargava and Sawant 2013; Farooq et  al. 2009). Many gene 
expression patterns change when plants are exposed to drought stress (Bernacchia 
and Furini 2004; Bhargava and Sawant 2013). First, the expression of genes involved 
in early responses such as signal transduction, transcription, and translation factors 
has been changed. Next, changes in the expression of genes involved in late 
responses such as water transport, osmotic balance, oxidative stress, and the 
damage- repair process have occurred (Bhargava and Sawant 2013; Osakabe et al. 
2014; Xoconostle-Cazares et al. 2010). Drought sensing and signal transduction are 
still not clearly known. Generally, drought signaling is closely joined with abscisic 
acid (ABA) signal transduction. Plant gene expression is controlled at different lev-
els, including the transcriptional, posttranscriptional, translational, and posttransla-
tional phases (Bhargava and Sawant 2013; Bray 2001; Osakabe et  al. 2014). 
Apparently, the regulation of plant response mechanisms to abiotic stresses includ-
ing drought stress is controlled at two levels: the transcriptional and translational 
levels (Bhargava and Sawant 2013; Farooq et al. 2009; Xoconostle-Cazares et al. 
2010). Bioinformatic analyses have identified several transcription factors (TFs) 
induced under drought stress. Transcription factors are classified into several fami-
lies, including MYB/MYC, zinc-finger protein, and NAC (Bray 2001; Ding et al. 
2013; Nakashima et  al. 2014; Nezhadahmadi et  al. 2013; Osakabe et  al. 2014; 
Xoconostle-Cazares et  al. 2010). Molecular biology researches has shown that 
plants respond to stress not only at the cells, mRNA, or protein level but also at the 
posttranscriptional phase (Bhargava and Sawant 2013; Nezhadahmadi et al. 2013). 
MicroRNAs (miRNAs) are a class of small RNAs that are recognized as important 
modulators of gene expression at the posttranscriptional level (Bej and Basak 2014; 
Bhargava and Sawant 2013). Previously, many RNA molecules were counted, such 
as miR474, miR528, miR167, miR160, miR390, miR166, miR397, miR398, 
miR393, miR159, miR169, miR172, miR395, NAT-siRNAs, and tasiRNAs, which 
are involved in plant response and resistance to drought (Bej and Basak 2014; Ding 
et  al. 2013). Studies have shown that these miRNA molecules are involved in 
responses mediating with ABA, auxin signaling, cell growth, antioxidant defense, 
osmotic adjustment, photosynthesis, and respiration under drought (Bej and Basak 
2014; Ding et al. 2013; Farooq et al. 2009). Epigenetic mechanisms play a critical 
role in regulating gene expression through small RNAs, histone modifications, and 
DNA methylation (Bhargava and Sawant 2013; Bray 2001; Nezhadahmadi et  al. 
2013). However, hormones are now known to play key roles in the regulation of 
plant processes and triggering molecular effects and response of plants exposed to 
various stress. Some hormones are involved in plant interactions with environmen-
tal stresses such as drought, and the other are produced as plant response to drought 
(Bernacchia and Furini 2004; Kheradmand et al. 2014).
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5.4.6.1  Abscisic Acid
Abscisic acid is one of the most important hormones in plant response to drought 
stress (Akhtar and Nazir 2013; Bernacchia and Furini 2004; Bhargava and Sawant 
2013). After plants are exposed to drought, ABA is synthesized in roots and translo-
cated to shoots, especially leaves. Furthermore, water stress induces ABA synthesis 
in chloroplasts. In addition, the plasma membrane ATPase (PM-ATPase) activity 
decreases under water-deficit conditions due to a lower ATP supply by photosynthe-
sis and respiration. Low PM-ATPase increases the apoplastic (cell wall) pH and 
leads to the conversion of ABA to its anionic form (ABA). ABA cannot cross the 
plasma membrane of the leaf cells and translocates toward the gourd cells of sto-
mata by a transpiration stream in the leaf apoplast. Abscisic acid translocation to 
stomata induces stomatal closure and decreases the stomatal conductance capacity. 
A higher stomatal resistance leads to lower water losses from the leaf surface, which 
is one of the earliest plant responses for resistance to water stress. However, low 
CO2 uptake by stomata leads to a reduction in the photosynthesis rate in leaves 
(Akhtar and Nazir 2013; Bernacchia and Furini 2004; Bray 2001; Osakabe et al. 
2014; Rangan et al. 2014; Salehi-lisar et al. 2012). In recent studies, the discovered 
family of proteins which are known as pyrabactin (4-bromo-N-[pyridin-2-yl methyl] 
naphthalene-1-sulfonamide) resistance (PYR)/regulatory component of ABA recep-
tor (RCAR) has opened new hypothesis about how the ABA-signaling network 
operates (Cutler et al. 2010). PYR/RCARs are ABA-binding proteins which interact 
with two other protein classes, protein phosphatases 2C (PP2Cs), and SNF1-related 
protein kinases 2 (SnRK2s), leading to ABA recognition and signal transduction 
(Hubbard et al. 2010). Abscisic acid impacts on the genes related to ROS-detoxifying 
enzymes, enzymes involved in compatible solute metabolism, protein transporters, 
transcription factors, and enzymes contributing to phospholipid signaling (Cutler 
et al. 2010). In addition, ABA plays a key role in the regulation of aquaporin’s activ-
ity as well (Bhargava and Sawant 2013; Farooq et al. 2009). It is well known that 
ABA accumulation under drought conditions reduces ethylene production (Bhargava 
and Sawant 2013; Bray 2001).

5.4.6.2  Auxins
The auxin indole-3-acetic acid (IAA) is synthesized in the rapidly dividing tissues 
such shoot apical meristems and young leaves of all plant species in order to normal 
plant growth and development (Ding et  al. 2013; Nezhadahmadi et  al. 2013). In 
contrast, auxins act as negative regulators of drought tolerance in plants because 
indole-3-acetic acid downregulation facilitates the accumulation of late embryogen-
esis abundant (LEA) mRNA. Abscisic acid induces the accumulation of LEA pro-
teins, which are involved in plant adaptation to drought stress, especially in seeds 
(Bernacchia and Furini 2004; Bhargava and Sawant 2013; Ding et  al. 2013; 
Nezhadahmadi et al. 2013). In addition, auxin has also been implicated in altering 
hydrogen peroxide dynamics with downstream signaling effects on stomatal closure 
and root morphology, both of which are important contributors to drought tolerance. 
Thus, it was observed that maintaining auxin homeostasis in the plant is an essential 
component of lateral root growth during drought stress (Song et al. 2006).
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5.4.6.3  Cytokinins
Cytokinins (CKs) are well-known positive regulators of senescence under stress con-
ditions (Chernyad’ev 2005). Endogenous cytokinin (zeatin) and gibberellin (GA3) 
levels of plants decline rapidly under water stress situations. Cytokinins have been 
shown to delay senescence; hence, those could lead to better adaptation of plants by 
delaying drought-induced senescence (Bhargava and Sawant 2013; Chernyad’ev 
2005). Cytokinins (exogenous or endogenous) enhance antioxidant capacity of 
plants either directly or indirectly during drought stress (Merewitz et al. 2011).

5.4.6.4  Gibberellins
Gibberellins (GAs) are a large class of plant hormones that are involved in the plant 
growth and developmental processes including seed germination, stem and root 
elongation, leaf expansion, sex determination, transition from juvenile to adult 
phases, and flower initiation (Taiz and Zeiger 2010). Gibberellins typically known 
as antagonistic to ABA and natural GA (GA1, GA3, GA4, and GA9) levels of plants 
decline rapidly during drought stress (Acharya and Assmann 2009). Gibberellin 
applications relieve oxidative stress and the rate of leaf senescence by increasing 
endogenous GA4 and GA7 due to effect on lipid peroxidation, hydrogen peroxide 
content, and SOD, POD, and APX activities (Yu et al. 2009). Already, direct impacts 
of GAs on the cellular expansion under drought stress are not clear well. It seems 
that GAs may affect cellular expansion under water-deficit situation due to GA3 
upregulating expansion genes including EXPA4 and EXPB4 and xyloglucan endo-
transglycosylase (XET) genes such as XET1 and XET1 to maintain cell elongation 
rates (especially in leaves) (Xu et al. 2016).

5.4.6.5  Ethylene
Ethylene induces a well-known triple response on plant growth and development as 
well as is implicated in various aspects of plant stress responses. The ethylene sig-
naling is initiated with ethylene sensing by ethylene receptors which act as negative 
regulators. Briefly, ethylene binds to the receptors and inactivates the receptor-CTR1 
complex. This event allows EIN3 transcription factors to accumulate in the nucleus 
and express transcription factor genes and ethylene response factors (ERF1) which 
has an effect on downstream genes (Stepanova and Alonso 2009). Studies have 
shown that expression of ERFs affects plant responses to osmotic stresses, including 
drought or salinity, thus promoting stress tolerance in plants (Trujillo et al. 2008). 
The effects of ethylene on leaf senescence and growth inhibition under drought 
stress which may help in plant tolerance are well known. The ethylene-mediated 
reductions in shoot growth and stomatal responses under drought stress are highly 
dependent on ABA accumulation in shoots, since ABA and ethylene are antagonism 
(Chaves et al. 2003).

5.4.6.6  Salicylates
Salicylic acid (SA) is a phenolic plant hormone which plays regulatory roles in 
plant responses to oxidative stress, chloroplast biogenesis, and photosynthesis 
(Hayat et  al. 2010). High concentrations of SA within the plant systems lead to 
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induce responses that promote tolerance to osmotic stresses such as salinity and 
drought. Exogenous application of SA enhanced the drought tolerance of crop 
plants by increasing photosynthetic parameters, membrane integrity, leaf water 
potential, chlorophyll content, and/or activity of nitrate reductase and carbonic 
anhydrase (Hayat et al. 2008). Salicylic acid can promote drought tolerance in crops 
by enhancing the transcription of GST1, GST2, GR, and MADAR which facilitate 
the ROS scavenging. Interactions between SA and hydrogen peroxide affect the 
ROS accumulation in plant cells as well as oxidative stress-induced gene expression 
(Kang et al. 2013; Zhang and Liu 2001).

5.4.6.7  Jasmonates
Jasmonic acid (JA) is a biologically active lipid derivative that is involved in the 
regulation of various stress responses in plants such as leaf senescence, ROS and 
NO signaling, antioxidant metabolism, and stomatal movement (Taiz and Zeiger 
2010). The application of JA can increase activities of SOD, POD, CAT, APX, and 
GR collectively and detoxified hydrogen peroxide. Furthermore, JA application 
enhanced the drought resistance of agronomic plants by increasing proline and sol-
uble sugar content (Wu et  al. 2012). Microarray analysis of Arabidopsis genes 
showed that the prevalence of 221 mRNAs was highly upregulated following MeJA 
(from JA derivatives) application and the upregulated mRNAs play key roles in 
oxidative stress responses, cellular homeostasis maintenance, as well as defense 
signaling (Schenk et  al. 2000). Increasing in jasmonate content of plants under 
drought stress induce expression of specific NAC transcription. It appears that JA 
plays important regulatory roles during the ABA-related drought responses in 
plants, because JAZ (jasmonate ZIM domain) and drought-inducible AtMYC2 tran-
scription factors regulate gene expression in jasmonate pathway. Furthermore, the 
pretreatment of plants by MeJA before drought conditions has reversible effects on 
nitrogen uptake inhibition and remobilization of RuBisCO subunits in agricultural 
fields; however, JA-induced changes in these parameters remain unknown (Rossato 
et al. 2001; Schenk et al. 2000).

5.4.6.8  Brassinosteroids
Generally, drought leads to an increase in brassinosteroid (BR) accumulation in 
plants. Brassinosteroids increase water uptake and cell membrane stability and can 
also reduce ion leakage from membrane under drought stress conditions (Bhargava 
and Sawant 2013; Rahdari and Hoseini 2012).

5.4.6.9  Melatonin
Melatonin (N-acetyl-5-methoxy tryptamine) is a hormone that is produced by the 
pineal gland in animals and regulates sleep and wakefulness. Melatonin is also pro-
duced in plants, and it is a potent natural antioxidant that effectively scavenges ROS 
in the animals and plants (Arnao and Hernandez-Ruiz 2015). Furthermore, melato-
nin downregulates MdNCED3, an ABA synthesis gene, and upregulates 
MdCYP707A1 and MdCYP707A2, ABA catabolic genes resulting in reducing of 
ABA contents in drought-stressed plants. On the other hands, melatonin scavenges 
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H2O2 and enhances the antioxidant enzyme activities to detoxify H2O2 indirectly (Li 
et al. 2015). According to the obtained information through cloned gene (MzASMT1 
or KJ123721) from apple rootstock (Malus zumi Mats.), N-acetylserotonin-O- 
methyltransferase (ASMT) is a specific enzyme required for melatonin synthesis 
(Lee et  al. 2015; Zuo et  al. 2014). The transgenic plants with overexpression of 
MzASMT1 (KJ123721) or melatonin application in the soils leads to a decline in 
intrinsic ROS and subsequently oxidative stress and delays leaf senescence under 
drought conditions (Wang et al. 2013; Zuo et al. 2014).

5.5  Oxidative Stress: Secondary Drought Stress Signaling

Exposure of plants to many environmental stresses such as drought leads to the 
generation of ROS, including superoxide radical (O2

•−), hydroxyl radical (OH), 
hydrogen peroxide (H2O2), alkoxy radicals (RO), and singlet oxygen. Reactive oxy-
gen species accumulations were considered harmful to biomolecules, and it creates 
oxidative stress which negatively affects plant. Oxidative stress is known as a sec-
ondary stress and causes oxidative damage in cells (Bhargava and Sawant 2013; 
Farooq et  al. 2009; Labudda and SafiulAzam 2014; Nezhadahmadi et  al. 2013; 
Osakabe et al. 2014; Rahdari and Hoseini 2012; Salehi-lisar et al. 2012; Zlatev and 
Lidon 2012). Reactive oxygen species may react with proteins, lipids, and other 
important macromolecules and can denaturize the structure and function of the 
macromolecules (Arbona et  al. 2013; Bhargava and Sawant 2013; Kheradmand 
et al. 2014; Mafakheri et al. 2010). Many cell compartments produce ROS under 
drought stress, such as chloroplasts, mitochondria, peroxisomes, and others (Farooq 
et al. 2009; Labudda and SafiulAzam 2014; Osakabe et al. 2014). Drought stress is 
a multidimensional factor that limits CO2 fixation and reduces the NADP+ regenera-
tion in the Calvin cycle, resulting in the over-decline of the photosynthetic electron 
transport chain activity and generally leading to production of O2

•− and singlet oxy-
gen (1O2) in the chloroplasts (Shao et al. 2008b). The generation of ROS in biologi-
cal systems is represented by both nonenzymatic and enzymatic mechanisms, which 
are dependent on some factors such as oxygen concentration in the cells (Farooq 
et  al. 2009). Generally, ROS accumulation leads to DNA nicking, oxidation of 
amino acids, protein and photosynthetic pigments, lipid peroxidation, and so on 
(Farooq et al. 2009; Nezhadahmadi et al. 2013; Salehi-lisar et al. 2012). Plants have 
developed some mechanisms to avoid ROS damage. All these mechanisms form an 
antioxidant defense system, which includes both enzymatic and nonenzymatic com-
ponents. Superoxide dismutase, CAT, POD, APX, and GR are some enzymes 
involved in the antioxidant responses of plants (Arbona et al. 2013; Bray 2001; Ding 
et al. 2013; Farooq et al. 2009; Jaleel et al. 2009; Labudda and SafiulAzam 2014; 
Nezhadahmadi et al. 2013; Zlatev and Lidon 2012). Glutathione (GSH), ascorbic 
acid (AsA), carotenoids, and α-tocopherol are some compounds involved in the 
antioxidant defense system of plants (Bhargava and Sawant 2013; Farooq et  al. 
2009; Jaleel et al. 2009; Salehi- lisar et al. 2012).
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Already, the signaling function of ROS has been recognized as a fundamental 
principle in cellular communication. There are six functional elements that operate 
the redox regulatory network: (1) redox input elements that feed the redox regula-
tory network by electrons, such as NADPH, ferredoxin, and GSH, (2) redox trans-
mitters that transfer and distribute the electrons to downstream proteins such as 
thioredoxin, (3) redox target proteins that have redox-sensitive thiols controlled by 
transmitters, (4) redox buffer proteins that are accumulated in a great amount in 
organelles such as the RuBisCo, (5) redox sensors that deliver information from 
ROS to the redox regulatory network and make the crosstalk with other signaling 
pathways, and (6) electron acceptors that are including low molecular weight redox 
species such as ROS, reactive nitrogen species (RNS), reactive sulfur species (RSS), 
and reactive carbonyl species (RCS). Plant cells can sense, transduce, and translate 
the ROS signals into the effective cellular responses by redox-sensitive protein 
involvement (Baxter et al. 2014). Mechanisms underlying the sensing of ROS in the 
plant cells have not known well; however, three mechanisms of ROS sensing were 
introduced: 1) unidentified receptor proteins, 2) redox-sensitive transcription fac-
tors, and 3) phosphatases (Huang et al. 2012). Recent studies have shown well that 
ROS interact with other signal transduction components, such as phytohormones, 
MAPK cascades, and calcium ions, although the ROS perception in the plant cells 
is yet a mystery (Xia et al. 2015). After ROS sensing by cells, downstream signals 
amplify the ROS signal and transduce the response to counteract with the environ-
mental stresses such drought which includes mechanisms that implicate the Ca+ 
ions, calcium-binding proteins such as calmodulins, G proteins, and phospholipids 
that mediate phosphatidic acid accumulation (Sagi and Fluhr 2006; Steinhorst and 
Kudla 2013; Suarez Rodriguez et al. 2010). Accordingly, there are some molecules 
such as calcium, protein kinases, and hormones that transduce and amplify the 
ROS- produced signal.

5.5.1  Calcium

Calcium (Ca2+) is an important second messenger in response to biotic and abiotic 
stresses as well as developmental processes in plant cells (Steinhorst and Kudla 
2013). Calcium has different functions in plants, and its cellular accumulation pat-
terns are called calcium signature that temporal and spatial feature, amplitude, fre-
quency, and duration encoding can give more information about plant stress responses 
(Dodd et al. 2010; Kudla et al. 2010). An increase in ROS production started in plant 
cells in response to abiotic stresses such as drought, and neighboring cells produce a 
long-distance signal called the ROS wave (Gilroy et al. 2014). This event is associ-
ated with the Ca2+ wave through the action of vacuolar ion channel which leads to 
calcium-induced calcium release, Ca2+-dependent protein kinase (CPK) activities, 
and subsequently the ROS production in the other cells that do not expose to the 
stress yet. Wonderfully, the Ca2+ wave propagated through the root cortex and endo-
dermis layers demonstrates that the roots were implicated by stresses and root cells 
were specialized in Ca2+ wave production and propagation (Choi et al. 2014).
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5.5.2  Protein Kinases

Protein kinase (MAPK) cascades connect environmental and developmental signals 
to intracellular responses. Sequential phosphorylations due to activated MAPKs even-
tually lead to phosphorylation of MAPKs downstream proteins, which include other 
kinases, enzymes, or transcription factors (Suarez Rodriguez et  al. 2010). Protein 
kinase-mediated drought responses through ABA and ROS signaling pathway is the 
well-known function of these molecules. The expression patterns of MAPKs sug-
gested that activities of MAPKs are molecular mechanisms of drought tolerance in 
several crop plants such as rice, malus, and maize (Peng et al. 2006; Wang et al. 2010).

5.5.3  Hormones

Hormones are known as plant development regulators and manage stress tolerance 
in plant often through the activation of NADPH oxidases and ROS production (Sagi 
and Fluhr 2006). According to the literature, there is a close relationship between 
oxidative stress and ABA in ROS-dependent drought responses. Abscisic acid is a 
stress hormone that plays a key role in plant development and being a key regulator 
of plant responses in abiotic stresses as well (Xiong et al. 2002) that is explained 
previously with details.

5.6  Plant Responses and Resistance to Drought Stress

Plants are sessile organisms and must tolerate environmental stresses; hence, they 
have developed various mechanisms for resistance to the stresses. Plant responses to 
environmental stresses such as drought are complex because plants are multicellular 
organisms (Bhargava and Sawant 2013; Khan et al. 2011; Nezhadahmadi et al. 2013; 
Rana et al. 2013; Salehi-lisar et al. 2012). Generally, plant resistance to environmen-
tal stress is divided into two main strategies: stress avoidance and stress tolerance. 
Plant adaptation to a water deficit is made possible by physiological, morphological, 
phenological, biochemical, and molecular responses. The responses can range from 
being at a molecular level to being at a whole plant level. In this chapter, plant strate-
gies to cope with drought are summarized in the next two subsections including 
avoidance and tolerance. Although escape is generally a part of plants’ avoidance 
strategy, plants that escape from drought are not exposed to a water deficit that is less 
important in agronomic plants. Therefore, we do not explain it in this chapter.

5.6.1  Avoidance

The main aim of this strategy is the preservation of a high water potential in plants. 
The reducing of water loss from plants by stomatal control of transpiration and 
maintaining of water uptake from the soil by an extensive and prolific root system 
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are the chief characteristics of this strategy (Bray 2001; Farooq et al. 2009). A deep 
and thick root system is helpful for exploring water from a considerable soil depth 
and at a large distance from the plant (Akhtar and Nazir 2013; Farooq et al. 2009; 
Franco 2011). The cuticle and hairy leaves help to maintain high tissue water poten-
tial within plant and are considered a xeromorphic trait for drought tolerance. The 
production of these structures leads to a decreased crop yield due to the energy 
consumed to produce them. Therefore, plants that use the avoidance strategy to 
maintain a relatively high water potential are generally small in size (Farooq et al. 
2009; Khan et al. 2011; Salehi-lisar et al. 2012).

5.6.2  Tolerance

In this strategy, plants limit the number and area of leaves in response to water defi-
cit; however, this strategy leads to crop yield loss (Akhtar and Nazir 2013; Bray 
2001). In addition, these plants show some xeromorphic traits such as hairy leaves 
and the production of trichomes on both sides of leaves (Farooq et al. 2009; Khan 
et al. 2011; Salehi-lisar et al. 2012). Hairiness reduces the leaf temperature, while it 
increases light reflectance and minimizes water loss by increasing the boundary 
layer resistance to water vapor movement away from the leaf surface. Inter- and 
intracellular changes in leaves are visible (Bray 2001; Farooq et al. 2009; Salehi- 
lisar et al. 2012). The root is the main organ involved in the uptake of water from the 
soil. Hence, the root growth rate, density, proliferation, and size are key factors 
influencing plant responses to drought stress. Studies have shown that an alteration 
in the root system architecture is an important factor in plant tolerance, especially 
when tolerance is defined as the ability of a plant to maintain its leaf area and growth 
rate during a prolonged vegetative stage (Farooq et al. 2009; Salehi-lisar et al. 2012). 
The accumulation of compatible solute and osmotic adaptation, the induction of an 
antioxidant system, an alteration in metabolic pathways, an increase in the root/
shoot ratio, and closure of the stomata are other mechanisms involved in plant toler-
ance to drought.

Moreover, some physiological mechanisms such as glyoxalase pathway, sulfur 
metabolism pathway, AsA-GSH cycle, heat-shock protein function, and plant regu-
lator signaling are involved in plant response and resistance to drought stress and 
promoted plant tolerance in this situation (Bray 2001; Farooq et  al. 2009; Khan 
et al. 2011; Salehi-lisar et al. 2012).

5.7  Drought Management in Agricultural Fields

5.7.1  Using Priming Methods

Plant priming is a general concept that can include several strategies to increase 
plant tolerance to various abiotic and biotic stresses. Priming may be also an effec-
tive method for alteration of plant’s natural response to several environmental 
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stresses such drought that it does not naturally utilize as a survival mechanism 
(Paparella et al. 2015). The best priming strategy to be used is largely dependent on 
the type of compounds and plant species. Nowadays, there are different compound 
groups in order to plant priming for drought tolerance including (Mondal and Bose 
2014; Paparella et al. 2015):

 1. Inorganic compounds such as macronutrients (e.g., K, Ca, and P), micronutri-
ents (e.g., Fe and Zn) or supplemental nutrients (e.g., Si and Se), and polyeth-
ylene glycol (PEG).

 2. Amino acids such as proline.
 3. Non-protein amino acids such as GB, γ- aminobutyric acid (GABA), 

β-aminobutyric acid (BABA), and 5-aminolevulinic acid (ALA) that their 
drought tolerance effects have been proven. Some other non-protein amino 
acids can be used for priming including p-aminophenylalanine, L-azetidine- 2-
carboxylic acid, δ-,4-aminobenzoic acid, ornithine, citruline, homoserine, 
L-3,4-dihydroxyphenylalanine (L-DOPA), and 5-hydroxy-L-tryptophan 
(5-HTP).

 4. Polyamines such as free polyamines putrescine, spermidine, and spermine.
 5. Reactive oxygen and nitrogen compounds like H2O2 and NO.
 6. Antioxidant compounds including AsA or vitamin C and GSH.
 7. Plant hormones such ABA, JA, SA, and GA.
 8. Organic alcohols including polyols or sugar alcohols such as mannitol, glycol, 

sorbitol, myoinositol, and glycerol.
 9. Volatile organic compounds (VOCs) such as terpenes, ethylene, methanol, iso-

prene acrolein, and other plant volatiles.
 10. Microorganisms including mycorrhizal fungi and rhizobacteria.

Priming methods to cope with drought are summarized in the next three subsec-
tions including seed, foliar, and root priming.

5.7.1.1  Seed Priming
Seed priming is a very common action in the agricultural seed industry including 
chemopriming, hydropriming, osmopriming, solid matrix priming, biopriming, 
thermopriming, and halopriming (Paparella et al. 2015). Commercial seeds are cur-
rently primed for enhanced germination potential or prolong dormancy under stress 
conditions. Typically, priming seeds for promoting crop tolerance to biotic and abi-
otic stresses is less common than other seed priming practices (Mondal and Bose 
2014; Paparella et al. 2015).

5.7.1.2  Foliar Priming
Exogenous application of various compounds such as hormones in the aerial parts 
of plants is a common practice in plant research and agriculture to increase crop 
yields specially under stress conditions. Foliar priming practices to improve both 
annual and perennial crop tolerance to drought are more important in agriculture 
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because of some priming compounds such as nature, low seed priming efficiency, 
and so on (Mondal and Bose 2014; Paparella et al. 2015).

5.7.1.3  Root Priming
Root priming can be effective for priming compounds that are not uptaken readily 
by aerial parts but are uptaken easily by water flow through plant roots (Mondal and 
Bose 2014). Besides, root priming is a common research practice for plant exposure 
under uniform conditions to accurate evaluation of compound effects, such as in 
hydroponics, tissue culture, or various potting media types (Mondal and Bose 2014; 
Paparella et al. 2015).

5.7.2  Using Breeding Methods and Transgenic Technology

Scientists have tested many techniques to improve drought tolerance in crop plants 
(Bhargava and Sawant 2013; Bray 2001; Nakashima et al. 2014; Salehi-lisar et al. 
2012; Xoconostle-Cazares et al. 2010). The production of transgenic plants is one 
of the well-known methods for this purpose (Khan et al. 2011; Nakashima et al. 
2014; Salehi-lisar et al. 2012; Xoconostle-Cazares et al. 2010). The wide range of 
drought-related genes in the plant genome has opened amazing opportunities for 
crop improvement (Khan et  al. 2011; Khan et  al. 2013; Nakashima et  al. 2014; 
Xoconostle-Cazares et al. 2010). With all these interpretations, in practice the gen-
eration of transgenic plants cannot be completely effective for the production of 
drought-tolerant plants, because it requires a very complex and expensive labora-
tory method and generally its success rate is low (Khan et al. 2011; Nakashima et al. 
2014; Nezhadahmadi et al. 2013; Xoconostle-Cazares et al. 2010). Traditionally, 
there have been several efforts to generate drought-tolerant crop plants through 
usual breeding methods (Nezhadahmadi et al. 2013; Rana et al. 2013; Salehi-lisar 
et al. 2012). In this method, two groups of plants with desirable traits are selected 
and crossed to exchange their genes; therefore, the offspring have new genetic 
arrangements (Khan et al. 2011; Xoconostle-Cazares et al. 2010). Important traits to 
use in plant breeding might include water-extraction efficiency, water-use efficiency, 
hydraulic conductance, transpiration efficiency, canopy temperature, light intercep-
tion and radiation-use efficiency, stomatal characters, root traits, osmotic and elastic 
adjustments, and modulation of leaf area (Bhargava and Sawant 2013; Ding et al. 
2013; Farooq et al. 2009; Nakashima et al. 2014; Nezhadahmadi et al. 2013; Rana 
et al. 2013; Salehi-lisar et al. 2012; Xoconostle- Cazares et al. 2010). Genetic data 
can improve the efficiency of the breeding method. Genetic improvement can assist 
by using recognizable tags to target genes; these are known as polymorphisms based 
on molecular markers that occur naturally in the DNA sequence (Xoconostle-
Cazares et al. 2010). Different methods are employed to recognize linked markers, 
including restriction fragment length polymorphisms (RFLPs), sequence-character-
ized amplified regions (SCARs), random amplified polymorphic DNA (RAPDs), 
simple sequence repeats (SSRs), amplified fragment length polymorphism (AFLPs), 
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and others (Khan et al. 2011; Khan et al. 2013; Xoconostle-Cazares et al. 2010). 
The genetic factors involved in quantitative characteristics of phenotypes are called 
quantitative trait loci (QTLs) (Arbona et  al. 2013; Bhargava and Sawant 2013; 
Nezhadahmadi et al. 2013; Rana et al. 2013; Xoconostle-Cazares et al. 2010). The 
use of plant breeding methods has an enormous potential to accelerate drought-tol-
erant plant production and help drought management assist these plants (Farooq 
et al. 2009; Xoconostle-Cazares et al. 2010). A QTL mapping approach has identi-
fied several QTLs with major effects on grain yield and flowering under particular 
hydrological conditions in crops (Bhargava and Sawant 2013; Khan et  al. 2011; 
Rana et  al. 2013; Xoconostle-Cazares et  al. 2010). Nowadays, 17 QTLs for leaf 
water status traits under drought stress and 23 QTLs for seed yield under normal-
watered and drought-stressed conditions in both agricultural field and greenhouse 
trials are identified by scientists (Du et al. 2009).

5.7.3  Using Planting Strategy in Agricultural Fields

In addition to commercial and laboratory techniques, there are several strategies for 
drought management in agricultural fields including irrigating during periods of low 
soil moisture, especially for young plants, using modern and effective methods, 
selecting the appropriate place and imitating good planting practices, selecting 
native plants or matching plant species to site conditions, using mulch to maintain 
soil moisture, eliminating any dead or weak tissues to resist secondary problems 
such as insects and herbivore invasions (Farooq et  al. 2009; Khan et  al. 2011; 
Nezhadahmadi et al. 2013; Rana et al. 2013), and inoculating plants with symbiotic 
microorganisms such as arbuscular mycorrhizal fungi (AM) (Abdelmoneim et al. 
2014; Chepsergon et al. 2012).

5.8  Conclusion

Drought is a multidimensional stress factor; therefore, its effects on plants are com-
plex and can affect different aspects of plant growth, development, and metabolism. 
There are several reasons for drought in agriculture system; hence, plants have 
developed diverse mechanisms for resistance to drought, generally classified as 
avoidance and tolerance strategies. The alteration resistance capacity of crops’ 
seeds and young seedlings by priming methods, production of tolerant crops by 
traditional breeding methods, and the generation of transgenic plants by gene 
manipulation are useful procedures in order to minimize the negative effects of 
drought on agronomic plants. In addition, several strategies for drought manage-
ment in agricultural fields on multiple levels can be effective. The causes of drought, 
its effects in plants, plant responses in order to resist drought, and some strategies 
that can be useful for drought management are summarized in Fig. 5.1.
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Fig. 5.1 Causes of drought and its effects on plants, plant responses to drought and mechanisms 
involved in resistance, and some useful strategies for drought management
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Abstract
Prevailing conditions of the climate have had a drastic effect on global food secu-
rity. Various types of stresses have been producing havoc by reducing crop pro-
duction. One of the primary causes has been observed in the form of drought. 
Drought generally has various kinds of impacts on human life, but its main vic-
tim is food crops. A plant has specific defense systems to combat and stay 
unchanged in an environment with water stress, but this ability decreases as the 
lack of water increases for a long time. The average globular yields of these pri-
mary agricultural products are admirably purposeful by enactment of crop per-
formance in millions of fields distributed transversely in series of management 
practices for soil and climatic regimes; even with the global food supply compli-
cations, here we illustrate some simple measures of most widely germinated 
crops based upon the location, temperature, and precipitation. The types of 
responses, like reactive oxygen species (ROS), root signaling. Antioxidant 
enzymes, photosynthesis, etc., discussed in the context will help us to understand 
the situation with more clarity. The possible mitigation measures are also dis-
cussed in detail. A plant may be mitigated at different levels including breeding 
progress in drought condition, cellular and molecular adaptations, or using sup-
plemental irrigation practices. In this paper, authors have reviewed all the aspects 
that encapsulate drought stress and its response to major food crops.

Keywords
Drought stress · Plant hormones · Biochemical responses · Physiochemical 
responses · Morphological responses · Food crops
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6.1  Introduction

Abiotic stresses, mainly drought, salinity, temperature extremes, flooding, toxic 
metals, high light intensity, UV radiation, herbicides, and ozone, are the crucial fac-
tors worldwide in lowering the crop yield in arable land. This causes a vibrant treat 
to agriculture and food security (Tuteja and Gill  2013). Drought is an abiotic stress 
condition and a serious threat to agriculture resulting in deteriorating the environ-
ment and a primary cause of crop loss worldwide, reducing average yields for major 
crop plants such as maize, barley, wheat, rice, etc. by more than 50% (Bray et al. 
2000). Abiotic stress leads to a series of morphological, physiological, biochemical, 
and molecular changes that unfavorably disturb crop productivity (Wang  et  al.  
2003). The best option for crop production, yield improvement, and yield stability 
under soil moisture-deficient conditions is to develop drought-tolerant crop variet-
ies (those crops which can even survive in low water level conditions) (Turner 
1989). For developing new varieties, physiological approach is much practical, but 
breeding for specific, suboptimal environments involves a deeper understanding of 
the yield-determining practice (Valipour 2016). Drought, salinity, extreme tempera-
tures, and oxidative stress are often interconnected and may induce similar cellular 
damage. For example, drought and salinization are established primarily as osmotic 
stress, resulting in the disruption of homeostasis and ion distribution in the plant/
crop cell (Serrano et al. 1999). The alteration in global productivity of major food 
crops is a crucial driver of change in the cost of food, the land use decisions, and the 
nutritionally adequate supply of food. Like barley, wheat and maize show a definite 
negative (undesirable) yield response globally to the vibrant rise in temperature. It 
is estimated that due to these pragmatic climate trend sensitivities, the increase in 
temperature since 1981 brings about $5 billion per year or 40 Mt. roughly annual 
combined loss of these three crops as of 2002. The results demonstrate that the 
negative impacts directly impinge the crop yield on a global scale (Lobell and Field 
2007).

6.1.1  What Is a Drought?

Drought is a prolonged period of abnormally less rainfall or precipitation (for days, 
months, years) in a given region, resulting in a persistent shortage of water supply, 
whether atmospheric, surface water, or groundwater, depending upon the conditions 
of a specific area. Drought causes noteworthy impacts upon the ecosystem and agri-
culture of the affected region and harm to the local community. The annual dry 
seasons in the tropics significantly increase the chances of drought development and 
subsequent bushfires. Periods of heat can considerably worsen drought conditions 
by accelerating evapotranspiration (Australian Drought and Climate Change 2007). 
Drought is the combined result of water deficiency, elevated temperature, and 
increase in population.
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6.1.2  Types of Drought

The experts use some indicators to declare a drought condition; these gages help 
local authorities, states, and governments to mitigate these drought situations appro-
priately in an affected area. Some of them are as follows:

6.1.2.1  Meteorological Drought
Meteorological drought is usually determined by the overall moisture lack in 
weather/atmospheric precipitation. The factors which contribute to meteorological 
drought are dry wind, increase in temperature, etc. It is used as a global indicator of 
the potential water crisis if the condition prolonged. This category of drought begins 
and ends instantaneously.

6.1.2.2  Agricultural Drought
Agricultural drought is defined as the reduction in atmospheric precipitation or 
moisture to the extent that the soil moisture is also being affected. This kind of 
drought affects both crops/plants and animals because the evapotranspiration is very 
low (types of drought, 2018). This accounts for the water needs of crops during dif-
ferent growth stages. For instance, not enough moisture at planting may hinder ger-
mination, leading to low plant populations and a reduction in yield. Agricultural 
drought can be seen when the meteorological drought is at play.

6.1.2.3  Hydrological Drought
In this type of drought as from its name, it is clear that the shortage or absence of 
ground and surface water in a region causes hydrological drought; these result from 
excessive surface water reliance and less water precipitation. Water is also required 
for farming, energy, and human activities which accelerate hydrological drought. It 
has worsened impacts on living organism. Hydrological drought usually occurs or 
happens at the same time as meteorological drought. The decline in the quantity and 
quality of surface and subsurface water is the effect of meteorological drought.

6.1.2.4  Socioeconomic Drought
This condition occurs when the demand for water exceeds the supply, i.e., the quan-
tity of drinking water and food is reduced and threatened by the alteration in meteo-
rological and hydrological conditions. Other contributing factors may be growing 
population and unnecessary demands of such goods that create stress on little/less 
water availability. Socioeconomic drought condition takes a very long period to get 
into full paraphernalia and along to recover as well. Examples of this kind of drought 
include too much irrigation or when low river flow forces hydroelectric power plant 
operators to reduce energy production (Wolchover 2018). This chapter covers the 
functions of drought stress in food crops, responses, and tolerance to abiotic stresses 
on crop yield.
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6.2  Food Crops and Their Hydrophilic Requirements

Pakistan is blessed with four different seasons; every region of the country has its 
variety of crops that flourish in the native environment to fulfill their needs. Specific 
climatic factors also define the water requirements of an individual crop. These are 
defined in Table 6.1.

Water need of a plant may also depend on the growth stage, type of plant, envi-
ronmental factors, and the total growing period. Food crops in Pakistan are divided 
into two major categories, i.e., Kharif and Rabi crops. Figure 6.1 determines the 
water requirements of Kharif crops (growth period = July to Oct also known as sum-
mer crops) at its highest stage of growth. Type of plant is also a significant factor to 
understand the fluctuation in the water requirements of a plant. A fully grown maize 
crop with large leaves would require more water than onions and radishes at their 
peak stage. Figure 6.2 constitutes Rabi crops (grown period = Oct to March also 
known as winter crops) along with their irrigation and average water depth 
requirements.

6.3  Crop Responses

Due to various biotic and abiotic stresses, food productivity is being affected and is 
decreasing every passing day. Plant growth and development is severely impaired 
due to environmental abiotic stresses, such as high salinity, cold heavy metals, high 
temperature, and drought. Drought being the most significant environmental stress 
not only severely affects the plant growth and development but also affects the plant 
production and the performance of crop plant. Minimization of these loses is a 
major concerning part because of the ensurity of food security under climate change 
(Shao et al. 2009). Drought is experienced either when there is a shortage of water 
and water supply to roots becomes difficult or when the transpiration rate increases, 
and as a result, moisture is not carried by the roots of the plants to the small pores. 
We have also seen in recent years that the water resources for successful crop pro-
duction are decreasing, and scientists have also suggested, in many regions of the 
world, that crop losses due to increasing water shortage will further worsen its 
impact with time (Van Loon et al. 2016). Drought stress affects cellular membrane 
integrity, osmotic adjustment, water relations, pigment content, and photosynthetic 

Table 6.1 Water need and 
climatic factors Climatic factor

Crop water need
High Low

Sunshine Sunny (no 
clouds)

Cloudy (no sun)

Temperature Hot Cool
Humidity Low (dry) High (humid)
Windspeed Windy Little wind
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activity as well as the growth and yield of the plant (Benjamin and Nielsen 2006; 
Praba et  al. 2009). Climatic, edaphic, and agronomic factors affect the drought 
stress, and factors that determine the dependence of stress degree of plants to 
drought include plant species, their developmental stages, and some other different 
accompanying stress factors. Deficiency of water leads to adaptive changes in the 
plant growth and physiobiochemical processes so plants can adjust and survive in 
the new environment. These changes include modification in plant structure, growth 
rate, tissue osmotic potential, and antioxidant defenses of the plant (Duan et  al. 
2007). It is now imperative to clear the reaction and adoption of crops to the water- 
deficient environment and to take measures to improve their ability to resist drought 
and water deficiency and ensure high crop yield in these new stresses (Asner et al. 
2016).

For example, in comparison with other crops, potato is considered a sensitive 
plant to a water stress (Salter and Goode 1967) with its yields very much affected 
by drought in most environments in which crop is grown up. The effect of water 
stress on the plant very much depends upon the timing of the stress (Shi et al. 2017). 
There are some water stresses that last for a short time which is induced due to the 
high evaporative demand, particularly in hot sunny conditions when evaporative 
demand exceeds the capacity of roots to supply water to shoots, and it may have an 

Fig. 6.1 Summer crops and their hydrophilic requirements
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acute temporary effect on the growth of the plant even in well-watered crops. The 
prolonged drought may induce a chronic impact on plant growth and lead to prema-
ture agedness unlike the acute implications caused by hot sunny weather only. The 
type of water stress experienced by the crop may also determine the different physi-
ological and morphological characters of the crop. MacKerron and Jefferies (1985) 
also proposed that the total yield of the potato crop is the product of four 
processes.

Drought affects the height of the plant by the crop canopy, and then height affects 
the proportion of dry matter. The portioning of that dry matter in the tuber and into 
the tuber is quantifiable like another process, which is indirectly linked to the stress 
of drought on the crop growth and yield (Jefferies 1995).

6.3.1  Morphological Responses

Plants are responding to a wide variety due to environmental stresses on them; these 
range from a change in gene expression and cellular metabolism to a change of 
growth in plant and its production (Shah and Steinberg 2017).

Fig. 6.2 Winter crops and their hydrophilic requirements
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Morphological characteristics of the plant, i.e., a number of branches, their size, 
and spatial distribution, primarily depend on the environmental conditions in which 
they are planted. Species of plant and its soil resources also had a significant role in 
it. Properly branched and the fully developed root system is also providing good 
stability to the whole plant.

6.3.1.1  Seedling Origination and Formation
In this chapter, we will combine the different effects and the crop response and their 
adaption to the condition of drought and their final effect on a crop, with implication 
for plant breeding. Plant breeding is a risky course of action, so a relation must be 
established between the biological process and its final contribution to “value” at 
the crop level. Drought has multidimensional stress on the plant, whereas the inves-
tigation of unidimensional/singular effects of drought on the plant can also be 
explored by scientific methods; due to insufficient information, the integrated thesis 
may look practical and too simple and other times too speculative. A very brief 
discussion on the response of the plant/crop to stress caused by drought is later dis-
cussed, leading to the question of adaptation. The most common problem in a dry-
ing seedbed in a drought-prone area is mortality (Johnson and Asay 1993). During 
the emergence of young plant and its establishment, high soil temperature causes 
many growth-related problems (Peacock et al. 1990). The embryo within the dry 
seed is definitely dormant, and its tolerance to extreme dryness also attracts and 
holds water in it. Upon germination and emergence of the young plant, the seedling 
loses its tolerance. The tolerance to severe dryness was assessed of the germinated 
seedling, in wheat, by the recovery of germination upon rehydration (Blum et al. 
1980). In wheat, when the coleoptile was fully grown, 6 cm in length, a relatively 
sharp reduction in germination recovery occurred that was from 67.2% to 32.5%, 
while upon the seedling development from the onset of germination, desiccation 
tolerance gradually declined (Marengo et al. 2017). There is some information seri-
ously missing upon the loss of desiccation tolerance upon germination, while some 
information is only available on the acquisition of embryo desiccation tolerance in 
the developing seed. In the case of wheat, crop management and the genetic 
improvement of its seed are not easy because of the function of seminal roots in its 
life. Drought also affects the characters of the development of plant which affect 
seed establishment that is co-related to the development of grown roots, seminal 
roots, and leaves in grasses (Johnson et al. 1996). Under drought stress, traits such 
as seed size may influence the establishment of seed (Mian 1994). To understand 
the interactions such as the process of establishment, germination, and emergence 
with the status of seed and plant is still not well known. Biochemical and physiolog-
ical factors are more important here as compared to developmental factors 
(Blum 1996).

6.3.1.2  Growth
A complete understanding of the process is required which involves plant growth 
and its development, for the confirmation of food supply with population size. 
Under different environmental conditions, crop growth and sustainability depend on 
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the regulations of plant reproductive and vegetative growth patterns. Two principal 
organs that make the plant growth functional are the root system and the shoot. Both 
act as the source and sink of the plant body. The primary factor that temporarily or 
permanently disturbs the plant development and its growth is the deficiency of 
water. Water is the main component of photosynthesis and other functions of plant, 
and its lack hampers more than any other environmental aspect. The primary effect 
of this deficiency contributes more to poor stand formation and impaired seed ger-
mination (Harris et al. 2002).

The most drought-sensitive physiological processes that are affected by a reduc-
tion in turgor pressure are cell growth. In the result of the subsequent immense 
expansion of the young cells and daughter-cell production by meristematic cell, 
plants usually grow. Due to the interruption of water flow from the xylem to the sur-
rounding elongating cells, the phenomena of cell elongation of higher plants are 
significantly affected (Nonami 1998).

Water scarcity also causes genetic issues in plants such as impaired mitosis, cell 
expansions, and elongations that also result in the reduction of growth of plants 
(Hussain et al. 2008). Water deficits reduce the number of leaves per plant and indi-
vidual leaf size and leaf longevity by decreasing the soil’s water potential. Leaf area 
expansion depends on leaf turgor, temperature, and assimilating supply for growth. 
Drought supressed  photosynthesis process which results in reduced leaf area 
(Rucker et al. 1995).

Drought also causes a reduction in the size of individual leaf and the number of 
leaves per plant. The decrease in the photosynthesis process leads to the suppression 
of leaf growth because leaf area growth depends on the temperature, turgor pres-
sure, and integrating supply for growth. The decline in soil’s water potential also 
had a significant effect on the leaf longevity and reduction in production of fresh 
and dry biomass (Zhao et al. 2006). Khan et al. (2001) led a study called “control 
(six irrigations)” that is comprised of six treatments, i.e. one, two, three, four, five, 
and six irrigation in maize. The results of this study show that leaf area, plant height, 
and stem diameter are noticeably decreased due to increase in water stress. One of 
the main factors that cause a reduction in plant height is a disturbance of decline 
which plays an essential role in cell enlargement (Manivannan et al. 2007).

In the case of maize, drought has adverse impacts on a number of leaves/plants, 
leaf area, cob length, plant height, and shoot fresh and dry weight. Kamara et al. 
(2003) also revealed that maize biomass is reduced at the grain-filling period by 
34%, maturity by 21%, and silking by 37% due to water deficiency.

6.3.1.3  Yield
Water stress had a great impact on the yield-determining processes in plants. Yield 
integrated many complex processes. So, it is very difficult to interpret how plants 
accumulate, combine, and show the indefinite and ever-changing processes over the 
whole life cycle of crops. Grain yield is the result of association and expression of 
several plant growth components. The deficiency of water leads to a severe decline 
in yield traits of crop plants probably by disrupting leaf gas exchange properties 
which is not only limited to the size of the source and sink tissues but also to the 
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phloem loading, assimilate translocation, and dry matter portioning which are also 
impaired (Farooq et al. 2009a, b). Drought stress inhibits the dry matter production 
mainly through its inhibitory effects on leaf expansion, leaf development, and con-
sequently reduced light interception (Nam et al. 1998). Drought at flowering com-
monly results in barrenness. A significant cause of this, though not the only one, was 
a reduction in assimilate flux to the developing ear below some threshold level nec-
essary to sustain optimal grain growth (Yadav et al. 2004). When maize plants were 
exposed to drought stress at teaseling stage, it led to substantial reduction in yield 
and yield components such a kernel rows/cob, kernel number/row, 100 kernel 
weight, kernels/cob, grain yield/plant, biological yield/plant, and harvest index 
(Anjum et al. 2011a). Drought-related reduction in yield and yield components of 
plants could be ascribed to stomatal closure in response to low soil water content, 
which decreased the intake of CO2, and as a result, photosynthesis decreased 
(Chaves 1991; Cornic 2000; Flexas et al. 2004a, b). In summary, prevailing drought 
reduces plant growth and development, leading to hampered flower production and 
grain filling and thus smaller and fewer grains. A reduction in grain filling occurs 
due to a reduction in the assimilate partitioning and activities of sucrose and starch 
synthesis enzymes (Anjum et al. 2011b).

6.3.2  Physiological Response

6.3.2.1  Root Signaling
In plants, the primary source of water and minerals from root to shoot is xylem. The 
drive of water through the plant is smoothed by xylem which is composed of cell 
wall substantial with specific possessions. Under drought conditions, plant growth 
and transpiration reduced from root to shoot as a result of alterations in sap compo-
sition, which is important in plant growth and development (Alvarez et al. 2008). A 
widespread root structure is beneficial to upkeep plant growing at the early crop 
development stage and uptake water from low soil layers that are then merely lost 
by vaporization. The effect of drought on crop root signaling has many divisive 
pieces of evidence. A better root development due to drought was observed in 
Catharanthus roseus (Anjum et al. 2011b). Under drought, the soil becomes arid; 
xylem causes transportation of root-sourced signals to leaves, which reduces water 
loss at various stages and ultimately leaf growth. There are various chemicals pres-
ent in xylem sap. Cytokinin (CK), pH, abscisic acid (ABA), malate, a precursor of 
ethylene, and other anonymous issues have all been concerned in root to shoot 
motioning in water stress (Schachtman and Goodger 2008).

Abscisic acid has usually been observed as a hormone with diverse controlling 
properties in growth and development. Under drought condition in all crops, the 
level of ABA rises in both roots and leaves and causes physical response such as 
stomatal closure due to alterations in genes. Under normal circumstances, a low 
amount of ABA improves root development. Abscisic acid has been commonly con-
sidered a growth that is limiting stress hormone in all crops (Brunner et al. 2015). 
Abscisic acid encourages stomatal shutting by triggering Ca2+, K+, and anion 
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channels in guard cells (Becker et al. 2003). Due to high stress on roots, ultimate 
stress on leaves also occurs. A way of protecting plants against a root or shoot dehy-
dration, water loss which sometimes causes cell death, and runaway xylem cavita-
tion is leaf closure or initial response in crops. The general mechanism of drought 
on leaves is multifaceted since at a given time many other factors are involved such 
as CO2 and light intensity (Chaves et al. 2003). As a result of low water obtainability 
of roots in field-grown maize crop, there is a decrease in leaf extension lead and 
stomatal closure under drought circumstances (Bahrun et al. 2002).

Cytokinins control crop development via a composite system of CK signaling. 
Mutual signaling behaviour exist in the CK, and ABA metabolism and signals are 
underlying altered procedures in changeable plant adaptation to stressors (Nishiyama 
et al. 2011). Cytokinins are usually deliberated as opponents of ABA action on sto-
mata. It is concluded that due to low water availability, CKs must decrease. The 
change in the ratio of ABA:CKs was observed as, 50% decrease in zeatin and zeatin 
riboside in both stems and shoots  of grape plant under low water. In sunflower, 
reduction in cytokines and many clashes about other plants are detected (Davies 
et al. 2005).

6.3.2.2  Photosynthesis
Photosynthesis along with cell growth are the primary affected mechcanisims of 
plant under drought stress. The effect can be direct, e.g., due to flow limits through 
the stomata and mesophyll or the changes of photosynthetic metabolism, and can 
immensely disturb leaf photosynthetic mechanism and decrease CO2, and second-
ary effect can raise, i.e., oxidative stress (Chaves et al. 2009). Across worldwide, it 
is observed that limitation of photosynthesis, crop yield, and growth is due to low 
water availability. Drought affects the diffusion of CO2 by stomatal closure pre-
dominantly in C3 plants, i.e., wheat, rice, maize, beans, potatoes, etc. (Flexas et al. 
2004a, b).

Drought cause stomatal closure and change metabolism processes, but usually, 
stomatal closing is a primary response which  reduces the rate of photosynthesis 
even at mild drought. When there is inhabitation in metabolism, it causes a reduc-
tion in RuBP concentration which causes CO2 incorporation in the process of pho-
tosynthesis. Now it is clear that stomatal closure causes a decrease in photosynthesis 
metabolism due to drought than relative water content or leaf water potential. At 
early stages of drought, reduced ATP production is observed (Flexas and Medrano 
2002). It is observed that damaged ATP and photophosphorylation were the main 
influences of restrictive photosynthesis in sunflower even in slight water scarcity. It 
is now fit to recognize that there is a drought-brought root-to-leaf signing, endorsed 
by low water and attainment of the vegetation through the transpiration creek, which 
persuades closure of stomata and decreases photosynthesis (Medrano et al. 2002). 
The decrease in photosynthesis may be from stomatal or nonstomatal factors. Maize 
is the third most important crop and sensitive to water availability across the world. 
It needs 500–800 mm of water throughout life series of 80–110 days. Water stress 
led to failure in photosynthesis, evapotranspiration rate, stomatal activity, water use 
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effectiveness, prompt water use efficacy, and intercellular CO2 in contradiction to 
well-watered (Anjum et al. 2011b). The effect is on net CO2 endorsement and entire 
series electron carriage as assessed by leaf chlorophyll fluorescence capacities. Due 
to stomatal closing, less CO2 is subjected to plant and low photosynthesis. In food 
crops, lower net CO2 lead toribulose-1,5-bisphosphate oxygenation upsurges and 
develops the critical basin for photosynthetic electrons (Cornic and Fresneau 2002).

6.3.2.3  Contents of Chlorophyll
The visible light absorption, the photochemical capabilities, chemical stability, and 
abundant supply of redox level are requirements of photosynthesis which are 
accomplished by chlorophyll (Mauzerall 1976). Under the drought stress condition, 
symptoms of oxidative stress may be the result of pigment photooxidation, and 
chlorophyll degradation is due to a decrease in chlorophyll content. Photosynthetic 
colorings are significant to florae mostly for reaping light and manufacture of dip-
ping powers. Both chlorophylls a and b are disposed to soil dryness (Farooq et al. 
2009a, b). Drought has a direct effect on the plant such as dispersion limitation of 
gases through stomatal closure and changes in mesophyll and metabolism of photo-
synthesis and has indirect effects in multiple forms such as oxidative stress which 
occur from the superimposition of various stress (Chaves et al. 2009).

The primary cause of inactivation of photosynthesis under drought is loss of 
chlorophyll. Loss of chloroplast skins, extreme bulge, misrepresentation of the 
lamellae vesiculation (nodules on the surface), and the arrival of lipid descents are 
due to a shortfall of chlorophyll under water scarcity and arid soil conditions. Due 
to low water availability in drought, primary production can deficit due to a small 
number of chlorophyll pigments and the low photosynthetic ability of crop. From a 
physical viewpoint, leaves’ chlorophyll concentration is a limitation of critical 
attention. Due to water scarcity, mostly effects occur on mesophyll cells but lesser 
amount from sheath cells as a response to chlorophyll lessening in crops (Anjum 
et al. 2011b).

Nikolaeva et  al. (2010) have shown that three varieties of wheat crop under 
drought behave differently for chlorophyll content, and at initial period, crops resist 
drought and low water loss from leaves, but after 1 week due to little water obtain-
ability, the content of leaf water reduced by 5.2–6.8%. Initially, chlorophyll content 
raised in the first 2 periods, but in the next period, chlorophyll content decreased by 
13–15%. This reduction was not attended by variations in chlorophyll a/b relation.

6.3.3  Biochemical Responses

Biochemical responses of certain food crops combine biological catalyst to increase 
the chemical reactions proceeding in a specific organic species. These responses 
define the exact response of a molecule while it is going through conditions of 
drought.
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6.3.3.1  Reactive Oxygen Species
In a eukaryotic cell, reactive oxygen species (ROS) is the essential biochemical 
reaction that proceeds in the presence of any stress. It is the early stage defense by 
a crop suffering from the water-stressed environment. As soon as drought occurs, 
the ROS levels dramatically fluctuate which may result in the oxidative destruction 
of proteins, lipids, and DNA (Apel and Hirt 2004). O2

•−, H2O2, and OH• ions might 
attack the cell membrane and increase fat peroxidation (Mittler 2002).

Another very important drought-induced ROS is malondialdehyde (MDA) which 
is the main marker of oxidative damage. This might decrease the membrane stabil-
ity as the major constituents of the cell membrane are lipids and proteins (Møller 
et al. 2007). Malondialdehyde defines the range of lipid peroxidation which further 
induces a radical reaction in the tissues (Anjum 2011b).

In pea plants, the range of lipid peroxidation increases 2 to 4 times under drought 
conditions which were found to be correlated with the amount of protein peroxida-
tion in the cell (Moran et al. 1994).

6.3.3.2  Antioxidant Enzymes
All the plants have a natural defensive clean up system which helps them to with-
stand possible injury caused by the elevated active oxygen presence (Horváth et al. 
2007). To minimize the action caused by oxidation, plants have come up with a 
mechanism requiring the use of antioxidants, for example (Caverzan et al. 2016):

 1. ROS-scavenging enzymes, i.e., catalase (CAT), ascorbate peroxidase (APX), 
peroxidase (POD), superoxide dismutase (SOD), etc.

 2. Low-molecular-mass antioxidants such as glutathione (GSH), carotenoids, and 
ascorbate (AsA) (Apel and Hirt 2004).

Under drought condition, SOD and POX decrease in the plant. For wheat, the 
pretreatment of the seeds enhances drought tolerance levels (He et al. 2009). This is 
achieved by specific aluminum exposer which reduces ROS accumulation (Xu et al. 
2011). Maize plant presented a different reaction to seed pretreatment, i.e., increased 
salt tolerance which directly relates to the amount of water uptake (Gondim et al. 
2010). For rice plants, H2O2 is also associated with inducing cadmium, salinity, and 
abscisic acid stresses (Kao 2014).

6.3.4  Role of Plant Hormones in Drought

The yield and production of crops are reduced due to water scarcity and drought 
condition. The major phytohormones, which regulate the processes in plant adapta-
tion under drought conditions, are ABA, gibberellic acid (GA), ethylene, auxin, and 
CK (Wilkinson 2012). In the situation of drought stress, ABA is produced in roots 
and transmitted to leaves to start the adaptation process in the plant to tackle the 
drought situation through stomata closure and discrete the growth (Wilkinson and 
Davies 2010). Cytokinin is known to delay premature leaf senescence and death of 
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plant under drought stress. This adaptive trait of the plant is very functional for 
enhancing crop production in drought (Peleg 2011). Gibberellic acid is referred to 
as a positive regulator (Wang 2008). Ethylene is referred to as a negative regulator 
because of boost senescence of leaf and stops the growth of roots and enhances the 
shoot development and growth (Munné et al. 2004).

Drought causes a series of negative impacts on growth, fiber quality, and yield of 
the cotton crop (Feng and Stewart 2003). Cotton is among the deadliest drought- 
sensitive crop; it can lead to a devastating reduction in yield and quality. Drought 
stress affects the growth and physiology of cotton plant (Iqbal 2013). In cotton crop, 
biomolecules and growth regulators like brassinosteroids and polyamine have 
become a recognized process for an increase in crop yield in a situation of drought 
(Ahmed 2017).

By modifying the plant genetic and molecular makeup for enhancing the plant’s 
tolerance via manipulation and modification of polyamine levels can be acheived by 
the inclusion of brassinosteroids in signal pathway under abiotic stress such as 
drought. The procedure is useful in Bulgaria and Egypt to increase the tolerance 
level of plants (Todorova 2016). Putrescine at 2 ppm and 24-epibrassinolide at 10G7 
M applications generally increase the tolerance of Egyptian cotton and recorded the 
highest value of yield during experimentation (Ahmed 2017).

By using plant growth-promoting rhizobacteria (PGPR), drought tolerance is 
increased. Rhizobacteria are advancing by plant growth, and these microorganisms 
colonize the rhizosphere of plants increasing the tolerance of plant by producing 
certain hormones like phytohormones, exopolysaccharides, 1-aminocyclopropane, 
and 1-carboxylate (ACC). These hormones lead to induce accumulation of osmo-
lytes and decrease the regulation of stress response-related genes and altered the 
morphology of root to tackle the drought stress. (Vurukonda 2016).

The senescence-associated gene OSAP which is identified in rice (Oryza sativa) 
is involved in encoding certain protein. This protein engaged in antiapoptotic activi-
ties which present in yeast to regulate the multiple stresses. In abiotic stress such as 
drought, plant is overexpressing OSAP about the balance of the hormones such as 
GA, jasmonic acid (JA), phytohormones, ABA, and zeatin (Ubaidillah et al. 2016).

6.4  Possible Mitigation

The decline in the income of farmers as a result of less production of crops and its 
yield basically attributed to drought and heat. According to an observation, the 
maize yield reduced up to 40% and wheat up to 21% as a result of a 40% reduction 
in water quantity (Daryanto et  al. 2016). According to the report of the 
Intergovernmental Panel on Climate Change (IPCC), the atmospheric and oceanic 
temperature has become warm, and the number of greenhouse gases has sharply 
increased (IPCC 2014). The big challenge to food security and livelihood security 
is due to climate change. The supportive activities for agricultural adaptation also 
intensified food security. The adjustment in the field of agriculture must be consid-
ered at policy and management level in a country or worldwide (Lobell 2008). The 
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crop management practice application and implementation have significantly 
reduced the damaging effects of heat stresses and drought and basically include 
management of soil and culturing practices, the extent of irrigation, residues of 
crops and mulching, and useful crop selection. Irrigation is the primary source of 
drought tolerance and avoidance process. The significant advantages of irrigation 
are to intensify the crop production and the stabilization of the income. Besides it, 
the irrigation significantly depends upon the various social, economic, and environ-
mental factors (website). The pressure on water supplies is basically from other 
users than agriculture, and to save water and to increase agricultural production 
have gained significant importance for countries as more crop per drop (Luquet 
et al. 2005). The essential adaptive measure taken into account to mitigate the less 
production of crop yield (due to drought) includes the creation and use of more 
drought-resistant genotypes (Salekdeh 2009). The primary mitigation and adapta-
tion measures by plants for drought stress are as follows.

6.4.1  Breeding Progress for Limited Water Environments

For water-restricted environment, plant breeding is always a significant problem in 
dryland and rainfed agriculture. The research and methodology in the sphere of 
plant breeding have been dispersed due to collaborative effort. In the present condi-
tion, due to the vibrant issue of global warming and the crisis of water supply, the 
issue has gained more significance (Asif and Kamran 2011). The plant breeding for 
drought resistance and tolerance is increasing for resistance against diseases in con-
ceptual design and framework. Drought resistance can be achieved by attaining its 
components which are avoidance of drought, understanding of drought, and drought 
reduction or elimination (Farooq et al. 2017). The widely used and applied mecha-
nism for drought resistance in crops and plants is to avoid dehydration, which is 
plant’s ability to maintain its water balance. The dehydration tolerance is rare but 
essential in which the plant can function in a dehydrated state.

The yield enhancement due to plant breeding can be determined by assessing the 
experiments of historical cultivators for a variety of crops (Castleberry et al. 1984). 
The application of stress-tolerant crops has shown a high population density of 
plants, etc. The comparison of 36 successfully grown hybrids in the USA from 1934 
to 1991 has depicted the increased improvement in tolerating the abiotic stresses 
such as heat, drought, too cold and too hot weather, low soil fertility, etc. (Duvick 
1997).

It was observed that during drought condition, the genetic increase in yield was 
124 kg/h/year in flowering and 91 kg/h/year in mild grain filling.

The drought-resistant crops have developed certain physiological traits which 
increases their yield during stress condition. Modern soybean species have high 
water potential than old ones (Boyer 1980). Modern maize species also have high 
possibility to access the soil water than the previous ones (Hammer 2009). Earlier 
studies of wheat in the UK suggested that modern cultivars have large stem storage 
for flowering (Shearman et al. 2005) which sustains grain filling under pressure. 

S. Bakht et al.



107

The breeding germplasm of wheat yield is high in dehydration avoidance due to 
genetic variation (Blum 2018). In conclusion, the dryland and rainfed crops have 
been improved successfully for drought resistance. As a whole, the efforts in plant 
breeding cause genetic variation which in turn causes resistance in drought and 
heat.

6.4.2  Protection of the Cells against Osmotic and Oxidative 
Damages

Drought resistance in crop plants has to follow two main aspects, i.e., dehydration 
avoidance and dehydration tolerance. Dehydration avoidance takes into account the 
capacity of plant cells and tissue to avoid being dehydrated during water stresses. 
The ability to sustain function when the plant is dehydrated defines dehydration 
tolerance. Plant survival can go through either of both situations. The superior pro-
tection of plants in drought condition is to avoid osmosis and oxidative damage 
(Ostad-Ali et al. 2017).

6.4.2.1  Osmotic Adjustment
The phenomena of osmotic adjustment (OA) relate that it is a process of accumula-
tion of solute in dividing cells in a case when the water supply or potential is less; 
so far it helps in the regulation of turgor (Chaves and Oliveira 2004). The growth of 
cells of the plant is purely dependent on the availability of water and helps in turgor 
maintenance. The growing parts of plants like stem and leaves exhibit less reduction 
during turgor measurement, but the enlargement of the cell is stopped during 
drought condition and is mainly due to OA (Meyer and Boyer 1972; Serraj and 
Sinclair 2002). Various plant phenomena like stomatal conductance, photosynthe-
sis, and leaf growth have been maintained due to osmotic adjustment under drought 
conditions (Oosterhuis 1987; Chaves and Oliveira 2004). In drought conditions, the 
water supply is reduced, and there are so many changes like an increase of salt con-
centration, etc. (Sauter et al. 2001). During drought stress, the solutes that accumu-
late are inorganic cations, organic acids, carbohydrates, amino acids, etc. Previous 
researchers have explained that drought-resistant wheat varieties yield more than 
less resistive varieties and have a considerable extent of osmoregulation (Serraj and 
Sinclair 2002). The suitable solutes for plants like proline and glycine betaine help 
plants against the adverse impacts of drought not only by ROS detoxification but 
also by osmotic adjustment, conservation of membrane, and regulation of enzymes 
(Ashraf and Foolad 2007). Enzymes like betaine aldehyde dehydrogenase (BADH), 
pyrroline-5-carboxylate reductase (P5CR), and ornithine δ-aminotransferase (OAT) 
have been revealed to play main roles in osmotic adjustment. Overexpression of 
Arabidopsis EDT1/HDG11 was exposed to rise DT of poplar and cotton over greater 
accrual of solutes such as proline and soluble sugars and also increases the yield of 
cotton in the field (Yu et al. 2016). There are some plants within which sugars are 
the most osmolytes that play a prominent role in OA, together with saccharose, 
trehalose, glucose, and ketohexose. Earlier studies have revealed that 
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overexpression of the sucrose:fructan-6-fructosyltransferase (6-SFT) gene from 
Psathyrostachys huashanica in tobacco and the trehalose-6-phosphate phosphatase 
gene OsTPP1 in rice confers abiotic stress tolerance (He 2015; Ge et al. 2008).

6.4.2.2  Antioxidation
To repel the toxicity of active oxygen species, the plant cells should have a compe-
tent antioxidative defense system. The GSH prevents various cellular components 
and protein status of thiol against oxidative stress, and it represents an efficient 
defense system for enzymic and nonenzymic components (Pamplona and Costantini 
2011). The antioxidants become unstable and reactive when they lose or accept 
electrons in the presence of reactive species. In these cases, the antioxidants show 
prooxidant impacts and can be dangerous, but Damiani et al. (2008) described that 
the antioxidant that gives less oxidant reactivity with a less capability to produce 
peroxidation is a good antioxidant. Plant tissues basically contain a variety of 
enzyme scavengers of ROS to regulate the level of ROS under significant stressed 
conditions (Mor et al. 2014). Both nonenzymatic and enzymatic reactions represent 
the process of formation of ROS in biosystems (Zorov 2014). Nonenzymatic anti-
oxidants contain low-molecular-weight compounds, such as vitamins C and E, beta- 
carotene, uric acid, and GSH, a tripeptide that comprises a thiol (sulfhydryl) group 
(Blokhina and Fagerstedt 2010).

6.4.3  Managing Drought Stress by Supplemental Irrigation

Supplemental irrigation (SI) is defined as the addition of a small amount of water in 
rainfed crops in a situation of water scarcity, shortage of rainfall, and drought. 
Supplement irrigation has furnished the moisture to prove moisture for proper 
growth and yield. The concept of supplement irrigation has three aspects. Supplement 
irrigation can provide water and rain throughout the year, but it makes sure that 
crops get the minimum amount of water for growing crops during a situation of 
drought to get maximum yield. There are particular schedule, timing, and amount of 
SI during the year. Supplemental irrigation is dependent on precipitation, the major 
water resources for SI in surface water, but shallow groundwater and treated sewage 
effluent are also used to provide water to crops (Oweis 1997).

6.4.4  Molecular Mechanisms Regulating Plant’s Response 
Toward Drought Stress

Under environmental stress, plants have developed subtle procedures to manage 
them. Due to exposure to drought stimuli, extracellular indicators seem creation of 
ROS in crops, ABA response, and spread over signal transduction forces. After 
receiving and broadcasting of the signals, a figure of stress-related genes is per-
suaded, important to stress alteration in plant cells. The typical growth pattern is 
recovered by functional protein mechanism which protects from stress, by 
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restoration of cellular homeostasis. As the osmotic pressure in the cytoplasm 
decrease, the defensive cellular task of cellular arrangements constituents by a 
buildup of friendly solutes such as amino acids, quaternary and other amines (e.g., 
glycine), sugar, and sugar alcohols (e.g., mannitol) (Gao et  al. 2008). Research 
shows that a cluster of soluble organic mixtures are added and play a role as osmo-
protectants through osmotic stress (Bartels and Sunkar 2005). Genes which work in 
abiotic stress reaction and acceptance can be recognized by genetic and molecular 
methods. While numerous genes had been recognized with the abundant possibility 
for abiotic stress engineering, many of them can shake rice plant form, when they 
are essentially overoccurred (Su and Wu 2004; Roy and Wu 2002; Gao et al. 2008). 
The manifestation of genes can be changed in transgenic plants in command to get 
an accepting phenotype. In some circumstances, alteration of gene method has been 
positive in growing agronomic enactment of florae in the field. Consequences of 
nine field tests over six harvesting periods, in wheat crop, exhibited that the HVA1 
protein put substantial security from water tension in comparison to (LEA) proteins 
(De Leonardis et al. 2012). In the field of technology, a very low amount of seed 
plasm has been partitioned for famine acceptance. Uniting genetic factor from both 
wild and cultured kind of maize crop displays potential to get genotypes with 
advanced stages of patience (Manavalan et al. 2009).

6.5  Recovery After Stress Dictates Survival

After the drought stress, recovery of plant carbon balance depends upon the severity 
and duration of drought. Studies have shown that maximum recovery of photosyn-
thesis cannot be achieved and is slow and incomplete. Recovery in photosynthesis 
of some plants can be raised by adding photosynthetic proteins and by rewatering 
(Sofo et al. 2004; Galle et al. 2007). Recovery after a severe drought is very slow. 
The limiting recovery of leaf-specific hydraulic conductance is the cause of down-
regulation in plant recovery. Due to stomatal closure, the photosynthesis process 
also slows down (Bogeat et al. 2007; Galmés et al. 2007). In maize, electrical sig-
nals can regulate stomatal recovery quickly than hydraulic regulation. The study has 
shown that CO2 is also a factor, limiting the recovery of photosynthesis. In sum-
mary, recovery of plant photosynthesis process is dependent upon multiple factors 
and upon specific plant species, and then there is a need to study other factors 
(Grams et al. 2007; Ennahli and Earl 2005).

6.6  Conclusion

With varying environmental conditions and abiotic stresses by each passing day, 
crop productivity is decreasing severely. The global crop supply and quality are 
deprived due to the problem of drought, and the phenomenon of climate change is 
causing the circumstances more severe. Drought can affect seedling origination, 
formation, the growth of plant roots and branches, and yield of the crop. The 
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response of the plant to water deficiency is determined by severity, timing, and dura-
tion. Under water stress, root signaling and closure of stomata cause a decline in the 
rate of photosynthesis process. The reduction in the tolerance level of the plant is 
also reduced due to alterations in pigments and chlorophyll content. The protective 
leaf guards are then quickly activated to defend photosynthesis, so that it cannot 
affect irreversibly. Following drought stress, a natural defense mechanism in plants 
become active by generating ROS and antioxidative enzymes, plant hormones, and 
stability of cell membrane which are vital for drought tolerance.
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Abstract
Rice (Oryza Sativa) is a grass and highly stipulated cereal crop. Water stress is 
an existing and future trauma to rice production. It severely manipulates plant 
growth and production that ultimately results in yield loss. Cell size, molecular 
activities, tissue formation, organ establishment, flower formation, reproduction 
mechanism, grain fabrication, and seed maturation are partially or fully inter-
rupted. Flowering stage is more susceptible to water stress. Reproductive organs 
are structurally and functionally influenced. Fertilization failure or grain filling 
loss and immature seed formation could result. Yield loss happens less severely 
when water stress occurs during vegetative phases but is more severe during 
panicle growth. Water stress and its tolerance to rice crop are therefore consid-
ered the critical issue under study and research. Various institutes and scientists 
worldwide are trying to explore new ways and schemes to overcome this strain. 
New ways are being investigated by providing suitable alternative rice harvesting 
strategies than traditional ways of cropping. Most of the Asian countries are still 
habitually grown rice in abundance water as they are doing so from over the 
years. In different agro-ecosystems, water is going to scarce, but it is provided by 
the farmer by fetching through different sources. Because farmers are in fear of 
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crop loss and yield loss in case water is unavailable to their routine cropping, 
they must be encouraged by introducing water efficient use and water stress- 
tolerant practices in rice cropping. Scientific exertions in this contemplate still in 
progress to achieve free of yield loss adopted policies and approaches. This 
assessment is a part of scientific advancement to examine and inspect rice crop 
effects under water stress.

Keywords
Rice crop · Rice production · Rice augmentation · Rice yield · Water stress

7.1  Introduction

Annual production of rice is vital in human foundation food. It is worldwide a chief 
trade commodity and major source of about 20% dietary energy supply from rice 
(FAO 2006). A biotic variation has an adverse effect on plant growth, development, 
production, and yield. Rice crop from its semiaquatic origin and growth with a 
diversity of ecosystems is traditionally dependent on adequate water supply, so 
water stress is more vulnerable for this cereal than others (O’Toole 2004).

Under water stress, all physiological processes of rice plant are distressing. 
Though all growth and reproductive phases are influenced, flowering stage is more 
susceptible because it depresses grain formation (Boonjung and Fukai 1996). 
However, various study approaches show major defects in different stress condi-
tions that appear in reproductive growth during meiosis, production of mother cells, 
and maturation of anther, fertilization, seed establishment, and grain yield.

Research institutes are trying to sort out rice traits linked with tolerance toward 
different stress conditions by developing DNA-based techniques, to get precise and 
rapid reproduction varieties. In this stair to verdict tolerance, different concepts, theo-
ries, and practical efforts have been conceived. Two ways to illuminate are suggested 
as (a) activating stress receptive genes to alter biochemical levels and (b) alteration 
strategies to existing soil and traditional cropping. These progressive steps will surely 
promote (a) achieving tolerance against single stress and (b) developing tolerance to 
numerous stresses. To treat water stress, flowering stage screening is more practical in 
breeding plants. Breeding approaches toward water stress tolerance are dependent of 
parent selection. From the last 80 years, these breeding activities are in progress to 
achieve the desired yield against different environmental stresses (Teekam Singh et al. 
2015). Rice production with elevated yielding varieties with massive fertilizers, bio-
cides, and rich irrigation is in practice (Hossain and Fischer 1995). In the future, rice 
with the same dietary preference (Rosegrant et al. 2001; Sombilla et al. 2002) must 
achieve yield stability in the presence of inevitable abiotic challenges.

“More crop per drop” (Molden 1997) is a decisive objective of all these research- 
based study efforts. This appraisal is also an effort to consider the severity of water 
deficit and its effects on rice crop. Water stress influences rice plant physiology, 
grain formation, and seed development with resultant low production and yield loss. 
A slight stance is added to future management and alterations to water stress toler-
ance achievement in rice production.
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7.1.1  Nutritional Composition of Rice

Rice is the second major source of human diet. Its energy content is high with pro-
tein, fat, carbohydrate, calcium, iron, vitamins, minerals, and fibers (Prasad et  al. 
2017; Table 7.1). Nutritional value of rice depends on various factors like grain type, 
soil fertility, fertilizer practices, and environmental conditions (Oko et al. 2012). Rice 
varieties are continuously derived with existing traits and tolerance of drought and 
salinity (GRiSP 2013). In all genotype of rice grain, high percentage (about 80%) of 
carbohydrates is present. It comprises of glucose, starch, sucrose, and dextrin. The 
percentage of content of various nutritional substances varies in different varieties. It 
is possible through genetic engineering to get the desired variety of rice with required 
nutrient values (Yousaf 1992). A variety could have the highest crude proteins, while 
the other could have the highest fat content, etc. The least and highest energy value 
is analyzed to be ranging from 262.94 to 398.82 J/kg. Moisture content also varies in 
different varieties. Its least value is analyzed as 5.0%, while its very high value is 
found as 9.6%. The choice of rice varieties to the farmers and consumers is princi-
pally dependent on their nutritious value (Oko et al. 2012).

7.1.1.1  Rice Protein
The protein substance assortment is 7.4% to 12.49%. Besides the genetic variations, 
agroclimatic factors and irrigation also control protein content of rice grains (Prasad 
et al. 2017). Rice protein is quality wise very good in comparison with other cereal 
crops (Juliano 1993). Protein quality is dependent on amino acid composition and 
digestibility (Frei and Becker 2003). Rice protein with excellent biological value, a 
balance of amino acids, with higher concentration of lysine, is highly digestible (WHO 
1998). Branched amino acids like isoleucine, leucine, and valine are present (Shobana 
et al. 2011). Rice amino acid is elevated glutamic and aspartic acid (FAO 2006).

Table 7.1 Nutritional 
composition of rice on 
average in different varietiesa

Nutrients Approximate gram %
Moisture 10.8
Protein 9.8
Fat 1.7
Ash 0.6
Carbohydrates 73.0
Dietary fibers 2.6
Amylose 26.6
Energy 349
Vitamins 0.39 mg/100
Mineral and trace 
elements

22.81 mg/100 g

aDifferent varieties: DRRH-3, Jaya, Lalat, NDR 97, 
PR 113, Salivahana, Sayasree, Savithri, TellaHamsa, 
Triguna, Varalu
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7.1.1.2  Rice Lipids
In all rice varieties, the total fat substance ranged from 1.45% to 2.03% (Prasad 
et al. 2017). The outer layer of the grain is its total oil content. The bran fraction and 
aleurone layer have chief lipid bodies. Rice lipids are highly unsaturated fatty acids, 
so considered blood cholesterol-lowering effects. Among this oleic acid is a mono-
unsaturated acid, while linoleic acid is a polyunsaturated fatty acid (Probart et al. 
1993).

7.1.1.3  Rice Mineral Fractions
Mainly K, Mg, Zn, Mn, Fe, Cu, Na, and Al represent the mineral content of rice 
grain, while Mo, Ni, Co, Cr, Li, and Pb are the trace elements. In different varieties 
of seed, these mineral contents greatly vary in their concentration. To pile-up, these 
mineral substances in a grain variety greatly depend upon its genetic variability, soil 
micronutrients, and soil conditions. Some varieties possess the highest content of a 
substance, while the other may just have its least amount (Prasad et  al. 2017; 
Table 7.2).

7.1.1.4  Rice Dietary Fibers
Total dietary fibers in rice are classified as insoluble dietary fibers and soluble 
dietary fibers. These also vary in their gram percentage in different varieties of rice. 
Taking an average of different varieties, total dietary fiber is about 3.05 gram, insol-
uble dietary fiber is 2.95 gram, and soluble dietary fiber is 0.97 gram (Prasad et al. 
2017).

Table 7.2 Mineral and trace 
element content in rice on 
average in different varieties

Mineral mg/100 g
P 174
K 129
Mg 52.7
Ca 5.02
Zn 1.6
Na 0.78
Mn 0.80
Fe 0.58
Cu 0.20
Al 0.31
Mo 0.0829
Ni 0.0096
Co 0.0044
Cr 0.0016
Cd 0.0005
Pb 0.0012
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7.1.2  Irrigation and Water Stress

Water is essential for rice production. Both soil and seed are active in rice growth in 
specific wetness. Rice harvesting is dependent on irrigation or rainfed wet soils. 
Rice is traditionally grown by seed raised in the seedbed, direct wet seeding, or 
direct dry seeding. Once the crop is established, the field is then kept in continuous 
pond water state. Rice crop by nature for its growth and yield depends on the bal-
ance of water availability and its outflows (Smith and Hornbuckle 2013). Water 
requirement for land preparation ranges from 100–150  mm (Bouman 2007) to 
940 mm (Tabbal et al. 2002). This is due to the soaking and transplanting time dif-
ferences ranging from a few days to 2 months and water management control in 
fields (Smith and Hornbuckle 2013). Soil type is a key factor in water management 
control. In heavy clay soils, 1–5 mm per day and 25–30 mm per day in sandy soils, 
percolation, and seepage are estimated (Bouman and Tuong 2001). Other water 
losses from the field (Bouman 2007) involve transpiration about 70% and evapora-
tion about 30% of total evapotranspiration (Bouman et al. 2005), depending on the 
dryness or wetness of climatic conditions (Smith et al. 2001).

Rice production area is going to increase and water tables are going to decrease. 
Water input rates from rainfall and irrigation, soil texture for water retention, and 
shallow and deep groundwater for capillary rise must balance with water losses and 
outflows. Alteration of water flows to rice field results in stress. If climatic condi-
tions, soil type variation and ground water kept aside, the adaptation can be acheived 
by choosing selective crop varities and water managment practices.

7.1.3  Augmentation Effect to Water Stress

The growth cycle of the rice crop is mainly divided into three phases: vegetation, 
reproductive, and ripening or grain filling phase (Singh et al. 2015). All these phases 
are affected by water stress, but it is more vulnerable at flowering that discourages 
grain formation (Boonjung and Fukai 1996). Reduced spikelet fertility due to the 
drought during meiosis in spore mother cells, resulting in premature abortion of 
seeds. It also inhibits the formation of reproductive organs, i.e., ovary (Saini et al. 
1983) and pollen (Saini 1997), is followed by functional failure or seed premature 
abortion (Saini and Westage 2000). Pollen survival ability and fertility loss under 
water stress are reported because of diverging anther maturity in a flower cluster (Jin 
et al. 2013). Water stress causes inhibition in different progression steps as the spon-
taneous opening of anther, pollen peeling, pollen emergence, and fertilization 
(Satake and Yoshida 1978; Ekanayake et al. 1990).
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7.1.4  Escalation Effect to Water Stress

Rice dry matter fabrication is low during and in subsequent periods of water stress. 
It is sternly experienced during grain filling phase when it results in early maturity. 
Eventually, individual grain mass reduced to 20% and filled grain declined to 40%. 
Low dry matter production is subjective by growth phase’s combat due to water 
unavailability. The growth rate is influenced by soil water accessibility (Boonjung 
and Fukai 1996).

7.1.4.1  Nutritional Manipulation
Water stress affects starch synthesis genes; thus, abnormal starch accumulation and 
distribution are examined (Jin et al. 2013). Carbohydrate availability influences pol-
len maturity, and its deficiency can cause pollen grain abnormality (Saini et  al. 
1984; Saini and Lalonde 1998; Joppa et al. 1996; Devries and Le 1970; Lalonde 
et al. 1997). With soil moisture deficit, brown rice protein substance is raised, and 
immature grain percentage is lowered (Renmin and Yuanshu 1989). Elevated pro-
tein can increase the dietary value of milled rice, but it can negatively link with 
taste. Protein content also negatively relates to amylose content, because amylose 
content decreases under water stress (Ishima et al. 1974).

7.1.4.2  Rice Plant Physiology
Water is a solvent and is the main element for translocation of minerals and metabo-
lites. It works as a reagent in plant tissue for chemical reactions. It is crucial for 
turgor pressure and cell size (Carlos et al. 2008). Water stress affects photosynthesis 
and transpiration influencing plant growth and activities; thus, grain filling poorly 
occurs (Samonte et al. 2001).

7.1.4.3  Metabolism Persuaded
Water stress causes reprogramming of abscisic acid catabolism and gibberellin acid 
signaling (Jin et al. 2013). Molecular level studies show chromosomal abnormali-
ties in moderate intensity water stress. During meiosis, certain defects appear as 
prophase unpaired chromosomes; in metaphase and anaphase, chromosome segre-
gation; and in telophase, micronuclei formation. With the persistence of these 
defects, 20–30% pollen grains appear nonviable (Namuco and Otoole 1986). The 
specialized nutritive cell layer within anther is tapetum; microspores separated from 
it cause disruption in nutrition and signaling (Jung et al. 2005; Li et al. 2006; Shi 
et  al. 2011; Hu et  al. 2011; Zhu et  al. 2013). Starch synthesis and accumulation 
disruption and pollen growth abnormality are connected to the reduced activity of 
invertase. Alterations in anther carbohydrate metabolism are due to water deficiency 
at meiotic stage (Dorion et al. 1996; Sheoran and Saini 1996; Koojul et al. 2005, 
Zhang et al. 2010).

7.1.4.4  Grain Quality
Grain quality is directed genetically as well as environmentally (Krishnan and Rao 
2005). Grain filling is critical for grain quality and is subjective to water status 
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(Dingkuhn and Gal 1996). In milled rice, with soil moisture deficit, protein content 
is raised to relate to some extent with grain quality attributes like grain size, look, 
and viscosity (Ishima et al. 1974). Extra centered whiteness of grain that affects 
cooking traits is also observed in Basmati rice under water stress (Pandey et  al. 
2014). Grain filling, grain weight, and ultimately grain yield are significantly 
reduced with normal nitrogen supply under water stress (Cai et al. 2006).

7.1.5  Yield Effect to Water Stress

Loss of yield of rice and other cereal crops is estimated in Asia due to less rain, El 
Nino events, and increase in temperature (Aggarwal et al. 2000; Fischer et al. 2002). 
In the rainfed systems, rice production is most severely affected as it has an esti-
mated area of 13 million ha lowland and ten million ha upland in Asia (Pandey et al. 
2007). Food insecurity and rural poverty will rise in tropical and subtropical areas 
(Bates et al. 2008). Yield loss is small when water stress is experienced at the veg-
etative phase. About 30% yield reduction is estimated at the flowering stage with a 
compact number of the spikelet in a panicle. Yield reduction is more severe when 
water stress is practiced at a panicle growth stage (Dorion et al. 1996; Sheoran and 
Saini 1996; Wang et  al. 2011). The number of spikelets is reduced to 60% and 
flower functioning deferred and diminished are reasons to percentage loss of grain 
filling (Boonjung and Fukai 1996).

7.1.6  Breeding Approaches to Water Stress

The desired cultivar must be tolerant of known stress. Alternating stress is examined 
with controlled irrigation during selected phases of rice plant growth. The most 
severely water stress targeted phases flowering and grain filling, are selected for 
ranking cultivars. This natural selection is adaptive to stress resistance (Lafitte and 
Courtois 2002). Rain fed rice breeding, by direct selection, without depriving yield 
potential are also in the inspection. With defined breeding lines these varieties are 
working better over the years during mild and stern water deficits (Verulker et al. 
2010). Stable genotypes with high yield in different stress levels at different places 
are recognized (Kumar et al. 2012).

7.1.7  Agronomic Prospects

Rice production systems with water productivity (Molden 1997), are in demand. 
Irrigation needs and water stress studies have evolved a number of policies, elucida-
tions, and tactics to deal with these constraints. But these strategies and solutions 
are still not fully practiced because farmers are not precisely acknowledged to the 
severity of the water loss persistence. They are trying to provide required water if 
not one source they approach to others although with paying the cost. There is a dire 
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need to save water with less investment (Lampayan et al. 2004). Against habitual 
cropping approach with extensive water supply some future terminations and altera-
tions are as follows.

7.1.7.1  Aerobic Rice System
Non-soaked and non-deluged rice grown under non-saturated soil state is a new 
water economy strategy. It saves 73% water at land preparation phase and 56% 
water in the growing phase (Castaneda et al. 2003). This system is based on biocides 
and nutrients provided to accommodate their unavailability in aerobic assert. It is 
water and labor securing scheme could be mechanized (Belder et al. 2004). Yield 
outcomes accounted by this system show a specific rise in upland rainfed varieties 
while a distinct fall in lowland varieties (Farooq et al. 2009).

7.1.7.2  Intermittent Irrigation Management
In general practice rice is grown under pond condition, that is, a nonflooding par-
ticularly dry soil with saturated or under low standing water irrigation (Won et al. 
2005). It is by reducing the unwanted excessive runoff of flooding irrigation 
(Bouman and Tuong 2001). This is efficient water using strategy it’s working capac-
ity changes with soil type and seed type. It is also proficient for better yield, as it 
involves soil aeration, nutrient conscription, root magnification and intensification 
(Arif et al. 2013).

7.1.7.3  Soil Saturation Culture
This is also an efficient use of water by reducing unnecessary losses, by keeping the 
soil saturated and reducing surface elevation. It secures 34% water than conven-
tional ways of rice cropping (Borrell et  al. 1993). Experimentation revealed this 
scheme is decreasing water input without compromising yield (Bouman and Tuong 
2001).

7.2  Conclusions

World’s food and economy both transactions are equally sharing rice significance. 
Not only agricultural countries others as well depending on rice production and 
yield due to its vitality as a food component. Increasing needs and feeds raised 
dependency on existing abiotic sources. Water is essential for rice crop from its 
origin and nature. With increasing demands of huge population cultivated land area 
has been raised. But existing limited available water sources are insufficient and 
going to scarce in future in many regions.

Rice is an elementary component of food. Its nutritious value is high with carbo-
hydrates, proteins, and minerals. Rice plant nourishing is reliant on its seed type, 
seed quality, soil type, soil quality, environmental aspects, and climatic circum-
stances. Water stress is a rigorous situation for rice plant growth, acceleration, and 
propagation. Water unavailability or limited supply dislocates its wholesome intake. 
It disturbs plant structure and function.
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Water intake of rice is through rain water and irrigation. Soil moisture and field 
irrigation requirements are largely dependent on climatic conditions. Water discrep-
ancy is influencing during different phases of plant growth especially flowering. 
During meiosis1 chromosomal disruptions, anther and pollen structural and func-
tional abnormalities are observed. Afterward collapse of fertilization, grain estab-
lishment and seed maturation are also disturbed.

Water stress imbalanced rice plant’s biochemical processes, physiology, and 
functioning. Grain filling defeat and seed immature abortion result yield loss. 
However, it is examined that more yield loss occurs when water deficit is experi-
enced during the flowering phase in comparison with the vegetative phase. Rice is 
an essential component of food and will be in the future. Its production loss is not 
favored at any cost. Therefore, new ways, schemes, and technologies are continu-
ously being introduced to overcome water stress. Breeding and agronomical 
approaches are in practice to gain water productivity. Customary ways of flood irri-
gation are not long lasting in the current scenario. Limited irrigation, Soil moisture 
consumption, and direct seeding are going to be common practices being water 
efficient policies. Selected breeding and more resistant, adaptive gene mechanisms 
are also introduced and experimentally examined in rice research institutes world 
over. To gain rice tolerance against water stress is decisive to achieve the desired 
quantity and quality production.
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Abstract
Balanced nutrition is one of the key factors that contribute to optimum crop pro-
duction under various environmental stresses including drought and salinity. 
Proper management of fertilizers leads to improved tolerance against these abi-
otic factors. In contrast, nutrient deficiency is a widespread problem, worsened 
by the non-availability of water or excessive salts in the soil. The impact of nutri-
ent deficiencies includes reduced biomass accumulation, increased susceptibility 
to pathogens and diseases, and stunted plant growth directly linked to yield 
potential of most arable crops. Moreover, reduced tolerance to drought and salin-
ity is also associated with low nutrient uptake and accumulation in crop plants. 
In this chapter, we highlighted the importance of mineral nutrients such as nitro-
gen, phosphorus, potassium, calcium, magnesium, sulphur, zinc, and boron to 
crop productivity under drought and salt stress conditions. In addition, interac-
tive effects of mineral nutrients are also discussed and reported.
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Abbreviations

5-ALA aminolevulinic acid
AAO ascorbic acid oxidase
ABA abscisic acid
APX ascorbate peroxidase
AQPs aquaporins
B boron
Ca calcium
CAT catalase
K potassium
MDA malondialdehyde
Mg magnesium
N nitrogen
Na sodium
NaHS sodium hydrosulfide
P phosphorus
PAL phenylalanine ammonia lyase
POX peroxidase
ROS reactive oxygen species
S sulfur
SA salicylic acid
SOD superoxide dismutase
Tre trehalose
Zn zinc

8.1  Introduction

Plants being sessile face multiple adverse environmental conditions throughout their 
life known as abiotic stresses, more precisely defined as any environmental factor 
which exerts negative effect on optimum plant functions. The major abiotic stresses 
are drought, salinity, and low and high temperature which negatively influence the 
biomass production, economical yields, and ultimately survival of food crops up to 
70% and hence are real threat to global food security. Drought stress affects various 
morphological and molecular cascades of plant at different growth stages. The gen-
eral effects of drought stress take place at all growth stages irrespective of the plant 
species (Nawaz et al. 2012; Majeed et al. 2018). In addition, escalating soil salinity 
is the main cause of arable land degradation, 7% land area of the world is salt-
affected, and worryingly, the extent of salinity of salt-affected soils and continuous 
spread is at alarming rate in densely populated countries (Vashev et al. 2010).

Plants adopt a wide range of resistance mechanisms to alleviate the adversities of 
abiotic stresses. The production of reactive oxygen species (ROS) under such envi-
ronmental stress conditions results in activation of antioxidants such as catalase 
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(CAT), peroxidase (POX), ascorbate peroxidase (APX), glutathione reductase (GR), 
and superoxide dismutase (Wariach et al. 2011). Despite internal resistance of plants, 
balanced nutrient supply confers resistance against abiotic stress factors. Increasing 
evidence depict that reduced mineral nutritional status of plants has imposed delete-
rious impacts on plant resistance adaptations (Marschner 1995). It is evident that the 
reduced absorption of mineral nutrients to plants under abiotic stresses is because of 
disturbed activity of membrane transporters (Akram et al. 2009). Exogenous applica-
tion of inorganic nutrients have proved an essential approach for improving stress 
tolerance in plants through cell expansion, osmotic adjustment, stomatal aperture, 
charge balance, protein synthesis, and homeostasis (Wasti et al. 2017) (Fig. 8.1).

Fig. 8.1 Schematic overview of the role of mineral nutrition in improving drought and salinity 
tolerance in crop plants
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8.2  Nitrogen (N)

Under water scarce conditions, absorption of N by the plants is essential for their 
growth because of its active role in structural and metabolic processes (Hassan et al. 
2005). Its availability promotes the roots ability for more water and nutrients uptake. 
In N-deficient soils, the processes of cell division, cell expansion, and transpiration 
are severely affected through closing of stomata which contributes toward reduced 
growth (Vos and Biemond 1992; Waraich et  al. 2011). Rufty et  al. (1988) and 
Marschner (1995) suggested that enhanced N status of plants improves antioxida-
tive defense system, carbon assimilation, accumulation of soluble sugars, and 
reduced photo-oxidation of chlorophyll pigments, resulting in higher cell growth 
and final leaf area. Improved photosynthetic ability of plants with higher light inter-
ception owing to expanded leaf surface area has also been supposed by N supply. 
The reduced activity of RuBisCO enzyme and chloroplast pigments during the pro-
cess of photosynthesis is mainly due to limited N supply. Consequently, higher cell 
metabolic activities based on stromal and thylakoid proteins attributed to N addi-
tion. Under water-deficient conditions, morpho-physiological changes in plants like 
reduced leaf dry biomass, excised leaf weight loss, relative dry weight, relative 
water contents (RWC), and chlorophyll pigments could be alleviated with N fertil-
ization. Drought-induced alterations in RNA contents accredited to increased activ-
ity of RNAse, leading toward reduced protein contents. In sunflower and wheat 
roots, nitrate reductase activity under drought stress conditions is severely affected 
by nitrate deficiency, but was contrasting in the roots of maize plants (Martin and 
Dasilva, 1972; Gimenez et al. 1992; Lawlor, 2002).

N maintains the metabolic function of plant at low tissue water potential, thereby 
playing an important role to alleviate drought stress in cereal crops. Application of 
N at vegetative stage mitigated the negative effects of drought stress in wheat (Abid 
et al. 2016). Low N supply (0.16 g/kg soil) reduced the grain filling duration and 
decreased final yield under water deficit conditions. However, high dose of N 
(0.24 g/kg soil) induced resistance against severe drought stress and increased grain 
yield, mainly due to enhanced antioxidative defense system and metabolic activi-
ties. Similarly, Shi et al. (2014) recorded a marked increase in nitrogen use effi-
ciency (NUE), water use efficiency (WUE), as well as photosynthesis and biomass 
accumulation of wheat applied with N under drought stress conditions. Increased 
grain yield in barley, supplemented with N under drought stress conditions, pro-
vided further evidence that N supply directly influences quantum yield and activi-
ties of antioxidative enzymes to improve yield in crop plants (Movludi et al. 2014). 
Mannan et al. (2012) observed that increasing N levels improved growth and yield 
in rice under water deficit conditions. Recently, a comparative study involving 
application of ammonium (NH4) and nitrate (NO3) under limited water conditions 
showed that NH4 was more effective than NO3 to induce drought resistance in rice 
(Ding et  al. 2015). Application of NH4 significantly increased the root hydraulic 
conductivity, plasma intrinsic protein (PIP), expression of root aquaporins (AQPs), 
and protoplast water permeability suggesting positive association of NH4 with 
AQPs.
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Low winter rainfall and irrigation with brackish water are the primary causes of 
salinity in soils (Maggio and Cavallaro 2011). Salt stress reduces crop growth and 
production by adversely affecting metabolic activities and physiological process 
including assimilation, uptake, and translocation of NO3 and increases sap osmolal-
ity from 305 to 530 mOs mol kg−1 in roots (Annunziata et al. 2017). Under salt- 
stress conditions, nitrate reductase enzyme of nitrate reduction pathway is severely 
affected by salinity. Increased activity of this enzyme in salt-tolerant plants than 
salt-sensitive means has vast capacity for inducing tolerance against salinity stress. 
The evidence from previous studies that glutamic acid, a primary product of N 
assimilation acts as a donor of amino group for many kinds of essential amino acids 
and actively involved in development of 5-aminolevulinic acid (5-ALA) and pro-
line. Accumulation of proline in plants of salinity stress helps them to survive under 
such types of punitive conditions by adopting various biochemical adaptations. Its 
active role in osmotic adjustment as an osmolyte protects the DNA, membrane, and 
protein structures. Synthesis of ROS (O2

·-, H2O2, 1O2) under salinity stress decreases 
with proline availability because of its scavenging ability for free radicals. 
Exogenous aminolevulinic acid (5-ALA) application alleviates the lethal effects of 
salt stress by dominating the anti-stress properties. Production of chlorophyll pig-
ments, hemes, proteins stabilization, plant growth regulation, and cytokinins accu-
mulation is attributed to 5-ALA synthesis (Kuznetsov and Shevyakova 1999; 
Watanabe et al. 2006). Application of N significantly improved the growth traits and 
root system because of increased activity of nitrate reductase. In barley plants, salin-
ity stress has imposed serious impacts on reduced activity of nitrate reductase. Its 
reduced activity in salinity-induced plants caused accumulation of proline and 
5-ALA. The decrease in protein contents owing to salinity stress caused significant 
decline in chlorophyll, 5-ALA, proline, and heme, based on N nutrition. Enhanced 
synthesis of these contents promotes the activity of peroxidases enzyme for induc-
ing salt tolerance in ROS infected plants. It is well known that salinity has drastic 
effects on plants growth and development in terms of reduced respiration and the 
process of photosynthesis. Plants exposed to salinity stress provide protection to 
physiological processes during its adaptation through increased synthesis of pro-
line, ALA, heme, and chlorophyll contents. Damage to thylakoid membrane results 
in inhibition of electron transport chain on account of reduced protein-pigment 
complexes in cytochromes, reaction centers, and antenna complexes of PS-I and 
PS-II, which consequently lowers the photosynthetic efficiency of plants. Hence, 
5-ALA production in response to N nutrition is accountable to synthesis of heme 
and carotenoids, and mediating the plant growth through enhanced activities of anti-
oxidants as catalase (CAT), peroxidase (POX), superoxide dismutase (SOD), and 
ascorbate peroxidase (APX) (Parida et  al. 2003; Averina and Yaronskaya 2012; 
Averina et al. 2014).

In pearl millet, application of N at the rate of 225 kg ha−1 increased grain produc-
tion by 34% compared to 150 kg ha−1 N supply under salts stress conditions (Heidari 
and Jamshid 2010). Likewise, Abdelgadir et al. (2010) noted that increasing N level 
significantly increased the straw and grain yield in salt-stressed wheat plants. A 
marked effect of N fertigation (110 kg ha−1) was also observed on NaCl-treated 
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wheat seedlings by Fallahi et al. (2012). Application of maize with high N dose of 
300 kg ha−1 decreased the sensitivity of plants to salinity stress resulting in high 
yield (Azizian and Sepaskhah 2014). Esmaili et al. (2008) observed that N induced 
salinity tolerance in sorghum was associated with increased uptake of nutrients and 
suggested that application of N fertilizers after seedling emergence could minimize 
N leaching in plants. Similar results were reported by Rawal and Kuligod (2014) in 
maize exposed to salinity stress. They recorded maximum nutrient uptake and high-
est yield in plants supplemented with 200 kg ha−1.

8.3  Phosphorus (P)

Phosphorus (P) is actively involved in plant growth and development. Its deficiency 
reduces the uptake and assimilation of nitrates by affecting the nitrate reductase 
enzyme activity (Pilbeam et  al. 1993). A strong relationship between leaf turgor 
pressure and stomatal conductance has been reported by Radin (1984). Under 
drought conditions, the deficiency of P is prevalent through impaired root absorp-
tion rate and translocation toward shoot. The relative growth rate and photosynthetic 
ability of plants is negatively affected with P deficiency by reduced cell turgidity. 
Indeed, P actively involved in energy processes, enzyme regulation, transport of 
carbohydrates, and building of adenosine triphosphate (ATP), phospholipids, 
nucleic acids, and phosphorus-proteins. The decline in net photosynthesis is attrib-
uted to decreased regeneration capacity of ribulose 1,5 bisphosphate and stomatal 
conductance. In addition, plants in P-deficient soils are unable to consume photo- 
assimilates for growth processes (Brooks 1986; Fredeen et al. 1989). The earlier 
effect of water scarcity in plants is the P deficiency. Its availability improves plant 
growth even under mild drought stress because of its active role in water status, 
photosynthesis, stomatal conductance, and cell membrane stability index. 
Phosphorus induces drought tolerance ability in plants through promoting symbio-
sis association of roots with mycorrhiza, leading toward enhanced water and nutri-
ents uptake. The more absorption of water and nutrients, in turn, improves nitrate 
reductase activity for assimilation of nitrates. It is suggested that priming with P 
nutrient also improves the growth processes under drought stress (Ajouri et  al. 
2004; Waraich et al. 2011).

A drastic change in morpho-physiological mechanisms through distraction in 
intercellular osmotic gradient is the main cause of salinity stress. The disturbed 
functioning as decreased protein synthesis, photosynthesis, enzymatic activity, P, 
K+, Ca2+ imbalances, water relations, membrane stability index is responsible for 
decreased stem width, length, diameter, pith, leaf thickness, xylem vessels, and 
length of leaf vascular bundles (Semida et al. 2014). Higher salinity tolerance with 
P supply has been suggested in previous reports. It is well documented that only 
moderate supply of P is essential for salinity tolerance in rice plants while its higher 
concentration leads toward toxicity in cells, which in turn decreases crop productiv-
ity (L’taief et al. 2012). Plants exposed to salt stress conditions causes a significant 
decline in chlorophyll pigments. The decrease in green pigments reduces 
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photosynthesis, which is a principal source of energy for physiological and bio-
chemical processes. A considerable decline in chlorophyll contents might be caused 
by disoriented thylakoid membranes and degraded chlorophyll pigments. Indeed, 
the synthesis of chlorophyllase enzyme, a proteolytic enzyme, is the cause of rapid 
degradation of chlorophylls, attributed to reduced growth and assimilation rates 
(Rong-hua et al. 2006).

The production of osmo-protectants like total soluble sugars, proline, and free 
fatty acid contents are improved in plants of salinity stress, while its concentrations 
further increase in P-rich plants. These osmo-protectants are involved in salt- tolerant 
mechanism of osmotic adjustment for plants’ survival under salt-induced conditions 
(An and Liang 2013).The biosynthesis of osmo-solutes also adopts strategy against 
salinity stress by acting as protectants for cellular and enzymes structures. Another 
reason for salinity tolerance by producing osmolytes is that behavior like N storage 
compounds. The salinity tolerance responses of osmolytes in terms of N fixation 
and plant development have been reported in Proteus vulgaris, Phaseolus acutifo-
lius, and Medicago sativa (Taie et  al. 2013). P’s role in mitigating the salinity- 
induced adversities in Pistacia vera is because of its contribution to increased sugar 
contents. P’s active role in osmotic adjustment is because of higher concentrations 
of produced osmolytes. Addition of P to salt-stressed plants provides support in the 
pathway of sugar synthesis and its structural formation. The decrease in mineral 
elements like K+ under prevalent saline conditions could be related to selective 
absorption and gradient competition between Na+ and K+ resulted in increase in 
uptake of Na+ in spite of K+

. This synergistic effect of P upon Ca+, Mg+, and K+ may 
be responsible for osmotic adjustment in plants for improved tolerance to salinity 
stress (Shahriaripour et al. 2011; Bargaz et al. 2016).

8.4  Potassium (K)

Potassium (K) is considered the most effective element for inducing drought toler-
ance in plants. It is involved in various physiological and biochemical mechanisms 
such as enzymes activation, photosynthesis, turgor pressure maintenance, and pho-
tosynthates translocation (Mengel and Kirkby 2001). Increased photosynthesis and 
plant growth under drought stress conditions is attributable to improved K nutrient 
status of plants. The possible way for alleviating drought adversities in drought- 
stressed plants by K supply is the higher water use efficiency. Improved tolerance 
ability of K-rich plants is due to its crucial role in the maintenance of osmotic poten-
tial and turgidity of the cells, which regulates the proper functioning of the stomates 
(Kant and Kafkafi, 2002). K protects the plants against harmful effects of drought 
by efficient utilization of soil moisture, maintaining high stroma pH, and reduced 
photo-oxidative damage to the chloroplast (Cakmak 1997). Plants suffering from 
abiotic stresses require more K to ameliorate their adverse effects. A high demand 
for K is relatively linked with its critical role in assimilation of CO2. The decreased 
leaf water potential due to drought stress conditions causes stomatal closure, which 
eventually reduces CO2 fixation. Among the harmful effects of environmental 
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stresses like drought stress is the formation of reactive oxygen species (ROS). Its 
increased production induces oxidative damage to the chloroplast particularly dur-
ing the process of photosynthesis. The abnormalities in photosynthesis and carbo-
hydrate metabolism are also associated with ROS synthesis. A more decrease in 
photosynthesis in K-deficient plans under drought stress conditions is due to 
decrease in K within the chloroplast and further synthesis of ROS. Therefore, to 
lessen the severity of drought stress, K could be the possible way to avoid the disor-
ders of water relations, stomatal opening, cell oxidative damages, and finally photo-
synthesis (Mengel and Kirkby 2001; Jiang and Zhang 2002; Waraich et al. 2011).

Exogenous K supply enhances the biomass accumulation and influences grain 
weight and yield by increasing the translocation of dry matter into grain. Moreover, 
K plays a critical role in drought tolerance by increasing water use efficiency, main-
taining water balance, regulating stomatal conductance, and improving carbohy-
drate content (Hussain et al. 2016). It decreases the risk of cavitation under low 
water availability, thus enabling the plants to tolerate drought stress (Trifilo et al. 
2008). Application of KCl and K2SO4 was observed to increase drought tolerance in 
rice by increasing proline content and activities of antioxidative enzymes (Zain and 
Ismail 2016). In addition, K-induced high transpiration rate increased uptake of 
nutrients to alleviate the damaging effects of drought stress. Foliar spray of K (using 
K2SO4 as a source) before silking stage reduced kernel abortion and significantly 
increased grain yield and K concentration in maize under water deficit conditions 
(Shahzad et al. 2017). Similarly, soil applied with K (100 mg kg−1 of soil) increased 
growth and yield of two contrasting maize hybrids, viz., 32F-10 (drought tolerant) 
and YH-1898 (drought sensitive), under drought stress (Aslam et al. 2013). Hussain 
et  al. (2017) reported that combined application of K with Zn 
(150 kg ha−1 K + 12 kg ha−1 Zn) was more effective than individual application of 
these nutrients to mitigate drought stress in maize.

In wheat, K application was observed to increase pigments (chlorophyll and 
carotenoids) and activity of aminotransferase resulting in improved RWC and yield 
under water deficit conditions (Jatav et  al. 2014). Recent studies by Shah et  al. 
(2017) also showed a marked increase in wheat yield by exogenous K supply. 
Exogenous K supply improves water relations and prevents the degrardation of pig-
ments and plasma membrane proteins under water stress conditions (Alam et al. 
2011; Zareian et al. 2013). Safar-Noori et al. (2018) provided evidence that K appli-
cation along with salicylic acid (SA) could increase nutritional quality and grain 
yield of wheat under drought stress. They observed a significant increase in water-
soluble pentosan and starch content by SA + K treatment. Likewise, Rohbakhsh 
(2013) reported a marked increase in forage yield and quality of sorghum by K 
application under limited water conditions.

Salt-induced effects on crop growth and productivity could be alleviated by K 
application because of its direct involvement in photosynthesis, synthesis of pro-
teins, regulation of stomata, and turgor-pressure-driven solute transport in the xylem 
(Ashraf 2004). Furthermore, type of cuticle or wax deposition on leaf surface, type, 
source, type and applied concentration of K, growth conditions and its absorption 
are the basis for its effective utilization. K deficiency causes a significant decline in 
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growth of plants due to its active role in photosynthesis. The decline in leaf K con-
tents in K-deficient plants is responsible for disturbed stomatal regulation, conse-
quently affecting the rate of photosynthesis. Availability of K in guard cells, 
epidermal cells, and leaf apoplast is considered to be essential for mediating the 
proper functioning of stomates. It has been reported that K contributes to optimize 
the water balance and assimilate partitioning in salt-stressed plants. Its essential role 
as osmotic adjustment into the vacuole helps the plants to survive under stressful 
environment by maintaining their water relations (Shabala et al. 2002; Akram et al. 
2009). ROS production in salinity-induced plants is the main reason of unbalancing 
of homeostasis, resulting in ion toxicity, osmotic stress, and lipid peroxidation, 
eventually reducing permeability of cell membrane for ion leakage (Sairam et al. 
2002; Kukreja et al. 2005). Improvement in salinity stress in K-enriched plants has 
been reported in corn, rice, and wheat by its imperative role in activation of antioxi-
dants. A major decline in ion leakage by K supply has also been reported in salt- 
induced spinach plants. Availability of K to salt-stressed plants showed positive 
response in mitigating its drastic effects because of its antagonistic behavior for 
uptake of Na ions. The enhancement in growth by K application under salinity 
stress was also reported in rice plants (Lynch and Lauchli 1984; Kaya et al. 2001). 
A significant decline in chlorophyll contents (a and b) was observed in maize plant 
when exposed to salt stress conditions. The biochemical alterations which are 
responsible for reducing chlorophyll pigments in salt-affected plants could be due 
to degradation of proteins, chlorophyll enzymes, and chloroplast structure. It is sug-
gested that lethal effects are also in terms of reduced K+/Na+ ratio of salt-stressed 
plants. Addition of K improved the K nutrient concentration in plants, resulting in 
higher K+/Na+ ratio, which is responsible for salinity tolerance (Hernandez and 
Alamansa 2002; Abbasi et al. 2012).

8.5  Calcium (Ca)

Calcium (Ca) is considered most effective in enhancing drought tolerance ability in 
plants by maintaining the integrity of cell wall. It also facilitates the plants to accli-
matize and recover from drought injury by its critical role in plant metabolism. To 
reduce the severe effects of drought, the possible way is the improved Ca nutrition 
in drought-stressed plants. Calcium protects the plant from drought injury by regu-
lating the enzymatic activity of plasma membrane ATPase. This enzyme is actively 
involved in pumping back those lost nutrients during cell damage because of Ca 
deficiency (Palta 2000).

Imbalance nutritional status of salt-stressed plants is due to interaction and competi-
tion of Na+ and Cl− with other nutrients, leading to nutrient deficiencies, particularly 
uptake of Ca and N. Calcium is considered an essential element for ameliorating dras-
tic effects of salinity because of its active role in varying mechanisms such as cell wall 
stabilization, functional and structural integrity of plant membrane, signaling pro-
cesses, regulation and selectivity of ion transport, and enzyme activities of cell wall 
(Hadi and Karimi 2012). Salinity stress causes a decrease in Ca contents in the 
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cytoplasm, attributed to lower Ca signals required for stress tolerance. In various bio-
logical systems, Ca acts as messenger for inducing salt tolerance ability in plants under 
harsh conditions by stimulating the system of signal transduction (Parre et al. 2007).

It has been reported that Ca has protective role in plant growth and development 
even under high salinity stress. Cell reproduction and volume in cotton roots was 
stimulated with supplemented Ca nutrition. Lowering of Na+/Ca2+ ratio has signifi-
cant impacts on cell shape and its production. The root cells become thinner and 
longer due to narrow Na+/Ca2+ ratio (Leidi and Saiz 1997; Cramer 2002). Transport 
of water across root cell membranes from roots to leaves is affected when plants are 
exposed to salinity stress because of reduced hydraulic conductivity of roots with 
increased Na+/Ca2+ ratio. Exogenous Ca has potential to avoid the inhibition of roots 
hydraulic conductivity under Na-stress (Azaizeh et al. 1992). Cell wall extension 
under salinity stress is reduced with increased Na+/Ca2+ ratio as it affects biosynthe-
sis of cell wall. Under high salinity levels, the biosynthesis of cellulose and non- 
cellulosic polysaccharide in the cell wall is affected in cotton roots with increased 
contents of uronic acid of cell wall, which eventually lose the integrity of cell wall. 
Modifications in concentration of cellulose and uronic acid is prevented if plants are 
supplied with Ca nutrition. With increased evidences, it is suggested that inhibition 
in enzymes activity and degradation of polysaccharides could be reduced by supple-
menting Ca. Ca-deficient plants under sodium stress were observed with changed 
composition of cell wall, specifically that of pectic polysaccharides (Hadi and 
Karimi 2012).

8.6  Magnesium (Mg)

Magnesium (Mg) is an important element for plant development because of its 
direct involvement in physio-biochemical mechanisms. Transport of photosynthates 
from source to sink is prompted with Mg nutrition supply. Sufficient Mg nutrient 
increases water and nutrients uptake because of increased root growth, helps in 
export of carbohydrates, reducing ROS production and photo-oxidative damage to 
cells under drought stress conditions. An enhanced chlorophyll is directly linked 
with Mg that is bound in the chloroplast. Interveinal chlorosis in drought-stressed 
plants is mostly prominent by Mg deficiency. Another reason of its deficiency in 
plants is presence of competing cations such as Ca, Al, H, NH4, and Na. Reduction 
in export and carbohydrates accumulation in Mg-deficient plants is the major cause 
of restricted CO2 fixation. Utilization of electrons is being limited to CO2 fixation 
due to impaired photosynthetic electron transport chain, thereby leading to ROS 
generation, which causes damage to membrane lipids and chlorophyll pigments. 
Tolerance to drought stress in plants is induced, however, by activating various 
kinds of enzymes such as RuBisCO, protein kinases, and ATPases by Mg supply 
(Mengel and Kirkby 2001; Mittler 2002; Shaul 2002; Epstein and Bloom 2004).

Harmful effects of salt stress on account of reduced photosynthesis may be due 
to alterations in stomatal conductance. More negative leaf water potential and 
osmotic potential under adverse conditions of salinity mediates turgidity of stomatal 

F. Nawaz et al.



139

cells, which ultimately reduces stomatal regulation in plants. Crop productivity may 
eventually decrease in relation to depressed photo-assimilation during the process 
of photosynthesis (Xu et  al. 1994). It is depicted that under salinity stress, even 
plants are osmotically adjusted; water absorption could not regain their turgidity. To 
balance the water loss, Mg has strong impact on maintaining the water status of salt- 
stressed plants. Higher leaf stomatal conductance in Mg rich plants might be 
because of decreased leaf water potential and subsequent increase in leaf turgor 
pressure. Mg is involved in many enzymatic reactions, protein synthesis, osmoregu-
lation, and growth of salt-stressed plants (Furriel et al. 2000).

8.7  Sulfur (S)

Sulfur (S), due to its importance in plant growth, development, and involvement in 
several defense mechanisms, is now being considered as fourth major macronutri-
ent required by plant. Its importance is evident from the fact that it is a vital con-
stituent of vitamins, pantothenic acid, and prosthetic groups. S-containing 
compounds like GSH, thiols, and sulfolipids are involved in defense mechanisms 
and also normal functioning of plants (Brychkova et  al. 2007; Münchberg et  al. 
2007). In addition, it plays key roles in enzyme activation, chlorophyll formation, 
increasing photosynthesis, and synthesis of nucleic acids (Kaur et  al. 2013). 
Glutathione, an S-containing compound, is involved in improving the assimilation 
of other nutrients. Furthermore, it stimulates the defense system against oxidative 
stress (Münchberg et al. 2007).

Sulfur plays an important role in plant growth, tolerance mechanisms, and forma-
tion of root nodules in legumes. Assimilation of S begins from the absorption of S 
from soil by SULTR (sulfate transporters) genes present in the roots. However, in 
S-deficient soils, plants can also absorb foliar S especially through hydrogen sulfide 
(H2S) (Koralewska et al. 2008). Plants response to stress results in increased sulfate 
flux compared to other ions like NO3 or PO4 showing that there is a high demand for 
S under abiotic stress (Ernst et al. 2010). S nutrition can enhance the efficiency of 
essential primary macronutrients like N and P (Azza et al. 2011), and plant needs 
similar amounts of S and P (Ali et al. 2008). In cereals, S nutrition improves the effi-
ciency of N absorption and assimilation because the enzymes involved in metabolism 
of N have S as their vital constituent (Salvagiotti et al. 2009; De Bona et al. 2011).

During drought stress, when leaves are only site for ABA synthesis, sulfate in the 
xylem of plant acts as chemical signal for closing stomata. In addition, it also acts 
as a chemical signal for ABA-dependent stomatal closure in leaves during early 
stages of water stress when ABA biosynthesis is restricted to leaves (Ernst et al. 
2010). In recent years, important roles of S in alleviating various stresses have been 
studied in detail (Rausch and Wachter 2005). In wheat, exogenous sodium hydro-
sulfide (NaHS) supply increased RWC and biomass accumulation at seedling stage 
compared to control plants under water deficit conditions. Moreover, it also upregu-
lated the ABA catabolism genes, ABA reactivation genes, and expression levels of 
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ABA synthesis in the roots of wheat plants. The results from this research indicated 
that exogenous NaHS can mitigate drought stress by the participation of ABA. Shan 
et al. (2011) evaluated the effects of H2S application on ascorbate and glutathione 
assimilation in wheat leaves under drought stress. Sodium hydrosulfide (NaHS; H2S 
donor) was used as a source of S. Pretreatment with NaHS reduced the contents of 
malondialdehyde (MDA) and electrolyte leakage caused by drought stress. 
Moreover, pretreatment with S enhanced the activities of GR, APX, gamma- 
glutamylcysteine synthetase (γGCS), and dehydroascorbate reductase (DHAR) 
compared to control plants. Application of trehalose (Tre) and SA resulted in 
increased activities of peroxidase (POD) and phenylalanine ammonia lyase (PAL), 
increased ascorbic acid oxidase (AAO) under stress, and decreased level of lipid 
peroxidation, preventing membrane leakage (Aldesuquy and Ghanem 2015). They 
concluded that SA and Tre are very effective in mitigating the negative effects of 
drought stress in wheat.

Salinity stress severely affects stomatal conductance leading to the restriction of 
gaseous exchange in plants. Hence, CO2 absorption and availability in plants reduce, 
resulting in decreased rate of photosynthesis (Flexas et al. 2007). S-containing com-
pounds have the ability to modify the physiological processes of plants to increase 
tolerance of plants under saline conditions (Khan et al. 2014). Hazardous effects of 
salinity on rice yield and quality can be alleviated by combined application of gyp-
sum and S (Shaban et al. 2013). They reported that application of gypsum and S can 
be very helpful in improving vegetative growth, grain yield, and quality of rice 
grown under saline conditions. Supplementation of wheat with CaSO4 at the rate of 
150  kg  ha-1 markedly increased tillers, spike length, 1000 grain weight, grains 
spike−1, and straw yield under salt stress conditions (Arshadullah et  al. 2013). 
Furthermore, increase in Ca, Mg, and S and a decline in Na were also observed in 
grains compared to control plants, indicating that CaSO4 application can signifi-
cantly increase essential macronutrients Ca, Mg, and S and avoid uptake of Na. 
Khan et al. (2006) investigated the importance of S in increasing the yield and yield- 
related traits of maize under saline conditions and concluded that fertilization with 
60 kg ha−1 S markedly improved biomass (41%), 1000-grain weight (5%), and total 
grain weight (43%) in salt-stressed plants. In rice, application of 600  kg  ha−1  S 
along with 6-day irrigation interval resulted in the highest water productivity rates 
and significantly improved grain and biological yield under saline conditions (Zayed 
et al. 2017). Maize seedlings treated with 60 and 80 mM CaSO4 exhibited the high-
est germination percentage, mean emergence time, germination energy, mean daily 
emergence, and germination speed under salt stress conditions (Riffat and Ahmad 
2016). Ye et al. (2015) reported that pretreatment of wheat grains with H2S during 
imbibition can increase the germination of wheat seeds by reducing the inhibitory 
effects of salt stress. In addition, seeds treated with NaHS showed higher activities 
of esterase and amylase compared to control plants. It also reduced the levels of 
MDA and the alterations made in solidarity of plasma membrane by NaCl particu-
larly in the tips of radicle.
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8.8  Boron (B)

Boron (B) is considered as essential element because of its primary role in the integ-
rity of cell wall. Mineral nutritional supply of B plays a vital role in stimulating 
plant resistance against drought stress factor. Reduced stunted growth of plants 
under drought stress is related to the fact that B nutrition helps to strengthen the 
plants through promoting flower retention, pollen tube formation, sugar transport, 
and carbohydrates metabolism. A wide range of physiological and biochemical 
changes at molecular and cellular levels are induced in drought-stressed plants. 
Alleviation of these drought adversities by B nutrition is because of increased 
uptake of water from the soil rhizosphere with more root hairs and mycorrhiza pro-
duction, resulting in higher CO2 assimilation and stomatal conductance (Bartels and 
Sunkar 2005; Christensen 2005; Gustav et al. 2008). Accumulation of polyamines 
and chlorogenic acid and reduced biosynthesis of indole acetic acid (IAA) and cyto-
kinins (CK) in drought-stressed plants might be due to B deficiency. Crop produc-
tivity increased because B has a role in improving photosynthesis, water use 
efficiency, and pollen viability and assimilates partitioning under water deficit con-
ditions. Imposition of drought stress caused considerable decline in leaf water 
potential, while B supplementation changed the water potential more positively. 
More negative leaf water potential was also perceived in B-deficient legume plants 
due to reduced transpiration efficiency in response to water scarcity conditions (Wei 
et al. 2005; Will et al. 2011; Upadhyaya et al. 2012).

Salt-induced reduction in growth of plants could be minimized in the presence of 
B. Its increased supply causes accumulation of B in different plant organs such as 
shoot, root, style, stigma, and ovary, which results in better pollination, seed setting, 
and vigorous grain formation. Improved salinity tolerance in rice plants seems pos-
sible due to ion exclusion mechanisms (Mehmood et al. 2009: Aftab et al. 2015). 
Reduced transpiration rate because of salinity stress has been suggested to affect the 
interaction of B with salinity, its uptake through the roots, and translocation to 
shoot. The root uptake of B is severely affected in salt stress conditions. Uptake of 
B is predominantly based on membrane permeability in plants subjected to salt 
stress. Salt-induced changes in membrane composition, changed aquaporin func-
tionality, or membrane damage, resulted in reduced B translocation to shoots. 
Salinity-induced changes in transpiration rate of plants might be caused by closed 
stomata and transpiration-driven water flow (Hu and Brown 1997; Wimmer and 
Goldbach 2012).

8.9  Zinc (Zn)

The possible way to mitigate the damaging effects of drought stress in plants is the 
efficient use of Zn nutrition. The decrease in crop productivity under environmental 
stress conditions is only because of Zn deficiency. Zn supplementation under drought 
conditions balances the hormonal status of plants and ensures its survival under 
adverse conditions of drought. It has been suggested that drought stress alter the 

8 Role of Mineral Nutrition in Improving Drought and Salinity Tolerance in Field Crops



142

normal functioning of auxin in plants. Its application under such harsh conditions acts 
as co-enzyme for the synthesis of tryptophan, a precursor for auxin production, and 
thereby increases root development for improved water status of plants. In previous 
studies, stunted growth and chlorotic leaves in maize, reduced photosynthesis because 
of decreased intercellular CO2 concentration, carbonic anhydrase activity, and stoma-
tal conductance in cauliflower, lowered osmotic potential in cabbage, and declined 
transpiration rate in pecan plants were observed in Zn-deficient plants. In addition, Zn 
nutrition protects the plants from oxidative damage of ROS by enhancing the activi-
ties of antioxidants and reduced activity of membrane-bound NADPH oxidase under 
drought stress conditions (Waraich et al. 2011). Improvement in drought tolerance in 
crop plants by Zn application is also because of protein and carbohydrate metabolism, 
starch formation, and membrane integrity (Fageria et al. 2002).

Zn-nutritional status of plants is essential for higher crop productivity. Its defi-
ciency is considered a most limiting factor for plant development under salinity 
stress environmental conditions (Khoshgoftar et  al. 2004). It seems in previous 
studies that improvement in salt tolerance in plants could be possible by Zn addi-
tive. Plants exposed to saline conditions have higher concentrations of Na+ and Cl− 
ions. Generally, reduced drastic effects in salt-stressed plants with supplemented Zn 
are because of increased membrane stability index. Enriched plants with exoge-
nously applied Zn have critical role in mediating the permeability of membranes by 
sustaining the membrane lipids that are active structurally and functionally. 
Instability of cellular membrane due to Zn deficiency in salt-affected plants is attrib-
utable to excessive uptake of Na+ and Cl− ions at toxic level, indicating damage to 
membrane permeability (Kong et al. 2005; Aktas et al. 2006). Tavallali et al. (2009) 
also suggested a possible role of Zn in improving salt tolerance in plants with 
reduced uptake of Na+ and Cl− ions. Absorption of Na+ and Cl− ions under salt stress 
conditions is the major reason of declining leaf RWC that in turn affect the relative 
growth rate, which is most prominent in Zn-deficient plants. Supplemented Zn 
nutrition ameliorates the drastic effects of salinity in terms of maintained water 
status of plants attributable to improved vascular tissues. By maintaining the Zn 
requirement of plants accumulates the Ca and K ions in the cell that provides pro-
tection to salt-stressed plants against osmotic stress and helps the roots for more 
water absorption (Gadallah 2000; Mehrizi et al. 2011).
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Abstract
The environment is defined as the sum total of all biotic and abiotic factors other 
than individual concerned. The various factors are called biotic and abiotic 
depending upon their biological and non-biological nature. When some environ-
mental factors interfere with complete expression of cultivars/varieties potential, 
they are known as stress. Stress is categorized into two types: (a) biotic stress that 
includes pathogen, pests, weeds, etc., and (b) abiotic stress due to moisture 
(excess/deficit), temperature (high/low), minerals (deficiency/toxicity), salinity, 
soil pH, air pollution, etc. Drought, which is a major and most important abiotic 
stress, acts as a constraint to productivity of legumes. It is a meteorological phe-
nomenon which implicit the lack of rainfall for a long period of time which 
caused moisture reduction in soil and water shortage with a deficiency of water 
potential in plant tissues. It inhibits the crop from achieving the potential yield 
and severely lowers the legume production. Generally, grain legumes depend on 
rainfall and are susceptible to irregular drought stress throughout its vegetative 
and reproductive growth phase. During pod filling stage, drought stress is very 
common in legume crops and reduced yield in the crops grown with current 
rainfall. It can be minimized by developing cultivars tolerant to drought stress.
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Drought · Legume · Abiotic stress · Molecular approaches
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9.1  Introduction

Stress may be described as any environmental condition which hinders the plant 
from reaching its full genetic yield potential (Atkinson and Urwin 2012). Harmful 
effect on the living organisms by the non-living factors in a specific set of the 
domain is called abiotic stress (Satyanarayana et al. 2012). These are severe intimi-
dation to agriculture. Furthermore, it causes lesser yield due to changes in soil- 
plant–atmosphere continuum. In the world, India is the leading producer, consumer, 
and importer of pulses. Despite various efforts of the Government of India, the pulse 
production from an area of 23.0 million ha has stabilized at around 18–20 million 
tonnes against the consumption of 22–24 million tonnes, which necessitates imports 
of 4–six million tonnes pulses each year, resulting in a loss of $ 2.3 billion foreign 
exchange each year (Business Line 2015). Even with this level of production and 
import, availability of pulses (47 g/capita/day) is far lower than the recommended 
minimum requirement of 70 g/capita/day.

The pulses have great potential to bear the vagaries of the changing climate, 
provided other crop management practices are strictly followed to harness achiev-
able yields. Pulses can adapt to a diverse range of edaphic and environmental condi-
tions, therefore, can constitute an important component of climate-change mitigation 
and adaptation strategy. Major pulse crops in India grown during the rainy (kharif) 
season (June–October) include pigeonpea, urdbean, mungbean, and cowpea, while 
during the winter (rabi) season (October–April), chickpea (Cicerarietinum L.), len-
til (Lens culinaris Medikus), and peas (Pisum sativum L.) are grown. Choudhary 
(2013) and Pooniya et al. (2015) reported that yield gaps in pulses at research farms 
and farmer’s field ranged from 368–492 kg ha−1 in urdbean, 220–417 kg/ha in kid-
ney bean (Phaseolus vulgaris L.), 477–563 kg/ha in pigeon pea, 372–494 kg/ha in 
cowpea, 225–601 kg/ha in chickpea, and 253–510 kg/ha in lentil. So, a comprehen-
sive study of crop reaction to the stress is the basis for regulating crops appropri-
ately. There are significant differences in the tolerance of plants to drought stress 
depending upon duration and intensity of stress, species, and developmental stage 
of the plant (Singh et al. 2012).

9.2  Drought Stress

Drought stress is one of the most important challenging factors faced by legume 
crop producers worldwide. It can persistently limit production, and extreme events 
can lead to total crop failures. There may be a reduction in yield by 50% due to 
drought and heat stress, basically in arid and semiarid regions (Nam et al. 2001). 
Drought stress regulates normal physiological, biochemical, and morphological 
reactions of crops, which lastly reduces crop yield (Malik et  al. 2006). All the 
legume crops (pea, French bean, cowpea, broad bean, Indian bean, black gram, 
green gram, lentil, pigeonpea, urdbean, mungbean, and chickpea) are vital sources 
of amino acids and quality protein for mankind. In several food producing 
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countries, severe droughts conditions take place from time to time, with comprehen-
sive effects on world food production and supply (Edmeades et al. 1992).

9.3  Drought Stress Response in Legumes

Drought stress responses categorized as morphological, physiological, biochemical, 
and molecular are apparent at every phenological stage of plant growth. A compre-
hensive description of different types of drought responses is given below:

9.3.1  Morphological Responses

Growth is recognized through cell division, enlargement, and differentiation. It 
involves genetic, physiological, biochemical, morphological, ecological events and 
their intricate interactions. The growth and development of the plant depend on 
these cases, which are affected by drought. Cell growth is the most sensitive physi-
ological processes of drought because of the low turgor pressure (Taiz and Zeiger 
2006) and is a complex interaction between sources and sink. Drought debases 
mitosis; cell elongation and expansion, and resulted growth reduction (Hussain 
et al. 2008). Deficiency of water either permanent or temporary critically bonds the 
growth and development of plant more than the other climatic factors. The primary 
and leading effect of drought is low germination and development of weak plants 
(Harris et al. 2002; Kaya et al. 2006).

9.3.2  Physiological and Biochemical Responses

Growth results in the production of daughter-cells, resulting in cell divisions of 
meristematic cells, followed by young cells expansion. Inhibition in cell elongation 
of higher plants by disruption of water flow from the xylem to the fencing elongat-
ing cells is due to severe deficiency of water (Nonami 1998). Water deficit condition 
to plants affected root-to-shoot signaling and inhibits the root and shoot growth, 
impaired photosynthetic machinery, oxidation of chloroplast lipids, early leaf senes-
cence, and modification in structure of pigments and proteins (Menconi et al. 1995; 
Novak and Lipiec 2012; Anjum et al. 2003; Farooq et al. 2009; Estill et al. 1991). 
Abscisic acid (ABA), a growth inhibitor, has long been identified as stress signal 
root-to-shoot (Schachtman and Goodger 2008). A signal cascade is stimulated by 
roots to the shoots via xylem during soil drying. Abscisic acid is composited in the 
roots and move in the xylem to the shoot through the transpiration stream, where it 
suppresses leaf expansion and the opening of stomata prior to altering leaf water 
and nutrient status (Wang et al. 2000; Guerrero and Mullet 1986).

Carotenes, isoprenoid molecules forms a major part of the plant defense system, 
but oxidative destruction is very common in these molecules. β-carotene is a part of 
the core complexes of PSI and PSII (Andrew et al. 2008; Havaux 1998), which is 
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destructed by the water stress (Kiani et al. 2008) due to development of reactive 
oxygen species (ROS) in the thylakoids (Reddy et al. 2004). Reactive oxygen spe-
cies (O2

•−, H2O2 and OH• radicals) levels increase noticeably and lead oxidative 
destruction to lipids, proteins, and genetic material of the cell (Apel and Hirt 2004; 
Farooq et  al. 2009). The amount of highly reactive compound malondialdehyde 
(MDA) increases by ROS which has been responsible for oxidative damage (Moller 
et al. 2007). Antioxidant defense system presents in plants to regulate active oxygen 
damage and ensuring cellular function normally (Horvath et al. 2007).

For the maintenance of leaf turgidity assimilation of solutes takes place in the 
cell during drought stress. To raise tolerance level of plants to drought-stress, assem-
bling and mobilization of proline has been reported (Nayyar and Walia 2003). The 
first response of plants under water stress condition is accumulation of proline 
(Anjum et al. 2011; Demiral and Turkan 2004), which act as a signalling molecule 
to modulate function of cell organelles, stabilize subcellular structures, scavenge 
free radicals, as well as cushioning cellular redox potential (Szabados and Savoure 
2009; Ashraf and Foolad 2007).

9.3.3  Molecular Response

During the previous years, DNA-based markers have become available (Kumar 
et al. 2011). For transferring of resistance to stresses, DNA-based marker has been 
widely used into grain legumes (Choudhary et al. 2018). To identify quantitative 
trait loci (QTL) for specific drought-tolerance component traits can also be used to 
slice up the genetic basis of various characters linked to drought performance (Serraj 
et  al. 2005). By using molecular techniques for many drought tolerance traits in 
chickpea varieties, one genomic region possessing quantitative trait loci have been 
identified and successfully accessed by using a marker-assisted breeding (Thudi 
et al. 2014). Inclusive work has been done to unravel drought tolerance mechanism 
in legume crops; however, the conception of the molecular basis of drought stress 
tolerance still needs more research.

9.4  Management Strategies to Minimize Drought Stress

9.4.1  Breeding Approaches

Conventional and non-conventional strategies of breeding have been used for 
improving drought tolerance in legume crops. The traditional breeding methods 
require large investments in land, labor, and capital with a little success rate of 
improvement. High root biomass, plant type, leaf trait, and cuticular wax present on 
leaves have been used as a marker in traditional breeding (Choudhary et al. 2018). 
However, DNA marker-based improvement method, which shows potential regard-
ing the improvement of legume crops, specifically for those traits where the possi-
bility of phenotyping is only late in the season of crop development, is not easy or 
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is uneconomical. Recently, progress in genomics gave a better understanding of 
physiological mechanisms of drought response. It added rapidness in progress of 
genetic improvement of drought tolerance of the crop.

9.4.2  Exogenous Application of Hormones 
and Osmoprotectants

Endogenous plant growth regulators take part in regulating the effects to abiotic 
stress by refining the growth and development system of plants. Overall, there are 
five major classes of PGRs: the auxins, gibberellins, cytokinins, ethylene, and 
ABA.  Moreover, a broad range of chemicals have been accumulated with clear 
growth regulatory actions, and few of them have been illustrated to have extensive 
applications in getting better growth of the plant, as well as yield and quality (Upreti 
and Sharma 2016). Osmoprotectant protects cell membrane destruction by a high 
concentration of inorganic ions and oxidative damage. It has been hypothesized that 
installing osmoprotectant synthesis pathways is a potential way to breed stress- 
tolerant crops (Rathinasabapathi 2000).

9.5  Conclusions

Drought stress is a global problem, and this situation has been made dangerous by 
recent global climate change. It causes closer to stomata with a parallel decline in 
net photosynthesis and water-use efficiency. Progresses have been made to develop 
drought stress tolerance in legume crops through the application of conventional 
and non-conventional approaches of breeding. Besides that, hormones and osmo-
protectants have been used for getting better performance of legumes. Furthermore, 
dissection of drought tolerance linked gene will open the way for improving the 
legumes.
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Abstract
Water is an essential necessity for proper crop growth and high yield. The 
requirement of water for the crop could not be fulfilled just by the uptake by crop 
roots from ground but by additional irrigation. The levels of groundwater is 
depleting with increase in time due to excessive usage /wastage and high tem-
peratures this will cause defciency of water not only for irrigation but also for 
human consumption. Deficiency of water in crop leads to several changes in 
physiological and metabolic activities. In sugarcane crop, changes in leaf water 
potential, relative water content, osmoregulators, etc. have been observed. 
Sugarcane is an important crop in terms of economical purposes as it is the main 
producer of sugar and bio-energy all throughout the world. The prevailing 
drought condition due to the climate change scenario is hampering the productiv-
ity of the crop. To manage this problem, developing a tolerant variety for such a 
condition is the best option although there are several constrains in doing so. 
Furthermore, for breeding a tolerant variety, the breeder must keep in mind the 
selection criteria for choosing the right parent for achieving the correct result. 
This chapter is emphasizing on the breeding efforts in developing a drought- 
tolerant sugarcane variety.
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Abbreviations

DEF 1 disulfide isomerase protein 1 
ERFs ethylene-responsive factor proteins
HSP heat shock proteins
IGS indole-3-glycerol phosphate synthase
LEA late embryogenesis abundance proteins
ROS reactive oxygen species
Scdr 1 sugarcane drought-responsive gene 1
SOD superoxide dismutase genes

10.1  Introduction

Sugarcane (Saccharum officinarum L.) is an important crop for sugar and bio- energy 
worldwide. It is one of the world’s major C4 crops that mainly grow in the tropic and 
sub-tropic regions. Weather- and climate-related events are the key factors for sugar-
cane production worldwide, especially in many developing countries (Zhao and Li 
2015). Water is already a scarce commodity in many parts of the world, and as the 
climate is changing unpredictably, this will enhance such conditions in the near future. 
As the global temperatures are rapidly going up along with the frequency and precipi-
tation level, the problem of water losses are predicted to enhance further through 
evapotranspiration (Lopes et al. 2011). Variation in climate is severely affecting the 
water sources, and as per the present scenario, the frequencies of occurrence of 
drought and floods will be increasing in times to come (Misra et al. 2016; Mall et al. 
2017). Water is a requirement for any crop to grow properly which is not fulfilled 
through uptake of groundwater from the soil by its roots, but also additional irrigation 
is required for fulfilling the needs for the flourished crop. But if water needs are not 
fulfilled through external irrigation, then this would lead to groundwater depletion by 
the continuous usage of groundwater by plants for their survival (Oki and Shinjiro 
2006). Water is essentiality not only for humans and animals but also for the plants for 
their proper growth and development (Larcher 2006). Several studies have revealed 
that deficiency of water causes changes in many physiological activities such as leaf 
water potential, relative water content, etc. (Nogueira et al. 2000; Graça et al. 2010; 
Silva et al. 2010). Also, as a result of water deficiency, metabolic processes were also 
altered like osmoregulators increased under such conditions (Nogueira et al. 2001; 
Guimarães et al. 2008; Silva and Barbosa 2009; Medeiros et al. 2012).

10.2  Breeding in Sugarcane

Drought is a complex stress that involves a large number of genes and regular ele-
ments, and breeding a drought-resistant variety is further a complex process for a 
polyploid crop. Several studies have been conducted on the way the elite genotypes 
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of sugarcane respond to drought conditions (Hemaprabha et al. 2004), but there is 
still a need for further study on this aspect to better understand the responses in 
sugarcane for developing better and improved drought cane variety (Sanchez et al. 
2002). Involvement of candidate genes as molecular markers in breeding techniques 
had made a better understanding in this regard (Thorup et al. 2000; Huh et al. 2001). 
Breeding a new variety plays a direct relation to the sugar industries as an improved 
variety will cause a high production of sugar and alcohol. In India, the tropical 
zones favor the flowering production whereas the sub-tropical region lacks behind 
in this aspect due to which the flowering, seeds production and breeding techniques 
are performed in the tropical region for developing improved canes for cultivation, 
especially for sub-tropical regions (Scortecci et al. 2011). The basic target of a sug-
arcane breeding program is to improve the sugar content in plant with low inputs 
which will be profitable both for the cane growers and sugar millers (Jackson 2005).

10.2.1  Breeding Methods in Sugarcane

10.2.1.1  Traditional Method

10.2.1.1.1 Parental Selection
Parental selection is the most important trait for developing any good cane variety 
for any purpose. It is the most crucial step as yield has a direct relationship with the 
environmental conditions, and the environmental changes are unpredictable so for a 
breeder, the parental selection is of utmost importance (Pandey et al. 2018). In this 
method, parents are wisely chosen according to the desired traits they possess so 
that genotypes having a higher probability of that particular trait could be achieved. 
This is of interest in respect to commercial viewpoint (Matsuoka et al. 1999). In 
several stations of breeding, the selection rate for a parent depends on the progeny 
performance such as if the progeny performance is far better than the standard taken 
then in such a case the parent will be considered as proven parent and progeny 
obtained as proven cross (Breaux 1987; Hogarth and Skinner 1987; Berding and 
Skinner 1987; Heinz and Tew 1987).

10.2.1.1.2 Hybridization
Although the procedures and techniques used for crossing vary from breeders to 
breeders, the basic pollination procedure remains the same. Verret (1925) had shown 
that tassel stalks were harvested as soon as anthesis in flower starts, after which 
these stalks were kept in a shelter used particularly for breeding purpose in an acid 
solution of weak acidity. This is done to enhance the life of a flower and to make it 
either bi-parental or a poly-cross parent. In bi-parental crossing, the inflorescence 
possessing flowers are covered with bags (Sleper and Poehlman 2006). In poly-
crossing, cane stalks possessing flowers are cut off and kept in crossing solution of 
a mixture of acids having diluted concentration. The use of a dilute mixture is to 
enhance the life of stalks and for providing nutrients (Cox et al. 2000). Similar to the 
bi-parental crossing, the flowers are also covered in lanterns where male flowers are 
kept above female flowers to allow the former to shed their pollen on to the latter 
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ones (Cox et al. 2000). After pollination has taken place, the stalks are kept in cross-
ing solution for 12–14 days (Buzacott 1965).

10.2.1.1.3 Progeny Selection
Mamet and Domainque (1999) had shown that progeny selection varies from place 
to place and depends on the tenure of the life cycle and ratoon produced from plant 
crop. Progeny selection for long duration crops depends on several factors such as 
disease resistance, high sucrose content, more cane weight, etc., while for short life 
cycle ones it depends on number of ratoons produced by the crop (Heinz 1987).

10.2.1.2  Molecular Method
Although selecting and breeding a cane variety are the best options for developing 
a variety for stress conditions, the molecular and biotechnological approaches are 
also emerging as the new approach to develop tolerant varieties for such conditions. 
These approaches help in developing tolerant variety either for single stress or for 
multiple ones. Epstein and Rains (1987) had shown a step-wise procedure for devel-
oping a variety of molecular means. In sugarcane, Agrobacterium tumifaciens medi-
ate transformation with two inclusion LBA4404 pB1 121 construct GLY1 bestowed 
stress tolerance (Shaik et al. 2007). Any tolerance to drought and salinity in sugar-
cane was introduced in Arabidopsis tubes pyro-phosphatase (AVP1) factor which is 
mediated by A. tumifaciens transformation (Kumar et al. 2014). Another way is the 
involvement of candidate genes for developing a tolerant drought variety wherein 
the candidate genes worked as a molecular marker (Huh et al. 2001; Thorup et al. 
2000).

10.3  Constraints in Sugarcane Breeding for Stress

On a general basis, the following are the constrains in breeding a sugarcane stress- 
tolerant varieties:

 I. Genetic improvement in sugarcane based on performance in yield:

Stress tolerance in sugarcane is necessary for rapid stalk development but the 
accumulation of sucrose in the later stages, particularly in ripening period, is encour-
aged by the environmental stress that the cane faces (Viqueira et al. 1984). Desirable 
parents are most important decision for any sugarcane breeding. Diverse parents 
have different acclimatization, production and productivity, resistance to biotic and 
abiotic stresses which are responsible for the development of varieties of different 
target environment. So there is a need to develop drought-tolerant sugarcane variety 
for different water regimes, poor rainfall pattern, and poor irrigation facilities. 
Generally parentage for breeding for peninsular zones of India is very different 
from North India parentage. In the view of high recovery percentage, breeding for 
earliness and high sugar is the most important concern. But high sucrose and early 
maturity have been found hard to associate with high yield. Cytogenetically, 
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sugarcane material is highly polyploid with high degree of genetical impurity. As 
per cytoplasmic studies, in sugarcane breeding more importance has to be paid to 
female parent than to male parent.

 II. Achieving high yield potential in sugarcane tolerant to stress:

Another constrain for breeding variety for stress tolerance is to achieve high 
yield potential in canes having tolerant ability towards stress condition (Bell et al. 
1995; Evans and Fischer 1999). Early stomata termination and leaf shedding leads 
to drought tolerance through breeding, but it is not necessary to increase yield under 
water-limiting condition because drought tolerance is a complex traits and involv-
ing the many dynamic interaction. During development of drought-tolerant variet-
ies, the parameters like stalk number, height, diameter, and weight along with cane 
yield in sugarcane under water regimes should be selected. Generally yield associ-
ate  having linear relationship with productivity but diameter are not a stable param-
eters under stress conditions. So to enhance the drought tolerance in sugarcane, 
associated trait must be selected for maximum yield under drought conditions. 
Accordingly, it is possible to select genotypes under water deficit with high yield 
and associated traits. Careful selection of suitable physiological traits and rapid/
nondestructive methods of quantifying them would be very valuable in improving 
drought tolerance. To improve drought tolerance for target environment, a set of 
characters must be identified, which can be identified very soon and must be inex-
pensive during screening. In these circumstances, physiological parameters like 
chlorophyll, SPAD index, and thermal imaging are most valuable for rapid and non-
damaging screening for drought tolerance. 

10.4  Breeding Efforts in Developing Drought-Tolerant Cane 
Varieties

Since the past several years, cane varieties are being improved through breeding for 
high production of sugar and yield. Studies are being conducted to improve the cane 
yield and production in stress conditions as the frequency of occurrence due to cli-
mate change is enhanced and there is a need for developing cane varieties to flourish 
under such situation particularly drought. Sreenivasan and Bhagyalakshmi (2001) 
imparted drought tolerance to a variety Co 87, Co 263 wherein Co 312 worked as a 
parent. S. spontaneum, Narenga and Erianthus may also impart tolerance to a vari-
ety towards drought conditions when used as a parent for breeding the variety 
(Krishnamurthy 1989; Roach and Daniels 1987). Development of high yielding 
varieties for different zones is major objective of All India Coordinated Research 
Project on Sugarcane. Recently varieties for different zones, viz., Co 86032, Co 
94008, Co 06207, CoH 119, CoPk 05191, Co 09004, Co 10026 (Peninsular Zone); 
CoLk 94184, Co 0233, (North Central & North Eastern Zones); CoOr 03151, CoA 
05323 (East Coast Zone); CoLk 11206 (North West Zone) (Shukla et al., 2019). The 
development of drought-tolerant varieties will help in overcoming/minimizing the 
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problems associated with such conditions on drought especially in relation to pro-
duction and yield.

10.4.1  Selection Criteria for Developing Drought-Tolerant Cane 
Varieties

Certain selection criteria required for the development of drought-tolerant cane 
varieties are as follows:

10.4.1.1  Physiological Parameters (Such as Relative Water Content, 
Stomata Conductance, Photochemical Efficiency (PS II))

Physiological parameters are important for characterizing drought tolerant geno-
types (Buckley 2005; Vinocur and Altman 2005; Shao et  al. 2008; Tezara et  al. 
2008). Hotta et al. (2010) had shown that these parameters along with the genes 
identified for this purpose can play an important role as a foundation for the devel-
opment of new tolerant varieties. Azevedo et al. (2011) and Silva et al. (2007) had 
revealed that certain physiological and biochemical parameters gave positive results 
in identifying the sensitive and tolerant cultivars towards drought. Selection for 
physiological traits correlated with tolerance towards drought might augment the 
achievement of sugarcane breeding for this purpose. Decrease in stomatal conduc-
tance was seen with the size of the plant and also with age (Meinzer and Grant 
1990). Meinzer and Grant (1991) had also shown that balance between loss in water 
by transpiration and hydraulic conductance has been known to maintain constant 
leaf water status when an alteration in environmental conditions occurred.

10.4.1.2  Assessment of Proline Content, Trehalose Content, 
and Photosynthetic Activity in Sugarcane Drought-
Tolerant Varieties

One of the important characters often used to assess whether the variety is tolerant 
or not is the increase in proline content as well as photosynthetic activity in sugar-
cane (Ferreira et al. 2017). The former plays an effective role in stress phenomenon 
along with their functioning in cell osmotic adjustment acting as osmoprotectant, 
but Molinari et al. (2007) had shown its association with reactive oxygen species 
(ROS) scavengers. Several studies have reported that proline has been associated 
with drought tolerance in sugarcane (Rao and Asokan 1978; Paquet et  al. 1994; 
Wahid 2004; Guimaraes et al. 2008). Molinari et al. (2007) had shown that trans-
genic cane plants indicated a positive association between increase proline content 
and biomass yield. Iskandar et al. (2011) had revealed that the mature canes possess 
an increased concentration of amino acids but it has the lowest amount of proline 
content under drought conditions. This amino acid could be used as a marker for 
assessing the tolerance in canes under drought conditions (Ferreira et al. 2017).

Trehalose in sugarcane has been known for having a role in stabilization of lipids 
and dehydrated enzymes (Pilon-Smits et  al. 1998; Goddijn and van Dun 1999; 
Wingler et al. 2000; Garg et al. 2002). Trehalose phosphate synthase has also been 
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identified in drought-tolerant cane varieties (Vantini et al. 2015). It is an enzyme 
that plays a role in the formation of trehalose and its production is higher in plants 
under stress conditions especially under drought (Paul et al. 2008). Study on trans-
genic in sugarcane had revealed that transgenic sugarcane had a higher amount of 
trehalose content due to its transformation from Grifola frondosa trehalose syn-
thase, but the higher accumulation of trehalose content had provided tolerance to 
cane towards drought condition (Zhang et al. 2006). Vantini et al. (2015) had also 
shown that in drought-tolerant canes high levels of trehalose genes have been 
expressed.

10.4.1.3  Maintenance of Yield Performance of Cane under Drought 
Condition as under Irrigated Condition

Drought tolerant canes should maintain its yield under drought conditions (Serraj 
et al. 2004). Drought is a frequent and sudden occuring stress in sugarcane and there 
is a need of variety with high yield potential under irrigated condition coupled with 
better water use efficient which can give substantial yield even under moisture stress 
condition (Mall and Misra 2017).

10.4.1.4  Performance of Cane Root System
To avoid drought, one of the important mechanisms that the crop adopt is the modi-
fication of its roots to capture the water for the process of transpiration (Fukai and 
Cooper 1995; Songsri et al. 2009). Root abundance, root distribution, and amount 
of total surface area used for absorption have been known as a trait used for selec-
tion of drought tolerance variety (Fitter and Hay 1987). S. spontaenum and its prog-
enies are known to be higher tolerant for drought condition than S. officanarium 
(Evans 1935; Rao 1951). For breeding a good variety for drought condition, breed-
ers emphasize on the variety having deep rooting system, good ratooning ability, as 
well as tolerance to disease, particularly smut mosaic and rust (Flores 2003).

10.4.1.5  Characteristics of Leaf
Another important trait considered for selection for drought tolerance is character-
istics of leaf like the type of leaves, namely, short or erect or narrow, presence or 
absence of thick cuticles, pubescence, etc.

10.5  Drought-Tolerant Genes in Sugarcane

As an aid to the breeders for improving the cane varieties for drought conditions, 
molecular markers play an important and strong tool (Bundock et al. 2009; Parida 
et al. 2009). Detection of novel genotypes with the property of tolerance towards 
drought condition is necessary for agriculture as well as economics all around the 
globe. Genes associated with drought tolerance may enhance the knowledge of the 
evolutionary adaptation to such type of stress. These genes may be used in develop-
ing new tolerant varieties by the process of transformation (Nepomuceno et  al. 
2001; Lenka et al. 2011; Kido et al. 2012). A detailed knowledge of how the plants 
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will response under such condition at the molecular level is a pre-condition for 
managing such conditions. The genes in response to drought generally belong to 
two categories, i.e., genes encoding functional proteins and genes encoding regula-
tory proteins. The former consists of proteins like chaperones or proteases, detoxi-
fication enzymes, transporters, water channels, etc. The latter consists of those 
proteins whose functioning is either related to signaling the response or to the fac-
tors associated for the transcription process (Shinozaki and Yamaguchi-Shinozaki 
2007). As signal transduction encourages response to plants under such conditions, 
one can easily predict whether these signals are for the adjustment of plant for such 
conditions or not (Zingaretti et al. 2012). Fujita et al. (2005) had shown that to suc-
ceed over the injuries occurred due to drought conditions, plants also develop com-
plex pathways for transduction. In sugarcane, ScChi gene known as chitinase gene 
is known to be involved in host-pathogen interaction (Que et al. 2014), whereas for 
defense mechanism against eye spot diseases and smut, there has been an involve-
ment of 62 differentially expressed genes (possessing 19 transcript derived frag-
ments) (Borrás-Hidalgo et al. 2005) and for red rot infection differentially expressed 
EST clusters have been identified (Sathyabhama et al. 2015). Almeida et al. (2013) 
had revealed that as a response to foliar application of salicylic acid in drought con-
ditions, genes were expressed that play a role in synthesis/ expression of trehalose 
5-phosphate and sucrose-phosphate.

Due to the complexity in the sugarcane genome, the transgenic methodology has 
attracted the researchers for developing varieties having the quality of higher yield, 
high content, stress tolerance and disease resistance, etc. (Nerkar et al. 2018). A 
transgenic cane variety had been developed (by PT Perkebunan Nusantara (a state- 
owned sugar milling conglomerate), University of Jember (East Java), and 
Ajinomoto Co. Inc. Japan) for drought conditions that had shown to produce 
20–30% more sugars than the commercial varieties under drought conditions in 
Indonesia wherein the use of bet A gene was involved. The bet A gene has been 
isolated from Rhizobium meliloti which has the capacity to produce an osmoprotec-
tant known as glycine betaine for tolerance towards drought conditions (Marshall 
2014; Waltz 2014).

10.5.1  Candidate Genes

Several studies on genomic and transcriptomic levels had paved the way for identi-
fication of candidate genes which provides tolerance towards various abiotic and 
biotic stresses. Superoxide dismutase and Indole-3-glycerol phosphate synthase 
genes have been identified and play an important role in improving the cane variety 
by molecular means and possess a promising future ahead in respect to drought 
conditions (Simon and Hemparabha 2010).

10.5.1.1  Superoxide Dismutase (SOD) Genes
In sugarcane, these genes play a role in modulating the drought conditions and stud-
ies have indicated that activity of such genes acts as primary line of control in 
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reactive oxygen species (ROS) scavenging process (Hemaprabha et al. 2004; Jain 
et al. 2015; Sales et al. 2015; dos Santos et al. 2015; dos Santos and de Almeida 
Silva 2015). Enhanced levels of these genes in canes impart tolerance towards 
drought conditions (Jangpromma et al. 2012; Simon and Hemaprabha 2010). It is 
known that different isoforms of SOD have been expressed in cane varieties and at 
times it may show a crucial effect in canes under drought conditions as an antioxi-
dant response (Cia et al. 2012; Boaretto et al. 2014).

10.5.1.2  Indole-3-Glycerol Phosphate Synthase (IGS)
Another candidate genes identified in sugarcane for providing tolerance towards 
drought is IGS. In drought condition, auxin-related genes activates IGS and other 
related genes (Aloni et al. 2003).

10.5.1.3  Disulfide Isomerase Protein (DEF 1)
As a response to tolerance to stress, gene coding for disulfide isomerase protein 
(DEF 1) have been expressed in tolerant cane cultivars (Vantini et al. 2015).

10.5.2  Late Embryogenesis Abundance (LEA) Proteins

These proteins are hydrophilic proteins that majorly show their function in stress 
conditions, especially during drought (Magwanga et  al. 2018). This gene is an 
important one in respect to stress response by plants. Besides, these genes are also 
accountable for the protection of macromolecules (Sakuma et al. 2006; Shinozaki 
and Yamaguchi-Shinozaki 1999). In sugarcane leaf, this gene was achieved under 
stress condition and being seen to play an essential part in canes that are tolerant to 
drought and salinity (JinXian et al. 2009; Iskandar et al. 2011).

10.5.2.1  Heat Shock Proteins (HSP)
HSPs are conserved polypeptides set which gets synthesized as a response to abiotic 
stress. The production of HSPs is a common incidence (Augustine 2016). The 
occurrence of these proteins is commonly seen in a normal condition in cytoplasm 
whereas, in stress condition, these proteins speedily reach to the nucleus of the cells 
(Lindquist and Craig 1988). These proteins are known to play an important part in 
plants grown under normal and stress conditions and help to understand the mecha-
nism of signaling under such situation as well as another process like carbohydrate 
and amino acid metabolism, translation, etc. (Augustine 2016). About 44% of the 
genes belonging to Hsp 70 family along with its co-chaperone have been detected 
in sugarcane for biotic and abiotic conditions (Borges et al. 2001). Augustine et al. 
(2015) had shown that overexpression of Erainthus arundinaceus HSP70 (EaHSP70) 
in sugarcane enhances the tolerance ability of sugarcane towards drought.

10.5.2.2  Dehydrin Proteins (DHNs)
Dehydrin proteins are another type of LEA proteins of group II and have been 
known to be expressed in sugarcane and other plants under drought stress condition 
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(Close 1997). Wahid and Close (2007) had revealed the expression of DHNs and its 
association with water status in sugarcane. Three DHNs of different molecular 
masses have been revealed under drought condition and their expression was found 
to be irrespective of the alteration occurring in water content in leaves (Wahid and 
Close 2007). Iskandar et al. (2011) had also shown that under drought conditions, 
sugarcane expresses DHNs.

10.5.3  Ethylene-Responsive Factor (ERFs) Proteins

Allen et al. (1998) had revealed that these proteins consist of highly conserved DNA 
binding regions of 58–59 amino acids which were specific to plants. Singh et al. 
(2002) had identified two cis-elements in these proteins, namely, GCC box and C 
repeat (CRT) or dehydration-responsive element (DRE). In sugarcane, Trujillo et al. 
(2008) had identified a new sugarcane ethylene-responsive factor (SodERF3) which 
helps in increasing the tolerance under drought and salt stress conditions.

10.5.4  Sugarcane Drought-Responsive Gene 1 (Scdr 1)

In sugarcane, Scdr1 is upregulated and it was not associated with drought tolerance 
of some of the varieties of sugarcane. But, the transformation of tobacco, using this 
gene, conferred tolerance to multiple abiotic stresses like drought, salinity and oxi-
dative stresses (Begcy et al. 2012). Utilization of these specific stress-induced genes 
and signaling cascades for inculcating stress resistance/tolerance in elite sugarcane 
varieties by their overexpressing or acting upstream in response to certain stress or 
multiple stresses may lead to the development of climate resilient sugarcane variet-
ies which may sustain or even improve sugarcane/ sugar productivity in the climate 
change scenario. Not only this but some stress-upregulated genes in sugarcane like 
Scdr1 may confer tolerance to multiple abiotic stresses in some other plants like 
tobacco.

10.5.5  DEAD-Box Helicase Gene

Sugarcane transgenics overexpressing PDH45, a DEAD-box helicase gene isolated 
from pea, exhibited an upregulation of DREB2 (Dehydration responsive element 
binding proteins)-induced downstream stress-related genes and improved tolerance 
to drought and salinity (Augustine et al. 2015).

10.5.6  Other Associated Genes Related to Drought Tolerance

In sugarcane, there are several other genes which have been identified for drought 
tolerance like early response to dehydration protein 4 (ERD4) (McQualter and 
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Dookun-Saumtally 2007), upregulation of genes regulating intracellular redox sta-
tus (Prabu et al. 2011), RAB (responsive to abscisic acid), osmotin, choline oxidase, 
and annexin (Nair 2011), etc.

10.6  Conclusion

Sugarcane is an important crop not only for sugar industries but also for bio-fuel 
industries. It is one of the crops that have been bestowed with a large number of 
natural qualities for facing abiotic stress. But the unpredictable changes in the envi-
ronmental conditions like prolonged conditions of abiotic stress are also causing an 
effect on its productivity. Drought is one such stress which is now being frequently 
observed in many sugarcane-growing areas, and sugarcane being a water-loving 
crop faces difficulty in growing under such conditions. In this respect, improving 
the cane varieties either through breeding (conventional or molecular approach) or 
by using tissue culture methodology (such as somaclonal variation) is the need of 
the time. Furthermore, in developing an improved cane variety for drought condi-
tions, there is a need for identifying newer genes and their response (expression 
patterns) to manage cane growth and productivity in such conditions in the near 
future.
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11High-Temperature Response 
and Tolerance in Agronomic Crops

Albert Maibam, Shabistana Nisar, Sajad Majeed Zargar, 
and Reetika Mahajan

Abstract
Extreme temperature (cold and heat) is one of the major threats to crop produc-
tion globally. These conditions have affected the growth and development pro-
cess of a plant. High-temperature stress can lead to the poor establishment, low 
floral fertility, pollen sterility, and improper grain filling which ultimately reduces 
the crop production. With the course of time, to escape or avoid the stress condi-
tions, plants have developed morphological, physiological, biochemical, and 
molecular responses. Increased temperature along with drought stress has 
reduced the crop yield by 50%. It is a well-known fact that increasing population 
and decreasing agricultural productivity will lead to foodless days for many indi-
viduals especially in developing countries. Thus, to increase the crop productiv-
ity, there is a need to develop smart crops which are tolerant to both biotic and 
abiotic stress and have a high yield. Breeding programs have great importance in 
providing resistance to high yielding crops. On the other side, knowledge of heat 
tolerance molecular mechanism could help the scientists to develop smart crops 
in lesser time than the breeding program. This chapter will provide an overview 
of morphological, physiological, biochemical, and molecular response to 
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 high- temperature stress and will discuss the approaches that can be utilized to 
provide tolerance that will ultimately result in improved crop production.

Keywords
Crop production · Abiotic stress · Extreme temperature · Reactive oxygen species · 
Stress tolerance

11.1  Introduction

Plants are sessile organisms; they have no option to escape from abiotic and biotic 
stress prevailing around it. So, they have developed well-conserved but complex 
mechanism involving many cellular compartments, to cope up the ill effect of vari-
ous stressors. Among abiotic stressors, the high temperature is most commonly 
found in many regions of the world particularly tropical and subtropical regions, 
along with drought. According to Intergovernmental Panel on Climate Change 
(IPCC), an increase of 4 °C in global atmospheric temperature has been recorded 
since the late twentieth century (Porter et al. 2014). Warming will continue, but vari-
ability will be there according to region. Projected surface temperature change has 
been shown in Fig.  11.1. Temperature plays an important role in plant growth, 
development, and yield (Wheeler et  al. 2000; Tubiello et  al. 2007; Lobell et  al. 
2011). Each crop has its threshold temperature (temperature at which reduction in 
the rate of growth and development of plant take place). However, the temperature 
at above or well below the optimum temperature hampers the normal growth and 
development of plant (Wahid 2007) (Fig. 11.1). Optimum temperatures for some 
agronomic crops are displayed in Table 11.1. These biotic and abiotic stresses have 
a great impact on plant, i.e., it alters the morphological, physiological, biochemical, 
and molecular parameters of a plant. Numerous researches have been conducted at 
breeding and biotechnological levels to understand the stress tolerance mechanism 
in the plant. However, scientists across the world are successful in understanding 
the mechanism until a certain level. With the advancement in science and technol-
ogy, various approaches have been utilized to develop stress-tolerant plants. In the 
present chapter, we will discuss the impact of high-temperature stress on agronomi-
cally important crops and various approaches involved in the development of high- 
temperature stress-tolerant crops.

11.2  Types of Heat Stress Response Exits in Plants

There are two main types of plant response to high temperature, namely, basal and 
acquired thermotolerance. Basal thermotolerance refers to sudden direct exposure 
of the plant to a high temperature without any acclimation. Whereas, in acquired 
thermotolerance plant is subjected to a moderate temperature (priming) before 
exposing to high temperature. It is the nearest mimicry of prevailing natural 
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high-temperature condition. The survival rate is more in acquired thermotolerance 
as compared to basal thermotolerance (Mittler et al. 2012).

11.3  Biochemical, Physiological, and Phenological Aspects 
with Respect to Cereal Crops

Of the environmental variants, the temperature is one of the major stress causing 
gradients in plants, largely the cereal crops viz., wheat, rice, maize, sorghum, and 
other coarse grains are among key sufferer. As per forecast made by IPCC, the 

Heat stress

Membrane act as first 
sensor change in 

Membrane dyanamics

Plasmalemma
Activate reactive oxygen species 
(ROS), induce Ca2+ signaling, 

initiation of protein denaturation, 
induce many transcription factors 

like HSF, NAC etc.

Cytoplasm

Expession of heat responsive element associated 
genes and other downstream related genes

Nucleus

Osmolytes adjustments, proper protein folding and 
renaturation, detoxification, maintain homeostasis

Cytoplasm

Fig. 11.1 Diagrammatic representation of molecular response during heat stress. Relatively 
adopted from Wahid et al. 2007

Table 11.1 List of crops with their optimum temperature

Crops Optimum temperature References
Rice 34 °C Morita et al. (2004)
Wheat 26 °C Stone and Nicolas (1994)
Pearl millet 35 °C Ashraf and Hafeez (2004)
Cool season pulses 25 °C Siddique et al. (1999)
Groundnut 34 °C Vara Prasad et al. (2000)
Cotton 45 °C Rahman et al. (2004)
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average temperature of earth’s surface would increase in the range of 1.4–5.7 °C by 
the end of 2100 (Anonymous 2007). This prediction regarding the climatic variabil-
ity would exert deleterious impact on the primary trophic level in terms of phenol-
ogy, physiology, and biochemistry of plants.

11.3.1  Phenological Aspects

Phenology is the study of cyclic and seasonal natural phenomenon especially in 
relation to climate and plant life (Keller 2015). With regard to plant phenology, high 
temperature generates the alterations in biological events, such as bud break, flush-
ing, flowering, and fruit development (Gray and Brady 2016). Although all develop-
ing stages are highly temperature sensitive, pollination is among the most susceptible 
phenological stages, as the viability of maize pollen reduces significantly with 
exposure to temperatures above 35 °C (Herrero and Johnson 1980; Schoper et al. 
1987; Dupuis and Dumas 1990). According to literature, the optimum temperature 
requisite for wheat cultivation ranges between 18 and 24 °C and a slight increase 
(1–2 °C) in the required range is projected to alter the wheat phenology and produc-
tion by 6% (Asseng et al. 2015). At this increased temperature range, plants exhibit 
accelerated rate of anthesis, shorter grain filling rate and duration, reduced pollen 
sterility, declined germination ratio, and suppressed yield (Yin et  al. 2009; 
Chakrabarti et al. 2013; Barlow et al. 2015; Kumar et al. 2017). Besides mentioned 
alterations, the warming climate has also been recognized as a shifting factor in the 
flowering regime of the wheat crop. The strong correlation between traits like pollen 
viability, pollen production, anther dehiscence, and seed-set under heat stress has 
made these traits important parameters of reproductive success. These parameters 
can be used as candidate traits for selection in breeding programs. It is reported that 
in rice, anthers dehiscence is easier in heat-tolerant cultivars than susceptible culti-
vars (Prasad et al. 2006; Jagadish et al. 2010).

11.3.2  Physiological Aspects

Among physiological processes, photosynthesis has known as a significantly weaker 
section in response to elevated temperature. In general, the rising temperature 
remarkably affects the photosynthetic activity of plants, influencing moisture con-
tent of leaves, opening, and closing of stomata, level of CO2 concentration within 
the cell (Allen and Ort 2001; Anjum et al. 2011). According to Hatfield and Prueger 
(2015), high temperature speeds up the phenological processes. However, no sig-
nificant impact on leaf area or vegetative biomass could be seen in maize, besides 
the reduction in grain yield. The structural components of the chloroplast are greatly 
affected, including the variation in thylakoids, granum stacking, and swelling with 
markedly reduced photosystem II, causing damage to cellular cytoplasm, cell 
destruction, and hence cell death (Havaux 1993; Wang et al. 2009; Allakhverdiev 
et al. 2008; Chen et al. 2012). Moreover, the rising temperature disrupts the protein 
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machinery, RNA synthesis, enzymatic interaction, and activity of the cell. This cel-
lular disturbance and imbalance and improper functioning consequently influence 
the growth and development in wheat, maize, millet, and other cereals (Das and 
Roychoudhury 2014; Ergin et al. 2016).

In general, certain plant species rely on temperature cues to regulate flowering 
under warmer conditions and greatly affected with rising temperature, resulting in 
altered flowering time, nectar, and pollen (Wigge 2013; Thines et al. 2014). Being 
temperature sensitive, physiology of flowering plants is regulated by various path-
ways, measuring day length, or photoperiod. Therefore, flower traits under warmer 
conditions differ in size, anthesis, scent, pollen, and nectar contents (Scaven et al. 
2013). Sagae et al. (2008) illustrated the reduced floral scent and increased the con-
tent of nectar and sugar with increasing temperature. High temperature also gov-
erned the pollen performance as well as its composition within the plant species. A 
decline of 30–50% in pollen content and its viability was reported by Prasad et al. 
(2003). Furthermore, high temperature degrades pollen germination, pollen, and 
spikelet fertility beyond 33 °C in rice cultivation (Yang et al. 2017). Similarly, in 
wheat, shortened duration of grain filling, reduced weight of kernel and reduced 
yield are temperature determinants above 37 °C (Xie et al. 2015). Akin to variations 
above, sorghum exhibits compressed chlorophyll level, decreased photosystem II, 
weaken antioxidative capacity, decreased content of reactive oxygen species, and 
impaired thylakoid membrane at 40 °C (Prasad et al. 2008; Jain et al. 2010; Prasad 
et al. 2015). In maize, however, the temperature spectrum of 33–40 °C causes poor 
ear growth at pre-anthesis and silking stage, coinciding with 15 days of crop age 
(Lizaso et al. 2018).

The enzyme-mediated metabolic pathways are sensitive to the elevated level of 
temperature. It poses stress by generating the excessive amount of reactive oxygen 
species (ROS), leading to oxidative stress (Xia et al. 2015; Mignolet-Spruyt et al. 
2016; Sewelam and Schenk 2016) within plant parts. The uncoupling might have 
caused the deposition of various components of stress causing agents, viz., superox-
ide radical, hydrogen peroxide, hydroxyl radical (Tripathy and Oelmuller 2012; Das 
and Roychoudhury 2014). Moreover, the oxidative stress is generated by means of 
ROS which is produced by the leakage of electrons into the thylakoid membrane of 
the chloroplast, wherein it disrupts the stability of the cell membrane. This thermal 
stress in plants enhances the enzymatic activity which consequently increases malo-
ndialdehyde (MDA) content in rice (Hurkman et al. 2009). However, in wheat, heat 
stress causes the enzyme deactivation and cell viability deterioration. Additionally, 
the high temperature is known to reduce the thermostability to the tune of 28% to 
54% resulting into enhanced electrolyte leakage in wheat leaves (Xu et al. 2006). 
However, in sorghum, the peroxidation in lipid membrane causes injury to lipid 
membrane enabling the influx of H2O2 and O2 (Cao et al. 2009; Tan et al. 2011). On 
the other hand, the root growth in wheat inhibited by the heat stress and significantly 
increased the concentration of reactive oxygen in root cell, and MDA content in 
seedlings was proposed by Rodríguez et al. (2005). The hindrance of the rate of 
evapotranspiration and soil moisture deficits may affect the agricultural activities 
due to climatic variability (Gunawardhana and Silva 2012).
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Parameters like electron transport rate, enzyme viability, and membrane integrity 
have also been used for screening heat-tolerant crops (Cottee et al. 2010). In many 
crops, to characterize genetic variability in acquired thermotolerance, chlorophyll 
accumulation assays have been used (Selvaraj et al. 2011). In wheat, for instance, 
heat stress-induced damage of the thylakoid membrane is closely associated to 
chlorophyll loss, and detection of chlorophyll content has been proposed as high- 
throughput screening method for tolerance to heat (Shah and Paulsen 2003).

11.3.3  Biochemical Aspects

The biochemical reactions involved in plant growth are quite temperature sensitive; 
hence the vegetative and reproductive stages show increased activity of antioxidant 
enzymes, viz., peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT), 
under stress conditions. At extreme climate, particularly high-temperature stress, the 
plants show the accumulation of primary metabolites, including glycinebetaine, or 
soluble sugars. Among secondary metabolites, polyphenols like flavonoids, antho-
cyanins, and plant steroids are active to facilitate the protection, enabling the plant to 
withstand under adverse conditions (Wahid 2007; Bita and Gerats 2013). In addition 
to plant metabolites, the level of phytohormones like abscisic acid (ABA), salicylic 
acid, and ethylene rise, however, that of cytokinin, auxin, and gibberellic acids, 
declines in the response of high-temperature stress, resulting into premature plant 
senescence. This imbalance produced under stressed conditions in plants causes the 
nutritional alteration, undigestibility, and compromising yield quality (Larkindale 
et al. 2005; Bita and Gerats 2013). The raised polyphenol level plays a significant 
role in plant defense by ROS detoxification, reduction in microbial activity, and dis-
integration of enzymes. Besides polyphenol activity, high sugar content serves as a 
substratum in plant defense (Pandey and Rizvi 2009; Ferdinando et al. 2014).

11.4  Molecular Mechanisms of the Plant in Response to Heat 
Stress

Plasma membrane acts as the first sensor for heat stress, inducing changes in plasma 
membrane fluidity resulting in triggering downstream molecular responses (Mittler 
et al. 2012). At the molecular level, the change in response to heat stress is very com-
plex but conserved across different plant species. There are many heat- responsive 
genes in plants identified via transcriptomic or proteomics approaches. It can be 
divided into two main groups, namely, transcriptional factors and structural genes. 
Transcriptional factors act as central regulators of the heat stress response such as 
heat shock factors (Hsf genes) (Scharf et al. 2012), (NAC genes) (Shahnejat- Bushehri 
et al. 2012), etc. Structural genes also play an important role in conferring thermotol-
erance such as heat shock proteins (Hsp) (Lindquist and Craig 1988), antioxidant 
enzymes, e.g., SOD, ascorbate peroxidase (APX), CAT, late embryogenesis abun-
dant proteins (LEA), dehydrins, etc. (Mazorra et al. 2002; Wahid 2007).

A. Maibam et al.



179

11.4.1  Heat Shock Factor (Hsf)

Heat shock transcription factor belongs to winged helix turn helix types (Harrison 
et  al. 1994). They possess various domains such as DNA binding domain, an 
oligomerization domain, nuclear export signal (NES), activation domain, and 
nuclear localization signal (NLS) domain. In the plant, there are three classes of 
Hsfs (classes A, B, and C); among these HsfA class especially HsfA1 and HsfA2 
are mostly studied, and regulating mechanism in response to abiotic stress is well 
understood (Liu et al. 2011; Nishizawa-Yokoi et al. 2011). The HsfA1 group plays 
an important role in imparting thermotolerance in tomato (Mishra et al. 2002). 
Heat shock factors regulate the expression of heat shock proteins via heat shock 
elements in response to heat stress. Under normal condition, Hsf exists in mono-
mer form in the nucleus. However, under stressed condition trimerization of Hsf 
monomer take place.

11.4.2  NAC Genes

The NAC genes constitute one of the largest plant transcription factors family, e.g., 
151 in rice (Nuruzzaman et al. 2010). The NAC term derived from three genes, namely, 
no apical meristem (NAM), Arabidopsis transcription activation factors (ATAF), and 
cup-shaped cotyledon (CUC). The N terminal of NAC protein is highly conserved in 
nature but the C terminal shows divergent and it possessed functional domain (Ooka 
et al. 2003). Many of the NAC gene expression are induced by hormones like ABA and 
abiotic stresses such as SNAC2, NAC6, NAC10, etc. (Nakashima et  al. 2009; 
Nuruzzaman et  al. 2013). It is involved in the regulation and fine-tuning of many 
defense-responsive genes. The ANAC042 enhances plant survival after heat stress via 
regulation of thermomemory-related expression (Shahnejat-Bushehri et al. 2012).

11.4.3  Hsp Genes

Many of Hsp genes are well characterized in regard to heat stress response. They 
help in proper folding of proteins, prevent denaturation, and aggregation (Borges 
and Ramos 2005). Based on their molecular weight, there are five main classes, 
namely, Hsp100, Hsp90, Hsp70, Hsp60, and small Hsp (Schlesinger 1990). The N 
terminal possessed ATPase activity and well conserved as compared to C terminal 
having peptide binding ability (Craig et al. 1993). The Hsp100 and small Hsps play 
an important role in thermotolerance, protein disaggregation, etc., whereas Hsp90 
and small Hsps help in the stabilization of misfolded protein and interact with other 
signaling molecules. The Hsp70 and Hsp60 assist in proper folding of proteins 
(Park and Seo 2015).
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11.4.4  Antioxidant Enzymes

Heat stress generates reactive oxygen species (ROS) such as hydrogen peroxide 
(H2O2), superoxide (O2

•−), hydroxide radical (OH•), etc., which has a toxic effect on 
the cell, cellular organelles, and other cellular functions. For example, the plasma 
membrane is the first to sense heat stress (Mittler et al. 2012). Lipid peroxidation 
and other redox reaction take place which results in a change in the level of mem-
brane stability index. The level of ROS is checked by various antioxidant enzymes 
such as CAT, SOD, APX, etc. (Chaitanya et al. 2002). These antioxidant enzyme 
activities are used to observe and to estimate the degree of thermotolerance.

11.4.5  LEA Proteins

Late embryogenesis abundant proteins (LEA) name arise due to their high accumu-
lation during seed maturation and have a significant role in overcoming water defi-
cit condition. Based on motif types, there are five main groups, namely, LEA I, 
LEA II, LEA III, LEA IV, and atypical LEA proteins (Battaglia et al. 2008). LEA 
proteins secure integral membrane proteins and mitochondrial membrane during 
dehydration condition via behaving itself as water replacement molecules 
(Caramelo and Iusem 2009).

11.5  Approaches to Tackling Heat Stress in Agronomic Crops

11.5.1  Conventional Breeding

Since the onset of civilization, agriculture was considered as one of the major sources 
of livelihood. Earlier breeders select the naturally occurring wild type and cultivated 
field variants as better crops for breeding purpose. The selected better varieties were 
served as the donor parent for the development of high yielding varieties through 
conventional breeding. Conventional breeding or traditional breeding was used by 
the farmers since the origin of agriculture until the 1760s. The successful results of 
the first hybridization experiment carried out by Kölreuter limited the use of conven-
tional breeding (Roberts 1929). Conventional breeding approach helped in reducing 
the negative effect of heat on the crop. In conventional breeding for heat stress toler-
ance, the development of high-temperature-tolerant plant is carried out in the climac-
teric region by selecting parent lines that perform well under hot conditions 
(Mickelbart et al. 2015). In regions with high temperature, the thermotolerant feature 
is mainly selected by local breeders as the crop from the warmer region is more toler-
ant to heat then the crops from the cooler region. This technique has proved great 
importance for developing thermotolerant crop via conventional breeding (Smillie 
and Nott 1979; Momonoki and Momonoki 1993; Tonsor et al. 2008; Yamamoto et al. 
2011; Kugblenu et al. 2013). A cross between Indonesian “Peta” and Taiwan “Dee 
Geo Woo Gen” varieties leads to the development of semi- dwarf (sd1) IR8 was the 
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first variety of rice with higher harvest index. The sd1 IR8 rice variety performed 
better in nitrogen fertilizers conditions and became the symbol of a green revolution 
in spite of having poor grain quality (Khush et al. 2001). International Rice Research 
Institute had developed 200 rice varieties via the conventional breeding method. 
IR32, IR36, IR40, IR42, IR64, and IR72 are some of the superior rice lines devel-
oped by IRRI. One of the developed variety IR64 inherited the property of multiple 
and durable resistance to pests and diseases, tolerance to abiotic stresses, wide adapt-
ability, and good response for agronomic practices and management (Khush 1997). 
Limitations of conventional breeding in developing heat-tolerant lines is that the 
physiological and genetic bases of the improvement is not clear in this method which 
further creates a hurdle for the development of markers (molecular and biochemical) 
that can be used for efficient breeding programs. Moreover, the use of cross-specific 
advanced starting material in conventional breeding program indicates that potential 
gain over heat stress is restricted by low genetic diversity (Ladizinsky 1985; Paran 
and Van Der Knaap 2007). The discovery of laws of heredity during the nineteenth 
and twentieth century provided the insight into hybridization in plant breeding and 
most of the breeding program presently involves the use of hybridization (Wilks 
1990; Xu 2010). The limitation of the conventional breeding program was overcome 
by the introduction of modern or molecular breeding which involves the use of 
molecular markers.

11.5.2  Modern Breeding Approaches

The discovery of molecular marker in the nineteenth century and the limitations of 
conventional breeding create the platform for modern breeding approaches. Genetic 
correlation between different traits in a specific crop has made it difficult to improve 
all the desire traits at the same time. Improvement of the crop for a particular trait 
would influence the correlating traits both in the favorable and unfavorable way 
(Falconer and Mackay 1996). Pleiotropic genes, the physical linkage between genes 
in the chromosomes and population structure also affect the breeding techniques 
(Hartl and Clark 1997). Modern breeding includes marker-assisted selection, QTL 
mapping, and association mapping approaches to develop new and improved crop.

11.5.2.1  Marker-Assisted Selection
Marker-assisted selection (MAS) is one of the precise breeding techniques which is 
based on the utilization of marker (morphological, biochemical, and molecular) for 
selection of specific traits (e.g., biotic, abiotic stress tolerance, productivity, and 
quality) of a particular crop. This technique is an indirect selection method (Ribaut 
et al. 2001). The MAS technique has revealed the genetic basis of both biotic and 
abiotic stress tolerance in crops which helped the crop to cope up with these stresses 
(Lopes and Reynolds 2010; Thomson et  al. 2010). Genotype × environment or 
gene–gene (i.e., epistasis) interactions resulting in low breeding efficiency has 
affected the MAS technique for heat stress which is a complex trait (Collins et al. 
2008). Marker-assisted selection has been used in wheat for powdery mildew 
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disease (Zhou et al. 2005); in rice for bacterial blight (Chen et al. 2000, 2001), blast 
(Liu et  al. 2003), deep roots (Chen et  al. 2001) submergence tolerance (Mackill 
2006; Toojinda et al. 2005), root traits and aroma (Steele et al. 2006); quality, dis-
ease resistance (Toojinda et al. 2005).

11.5.2.2  Qualitative Trait Loci Mapping
Qualitative Trait Loci (QTL) mapping is used to identify specific chromosome seg-
ments containing candidate genes for biotic and abiotic stress tolerance (Argyris 
et al. 2011; Zhang et al. 2012). The QTL mapping is a method of choice and is 
attaining attention across the globe because of its efficiency in identifying loci 
related to stress tolerance in crops. Qualitative trait loci-based mapping is used to 
have insight into the tolerance mechanism and to identify markers related to differ-
ent stresses. Various reports on QTL-based stress tolerance studies have already 
been established earlier (Hirayama and Shinozaki 2010; Roy et al. 2011). Numerous 
QTLs related to heat stress tolerance have been reported in various bi-parental pop-
ulations like in rice at flowering stages (Ye et al. 2012; Li et al. 2018), wheat (Paliwal 
et al. 2012) and maize (Bai 2011). The QTLs linked to different traits like thousand- 
grain weight (TGW), the GFD, CTD, yield are used to identify heat-tolerant variet-
ies (Pinto et al. 2010). Traits related to plant senescence can also be used to identify 
tolerant varieties (Vijayalakshmi et al. 2010). Recently, a recombinant inbred line 
wheat population was used to identify QTLs related to well-irrigated, heat, drought 
stress conditions explaining variation up to 19.6% in grain yield in the drought, 
heat, and combined stress trials (Tahmasebi et al. 2016).

11.5.2.3  Association Mapping
Association mapping is a linkage disequilibrium (LD)-based high-resolution map-
ping method which is used to identify various biotic and abiotic stress-associated 
traits with the help of molecular markers (Varshney et al. 2009). Linkage disequilib-
rium is termed as the “non-random association of alleles at two or more different 
loci” in a population (Flint-Garcia et al. 2003; Slatkin 2008). The LD is the best 
method to study the strength of correlation between markers due to their shared 
genetic history. Pair of SNP marker helps in identifying the degree to which an 
allele of one SNP is inherited or correlated with an allele of another SNP within a 
population (Bush and Moore 2012). Association mapping studies are more advanced 
than QTL analysis because in the former, the mapping population is comprised of 
diverse germplasm. This approach required the phenotypic and genotypic data of 
the population along with the genetic knowledge of the germplasm (i.e., population 
structure) for identifying the association. Nowadays, association genetics could 
assist QTL mapping in identifying QTLs linked to a specific trait in different crop 
species (Ahuja et al. 2010; Yano et al. 2016). Based on the present knowledge of 
association mapping, there are two key factors which will help this approach in the 
near future: integration of functional analysis or gene annotation data, i.e., post- 
GWAS research (Zhang et al. 2014), and use of improved statistical and computa-
tional methods (e.g., STRUCTURE analysis, haplotypes, and SNP imputation). A 
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numerous heat stress tolerance genes in different crops have been identified via 
association mapping approach.

11.5.3  Biotechnological (Genetic Engineering) Approaches

The G × E interaction, epistatic effect, the effect of minor QTLs on major QTLs in 
breeding program, limits the importance of breeding in the development of toler-
ance crops. Moreover, the time is taken and intensive task in conventional breeding 
to produce an improved variety has also limited this technique used in developing 
tolerant crops. With the increase in population and a decrease in crop productivity 
due to global warming, there is a need to develop “smart crop” to feed the ever- 
growing population. Thus, to overcome this problem, genetic engineering an emerg-
ing field in biotechnology has gained worldwide attention. Genetic engineering 
helps in transfer of desire genes into a susceptible variety to develop transgenic 
crops. A desired gene can be transferred in a variety by direct and indirect transfer 
methods. Most commonly used transgenic method for development of transgenic 
crop is Agrobacterium-mediated gene transfer method and biolistic bombardment 
method. In this approach, firstly, desire gene is identified and then it can be trans-
ferred between the species and across the species either by a direct or indirect trans-
fer technique. Like in gene pyramiding, multiple desire genes can be transferred via 
genetic modification in the same plant with the help of engineered promoters (Datta 
et al. 2002). The availability of standard transformation protocols for many food 
crop species has made the gene transfer process easy. In spite of great importance, 
transgenic crops are not used on a large scale due to certain restrictions and ethical 
issues. For cereal crops like wheat, rice and barley gene transfer methods have low 
efficiency due to the transfer of non-desire genes along with the desired ones or 
sometimes the desired gene does not express in the specific tissue (Takeda and 
Matsuoka 2008). Thus, to overcome this problem, stress-inducible and tissue- 
specific promoters have been used to provide stress tolerance along with high yield 
potential and prevent the negative effects of a stress gene on plant growth under 
favorable conditions (Nakashima et al. 2007). Recently, transcriptome engineering 
has been used to engineered stress-tolerant plants. In this method, specific transcrip-
tion factors and signaling components are used to generate transgenic with an 
expression of various stress tolerance genes. Approaches like functional genomics, 
proteomics, metabolomics, and economics have also been used for the development 
of tolerant crop variety.

11.6  Conclusion

Identification of key heat-responsive genes and development of thermotolerance 
plant will be a crucial approach as per environmental changes prevailing now and 
anticipated near future is concerned. In addition, rapid population growth also posed 
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a threat to limited crop production. So, the development of thermotolerance plant 
will substantiate the crop production under global warming impact.

11.7  Prospect

Transgenic/trans-genomics and molecular breeding have a major role in the devel-
opment of thermotolerance plant. Combination of functional genomics, proteomics, 
and phenomics will be the approaches in the near future that will help in clearing the 
pathways and their hierarchical order involved in thermotolerance.

References

Ahuja I, de Vos RCH, Bones AM, Hall RD (2010) Plant molecular stress responses face climate 
change. Trends Plant Sci 15:664–674. https://doi.org/10.1016/j.tplants.2010.08.002

Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat 
stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

Allen DJ, Ort DR (2001) Impacts of chilling temperatures on photosynthesis in warm-climate 
plants. Trends Plant Sci 6:36–42

Anjum SA, yu XX, Wang LC, Saleem MF, Man C, Lei W (2011) Morphological, physiological 
and biochemical responses of plants to drought stress. Afr J Agric Res 6(9):2026–2032

Argyris J, Truco MJ, Ochoa O, McHale L, Dahal P, VanDeynze A et al (2011) A gene encod-
ing an abscisic acid biosynthetic enzyme (LsNCED4) collocates with the high temperature 
germination locus Htg6.1 in lettuce (Lactuca sp.). Theor Appl Genet 122:95–108. https://doi.
org/10.1007/s00122-010-1425-3

Ashraf M, Hafeez M (2004) Thermotolerance of pearl millet and maize at early growth 
stages: growth and nutrient relations. Biol Plant 48:81–86. https://doi.org/10.1023/B:B
IOP.0000024279.44013.61

Asseng S, Ewert F, Martre P, Rötter RP, Lobell D, Cammarano D, Kimball B, Ottman MJ, Wall 
G, White JW (2015) Rising temperatures reduce global wheat production. Nat Clim Chang 
5:143–147

Bai J (2011) Genetic variation of heat tolerance and correlation with other agronomic traits in 
a Maize (Zea maysL.) recombinant inbred line population. Available at http://hdl.handle.
net/2346/13572

Barlow KM, Christy BP, O’Leary GJ, Riffkin PA, Nuttall JG (2015) Simulating the impact of 
extreme heat and frost events on wheat crop production: a review. Field Crop Res 171:109–119

Battaglia M, Olvera-Carrillo Y, Garciarrubio A et al (2008) The enigmatic LEA proteins and other 
hydrophilins. Plant Physiol 148:6–24. https://doi.org/10.1104/pp.108.120725

Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific 
fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

Borges J, Ramos C (2005) Protein folding assisted by chaperones. Protein Pept Lett 12:257–261. 
https://doi.org/10.2174/0929866053587165

Bush WS, Moore JH (2012) Chapter 11: genome-wide association studies. PLoS Comput Biol 
8:12

Cao YY, Duan H, Yang LN, Wang ZQ, Liu LJ, Yang JC (2009) Effect of high temperature during 
heading and early filling on grain yield and physiological characteristics in indica rice. Acta 
Agron Sin 35:512–521

Caramelo JJ, Iusem ND (2009) When cells lose water: lessons from biophysics and molecular biol-
ogy. Prog Biophys Mol Biol 99:1–6. https://doi.org/10.1016/J.PBIOMOLBIO.2008.10.001

A. Maibam et al.

https://doi.org/10.1016/j.tplants.2010.08.002
https://doi.org/10.1007/s00122-010-1425-3
https://doi.org/10.1007/s00122-010-1425-3
https://doi.org/10.1023/B:BIOP.0000024279.44013.61
https://doi.org/10.1023/B:BIOP.0000024279.44013.61
http://hdl.handle.net/2346/13572
http://hdl.handle.net/2346/13572
https://doi.org/10.1104/pp.108.120725
https://doi.org/10.2174/0929866053587165
https://doi.org/10.1016/J.PBIOMOLBIO.2008.10.001


185

Chaitanya KV, Sundar D, Masilamani S, Ramachandra Reddy A (2002) Variation in heat stress-
induced antioxidant enzyme activities among three mulberry cultivars. Plant Growth Regul 
36:175–180. https://doi.org/10.1023/A:1015092628374

Chakrabarti B, Singh SD, Kumar V, Harit RC, Misra S (2013) Growth and yield response of wheat 
and chickpea crops under high temperature. Indian J Plant Physiol 18(1):7–14

Chen S, Lin XH, Xu CG, Zhang QF (2000) Improvement of bacterial blight resistance of ‘Minghui 
63’, an elite restorer line of hybrid rice, by molecular marker assisted selection. Crop Sci 
40:239–244

Chen S, Xu CG, Lin XH, Zhang Q (2001) Improving bacterial blight resistance of ‘6078’, an elite 
restorer line of hybrid rice, by molecular marker-assisted selection. Plant Breed 120:133–137. 
https://doi.org/10.1046/j.1439-0523.2001.00559.x

Chen WR, Zheng JS, Li YQ, Guo WD (2012) Effects of high temperature on photosynthesis, chlo-
rophyll fluorescence, chloroplast ultrastructure, and antioxidant activities in fingered citron. 
Russ J Plant Physiol 59(6):732–740

Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic 
stress: where do we stand? Plant Physiol 147:469–486. https://doi.org/10.1104/pp.108.118117

Cottee N, Tan D, Bange M, Cothren J, Campbell L (2010) Multi level determination of heat tol-
erance in cotton (Gossypium hirsutum L.) under field conditions. Crop Sci 50:2553–2564. 
https://doi.org/10.2135/crop-sci2010.03.0182

Craig EA, Gambill BD, Nelson RJ (1993) Heat shock proteins: molecular chaperones of protein 
biogenesis. Microbiol Rev 57:402–414. https://doi.org/10.1016/S0022-1910(02)00176-2

Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as 
ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

Datta K, Baisakh N, Maung Thet K, Tu J, Datta S (2002) Pyramiding transgenes for multiple 
resistance in rice against bacterial blight, yellow stem borer and sheath blight. Theor Appl 
Genet 106:1–8

Dupuis L, Dumas C (1990) Influence of temperature stress on in vitro fertilization and heat shock 
protein synthesis in maize (Zea mays L.) reproductive systems. Plant Physiol 94:665–670

Ergin S, Gulen H, Kesici M, Turhan E, Ipek A, Koksal N (2016) Effects of high temperature stress 
on enzymatic and non-enzymatic antioxidants and proteins in strawberry plants. Turk J Agric 
For 40:908–917

Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. London, Pearson. 
464 pp

Ferdinando DM, Brunetti C, Agati G, Tattini M (2014) Multiple functions of polyphenols in 
plants inhabiting unfavorable Mediterranean areas. Environ Exp Bot 103:107–116. https://doi.
org/10.1016/j.envexpbot.2013.09.012

Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. 
Annu Rev Plant Biol 54(1):357–374

Gray SB, Brady SM (2016) Plant developmental responses to climate change. Dev Biol 419:64–77
Gunawardhana M, De Silva C (2012) Impact of temperature and water stress on growth yield and 

related biochemical parameters of okra. Trop Agric Res 23(1):77–83
Harrison CJ, Bohm AA, Nelson HC (1994) Crystal structure of the DNA binding domain of the 

heat shock transcription factor. Science 263:224–227
Hartl DL, Clark AG (1997) Principles of population genetics, 3rd edn. Sinauer, Sunderland, MA. 

542 pp
Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. 

Weather Climate Extrem 10:4–10
Havaux M (1993) Characterization of thermal damage to the photosynthetic electron transport 

system in potato leaves. Plant Sci 94:19–33
Herrero MP, Johnson RR (1980) High temperature stress and pollen viability in maize. Crop Sci 

20:796–800
Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, 

present and future. Plant J 61:1041–1052. https://doi.org/10.1111/j.1365-313X.2010.04124.x

11 High-Temperature Response and Tolerance in Agronomic Crops

https://doi.org/10.1023/A:1015092628374
https://doi.org/10.1046/j.1439-0523.2001.00559.x
https://doi.org/10.1104/pp.108.118117
https://doi.org/10.2135/crop-sci2010.03.0182
https://doi.org/10.1016/S0022-1910(02)00176-2
https://doi.org/10.1016/j.envexpbot.2013.09.012
https://doi.org/10.1016/j.envexpbot.2013.09.012
https://doi.org/10.1111/j.1365-313X.2010.04124.x


186

Hurkman WJ, Vensel WH, Tanaka CK, Whitehand L, Altenbach SB (2009) Effect of high tempera-
ture on albumin and globulin accumulation in the endosperm proteome of the developing wheat 
grain. J Cereal Sci 49:12–23

Intergovernmental Panel Climate Change (IPCC), Climate Change: Impacts, Adaptation and 
Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the 
Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K. 
and New York

Jagadish SV, Muthurajan R, Oane R, Wheeler TR, Heuer S, Bennett J et al (2010) Physiological 
and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). 
J Exp Bot 61:143–156. https://doi.org/10.1093/jxb/erp289

Jain M, Chourey PS, Boote KJ, Allen LH Jr (2010) Short-term high temperature growth conditions 
during vegetative-to-reproductive phase transition irreversibly compromise cell wall invertase-
mediated sucrose catalysis and microspore meiosis in grain sorghum (Sorghum bicolor). 
J Plant Physiol 167:578–582. https://doi.org/10.1016/j.jplph.2009.11.007

Keller M (2015) Phenology and growth cycle. Advances in Marine biology
Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34
Khush GS, Coffman WR, Beachell HM (2001) The history of rice breeding: IRRI’s contribution. 

In: Rockwood WG (ed) Rice research and production in the 21st century: symposium honour-
ing Robert F. Chandler Jr. International Rice Research Institute, Manila, pp 117–135

Kugblenu YO, Oppong Danso E, Ofori K, Andersen MN, AbenneyMickson S, Sabi E, Plauborg F, 
Abekoe MK, Ortiz R, Jørgensen ST (2013) Screening tomato genotypes in Ghana for adapta-
tion to high temperature. Acta Agric Scand Sect B Soil Plant Sci 63:516–522. https://doi.org/1
0.1080/09064710.2013.813062

Kumar P, Goyal M, Batra R, Gayacharan (2017) Effect of high temperature on grain development 
and quality of wheat. Agriculture 10:22–38

Ladizinsky G (1985) Founder effect in crop-plant evolution. Econ Bot 39:191–199
Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis 

mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant 
Physiol 138:882–897

Li M, Li X, Yu L et al (2018) Identification of QTLs associated with heat tolerance at the head-
ing and flowering stage in rice (Oryza sativa L.). Euphytica 214:70. https://doi.org/10.1007/
s10681-018-2136-0

Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677. https://doi.
org/10.1146/annurev.ge.22.120188.003215

Liu SP, Li X, Wang CY, Li XH, He YQ (2003) Improvement of resistance to rice blast in Zhenshan 
97 by molecular marker-aided selection. Acta Bot Sin 45:1346–1350

Liu HC, Liao HT, Charng YY (2011) The role of class A1 heat shock factors (HSFA1s) in 
response to heat and other stresses in Arabidopsis. Plant Cell Environ 34:738–751. https://doi.
org/10.1111/j.1365-3040.2011.02278.x

Lizaso JI, Ramosa RM, Rodriguez L, Leal GC, Oliveira JA, Lorite IJ, Sanchez D, Garcia E, 
Rodriguez A (2018) Impact of high temperatures in maize: Phenology and yield components. 
Field Crop Res 216:129–140

Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 
1980. Science 333(6042):616–620

Lopes MS, Reynolds MP (2010) Partitioning of assimilates to deeper roots is associated with 
cooler canopies and increased yield under drought in wheat. Funct Plant Biol 37:147–156. 
https://doi.org/10.1071/FP09121

Mackill DJ (2006) Breeding for resistance to abiotic stresses in rice: the value of quantitative trait 
loci. In: Lamkey KR, Lee M (eds) Plant breeding: the Arnel R. Hallauer international sympo-
sium. Blackwell Publication, Ames, IA, pp 201–212

Mazorra LM, Núñez M, Hechavarria M et al (2002) Influence of brassinosteroids on antioxidant 
enzymes activity in tomato under different temperatures. Biol Plant 45:593–596. https://doi.org
/10.1023/A:1022390917656

A. Maibam et al.

https://doi.org/10.1093/jxb/erp289
https://doi.org/10.1016/j.jplph.2009.11.007
https://doi.org/10.1080/09064710.2013.813062
https://doi.org/10.1080/09064710.2013.813062
https://doi.org/10.1007/s10681-018-2136-0
https://doi.org/10.1007/s10681-018-2136-0
https://doi.org/10.1146/annurev.ge.22.120188.003215
https://doi.org/10.1146/annurev.ge.22.120188.003215
https://doi.org/10.1111/j.1365-3040.2011.02278.x
https://doi.org/10.1111/j.1365-3040.2011.02278.x
https://doi.org/10.1071/FP09121
https://doi.org/10.1023/A:1022390917656
https://doi.org/10.1023/A:1022390917656


187

Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress toler-
ance that translate to crop yield stability. Nat Rev Genet 16:237–251. https://doi.org/10.1038/
nrg3901

Mignolet-Spruyt L, Xu E, Idanheimo N, Hoeberichts FA, Muhlenbock P, Brosche M, Van 
Breusegem F, Kangasjarvi J (2016) Spreading the news: subcellular and organellar reactive 
oxygen species production and signalling. J Exp Biol 67:3831–3844

Mishra SK, Tripp J, Winkelhaus S et al (2002) In the complex family of heat stress transcription 
factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 
16:1555–1567. https://doi.org/10.1101/gad.228802

Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 
37(3):118–125

Momonoki YS, Momonoki T (1993) Changes in acetylcholinehydrolyzing activity in heat-stressed 
plant cultivars. Biosci Biotechnol Biochem 62:438–446. https://doi.org/10.1248/cpb.37.3229

Morita S, Shiratsuchi H, Takahashi J, Fujita K (2004) Effect of high temperature on grain ripening 
in rice plants. Analysis of the effects of high night and high day temperatures applied to the 
panicle and other parts of the plant. Jpn J Crop Sci 73:77–83. https://doi.org/10.1626/jcs.73.77

Nakashima K, Tran LSP, Van Nguyen D, Fujita M, Maruyama K, Todaka D et  al (2007) 
Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic 
and biotic stress-responsive gene expression in rice. Plant J 51:617–630. https://doi.
org/10.1111/j.1365-313X.2007.03168.x

Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in 
response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95. https://doi.
org/10.1104/pp.108.129791

Nishizawa-Yokoi A, Nosaka R, Hayashi H et al (2011) HsfA1d and HsfA1e involved in the tran-
scriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in 
response to environmental stress. Plant Cell Physiol 52:933–945. https://doi.org/10.1093/pcp/
pcr045

Nuruzzaman M, Manimekalai R, Sharoni AM et al (2010) Genome-wide analysis of NAC tran-
scription factor family in rice. Gene 465:30–44. https://doi.org/10.1016/j.gene.2010.06.008

Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the reg-
ulation of biotic and abiotic stress responses in plants. Front Microbiol 4:248. https://doi.
org/10.3389/fmicb.2013.00248

Ooka H, Satoh K, Doi K et al (2003) Comprehensive analysis of NAC family genes in Oryza sativa 
and Arabidopsis thaliana. DNA Res 10:239–247

Paliwal R, Röder MS, Kumar U, Srivastava J, Joshi AK (2012) QTL mapping of terminal heat 
tolerance in hexaploid wheat (T. aestivum L.). Theor Appl Genet 125:561–575. https://doi.
org/10.1007/s00122-012-1853-3

Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and dis-
ease. Oxid Med Cell Longev 2(5):270–278

Paran I, Van Der Knaap E (2007) Genetic and molecular regulation of fruit and plant domestica-
tion traits in tomato and pepper. J Exp Bot 58:3841–3852. https://doi.org/10.1093/jxb/erm257

Park C-J, Seo Y-S (2015) Heat shock proteins: a review of the molecular chaperones for plant 
immunity. Plant Pathol J 31:323–333. https://doi.org/10.5423/PPJ.RW.08.2015.0150

Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas JJ, Chapman SC (2010) 
Heat and drought adaptive QTL in a wheat population designed to minimize confounding agro-
nomic effects. Theor Appl Genet 121:1001–1021. https://doi.org/10.1007/s00122-010-1351-4

Porter JR, Xie L, Challinor AJ et al (2014) Food security and food production systems. In: Climate 
change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. 
Contribution of working group II to the fifth assessment report of the intergovernmental panel 
on climate change. Cambridge University Press, New York, pp 485–533

Prasad PVV, Boote KJ, Allen LH, Thomas JMG (2003) Super-optimal temperatures are detri-
mental to peanut (Arachis hypogaea L.) reproductive processes and yield at both ambient and 
elevated carbon dioxide. Glob Chang Biol 9(12):1775–1787

11 High-Temperature Response and Tolerance in Agronomic Crops

https://doi.org/10.1038/nrg3901
https://doi.org/10.1038/nrg3901
https://doi.org/10.1101/gad.228802
https://doi.org/10.1248/cpb.37.3229
https://doi.org/10.1626/jcs.73.77
https://doi.org/10.1111/j.1365-313X.2007.03168.x
https://doi.org/10.1111/j.1365-313X.2007.03168.x
https://doi.org/10.1104/pp.108.129791
https://doi.org/10.1104/pp.108.129791
https://doi.org/10.1093/pcp/pcr045
https://doi.org/10.1093/pcp/pcr045
https://doi.org/10.1016/j.gene.2010.06.008
https://doi.org/10.3389/fmicb.2013.00248
https://doi.org/10.3389/fmicb.2013.00248
https://doi.org/10.1007/s00122-012-1853-3
https://doi.org/10.1007/s00122-012-1853-3
https://doi.org/10.1093/jxb/erm257
https://doi.org/10.5423/PPJ.RW.08.2015.0150
https://doi.org/10.1007/s00122-010-1351-4


188

Prasad PVV, Boote KJ, Allen LH, Sheehy JE, Thomas JMG (2006) Species, ecotype and cultivar 
differences in spikelet fertility and harvest index of rice in response to high temperature stress. 
Field Crop Res 95(2–3):398–411

Prasad PVV, Pisipati SR, Mutava RN, Tuinstra MR (2008) Sensitivity of grain sorghum to high 
temperature stress during reproductive development. Crop Sci 48:1911–1917

Prasad VV, Djanaguiraman M, Perumal R, Ciampitti IA (2015) Impact of high temperature stress 
on floret fertility and individual grain weight of grain sorghum: sensitive stages and thresholds 
for temperature and duration. Front Plant Sci 6:820

Rahman H, Malik SA, Saleem M (2004) Heat tolerance of upland cotton during the fruiting stage 
evaluated using cellular membrane thermostability. Field Crop Res 85:149–158. https://doi.
org/10.1016/S0378-4290(03)00159-X

Ribaut J-M, William HM, Khairallah M, Worland AJ, Hoisington D (2001) Genetic basis of physi-
ological traits. In: Reynolds MP, Ortiz-Monasterio JI, McNab A (eds) Application of physiol-
ogy in wheat breeding. CIMMYT, Mexico, DF

Roberts HF (1929) Plant hybridization before mendel. Princeton University Press, Princeton, NJ. 
374 pp

Rodríguez M, Canales E, Borrás HO (2005) Molecular aspects of abiotic stress in plants. 
Biotechnol Appl 22:1–10

Roy SJ, Tucker EJ, Tester M (2011) Genetic analysis of abiotic stress tolerance in crops. Curr Opin 
Plant Biol 14:232–239. https://doi.org/10.1016/j.pbi.2011.03.002

Sagae M, Oyama-Okubo N, Ando T, Marchesi E, Nakayama M (2008) Effect of temperature on 
the floral scent emission and endogenous volatile profile of Petunia axillaris. Biosci Biotech 
Bioch 72:110–115

Scaven L, Nicole V, Rafferty E (2013) Physiological effects of climate warming on flowering 
plants and insect pollinators and potential consequences for their interactions. Curr Zool 
59(3):418–426

Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor 
(Hsf) family: structure, function and evolution. Biochim Biophys Acta – Gene Regul Mech 
1819:104–119. https://doi.org/10.1016/j.bbagrm.2011.10.002

Schlesinger MJ (1990) Heat shock proteins. J Biol Chem 265:12111–12114
Schoper JB, Lambert RJ, Vasilas BL, Westgate ME (1987) Plant factors controlling seed set in 

maize. Plant Physiol 83:121–125
Selvaraj MG, Burow G, Burke JJ, Belamkar V, Puppala N, Burow MD (2011) Heat stress screen-

ing of peanut (Arachis hypogaea L.) seedlings for acquired thermotolerance. Plant Growth 
Regul 65:83–91. https://doi.org/10.1007/s10725-011-9577-y

Sewelam KK, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the 
cross-road. Front Plant Sci 7:187

Shah NH, Paulsen GM (2003) Interaction of drought and high temperature on photosynthesis and 
grain-filling of wheat. Plant and soil 257(1):219–226

Shahnejat-Bushehri S, Mueller-Roeber B, Balazadeh S (2012) Arabidopsis NAC transcription 
factor JUNGBRUNNEN1 affects thermomemory-associated genes and enhances heat stress 
tolerance in primed and unprimed conditions. Plant Signal Behav 7:1518–1521. https://doi.
org/10.4161/psb.22092

Siddique KHM, Loss SP, Regan KL, Jettner RL (1999) Adaptation and seed yield of cool season 
grain legumes in Mediterranean environments of South-Western Australia. Aust J Agric Res 
50:375. https://doi.org/10.1071/A98096

Slatkin M (2008) Linkage disequilibrium – understanding the evolutionary past and mapping the 
medical future. Nat Rev Genet 9(6):477–485

Smillie RM, Nott R (1979) Heat injury in leaves of alpine, temperate and tropical plants. Funct 
Plant Biol 6:135–141. http://www.publish.csiro.au/?paper=PP9790135

Steele KA, Price AH, Shashidhar HE, Witcombe JR (2006) Marker-assisted selection to intro-
gress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet 
112:208–221. https://doi.org/10.1007/s00122-005-0110-4

A. Maibam et al.

https://doi.org/10.1016/S0378-4290(03)00159-X
https://doi.org/10.1016/S0378-4290(03)00159-X
https://doi.org/10.1016/j.pbi.2011.03.002
https://doi.org/10.1016/j.bbagrm.2011.10.002
https://doi.org/10.1007/s10725-011-9577-y
https://doi.org/10.4161/psb.22092
https://doi.org/10.4161/psb.22092
https://doi.org/10.1071/A98096
http://www.publish.csiro.au/?paper=PP9790135
https://doi.org/10.1007/s00122-005-0110-4


189

Stone P, Nicolas M (1994) Wheat cultivars vary widely in their responses of grain yield and 
quality to short periods of post-anthesis heat stress. Aust J Plant Physiol 21:887. https://doi.
org/10.1071/PP9940887

Tahmasebi S, Heidari B, Pakniyat H, McIntyre CL (2016) Mapping QTLs associated with agro-
nomic and physiological traits under terminal drought and heat stress conditions in wheat 
(Triticum aestivum L.). Genome 60:26–45. https://doi.org/10.1139/gen-2016-0017

Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environ-
mental and population changes. Nat Rev Genet 9:444–457. https://doi.org/10.1038/nrg2342

Tan W, Meng Q, wei Brestic M, Olsovska K, Yang X (2011) Photosynthesis is improved by exog-
enous calcium in heat-stressed tobacco plants. J Plant Physiol 168:2063–2071

Thines BC, Youn Y, Duarte MI, Harmon FG (2014) The time of day effects of warm temperature 
on flowering time involve PIF4 and PIF5. J Exp Bot 65:1141–1151

Thomson MJ, deOcampo M, Egdane J, Rahman MA, Sajise AG, Adorada DL et  al (2010) 
Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3:148–160. 
https://doi.org/10.1007/s12284-010-9053-8

Tonsor SJ, Scott C, Boumaza I, Liss TR, Brodsky JL, Vierling E (2008) Heat shock protein 101 
effects in A. thaliana: genetic variation, fitness and pleiotropy in controlled temperature condi-
tions. Mol Ecol 17:1614–1626. https://doi.org/10.1111/j.1365-294X.2008.03690.x

Toojinda T, Tragoonrung S, Vanavichit A, Siangliw JL, Pa-In N, Jantaboon J, Siangliw M, Fukai 
S (2005) Molecular breeding for rainfed lowland rice in the Mekong region. Plant Prot Sci 
8:330–333. https://doi.org/10.1626/pps.8.330

Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. 
Plant Signal Behav 7(12):1621–1633

Tubiello FN, Soussana JF, Howden SM (2007) Crop and pasture response to climate change. Proc 
Natl Acad Sci 104(50):19686–19690

Vara Prasad PV, Craufurd PQ, Summerfield RJ, Wheeler TR (2000) Effects of short episodes of 
heat stress on flower production and fruit-set of groundnut (Arachis hypogaea L.). J Exp Bot 
51:777–784. https://doi.org/10.1093/jexbot/51.345.777

Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies 
and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530. https://
doi.org/10.1016/j.tibtech.2009.05.006

Vijayalakshmi K, Fritz AK, Paulsen GM, Bai G, Pandravada S, Gill BS (2010) Modeling and 
mapping QTL forsenescence related traits in winter wheat under high temperature. Mol Breed 
26:163–175. https://doi.org/10.1007/s11032-009-9366-8

Wahid A (2007) Physiological implications of metabolite biosynthesis for net assimilation and 
heat-stress tolerance of sugarcane (Saccharumofficinarum) sprouts. J Plant Res 120:219–228

Wang J, Cui L, Wang Y, Li J (2009) Growth, lipid peroxidation and photosynthesis in two tall 
fescue cultivars differing in heat tolerance. Biol Plant 53:237–242

Wheeler TR, Craufurd PQ, Ellis RH, Porter JR, Prasad PVV (2000) Temperature variability and 
the yield of annual crops. Agric Ecosyst Environ 82(1–3):159–167

Wigge PA (2013) Ambient temperature signaling in plants. Curr Opin Plant Biol 1:661–666
Wilks W (1990) Hybrid conference report. J R Hortic Soc 24
Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ (2015) Interplay between reactive oxygen 

species and hormones in the control of plant development and stress tolerance. J Exp Biol 
66:2839–2856

Xie Q, Mayes S, Sparkes DL (2015) Carpel size, grain filling, and morphology determine indi-
vidual grain weight in wheat. J Exp Bot 66(21):6715–6730

Xu Y (2010) Molecular plant breeding. CAB International, Wallingford. 734 pp
Xu S, Li J, Zhang X, Wei H, Cui L (2006) Effects of heat acclimation pretreatment on changes of 

membrane lipid peroxidation, antioxidant metabolites and ultrastructure of chloroplasts in two 
cool-season turfgrass species under heat stress. Environ Exp Bot 56:274–285

Yamamoto K, Sakamoto H, Momonoki YS (2011) Maize acetylcholinesterase is a positive reg-
ulator of heat tolerance in plants. J Plant Physiol 168:1987–1992. https://doi.org/10.1016/j.
jplph.2011.06.001

11 High-Temperature Response and Tolerance in Agronomic Crops

https://doi.org/10.1071/PP9940887
https://doi.org/10.1071/PP9940887
https://doi.org/10.1139/gen-2016-0017
https://doi.org/10.1038/nrg2342
https://doi.org/10.1007/s12284-010-9053-8
https://doi.org/10.1111/j.1365-294X.2008.03690.x
https://doi.org/10.1626/pps.8.330
https://doi.org/10.1093/jexbot/51.345.777
https://doi.org/10.1016/j.tibtech.2009.05.006
https://doi.org/10.1016/j.tibtech.2009.05.006
https://doi.org/10.1007/s11032-009-9366-8
https://doi.org/10.1016/j.jplph.2011.06.001
https://doi.org/10.1016/j.jplph.2011.06.001


190

Yang Z, Zhang Z, Zhang T, Fahad S, Cui K, Nie L, Peng S, Huang J (2017) The effect of season- 
long temperature increases on rice cultivars grown in the central and southern regions of China. 
Front Plant Sci 8:1908

Yano K, Yamamoto E, Aya K, Takeuchi H, Lo PC, Hu L, Matsuoka M (2016) Genome-wide asso-
ciation study using whole-genome sequencing rapidly identifies new genes influencing agro-
nomic traits in rice. Nat Genet 48(8):927–934

Ye C, Argayoso MA, Redoña ED, Sierra SN, Laza MA, Dilla CJ et al (2012) Mapping QTL for 
heat tolerance at flowering stage in rice using SNP markers. Plant Breed 131:33–41

Yin X, Guo W, Spiertz JH (2009) Aquantitrive approach to characterize sink source relationships 
during grain filling in contrasting wheat genotypes. Field Crop Res 114:119–126

Zhang WB, Jiang H, Qiu PC, Liu CY, Chen FL, Xin DW et al (2012) Genetic overlap of QTL asso-
ciated with low-temperature tolerance at germination and seedling stage using BILsin soybean. 
Can J Plant Sci 92:1–8. https://doi.org/10.4141/cjps2011-098

Zhang X, Bailey SD, Lupien M (2014) Laying a solid foundation for Manhattan – “setting the 
functional basis for the post-GWAS era”. Trends Genet 30(4):140–149

Zhou RH, Zhu ZD, Kong XY, Huo NX, Tian QZ, Li P, Jin CY, Dong YC, Jia JZ (2005) Development 
of wheat near-isogenic lines for powdery mildew resistance. Theor Appl Genet 110:640–648. 
https://doi.org/10.1007/s00122-004-1889-0

A. Maibam et al.

https://doi.org/10.4141/cjps2011-098
https://doi.org/10.1007/s00122-004-1889-0


191© Springer Nature Singapore Pte Ltd. 2020
M. Hasanuzzaman (ed.), Agronomic Crops, 
https://doi.org/10.1007/978-981-15-0025-1_12

N. Iqbal · N. Nazir · M. Nauman · M. T. Hayat (*) 
Department of Environmental Sciences, COMSATS University Islamabad,  
Abbottabad, Pakistan
e-mail: mtahir@cuiatd.edu.pk 

Waquar-un-Nisa 
Department of Environmental Sciences, International Islamic University, Islamabad, Pakistan

12Agronomic Crop Responses 
and Tolerance to Metals/Metalloids 
Toxicity

Nadeem Iqbal, Nida Nazir, Muhammad Nauman, 
Malik Tahir Hayat, and Waquar-un-Nisa

Abstract
The cultivation of crops for food production has been tremendously increased 
with the increasing world population. Various crops are being used for food, fiber 
and oil extraction, edible seeds and leaves, land reclamation, and fuel purposes. 
The applications of fertilizers has also been increased to fulfill high demand for 
agronomic crops. Several anthropogenic and natural activities have resulted in 
soil pollution in agriculture lands. Different types of contaminants including met-
als and metalloids accumulate in the soil ecosystem which are taken up by plant 
roots and cause various types of stresses in plant physiology which can lead to 
dysfunctions and disorders in many processes and mechanisms of plants. In 
response to the stress of metals and metalloids, plants show different types of 
mechanisms to resist or cope with this type of stress. Each and every plant shows 
different mechanisms against different heavy metals to reduce or tolerate their 
effects. Plants also secrete different enzymes through root exudates which also 
lessen the harmful impacts of metals and metalloids. Plants also exhibit defensive 
mechanisms by forming a mycorrhizal association. The tolerance of metals and 
metalloids stress is also governed at a cellular level, and different organelles are 
also involved in mitigating their toxic effects. Different cell organelles like plasma 
membrane and cell wall also show complete inhibition or permeable absorption of 
these contaminants. In response to the high stress of metals and metalloids, plants 
also secrete heat shock proteins to prevent the injuries caused by these pollutants. 
In addition to heat shock proteins, plants also excrete phytochelatins through their 
roots in the rhizosphere to fix these metals and their  metalloids. Plants also exhibit 
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response under these stresses at the molecular level and modify genes for expres-
sion of stress conditions. Therefore, it is clear that agronomic crops have adapted 
various kinds of mechanisms and processes which can reduce the toxic and harm-
ful effects of metals and metalloids in order to show proper growth.

Keywords
Abiotic stress · Environmental pollution · Cadmium · Xenobiotics · Phytotoxicity

12.1  Agronomic Crops

With the increasing trend of the population, the demand for food has also increased 
day by day. To cope with this situation, different crops are being cultivated specifi-
cally for purposes such as (1) oil extraction, for example, canola, soya bean, sun-
flower, mustard, sesame, linseed, and flax; (2) fiber extraction, for example, cotton, 
jute, sun hemp, sisal, sun kukra, and flex – this fiber is used to make clothes, ropes, 
bags, and other accessories (Kranner and Colville 2011); (3) edible seeds, for exam-
ple, maze, rice, wheat, oat, barley, sorghum, and millet; and (4) edible leaf, shoot, 
and fruit, for example, spinach, garden pea, pumpkin, tomato, cabbage, okra, egg-
plant, broccoli, asparagus, cucumber, and cauliflower (Shahid et al. 2015a, b).

Abovementioned crops are known as the agronomic crops. The science and tech-
nology that produces and uses plants for food, land reclamation, fuel, and fiber is 
known as agronomy. It involves the selective breeding of plant in order to achieve 
the best productions under different environmental conditions. This technology had 
increased the annual crop yields and also improved the nutritional values of various 
crops, including, soya bean, wheat, and corn. It has also helped in the development 
of new species of plants, for example, by cross-breeding rye and wheat, a hybrid 
grain called triticale was produced (Foucault et al. 2013). It contained more useable 
proteins than either wheat or rye. Agronomy has also played an important role in the 
research of production of fruits and vegetables. Agronomists are currently involved 
in dealing with many issues including food production, healthier foods, energy 
extraction from plants, and minimizing the environmental impacts of the agricul-
tural techniques (Hasanuzzaman et al. 2014).

12.2  Metals and Metalloids Toxicity

In the present era, heavy metals are the most important and effective envoi mental 
pollutants. The toxicity caused by them is an issue of great importance on the 
impacts related to ecological and evolutionary processes and environmental and 
nutritional impacts (Nagajyoti et al. 2010). Heavy metal is a term used to refer to 
any metallic elements which possess a relatively high range of density. It is usually 
toxic and poisonous even if exposed at low concentrations (Akpor et  al. 2014). 
These are a group of elements having an atomic number of more than 20 (excluding 
the alkali metals) and possess specific gravity higher than 5 (Rascio and Navari-Izzo 
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2010). Some researchers have also stated that these are the elements that have an 
atomic density greater than 6 gcm−3 (except B, Se, and As) (Park et al. 2011). Lead 
(Pb), nickel (Ni), iron (Fe), chromium (Cr), silver (Ag), cadmium (Cd), and plati-
num group elements are included in heavy metals. Some of the metalloids are sig-
nificantly toxic due to the damage caused by them. These are the elements that 
possess properties in between metals and non-metals. Boron, germanium, silicon, 
antimony, arsenic, and tellurium are the most important metalloids. Although one 
member, selenium, is less commonly included in the group of metalloids, it is also 
toxic. This group mainly consists of transition metals, actinides, and lanthanides. 
These may be lethal and cause damage to the living organism if they are exposed to 
them at low concentration (Cuypers et al. 2009).

The 53 naturally occurring elements are reported as heavy metals. Most of these 
metals do not play any important role in plants functioning. These heavy metals play 
several different roles in crop production and are of different biological importance 
(Kavamura and Esposito 2010). The heavy metals that are involved in the important 
biological functions are Cu, Zn, Ni, Co, Cr, Se, and Mo. These metals have good 
impacts on plant productivity (Shahid et al. 2015a, b). On the other hand, the metals 
that are involved in the reduction of crop productivity when their concentration 
increases to supra-optimal values include Zr, As, Pb, Sb, Hg, and Cd. These elements 
do not have any important metabolic functions in the plants (Shahid et al. 2013). By 
the agency for toxic substances and disease registry, As, Pb, Cd, and Hg have been 
stated as most toxic. This classification was done on the basis of the level of their 
toxicity, exposure potential, and frequency of their occurrence (Pierart et al. 2015).

12.2.1  Sources and Impacts of Metalloids and Heavy Metals

There are several sources of heavy metals or metalloids contamination in the 
environment:

 1. Industrial
 2. Natural
 3. Agricultural
 4. Atmospheric
 5. Domestic effluents

Heavy metal contamination can be caused by natural as well as anthropogenic 
sources. Large areas of the world have been contaminated by the activities that 
mainly include mining, agricultural, and smelting operations. China, Japan, and 
Indonesia are mainly effected by these heavy metals including Cd, Zn, and Cu 
(Herawati et al. 2000). North Greece is mainly affected by Pb, Cd, and Cu. Albania 
and Australia were affected by Pb, Cr, Cu, Ni, Zn, and Cd (Lee et al. 2006). Most of 
these heavy metals and metalloids also have a source known as lithogenic source. 
Heavy metals in the soil come from various anthropogenic sources and also from 
the soil parent material and these mostly involved several metalloids. Many of the 
human-imposed sources of heavy metal and metalloids pollution critically affect 
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both urban and agricultural soils (Alloway 2013). A localized source such as metals 
smelter can have a marked impact on the soils, on crops, and also on the health of 
the local community. This mostly occurs in the countries that have inadequate con-
trol techniques of emission and soil quality standards. Commonly at the industrial 
sights, soil is contaminated with specific groups of heavy metals. It depends on the 
nature of industries, the raw material used, and the products produced (Chen et al. 
2008). Urban area soils are contaminated mainly with lead (Pb), zinc (Zn), cad-
mium (Cd), and copper (Cu). This occurs mainly because of paints, traffic, and 
many other non-specific urban sources. Heavy metal (loid) which is a composition 
of agricultural soils is driven and controlled by a number of other sources than its 
parent materials; sources include inputs from deposition of aerosol particles which 
are atmospherically transported from far areas. These occur because of fossil fuel 
combustion, organic material applications, and contaminants in fertilizers (Wei 
et al. 2011).

Considerable crop productivity and threats to the health of living beings result 
from the contamination of soil with heavy metals which causes accumulation of 
these toxic metals in plants parts. Stockpiling of heavy metals in food crops has 
been reported by many researchers. Research has highlighted the presence of heavy 
metals like Cd, Pb, and Zn in the land used for crop production in different parts of 
the world. Practically, a range of morphological, physiological, and biochemical 
disorders in the plants are induced because of heavy metals which result in a reduc-
tion of crop productivity (Babula et al. 2009). The intensity of toxicity induced by 
heavy metals may vary and mainly depends upon the exposure duration, concentra-
tion of heavy metal, stage of plant development, studied organ, and even plant 
species.

The most common physiological consequence of the heavy metals exposure to 
plants is a reduction in growth and development. Structure of leaf and physiology 
are changed. In addition, there is a reduction in photosynthesis and respiration. Due 
to the abovementioned changes, the process of metabolism in plants is affected, and 
there is a reduction in energy production. Moreover, it has also an adverse impact on 
the processes of transpiration and transportation of materials, between several 
organs. The ability of roots is also affected resulting in reduced nutrient and water 
uptake (Garg and Singla 2011). Hence, these mentioned changes in the operational 
process of the root and leaf affect various developmental processes, which include 
embryogenesis, flowering, and seed formation. Some direct and indirect impacts of 
heavy metals on plants are shown in Fig. 12.1 (Shahid et al. 2015a, b).

In plants, phytotoxicity is caused by toxic heavy metals. The phytotoxicity is 
followed by different disorders resulting in chlorosis, limited nutrient uptake, and 
decline in the plant growth, development, and yield. Because of heavy metal pollu-
tion entry into the food chain, agricultural yields are decreased, and also some haz-
ardous health effects are observed (Carbonell et al. 1998).

Cadmium (Cd) is mainly considered a very toxic element for plants among vari-
ous heavy metals. It results in restrain photosynthesis and reduces root and shoot 
growth. Cadmium, establishing a strong relation with the thiol group, results in 
limiting the activity of many. Furthermore, with lipid peroxide, it plays a role in the 
creation of different active oxygen species. These species include hydrogen 
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peroxide, hydroxyl radicals, and superoxide, causing damage to cell membranes, as 
well as biopolymers (Ghosh and Singh 2005).

Lead (Pb) is one of the most plentiful toxic element found in the soil. It results in 
adverse consequences on photosynthetic processes, morphology, and growth of 
plants. It is also well-known for the inhibition of roots and stems elongation pro-
cess, and expansion of leaves in Allium species, barley (Alloway and Jackson 1991) 
and Raphanus sativas. Moreover, it also causes inhibition of the seed germination 
in Spartiana alterniflora (Saeideh and Rashid 2014). Inhabitation of root elongation 
is dependent on the concentration of lead, pH of the medium, and ionic 
composition.

Chromium (Cr) compounds which are toxic are detrimental in plant growth and 
development, although low concentrations of Cr do not affect some species (3.8 9 
10-4lM). For the higher plant species, Cr is toxic at the concentration of 100 l kg-1 dry 
weight (Kumar et al. 2016). The first physiological process which is adversely affected 
by Cr presence is seed germination. About 25% reduction was noticed in the process 
of seed germination of the wild plant Echinochloa colony with 200 lM Cr, 
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while reduction noticed by the presence of high concentrations (500 ppm) of hexava-
lent Cr in the bush bean Phaseolus vulgaris was about 48%.

Excessive deposition of manganese (Mn) mainly in leaves leads to decrease in 
photosynthetic frequency. Through the transpiration stream, Mn is transported from 
the roots of the plant to shoot, but after reaching the leaves, it does not readily remo-
bilize through the phloem to other organs (Kastori et al. 1992). Symptoms of Mn 
toxicity are the presence of necrotic brown spots on leaves, stems, and petioles. The 
process of spotting mostly starts on the lower leaves, and then it spread towards 
upper leaves. The speckles, with time, can increase in both number and size result-
ing in necrotic lesions, browning of leaves, and eventually death.

The impacts of Cu on agronomic crops were also studied. The results showed 
that Cu in higher concentrations reduces the biomass because of chlorosis and also 
affects the photosynthesis by disturbing the electron transport system (Patsikka 
et al. 2002).

Due to various human activities, Ni concentration is increasing on different sites 
such as emission of smelters, mining activities, fossil fuels burning, sewage, pesti-
cides, and phosphate fertilizers. The general range of Ni present in natural soils is 
10–1000 mg/kg, whereas in contaminated sites, it is 20- to 30-folds higher (200–
26,000 mg/kg) (Yusuf et al. 2011). High concentration of Ni in soil may cause vari-
ous damages to plants including physiological alterations and different toxicity 
signs such as necrosis and chlorosis in various plant species (Rehman and Shah 
2005). These damages were also observed in the rice. Also, the plants which grow 
in high Ni-contaminated soils displayed the impairment in nutrient balance and dis-
orders of cell membrane function. A study on Oryza sativa shoots proved that high 
Ni concentrations affected the H-ATPase activity and lipid composition of the 
plasma membrane (Sharma and Dubey 2005).

Recent studies on Hg showed that it readily accumulates in aquatic as well as 
higher plants (Israr et al. 2006). Plants are badly affected by high levels of Hg, even 
cells are damaged. High concentrations of Hg cause visible damages and also physi-
ological problems in plants (Savvas et al. 2010). The Hg results in the closure of 
stomata and physical barrier in the water flow by binding with the water channel 
proteins. Microbial activity is also affected by the high levels of Hg which ulti-
mately results in oxidative stress. This results in the interruption of cellular metabo-
lism and biomembrane lipids damage in plants (Pandey and Shama 2002).

12.3  Tolerance Mechanism to Metals Toxicity in Plants at the 
Cell Level

Tolerance mechanism is to infect the capabilities of the plant to survive under toxic 
conditions in the soil. It can also be defined as those changes in plants which occur 
due to exposure to high concentrations of metals and metalloids. Different types of 
mechanisms are involved at the cellular level to detoxify high concentrations of 
metals and metalloids (Kramer 2010). The tolerance mechanism of some of the 
metals has been discussed below.
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12.3.1  Aluminum (Al) Tolerance Mechanism

Al is found in large quantity in earth’s crust and immobilized in the form of alumino- 
silicates that secretes a phytotoxic ion (Al31) under acidic conditions in the soil. 
From agriculture point of view, Al is the major restraint for the production of agro-
nomic crops. It is presently ruining more than 40% of arable land worldwide (Chen 
et al. 2013). Therefore, it is crucial to convert these lands into productive ones for 
sustainable agriculture production. The Al toxicity causes inhibition of root length. 
In the root cells of plants, apoplastic injuries have been reported due to Al toxicity. 
Toxicity of Al also affects some crucial processes such as ion fluxes, characteristics 
of the plasma membrane, and cell wall assembly (Dawood et al. 2012).

The intercellular transport of different nutrients, water, and hormones (signaling 
molecules) is carried out by plasmodesmata. It is also known as symplastic intercel-
lular transport to facilitate the movements of essential nutrients and other biomole-
cules. In context to aluminum (Al), it is not well identified whether Al could affect 
the transport of nutrients from one cell to another. It is very problematic for roots for 
being organs for the uptake of nutrients (Amsbury et al. 2017).

It is experimentally studied by injecting the Lucifer yellow carbohydrazide in the 
root cells of wheat which were sensitive to Al. It was reported that root growth inhibi-
tion induced by Al is linked with blockage of dye coupling from cell to cell transport 
induced by Al. Different techniques have confirmed 133-b-d-glucan (callose) that is 
the reason for the blockage of nutrients transport. An inhibitor for the synthesis of 
callose gave the idea that a decrease in callose particles is linked with developed dye 
coupling. It is analyzing the targeted tissues by dye coupling in mesophyll cells of 
tobacco (Nicotiana tabacum). Plasmodesmata linked proteins such as calreticulin 
and myosin VIII increased fluorescence with callose formation. Therefore, it is con-
firmed from this study that callose induced by Al can block the transport of nutrients 
and coordination in higher plants. The Al toxicity is linked with dysfunctions of 
mitochondria and reactive oxygen species (ROS) within plant cells (Sharma 2018).

12.3.2  Copper (Cu) Tolerance Mechanism

Copper is a very important nutrient for proper growth and development of plants. In 
addition to its essentiality, it is highly toxic at high concentrations. The Cu takes part 
in various physiological processes and acts as metalloproteins. The optimum concen-
tration of Cu is required by the plants, and excess Cu concentration results in toxicity 
which creates a problem at the cellular level. Cu toxicity causes inhibition of plant 
growth and impairment of many cellular processes like photosynthetic electron 
transport. Therefore, Cu acts as an important nutrient as a cofactor and the toxic ele-
ment at the same time depending upon the concentration and metal trafficking routes 
(Wang et al. 2018a, b, c). Several types of approaches have been introduced to main-
tain cells at homeostatic levels. These types of metals should avoid storage of metals 
in the active forms to detoxify the metal toxicity. This strategy is also involved in the 
transport of this nutrient to targeted metalloproteins. Several specified genes have 
been reported recently which act as copper transporters (Wang et al. 2018a, b, c).
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12.4  Enzymatic Role in Response to Toxicity in Agronomic 
Crops

Different concentrations of metals and metalloids have been found in the soil depos-
ited through industrial or agricultural activities. The uptake of these metals by the 
plants can result in several types of disorders and dysfunction in plants depending 
upon the concentration of metal and metalloids. These high concentrations can 
inhibit the activity of some enzymes and can also increase the induction or activities 
of others (Bolan et al. 2014).

Two mechanisms are involved in the inhibition of enzymes. First is the attach-
ment of that specific metal to the sulphydryl groups which acts as catalytic action 
and structural integrity of various essential enzymes. Second is the deficiency of any 
crucial metal in metalloproteins which are later on associated with the alternative of 
harmful metal for the deficient nutrient or metal. In vivo, metal is accumulated in 
the cells of enzymes which is a requisite for inhibition of enzymatic activity 
(Caverzan et al. 2014).

The initiation of some enzymes is believed to play a vital role in the metabolism 
under stress conditions which is caused by metal toxicity. The induction of peroxi-
dase is nearly linked to oxidative reactions in biomembrane. Various enzymes in the 
metabolism of different intermediates could be induced to balance for responsive 
metal crops. The isoperoxidase pattern is also affected by metal toxicity and can be 
treated as a tool to evaluate phytotoxicity in agronomic crops (Ent et al. 2012).

The toxic concentrations of various metals have been found in nature, but they 
are frequently originated by agricultural and industrial activities. Some of the 
sources include mining, pesticides, sludge, waste disposal, and fertilizers, and non- 
ferrous industries are the major sources of pollution in aquatic and terrestrial envi-
ronments (Hattab et al. 2015).

The interactions of enzymes with metal and metalloids interpret the toxicity of 
these compounds. These metals (Cu, Cd, and Zn) are toxic at different concentration 
to plants. These contaminants are found everywhere, and their concentrations can 
reach up to very toxic levels. These metals are absorbed by the roots of plants read-
ily (Mitton et al. 2016). Some heavy metals are toxic under certain conditions of soil 
such as Ni, Co, and Pb. The bivalent cations of these metals are categorized in bor-
derline class on the basis of their affinity for ligand formation (Toth et al. 2016).

The toxicity of various metals in appropriate concentrations causes chlorosis, 
red-brownish discoloration, and leaf epinasty. The enzymatic activity at cell level is 
inhibited substantially. Moreover, the activity of other enzymes can enhance signifi-
cantly. The interaction of enzymes with metals is consisted of following aspects-.

 1. The metals or metalloids should be absorbed by the plants and stored at their 
inhibitory concentrations in specific compartments of the enzymes. The interac-
tions of metals deposited on the leaf surface or stored in apoplast, vesicles or 
vacuoles with most of the enzymes are not included.

N. Iqbal et al.



199

 2. In vivo, the chemical species of that particular metal must be interacted with 
enzymatic functional ligands. The formation of phytochelatins complexation and 
attachment of other compounds bound to metal.

 3. The tendency of a metal to attach or bind with the functional ligand should be 
strong. The interaction involving SH-group is usually supposed as an important 
step for the mechanism.

 4. The high concentration of metal uptake can cause a deficiency of many other 
essential nutrients which can ultimately affect the balance of cations at the sub-
cellular level. Substitution or competition is involved, or binding site depends 
upon the presence of similar cations in concerned compartments of cells 
(Jaskulak et al. 2018).

12.5  The Defensive Mechanism by Plants Against Metals 
and Metalloids Toxicity

Heavy metals are very crucial for proper plant growth and development of all parts 
of plants. These metals are a very important part of several proteins and enzymes. 
The high concentration of macro and micronutrients can cause toxicity in the soil 
which will ultimately affect the plant growth when it becomes available to plants in 
excess amount. This toxicity results in different types of symptoms which can be 
observed at cell level as well. The activity of enzymes can be inhibited by combin-
ing these metals with sulphydryl groups of proteins (Aroca et al. 2015). Moreover, 
it can also cause displacement of crucial nutrients causing a deficiency of that ele-
ment. Due to excess of these metals, free radicals and oxygen species can cause 
oxidative stress in the plants. It has been reported that plants have adopted some 
mechanisms in metalliferous soils to cope with high concentrations with homeosta-
sis. Plants have several mechanisms at the cellular level to detoxify and tolerate high 
concentrations of metals (Boyd, 2007).

Various strategies have been shown in the plants to avoid metal toxicity. 
Extracellularly, plants exhibit roles for cell wall, extracellular exudates, and mycor-
rhizae. Cell membrane also plays its role in the reduction of uptake of heavy metals 
and stimulation of pumping the entered metals out from cytosol. Other mechanisms 
are also present within the protoplast such as the repair of damaged proteins due to 
metal stresses. Some proteins known as heat shock proteins or metallothioneins, 
which are responsible for metal chelation by producing amino acids or organic acids 
and their transport away from metabolic compartments in the vacuoles (Bothe, 2011).

The adaptive mechanisms to high toxic levels of metals are controlled only by 
some specific modified genes. Only a molecular change is needed to make the plant 
resistant or tolerant against any particular metal toxicity (Cappa and Pilon-Smits 
2014). There are no co tolerance mechanism exits for more metals at the same time. 
For each metal, there is a specific mechanism which is involved for tolerance to its 
high toxic level. The most widely studied metals which lead to drastic changes in 
the plant functions and other metabolic processes are Cd, Cu, Zn, and Ni. Plants 
exhibiting tolerance to the high concentration of these metals are known as 
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hyperaccumulator due to their potential to accumulate more quantity or concentra-
tion of metals (Cui et  al. 2014). So, there are different mechanisms which are 
involved in detoxification and tolerance to metals in agronomic crops.

12.5.1  Mycorhhizal Association

It has been reported that mycorrhizal association are also involved and ameliorate 
the toxic effects of metals. Metal tolerance with this association is very diverse and 
can vary from species to species of both plants and fungi. A research showed that an 
ectomycorrhizal fungus Paxillus involutus accumulated Zn contents and the toxicity 
to Zn in Pinus sylvestris was reduced. The amount of metals accumulated in differ-
ent species of fungi also varies. The associated fungi with plants also exhibit the 
same mechanism to detoxify the metal stress by extracellular binding to materials 
and storage in the vacuoles (Chang et al. 2018). Different fungal species show dif-
ferent mechanisms to different metals toxicity. For example, Paxillus involutus 
shows the attachment of Cd to cell wall and accumulation in the vacuoles while 
Pisolithus tinctorius exhibited the tolerance to Zn and Cu by extrahyphal slime. 
Most of the processes are exclusion ones which prevent the entry to host plants 
(Huang et al. 2018).

Hyphal sheath is involved in the absorption of metals, metal chelation to exu-
dates of fungi, and surface attachment on the external mycelium. Glomus isolate 
(Br1) obtained from Zn polluted soils has been reported to support the growth of 
maize and alfalfa on Zn contaminated soils. The microbeam analysis shows that the 
growth in maize plant was due to the immobilized form of Zn in the root tissues 
containing fungal hyphae (Zhan et al. 2018).

12.5.2  Cell Wall and Root Exudates

The properties of the cell wall to attach certain metals also remain of particular 
interest. The cell wall is in direct contact with the extracellular solutions and 
involved in less adsorption of metals and has little effect on the metal activity on the 
surface of the cell membrane. However, in some studies, it has been shown that a 
metal tolerant species Silene vulgaris stored a number of heavy metals inside into 
epidermal cells of cell wall by combining with proteins and silacates. In another 
study, it was found that Ni-chelating exudates have been stored in non- 
hyperaccumulators (Kumar et al. 2015).

Root exudates also play a vital role in tolerance to metal toxicity. These exudates 
consist of many compounds including metal chelators which can increase metal 
uptake sometimes. The compounds secreted by plants and fungi are large in num-
ber, these exudates might play a role in detoxification or tolerance to other elements 
toxicity. It can be explained with an example like buckwheat secrets oxalic acid 
under Al stress from the roots and store Al in the leaves (Wang et al. 2018a, b, c).
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12.5.3  Plasma Membrane

The cell membrane is considered the first living structure which is exposed to metal 
toxicity. The functions of the plasma membrane are also affected by the metal toxic-
ity. Under high concentrations of metals, the plasma membrane enhances the leak-
age of other essential nutrients from the cells as in the case of Cu (Hall 2002). It has 
been reported that under stress conditions of Cu, not Zn, the efflux of K+ ions 
increased from the roots of Agrostis capillaris. Cu toxicity also causes damage to 
cell membrane due to ionic leakage from the cell. Cu and Cd also have a direct 
effect on the lipid composition of the cell membrane and also involved in the inhibi-
tion of certain cellular proteins. This metal toxicity leads to damaged permeability 
of cell membrane (Lange 2017).

In contrast to Cu, Zn plays its role to control leakage of ions from the cells and 
protects the membrane from oxidation. The integrity of the plasma membrane might 
be increased after damage in the presence of other heavy metals. The plasma mem-
brane is also involved in the homeostatic conditions by preventing the entry of cer-
tain metals to cells due to its selectively permeable membrane characteristic. For 
example, in Holcus lanatus, the high concentration of arsenic (As) is controlled by 
arsenate-tolerant genotype which lowers the uptake of As from roots (Goolsby and 
Mason 2015).

12.5.4  Heat Shock Proteins

Due to the presence of these proteins, many organisms have shown their growth 
above their optimal growth temperatures. These proteins are present in all kind of 
living organisms and exhibit this phenomenon under stress conditions including 
high concentrations of metals as well. These heat shock proteins protect and repair 
proteins under metal toxicity (Becker and Dierschke 2008). It is reported that under 
high temperature and metal concentrations, these proteins in rice enhanced the num-
ber of mRNAs for low heat shock proteins. Armeria maritima also showed response 
to heavy metals by secreting HSP 17 which were expressed when this species was 
grown in Cu-rich soils. Silene vulgaris and Lycopersicon perovianum also showed 
an increased quantity of heat shock proteins under stress of various heavy metals 
(Antosiewicz et al. 2014).

12.5.5  Phytochelatins

Metal chelation in the cytosol of the cell due to ligands having a high affinity is the 
most important mechanism for the tolerance and detoxification of metal toxicity. 
These potential ligands consist of organic acids and amino acids. In addition to 
these ligands, there are other two classes, namely, metallothioneins and phytochela-
tins. A huge research has been made on the phytochelatins due to Cd tolerance in 
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plants. Phytochelatins belong to peptides which are produced under stress condi-
tions of metal toxicity (Li et al. 2012).

In addition to phytochelatins, metallothioneins, organic acids, and amino acids 
are also involved in the tolerance and detoxification of metals. Vacuolar compart-
ments are also involved in the storage of these toxic metals. This is also an important 
mechanism involved as others like a cell wall, root exudates, peptides, and plasma 
membrane (Dundar et al. 2015).

12.6  Coping with Various Toxic Levels of Metals

Pollution especially environmental pollution is a major threat to human life. Heavy 
metals which are toxic present as a component in soil can be transmitted to the envi-
ronment through agricultural technologies and human activities (Dal Corso et al. 
2008). Such contamination has two main aspects: firstly, reducing the yield of the 
crop by interfering the life cycle of the plant, and secondly, once these toxic metals 
are uptaken and stored in plant tissues, it will pass in the food chain and will cause 
damage to humans and animals (Bies-Etheve et al. 2008).

Like all other organisms, plants have developed a complex network of standard-
ized mechanisms to minimize the damage caused from non-essential metal expo-
sure. Plants have developed strategies active and passive to exclude heavy metal 
ions from the cellular environment to resist metal toxicity (Sharma and Dietz 2009). 
Plants have developed many strategies to deal with the adverse effects of heavy met-
als. In plants, the toxicity of heavy metals leads to excessive production of ROS, 
which leads to the peroxidation of many important components of the cell. To deal 
with this unfavorable situation, the plants have an effective defense system consist-
ing of a group of enzymes and non-enzymatic antioxidants.

Many types of enzyme antioxidants consist of SOD (superoxide dismutase), 
POD (peroxidase), GST (glutathione-S-transferase), and CAT (catalase), which can 
convert superoxide radicals into hydrogen oxides, which is then converted to water 
and oxygen, while the non-enzymatic oxidation of low molecular weight antibodies 
consisting of proline, glutathione, and ascorbic acid neutralizes the toxicity ROS 
(Yadav et al. 2014). These two groups of antioxidants can address a wide range of 
toxic oxygen derivatives and retain the cellular structure of oxidative stress. 
Depending on the location of these antioxidants in the cell, the knockout system 
will vary. In this way, SODs are a group of accelerated metalloenzymes that convert 
superoxide roots (SOR, O2

−) into hydrogen peroxide (H2O2) (Pourrut et al. 2013).
As they develop, how some plant species gain stress management mechanisms 

will allow the development of more stress-tolerant crops and make a significant 
contribution to increasing world food production to meet population growth needs.

Recently, the response of plants to harsh environmental conditions like saline 
soils, high temperature, and water stress conditions has become the subject of inten-
sive studies up to molecular level (Cushman and Bohnert 2000; Mittler 2006). The 
extended EST panel and large-scale sequencing programs allow different crops to 
study these non-biological procedural genetic responses. Through genetic 
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engineering, transfers of the structural genes one or more than one are controlled by 
promoters to protect plants from environmental stress (Smirnoff 1998).

12.7  Tolerance Mechanism

The avoidance of stress and tolerance to stress is a general mechanism for plant 
responses to non-vital pressure, such as HM pressures in plants. Thus, plants stimu-
late the mechanisms of tolerance and tolerance for heavy metal stress through strat-
egies such as regulation of permeability and rotation of the plasma membrane.

In addition, plant chelating agents (PC) and metallothionein (MTs) are the mech-
anisms by which plant toxins in plants can be removed (Cheng 2003). The plant 
chelating (PC) agent in cytosol is the best mechanism of detoxification under toxic 
conditions (Jan and Parray 2016). Plant stores heavy metals in cells that have special 
mechanisms.

When the concentration is high for quick removal, heavy metals are transported 
to the cytoplasm, so molecules containing thiols can separate cations into com-
plexes. Tonoplast reduces the flow of heavy metals to cells through some osmotic 
mechanisms. Then remaining heavy metals will be stored in vacuoles and converted 
into crystals, and thus toxicity of heavy metals is reduced (Nies 1999).

The mechanism of transfer and accumulation of HMs to the cytoplasm is 
expressed as a facial indicator with extra heavy metals opens the door to cells (Nies 
1999). The tolerance of plants depends on the tolerance of plant species. Some plant 
species can resist excess infiltration of heavy metals from the atmosphere. Some 
plant species can also accumulate excessively heavy metals in above-ground tis-
sues, which may be toxic to most plants (Memon et al. 2001).

12.8  Molecular Effect of Heavy Metals on Wheat

Plant toxicity occurs when heavy metals accumulate in large amounts in different 
cells. Heavy metals are subdivided into two groups, i.e., redox active and inactive, 
like Fe, Cr, Co for redox inactive and Zn, Cd, Pb for redox active. Due to toxic levels 
of heavy metals, several series of physiological and metabolic changes activate 
when exposed to plants (Dubey 2010). There is a different effect of different heavy 
metals inside the plant, but the overall toxic effects differ. Effect of toxicity on plant 
causes reduced plant growth along leaf chlorosis, necrosis lost turgor, which is asso-
ciated with the aging process or plant death (Bačkor et al. 2007). These effects are 
related to biochemical and molecular changes as well as total structure. Heavy met-
als also reduce carbon uptake by inhibiting the enzymes associated with the stabili-
zation of carbon dioxide. Reduction in photosynthesis was seen at the time and 
dose-dependent response to various heavy metals (Gill et al. 2013).

Due to lead stress, T. Aestivum shows alterations in the biochemical pathways of 
significant enzymes, which in turn affects the expression of important genes. 
Reduced glutathione enzymes are important for the scavenging of reactive oxygen 
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species that are produced uninterrupted during abiotic stresses. (Hossain et  al. 
2012). In the presence of cadmium, the activity of glutathione reductase was 
increased in T. aestivum, Arabidopsis thaliana, and B. juncea (Khan et al. 2007; 
Mobin and Khan 2007). Stress and signaling of plant development are caused by 
PLDα gene and phosphatidic acid. Phospholipase D genes play a role in regulating 
stress and developmental responses. It is known that a gene from the ZIP family Zn, 
Fe, Mn, and Cd moves in a lot of abiotic pressure and shows a high level of expres-
sion in Triticum aestivum (Jamil et al. 2018).

12.9  Genes Expressed in the Presence of Aluminum

Aluminum is considered to exert and promotes oxidative stress in plants, and this is 
evident from the literature during recent years. Oxidative stress induced by the Al is 
not known yet whether it is primary or secondary and is still a question. However, 
an indication of early symptoms is lipid peroxidation. Several genes have been 
reported earlier that overcome the Al-induced oxidative stress that are glutathione- 
S- transferase, blue copper-binding protein, peroxidase, 1,3-b-glucanase, phenylala-
nine ammonia lyase, and cysteine proteinase (Cruz-Ortega et al. 1997). Expression 
study of these genes shows that in a transgenic plant like Arabidopsis thaliana, it 
enhances oxidative stress. In wheat, ALMT (aluminum-activated malate trans-
porter) enhances the gene that encodes the member of ALMT family that are made 
of membrane-bound protein (Delhaize et al. 2007). TaALMT1 acts as an Al31 anion 
channel and releases malate from the root cells. It has been shown that many other 
members of the ALMT family contribute in the same way to the resistance of 
Al31  in the grain and non-cortical species (Poot-Poot and Teresa Hernandez- 
Sotomayor 2011).

12.10  Conclusion

It is concluded from the above detailed discussion about the response of agronomic 
crops under stress of heavy metals and metalloids. The natural and anthropogenic 
activities can contribute to the accumulation of these metals and metalloids in the 
agriculture soils. Each plant shows its specific mechanism to tolerate a particular 
kind of heavy metal or metalloids. The research showed that plants adapt different 
mechanisms and pathways to reduce the effects of metals and metalloids in order to 
keep nutrient balance for proper growth. Various mechanisms have been reported 
which plants can adapt to minimize the harmful and toxic effects of metals and 
metalloids. Several enzymes, hormones, phytochelatins, association with other 
organisms (mycorrhizae), cell organelles (plasma membrane, cell wall), and heat 
shock proteins are involved in coping up with high concentrations of these contami-
nants. Further, modified genes also expressed in plants to face stress conditions of 
pollutants at the molecular level.
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Abstract
Widespread chronic arsenic (As) poisoning is a global concern due to consump-
tion of arsenic-contaminated drinking water. Arsenic contamination in ground-
water through geological sources and anthropogenic activities has been detected 
in many countries like the United States, Argentina, Taiwan, China, Hungary, 
Vietnam, India, and Bangladesh. Serious health hazards and deaths for millions 
due to As poisoning have been reported by many workers. While As contamina-
tion in drinking water has attracted much attention, its contamination in food 
chain has become a menace, particularly in intensively cropped areas of Bengal 
delta basin (India and Bangladesh). Growing crops in arsenic-contaminated soils 
with groundwater irrigation is primarily responsible for As contamination in 
food crops. The uptake of arsenic depends on various factors like type of crop, 
crop-growing condition (aerobic or anaerobic), water requirement, etc. During 
the post-monsoon season, crops like wheat, potato, winter vegetables as pea or 
French bean, and summer crops thrive more on groundwater-supported irriga-
tion, making them vulnerable to arsenic contamination. Tolerance level of crops 
therefore becomes an important yardstick in mitigating arsenic stress along with 
interventions in water management, cultural practices, soil amendments, and fer-
tilization with use of organics. Understanding the nature of arsenic contamina-
tion and its uptake helps in formulating appropriate strategies to ameliorate the 
negative impacts of As-stress limiting crop productivity and subsequent health 
hazards. This chapter would be handy to the students, agricultural researchers, 
and policymakers to acquaint themselves with the issue toward research and 
development programs to alleviate As-stress in major food crops.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0025-1_13&domain=pdf


210

Keywords
Arsenic · Contamination · Food · Crops · Mitigation

Abbreviations

AMF arbuscular mycorrizal fungi
AOB As(III)-oxidizing bacteria
APX ascorbate peroxidase
As Arsenic
As2S2 orpiment
As2S2 realgar
ASC ascorbic acid
AsIII arsenite
AsV arsenate
CAT catalase
CPE cumulative pan evaporation
DAT days after transplanting
DMA dimethylarsinic acid
EDI estimated daily intake
EDTA ethylenediaminetetraacetic acid
EFY elephant foot yam
ETc crop evapotranspiration
FCT flue cured tobacco
FeAsS Arsenopyrite
FeOB Fe(III)-oxidizing bacteria
FeRB Fe(III)-reducing bacteria
FYM farm yard manure
GPX glutathione peroxidase
GR glutathione reductase
GSH glutathione-S-transferase
IW irrigation water
MAC maximum acceptable concentration
MDA malondialdehyde
MIPs major intrinsic proteins
MMA monomethylarsonic acid
MT metallothioneins
NIPs nodulin 26-like intrinsic proteins
PC phytochelatin
Pht1 Phosphate transporter 1
SOD superoxide dismutase
STW shallow tube well
TF translocation factor
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13.1  Introduction

Arsenic, a notorious poison, is one of the world’s greatest environmental concerns, 
and millions of people are suffering from arsenic (As) poisoning globally. Presence 
of high concentrations of arsenic in drinking water due to groundwater arsenic con-
tamination is a major public health issue globally (Mukherjee et  al. 2006). It is 
reported that approximately 140 million people over 50 countries have been drink-
ing the contaminated water with As levels higher than the old WHO permissible 
limits of 50 ppb (Ravenscroft et al. 2009). The presence of arsenic at concentrations 
exceeding the maximum acceptable concentration, MAC (0.05 mg l−1) in ground-
water, was first detected in 1978, while in 1983, the first case of arsenic poisoning 
of a human being was diagnosed at the School of Tropical Medicine in Kolkata 
(Acharya 1997).

Long-term exposure to arsenic leads human health to an array of medical issues 
mainly known as arsenicosis. The symptoms include muscle weakness, mild psy-
chological effects followed by characteristic skin problems like changes in skin 
pigmentations, painful skin lesions, i.e., keratosis. Besides these, arsenic poison-
ing can cause a wide range of health problems like diseases of the liver and kid-
ney, neurological disorder, cardio-vascular and peripheral vascular diseases, 
diabetes, and cancers (skin, lung, kidney, liver, bladder, and prostrate) (Abernathy 
et al. 2003).

Groundwater As contamination has been reported in Argentina, Canada (Ontario), 
the United States (Arizona, California, Washington etc.), Chile (Antofagasta), 
Mexico, Poland, Greece, and several other countries. Widespread environmental 
problems due to the leaching of the metal from mine trilling in Australia, Canada, 
Mexico, Thailand, the United Kingdom, and the United States was reported by 
Jones (2007). As-contaminated aquifers in Argentina, Bangladesh, Cambodia, 
Chile, China, Ghana, Hungary, Inner Mongolia, Mexico, Nepal, Taiwan, the United 
States, and Vietnam have been reported (Wilson 2002).

Among the Asian countries, groundwater arsenic contamination was reported in 
Bangladesh, India, and China before 2000. After that, arsenic-related issues were 
emerged in different Asian countries, including new sites in China, Mongolia, 
Nepal, Cambodia, Myanmar, Afghanistan, DPR Korea, and Pakistan (Mukherjee 
et al. 2006). Bangladesh has a high mortality rate of 20,000 annually due to arsenic 
toxicity, and 50 million people are at risk for severe health issues (Pearce 2001; 
Choudhuri 2004). The World Health Organization (WHO) described the situation as 
“the largest mass poisoning of a population in history” (Smith et al. 2000). During 
the last few decades, groundwater in the Gangetic alluvial zones of West Bengal, 
India (covering 38,865 sq. km area) was affected by arsenic contamination resulting 
in arsenic-related health hazards for millions (9–10 millions) of people (Das et al. 
1995; Mitra et al. 2002; Sanyal and Dhillon 2005) with 42.7 million people vulner-
able to As-associated danger (Rahaman et al. 2001).

Contamination of arsenic in soils occurs through geogenic sources and anthropo-
genic activities. Soil arsenic is mainly controlled by parent rock materials, volcanic 
activity, weathering history, transport, sorption, biological activity, and precipitation 
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(Kabata-Pendias and Adriano 1995). Arsenic accumulates in soil and water due to 
weathering of rocks and minerals containing arsenic ores and their subsequent 
translocation. As is a major constituent of more than 200 minerals, including ele-
mental As, arsenides, sulfides, oxides, arsenates, and arsenites. Arsenopyrite 
(FeAsS), realgar (As2S2), and orpiment (As2S2) are the most important minerals. 
Anthropogenic activities such as combustion of municipal solid waste, application 
of arsenical pesticides (herbicides, fungicides, and insecticides) (Matera and 
LeHecho 2001), land application of solid waste/sewage sludge, river and irrigation 
waters (Kabata-Pendias and Adriano 1995), mining and smelting, combustion of 

Fig. 13.1 Generalized diagram of arsenic uptake by plant roots, where GSH- glutathione; AR, 
arsenate reductase; GSSG-oxidized glutathione; PCs- phytochelatins. (Adopted and modified from 
Ma et al. 2007; Ali et al. 2009; Zhao et al. 2009)
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fossil fuels (especially coal), landfilling of industrial wastes, manufacturing of met-
als and alloys, petroleum refining, and pharmaceutical industry (Ning 2002) are 
responsible for spiking As contamination in soil.

Initially, the focus of attention was mainly on contamination through drinking 
water. But, a higher concentration of arsenic was observed in the urine samples of 
some people having no history of consumption of contaminated water (Sanyal 
2005). Consumption of food crops irrigated with As-contaminated groundwater 
may lead to higher As levels in humans. It is noteworthy that more than 90% of the 
contaminated groundwater is used for crop-irrigational purposes and quantifying 
the influence of arsenic in soil-plant-animal systems is essential (Sanyal and Nasar 
2002). The food chain is ultimately getting contaminated when the crops are grown 
in arsenic-contaminated soil and/or irrigated with contaminated water (Abedin and 
Meharg 2002; Ghosh and Bhattacharyya 2004; Jones 2007). Arsenic accumulation 
is higher in crops requiring more water (such as summer rice) compared to crops 
with low water requirement (such as food legumes, some vegetables, etc.) (Mondal 
et al. 2012a). Therefore, the population with rice-based diets is more susceptible to 
As toxicity (Sinha and Bhattacharyya 2015). So, an understanding on the source of 
arsenic to crop plants and the factors that influence them is of utmost importance to 
minimize human exposure to this poison.

The build-up of arsenic in the soil is a continuous process (William et al. 2007). 
Prolonged irrigation with contaminated groundwater eventually leads to As accu-
mulation in soil, particularly in areas with groundwater-irrigated rice (Hossain 
2005; Khan et al. 2009). The gradual build-up of As in rhizosphere over time can 
result in contamination of the succeeding crops, therefore leaves the entire cropping 
system vulnerable to severe phytotoxicity. Thus, high levels of As in irrigation water 
can cause soil pollution that alone can endanger the productivity and food safety of 
the agricultural produce (Heikens 2006).

Rice, the staple food of many Asian countries, mainly, Bangladesh and West 
Bengal has high export value (particularly Basmati rice). Its high water requirement 
is mainly met through groundwater withdrawal that further leads to As accumula-
tion in rice grains and hampers the food safety. The outflow of contaminated prod-
ucts to local, national, and international markets may be further reduced by sanitary 
and phytosanitary measures. The Codex Alimentarius Commission Committee on 
Contaminants, therefore, met to discuss on the setting of limits for arsenic in rice at 
its eighth session held on 1 March to 4 April 2014 in The Hague, The Netherlands 
(SPS 2013–2014). The maximum permissible limit of arsenic in polished rice is 
0.2 mg kg−1 for international market (European Commission 2015). Establishment 
of international limits is bound to affect the export market of the products grown on 
arsenic-contaminated soil with contaminated water. Thus, the complexities of arse-
nic problem in the management system, as emphasized above, needs sustained 
research work to characterize the entire range of the intricacies of arsenic toxicity in 
groundwater – soil – crop continuum, and come up with the effective remedial mea-
sures to contain the toxic effect of arsenic thereon.
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13.2  Tolerance of Food Crops Toward Contamination: Uptake 
and Translocation

Arsenic is a metalloid of group VA of the periodic table, and it is similar in oxidation 
state and electron orbital status with phosphorus. Arsenic exists mainly in four oxi-
dation states, + V, + III, 0, and – III. It occurs in the environment both in organic and 
inorganic forms. The most important inorganic species are arsenate (Asv) and arse-
nite (AsIII), while the most important organic species are monomethylarsonic acid 
(MMA) and dimethylarsinic acid (DMA). The toxicity of arsenic is mainly depen-
dent on the forms of arsenic. Inorganic As species are more toxic to living organ-
isms than organic forms (Meharg and Whitaker 2002).

At first, As enters into the root apoplast through the space between the cells. Then, 
As cross the plasma membrane of endodermal root cells to enter into the root symplast 
or cytosol probably through the action of a membrane pump. Localization of arsenic 
in the apoplast may make a significant contribution to the total amount of it in a plant. 
Plants take up arsenic primarily through the roots, but submerged plants may also 
absorb As through the leaves (Wolterbeek and Van der Meer 2002). The factors that 
affect bioavailability, uptake, and toxicity of arsenic in field crops are (i) arsenic spe-
ciation, (ii) redox condition and soil texture, (iii) phosphate levels, (iv) soil pH, (v) soil 
organic matter, (vi) microbial activity toward volatilization, (vii) genotype variation in 
crop, and (viii) distance of the crop field from the source of irrigation (Lawgali and 
Meharg 2011; Delgado and Go’mez 2016; Azam et al. 2016).

Plants can take up arsenic from soil and subsequently translocate from roots to 
other aerial plant parts with different pathways (Fig. 13.1) and rates. The uptake of 
inorganic species of arsenic, i.e., arsenite (AsIII) and arsenate (AsV), occurs by two 
mechanisms. The transport of arsenate takes place from soil solution to aerial parts 
of the plants through high-affinity phosphate transporter (Wu et al. 2011). Being 
analogous to each other, uptake of arsenate and phosphate occurs through the same 
transport pathway in higher plants and the uptake mechanism involves co-transport 
of phosphate or arsenate and protons (Ullrich-Eberius et al. 1989). Phosphate trans-
porter 1 (Pht1) family is involved in the expression of over 100 phosphate transport-
ers which are strongly expressed in roots (Bucher 2007). Arsenite (AsIII), the 
predominant form of arsenic in reducing environment, is taken up by root cell 
through aquaporin or water channels (Li et al. 2009; Ma et al. 2008). Aquaporins are 
nodulin 26-like intrinsic proteins (NIPs) which represent one of the four subfamilies 
of the plant major intrinsic proteins (MIPs). In rice, two silicon transporters, viz., 
Lsi-1 (a silicon influx transporter) and Lsi-2 (a silicon efflux transporter), are mainly 
involved in entry of arsenite (Ma et al. 2007). The uptake mechanisms of methylated 
species such as monomethyl arsonic acid (MMA) and dimethylarsinic acid (DMA) 
are less extensively studied than inorganic arsenic species. Monomethyl arsonic 
acid and DMA are also taken up by plant roots, but generally in a less efficient man-
ner than inorganic arsenate or arsenite (Carbonell-Barrachina et  al. 1998; Marin 
et  al. 1992). MMA and DMA are taken up through the nodulin 26-like intrinsic 
proteins (NIPs) (Rahman et al. 2011). Although inorganic arsenic species (AsIII and 
AsV) are more efficiently absorbed by roots than methylated arsenic species (DMA 
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and MMA), their translocation rate in plant shoot is much lower than methylated 
arsenic species (Raab et al. 2007).

Arsenic is primarily stored in the plant roots. Rahman et al. (2007a) reported that 
As concentration in rice roots was 28 to 75 times higher than that of shoots. However, 
a higher As concentration in the shoots compared to radish roots has been observed 
(Smith et al. 2008). After the entry into roots, a small fraction of arsenic is transported 
to the shoot via the xylem as oxy-anions (arsenate and arsenite). Inside the plant tis-
sues, arsenate is reduced to arsenite by the activity of arsenate reductase utilizing 
glutathione as reductant followed by complexation of arsenite to phytochelatins. The 
complex is then sequestered into root vacuoles or is translocated to the shoots from 
where it is distributed to various organs (Zhao et al. 2010). The flow of the xylem sap 
transports the element to the leaves once it is loaded into the xylem.

Once taken up by plants, As toxicity adversely affects crop growth and physiol-
ogy in numerous ways. Both arsenate and arsenite disturb central cellular functions. 
However, the mechanisms of arsenic toxicity significantly differ among these inor-
ganic species. Arsenate can replace phosphate in aerobic phosphorylation and dis-
turbs the phosphate-based energy-generating processes, thereby inhibiting oxidative 
phosphorylation (Hughes 2002; Markley and Herbert 2009) while arsenite disturbs 
protein functioning by binding to sulfhydryl groups in the proteins such as pyruvate 
dehydrogenase and 2-oxoglutarate dehydrogenase (Ullrich-Eberius et  al. 1989; 
Ozturk et al. 2010). Therefore, As disrupts the biochemical function of cells and 
different plant metabolic processes viz. photosynthesis, transpiration, respiration, 
and other physiological functions by reacting with proteins and enzymes and even-
tually ceases plant growth (Meharg and Hartley-Whitaker 2002). It is noteworthy 
that As phytotoxicity in different plant species largely depends on the chemical state 
of arsenic compounds (Yoon et al. 2015). Some phytotoxic responses of plants to 
arsenic and respective tissue concentrations in various crops are given in Table 13.1.

Plants vary greatly in their tolerance to arsenic. When all major crops show their 
sensitiveness to arsenic, some species like Holcus lanatus and more specifically Pteris 
vittata (Chinese break fern) can tolerate to extremophiles such as that which can accu-
mulate 2% of its dry weight as arsenic (Wang et al. 2002). In plant roots, a common 
mechanism of detoxifying arsenic is its complexation via sulfur bonds (Lin et  al. 
2006; Tripathi et al. 2007). It is assumed that a substantial proportion of AsIII may be 
chelated in this way to minimize cytoplasmic exposure. Phytochelatins (PCs), having 
a general structure (k-Glu-Cys)n-Gly, play very important roles in eliminating toxicity 
through sequestration of this toxic metalloid into the vacuole as AsIII -PCs complex 
since PCs have a high affinity for AsIII. Essential roles of PCs in both constitutive and 
adaptive plant tolerance to arsenic have been pointed out by Raab et al. (2004).

13.3  Strategies to Mitigate Arsenic Contamination

There are several strategies to mitigate arsenic contamination in food crops as well 
as to reduce the buildup of As in rhizosphere. Rationing of groundwater use for 
irrigation purposes, appropriate measures to improve the water use efficiency of 
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crops and minimal withdrawal of contaminated groundwater is of prime importance 
in alleviating As toxicity. Other practices like choice of crops or varieties, nutrient 
management, organic intervention, and related measures also play key roles in 
reducing As accumulation in food crops (Heikens 2006; Mitra et al., 2017; Mondal 
et al. 2012b). Mitigation options appropriate for different crops should be identified, 
tested, and propagated in all countries suffering from As pollution of soils and crops 
as soon as possible. Mitigation strategies might be practical. But due to local cli-
matic, soil, agricultural, and hydrological complexity and differential rates of As 
accumulation in soils, different methods might be required within individual tube 
well command areas (Brammer 2009).

13.3.1  Choice of Crops/Cropping Systems

In arsenic-contaminated locations, it is essential to choose crops on the basis of 
water requirement. The emerging problem of groundwater As contamination due 

Table 13.1 Phytotoxic responses of plants to arsenic and respective tissue concentrations in vari-
ous crops

Crop Arsenic conc. Phytotoxicity References
Rice 2 mg l−1 soil 

solution
Inhibition of germination by 10% Abedin and 

Meharg (2002)

0.5 mg l−1 soil 
solution

Inhibition of root growth by 20%

0.5 mg l−1 soil 
solution

Reduction of shoot height by 30%

10 mg kg−1 soil More than 45% grain yield reduced Jahiruddin et al.
(2004)

25 mg kg −1 soil Dry matter reduction by 50% Onken and 
Hossner (1995)

30 mg kg−1 soil Both chlorophyll-a and chlorophyll-b 
contents in rice leaf decreased 
significantly

Rahman et al. 
(2007b)

60 and 90 mg As 
kg−1 soil

No rice plant survived up to maturity 
stage

Maize 12.5 and 
25 mg kg−1 soil

Promoted maize growth and the 
nutritional quality of the grain

Ci et al. (2012)

50 and 100 mg kg−1 
soil

Toxic effects for the crop

Barley 20 mg kg−1 tissue Growth inhibition Davis et al. 
(1978)

Mustard 150 μM in 
hydroponic solution

Inhibition in shoot length, chlorophyll, 
carotenoid and protein

Praveen et al. 
(2017)

Potato 290 mg kg−1 soil No growth inhibition Codling et al., 
2016)

Soybean >1 mg kg−1 tissue Yield reduction Deuel and 
Swoboda (1972)Cotton >4 mg kg−1 tissue Yield reduction

S. Mondal et al.
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to the lifting of excessive groundwater for the cultivation of crops in the lean 
period when groundwater recharge is at its minimum needs immediate attention 
(Mandal et al. 1996; Sanyal 2005). Cropping systems with less irrigation require-
ment should be selected in high As prone areas. Depending on the location and 
soil conditions, summer rice, a high water-demanding crop, must be replaced with 
dryland crops like wheat and maize (Heikens 2006) or tubers (like potato, ele-
phant foot yam, etc.) with less water requirement (Mondal et al. 2012b; Mondal 
and Bandopadhyay 2014). In Table  13.2, the relationship between the water 
requirement and As accumulation crop is presented. The abundant ferric ion under 
aerated soil condition rapidly immobilizes As in irrigation water (Brammer 2009). 
Low water requiring dryland crops are therefore a good choice in As prone areas. 
Therefore, drastic alteration of soil and land use is needed to accommodate dry 
land crops replacing summer rice (Brammer 2009). Since rice is the staple food 
crop of South and South East Asia, rice cultivation may be continued in the preva-
lent lowland rice ecosystems characterized by heavy soil texture and poor drain-
age condition, supported with monsoon rains.

As food legumes require much less water, green gram can be a better substitute 
for summer rice (Mondal et al. 2012a) when the objective is to reduce the con-
tamination. So, incorporation of legumes or oilseeds (green gram or sesame) in 
the cropping sequences can reduce the total arsenic uptake of the system (Mondal 
et al. 2018). Profitability, however, is an important factor that determines a farm-
er’s receptivity to a new crop/system. The inclusion of remunerative food legumes 
such as pea, cowpea or French bean in cropping systems not only reduces arsenic 
loading but also fetch a better price to the farmers (Mondal et al. 2015; Mondal 
et al. 2018). Due to its ability to thrive on a much lesser amount of water than 
summer rice, high- value crop strawberry crop cultivation is a profitable farming 
option in As-ridden areas (Das Roy 2017). Governments need to consider appro-
priate policies to phase out summer rice cultivation with suitable crops and pro-
vide subsidies for the matter.

Table 13.2 Water requirement and arsenic accumulation of major food crops

Crop Season Water requirement (mm) As accumulation (mg Kg−1)
Summer rice Summer 900–2500 1.07–1.84
Wheat Winter 450–650 1.23–1.35
Maize Winter 500–800 0.02–0.40
Green gram Summer 200–250 0.03–0.18
Sesame Summer 350–400 1.03–1.34
Pea Winter 350–500 0.71–1.14
French bean Winter 300–500 0.05–0.17
Potato Winter 500–700 0.56–0.94
Elephant foot yam Monsoon Rainfed 0.30–0.40
Strawberry Winter 175 0.07–0.22

Source: Mondal (2010); Agropedia (2010); Muñoz et al. (2002); DasRoy (2017)
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13.3.2  Choice of Varieties/Plant Breeding Approaches

Selection or breeding of cultivars that have a low arsenic uptake or tolerant to soil 
arsenic levels is important. Varieties should be screened in arsenic prone locations to 
identify the suitable arsenic tolerant variety. Varieties may show variation in their 
response to As exposure. Researches revealed that As accumulation, uptake, and phy-
totoxicity significantly differ among the cultivars (Rauf et al. 2011; Hua et al. 2011).

Development of crop varieties which accumulate less arsenic in their edible part 
can be a potential strategy to reduce human exposure to the dietary arsenic intake. 
Advanced genetics and traditional plant breeding techniques using knowledge of 
arsenic uptake and tolerance characteristics of plants are the useful approaches to 
develop varieties and ideotypes with desired characteristics (Punshon et al. 2017). 
Many rice cultivars with less arsenic in their grain have been screened (Norton et al. 
2009), and use of such As-resistant lines in hybridization programs with stable 
yielding genotypes is a promising breeding intervention. In Table 13.3, a list of a 

Table 13.3 Low arsenic accumulating variety of major food crops

Crop Varieties Varieties with less As uptake References
Rice IR-36 Kundu et al. (2012a)

Kakdwip Sel-1
Satabdi √
Ratna
Jaldi Minikit (local)
Rasi
Khitish

Wheat Kalyansona Kundu et al. (2012b)
Sonalika
UP-262 √
Local variety

Maize Azad Kamal Mallik et al. (2011)
Azad Uttam

Potato Kufri Jyoti √ Kundu et al. (2012c)

Kufri Naveen
Kufri Jawahar
Kufri Chandramukhi
Kufri Badshah
Kufri Pukhraj
Kufri Bahar
Super six
Lal alu (local)

Sesame SWB-32-10-1 Kundu and Pal (2012)
BT-893
Pragati
UTS-8
Rama √
Tilottama
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low arsenic variety of major crops from India and Bangladesh is given. Plants can 
grow in a medium containing toxic concentrations of arsenic through overexpres-
sion of Arabidopsis ABC-type transporters, and it helps in sequestering arsenite-PC 
complexes into the cell vacuole (Song et  al. 2010). Since rice ABC transporter 
OsABCC1 limits arsenic transport to grains by sequestering arsenic in the vacuoles 
of the phloem companion cells directly connected to the grain and as such excluding 
the function of OsABCC1 transporter results in higher levels of grain arsenic. 
Thereby, the overexpression of OsABCC1 can be an efficient strategy to develop 
arsenic tolerance and low-arsenic accumulating rice cultivars. Besides expression of 
arsenate efflux transporter from yeast (Saccharomyces cerevisiae) in rice leading to 
20% reduction of arsenic accumulation in brown rice can be another way of arsenic 
loading in rice (Duan et al. 2011).

13.3.3  Water Management

13.3.3.1  Alternate Source of Irrigation
The best possible way to alleviate As contamination in soils and crops is to limit As 
addition to soils. This can be done by using safer sources of irrigation water instead 
of As-contaminated groundwater. It will vary with location, surface water sources 
like rivers, major reservoirs, or small reservoirs (“tanks” or “ponds” in the Indian 
subcontinent), or deeper uncontaminated aquifers. Irrigation from these surface 
water sources is reported to reduce arsenic uptake in individual crops (Mondal et al. 
2012b; Mondal et al. 2015) and cropping systems (Mondal et al. 2018). Table 13.4 
reflects the variation in As accumulation in crops with different sources of irriga-
tion. Irrigation from these alternative sources is more costly to provide, operate, and 
maintain than the existing shallow tube wells (STWs). Appropriate policies to pro-
vide surface water support to compulsive summer rice areas should be considered 
for the matter. It will not be possible to provide safe irrigation supplies in all areas. 
In areas with the limited possibility of safer irrigation support, the best alternative is 
water treatment to reduce the amount of As in irrigation water (Brammer 2009).

Table 13.4 Effect of sources of irrigation on arsenic accumulation (mg kg−1) in major food crops

Crop

As content in economic produce
Irrigated with water from shallow tube well 
(STW)

Irrigated with PW (Pond 
water)

Summer 
rice

1.61 1.33

Winter 
rice

0.90 0.74

Potato 0.93 0.61
Cowpea 0.52 0.29
Jute 0.60 0.46

Source: Mondal (2010)
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13.3.3.2  Water Treatment
The water treatment methods recommended for purification of As-contaminated 
drinking water are not feasible options for purifying huge quantities of irrigation 
water because of the cost implications. Though simple means to reduce the amount 
of As, reaching fields is the co-precipitation of As with application of ferric hydrox-
ides in irrigation distribution channels (Brammer 2009). It may provide the most 
realistic and economical method to reduce As contamination of crops and soils. But, 
these methods need to be tested, validated, and then introduced for their safer 
implementation.

13.3.3.3  Irrigation Management
Proper irrigation methods should be adopted to use irrigation water judiciously, 
implying reduced application of water without affecting the growth and productiv-
ity of the crop. In the case of rice, the conventional cultivation method of rice (flood 
irrigation) requires a large amount of water. Flood irrigated soil is not a biological 
requirement of rice plants. Flooding is mainly used to control weed and vermin, for 
mobilization of key nutrients such as iron, phosphate, and zinc, and most impor-
tantly, flooding discourages the buildup of root nematodes due to multiple years of 
rice cropping. But, under flooded condition, As is quickly released due to reductive 
dissolution of Fe (oxyhydr)oxides and the arsenate reduction to the more mobile 
arsenite (Xu et al. 2017; Takahashi et al. 2004). Non-flooded or aerobic conditions 
can reduce arsenic uptake in rice by restrictive dissolution of arsenic. However, rice 
grown in non-flooded or aerobic conditions has a significantly lower yield than 
intermittent ponding or continuously flooded rice (Sarkar et al. 2012; Li et al. 2009; 
Grassi et al. 2009; Arao et al. 2009). Reduction in the amount of irrigation water at 
stress tolerable stage of the crop can enhance crop water productivity without a 
significant decrease in rice grain yield (Sarkar 2001). Intermittent ponding is more 
promising management technique to reduce arsenic levels without significantly 
affecting grain yields than aerobic or continuous flooded rice cultivation (Hu et al. 
2013). Sarkar (2001) reported that intermittent ponding during 15–45  days after 
transplanting (DAT) has no significant effect on grain yield. However, the authors 
observed that grain yield reduced significantly in case of intermittent ponding dur-
ing 46–60 DAT and 61–75 DAT (Sarkar 2001). It can be recommended from pot 
experiments that water management strategies applied during the heading period of 
rice (when the rice panicle has emerged from the stem and is fully visible, just 
before flowering) can moderate arsenic concentration in the grain (Arao et al. 2009). 
Maintaining the oxidative condition after heading significantly reduces the grain 
arsenic concentration (Matsumoto et al. 2015a). Use of sprinkler irrigation in rice 
can substantially reduce a substantial amount of arsenic uptake by the crop (Moreno-
Jimenej et al. 2014). Spanu et al. (2012) reported that As uptake in rice decreased up 
to 50-fold under sprinkler irrigation compared to rice grown in traditional flooded 
irrigation. However, purchase, maintenance, and operation of a sprinkler system are 
expensive rendering them unaffordable for the small and marginal farmers. A more 
viable option for reducing arsenic uptake in many areas of South and Southeast Asia 
is to grow rice in raised beds and delivering irrigation water through furrows. 
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Growing rice on the permanent raised bed is another suitable water management 
technique to mitigate As accumulation in both straw and grain of rice. The furrow 
irrigation method of the permanent raised bed reduces irrigation input by 29–31% 
in summer rice and 27–30% for winter rice resulting in 30% less As deposition in 
the soil through irrigation (Talukder et al. 2011).

To mitigate arsenic contamination, reduced water use in crops can be an effective 
strategy which also improves upon water productivity. In the case of dryland crops, 
different water-saving technologies and deficit irrigation methods (sprinkler and 
drip) coupled with mulching can be helpful in reducing the irrigation water require-
ment. Das Roy (2017) reported that drip irrigation at 0.8 ETc and 1.0 ETc reduced 
the irrigation requirement by 44% and 30%, respectively over surface irrigation at 
IW/CPE = 1 in strawberry. In addition to that, mulch application improved water 
productivity by 34–121% depending on different types of mulch in comparison to 
bare soil. Therefore, in case of dry land crops, these water-saving technologies can 
be adopted in arsenic prone areas.

13.3.3.4  Soil Amendment and Fertilization Practices
Application of soil amendments like Fe, P, Si, S, Se, and organic manures has poten-
tial role in alleviating As toxicity by reducing its uptake and translocation to the 
edible part of the food crops (Bakhat et al. 2017; Mitra et al. 2017; Matsumoto et al. 
2015b; Moulick et al. 2016).

13.3.3.4.1 Iron
Use of iron-based amendments increases the concentration of free iron oxide in the 
soil, impeding the release of arsenite from the solid phase into soil solution (Bakhat 
et al. 2017). This free iron oxide reduces arsenic uptake in food crops in the follow-
ing ways: (1) deposition of iron oxide in the rhizosphere decreases arsenic uptake in 
roots and (2) increases iron and arsenic co-precipitation and (3) desorption of solu-
ble arsenic decreases due to adsorption of As(V) on iron surface. Steel slag amend-
ment (rich in Fe and silicate) is a common practice in rice production systems of 
Southeast Asia.

Anaerobic rice cultivation also promotes the Fe plaque formation around the rice 
roots. Due to high affinity toward As (V), Fe-plaques play a significant role in reduc-
ing the As uptake in rice. Studies have indicated that the Fe plaque may be able to 
sequester the As, which ultimately decrease As translocation from roots to shoots 
(Liu et al. 2004). Further, Fe-redox cycling influences the As fractionation and As 
bioavailability in rice soil. Uptake of As mainly depends on the bioavailability of As 
in soil. Amorphous iron oxide acts as a sink of arsenic (Liu et al. 2015). When iron 
is supplemented with arsenic, there is a concomitant decline of hydrogen peroxide 
(H2O2), malondialdehyde (MDA) contents, along with ascorbate (AsA) and gluta-
thione (GSH) levels in both root and shoot. Again, catalase (CAT) and superoxide 
dismutase (SOD) activities were reduced in Fe supplemented seedlings. From these 
reviews, it may be concluded that oxidative stress in rice plants may be moderated 
by iron supplementation (Nath et al. 2014). Application of iron oxides (at a rate of 
2%) was more effective than phosphate amendment in lowering grain arsenic 
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content (Farrow et  al. 2015). Grain arsenic content was reduced with iron oxide 
addition and constant flooding (Honma et al. 2016).

A combination of ethylene diamine tetraacetic acid ferric sodium salt (iron 
EDTA) and calcium peroxide was effective in remediating arsenic uptake by vege-
table crops (lettuce, Chinese cabbage, and radish) due to immobilization of As 
(Chou et al. 2016) and chemisorptions by oxides and hydroxides of Fe and Al in the 
soil surface. In addition, at lower pH range, arsenic immobilization is the maximum 
and is highly influenced by soil phosphorus concentration that strongly competes 
with arsenic. However, a pertinent question arises whether iron oxide amendment 
application only temporarily reduces arsenic bioavailability (Tiberg et  al. 2016), 
which should be further studied and validated.

13.3.3.4.2 Phosphorus
Phosphorus (P), being the second most important nutrient, plays an important role 
in plant physiology and biochemistry. Phosphate (PO4) and As (V) share the same 
pathway of translocation for uptake in plants (Wu et al. 2011). Several studies have 
reported that the application of phosphatic fertilizers helps in reducing the uptake of 
arsenate from soil solution (Pigna et  al. 2010; Rahman and Hasegawa 2011). A 
plant with higher P content was reported to have lower arsenate toxicity. Thus, an 
increment in external P application can alleviate the problem of arsenate toxicity in 
plants (Mondal et al. 2015; Mondal et al. 2012b). The important factors for control-
ling As uptake in rice grown in As-contaminated soils are soil properties, concentra-
tion of As in soil solution, and application of phosphatic fertilizers (Geng et  al. 
2005; Farooq et al. 2016; Lee et al. 2016). The most important factor in the reduc-
tion of arsenate uptake by plant roots depends on the affinity of the plants or com-
petitive uptake in rice roots. The competition between As (V) and PO4 for adsorption 
sites on soil particles, competition between phosphate and As in rice roots for 
uptake, and the role of PO4 in translocation of As from root to shoot are the factors 
that influence the effect of PO4 on As mobility in soil and its uptake in rice (Lee 
et al. 2016). Phosphate plays a potential role in the paddy field because it regulates 
As solubility in soil and its uptake by plants (Peryea 1991; Fitz and Wenzel 2002). 
Moreover, As mobility in As enriched soils can be reduced by a co-application of 
calcium and P that forms Ca-P-As complex (Neupane and Donahoe 2013). Geng 
et  al. (2005) observed that when PO4 concentration increases, the amount of As 
decreases in Fe-plaque. Liu et al. (2004) reported that sufficient P resulted in less 
Fe-plaques on the rice roots, but the P-deficient solution increased the Fe-plaque 
formation on the roots. Oxygen transport in rice roots can be increased by less P 
concentration in plant tissues (Kirk and Van Du 1997) which may stimulate Fe 
plaque formation on the roots.

In anaerobic conditions, there is less influence of PO4 in As reduction because, in 
flooded (anaerobic) soil, As (III) is the predominant form of As and As (III) is not 
an analog of PO4. No significant effect of phosphate application was observed on As 
uptake in rice under flooded conditions (Abedin and Meharg 2002). However, there 
are also some contradictory reports of P application on As uptake in rice. Several 
workers reported that the application of P increases As accumulation in rice grains 
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(Jahiruddin et al. 2004; Talukder 2005; Hossain et al. 2009). However, there are the 
certain possibility of oxidation of As(III) into As(V) in the rice root zone as aerobic 
conditions prevail around the roots (Armstrong 1967). Therefore, a comprehensive 
study on the effect of PO4 on As accumulation in major food crops is required. 
Much elevated phosphate application might be useful to compete for uptake with As 
in plants (Mondal et al. 2012b). In contrast, the enhanced application of As in highly 
As-contaminated area can aggravate the As toxicity problem due to the desorption 
of As in soil solution. However, an elevated dose of P higher than the requirement 
of the plant may influence the soil and environment. Therefore, further experimen-
tation with foliar applications of P under As stress may be worked out to address the 
interaction of P and As with minimum negative impact on soil and environment 
(Lee et al. 2016).

13.3.3.4.3 Sulfur
Sulfur (S) is a vital element for plant growth and development. S-metabolism pro-
duces S-rich low molecular weight non-protein thiols like glutathione (GSH) and 
phytochelatin (PC). It plays a crucial role to regulate As through formation of a 
complex with As by S-containing ligands glutathione and phytochelatins (Srivastava 
and D’Souza 2009; Mishra et al. 2013). It is an important element to tackle As trans-
location as well as accumulation in plants. In the As detoxification process, As(V) 
is converted to As(III) and the sulfhydryl groups of GSH and PCs acts as the binding 
sites for the As(III) (Muñoz-Bertomeu et al. 2009). Then, As-thiol complexes are 
subsequently transported to vacuoles (Song et al. 2010). Moreover, with increased 
application of S, the transcript level of Lsi2 that helps in As translocation in shoots 
was reduced (Dixit et al. 2016) and the accumulation of As was increased in roots. 
Duan et al. 2011 reported that As accumulation in rice grain and concentration of 
PCs was negatively correlated.

Additionally, S helps to moderate oxidative stress due to As by reduction of H2O2 
and influencing the activities of antioxidant enzymes such as SOD, ascorbate per-
oxidase (APX), glutathione peroxidase (GPX), and CAT.

The effect of sulfate (SO4) on As accumulation in paddy soils is of great signifi-
cance. Sulfate has a strong affinity toward As under anaerobic conditions as it leads 
to precipitation of insoluble As sulfide (Signes-Pastor et al. 2007). Sulfate uptake in 
plants is regulated by different SO4 transporters like high-affinity SO4 transporters 
(HASulTs), low-affinity vascular transporters (LASulTs), and vacuolar efflux trans-
porters (Buchner et  al. 2004). Up-regulation of the SO4 transporters maintains a 
continuous supply of sulfur which helps in the formation of phytochelatins and 
thereby sequestration of the metalloid in vacuoles. It has been reported that sulfate 
uptake and transportation systems are activated upon As exposure in various plants 
like rice (Srivastava et al. 2015). Further, up-regulation of different genes which are 
involved in S transport and metabolism has been reported in rice under AsV expo-
sure (Norton et al. 2008). It was also reported that S reduces uptake of As, possibly 
due to the formation of Fe plaque (Hu et al. 2007), which reduced the As concentra-
tion in soil solution (Liu et al. 2005). However, some studies suggest that Fe-plaque 
acts as a buffer that enhances the As concentration in soil solution and to plants 
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(Tripathi et al. 2014). Moreover, SO4 also compete with As(V) as both of them use 
the same pathway in the same way that PO4 compete with As(V) for transport and 
metabolism (Ballatori 2002).

13.3.3.4.4 Silicon
Silicon is an essential nutrient for the plant. It is beneficial to plants even if when it 
is present in an excess amount in soil (Ma et al. 2001). Si plays an important role in 
alleviating both abiotic and biotic stresses in plants (Liang and Ding 2002). Due to 
physicochemical similarities between silicic acid and (AsIII) arsenous acid (Ma et al. 
2008), As is taken up by the silicon membrane transporter (Lsi1) into rice root cells 
and presence of silicon inhibits arsenite uptake. Application of Si fertilizer may be 
a potential mitigation strategy to decrease As accumulation in plants grown in 
As-contaminated soil (Zhao et al. 2010; Gupta and Khan 2015). Furthermore, sig-
nificant inhibitory effects of Si on As uptake and content in straw and grain of rice 
were reported either by the presence of indigenous silicic acid in the soil solution 
(Bogdan and Schenk, 2008) or by supplementation of Si externally (Seyfferth and 
Fendorf 2012). It has been reported that Si supplementation has reduced the As 
accumulation in the shoot. Changes were observed in related stress parameters (cys-
teine and proline), antioxidant enzymes (SOD, CAT, and APX), and oxidative stress 
markers (MDA and H2O2) in As stress condition, which were moderated on co- 
application of Si as compared to AsII treatment (Praveen et al. 2017). The presence 
of Si helps to mitigate As contamination by moderating those related stress param-
eters and antioxidant system in mustard (Brassica juncea).

Rice plants take up high concentrations of silica. It constitutes up to10% of dry 
matter in the straw and husk of the plant (Penido et al. 2016). The use of synthetic 
silicon fertilizers, such as calcium silicate or silica gel, is prohibitively expensive for 
smallholder farmers in developing countries; however reusing the silicon-rich parts 
of the rice plant that remain after harvesting and grain processing may provide a 
sustainable solution that also addresses the ongoing issue of silicon depletion of the 
soil (Penido et  al. 2016). Soil incorporation of fresh rice husks, or the ash that 
remains after burning the husk and straw for energy, can provide silicon without 
increasing methane production and decreases either total or inorganic arsenic in rice 
grain (Seyfferth et al. 2016).

13.3.3.4.5 Selenium
Selenium (Se) plays an important role in crops in providing protection against envi-
ronmental stresses. The synergistic and/or antagonistic effect of Se with As is a 
well-established phenomenon (Han et al. 2015). Selenium (Se) at lower concentra-
tion (1.0 mg L−1) is reported to stimulate crop growth and it has also an antagonistic 
behavior with As. However, Se concentration more than 1.0 mg L−1 has been proved 
to be toxic in case of higher plants like mungbean, but the lower dose less than 
1.0 mg L−1 has a beneficial effect on crop growth (Malik et al. 2012). Se also has 
antagonistic effect against a wide range of heavy metals like cadmium, chromium 
trivalent, chromium hexavalent, antimony, mercury, and lead by inhibiting their 
uptake and/or translocation in plant system under in vitro condition (Feng et  al. 
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2013). Seed priming with Se improved seed germination and seedling growth by 
reducing As uptake, suppressing the oxidative damage by increasing antioxidant 
accumulation in rice seedlings. Seeds primed with 0.8 mg Se L−1 were more effec-
tive in enhancing germination and seedling growth of rice, compared to 1.0 mg Se 
L−1 (Moulick et al. 2016). Malik et al. 2012 reported that the oxidative damage due 
to As was reduced with the application of Se. It might be due to elevated levels of 
enzymatic [SOD, CAT, APX, glutathione reductase (GR)] and non-enzymatic [AsA 
and GSH] antioxidants. Moreover, metallothioneins (MTs), thiols, and GST activity 
were found to be high in Se-treated mungbean plants. This might be the reason 
behind the detoxification mechanisms. The promotion of the growth of flue-cured 
tobacco (FCT), i.e., Nicotiana tabaccum L., were realized because low Se dose 
(0.1 mg L−1) alleviated the toxicity of the high As dose, and the addition of As coun-
teracted the toxicity of high Se dose (5 mgL−1) (Han et al. 2015). The antagonistic 
effect of Se with As was mostly reported from Petri plates and hydroponic studies. 
But, recently, Moulick et al. (2018) concluded from a pot experiment that Se-primed 
plant enhances growth and yield by reducing As translocation from root to aerial 
parts, expressed as translocation factor (TF). A reduction of TF root to shoot 
(46.96%), TF root to husk (36.78–38.01%), and TF root to grain (39.63%) was 
recorded among the Se-primed plants than unprimed plants both cultivated in simi-
lar As stress. Besides these, consumption of cooked rice obtained after cooking of 
brown rice of Se-primed plants can help in reduction in estimated daily intake (EDI) 
and cancer risk than their unprimed counterparts.

13.3.3.4.6 Organic Manure
The role of organic matter to mitigate arsenic accumulation in edible parts of plants 
was reported by several workers. Organic matter application can reduce up to 75% 
of As accumulation in a vegetative part of the plant (Huq and Joardar 2008). The 
lowest arsenic uptake was recorded in pea and EFY with a combination of inorganic 
fertilizers and organic manure (FYM) with or without elevated levels of phosphate 
compared to inorganic fertilizers only (Mondal et al. 2012b, 2015). FYM facilitates 
absorption of As in the soil matrix (Mukhopadhyay et  al. 2002). Application of 
FYM was reported to minimize As accumulation in both the soil and rice crop 
(Mukhopadhyay and Sanyal 2000). Humic/fulvic colloids of the native soil form 
organo-arsenic complex with the incorporated organic manures (Mukhopadhyay 
2002). In this way, it can be expected to minimize the risk of As toxicity. Combined 
applications of different types of organic manure can reduce the As accumulation by 
33.47% and 36.87% in whole grains and milled grains, respectively, compared to 
treatment without such manure (Rahman et al. 2011).

Unaffordable costs limit the use of soil amendment to reduce arsenic bioavail-
ability or prevent plant uptake of arsenic either in smallholdings in Asia or affluent 
in the United States or Europe (Punshon et al. 2017). In non-rice agricultural sys-
tems, arsenic is tightly bound to the solid phase; significant crop uptake from oxi-
dized soil is likely to be a result of extreme contamination, in which case effective 
mitigation is restricted to redirecting land use away from edible crops.
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13.3.3.5  Role of Soil Microorganism
Soil microorganisms have a potential impact on arsenic biogeochemistry through a 
number of mechanisms including mobilization, sequestration, redox, precipitation, 
and methylation transformation that directly control the fate and transport of arsenic 
in the environment (Huang 2014). The mostly accepted As detoxification mecha-
nism is binding of As on extracellular surface of soil microorganisms which has 
uronic acids and proteins and amino sugars with a hydrogen-bonding potentials 
(Bakhat et al. 2017). Several studies reported about the adsorptions of various inor-
ganic and organic species of arsenic by various soil bacteria: Bacillus sp., 
Rhodococcus sp., and Halobacterium sp. The activity of Fe(III)- reducing bacteria 
(FeRB) and As(V)-reducing bacteria can increase the bioavailability of As from soil 
Fe (hydr)oxides into the porewater (Zhu et al. 2014). Conversely, in the proximity 
of oxidation zone of rice roots, As(III)- and Fe(II)-oxidizing bacteria (AOB and 
FeOB) can decrease its bioavailability by the formation and co-precipitation of As 
with Fe minerals (Das et al. 2016). Microorganisms can manipulate the speciation 
in rice grains. A large number of genes are available in bacteria and archae that 
encode enzymes and transporters which are useful for As processing. These enzymes 
help to reduce AsV to AsIII, oxidize AsIII to AsV, methylate AsIII, and extrude AsIII 
from the cell (Cavalca et  al. 2013). Several studies revealed that methylated As 
found in rice grains are derived from the activity of rhizospheric microorganisms, 
not produced by the plant (Arao et al. 2011; Zhao et al. 2013). Therefore, an under-
standing of the potential role of microorganisms, which type of microbes are 
involved in As methylation within the rhizosphere and the conditions for their 
growth, is of great importance.

Arbuscular mycorrhizal fungi (AMF) also play an important role. It helps to 
moderate arsenic translocation by suppressing mRNA expression of OsLsi1 and 
OsLsi2, the mediators of AsIII transport (Mitra et al. 2017). Thus, AMF facilitates 
to enhance biomass and yield without increasing the grain arsenic content under 
As stress. This option can be sustainable to develop a remunerative mitigation 
strategy.

13.4  Conclusion

Arsenic contamination in food chain either through drinking water or food has 
severe human health consequences. In the Indian subcontinent (mainly Bangladesh 
and India), widespread groundwater As contamination is of great concern. The 
prevalent summer rice, grown during the lean period of December to April, mainly 
depends on groundwater irrigation support. Rice is the staple diet and consumption 
of As-contaminated rice is primarily responsible for As-related health hazards in the 
said region. Plants vary greatly in their tolerance to arsenic, and all the major food 
crops are susceptible to As toxicity. Arsenic contamination varies with crop- growing 
condition (aerobic and anaerobic), water requirement, growing season, etc. Crops 
and cropping system requiring less irrigation water holds promise in the endemic 
areas. Summer rice must be replaced with low As accumulating dryland crops like 
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wheat, maize, tubers (potato, elephant foot yam, etc.), or food legumes having low 
water requirement. Additionally, soil amending properties of food legumes make 
them a better alternative when the objective is to reduce the contamination. Inclusion 
of pea, cowpea, or French bean in cropping systems not only reduces arsenic load-
ing but also fetches better remuneration to the farming community. Cultivation of 
fruit crop like strawberry is also a lucrative farming option in this regard. Crop 
varieties accumulating less arsenic in their edible part can be a potential strategy to 
reduce human exposure to the dietary arsenic intake. Increasing crop water produc-
tivity and implementation of different water-saving technologies like mulching and 
deficit irrigation methods (sprinkler and drip) minimizes groundwater use and can 
be helpful in alleviating As-stress. Fertilization with Fe, P, Si, S, Se, and organic 
manures play crucial role in mitigation of As by reducing uptake and translocation 
to the edible part of the food crops. The mineral nutrients are involved in co- 
precipitation of As and minimizes As accumulation in crops. They play an active 
role in preventing As-induced oxidative damage to the crop. Additionally, Fe-plaque 
formation with As due to application of Fe amendments also helps in minimizing As 
uptake. Since PO4, SO4, and AsV involve same uptake pathway, application of PO4 
and SO4 amendments can effectively curtail down arsenate uptake in crops. Selenium 
at lower concentration exhibits antagonistic behavior with As. Application of FYM 
reduces As accumulation in both the soil and rice. Humic/fulvic colloids present in 
organic matter form organo-arsenic complex in soil, thereby decreasing arsenic 
uptake and accumulation in crops. The mostly accepted As detoxification mecha-
nism by microorganisms is binding of As on extracellular surface of soil microor-
ganisms which has uronic acids and proteins and amino sugars with a 
hydrogen-bonding potentials. AMF also helps to moderate arsenic translocation. 
Holistic management practices comprising of moderated irrigation water use, the 
addition of adequate soil amendments, use of tolerant varieties, and microbiological 
intervention can go a long way in ensuring food, nutritional, and livelihood securi-
ties in the As-ridden areas.
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Abstract
Soil acts as a sink for a number of organic and inorganic pollutants, through 
which these enter into the food chain and become a potential source of human 
diseases. Heavy metal (Cd, Cu, Cr, Fe, Ni, Pb, Zn) and metalloid (As, Sb) con-
tamination of soil resources is increasing due to natural and anthropogenic activ-
ities. Currently, metal(loid) accumulation is one of the most serious environmental 
concerns owing to their toxicity to crops. Agronomic crops, mainly cereals 
(wheat, Triticum aestivum; maize, Zea mays; rice, Oryza sativa), are cultivated 
on large area and, thereby, are more vulnerable to metal(loid) toxicity, affecting 
crop growth (seed germination, root/shoot length, and biomass), physiology 
(water relation, pigmentation, photosynthetic machinery), and metabolic pro-
cesses (reactive oxygen species (ROS), lipid peroxidation, protein degradation). 
However, to counter these anomalies, crops are equipped with antioxidants 
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(CAT, POD, SOD, APX, GR, proline, phenolics) to detoxify metal-induced ROS 
and proteins (phytochelatins, PCs; metallothioneins, MTs) to sequester 
metal(loid)s. Thus, further insight into these processes is important to exploit 
better metal-contaminated areas for raising crops, generate revenue, and feed 
ever-increasing population. Therefore, we present an overview of heavy 
metal(loid) pollution in soil; their toxicity to cereals (wheat, maize, rice) at mor-
phological, physiological, and cellular levels; and their tolerance mechanisms. 
At the end, we explore the symbiotic association of cereal crops to a microbe in 
scavenging metal toxicity.

Keywords
Cereal crops · Metal(loid) toxicity · Reactive oxygen species · Antioxidants · 
PGPB

Abbreviations

AI acid invertase
APX ascorbate peroxidase
AsA ascorbic acid
ATP adenosine triphosphate
CAT catalase
CCA copper-chromium-arsenic
DHAR dehydroascorbate reductase
ETS electron transport system
GDH glutamate dehydrogenase
GOGAT glutamine oxoglutarate aminotransferase
GPOD guaiacol peroxidase
GR glutathione reductase
GST glutathione-S-transferase
HMW high molecular weight
IAA indole-3-acetic acid
IBA indole butyric acid
MDA malondialdehyde
MDHAR monodehydroascorbate reductase
MT metallothioneins
NAA naphthaleneacetic acid
POD peroxidase
SOD superoxide dismutase
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14.1  Introduction

Soil contamination and metal pollution are the most imperative concerns in the 
industrialized world due to harmful effects on the biological system (Kisku et al. 
2000). Heavy metals and metal(loid)s include cadmium (Cd), copper (Cu), chro-
mium (Cr), iron (Fe), nickel (Ni), lead (Pb), zinc (Zn), arsenic (As), selenium (Se), 
and antimony (Sb) (Yadav 2010). Plants obtain the necessary and beneficial nutri-
ents from organic matter or soil; however, the plants can also uptake and accumulate 
nonessential toxic metal(loid)s when these are bioavailable in soil (Kisku et  al. 
2000; Houshm and Moraghebi 2011). Heavy metal(loid)s are present in the soil 
naturally due to weathering of minerals, erosion, and volcanic activities; in addition 
to them, anthropogenic activities such as mining, electroplating, wood preservation, 
pesticides, industrial effluent, and fossil-fuel burning are also polluting our environ-
ment and thus have adverse impact on the biological entities (Alloway 2013). Heavy 
metals and their oxides are long persistent after their introduction and change their 
chemical forms with the varying bioavailability in most of cases; they do not 
undergo microbial or chemical degradation. Soil contamination by the heavy metals 
has a risk and adverse impact on human health by the direct ingestion or contact 
with contaminated soil, through the food chain or drinking the contaminated water 
(Alloway 2013; Singh et al. 2011). The main reasons for the toxicity of the metal-
loids are the mining process, manufacturing of the synthetic product, and their uses. 
Landfill sites and old orchards have a potential risk of arsenic due to excessive use 
of insecticide in the past for different purposes and the dumping of industrial haz-
ardous waste or chemical waste (Alloway 2013).

Heavy metal(loid)s do not perform any known physiological function in the 
plants. Some metals are necessary for normal growth and required for the metabo-
lism of the plants such as Co, Cu, Fe, Mn, Mo, Ni, and Zn, but they can harm when 
the concentration of any element is higher than the optimal level (Penna and Nikalje 
2018; Alloway 2013; Krantev et al. 2008). The heavy metal contamination not only 
has an adverse impact on different constraints relating to plant quality and its yields 
but also alters the population size, composition, and activity of microbial commu-
nity residing in the rhizosphere (Alloway 2013). Metals influenced the enzyme 
activities by the different approaches due to the disparate chemical affinities of the 
enzymes in the soil system; for example, the Cd toxicity is higher toward enzymes 
than Pb because it has greater mobility and lesser affinity to the soil colloids (Verma 
and Dubey 2003). Cr (IV) is a highly toxic and strong oxidizing agent, and its high 
concentration can cause harmful effects on the microbial cell metabolism (Shanker 
et al. 2005). Heavy metals can also affect the microbial reproduction in the com-
posting process and cause morphological and physiological changes (Alloway 
2013; Shanker et al. 2005).

Abiotic stresses such as heavy metal(loid)s, drought, salinity, water logging or 
flooding, and extreme temperature have adverse impacts on germination, growth, 
development, and seed quality of field crops; in some cases, these stresses reduced 
production rate up to 60% (Chapagain et al. 2017). On the other hand, global food 
production requirements increase day by day that would double in 2050 to meet the 
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needs of the growing population. Hence, one of the best way to ensure food security 
for the future generation is to develop the various stress-tolerant crop varieties. 
Extensive increase in the intensity and frequency of tremendous weather event and 
unpredictable monsoon rainfall has caused intense and frequent cycles of drought 
and flood. Rising temperature causes water stress condition and heat; predomi-
nantly, regions like arid and semiarid consequentially reduce agriculture productiv-
ity. Heavy metal(loid) stress also caused a decrease in plant nutrient contents, leaf 
area, shoot growth, root length, dry matter production, and seed germination effects 
of many cereal crops such as wheat, maize, and rice (Ahmad et al. 2015; Chapagain 
et al. 2017). Seed germination and seedling growth of wheat and maize cultivars 
were reduced on exposure to Cd (Ahmad et al. 2012, 2013).

Cadmium has adverse effects on photosynthetic rate, chlorophyll content, and 
intracellular CO2 concentration (Krantev et al. 2008; Alloway 2013). The other met-
als such as Ni, Cu, Mn, and Zn also reduce photosynthetic efficiency by decreasing 
chlorophyll pigments (Krantev et  al. 2008; Penna and Nikalje 2018). Chromium 
inhibits cell division, severely disturbs the cell cycle, and also reduces the root 
growth in the plants at the cellular level (Hu et  al. 2014). Different crop plants 
(wheat, rice, maize) are very sensitive to metal stress; thus, some plants are referred 
as non-accumulator plants, whereas some plants are hyperaccumulators (Brassica 
sp., Salix sp., Alyssum sp.) and are able to tolerate toxic metals at higher level. Plant 
species can manage metal(loid) pollution through one or combination of these 
mechanisms: (i) remove the toxic metal(loid)s from the soil, (ii) avoid uptake of 
metal(loid)s to the plant roots, (iii) minimize the competition between metal(loid)s 
and fundamental nutrients that are required for the growth and development of the 
plants, and finally (iv) prevent movement of toxic metals into shoots. The most 
important thing is to be identifying the heavy metal fraction, controlling reaction 
mechanism, and monitoring the activities of metals and their bioavailability to the 
plants (Penna and Nikalje 2018).

Toxicity of metals also obstructs nitrogen metabolism, which is the important 
physiological processes that play a vital role in the growth and development of 
plants (Ma et  al. 2017). Nitrate metabolism, inhibition of nitrate uptake, and its 
transportation are severely affected by Cd, which changes the primary nitrogen 
assimilation processes (Benavides et al. 2005). Plants are synthesizing and secreting 
many hormones which can improve plant tolerance against abiotic stresses 
(Chapagain et al. 2017; Penna and Nikalje 2018). Toxicity of metal(loid)s affects 
plant growth and development directly by causing oxidative stress and cytoplasmic 
enzyme inhibition, and indirectly, disturb ion homeostasis in plants, and excessive 
reactive oxygen species (ROS) to oxidize biomolecules in the plant (Wang and 
Zhou 2005; Chapagain et al. 2017). Production of the ROS is due to the effect of any 
type of stress. Mostly, the ROS is produced in the chloroplast, peroxisomes, and 
mitochondria. The heavy metal accumulation is the consequence of the disruption 
of CO2 in the chloroplast so that it reduced the electron transport chain in the pho-
tosynthetic process and production of ROS. In the plant metabolism, ROS plays a 
dual function under optimum concentration; they are involved in various physiolog-
ical processes and act as stress sensor. The fate of ROS totally depends on the 
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scavenging system if the ROS scavenges efficiently so that it works as a signaling 
molecule. If the production of ROS is much higher and cannot be regulated to the 
scavenging system, it becomes toxic (Wrzaczek et  al. 2013; Penna and Nikalje 
2018). The antioxidant mechanism protects cells from detrimental effects of 
ROS. The antioxidant system includes enzymatic component that consists of gluta-
thione reductase (GR), catalase (CAT), superoxide dismutase (SOD), ascorbate per-
oxidase (APX), etc. The antioxidant enzymes are used for the mitigation of induced 
damages of metals. It is well known that ROS generation increased by metals and in 
response the activity of antioxidant enzymes (POD, SOD, APX)  also increased 
(Yang et al. 2011; Penna and Nikalje 2018).

The cereal crops (wheat, maize, and rice) are staple foods in different parts of the 
world; therefore, in this chapter, we discuss the toxic effects of metal(loid)s to cereal 
crops and find out the tolerance mechanisms they have to rectify metal(loid) stress. 
We also identify the role of plant growth-promoting bacteria (PGPB) and cereal 
interaction for the alleviation of metal(loid) stress.

14.2  Pollution of Metal(loid)s in Soil

The terrestrial environment is the principal sink of heavy metal(loid)s coming from 
geogenic and anthropogenic sources (Fig. 14.1). Metalloids such as As and Se are 
mainly accumulated in soil through natural resources; for instance, 45,000 tons of 
As is released in the environment through burning of coal on annual basis; igneous 
rocks contributed 100 mg As kg−1 while manganese ores 15,000 mg As kg−1 (Bolan 
et al. 2014); similarly, Se-rich shales, limestones, and mudstones are the source of 
Se in soils found in the USA and India (Bolan et al. 2014).

Many countries in the world are poorly designed and implement the environment 
act; thereby, they are facing the problem of heavy metal(loid) accumulation in the 
terrestrial and aquatic environment. Those having frequent use of lead gasoline have 
the problem of Pb accumulation in air and soil (Wuana and Okieimen 2011). Lead 
is a toxic element, it is present in rocks (1–150 mg kg−1), and thereby, it has been 
included in new European REACH Regulation (EC1907/2006) (Kushwaha et  al. 
2018). Some countries are using intensive pesticides (Bordeaux mixture), and phos-
phate fertilizer (rock phosphate) has been reported for Cu, Cd, and Pb pollution 
(Wuana and Okieimen 2011; Bolan et al. 2014). The mixture of copper-chromium- 
arsenic (CCA) is being used for preservation of wood in the USA; Cr is also fre-
quently used for the treatment of tanneries (Bolan et al. 2014; Robinson et al. 2006). 
Soil irrigated with wastewater was contaminated with heavy metals (Cd 5, Co 13, 
Pb 21, Cr 33, Cu 43, Mn 64, and Zn 83 mg kg−1 soil) in Lahore, Pakistan (Mahmood 
and Malik 2014). They further reported the health hazard impact of these metals 
especially Cd and Mn via consumption of leafy vegetables cultivated in metal- 
contaminated soils. Heavy metal(loid)s can be divided into three distinguished haz-
ardous classes on the basis of their toxicological profile; for instance, Dutch has 
divided metal(loid)s on the basis of their toxicity in soil (Vodyanitskii 2016): (i) 
highly hazardous (Cd, Be, Se, Sb (< 1 mg kg−1 soil)), (ii) moderately hazardous (As, 
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Ba, Cu, Cr, Hg, Ni, V (1–10 mg kg−1soil)), and iii) low hazardous (Co, Ce, Pb, Zn 
(> 10 mg kg−1 soil)). Heavy metal(loid) contamination in soils of various countries 
has been summarized in Table 14.1. The soils of Ghana, the European Union, and 
Greece were contaminated with As, whereas Bangladesh soil was contaminated 
with Cd higher than the values of these metals in world soil (Table 14.1). Similarly, 
river basin of Columbia showed higher levels of Cu, Ni, and Zn, whereas agricul-
tural soils of Khyber Pakhtunkhwa, Pakistan, showed higher values of Zn than their 
respective world level (Table 14.1).

Fig. 14.1 Sources of heavy metal(loid)s and their toxic effects on cereal crops
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14.3  Metal(loid) Toxicity to Cereal Crops

Heavy metals and metalloids are ubiquitous in the environment; however, they 
affect crops mainly due to their contamination in soil and water. The farmers are 
using untreated industrial effluent to irrigate fields, chemical fertilizers, and pesti-
cides to increase economic yield at the cost of soil pollution and quality. The expo-
sures of heavy metal(loid)s to cereal crops are causing morphological, physiological, 
and metabolic changes which are elaborated here (Fig. 14.1).

14.3.1  Morphological Effects of Metal(loid)s

Heavy metal(loid) toxicity severely affected the plant growth and development 
more than any other environmental stress. Heavy metal toxicity has decreased mor-
phological attributes of cereal crops and also caused genotoxicity. It is essential for 
metals to be available in sufficient amount in soil for plant uptake; once it is accu-
mulated in plants through either H+/ATPase pump or Ca channels, it disrupts the 
synthesis of enzymes and proteins that inhibit seed germination and growth of 
plants (Kushwaha et al. 2018). They further reported that Pb toxicity also limits leaf 
water contents, stomatal closure, and mineral nutrients. It is reported that heavy 
metal (Pb) has decreased the seed germination, root/shoot length, and biomass of 
many cereal crops such as maize (Ghani 2010; Hussain et  al. 2013; Singh et  al. 
2015), wheat (Yang et al. 2010; Lamhamdi et al. 2013; Ramesar et al. 2014), and 
rice (Gautam et al. 2010; Khan et al. 2018). Verma and Dubey (2003) examined the 
effect of high dose of Pb (1000 mM) to rice seedlings that caused a reduction in 
shoot/root length (31–40%) and shoot/root fresh weight (29–43%). Very recently, 
Khan et al. (2018) determined the toxicity of Pb to rice crop cultivated in nutrient- 
sufficient or nutrient-deficient conditions. They observed Pb toxicity to aerial part of 
rice; however, it did not cause any toxicity to belowground part of rice under a 
limited supply of essential nutrients. The short-term effects of Pb on wheat seedling 
were observed by Lamhamdi et al. (2011), while long-term effects were reported by 
Ramesar et al. (2014). They concluded that this metal has reduced seedling growth 
of wheat at either short- or long-term Pb exposure.

Leaf concentration determines the toxicity of Cd; Lux et al. (2011) reported that 
Cd causes toxicity to plants if its concentration in the leaf is >10 μg g−1. They also 
noted the toxic effects of Cd on root anatomy of the plant that is due to high accu-
mulation of this metal in plant roots. Seed germination and initial growth stages of 
wheat are very crucial and sensitive to Cd toxicity (Ahmad et al. 2012, 2013). Many 
investigations reported that Cd has decreased root/shoot length, biomass, and chlo-
rophyll content of cereals (Ahmad et al. 2016; Rizwan et al. 2016; Ansarypour and 
Shahpiri 2017). However, in some cases due to a higher concentration of Cd, crops 
showed phytotoxic symptoms such as browning of roots, leaf epinasty, and leaf 
chlorosis and necrosis (Dong et al. 2005; Lux et al. 2011). Cadmium-induced geno-
toxicity damages DNA, growth, and mineral uptake in plants (Benavides et  al. 
2005); in another study, Cd caused an acute reduction in growth, biomass, and water 
contents in sorghum (Roy et al. 2016).
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Higher Cr accumulation may cause inhibition in seed germination and thus cause 
a reduction in crop growth (Adrees et al. 2015; Tripathi et al. 2015). Chromium has 
caused the oxidative stress in cereal crops that disturbs not only the biochemical but 
also the morphological functions of plants, resulting into loss of economic yield of 
crops (Ma et al. 2017; Handa et al. 2017). Mathur et al. (2016) examined the effects 
of Cr on wheat and noted that growth of wheat is inhibited due to impairment of 
photosynthetic and internal metabolic machinery. Wyszkowski and Radziemska 
(2013) reported negative effects of Cr on growth and biomass of oat.

Previous studies revealed that germinating seeds and seedling growth of rice 
were decreased due to toxicities of metalloids in hydroponic (Khan and Gupta 
2018). Among these metal(loid)s, arsenic (As) toxicity becomes a worldwide envi-
ronmental problem (Zhao et al. 2009). Zhang et al. (2016) exposed the resistant and 
sensitive cultivars of rice to As in a pot experiment with and without mycorrhiza. 
They found less accumulation of As in grains of resistant rice cultivars as compared 
to sensitive; however, flooding conditions promote the As accumulation in resistant 
cultivar when compared with aerobic conditions (Zhang et al. 2016). The authors 
urged the farmers to adopt these agronomic (water management) and genetic 
engineering- cum-breeding techniques to avoid As toxicity to rice (Zhang et  al. 
2016). An excellent review has been published by Islam et al. (2016a) elucidating 
the toxicity of As in rice. They argued that rice is more efficient at accumulating As 
in grains as compared to other cereals, and thereby, this is prone to relatively greater 
As toxicity in terms of growth and quality of rice grain. However, at the same time, 
the authors address some management practices to reduce As toxicity in rice. 
Arsenic was loaded into crop cells following the same route as followed by the 
essential elements and has caused morphological and metabolic effects on cereal 
crops (Abedin and Meharg 2002; Zhao et al. 2009). It has reported that As caused 
severe damage to root/shoot biomass, seed germination, and economic yield of 
crops (Abedin and Meharg 2002; Armendariz et al. 2016). Maize seedlings were 
exposed to 0–5  mg As L−1 in hydroponics for 5  days (Stoeva et  al. 2003); they 
observed a significant reduction in maize growth, biomass, and leaf area. Similar to 
other metalloids, selenium (Se) stress decreased growth and biomass of lowland 
rice (Mostofa et al. 2017).

14.3.2  Physiological Effects of Metal(loid)s

Lead (Pb) toxicity has caused a significant reduction in chlorophyll contents of 
wheat (Lamhamdi et al. 2013; Ramesar et al. 2014) and maize (Singh et al. 2015), 
and the effect was aggravated with elevated concentrations of Pb. Similarly, Zn 
stress significantly decreased chlorophyll a and b of wheat leaves (Li et al. 2013). It 
has been reported that Pb stress generated ROS in many crops (Fahr et al. 2013); 
consequently, it increased malondialdehyde (MDA) and H2O2 contents in wheat 
(Kaur et al. 2012). Similar kind of effects was reported in other studies; for example, 
MDA concentration has increased in maize (Gupta et al. 2009), rice (Thakur et al. 
2017), and wheat (Yang et al. 2011; Kaur et al. 2012) in hydroponics under different 
Pb concentrations and time of exposure. The increased MDA and H2O2 contents in 
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wheat and maize are rectified in plants by activating internal antioxidative system 
(Kaur et al. 2013, 2015; Singh et al. 2015). However, the ability of cereal crops to 
respond to Pb toxicity and detoxification mechanisms varies with growth conditions 
and plant species.

Cadmium ions cause inhibition in physiological machinery of cereal crops that 
decrease plant strength and hamper cereal crop growth (Nahakpam and Shah 2011; 
Ahmad et al. 2015, 2016). Leaf chlorosis, reduction in seed germination, growth 
and cell division, and limited uptake of water, phosphorus, and nitrogen in cereal 
crops are some common causes of Cd toxicity (Benavides et al. 2005; Lux et al. 
2011; Shah et al. 2013). The presence of Cd2+ is associated with the occurrence of 
oxidative stress (Nahakpam and Shah 2011; Ahmad et al. 2016). Also recently, it 
was demonstrated that Cd2+ causes a series of ROS generation, viz., hydrogen per-
oxide, superoxide anion, and hydroperoxides in crop cells (Garnier et  al. 2006). 
Effects of Cd toxicity are employed to the plasma membrane within the cell of the 
crop (Lux et al. 2011). Cd2+ when taken up by the roots is moved to xylem cells 
through an apoplastic or a symplastic pathway for its transportation into leaves (Lux 
et al. 2011); however, most of this metal is restricted at roots (Ahmad et al. 2014). 
Such accumulation and translocation of Cd2+ in roots to leaves differ considerably 
among species and even among varieties of the same species. Mostly, Cd2+ gets 
deposited and binds largely in the cell walls adjacent to the plasma membrane and 
to the endomembrane compartments; however, in leaves, Cd2+ is found to accumu-
late in vacuoles as well (Jin et al. 2015; Liu and Kottke 2004). The first visible effect 
of Cd toxicity was an enhancement of vacuolation in the meristematic cells and the 
appearance of electron-dense granules between the cell wall and plasma lemma in 
plant roots (Liu and Kottke 2004). At high concentration of Cd2+, the cell death 
occurs owing to severe plasmolysis, shrinkage of cytoplasm, and reduction in a 
number of ribosomes and mitochondrial cristae (Liu and Kottke 2004).

Cr largely targeted the green pigments and photosystem and inhibited carbon 
assimilation in wheat (Ali et al. 2015; Mathur et al. 2016). The process of photosyn-
thesis, enzymatic reactions, and chlorophyll (a, b, and carotenoids) content of maize 
were inhibited in the presence of Cr in the growth media (Islam et  al. 2016b). 
Similar to other metals, Cr generates ROS in plants that cause specific damage, and 
sometimes, it spreads to whole-plant level (Anjum et al. 2014; Gill et al. 2016); this 
condition causes severe destruction in physiological processes of plants due to oxi-
dative stress, which oxidizes proteins, lipids, and nucleic acid and inhibits enzymes 
leading to cell death in cereal crops (Adrees et al. 2015).

Selenium has generated ROS such as H2O2 and damaged cell membrane of rice 
plant by the production of high-lipid peroxidation that ultimately hampered the 
morphology of rice (Mostofa et al. 2017). ROS are considered as an indicator of 
stress in plants, and thus, it acts as signaling molecules (Wrzaczek et al. 2013; Luo 
et al. 2016). Higher concentration and accumulation of Se in crops decreased the 
amount of green chloroplasts and degradation of the organelles in plant root cells 
(Ślusarczyk et al. 2015). The increased lipid peroxidation in wheat seedlings and 
enhanced antioxidant activity in barley are indicators of ROS generation and accu-
mulation in these cereals cultivated in Se-contaminated media (Akbulut and Cakır 
2010; Łabanowska et al. 2012). The inhibition of green pigments, reduction in water 
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contents, enhanced production of hydrogen peroxide, and lipid peroxidation are the 
major consequences of Se stress in lowland rice plant (Mostofa et al. 2017). They 
also noted that rice plant in Se stress showed upregulation of some antioxidant 
enzymes (SOD, GPX) while downregulation of others (AsA, CAT, GR). Selenium 
caused toxicity to cereal crops due to attachment of Se to Cys/Met complex in pro-
tein chain and resulted in formation of selenoproteins (SeCys/SeMet); this complex 
impairs protein functioning. The formation of SeCys complex is more detrimental 
to protein synthesis than SeMet, the former having more toxic nature; however, both 
complexes are very reactive and easily deprotonated and inhibit enzyme functions 
(Hondal et al. 2012). The other studies reported specific inhibition of glutathione 
synthesis in model plants in response to Se stress (Hugouvieux et al. 2009; Grant 
et al. 2011).

The As exposure to maize seedlings causes a significant reduction in green pig-
ments that lead to lower efficiency of photosynthetic machinery (Stoeva et al. 2003); 
the As stress also increased lipid peroxidation and antioxidant enzyme peroxidase 
activity in the same plant. The As toxicity to maize seedlings is rendered due to 
metabolic impairment in maize cell for uptake of phosphate ions which are known 
analogue of arsenate ion and share the same path to enter in root cell and are trans-
ported to shoot (Stoeva et al. 2003; Smith et al. 2010). Another reason to this toxic-
ity is the conversion of As (V) to As (III) in the cytoplasm of plant cell (Meharg and 
Hartley-Whitaker 2002; Stoeva et al. 2003), which causes cellular damage through 
generation of ROS, inhibiting enzymes and proteins (Meharg and Hartley-Whitaker 
2002; Smith et al. 2010).

14.3.3  Metabolic Effects of Metal(loid)s

In cereal crop, toxic effects of Cd on metabolism have been observed, for instance, 
reduced uptake of nutrient (Sandalio et  al. 2001), hampering of various enzyme 
activities (Obata and Umebayashi 1993), and production of oxidative stress 
(Romero-Puertas et al. 1999; Sandalio et al. 2001), including changes in enzymes of 
the antioxidant defense system (Benavides et al. 2005). Cd also decreased the accu-
mulation of nitrate and its transport from roots to shoots, by damaging the nitrate 
reductase activity in the shoots of the plant. Cadmium also decreased the process of 
absorption of nitrogen fixation and primary ammonia in plants during Cd treatments 
(Balestrasse et al. 2001). Cadmium produces changes in the functionality of mem-
branes by destroying lipid peroxidation and disturbances in chloroplast metabolism 
by damaging chlorophyll biosynthesis and decreasing the activity of enzymes 
involved in CO2 fixation.

Wheat seedlings are exposed to Pb stress in hydroponics to determine its effect 
on nutrient uptake and metabolic products (Lamhamdi et  al. 2013). They found 
decreased uptake of nutrients (Ca, Mg, Cu, Zn) and synthesis of proteins while 
increased Mn in wheat under Pb stress. Kaur et al. (2012) reported membrane insta-
bility and alteration in enzyme activities in wheat in response to Pb stress. Heavy 
metal stress (Ni, Cd, Pb, Zn) inhibits phosphorylation reaction and impairs electron 
transport system in the plant (Romanowska et  al. 2002, 2006); another study 
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reported alterations in dictyosomes, endoplasmic reticulum, and mitochondrial cris-
tae under Pb stress (Jiang and Liu 2010). The chromosome damage and decreased 
in mitotic and cell division in maize cells are the consequences of Pb stress (Jiang 
and Liu 2000). The exposure of C3 and C4 plants to Pb oxidized many important 
substrates of Calvin cycle in mitochondria which affects respiration rate of maize 
and barley (Romanowska et al. 2002); moreover, Pb stress triggers ATP production 
in these cereals (Romanowska et al. 2002, 2006).

The scientist identified many biomarkers in plants to quantify metal stress. 
Among them, phytochelatins are the most common proteins produced in plants in 
response to heavy metals. Keltjens and van Beusichem (1998) reported the toxicity 
of Cd and Cu on maize and wheat metabolic activities. They observed a close asso-
ciation of Cd and PC contents in plant tissues; thereby, they considered PC as a 
biomarker of Cd stress in these cereals. Cadmium exposure to sorghum increases or 
decreases the expression of many proteins responsible for the metabolism of carbo-
hydrates and protein synthesis. These factors have a major role in lowering of 
growth and biomass of sorghum (Roy et al. 2016). The high concentration of Zn in 
the growth media caused inhibition in kinase and dehydrogenase enzymes in wheat 
roots (Li et al. 2013); however, Zn stress does not affect hydrogen peroxide, MDA, 
and SOD activities in leaves of wheat. The Cu exposure to cereal crops induced 
metabolic and anatomical changes; for instance, it induced lipid peroxidation in 
wheat, maize, and rice (Adrees et al. 2015).

The high concentration of Cr decreased NO3-N and increased accumulation of 
total N in oat (Wyszkowski and Radziemska 2013). The toxic effect of Cr on the 
yield of barley was also reported that was due to decreased accumulation of N com-
pounds in this cereal crop (Wyszkowski and Radziemska 2010); interestingly, the 
same study compared the toxic effect of Cr on maize which showed tolerance com-
pared to barley. This tolerance was due to greater accumulation of NH4-N in maize. 
Exposure of plants to Cr-induced changes in their metabolic activities; in some 
cases, it disturbs hydrolytic enzymes (amylase) during seed germination, nitrate and 
nitrite reductases essential for nitrogen metabolism, and carbohydrate metabolism 
in plant leaves (Singh et al. 2013). The other studies also reported similar effects of 
Cr on nitrogen metabolism (Kumar and Joshi 2008); they observed reduced activi-
ties of urease, nitrate/nitrite reductases, glutamate synthase, and dehydrogenase in 
root and shoot of sorghum. Twenty-two different kinds of proteins were identified 
in maize exposed to Cr stress, of which six proteins were associated with sugar 
metabolism, three proteins were related to stress tolerance, and four were respon-
sible for antioxidant production (Labra et al. 2006). Similarly, Ding et al. (2009) 
reported Cr-induced activities of protein kinase in maize, which is inactivated upon 
production of hydrogen peroxide scavenger. The activity of NO- and Ca-dependent 
kinase increased in maize exposed to Cr, and it followed the ZmMPK5 pathway for 
expression of these enzymes (Ding et  al. 2009). Based on microarray analysis, 
Dubey et al. (2010) found up- and downregulation of genes in rice grown under Cr 
stress; these genes were involved in metabolism, transport of sugar and nutrients, 
and homeostasis of Cr stress by either production of antioxidant enzymes or 
osmolytes.
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Łabanowska et  al. (2012) investigated Polish and Finnish wheat seedlings 
exposed to Se for a two-day period. They observed increased metabolism of carbo-
hydrates and enzymatic antioxidants in Polish than Finnish wheat that might be the 
reason for better Se tolerance in Polish-originated wheat cultivars. Selenium in the 
form of selenate is metabolized in chloroplasts via sulfur reduction process, and its 
toxicity is mainly due to alteration of cysteine to selenocysteine in proteins. The 
formation of the process of nonspecific selenoproteins in iron-sulfur clusters has 
reduced the rate of photosynthetic electron transport in selenate-treated wheat plants 
(Hondal et al. 2012). So, evidence from previous studies suggests that Se toxicity 
can also be increased due to the ability to catalyze the process of the oxidation of 
thiols and to generate ROS (Hondal et al. 2012). Selenium stress in rice plant inhib-
its the activity of glyoxalases and causes toxicity of methylglyoxal to rice (Mostofa 
et al. 2017). They also found Se toxicity on the synthesis of proteins, reducing sug-
ars and enzymatic antioxidants in rice. Lipid peroxidation, denaturation, and disrup-
tion of many enzymes and processes in the model plant Arabidopsis were due to 
Se-induced oxidative stress (Hugouvieux et al. 2009), and moreover, it inhibits the 
accumulation of APX, POD, and ETS in plant cells.

Another important metalloid is As; many studies have reported metabolic-level 
toxicity of As in crops including cereals (Stoeva et  al. 2003; Smith et  al. 2010). 
Normally, As is transported to plant shoot, usually arsenite following the silicon 
while arsenate following the phosphate pathway (Meharg and Hartley-Whitaker 
2002; Zhao et al. 2009; Zhu and Rosen 2009). The SH groups of proteins are mainly 
influenced by As, and thus, it causes conformational changes in the structure of 
proteins in plant cells (Van Assche and Clijsters 1990; Delnomdedieu et al. 1994). 
The metabolic response of six rice lines exposed to As revealed accumulation of 
phytochelatins in roots and grain while no production observed in leaves; instead, 
glutathione activity increased in leaves (Heuschele et al. 2017); similarly, As-induced 
lipid peroxidation and peroxidase activity were observed in maize seedlings (Stoeva 
et al. 2003). Studies revealed that inorganic As is converted into organic form in rice 
grains; for instance, Marin et al. (1992) noted that rice seedlings exposed to organic 
and inorganic forms of As showed that the former is a dominant species in rice 
grain. The summary of the physiological and metabolic effects of metal(loid)s on 
cereal crops is given in Fig. 14.1.

14.4  Responses of Plants to Heavy Metal Stress

Plants are usually immobile, and therefore, they have to face unwanted environmen-
tal variations. Cereal plants have to evolve a large number of strategies ranging from 
physiological and biochemical to maintain adverse effects of metal(loid) toxicity. 
These plants recognize stress signal and then transduce and transmit the signal into 
the cell and activate the response to offset the unwanted effects of stress by rede-
signing the biochemical processes of plant cell (Fig. 14.2). Understanding the varia-
tions in the signal transduction in plants in response to metal(loid) stress is difficult 
at the whole-plant level. This might be possible to monitor initial responses like 
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metabolite accumulation, oxidative stress, and transcriptomic and proteomic 
changes, and this will help in the recognition of changes that occur in cereal plants 
after heavy metal stress exposure. The similarity between heavy metals and essen-
tial plant growth elements causes competition in absorption from the soil. The pres-
ence of heavy metal(loid)s in soil competes with phosphorous and zinc and restricts 
their absorption from soil to plants which cause a nutrient deficiency. Heavy 
metal(loid)s bind with functional protein sulfhydryl group and disturb its function 
essential for normal plant growth and function (Lux et  al. 2011; DalCorso et  al. 
2013; Sharma et al. 2016).

In some plants like cereal (barley), metal toxicity symptoms are similar to drought 
stress symptoms, and therefore, overexpression of genes related to water stress toler-
ance is the basic mechanism adopted by these plants that enable them to withstand 
metal stress (Tamas et al. 2010). Restricted seed germination and growth of seedling 
in wheat, decreased photosynthetic activity, chloroplast membrane damage, limited 
enzymatic activity, reduced plumule and radical growth, imbalanced protein metabo-
lism, and nutrient status are the responses of cereal plants when exposed to heavy 
metal stress (Ahsan et al. 2010; Li et al. 2013; Ahmad et al. 2012; Ahmad et al. 2015; 
Singh et al. 2015, 2018). Suppression in root growth due to prolonged cell cycle and 
decreased cell division (decreased mitotic activity) has been reported in many cereal 
crops under metal stress (Jiang and Liu 2000; Kikui et al. 2005; Lux et al. 2011; 
Hayat et al. 2012; Anjum et al. 2014). The copper toxicity alters auxin distribution 

Fig. 14.2 Possible defense mechanism activities in cereals to mitigate heavy metal(loid) stress
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restricted root growth that causes limitation in water and nutrient uptake, and ulti-
mately, it reduced shoot growth of cereals (Wang and Zhou 2005).

Cereal plants adopt following basic three types of mechanisms to mitigate the 
effects of heavy metal stress. These include physiological, biochemical, and mor-
phological adaptations: i) Physiological adaptations are osmolyte accumulation, 
higher leaf gas exchange, regulation of leaf water and chlorophyll contents, and 
vascular development; ii) biochemical strategies utilized by plants are the regulation 
of antioxidant production system and biosynthesis of enzymes. These physiological 
and biochemical changes help the cereal plants to tolerate toxic effects of heavy 
metal stress and lead to iii) morphological developments like leaf development, root 
and shoot length improvement, leaf cell proliferation, and better seed germination 
and increased the fresh and dry weight of plants (Shahzad et al. 2018). The follow-
ing section elaborated the salient mechanisms reported in cereals and related plant 
species to dilute the effect of heavy metal(loid) toxicity.

14.4.1  Enzymatic Antioxidants

Plants experiencing stress usually generated ROS which are hunted by the produc-
tion of enzymatic and nonenzymatic antioxidants (Dat et al. 2000). The phytohor-
mone (brassinosteroids, BRs), e.g., 24-epibrassinolide (EBL), regulates the 
antioxidant production system of plants and helps to tolerate metal stress (Sharma 
and Bhardwaj 2007; Allagulova et al. 2015; Shahzad et al. 2018). Allagulova et al. 
(2015) investigated the effect of EBL hormone to mitigate Cd stress in wheat. They 
observed dehydrin protein accumulation in wheat seedlings is responsible for Cd 
tolerance. Regulation of chlorophyll contents, photosynthetic activity, and osmolyte 
production was accompanied due to phytohormone, i.e., EBL produced by plants 
under metal stress to tolerate heavy metal toxicity (Hayat et al. 2007). The cereal 
plants adopted many defense mechanisms to mitigate metal stress: the scientists 
noted enhanced production of enzymatic antioxidants (SOD, APX, CAT, GPOD) in 
root, shoot, and leaves of wheat, maize, and rice (Kaur et al. 2012; Islam et al. 2014; 
Ali et al. 2015; Kaur et al. 2015; Khan and Gupta 2018) and synthesis of EBL- 
hormone- induced dehydrin and steroidal compounds (Allagulova et  al. 2015; 
Shahzad et al. 2018). Superoxide radicals are mutated to H2O2 due to the action of 
SOD, and H2O2 is further scavenged by CAT and APX (Gill and Tutija 2010). 
Increase in CAT, SOD, GPX, and GSH-PX in rice and brassica was observed in 
response to Cr and Ni stress (Arora et al. 2010; Sharma et al. 2016). Increased nitro-
gen metabolism due to increased activity of nitrate reductase and nitrite reductase; 
increased carboxylase and oxygenase activity; and increase in activity of glutamine 
synthetase, glutamate dehydrogenase, glutamine oxoglutarate aminotransferase 
(GOGAT), and glutamate dehydrogenase (GDH) has a vital role in detoxification of 
toxicants produced in metal-stressed plants. Enhanced protease activity is another 
phenomenon that takes place to cope with heavy metal stress. Toxicity of As in rice 
is ameliorated by the enhanced production of antioxidants (SOD, CAT, GPX, GST) 
in shoot and root (Khan and Gupta 2018).
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14.4.2  Nonenzymatic Antioxidants

Along with enzymatic antioxidants, cereal plants possess a nonenzymatic antioxi-
dant system to combat with deleterious effects of heavy metal exposure. Ascorbic 
acid is an important nonenzymatic compound produced in plants under metal stress 
(Gill and Tuteja 2010; Hasanuzzaman et al. 2012). It is used as a reducing agent by 
the enzyme ascorbate peroxidase to detoxify H2O2 in the ascorbate-glutathione 
cycle. Furthermore, ascorbic acid improves tolerance of plants to metal stress by 
protecting proteins and lipids and offsets the toxic effects on growth and physiology 
of plants (Akram et al. 2017). These mechanisms are also observed in other plant 
species: for instance, enhanced activity of carbonic anhydrase and monodehydro-
ascorbate reductase (MDHAR) of ascorbate-glutathione cycle (Hayat et al. 2007; 
Yadav et al. 2018). The AsA is an important nonenzymatic antioxidant to alleviate 
metal stress, but it is oxidized to MDHA. Thanks to nature, plants have ascorbate- 
glutathione cycle which converted MDHA to AsA by the hormone MDHAR in the 
presence of NADPH. Maintenance of AsA pool is brought about by the increased 
activity of this enzyme. Toxic electrophiles are produced in plants under metal 
stress, and increased activity of glutathione-S-transferase (GST) has been found to 
be important in detoxification of these electrophiles (Edwards et  al. 2000). 
Upregulation of genes encoding antioxidants like DHAR, GR, GST-1, and GSH-S 
was observed in previous study, and overexpression of stress-related genes in plants 
under metal stress suggested the role of upregulation and expression level in detoxi-
fication of stress-related toxicants and in enhancing the tolerance level of plants 
(Ashraf et al. 2010; Zhang et al. 2015). Glutathione is also capable of reducing ROS 
via the ascorbate-glutathione cycle by the action of GR as it converts GSSG to GSH 
at the expense of NADPH (Gill and Tuteja 2010; Foyer and Noctor 2011).

Phenolics are another important group of nonenzymatic antioxidants having at 
least one aromatic ring (C6) bearing one or more hydroxyl groups. Biosynthesis of 
phenolic compounds in wheat, maize, and barley under heavy metals like Ni, Al, 
and Cd, respectively, has been reported (Michalak 2006). Phenolic compounds 
have –OH and –COOH groups which may bind metals and lipid alkoxyl radicals 
and limit metal-induced oxidative stress. However, this activity directly relies on 
the number and position of –OH group in the molecules (Michalak 2006). Various 
types of peroxidases (POX) are operating in the plant system of which some use 
ascorbate or phenol to donate an electron. These perform a vital role in lignin for-
mation in the plant cell wall that has restricted Cd entry into the plant by develop-
ing physical barrier (Loix et al. 2017).

Organic acids like acetic and citric acid produced biologically in plants have a 
carboxylic group in their structure and possess the ability to chelate heavy metal 
ions. Citric acid mobilizes the heavy metals in the rhizosphere and facilitates the 
phytoremediation process (Gao et  al. 2010). It has been reported that citric acid 
induced protection by activating host antioxidant system against metal(loid) stress 
(Freitas et al. 2013). Synthesis and exudation of citric acid in wheat (Tahir et al. 
2015) while cysteine and proline in rice (Khan and Gupta 2018) have been reported 
previously to overcome the oxidative stress induced by the metal(loid)s. Amino 
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acids like alanine, proline, cysteine, methionine, glutamine, and aspartic acid were 
produced in response to metal stress (Bhatia et  al. 2005). Roots synthesize and 
deposit callose that helps them in restricting the entry of heavy metals into roots and 
thus avoid negative effects. Sequestration and stabilization of metals at the root level 
is an important strategy to avoid or protect shoot from metal-induced oxidative 
stress (Singh and Pandey 2011; Feigl et  al. 2013). Auxin has a vital role in the 
improvement of root system properties like enhanced root length and root area to 
absorb more water and essential ions (Tahir et  al. 2015). In metal-contaminated 
soils, cereal plants produce auxin compounds like indole-3-acetic acid (IAA), indole 
butyric acid (IBA), and naphthaleneacetic acid (NAA) to combat with osmotic 
stress caused by metal toxicity.

14.4.3  Protein

The activity of ATPase soluble proteins and nucleic acids mitigates the toxic effects 
of metal(loid) in plants (Ashraf and Foolad 2007; Choudhary et al. 2011; Madhan 
et al. 2014). Lipid peroxidation occurs in plants under metal stress, and plants pro-
duced membrane proteins that degrade ROS and minimize the effects of lipid peroxi-
dation (Cao et  al. 2005). Increase in free proline contents is another mechanism 
adopted by plants to tolerate metal stress. In the presence of elevated levels of heavy 
metals, plants synthesize two types of proteins, i.e., phytochelatins (PC) to chelate 
metal ions and metallothioneins (MT) in the cytosol for sequestration of metals in the 
vacuole (Hassan et al. 2017). The synthesis of S-rich proteins is known to induce 
stress tolerance in plants (Zagorchev et al. 2013); such kinds of proteins have been 
reported previously for sequestration and detoxification of metal(loid)s in plants 
(Clemens 2006; Viehweger 2014). In addition to heavy metal chelation and accumu-
lation, PC also has a critical role in antioxidant production, homeostasis of metal 
ions, and complexation of metals with PCs (Jabeen et al. 2009; Furini 2012; Hasan 
et al. 2017). The heavy metal(loid)s sequestered by PC are transported from cytosol 
to the vacuole by ATP-dependent vacuolar pumps (V-ATPase and VPPase) and a set 
of tonoplast transporters (Sharma et  al. 2016; Hassan et  al. 2017). The advanced 
RNA-Seq and de novo transcriptome analysis revealed metal detoxification in plant 
cells is due to metal gene–encoded natural resistance-associated macrophage pro-
teins (NRAMPs), permeases, and ATPases (Xu et  al. 2015; Sharma et  al. 2016; 
Hasan et al. 2017). Recently, Khan and Gupta (2018) identified various genes and 
proteins (NR, PH1, Apase, KAT1) that involved in upregulation of nutrients in rice 
plant under As stress. These genes along with the antioxidant defense system might 
involve in As detoxification in rice. In another study, various rice elite lines were 
screened against As stress (Heuschele et al. 2017). They found that synthesis of cys-
teine and phytochelatin proteins is involved in sequestration of As in rice tissue.

Metallothioneins (MT) are cysteine-rich proteins which can detoxify metal(loid)s 
through cellular sequestration and protection from oxidative damage (Kang 2006; 
Capdevila and Atrian 2011; Hassinen et al. 2011; Hossain et al. 2012; Hasan et al. 
2017). The mechanism for ROS hunting is not yet clear; however, it is advocated that 
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metals are detached from MT-metal complex and replaced with MT-ROS complex 
that might alleviate metal-induced oxidative stress in plants (Hassinen et al. 2011; 
Hasan et al. 2017). Ansarypour and Shahpiri (2017) investigated the role of rice MT 
isoform-OsMTl-1b against Cd stress tolerance in Saccharomyces cerevisiae. They 
conferred that isoform of MT-induced tolerance in this yeast against Cd stress. In 
addition to these mechanisms, proteins also have a role in repairing of damaged pro-
teins, tolerance of endoplasmic reticulum, heavy metal stress-induced denatured pro-
teins, and autophagy in heavy metal-stressed plants (Hasan et al. 2017).

14.5  Crop-Microbe Interactions Under Metal and Metalloid 
Stress

Around the globe, abiotic stresses like salinity drought and metal/metalloid pose a 
challenge to the sustainable production of crop plants (Ahmad et al. 2012; Ditta 
2013; Naveed et al. 2014). In the course of time, demand for food has forced the 
farming community toward intensive farming which is the production of more and 
more crops without taking care of the health of soil-plant continuum. This farming 
practice has deteriorated the vital component of ecosystem, i.e., soil-plant contin-
uum with metal and metalloids with the application of different amendments 
(Gajdos et al. 2012). In order to cope with this situation, several phytoremediation 
strategies have been employed like phytoextraction and phytostabilization (Sessitsch 
et al. 2013). Another strategy that could be employed is the use of rhizospheric bac-
teria associated with plants that are well renowned for their plant growth promotion 
effect under normal (Ditta et al. 2015; Ditta and Khalid 2016; Ditta et al. 2018) and 
abiotic stress conditions (Ahmad et al. 2012, 2013, 2014, 2016).

Plant growth-promoting microorganisms especially plant-associated bacteria, 
i.e., rhizobacteria, improve growth and yield of various crop plants. In literature, 
various researchers around the world have reviewed their role under abiotic stresses 
like heavy metals (Glick 2010; Ma et al. 2011; Rajkumar et al. 2012; Sessitsch et al. 
2013). It has been found that these bacteria not only enhance the plant growth but 
also employ certain mechanisms which help increase/decrease the availability of 
metals and metalloids under heavy metal stress. The plant growth-promoting mech-
anisms include the provision of micro- and macronutrients through the production 
of phytohormones, siderophores, etc. (Glick 2010; Ma et al. 2011; Rajkumar et al. 
2012). The mechanisms related with increasing the availability of heavy metals in 
the soil include the secretion of certain organic acids which lower the rhizospheric 
pH. The low pH is suitable for improving the availability of heavy metals in the soil 
and ultimately helps in phytoextraction. Similarly, solubilization of metal minerals 
via lowering the pH of rhizosphere by increasing the release of root exudates results 
in more root growth and surface area for more phytoextraction of heavy metals 
(Sessitsch et al. 2013; Ullah et al. 2015; Sharma and Archana 2016). With the pas-
sage of time and advancement in technology, certain bacteria have been isolated that 
have the ability to reduce the availability of certain heavy metals via certain mecha-
nisms, i.e., phytostabilization and bioaccumulation. In phytostabilization, the 
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Table 14.2 Plant growth promoting bacteria–induced metal stress tolerance in cereals

Cereal 
crop Metal(loid)s Effect of bacterial inoculation on cereal crops References
Maize Cd Cd accumulated primarily in the roots and transported 

to the shoots was rather low
Gajdos et al. 
(2012)

Maize Cd Plants inoculated with bacterial strains exhibited 
greater root-to-shoot ratio and dry biomass in 
Cd-contaminated soil, caused a marked increase in 
Cd uptake. Bacterial strains were efficient colonizer

Ahmad et al. 
(2016)

Maize Cd Immobilization and low translocation to the shoots 
reduced metal accumulation

Moreira et al. 
(2014)

Maize Cd Promoted root and shoot length and dry biomass Sangthong 
et al. (2016)

Maize 
and 
wheat

Cd Significantly reduced the suppressive effect of Cd on 
growth and physiology

Ahmad et al. 
(2014)

Maize 
and 
wheat

Cd Improved growth and yield parameters through 
phosphate solubilization, IAA, siderophores, ACC 
deaminase activity

Jiang et al. 
(2008)

Maize Cr Enhanced Cr tolerance in maize seedlings by 
decreasing Cr uptake from root to shoot, reduced 
oxidative stress by elevating the activities of 
enzymatic and nonenzymatic antioxidant, improved 
carbohydrate metabolism under Cr stress

Islam et al. 
(2016b)

Wheat Hg Growth parameters and relative water content were 
significantly higher and vice versa for proline 
content, electrolyte leakage, and malondialdehyde 
content (shoots and roots) in inoculated plants 
compared to uninoculated plants under stress 
condition

Gontia- 
Mishra et al. 
(2016)

Maize Pb Decreased soil pH which resulted in more 
accumulation of Pb in shoot

Hadi and 
Bano (2010)

Maize Pb Improved growth and yield parameters through 
phosphate solubilization, IAA, siderophores, ACC 
deaminase activity

Jiang et al. 
(2008)

Maize Pb Inoculated plants had maximal growth and yield 
parameters, photosynthetic pigments, proline, protein, 
peroxidase, glutathione-S-transferase, and catalase, 
while these plants had minimal Pb uptake in root and 
shoot

Hassan et al. 
(2014)

Wheat Zn Inoculation improved the uptake of P and N in wheat 
plants with an increase in leaf chlorophyll, total 
soluble protein, and plant biomass production

Islam et al. 
(2014)

Wheat Zn Increased various growth parameters, photosynthetic 
pigments, Zn content in plant, various compatible 
solutes such as proline content (30–65%), total 
soluble sugar (9–49%), total protein (16–52%), and 
decreased the malondialdehyde (MDA) content 
(38–47%) as compared to control, illustrating its 
protective effect under metal-induced oxidative stress

Singh et al. 
(2018)

(continued)
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bacteria help in immobilization of heavy metal, thereby decreasing their availability 
to the crop plants (Vangronsveld and Cunningham 1998; Zhang et al. 2012). In case 
of bioaccumulation, there are bacteria which have the ability to tolerate certain lev-
els of heavy metals via accumulation of metals in their cell wall (Hussein et  al. 
2011; Govarthanan et al. 2016). Also, there are reports about microbial biotransfor-
mation of heavy metals from one form to another nontoxic form (Qian et al. 2012; 
Babu et al. 2013) (Table 14.2).

Keeping in view the scope and limitations of this chapter, reports about the impact 
of different rhizospheric metal/metalloid-resistant and plant growth–promoting 
bacteria on growth and yield of rice, maize, and wheat under different metal/
metalloid stresses are given in Table 14.1. Under different heavy metal stresses, 
inoculation with heavy metal–resistant bacteria significantly improved growth, 
physiological, and yield parameters of maize, wheat, and rice through phosphate 
solubilization, scavenging reactive oxygen species, ACC deaminase activity, and 
decreasing rhizospheric pH through the production of organic acids (Jiang et al. 
2008; Hadi and Bano 2010; Hassan et al. 2014). More specifically, under cad-
mium stress, the accumulation of Cd was reduced, and plant growth and yield 
were enhanced with the inoculation of Cd-resistant plant growth-promoting bac-
teria (Jiang et  al. 2008; Gajdos et  al. 2012; Ahmad et  al. 2014; Moreira et  al. 
2014; Ahmad et al. 2016; Sangthong et al. 2016).

Table 14.2 (continued)

Cereal 
crop Metal(loid)s Effect of bacterial inoculation on cereal crops References
Wheat Cd, As Significantly reduced water-soluble Cd and As 

concentrations, and increased pH and NH4
+ 

concentration in the soil filtrate

Wang et al. 
(2018)

Maize Cr, Pb Siderophore promoted plant growth under Cr and Pb 
stress

Braud et al. 
(2010)

Wheat Cd, Cr Polymeric substances immobilized metals and 
decreased their uptake

Joshi and 
Juwarkar 
(2009)

Maize Cu, Pb The dry biomass of roots of inoculated plants grown 
with 2007 mg Cu kg−1 and 585 mg Pb kg−1 was 
increased by 28% and 20%, respectively

Rizvi and 
Khan (2018)

Barley Cr, Co, Hg, 
Cd, Pb

Increased germination rate and growth parameters of 
barley under Cr, Co, Hg, Cd, and Pb stress

Bensidhoum 
et al. (2016)

Wheat Cd, Cr, Cu, 
Mn, Ni

Inoculation decreased biological accumulation 
coefficient (BAC) as well as translocation factor (TF) 
for Cd, Cr, Cu, Mn, and Ni

Hassan et al. 
(2017)

Rice Cd, Pb, As Inoculation significantly improved the activities of 
protease and amylase, increased relative root 
elongation, germination percentage, root-to-shoot 
ratio, and overall biomass. Bacterial strains also 
decreased superoxide dismutase activity and 
malondialdehyde levels

Pandey et al. 
(2013)
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14.6  Conclusion and Perspectives

Heavy metal(loid) contamination of soil is ubiquitous, and reports have confirmed 
their augmentation across the globe. It is a major threat for sustainable production 
of crops especially cereals (rice, wheat, and maize) provide food for almost 3/4 of 
the world population. Metal(loid)s have toxic effects on cereals starting from seed 
germination to maturity; these show toxic effects to cereals at morphological, physi-
ological, and metabolic levels. The most common factor is ROS generation in cere-
als under metal(loid) stress; however, these crops are equipped with ROS scavenging 
system (i.e., production of antioxidants and proteins, mineral, and ionic regulations) 
to mitigate metal(loid) stress. Another tool is the application of metal(loid)-resistant 
microbes to cereals. They have P-solubilization, IAA, ACC deaminase, and sidero-
phore productions which are known to mitigate metal(loid) stress through a variety 
of mechanisms. However, their impact authenticity remains to be explored under 
natural/field conditions. Moreover, there have been many reports stating concerns 
about the shelf life of these metal/metalloid-resistant bacteria in biofertilizers. 
Therefore, it would be more imperative to explore how to increase their shelf life or 
more special microbes having the ability to survive under natural conditions. We 
suggest that genetic engineering approach may prove beneficial in this regard.
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Abstract
Polycyclic aromatic hydrocarbons (PAHs) are made up of only carbon and 
hydrogen and composed of two or more fused benzene cycles. It includes a large 
and heterogeneous group of organic contaminants that are mainly formed and 
emitted because of the incomplete combustion of organic materials. Polycyclic 
aromatic hydrocarbons are toxic for all living organisms, and their mutagenic 
and carcinogenic effects are well known. Hence, their fate and transport in the 
environment are of worldwide attention. Over 90% of PAHs in the environment 
reside in surface soils; therefore, plants grown in PAH-contaminated soils can 
uptake them, and that can make problems in terms of agronomic crop yield and 
contamination of food chains. Polycyclic aromatic hydrocarbons can enter the 
plant via stomata as well as the root system and can lead to a range of disorders 
in plants. Decrease in photosynthesis and respiration, changes in enzyme activi-
ties and photosynthetic pigment content, and injury to membranes by lipid oxi-
dation are some known effects of PAHs in plants. The increasing load of PAHs 
to the environment can be a crucial factor for the future diversity of plant species 
in the habitat, and it may determine the level of possible economic yields. Thus, 
it is important to exactly understand how PAHs influence the overall plant growth 
and development. This chapter revises some concepts about PAH importance in 
the environment, those effects on plants, and plant responses to PAHs.

Keywords
Agronomic crop · PAHs · Physiological effects · Organic contaminants · Toxic 
effects
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Abbreviations

ABC transporter ATP-dependent transporters
CAT catalase
GPX glutathione peroxidase
HMW high molecular weights
IARC International Agency for Research on Cancer
LMW low molecular weights
LPO lipid peroxidation
MDA molondialdehyde
PAHs polycyclic aromatic hydrocarbons
PSII photosystem II
QA quinone A
QB quinone B
ROS reactive oxygen species
SOD superoxide dismutase
US-EPA United States Environmental Protection Agency

15.1  Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic compounds, 
which are composed of only carbon and hydrogen (Gong et al. 2007). These com-
pounds form a major group of pollutants and mainly are produced by anthropogenic 
activities especially incomplete combustion of fossil fuel (Lin et al. 2001). Some 
compounds of PAHs are carcinogenic and mutagenic, and therefore, they can be 
important for human health (Jian et al. 2004). Due to their high persistence, long- 
term toxicity, and accumulation in the environment, PAHs have attracted more 
attention in the recent decades (Parrish et  al. 2005; Haritash and Kaushik 2009; 
Jajoo et al. 2014). Human and wildlife exposure to persistent and toxic environmen-
tal contaminants can occur as a result of bioaccumulation in plants and subsequent 
transfer through natural and agricultural food chains (Hung and Mackey 1997).

The uptake of PAHs by plants occurs by more than a few ways. The major ways 
of PAH entrance into plants are primarily through the roots and secondarily by the 
aerial parts (Gao and Zhu 2004; Meudec et al. 2006; Sun et al. 2014; Wild et al. 
2005; Kang et al. 2010). Although there is more than one way for PAH entrance into 
plants, the main routes of PAH entrance and distribution in plants still remain 
ambiguous. The uptake rate of PAHs by plant root and the amount of its accumula-
tion in different organs is related to a number of factors such as plant species (Lee 
et al. 2008; Watts et al. 2006), microbial population in soils (Kapustka 2004; Khan 
et al. 2008), the initial concentration of PAHs in the environment (Lee et al. 2008), 
and the structure of plant roots (Sun et al. 2014). Indeed, all stages of plant growth 
can be affected by PAHs from germination to production (Kummerova et al. 2012). 
Accordingly, some known effects of PAHs on plants resulted in biochemical and 
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physiological changes such as alterations in enzyme activities, reduction in photo-
synthesis as well as respiration, formation of reactive oxygen species, and injury to 
membranes by lipid oxidation (Alkio et al. 2005). Thus, it is important to under-
stand the mechanisms upon which PAHs influence the overall plant growth and 
development. In this chapter, we discuss recent progress in understanding of PAH 
effect on plants as well as agronomic crop responses and tolerance to PAH toxicity. 
The revision of physiological and biochemical effects of PAHs, and those uptake, 
accumulation, transformation, and degradation in agronomic crops  are the main 
aims of this chapter.

15.2  General Description of PAHS

Polycyclic aromatic hydrocarbons (PAHs) as potent environmental pollutants are 
composed of fused aromatic rings and existing in almost everywhere in the environ-
ment. They are typically formed during incomplete burning of organic materials 
such as wood, coal, oil, and gasoline and are also found in crude oil, coal tar, and 
asphalt (Fetzer 2000; Li et al. 2014). In the environment, they are primarily found 
in soil, sediment, and oily substrates, and their concentration in water or air is rela-
tively small. Their presence in the environment is directly related to human activi-
ties within the environment especially in urban areas and in areas where bush 
burning for agricultural farming is commonly practiced as well as in petroleum 
exploration and refining operations (Fetzer 2000; Gong et  al. 2007; Paiga et  al. 
2012). Also, the actual amount of PAHs emitted from agricultural bush burning var-
ies with the type and nature of the fire and the intensity of the fire (Platt and Mackie 
1980; Gao et al. 2006; Smith et al. 2006; Li et al. 2014). PAHs have adverse impacts 
on living organism, and some of the PAHs have been identified as carcinogenic, 
mutagenic, and teratogenic. Therefore, their large concentrations in environment 
are of great concern to humans (Larsson et al. 1983; Jian et al. 2004). The United 
States Environmental Protection Agency (US-EPA) has recommended 16 PAHs as 
priority pollutants for monitoring in the environment (Gao and Zhu 2004; Jan et al. 
2014; Li et al. 2014) (Fig. 15.1), and International Agency for Research on Cancer 
(IARC) has reported that 15 PAHs are potential carcinogens (Chauhan et al. 2008).

Polycyclic aromatic hydrocarbons are solid matters, generally colorless, white, 
or yellow under normal conditions. Their physicochemical properties change with 
molecular weight (Mackay et al. 1992). These compounds are hydrophobic com-
pounds (they mix more easily with oil than water), and their aqueous solubility 
decreases almost linearly with increases in molecular mass (Parrish et al. 2004; 
Chang et  al. 2004). Polycyclic aromatic hydrocarbons contain two- to seven- 
membered (fused) benzene rings and are generally divided in two groups including 
low molecular weights (LMW) and high molecular weights (HMW) PAHs. Low- 
molecular- weight PAHs have two or three benzene rings and are relatively water 
soluble, but HMW PAHs contain four or more benzene rings and are quite hydro-
phobic and insoluble in water (Cerniglia and Heitkamp 1989; Mandalakis et al. 
2002; Gregoris et al. 2014). The higher molecular weight of PAHs generally leads 
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to their higher absorption to soil organic matter, and this tendency to strong adsorp-
tion on particulate matter renders the HMW PAHs less available and thus less 
susceptible to remediation (Cerniglia and Heitkamp 1989). Due to the dense clouds 
of pi-electrons surrounding the aromatic rings, HMW PAHs have high resonance 
energies and are persistent in the environment and recalcitrant to degradation 
(Johnson et al. 2005).

Generally, by increasing the molecular weight of PAHs, their hydrophobicity, 
toxicity, biodegradation, and usually environmental resistance will be increased. 
Therefore, the difference in molecular weight among PAHs is one of the important 
factors effective in their distribution, accumulation, and persistence in the environ-
ment. Thus, low-molecular-weight PAHs such as naphthalene, because of their high 
solubility in water, are more toxic to aquatic organisms than high-molecular-weight 
PAHs. The half-life of phenanthrene as low molecular weight in the soil is 
16–126 days, while high-molecular-weight PAHs such as benzo[a]pyrene have a 
half-life of 229–1500  days. Accordingly, high-molecular-weight PAHs are more 
tended to be bind to the particles of soil or sediments because of their low solubility 
in water (Parrish et al. 2006; CCME 2008).

Fig. 15.1 Structure of 16 US-EPA priority pollutant PAH compounds (Lima et al. 2005)
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15.3  Physiological Effect of PAHs on Plants

Polycyclic aromatic hydrocarbons are phytotoxic compounds affecting several bio-
chemical and physiological processes in plants. These compounds, together with 
environmental factors, can cause acute and chronic injuries, depending on the dura-
tion of exposure and their concentration (Kmentova 2003). The long-term impact of 
toxic substances can affect the structure and function of ecosystems and the diver-
sity of plant species, reduce the production of biomass and the production of oxy-
gen, and ultimately lead to the destruction of the environment. The plant response 
to the presence of PAHs is induced after reaching a threshold concentration of 
PAHs. Most of the responses are linked with biochemical and physiological pro-
cesses which are mediated by membranes (Vanova 2009).

The severity of PAH effects on plants depending on their concentration, time of 
exposure, and some other factors may stimulate or reduce the PAH effects in plants. 
The ontogenetic stage of development, the physiological state of organism, size and 
morphological characteristic of leaf area, cuticular permeability, transpiration rate, 
length of roots, and the activity of enzymes participating in the transformation of 
PAHs may be the factors affecting the sensitivity of plants to PAHs (Chroma et al. 
2002). Harmful effects of PAHs on plants are very diverse including morphological, 
cytological, genetical, and metabolic disorders (Kvesitadze et  al. 2006; Wilcke 
2000) such as inhibition and reduction in seed germination (Huang et  al. 2004; 
Reynoso-Cuevas et al. 2008; Tomar and Jajoo 2014), induction of oxidative stress 
(Liu et al. 2008; Paskova et al. 2006), and disruption in photosynthetic apparatus 
function (Huang et al. 2004; Liu et al. 2008; Tomar and Jajoo 2013).

15.3.1  Seed Germinations

The germination of plant seeds is associated with external factors such as water, 
temperature, pH, microbial activity, type and amount of toxin and also the morpho-
logical and anatomical structure of the seeds such as shell, amount, and type of 
storage material. As one of the external factors, PAHs can affect all stages of plant 
growth from germination to reproduction (Kummerova et  al. 1997; Maila and 
Cloete 2002; Reynoso-Cuevas et al. 2008). The critical stages of development are 
primarily the early stages of ontogenesis, the germination of seeds, and the forma-
tion of root system (Baud-Grasset et  al. 1993). Researchers have shown that the 
sensitivity of lettuce, barley, and millet germination to PAHs is much related to the 
length of root. Seed germination is an important sign against toxicity because of 
their effects on the spread of plant species in the ecosystem (Kmentova 2003; 
Kummerova et al. 2012).

Through a research that investigated the effect of phenanthrene on wheat plants, 
the results demonstrated that phenanthrene treatment inhibited the germination of 
wheat seeds especially at higher concentration and caused the reduction of growth 
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and chlorophyll content and increase of molondialdehyde (MDA) content and a 
decline of many antioxidant enzyme activities (Wei et al. 2014). In another research 
by Salehi-Lisar and Deljoo (2015), it was shown that fluorene as PAH had a nega-
tive effect on the rate of seed germination and seedling growth of wheat, alfalfa, and 
sunflower.

15.3.2  Photosynthesis and Respiration

Lipophilic organic compounds as well as the products of their transformation may 
create the changes in the structure and the function of subcellular substances. The 
membrane damage and changes in enzyme activity depending on the type and con-
centration of compound surely change photosynthetic, respiration, and transpiration 
processes (Huang et al. 1996). PAH compounds at low concentrations can penetrate 
to the chain of fatty acids and enhance the permeability of membranes. As addi-
tional effect, PAHs have inappropriate effects on cell metabolism as these com-
pounds and the products of their transformation can penetrate into chloroplast and 
then enter into thylakoids and finally disrupt the performance of the electron trans-
port chain (Duxbury et al. 1997).

As mentioned before, PAHs are able to penetrate into chloroplasts and influence 
the primary processes of photosynthesis. Accordingly, they can affect the stability 
and function of the photosynthetic apparatus and disturb the electron transport chain 
as the products of their transformation can interact with plastoquinones. Additionally, 
PAHs can block the photosystem II (PSII) on both acceptor and donor sides. On the 
donor side, between water oxidation complex on the lumena and reaction center of 
PSII, they resulted in lower fluorescence signal. On the acceptor side, between PSII, 
quinone A (QA), quinone B (QB), and plastoquinones, they resulted in some 
increase in fluorescence (Govindjee 1995; Kummerova et al. 2006).

Also, in investigation, it was set up on sunflower, wheat, and alfalfa indicating 
that photosynthetic pigment content of these species was changed differently 
depending on plant species (Salehi-Lisar and Deljoo 2015). By fluorene treatment 
in sunflower, chlorophyll a and chlorophyll b content was increased significantly as 
it was the most sensitive species to fluorene toxicity. But in both wheat and alfalfa 
plants, chlorophyll pigment content was decreased or unchanged, and these plants 
showed the highest resistance to fluorene toxicity. Accordingly, changes in photo-
synthetic pigment content cannot be a suitable marker for the evaluation of plant 
sensitivity or resistance to PAH contamination.

By another research conducted by using Sorghum vulgar, the treatment of plants 
by different concentrations of phenanthrene led to no considerable effect on the 
value of chlorophyll and biomass of the plant shoots, probably due to higher resis-
tance of this plant to phenanthrene. It was concluded that because of having special 
biological and physiological conditions and also under greenhouse treatment, the 
selected plant was resistant to phenanthrene, and the relatively stable value of 
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chlorophyll and biomass was in fact the result of plant positive response to the pres-
ence of toxic level of pollutant (Alaei et al. 2010).

Further, the investigation of maize plants exposed to phenanthrene exceeding 
50 mg kg−1 showed reduced transpiration and CO2 absorption. This reduced pho-
tosynthetic carbon fixation could be the reason for lower biomass production 
(Dupuy et al. 2015).

15.3.3  PAHs and Oxidative Stress

Exposing of plant to PAHs can lead to some kind of oxidative stress. Generally, 
plants are equipped with enzymatic and nonenzymatic mechanisms for scavenging 
of reactive oxygen species (ROS) under oxidative stress (Alscher et  al. 1997). 
According to the results of the study that was undertaken by Wei et al. (2014) to 
understand the responses of wheat to phenanthrene, it was revealed that PAHs can 
induce oxidative stress in plants. In this study, the activities of antioxidant enzymes 
including superoxide dismutase (SOD), catalase (CAT) glutathione peroxidase 
(GPX), lipid peroxidation (LPO), and H2O2 were measured. The results demon-
strated that phenanthrene enhanced the levels of LPO and induced H2O2 accumula-
tion in leaf tissues in a dose-dependent manner besides the changes in the antioxidant 
status. With the increase of phenanthrene, the activities of antioxidant enzymes such 
as SOD, CAT, and GPX showed a decreasing trend. Therefore, phenanthrene could 
bring oxidative damages of wheat and also exert harmfulness mainly at higher 
concentrations.

Another research was conducted to study the enzymatic activity in the shoots, 
roots, and rhizosphere of alfalfa (Medicago sativa L.) grown in quartz sand treating 
with phenanthrene at concentrations of 10 and 100 mg kg−1. The results showed that 
higher concentration of phenanthrene had a distinct phytotoxic effect on alfalfa 
through inhibiting seed germination, plant survival, and biomass accumulation, as 
well as an increase in peroxidase activity. Peroxidases were the predominant 
enzymes in the alfalfa shoots and roots, and alfalfa root peroxidases were the com-
mon enzyme systems in the rhizosphere sand revealing the possibility of involve-
ment of the plant enzyme in degradation of the PAHs in the rhizosphere (Muratova 
et al. 2009). Based on Kraus et al.’s (1999) study, roots of soybean contacted with 
toxic chemicals like PAHs have induced peroxidase activity which may have an 
intracellular function as part of a defense mechanism and/or a direct involvement in 
the degradation of PAHs in the external medium.

15.4  Uptake, Translocation, and Accumulation of PAHs

Polycyclic aromatic hydrocarbons are hazardous for all living organisms with 
regard to their distribution in the biosphere, risk properties, and abilities of accumu-
lation in animal and plant tissues. Plants as primary producers are essential compo-
nents of terrestrial ecosystem (Sverdrup et  al. 2003). The plants standing at the 
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beginning of the food chains can uptake and provide contaminants to higher trophic 
levels (Aina et al. 2006; Zuo et al. 2006).

The plants have capacity to take up PAHs from the environment through four 
partial mechanisms (Fig. 15.2). These mechanisms or pathways include (1) passive 
or (2) active uptake through the root system, (3) gaseous and particulate deposition 
to aboveground shoots, and (4) direct contact between soil and plants aerial parts 
(Fismes et al. 2002; Collins et al. 2006; Wang et al. 2011; Marchal et al. 2014). The 
mechanisms are influenced by the chemical and physical properties of pollutants 
such as their lipophilicity, water solubility, and vapor pressure; environmental con-
ditions such as ambient temperature and content of organic compounds; and the 
plant species and structure (Simonich and Hites 1995; Holoubek et al. 2000; Lee 
et al. 2008; Salehi-Lisar et al. 2015; Zhang et al. 2015). Additionally, some plants 
have more potential for uptake of some special pollutants because of root particular 
exudates which actively mobilize these pollutants from the soil and make these 
compounds available for uptake and translocation (Hulster et al. 1994; Mattina et al. 
2002; White 2002; Gao and Zhu 2004; Kacalkova and Tlustos 2011).

Polycyclic aromatic hydrocarbon compounds are absorbed by plants through 
various ways. Such organic pollutants may enter the plants from polluted soil to the 
roots and then may be translocated by the xylem (Meudec et al. 2006; Zhan et al. 
2013). They may also enter the plants from the atmosphere as gas or by particle 
deposition onto the waxy cuticle of the leaves or by uptake through the stomata and 
may be translocated by phloem (Holoubek et al. 2000; Piccardo et al. 2005; Tao 
et al. 2006; Yang and Zhu 2007). Due to leaves covered by wax and cuticle being 

Fig. 15.2 Principal pathways for plant uptake of organic chemicals (Collins et al. 2006)
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lipophilic structures, organic pollutants such as PAHs can simply penetrate into 
leaves through stomata or transcuticle absorption. The rate of such absorption 
depended on KOW of compound, indicating compound lipophilicity. Generally, low- 
molecular pollutants enter the leaves through stomata, while high-molecular pollu-
tions enter the leaves mainly through cuticle. Thus, the mechanism of uptake of 
high-molecular compounds is based on adsorption on cuticle leaf surface. 
Accordingly, leaves adsorb substances more selectively than roots due to the more 
simple mechanism of penetration (Korte et al. 2000).

More than 50% of total atmospheric PAHs are absorbed into soils and then trans-
ferred to lower layers and then may be absorbed by the plant roots. However, the 
availability of these compounds is very limited for root absorption mainly due to 
compound adsorption on soil particles and becomes inaccessible. The root uptake is 
especially determined not only by plant water relation but also by root surface and 
the ratio of lipid components in roots in that these lipid components enable easier 
absorption of lipophilic pollutants (Edwards 1983).

Gao and Zhu (2004) reported that pyrene uptake was 4–7 times higher than the 
uptake of phenanthrene by plants. Similar results were also indicated by Kang and 
Colleagues (2010). Accordingly, the uptake of pyrene by ryegrass roots was two 
times greater than that of phenanthrene. Generally, these results emphasized that 
pyrene exhibited higher uptake rate in comparison with phenanthrene. Lipophilic 
characteristics of pyrene (log kow = 5.32) were higher than that of phenanthrene (log 
kow = 4.46) (Kang et al. 2010). Therefore, lipophilic property of compounds is a 
determinant factor for their uptake magnitude by plants (Gao and Zhu 2004). 
Probably, this is the main reason for higher uptake of pyrene in comparison with 
phenanthrene.

Generally, phytotoxicity of PAHs is assigned by the ability of plants to uptake, 
accumulate, and transform rates of these compounds. Because plants are dominant 
component of terrestrial ecosystems with the ability of PAH uptake from the envi-
ronment, the study of influence of selected PAHs on higher plants is very important. 
For these reasons, plants are used as early indicators of environment pollution, and 
some plant species can be used for detoxification of the environment.

The plants’ ability to accumulate PAHs is very specific in terms of their species 
as well as organs and is depending especially on KOW of compound and content of 
lipid components in plants. This fact is used for investigating and controlling of pol-
luted environment. Plants like mosses, lichens, broadleaved and coniferous trees, 
grasses, some arable crop, and different plant materials like pollen or tree bark are 
especially used as to this aim. These species not only reflect short-term situation of 
atmosphere pollution but also are suitable for long-term condition (Vanova 2009).

The plants and tissues with high content of lipid components have high accumu-
lation capacity for organic compounds. These compounds absorb on the lipophilic 
surface of the leaf wax and then largely accumulate in the cuticle and gradually 
enter into the internal components of leaf (Simonich and Hites 1995). Higher accu-
mulation of PAHs by plants was proved by species with a large surface area of 
leaves compared to plants with a lower surface area. For example, vegetables like 
spinach and lettuce, because of having broad surface area of leaves, have a higher 
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potential to PAH absorption and accumulation (McGlynn and Livingston 1997). It 
seems that PAHs can accumulate on the trichomes and then gradually diffuse to the 
base of the cell and spread into the adjacent cells of the trichome basement, and 
finally, the trichome collapses. This fact that trichomes act as entering points for the 
PAHs or they import the PAHs coming from other cell types and tissues is still 
unclear. The special role of trichomes in detoxification of various compounds has 
been identified in previous studies. Based on these studies, trichomes of Brassica 
juncea and Arabidopsis thaliana have ability to accumulate cadmium and glutathi-
one suggesting that trichomes may function as an efficient site of xenobiotic conju-
gation (Salt et al. 1995; Gutierrez-Alcala et al. 2000). Accordingly, trichome may 
play a good role in phytoremediation strategies by using engineering of PAH- 
degrading enzymes (Alkio et al. 2005).

15.5  Agronomic Crop Responses to PAH Toxicity

15.5.1  Transformation of PAHs

Plants have the enzymes involving in PAH transformation through which they can 
transform a more number of xenobiotics (including some kinds of PAHs) ranging 
from highly polar to nonpolar compounds (Kummerova et al. 1997). This feature 
is a species-specific process which may be unique to the given plant only at a spe-
cific tissue or organ or even in a specific developmental stage (Kmentova 2003). 
Some studies demonstrated that plants are able to transform benzene rings of 
PAHs. Low- molecular- weight compounds with two or three rings such as naphtha-
lene, anthracene, and phenanthrene may be degraded more quickly than high-
molecular-weight compounds such as pyrene, benzo[a]pyrene, and dibenzo[a,h]
anthracene (Vanova 2009).

Plant transformation of xenobiotics can be divided into three phases: transforma-
tion, conjugation, and elimination reactions (Fig. 15.3). The reactions of first phase 
are oxidation, reduction, and hydrolysis. It is assumed that these processes are local-
ized inside mitochondria or endoplasmatic reticulum. These reactions may modify 
compounds so that they enable the conjugation with amines, acids, and alcohols in 
the second phase of detoxification. The reduction reactions play relatively few roles 
in transformation, but oxidation is the most frequent observed reaction involving in 
detoxification of the organic xenobiotic toxicants. The main reaction in the process 
of oxidation is monooxidation (hydroxylation) where the active addition of oxygen 
to toxicant molecule takes place (Korte et al. 2000).

Hydroxylation detoxification is made with the presence of cytochrome P450 
binding in the membrane of mitochondria or endoplasmic reticulum. Cytochrome 
P450 as a multifunctional enzyme catalyzes oxidation and reduction reactions 
(Korte et al. 2000; Bernhardt 2006) and is involved in the detoxification of various 
xenobiotics in the cells of higher organisms (Chroma et al. 2002). Cytochrome P450 
is found in all kingdoms of microorganisms (Bernhardt 2006). More than 250 vari-
ous forms of it have been found in the Arabidopsis thaliana, and even more than 
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1000 isoforms are expected in wheat. Also, cytochrome P450 plays a role in the 
metabolism of a variety of secondary metabolites in plant-insect interaction, herbi-
cide metabolism, and other vital functions (Werck-Reichhart et al. 2000). Moreover, 
plant P450 has potential for engineering herbicide tolerance and bioremediation 
(Werck-Reichhart et al. 2000; Bernhardt 2006).

It was illustrated that the penetration of xenobiotics into the cell is a regulatory 
indication for initiating NADPH-dependent oxidation and converting cytochrome 
P450 activity from “endogenous” (metabolism) into “exogenous” (detoxification). 
This cytochrome transforms PAHs not only into different alcohols such as diols, 
triols, and tetrols, but also into carcinogenic and mutagenic epoxides and free radi-
cals (Khatisashvili et al. 1997).

In the second phase (conjugation), compounds such as sugars, amino acids, 
organic acids, and peptides are added to the pollutant and produce their conjugated 
form. The reactions are catalyzed by relatively few specific enzymes such as trans-
ferase. For example, sugars are added to the contaminated through glucosyltransfer-
ase enzyme, and glutathione are added to the contaminated through glutathione 
transferase enzyme. At this phase, after the addition of glucose, another reaction is 
made including the addition of malonic acid by the malonyl transferase enzyme 
(Knejzlik et al. 2000; Collins 2011).

The third phase of biotransformation is detoxification. Created conjugations within 
the second phase transfer from the cytoplasm to the vacuole by transmembrane ATP-
dependent transporters (ABC transporters) for accumulation. Alternatively, metabo-
lites can be further processed by hydrolytic reactions within the vacuole and/or then 
re-exported into the cytoplasm for further metabolism (Brazier-Hicks et al. 2008).

Fig. 15.3 Different phases of metabolism of xenobiotics in plant cells (Collins 2011)
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Plants also can accumulate soluble conjugates in the vacuole for further metabo-
lism and non-soluble conjugates in the cell wall (Trapp and McFarlane 1995). Also, 
many aromatic compounds that have hydroxyl, carboxyl, amine, or sulfhydryl 
groups are placed inside lignin or to other cell wall components such as protein, 
hemicellulose, or cellulose (Vanova 2009; Kang et al. 2010).

Based on a study by Wild et al. (2006), phenanthrene in maize can be metabo-
lized into polar compounds, and in another study by Harms (1996), it was found that 
anthracene and its derived compounds are bound to cell wall components such as 
pectin, lignin, hemicellulose, and cellulose. Hence, the distributions of anthracene 
and its metabolites in maize illustrated that the metabolism of this compound takes 
place mainly in the cell wall (Briggs et al. 1983).

15.5.2  Phytodegradation

Phytodegradation is a technology employed by plants to detoxify pollutants from 
contaminated systems (Epuri and Sorensen 1997). Also, it is an important phytore-
mediation process indicating the role of internal plant mechanisms and processes in 
removing or detoxifying certain environmental pollutants to make them harmless 
(Newman and Reynolds 2004). Various grasses and leguminous plants have poten-
tial for phytodegradation of organic pollutants (Adam and Duncan 1999). Some 
tropical plants have also revealed effective degradation tendency because of their 
inherent properties such as deep fibrous root system and tolerance to high hydrocar-
bon and low nutrient availability (Dzantor et al. 2000). Based on recent reports, tall 
fescue grass (Festuca arundinacea) and switch grass (Pannicum virgatum) are able 
to degrade about 38% of pyrene during 190 days (Chen et al. 2003). Other stud-
ies on PAHs degradation have stated that plants in acidic soils have intensified phen-
anthrene and pyrene degradation rates. The combined plant cultivation has potential 
to enhance the degradation rate of PAHs (Chouychai et  al. 2009; Cheema et  al. 
2009), and higher degradation rates of phenanthrene and pyrene were observed in 
the combined plant cultivation compared to the single plant cultivation in spiked 
soils. Accordingly, the presence of plants such as corn (Zea mays), alfalfa (Medicago 
sativa), rape seed (Brassica napus), Festuca arundinacea, and rice (Oryza sativa) 
can enhance the adsorption of PAHs and efficiently promote phytodegradation of 
PAHs in contaminated soils (Cheema et al. 2008; Du et al. 2011). Some researchers 
believe that the phytodegradation process is effective when it is used as a secondary 
treatment process for decontamination of PAHs from composted soils (Parrish et al. 
2004). But, some other researchers believe that phytodegradation can be used as a 
primary remediation technology or even a final and comprehensive remediation 
technology for treating of PAHs-contaminated soils (Pradham et al. 1998). Study on 
P. virgatum and little bluestem grass (Schizachyrium scoparium) revealed their abil-
ity to decease PAHs concentration after six months. As another example, ryegrass 
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(Lolium multiflorum) and bermudagrass (Cynodon dactylon) can also degrade naph-
thalenes as two-ring PAHs (White et al. 2006). Moreover, the morphology of the 
plant system affects the efficiency of plant uptake and metabolism of PAHs 
(Simonich and Hites 1994; Bakker et al. 1999; Gao and Zhu 2004). For example, L. 
multiflorum showed higher tendency for uptake of pyrene by the roots than other 
PAHs (Kang et al. 2010; Ward et al. 2003).

The ability of water hyacinth (Eichhornia crassipes) in degrading of organic pol-
lution was investigated, and based on the reports, it has higher efficiency for accu-
mulation of high levels of five-ring PAHs compared to two- and three-ring 
compounds (Xia 2008; Moustafa and Shara 2009). According to Wolverton and 
McDonald (1976), E. crassipes can very quickly absorb and metabolize organic 
pollutants. Further study has shown that this plant can decrease naphthalene con-
centration in wastewater in 7 days (Nesterenko et al. 2012) and also reduce oil pol-
lutions in contaminated soils up to 18% (Nor 1994; Tang and Lu 1993). Overally, 
these studies indicate that the plant has the potential to absorb phenolic compounds, 
heavy metals, and inorganic material. Such findings emphasize the potential of E. 
crassipes for absorption of hydrocarbons as well as its ability to absorb other com-
pounds such as inorganic compounds and pesticides (Reddy et al. 1989; Xia and Ma 
2006; Rosas et al. 1984; Ebel et al. 2007; Ghabbour et al. 2004).

15.6  Conclusion

Polycyclic aromatic hydrocarbons are a diverse group of organic pollutants, mainly 
produced by anthropogenic activities and existing in all parts of environment. They 
are toxic for all organisms, and plants can uptake these compounds by various ways 
and introduce them into food chains. They can affect different aspects of plants at 
all stages of growth, and their harmful effects on plants are very diverse, including 
morphological, cytological, genetical, and metabolic disorders. Inhibition and 
reduction in seed germination, induction of oxidative stress, and disruption in pho-
tosynthetic apparatus function are some well-known effects of PAHs on plants. The 
severity of PAHs effects on plants depends on plant species, structure of plant organs 
specially roots, type and concentration of PAHs, and some other environmental fac-
tors. Plants can accumulate PAHs or transform them by their enzymes. This feature 
is a species-specific process which may be unique to the given plant only at a spe-
cific tissue or organ or even in a specific developmental stage. Apparently, plants 
have higher potential for biodegradation of low-molecular-weight PAHs such as 
naphthalene, anthracene, and phenanthrene.
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Abstract
The present chapter is focused on the evolution of the insect’s resistance against 
Bt crops and describes the most appropriate approach in order to cope with this 
serious issue. Different techniques have been used in the past to manage insect 
evolution against Bt crops. Among them, gene pyramiding, or stacked combina-
tions of different genes in a single crop with their ability to target the same insect 
pest species, is proven to be a very powerful and effective tool in managing insect 
resistance problem. The principle goal of gene pyramiding approach is to develop 
transgenic plants with extra resistance against pests and to enhance crop yield. To 
obtain transgenic crops with durable and broad-spectrum resistance against 
insect pests and diseases, the pyramiding of predominant genes (multigene strat-
egy) implying a unique mode of action is a powerful strategy. Gene pyramiding 
is a useful technique in controlling different insect species as compared to trans-
genic variety comprising of single toxin trait. Many studies have shown that gene 
pyramiding is advantageous in controlling different insect species in a single Bt 
crop, but due to continuous pressure on insect pests, there are chances that the 
herbivore may evolve resistance. Therefore, reliance only on gene pyramiding 
strategies is not a complete solution to Bt resistance. It is, therefore, necessary 
that different combinations of strategies like RNAi with gene pyramiding tech-
niques will be required in the near future that will not only shield our crop against 
insect pest damages but also reduce reliance on heavy insecticide usage in crops.
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16.1  Introduction

Bacillus thuringiensis spores had been used as an insecticide many years before the 
identification of the bacterium. Some researchers suggested that the Bt spores had 
been used against insect pests by ancient Egyptian. This bacterium was first acci-
dentally isolated in Japan in 1901 by the Japanese biologist Shigetane Ishiwatari 
from an infected silk worm’s larva. He named this bacterium as Bacillus sotto. 
Approximately ten years later in 1912, German scientist Ernst Berliner isolated the 
same bacterium from an infected Mediterranean flour moth (Ephestia kuehniella), 
and he changed its name to Bacillus thuringiensis, since the infected moth was 
found in the German province of Thuringia (Siegel 2000). For over 70  years, 
Bt-based insecticides have been used in spray form in crops, containing a mixture 
of spores, and the related protein crystals stay valuable in organic and conventional 
agriculture to control various insect pests of field crops, vegetables, forests, and vec-
tor control. The first Bt-based commercial biopesticide formulations such as Dipel 
and Thuricide were marketed over 50  years ago. Currently, numerous sprayable 
formulations of Bt products with various endotoxins are available for commercial 
use against different insect pest species. However, the continuous use of these 
Bt-based products resulted in the evolution of resistance in some major pests. The 
very first report indicating the evolution of insect resistance against sprayed Bt 
spores was published online in early 1985; since then, many more such cases of 
field-evolved resistance have been documented in various crop pests. This problem 
was overcome by the development and introduction of transgenic crops. The first 
genetically modified crops containing endotoxin had been grown on a large scale in 
1996 within the USA. Since then, different companies have launched different Bt 
transgenic varieties of different crops including potato, tomato, cotton, and corn. In 
this way, the integrated pest management program gained new momentum as these 
Bt crops were grown on a large scale with the aim of protecting the crops from 
insect pest damages. Since 1996, transgenic crops have been grown around the 
entire globe; they have shown to efficiently control various insect pests including 
tobacco budworm (Heliothis armigera), Colorado potato beetle (CPB) (Leptinotarsa 
decemlineata), cotton bollworm (Helicoverpa armigera), pink bollworm 
(Pectinophora gossypiella), southwestern corn borer (Diatraea grandiosella), and 
European corn borer (Ostrinia nubilalis) and helped the growers to reduce reliance 
on the usage of chemical insecticides. These Bt crops revolutionized the history of 
agriculture. With the advancement of genetic engineering and biotechnologies, the 
insect pest control program took a new dimension that has resulted in the develop-
ment of different transgenic B. thuringiensis (Bt) varieties in corn, cotton, and pota-
toes. Currently, Bt transgenic crops are being extensively grown in many advanced 
and developing countries (Cohen 2005; Bravo et  al. 2007). These Bt transgenic 
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crops have suppressed pest populations, reduced dependency on insecticide sprays, 
encouraged control via bioagent, and doubled farmer income (Shelton et al. 2000; 
Ferry et al. 2004; Tabashnik et al. 2010). These biotech crops were initially grown 
on 1.7 million hectare land in 1996. Since the start of commercialization, there has 
been a significant 100-fold increase in cultivated areas of certain Bt crops especially 
in Bt cotton and Bt corn. This year-wise increase is shown in Fig. 16.1. It is obvious 
in Fig. 16.1 that a total of 179.7 million hectares of genetically modified organism 
(GMO) were cultivated in a single year during 2015. Since 1996, a collective total 
of 2339.5 million hectares of GMO were planted around the entire globe (ISAAA 
2017). From Fig. 16.1, it is assumed that these Bt-based crop technologies are read-
ily accepted worldwide.

Agricultural production worldwide is constrained primarily by insect pests. 
Initially, chemical insecticides were found effective in controlling the major agri-
cultural pests, but their continuous use resulted in so many problems like environ-
ment pollution, the effect on nontarget insect, and vertebrate insect resistance (Salim 
et al. 2016). The transgenic crops produce insecticidal crystal proteins or Bt toxins 
that are toxic to the insect. The mode of action (MOA) of these Bt endotoxins has 
been studied in detail by different scientists in various insect orders. From these 
studies, it is evident that the mode of action of this Bt protein relies on three differ-
ent models. Two of them are based on pore formation activity, while the third one 
relies on signaling pathway model as shown in Fig. 16.2 (Zhang et al. 2005, 2006; 
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Fig. 16.1 Global GM crop plantation area (million hectares) from 1996 to 2017
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Bravo and Soberón 2008). Unlike most other chemical insecticides, these Bt toxins 
don’t act as a contact poison. To kill an insect, this Bt toxin must be ingested. The 
toxic pathway of these Cry toxins undergoes several steps that include crystal inges-
tion and solubilization by insect, release of protoxin and conversion into active toxin 
by midgut proteases (proteolytic activation), and cadherin receptor binding (active 
protein binds to cadherin receptor situated on the brush border membrane of midgut 
cells) leading to pore formation that causes swelling and leakage of the cells. The 
swelling continues, resulting in insect midgut cells bursting, allowing the insect 
midgut juices to pass into the hemolymph. As a result, insect blood pH rises; this 
results in insect paralyses and eventually death (Soberon et al. 2009; Bravo et al. 
2011; Vachon et al. 2012). The third model regarding Cyt toxin which constitutes 
one-fifth of the size of the Cry protein suggest that they are dissolved and processed 
like Cry toxins; upon release, they secrete a toxic core which results in cell lyses. 
They act as a detergent or synergist, attack the lipid portion of the cell membrane 
resulting in cell lysis, or increase the activity of other Cry toxins.

As these first-generation transgenic crops (single toxin) have become more 
widely cultivated, some of their valuable environmental and economic benefits have 
disappeared, especially due to the sudden and rapid evolution of filed resistance by 
the insect pest to the first-generation Bt crops that produced only a single Bt toxin. 
These insect resistance reports have made the growers uncomfortable and have 
raised doubts about the future sustainability of these Bt crops. The first insect that 
has developed resistance to Bt cotton is known as bollworm (Helicoverpa zea) 

Fig. 16.2 Proposed models for Cry toxin mode of actions and ultimately resistance mechanism 
adapted from Bravo and Soberón (2008) with permission
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reported between 2003 and 2006  in Mississippi and Arkansas. Since then, many 
scientists in different parts of the world published different cases of insect resistance 
to transgenic crops. The different insect species that have evolved resistance against 
different transgenic crops around the entire globe are shown in Table 16.1. Most of 
the insect-resistant species have been reported on large-scale cultivated varieties of 
Bt corn and cotton. These reports suggested that the insect pests have evolved resis-
tance to transgenic crops by two different mechanisms. In most cases, the primary 
mechanism of insect resistant to Cry protein is linked to defects in binding specific 
receptor that leads to reduce protease activation, higher immune response of the 
target insect pests, or enhanced esterase production. Mutations in the cadherin 
receptor in different lepidopterans are known to cause resistance against Cry1A 
toxins (Ferre and Van Rie 2002; Tabashnik et al. 2013, 2014). For example, resis-
tance to Cry1Ac in H. armigera is conferred by a mutation in the promoter region 
of HaTryR. Lower expression of cadherin in Diatraea saccharalis was linked with 
resistance to Cry1Ab toxin; cadherin silencing with RNA interference (RNAi) was 
also related with tolerance to this toxin in D. saccharalis and M. sexta (Soberon 

Table 16.1 The featured Cry genes introduced to agronomic crops to encode insect resistance

Insect spp.
Bt 
crop Bt gene

Detection 
year Country References

Helicoverpa zea Cotton Cry1Ac 2002 USA Dennehy et al. (2010)
H. zea Maize Cry1Ab 2004 USA Dively et al. (2016)
H. zea Maize Cry1A.105 2016 USA Dively et al. (2016)
H. zea Cotton Cry2Ab 2005 USA Ali and Luttrell (2007) 

and Tabashnik et al. 
(2013)

Busseola fusca Maize Cry1Ab 2006 South 
Africa

Kruger et al. (2011)

Spodoptera 
frugiperda

Maize Cry1F 2006 USA Farias et al. (2014)

Pectinophora 
gossypiella

Cotton Cry2Ab 2014 India Tabashnik (2015)

P. gossypiella Cotton Cry1Ac 2008 India Dhurua and Gujar 
(2011)

Diabrotica v. 
virgifera

Maize Cry3Bb 2009 USA Gassmann et al. (2011)

D. v. virgifera Maize mCry3A 2011 USA Gassmann et al. (2014)
D. v. virgifera Maize Cry34/35Ab 2013 USA Andow et al. (2016) and 

Gassmann et al. (2016)
D. v. virgifera Maize eCry3.1Ab 2014 USA Zukoff et al. (2016)
D. v. saccharalis Maize Cry1A.105 2014 Argentina Tabashnik and Carrière 

(2017)
S. albicosta Maize Cry1Fa 2013 USA Smith et al. (2017)
S. frugiperda Maize Cry1F 2011 Brazil Monnerat et al. (2015)
S. frugiperda Maize Cry1ab 2010 Brazil Farias et al. (2014) and 

Tabashnik et al. (2010)
S. frugiperda Maize Cry1F 2007 USA Storer et al. (2010)
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et  al. 2007; Yang et  al. 2011). Similarly, a mutation in three alleles of cadherin 
receptors confers resistance in P. gossypiella and H. virescens to Cry1Ac in Bt cot-
ton (Morin et al. 2003; Xu et al. 2005; Fabrick et al. 2011; Ocelotl et al. 2015). 
Furthermore, resistance in Plodia interpunctella to Cry1A was due to inactivity of 
the midgut protease that resulted in decrease activation of Cry1A protoxins. 
Mutations in the aminopeptidase P of O. nubilalis were also related with resistance 
to 3d-Cry toxins (Khajuria et al. 2011). Resistance in P. gossypiella to Cry1Ac and 
Cry2Ab is due to a cadherin transmembrane mutation disturbing cellular trafficking 
in pink bollworm (Wang et al. 2018). Mutation in a single amino acid in ABC trans-
porter gene has been linked to conferred resistance to Cry1Ab in silkworm (Bombyx 
mori). Resistance in H. armigera to Cry1Ac toxin has been related with their capa-
bility to break down long insecticidal bonds and to exclude these materials, result-
ing in increased production of gut esterase that bound and sequestered Cry1Ac 
protein (Atsumi et al. 2012).

Therefore, it is necessary to understand these molecular and genetic bases of 
resistance against various Bt toxins in different insect pest species. This will help to 
devise an integrated resistant management strategy to counter insect and pest prob-
lems in transgenic crops (Ferré and Van Rie 2002).

16.2  Pyramiding or Cry Gene Stacking Strategy

The problem of insect resistance to Cry toxin has evolved in single Bt crop due to 
the fact that insects may be able to adapt more rapidly to a single Bt toxin than to 
multiple ones (Roush 1998; Zhao et al. 2003). Thus, in order to delay the evolution 
of insect resistance to Bt crops, several insect resistance management (IRM) strate-
gies have been considered for managing resistance to Bt transgenic crops (Shelton 
et al. 2000; Bates et al. 2005; Yang et al. 2011; Saljoqi et al. 2015). The primary 
strategy to overcome insect resistance is the use of high-dose refuge (HDR) (Gould 
1998; Bates et al. 2005; Tabashnik et al. 2008). The HDR strategy requires planting 
a proportion of non-Bt host plants in close proximity as refuges to maintain an 
appropriate size of susceptible population. A drawback of this strategy is the eco-
nomic loss to the non-Bt crops in the refuges (Hutchison et al. 2010).

To reduce the percentage of refuges required by the HDR, new generations of 
transgenic crops with two or more than two Bt toxins with different mode of action 
called pyramid Bt crops, plantations have been started in the USA, Australia, and 
elsewhere (Gould 1998; Ferre´ and Van Rie 2002; Zhao et  al. 2003, 2005). The 
stacking of more than one useful transgene into plant genomes is called gene stack-
ing or gene pyramiding (Berger 2000; Halpin 2005).

The logic behind the gene pyramid originates from the ancient philosophy when 
people were using insecticide mixtures to broaden the spectrum of insects con-
trolled in one spray event. The gene pyramid is considered a permanent insect/dis-
ease resistance management strategy (Shelton et al. 2002). However, a closer look 
at the strategy shows that pyramid is developed as a practical strategy to expand the 
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range of insect species that were not adequately controlled by a single Cry toxin as 
in the case of transgene Bt cotton variety.

The main aim of gene pyramiding strategy is to develop transgenic plants with 
more resistance against pests and to improve crop yield. To obtain transgenic crops 
with durable and broad-spectrum resistance against insect pests and diseases, the 
pyramiding of major genes (multigene strategy) implying different mode of action 
will be a powerful strategy. This strategy has resulted in the so-called second gen-
eration of genetically engineered (GE) plants. Gene pyramiding has been princi-
pally obtained through crosses between GE plants with different biotech traits 
(hybrid stacking), such as in Agrisure™ and Viptera™ maize. Other methods 
involve plant transformation with two or more genes harbored in a single (linked 
genes or multigene cassette transformation, e.g., Herculex™ maize) or in separate 
(co-transformation, e.g., Knockout™ maize) gene constructs or the insertion of one 
or more genes into an already transgenic plant (retransformation, e.g., Bollgard™ II 
cotton). The first pyramided transgenic cotton plants expressing two 3d-Cry toxins, 
Cry1Ac and Cry2Ab with a different mode of action, were introduced in the USA 
in 2003. These two Cry proteins are known to have a different mode of action and 
bind to different receptors that result in significant delay in the evolution of any 
insect resistance. The rapid adoption rate of Bt pyramided plants has attracted the 
attention of its superiority over individual transgenic events. Biotech crops with 
multiple traits were planted on 77.7 million hectares in 2017, representing 41% of 
all biotech hectares planted worldwide and a 29% year-over-year increase (ISAAA 
2017). To delay insect resistance to Bt crops and to improve efficacy against some 
pests and broaden the spectrum of pests controlled, most newer Bt crops produce 
two or more Bt toxins that have been commercialized in different parts of the world 
(see Table 16.2). Most of these products contain multiple Bt genes for managing 
major insect pests. The current predominant stacked trait crops are insect-resistant 
and herbicide-tolerant maize and cotton. These products often contain only two 
introduced genes, as the “effect” gene conferring herbicide tolerance can also be 
used as the selectable marker for transformed plant material. Many commercial 
companies such as Syngenta, Bayer Crop Science, Pioneer, Dow AgroSciences, and 
Monsanto are pursuing to achieve GM crops with stacked traits (see Table 16.2).

These results showcase gene pyramiding as a possibly useful tool that could be 
successfully applied to the combination of pests and diseases for delaying resistance 
development and in some cases can be successfully applied against the combination 
of biotic and abiotic stresses.

16.3  Strategies for Gene Stacking/Pyramiding in Plants

Several methods have been used to pyramid (or stack) transgenes into plants that 
range from using conventional sexual crosses of plants comprising of one single 
transgene or more of transgenes to be combined into single germplasm to biotech-
nologies. The three main strategies are discussed below.

16 Gene Pyramiding: An Emerging Control Strategy Against Insect Pests…
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16.3.1  Iterative Procedure/Conventional Breeding

Plant harboring one or more transgenes can be successively introduced into another 
plant by conventional iterative procedures (Fig. 16.3). This method is also called 
sexual hybridization which results in the development of multi-stack hybrid. These 
techniques have been used to at least combine or enhance existing transgenic traits 
at the research level.

For example, combining herbicide-resistant event with an insect-resistant trans-
genic event, both being deregulated, can be performed through sexual crossing until 
all the required genes are present in the progeny. This has been the method to pro-
duce plants expressing different Bt toxins to delay the emergence of insect resis-
tance to Bt crops as recently demonstrated in broccoli where pyramided cry1Ac and 
cry1C Bt genes controlled P. xylostella resistant to either single protein (Cao et al. 
2002) and significantly delayed insect resistance development to Bt crops (Zhao 
et  al. 2003). Iterative rounds of crossbreeding have also been used to introduce 
novel proteins or biochemical pathways into plants. For example, Arabidopsis 
plants tolerant of the environmental toxin (methylmercury) were produced by cross-
ing plants containing two different genes for a bacterial organic mercury detoxifica-
tion pathway (Bizily et al. 2000).

16.3.2  Retransformation

Retransformation is another valid gene pyramiding method, with which a plant har-
boring a transgene can be transformed with other multiple transgenes with several 
rounds of transformation (Fig. 16.4). For retransformation, every single transforma-
tion requires a new and different selectable marker from the original event, which is 
critical in this process. This method can be principally useful in crops that are 
uneasy to propagate by sexual crossings, such as trees or woody plants. This method 
has been proven in various research like a modification of flower colors in forsythia 

Fig. 16.3 Gene 
pyramiding via 
crossbreeding. Plants 
harboring transgene A or 
transgene B are crossed to 
produce plants with both 
transgenes
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by inducing anthocyanin synthesis through sequential transformation with the genes 
for dihydroflavonol 4-reductase from Antirrhinum majus (AmDFR) and anthocyani-
din synthase from Matthiola incana. This induced anthocyanin synthesis in the 
double transformants which showed a novel bronze-orange petal color. This method 
has also been used in trees to combine two genes involved in lignin biosynthesis by 
introducing antisense transgenes in a way to reduce the environmental impact of 
papermaking.

16.3.3  Co-transformation

Co-transformation is another method which has been proven to be one of the most 
capable strategies taken to date for the introduction of multigenes into plants. In this 
method, a plant is transformed with two or more independent transgenes. The trans-
genes of interest are in separate gene constructs and are delivered to the plant instan-
taneously. This strategy is divided into two categories: (a) single-plasmid 
co-transformation of linked transgenes in which transgenes A and B are linked on 
one piece of DNA, with each gene having its promoter, and transferred together into 
a plant (François et al. 2002; Halpin and Ryan 2004) or (b) multiple-plasmid co- 
transformation of unlinked transgenes in which transgenes A and B are on different 
pieces of DNA and are transformed together into a plant (François et al. 2002).

The stacking of multiple genes via co-transformation is quick and easy and can 
be used in a variety of species including biolistic (direct) and Agrobacterium- 
mediated (indirect) transformation methods. Multiple-plasmid co-transformation 
via biolistics has been successful in introducing up to 13 genes simultaneously into 
plants at one or a few loci, and six-gene clusters by single-plasmid co- transformation 
methods were introduced successfully into plants (Chen et al. 1998; Goderis et al. 
2002; Thomson et  al. 2002). A major advantage of this method is that the co- 
introduced transgenes tend to co-integrate at the same chromosomal position in a 

Fig. 16.4 Pyramiding 
genes A and B by 
retransformation method 
with which a plant 
harboring transgene A is 
retransformed with 
transgene B

M. Salim et al.
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high proportion of transgenics. This confirms that “effect” genes are unlikely to 
segregate apart in subsequent generations.

Several studies have reported how transformation conditions might be manipu-
lated to encourage co-transformation and/or co-integration. For example, one 
tobacco study using two T-DNAs recorded 100% co-transformation frequencies, 
with 40–50% of lines showing the capacity for segregational separation (McCormac 
et al. 2001). Presently, co-transformation methods via particle bombardment have 
resulted in the successful introduction of three insecticidal genes in indica rice. The 
resultant transgenes showed significant resistance against major rice pests (Maqbool 
et al. 2001). Similarly, co-transformation of modified cry1Ab and cry1Ac genes of 
Bt in chickpea has resulted in improved resistance to H. armigera (Mehrotra et al. 
2011).

The proteinase inhibitors oryzacystatins I and II (OCI and OCII) genes were 
stacked into the potato genome by simultaneous co-transformation with both OCI 
and OCII genes. Expression of both OCI and OCII in potato resulted in increased 
resistance against CPB that caused a significant reduction in adult body weight and 
foliage consumption (Cingel et  al. 2014). The strategy, therefore, has obvious 
advantages as a one-step procedure for the introduction of multiple “effect” genes 
into plants. Beyond the research level, co-transformation methods have been suc-
cessfully used to produce some of the commercialized GM stacked crop events that 
are available in the market today.

16.4  Practical Merits of Gene Pyramiding

Problems related with engineering resistance through the genetic transformation of 
a single gene are that there is a possibility that pests may develop resistance to the 
transgenes used against them, resulting in the susceptibility of the transgenic plants 
to pest attack. Therefore, gene pyramiding or trestle transfer of multiple genes may 
be useful in conferring broad-spectrum resistance against different biotic and abi-
otic stresses. Essentially, gene pyramiding allows us to have a simultaneous expres-
sion of more than one gene(s) associated with resistance in a transgenic plant 
(Shelton et al. 2002). There is a broad agreement that pyramiding genes for resis-
tance is a useful tool for increasing endurance with many known achievements. 
Stacked GMOs are an important component of insect-resistant management (IRM) 
strategies to delay development of resistance in pests against the transgenes. Gene 
staking allows the development of crops with combined protection against multiple 
pests and diseases as well as adverse environmental conditions such as heat, cold, 
and drought stresses. Second-generation dual Bt gene cottons Bollgard II® 
(Cry1Ac + Cry2Ab) and WideStrike™ (Cry1Ac + Cry1F) express two Bt toxins that 
were introduced in order to control H. zea, which was not satisfactorily controlled 
by the Cry1Ac toxin alone (Jackson et al. 2003; Ferry et al. 2004; Bates et al. 2005; 
Gahan et al. 2005). The Cry1Ac and Cry2Ab toxins have different binding sites in 
larva midgut and are considered to be a good combination to deploy in managing or 
controlling resistance evolution. This is due to the fact that a species cannot easily 
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evolve resistance to both toxins due to a different site of actions. Since different Cry 
toxins vary in their effectiveness against the individual species, this pyramiding of 
Bt genes in a single crop has effectiveness in controlling different species. 
Pyramiding may reduce the likelihood of developing resistance in the pest insects 
especially if the pyramided Bt toxins use different insect gut receptors (Bates et al. 
2005). More recently released transgenic maize varieties have genes pyramided 
with lepidopteran-active cry genes to give concurrent protection against caterpillars 
and rootworm. For example, Dow AgroSciences’ Herculex XTRA®, Syngenta’s 
Agrisure CB/RW®, and Monsanto’s YieldGard Plus®.

16.5  Gene Pyramiding with RNAi

Rapidly declining host plant resistance in Bt crops induced researchers to adapt 
gene pyramiding strategy in transgenic plants which produce two or more Bt toxins 
to kill one or more insect pest. Conversely, multiple resistance and/or antagonistic 
action among Bt proteins minimized the potential benefits of this strategy. The 
breakthrough technology RNA interference (RNAi) has provided promising results 
in managing insect pests (Lim et al. 2016; Mao et al. 2007; Tian et al. 2015; Yu et al. 
2016). Being an eco-friendly technique, RNAi—small interfering RNA (siRNA)—
silence only a particular sequence in the target gene to suppress the expression. The 
main goal of this strategy is to silence the expression of the gene(s) which is encod-
ing protein(s) crucial for the growth and development of that specific insect pest. 
For example, promising targets for RNAi may include genes involved in synthesis 
of juvenile hormones (JHs), EcR genes, etc. (Asokan et al. 2014; Tian et al. 2015; 
Fu et al. 2016), which are essential for growth and development of insects, which 
are not present in other organisms (Belles et al. 2005). Concluding, pyramided cot-
ton combining a Bt toxin and RNAi substantially delayed resistance relative to 
using Bt cotton alone (Ni et al. 2017). Larval gut genes have been reported as prom-
ising target sites for RNAi (Wynant et al. 2014). So, they can be easily combined 
with Bt crops to synergize their effect.

Proteolytic enzymes, also called proteases, make the most diverse class of 
enzymes. Hydrolytic cleavage can occur in some peptide bonds in the target 
enzymes due to the catalytic activity of these enzymes. These kinds of enzymes are 
distributed in approximately all living organisms, viz., plants, animals, and microbes. 
In fact, these types of enzymes are essential for the host organisms; however, their 
overexpression can be significantly detrimental especially in higher concentrations. 
That is why the bioactivities of these types of enzymes should be highly specified 
and controlled. However, due to several reasons, they can’t provide full control of 
insect pest like Bt toxins. So, according to our point of view, combining these PIs 
with suitable RNAi can make them useful for making insect-proof crops. 
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Additionally, protease inhibitors (PIs) are considered as successful alternatives to 
Bt. Gut enzymes including cysteine proteases, intestains D and E, cellulases, serine 
proteases, and endopolygalacturonase can be underexpressed by RNAi.

Several other genes which are parallel to Bt like PIP-47Aa (Wei et al. 2018), 
GNIP1Aa (Sampson et al. 2017), and AfIP-1A/1B (Yalpani et al. 2017) can be used 
potentially in the near future. If we start considering their pyramiding with favor-
able RNAi, we can preserve these new insect toxins for more than a century without 
any resistance.

16.6  Conclusion

Pyramiding insecticidal genes in crops can theoretically counter the requirements 
for insecticide mixtures and can be efficiently used to delay the development of 
resistance in insect pests. Insecticidal genes that are expressed in the plant tissues 
can provide protection upon which the target pest feeds. Insecticidal Cry proteins 
from B. thuringiensis with high specificity have been identified and are achieved 
through specific midgut receptors and combinations with no cross-resistance in tar-
get pests. However, insecticidal gene combinations that are stacked against a par-
ticular set of pests may not be beneficial against all insect pests. For example, while 
WideStrike® is a stacked transgene event of cotton containing Cry1F and Cry1Ac, 
effective against the key cotton pests H. virescens and H. zea, the same product is 
not recommended for P. gossypiella, against which the pyramided toxins have little 
or no toxin activity, nor for T. ni or S. exigua, against which Cry1Ac has little or no 
activity. Similarly, VipCot® in cotton and Viptera® in corn with Cry1Ab and Vip3A 
toxins can provide protection against most key pests such as H. virescens, H. zea, 
and D. grandiosella; however, only Vip3A toxin in both crops has no activity against 
O. nubilalis. On the other side, SmartStax with only Cry1F is highly effective 
against Striacosta albicosta (western bean cutworm) and Agrotis ipsilon (black cut-
worm). Further evaluations may be required for such secondary pests, especially if 
they become more damaging or widespread. Crop having single transgene products 
is incapable of complete resistance against insect pests. In such circumstances, the 
pyramided toxins can be useful to withstand the insect damages and offer the most 
effective resistance management option. Different experiments show that genes 
pyramiding is more effective at delaying resistance than single traits and probably 
the most effective resistance management tool. Since pyramids can enable mixed 
refuges to provide effective resistance management. To overcome the stacked traits, 
the insect will need two or more than two different alleles. This means that the addi-
tion of a smaller and simplified refuge with pyramids can provide longer protection 
than larger refuges for single traits. Similarly, gene silencing with RNAI along with 
gene pyramiding strategies can further enhance pest control in various crops 
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including cotton, maize, and potato. From these integrated resistant management 
programs, growers can easily control major insect pests and related secondary pests 
resulting from the combinations of insecticidal traits. To achieve all these benefits 
from gene pyramiding of major crops, it is necessary that all stakeholders, including 
breeders, extension workers, crop advisors, farmers, and regulatory authorities, 
should continue to encourage the development, deployment, and adoption of stacked 
insecticidal crop product for enhanced yield and better insect resistance 
management.
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Abstract
Under agricultural situations, plants are often exposed to various environmental 
stresses, including biotic and abiotic stresses. Allelopathy is one of the most 
important interactions among plants. Nowadays, allelopathy is known as one of 
the biotic stresses affecting growth and development of plants, especially crops. 
Responsible compounds in allelopathy named allelochemicals are derived from 
the secondary metabolism of plants and are species and tissue specific. These 
compounds are released from the plants into the environment as leachates, vola-
tiles, and root exudates and from biomass decomposition. Their action mecha-
nism affecting the receiver plants also differs. Some of these compounds, such as 
volatile compounds, directly impact the receiver plant, while other compounds 
need microorganism’s intermediation. Allelopathic stress is a multidimensional 
stress, and in receiver plants, it occurs at molecular, biochemical, physiological, 
morphological, and eventually ecological levels. In addition, it can negatively 
affect the quantity and quality of growth in agronomic crops. Plants have several 
resistance mechanisms to counteract the adverse effects of this phenomenon at 
physiological, biochemical, and molecular levels that all these mechanisms lead 
to the detoxification of allelochemicals. Generally, allelochemical’s detoxifica-
tion processes were aimed to facilitate allelochemicals’ outlet from the cells that 
eventually leads to normal cell functions. Environmental stresses, viz., drought, 
deficiency and toxicity of nutrients, temperature stress, light stress, and biotic 
stresses can affect allelopathy and also influence it. Herbicide application in agri-
cultural fields causes changes in plant’s allelopathic interactions as well. Already, 
allelopathy has become a suitable tool for the transgenic plant production with 
desirable traits via biotechnology techniques, which promise the production of 
resistant cultivars to a variety of stresses.
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Abbreviations

ABA abscisic acid
C4H cinnamate-4-hydroxylase
COMT caffeic acid O-methyltransferases
CTK cytokinin
F5H ferulic acid 5-hydroxylase
IAA indoleacetic acid
MDA malondialdehyde
PAL phenylalanine ammonia lyase
PDMS polydimethylsiloxane
QTL quantitative trait locus
RAPD random amplification of polymorphic DNA
ROS reactive oxygen species
STME silicone tube micro-extraction

17.1  Introduction

Under both natural and agricultural situations, plants are often exposed to vari-
ous environmental stresses including biotic and abiotic stresses (Inderjit and 
Einhellig 1993; Maqbool et al. 2013).There is evidence that many plants prevent 
foreign species from entering their kingdom and continue to live as a dominant 
species. Growth decline in neighbor plants of certain species has also been 
reported frequently. This growth pattern cannot be justified only by the competi-
tion phenomenon, and it seems that other factors are involved in this event that 
today one of these factors is considered as allelopathic phenomenon (Kohli et al. 
2001; Maighany 2003). “Allelopathy” is a word derived from two Grecian words 
“allelon” and “pathose,” is mainly used as a negative word (Molisch 1937), and 
is a common biological phenomenon or ecological behavior in which one organ-
ism produces biochemicals, which are known as allelochemicals, that influence 
the growth, survival, development, and reproduction of other organisms 
(Einhellige 1996; Kohli et al. 2001; Singh et al. 2001). Exactly allelochemicals 
are the responsible compounds in allelopathic phenomenon (Kohli et al. 2001; 
Singh et al. 2001). Nowadays by science progress, allelopathy is known as biotic 
stress that affects plants’ growth especially on the quantity and quality of crop 
growth and yield (Haddadchi and Massoodi Khorasani 2006; Maighany 2003; 
Menges 1988). Allelopathic stress is a multidimensional stress, and its effects on 
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plants occur at molecular, biochemical, physiological, morphological, and even-
tually ecological levels (Gniazdowska and Bogatek 2005; Inderjit and Einhellig 
1993; Kohli et  al. 2001). Plant allelopathy is one of the modes of interaction 
between receptor and donor organisms and may exert either positive or negative 
effects and is becoming important in the arable systems, particularly associated 
with intercropping and crop rotation (Iqbal et al. 2007; Liebman and Dyck 1993; 
Mahmood et al. 2013). According to the terms “allelopathy,” “allelopathic stress,” 
“allelopathic phenomenon,” and “allelopathic interaction” can address different 
issues, and in this text we will use these terms in their certain mean.

17.2  Concept of Allelopathy

Allelopathy is one of the most important interactions among plants and is sub-
discipline of chemical ecology (Einhellig 1995; Achigan-Dako et al. 2014). The 
word allelopathy was first used by Molisch in 1937. Allelopathy is a word 
derived from two Grecian words “allelon” and “pathose” and is mainly used as 
a negative word (Molisch 1937). The study on allelopathy increased in the 1970s 
to recent years and become a popular topic in botany, ecology, agronomy, soil 
science, and horticulture (Einhellig 1995, 1996). The effects of chemicals that 
are produced by plants or microorganisms on the growth, development, and 
distribution of other plants and microorganisms in natural and agricultural sys-
tems are very important. The allelopathic interaction can be one of the effective 
factors in second culture and crop rotation, especially in contact with crop–crop 
and weed–crop interactions (Chou 1999; Mallik 2003; Zheng et  al. 2015). 
Allelopathy is now defined as any positive or negative response of a plant to the 
chemical produced by another plant (Bhadoria 2011; Einhellige 1996), how-
ever; an allelopathic interaction mostly ends with negative effects. Plants pro-
ducing allelopathic compounds and plants affected by these compounds are 
named donor and receiver plants, respectively (Sodaeizadeh and Hosseini 2012; 
Soltys et al. 2013). In addition, recent information is suggested that the allelo-
pathic chemical donor and receiver may include animals (Kong and Hu 2001). 
Some plant-secreted compounds also affect directly the growth and develop-
ment of the donor plant, which is called as auto-toxicity. Auto-toxicity is a 
branch of the allelopathic phenomenon and is very common in plants, although 
plants with high allelopathic potential have auto-toxicity avoidance mechanisms 
as well (Singh et al. 1999; Kohli et al. 2001; Lv et al. 2002; Maighany 2003; 
Singh et al. 2001).

A remarkable point in the allelopathy is the chemical compounds that cause this 
phenomenon. The type of compound, concentration, toxicity, water solubility, and 
its sustainability in the environment are the main factors that are primarily determi-
native in allelopathic interactions. However, other factors are effective in the allelo-
pathic phenomenon (Einhellige 1996; Kohli et al. 2001; Singh et al. 2001).
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17.3  Allelopathy or Competition

Competition is another kind of plant interactions. In natural ecosystems and rarely 
synthetic ecosystems, the competition and allelopathy overlapped together in terms 
of the effects and involved factors and are hardly distinguishable from each other. 
So in the past, these two phenomena were introduced as a subset of a phenomenon 
called interference. The interference word was originally developed by Harper 
(1964), whose concept covers both competition and allelopathy (Chou 1999; Kohli 
et al. 2001; Maighany 2003). In fact, the main cause of interference is the use of 
limited resources (competition) along with the production and release of toxic sub-
stances into the environment (allelopathy). According to Zimdahl (1999), competi-
tion is the receiving of limited resources by a microorganism following by the 
reduction of resources in the environment and eventually leads to the growth decline 
of other microorganisms. Exactly, competition occurs when one (or more than one) 
growth factor was restrictive. Despite all similarities, there are numerous differ-
ences between the allelopathic phenomena and the competition (Chou 1999; Inderjit 
del Moral 1997; Inderjit and Einhellig 1993; Kohli et  al. 2001; Leslie 2005; 
Maighany 2003; Willis 2007; Gioria and Osborne 2014), among which are:

 1. Entry of allelopathic compounds into the plant environment against consump-
tion of nutrients from the environment in competition.

 2. Density, which has negative and positive effects on the allelopathy and compe-
tition, respectively.

 3. Competition occurs merely between living organs, whereas in allelopathy, dead 
organs and tissues can be involved.

 4. Growth and dimensions of the plant, which reduces the competition and 
increases the plant’s allelopathic potential and vice versa.

 5. In the allelopathic phenomenon, a donor plant can produce allelopathic com-
pounds throughout its all phases of life cycle (especially the reproductive 
phase), while the competition between the species is limited to the early phase 
of the young plant establishment.

 6. Only certain plant species (often weeds) can use allelopathy for dominance 
over other species, while competition is a common phenomenon in among all 
plants that are living in the extreme environments.

 7. Allelopathic phenomenon is observed in the absence of a donor plant due to the 
existing of compounds in the environment, but the absence of competitor plant 
in the environment leads to lack of competition.

 8. Allelopathy is the result of competition and is an advanced state of it, while 
itdoesn’t lead to competition.

 9. Allelopathy isn’t artificially inducible, while competition is inducible under lab 
conditions by limiting the sources.

 10. Poisoning, growth inhibition, cell death, and ultimately receiver plant death are 
the allelopathic effects, while the competition symptoms are limited to the 
nutrient deficiency and toxicity symptoms, and most plants can complete their 
life cycle under these conditions.
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17.4  Allelochemicals: Responsible Compounds 
in Allelopathy

The responsible compounds in allelopathic phenomenon are called allelochemi-
cals (Kohli et al. 2001; Singh et al. 2001). In the past, since these compounds were 
considered possibly a protein nature, they were called allelopatin, but with the 
analysis of soil extracts, the true and varied nature of these compounds was deter-
mined (Kohli et  al. 2001; Soltys et  al. 2013). Allelochemicals are species- and 
tissue- specific compounds, which are nonnutritive substances mainly produced as 
plant secondary metabolites, microorganisms, fungi, and virus or released due to 
decomposition of organic materials by microbes (Inderjit Nilsen 2003). All plants 
use primary metabolites for growth but differ in terms of the secondary metabolite 
production. Therefore, plants differ in terms of the ability to produce allelochemi-
cals (Kohli et  al. 2001; Maighany 2003). Allelochemicals are often toxic com-
pounds, although, in some cases, stimulant compounds are also produced rarely 
(Bhadoria 2011; Einhellige 1996). The toxicity of the allelochemical compounds 
is dependent on their concentration, donor plant age, plant metabolism, type of 
tissue or organ in which it is produced, season, climate, and environmental condi-
tions (Belz 2007; Iannucci et al. 2013; Khalaj et al. 2013; Khan et al. 2010; Kohli 
et al. 2001; Leao et al. 2012).

17.4.1  Sources

Allelochemical production sources are very diverse in the crop environment including 
microorganisms, certain weeds, and past or present crops (Einhellige 1996; Maighany 
2003). In some cases, production of allelochemicals has been reported in primary 
plants, algae, and lichen as well (Pruvis 2000). In the whole plant, allelopathic com-
pounds can be produced and accumulated in leaves, stems, fruits, rhizomes, roots, 
seeds, flowers, buds, or even pollen grains (such as corn), in which their concentra-
tions are directly related to the type of organ (Anaya 1999; Kohli et al. 2001; Maighany 
2003; Singh et al. 2001). At the cell level, these compounds are either accumulated in 
vacuole, away from the cell’s metabolic center, or in storage structures. Generally, the 
storage location of allelochemicals is determined by their tendency to fat. For exam-
ple, lipophilic compounds are found in secretion structures or in cuticular waxes, 
while hydrophilic compounds are stored in cell walls or vacuoles (Kohli et al. 2001; 
Maighany 2003; Shao-Lin et al. 2004; Singh et al. 2001).

17.4.2  Action Mechanisms in the Environment

In order to triggering allelopathic stress in crops, allelochemicals must be released 
from the plants into the environment as leachates, volatiles, and root exudates or 
from biomass decomposition (Maighany 2003; Sodaeizadeh and Hosseini 2012; 
Soltys et  al. 2013). Some of these compounds are volatile and released into the 
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receiver plant atmosphere. Some compounds are root exudates and enter into the 
soil. Other compounds are produced as latex from green parts of plant and enter into 
the soil. Rainfall facilitates releasing of allelochemicals (Cheng et al. 2011; Inderjit 
Nilsen 2003; Khan et al. 2010; Shao-Lin et al. 2004). Their action mechanisms on 
the receiver plants also differ. Some of these compounds, such as volatile com-
pounds, directly impact the receiver plant (Einhellige 1996; Maighany 2003; 
Sodaeizadeh and Hosseini 2012), while other compounds need microorganism’s 
intermediation (Kohli et al. 2001; Sanchez-Moreiras et al. 2008; Singh et al. 2001; 
Soltys et al. 2013; Li et al. 2015). The action mechanisms of allelochemicals in the 
environment are summarized in Fig. 17.1.

17.4.3  Active Concentration and Half-Life of Allelochemicals

The effect severity of an allelochemical is dependent on the received concentration 
by the receiver plant (Kohli et al. 2001; Maighany 2003). In general, regardless of 
the stimulatory or inhibitory effect and the type of compound, the response of the 
plants to the allelopathic compounds in a curve against concentration is indicative 
of the concave pattern. For example, phenolic compounds at high concentrations are 
always inhibitory, although they may be stimulatory in very lower concentrations. 
Therefore, the concentration of allelochemicals is very important and a decisive fac-
tor in the evaluation of the effect of these compounds (Razavi 2011; Maighany 
2003).The rapid decomposition of allelochemicals in the soil makes it difficult to 
determine the true concentration of these compounds. On the other hand, the effec-
tive concentration of these compounds in the soil and the controlled bioassay can be 
very different (Chou 1999; Leslie 2005; Peng et al. 2004; Shao-Lin et al. 2004). In 
this regard, determining the threshold for the activity of an allelopathic compound 
in the soil or any type of bioassays will be helpful in tracing the allelopathic activity. 
Today, many studies have been conducted to measure the concentrations of allelo-
chemicals in soil and culture media. One of the most common and effective tech-
niques available for this object is the use of polydimethylsiloxane (PDMS) 
microtubes (Dayan et  al. 2009; Mohney et  al. 2009; Weidenhamer 2005; 
Weidenhamer et al. 2009, 2014). In this technique, by using coated microtubes with 
PDMS fibers, the allelopathic compounds of plants are directly collected at a short 
distance from the hairy root over time. The PDMS is a powerful absorbent and used 
with the brand name of Dimethicone as a carminative drug (Dayan et  al. 2009; 
Mohney et  al. 2009). This technique is also known as the silicone tube micro- 
extraction (STME) and is very useful to determine the concentration of the com-
pounds released from the roots rapidly without changing the compounds’ 
characteristics. The biggest problem in using of STME technique is its inability to 
be used in the natural environment (soil) because of artifact results (Dayan et al. 
2009; Mohney et al. 2009; Weidenhamer 2005; Weidenhamer et al. 2009, 2014).

Studies have been shown that the allelopathic behavior of the donor plants 
in vitro differs from the natural conditions (Inderjit Callaway and Vivanco 2006; 
Inderjit et al. 2011). Allelochemicals are decomposed after being released into the 
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Fig. 17.1 Action mechanisms of allelochemicals in the environment
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environment by various factors or by themselves. The half-life of allelochemicals 
varies from one to several months depending on their composition (Barto and 
Cipollini 2009; Demuner et al. 2005; Macias et al. 2005a, b; Wang et al. 2007). 
Moreover, the active concentration of allelopathic compounds, soil texture, micro-
bial population, and vegetation structure of the region are very important (Gu et al. 
2009; Kong et  al. 2008; Macias et  al. 2004; Understrup et  al. 2005). Often, the 
conjugation increases the half-life of allelochemicals in the environment, and con-
jugative compounds, such as benzoxazinones, have a greater chance to affecting the 
target plant (Tabaglio et al. 2008; Understrup et al. 2005).

17.4.4  Classification

Already, various classifications were suggested for allelopathic compounds, but due 
to the functional (Leslie 2005; Shao-Lin et al. 2004; Weir et al. 2004) and structural 
(Inderjit and Einhellig 1993; Leslie 2005; Maighany 2003) variations of these com-
pounds, as well as the unknown nature of some of them (Chou 1999; Weir et al. 
2004), none of the presented models are comprehensive. Nowadays, these com-
pounds are classified based on the structural similarities and biochemical behaviors 
into 14 categories including: (1) water-soluble organic acids; (2) straight-chain 
alcohols; (3) aliphatic aldehydes and ketones; (4) simple unsaturated lactones; (5) 
long-chain fatty acids and polyacetylenes; (6) benzoquinone, anthraquinone, and 
complex quinones; (7) simple phenols, benzoic acid and its derivatives, cinnamic 
acid and its derivatives, and coumarins; (8) flavonoids and tannins; (9) terpenoids 
and steroids; (10) amino acids and peptides; (11) alkaloids and cyanohydrins; (12) 
sulfides and glucosinolates; (13) purines and nucleosides; and (14) some plant’s 
growth regulators, including salicylic acid, gibberellic acid, and ethylene, which are 
also considered to be allelochemicals (Rice 1974, 1984).

Although, according to the literature, the recent classification also has many 
shortcomings, it provides a general framework for the diversity of existing known 
compounds and groups. An old but common classification also is divided all allelo-
pathic compounds into the three general groups  including: (1) compounds with 
nitrogen base, such as alkaloids, nonprotein amino acids, and cyanogenic glyco-
sides; (2) carbon-based compounds containing a hydrocarbon ring such as phenolic 
compounds; and (3) carbon-based compounds, lacking a phenolic structure, such as 
terpenoids (Kohli et al. 2001).

Among the various types of allelopathic compounds, some of them have high 
prevalence. The most important types are phenolic compounds, terpenoids, alka-
loids, nonprotein amino acids, saponins, and benzoxazinones (Khan et  al. 2010; 
Kohli et al. 2001; Razavi 2011; Soltys et al. 2013).

17.4.4.1  Phenolic Compounds
These compounds play an important role in the allelopathic interactions and ecological 
studies. Phenols play a role in the allelopathy of algae, fungi, lichens, mosses, pterido-
phytes, gymnosperms, as well as angiosperms (Odeyemi et al. 2013; Maighany 2003). 
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Among the most important phenolic compounds with a potential for allelopathy in the 
soil are 3-hydroxy-hydrocinnamic acid, benzoic acid, phenylacetic acid, syringic acid, 
ferulic acid, resorcinol, p-Coumaric acid, salicylaldehyde, and hydrocinnamic acid 
(Batish et al. 2008; Einhellig 1995; Maighany 2003). Studies showed that among all 
the phenolic compounds involved in the allelopathic phenomenon, the chlorogenic 
acid in the seeds and skin of the eggplant is the most toxic compound (Maighany 2003).

Phenolic compounds affect accumulation and availability of the soil nutrients, 
which can eventually lead to changes in crop growth and development (Bergmark 
et al. 1992; Li et al. 2010; Weston and Mathesius 2013).

17.4.4.2  Terpenoid Compounds
This group is important allelochemicals because they are active in the relatively low 
concentrations (1–3 μmoles). In addition, terpenoid compounds have the ability to 
transfer through the atmosphere to longer distances (Abrahim et  al. 2003a, b; 
Maighany 2003). Alpha- and beta-pinene, camphene, picrol, cineol, podolactone, 
anomacilactone, nagilactone, and diterpenoid alkaloids are from the important ter-
penoid compounds involved in the allelopathy phenomenon (Abrahim et al. 2003a, 
b; Kato-Noguchi et al. 2013; Khan et al. 2010; Maighany 2003).

17.4.4.3  Alkaloids
Alkaloids are the most common nitrogen-based allelochemicals. These compounds 
are interesting for scientists due to their complex structures and properties, and they 
can also be fatal to human (Wink and Latzbruning 1995; Maighany 2003). They 
reduce the membrane stability, alter the enzyme kinetics, and affect photosynthesis, 
respiration, biosynthesis of proteins, signal transduction pathways, and DNA repli-
cation (Inderjit and Einhellig 1993; Li et  al. 2010; Maighany 2003; Wink and 
Latzbruning 1995). The important alkaloids involved in the allelopathy are sapo-
tine, aconitine, caffeine, cytisine, and gramine. Although alkaloids have a high 
structural diversity, they play a limited role in the allelopathy phenomenon (Inderjit 
and Einhellig 1993; Maighany 2003).

17.4.4.4  Nonprotein Amino Acids
These compounds are the nitrogen-based compounds and considered as analogous 
of standard amino acids (Maighany 2003; Rice 1974). An example of the nonpro-
tein amino acids with known allelopathic activity is canavanine that is analogous of 
arginine and inhibits seed germination and growth of seedlings in plants such as 
lettuce (Inderjit Callaway and Vivanco 2006; Inderjit and Einhellig 1993; Maighany 
2003). It is worth noting that nonprotein amino acids do not have auto-toxicity 
effects, because tRNA synthetase of plants has considerable ability for nonprotein 
amino acid recognition (Maighany 2003).

17.4.4.5  Saponins
Saponins are compounds with steroid or terpene skeletal system that are replaced by 
carboxyl, carbonyl, and hydroxyl functional groups (Maighany 2003). The action 
mechanism of saponins is not known as much as phenolic acids, but their herbicide 
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activity has been reported frequently. The most active and well-known saponin is 
the medicagenic acid, which is found abundantly in alfalfa roots (Anaya 1999; 
Kohli et al. 2001; Maighany 2003).

17.4.4.6  Benzoxazinones
These compounds were identified in the late 1950s as important natural products in 
the Poaceae family. Biological activities of benzoxazinones, such as the effect on 
aphids, fungi, and pathogenic bacteria as well as their allelopathic effects on plants, 
have been proven (Inderjit del Moral 1997; Inderjit and Einhellig 1993; Kohli et al. 
2001; Schulz et al. 2013). Studies have shown that biosynthesis of benzoxazinoid 
compounds in the plants is dependent on tryptophan pathway and is structurally 
similar to auxins (Macias et  al. 2005a; Maighany 2003). These compounds are 
found in the plant in the form of glycosylated (inactive), which in general terms are 
named as cyclic hydroxamic acid. During plant damage or due to the action of 
microorganisms in the soil, especially the gram-negative bacteria, beta-glycosidase 
enzyme hydrolyzes these compounds and creates a cyclic benzoxazolinone (more 
toxic aglycones) (Macias et al. 2004, 2005b; Maighany 2003). Unlike other allelo-
pathic compounds that have the highest concentration at flowering time, concentra-
tions of these compounds increase during seed germination, reach to the maximum 
in young seedlings, and thereafter decrease (Inderjit and Einhellig 1993; Kohli et al. 
2001). By studying the effect of these compounds on the activity of enzyme sys-
tems, their inhibitory effect on the metabolism of chloroplasts has been confirmed 
(Kohli et al. 2001; Maighany 2003). It is notable that dicotyledon plants are more 
susceptible to benzoxazinoids than monocotyledon plants (Kohli et al. 2001). Like 
nonprotein amino acids, cyclic hydroxamic acids don’t have auto-toxicity effects 
(Maighany 2003); therefore, they have a good potential for application as a natural 
herbicide (as mulch) in the monocotyledon crop farms.

17.5  Effects of Allelopathic Stress in Plants

Allelopathic stress is a multidimensional stress, and its effects in plants occur at molec-
ular, biochemical, physiological, morphological, and eventually ecological levels 
(Gniazdowska and Bogatek 2005; Inderjit and Einhellig 1993; Kohli et al. 2001).

17.5.1  Structural and Ultrastructural Changes in Cells

The shape and structure of plant cells are affected by allelochemicals. For example, 
some allelochemicals (like volatile monoterpenes) can lead to nuclear abnormali-
ties, increasing in vacuole numbers and widen or shorten root cells (Bakkali et al. 
2008; Pawlowski et al. 2012). Compounds existing in plant pollen grains especially 
corn plants reduce mitotic activity by more than 50% not only in plant cells but also 
in animal cells (Cruz Ortega et al. 1988; Sunar et al. 2013). Exposure to hordenine, 
which is allelochemicals from barley, can lead to damage in cell walls, increases in 
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both the size and number of vacuoles (a marker for low metabolism), disorganiza-
tion of organelles, and cell autophagy induction (Kaur and Inderjit Kaushik 2005; 
Liu and Lovett 1993). Cinnamic acid and its derivatives significantly deformed the 
ultrastructure of chloroplasts and mitochondria leading to destruction in their nor-
mal functions (Wu et al. 2004). Some allelochemicals can alter the random amplifi-
cation of polymorphic DNA (RAPD) profiles of receiver plants (Kekec et al. 2013; 
Sunar et al. 2013). Citral as volatile essential oil of aromatic crops such as citrus tree 
can cause disruption of cortical microtubules in plant cells. Considering mitotic 
microtubules and subsequently cell divisions were affected from the cortical micro-
tubules, eventually citral can alter cell’s ultrastructure (Chaimovitsh et  al. 2010, 
2012; Dudai et al. 1999). Cell wall thickening, reduced intercellular communica-
tion, and change in the root hair formation are the other effects of allelopathic com-
pounds (Grana et al. 2013).

17.5.2  Inhibition of Cell Division and Elongation

Allelopathic phenomenon not only influenced ultrastructure of cells but also affected 
cell growth and expansion. Allelochemicals including camphor, cineole, beta- and 
alpha-pinene, and camphene are affecting cell proliferation and DNA synthesis in 
plant meristems (Nishida et al. 2005; Sanchez-Moreiras et al. 2008). Colchicine and 
sorgoleone are reducing the number of cells in each cell division, damaging tubulins 
and resulting in polyploid nuclei that lead to production of polyploid cell lines 
(Hallak et al. 1999). The extracts of some allelopathic weeds inhibit primary root 
elongation and lateral root development, decrease root hair length and density, 
inhibit cell division in root tips and the regeneration of root cap cells, and finally 
reduce root growth (Burgos et al. 2004; Cai and Mu 2012). Roots exposed to the 
allelochemicals mostly have inhibited mitosis by damaging chromatin organization 
(Cai and Mu 2012).

17.5.3  Imbalance in the Redox State and Induction of Oxidative 
Stress

Generally, exposure of plants to allelochemicals leads to the generation of reactive 
oxygen species (ROS) and subsequently plant metabolism alteration (Bais et  al. 
2003, 2006; Ding et al. 2007; Sun et al. 2014). The balance of the redox state in the 
cell plays an important role in plant’s cell homeostasis (Bais et  al. 2003, 2006). 
Although oxidative stress is a secondary stress and appears after an initial stress, 
increasing the concentration of ROS and free radicals isn’t done at once. The free 
radical production starts from the early stages of stress in plants, but antioxidant 
systems of plants control their concentration. By increasing cell damage, potential 
of cells for scavenging of free radicals is reduced, and ROS concentration reaches 
to critical level, and oxidative stress is induced (Giazdowska et  al. 2015). 
Allelochemicals by inducing the free radicals’ production indirectly led to 
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membrane damage, degradation of macromolecules such as chlorophyll and pro-
teins, disturbance in the hormonal signal transduction pathway, and so on (Dehghani 
et  al. 2014; Haddadchi and Gerivani 2009; Maighany 2003; Singh and Sunaina 
2014). Studies show that the activity of antioxidant enzymes such as catalase (CAT) 
(Ahrabi et al. 2011), peroxidase (POD) (Singh and Sunaina 2014, Yu et al. 2003, 
Zeng et al. 2001), polyphenol oxidase (Batish et al. 2008; Haddadchi and Gerivani 
2009), superoxide dismutase (SOD) (Xiao-Jun et  al. 2013; Yu et  al. 2003; Zeng 
et  al. 2001), and ascorbate peroxidase (APX) (Zuo et  al. 2012a, b) increases in 
plants under allelopathic stress. In addition, the synthesis of osmotic compatible 
compounds, such as proline, which prevent the production of free radicals, has been 
reported in a number of studies (Haddadchi and Massoodi Khorasani 2006).

17.5.4  Increasing the Permeability of Cell Membrane

Many studies have shown that allelochemicals significantly inhibit the antioxidant 
system activity and increase free radical levels. Free radicals attack membrane lip-
ids, which are the most abundant macromolecules in the cell, and lead to the peroxi-
dation of these molecules (Harun et al. 2014; Lin 2010; Lin et al. 2000; Sunmonu 
and Van Staden 2014; Zeng et  al. 2001). Lipid peroxidation by ROS and subse-
quently alteration in membrane potential are the reasons of the membrane permea-
bility increasing and electrolytes leakage into the intercellular space. As well as 
increasing the concentration of hydrogen peroxide and malondialdehyde (MDA) in 
cells, especially in the vicinity of membranes, is the other result of allelochemicals 
(Farhoudi and Lee 2013; Farhoudi et al. 2012; Zuo et al. 2012a, b). The high mem-
brane permeability is an important factor involved in inducing the other allelopathic 
effects. On the other hand, by increasing the permeability of the membrane and 
destroying the integrity of it, allelochemicals easily enter into the cells and have the 
opportunity to increase their concentration in the cytosol and finally trigger other 
allelopathic effects. The famous example of this phenomenon is the decrease in the 
activity of cytosolic SOD and APX enzymes in potato after treatment with leaf 
extract of wheat. Studies show that the decrease in the activity of these enzymes can 
be documented after damage to the plasma membrane so that the mutant plants (for 
the abovementioned enzymes being silent mutants) do not show such responses 
(Zuo et al. 2012a, b).

17.5.5  Effect on the Plants’ Hormonal System

Allelochemicals can alter the growth and development of agronomic plants due to 
changes in contents of plant growth regulators and induction of imbalance in hor-
monal system (Peterson et al. 2002; Wasternack and Hause 2013; Yang et al. 2005). 
It has been shown that one of the causes of allelochemicals toxicity in plants is 
interfering with the natural auxin activities. Most phenolic allelochemicals can 
stimulate IAA oxidase (a peroxidase that acts like an oxidase) activity and influence 
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endogenous indoleacetic acid (IAA) level (Maighany 2003; Yang et al. 2005). Some 
of these compounds show antihormonal behavior on gibberellic acids (GA) and 
abscisic acids (ABA), and some of them accelerate the effect of these hormones 
(Inderjit and Einhellig 1993; Kohli et al. 2001). Growth inhibition was observed in 
plants exposed to the high concentrations of ferulic acid. This effect is interpretable 
by the accumulation of IAA, GA, and cytokinin (CK), as well as simultaneous 
increase in endogenous ABA (Leslie and Romani 1988; Lin et al. 2001; Soltys et al. 
2012). Disruption of hormonal balance is one of the inhibitory effects of allelo-
chemicals, which indicates their effect on plant growth and development. With 
attention to the fact that hormones are the main factors involved in the regulation of 
vital genes expression in plants, the effects of allelochemicals on genes expression 
can be explainable (Wasternack and Hause 2013; Weir et al. 2004; Yang et al. 2005). 
Although probably allelochemicals have independent effect on gene expression, 
few studies have looked at the nature of their potential receptors, receptors location, 
and the components of involved signal transduction pathway. It seems that allelo-
chemicals instead of directly affecting gene expression promote the allelopathic 
process by acting on macromolecules such as enzymes (through or without a physi-
cal connection) (Inderjit and Einhellig 1993; Yang et al. 2005). Plant hormones are 
also involved in the allelopathic activity, and their effects on this phenomenon can 
be examined in several general modes as follows:

 1. Hormones are regulators of growth and development and can impact allelopathic 
phenomenon by affecting the differentiation of tissues (Maighany 2003; Yang 
et al. 2008). Specific cell differentiation, size, position, cell wall structures, and 
so on are the some results of hormonal balance, which in turn affects the type and 
amount of specific allelochemical effect on each tissue (Liu and Hu 2001; Soltys 
et al. 2012).

 2. Plant hormones by affecting the biosynthesis of secondary metabolites, which 
are also allelochemicals produced mainly from these biosynthesis pathways, 
regulate the concentration of these compounds in plants. Jasmonate is an exam-
ple of these hormones (Maighany 2003; Wasternack and Hause 2013). Jasmonate 
regulates synthesis of several compounds such as nicotine, anthocyanins, arte-
misinin (quinine), and glucosinolates through the COI1/JAZ pathway. More 
interestingly, the biosynthesis of vinblastine, an allelochemical produced in 
Catharanthus roseus L. cells, is a jasmonate-dependent pathway (Wasternack 
and Hause 2013).

 3. A number of plant hormones are directly and without intermediation involved in 
allelopathic interaction. On the other hand, some hormones or their derivatives 
fall into the allelopathic group. Jasmonates and salicylates, especially methyl 
derivatives, and derivatives of brassinosteroids such as 24-epibrassinolide and 
28-homobrassinolide and ethylene (Grana et al. 2013; Leslie and Romani 1988; 
Peterson et al. 2002; Wasternack and Hause 2013) are well-known examples.

 4. Some plant hormones, such as jasmonates, affect the biosynthesis of allelochem-
icals as well as themselves are the allelopathic compounds as well (Maighany 
2003; Wasternack and Hause 2013).
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17.5.6  Effect on the Function and Activity of Enzymes

Allelochemicals can affect the synthesis, functions, contents, and activities of 
various enzymes (Einhellig 1995; Rice 1984; Sunar et  al. 2013; Liu and Hu 
2001). Many allelochemicals were introduced as inhibitor or stimulator of differ-
ent enzymes such as auxin oxidase, amylase, invertase, cellulase, polygalacturo-
nase, pepsin, succinate dehydrogenase, phenylalanine ammonia lyase (Einhellig 
1995; Gu et al. 2009; Maighany 2003; Rice 1984; Sunar et al. 2013; Liu and Hu 
2001), polyphenol oxidase (Haddadchi and Gerivani 2009), CAT (Ahrabi et al. 
2011; Dehghani et al. 2014; Haddadchi and Gerivani 2009; Xiao-Jun et al. 2013) 
proteinases, SOD (Haddadchi and Gerivani 2009; Xiao-Jun et al. 2013), dehy-
drogenase, POD (Ahrabi et  al. 2011; Dehghani et  al. 2014; Haddadchi and 
Gerivani 2009), and decarboxylase (Maighany 2003). In some cases, some alle-
lopathic compounds, mainly phenolic compounds, act as a cofactor for certain 
enzymes and by changing in the activity of the enzymes leading to physiological 
and morphological changes in target plants (Haddadchi and Gerivani 2009). One 
of the most important enzyme complexes affected by the allelopathic phenome-
non is the H+-ATPase in the plasma membrane. The remarkable point is that 
impairment in the function of this enzyme ultimately causes a change in the 
physiological pH and also affects the activity of other enzymes. In addition to 
cellular homeostasis, maintaining the integrity of the membrane and, conse-
quently, transferring the nutrients from the width of the cell membrane is largely 
dependent to the activity of this enzyme complex (Inderjit and Einhellig 1993; 
Kohli et al. 2001; Maighany 2003; Singh et al. 2001). Membranes are one of the 
most important cellular components, and maintaining intracellular homeostasis 
depends on maintaining the membrane integrity of the cells. Often, allelochemi-
cals (like phenolic compounds) cause membrane depolarization, which isn’t 
irrelevant to the activity of the plasma membrane’s H+-ATPase pump (Ahrabi 
et al. 2011; Inderjit and Einhellig 1993; Maighany 2003).

Recent studies have shown that nitrate reductase enzyme activity is reduced in 
plants exposed to allelopathic stress (Kohli et al. 2001; Singh and Sunaina 2014; 
Zhou et  al. 2010), which is probably one of the reasons for the decline in crop 
growth under such conditions. Also studies have revealed that some allelopathic 
compounds inhibit glutathione synthetase activity, either through effect on folding 
or role in reducing the substrate (ATP) of this enzyme, and led to amino acids accu-
mulation, reduction of the redox potential of antioxidant system, and the decline 
nitrogen fixation at the nitrate reductase level (Ma 2005).

17.5.7  Effect on Photosynthetic Pigments

Reducing leaf chlorophyll content is a general response of crops to allelochemicals, 
which is, probably, the result of cell damage. It is not clear that the decrease in chlo-
rophyll content is due to its higher degradation or the reduction of synthesis, but it 
is a phenomenon that occurs during the allelopathy (Borella et al. 2014; Dehghani 
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et al. 2014; Maighany 2003; Singh and Sunaina 2014). According to the chlorophyll 
pigment anchored to the membrane (with the phytol intermediation), it seems that 
disrupted membrane integrity accelerates its turnover. In addition, free radicals pro-
duced by allelochemical during oxidative stress can attack on macromolecules such 
as chlorophyll and cause them to degrade.

Plant carotenoid concentration shows a dramatic increase in response to allelo-
pathic stress. This increase appears to be due to increased activity of the xantho-
phyll cycle which is involved in removing of free radicals and is one of the 
mechanisms involved in oxidative stress resistance (Ahrabi et al. 2011; Dehghani 
et al. 2014; Kohli et al. 2001). In addition to the change in the content of photo-
synthetic pigments, the plants’ anthocyanin pigment content increases in response 
to the allelopathic stress. Carotenoids and anthocyanins are the antioxidant com-
pounds with low molecular weight that exhibit increased concentrations under 
other stress conditions such as water stress, heavy metals toxicity, and so on 
(Ahrabi et al. 2011).

17.5.8  Effect on Photosynthesis

The direct impacts of allelochemicals on plant photosynthesis mainly are inhibi-
tion and/or damage to the photosynthesis apparatus and accelerating the decom-
position of photosynthetic pigments. Moreover, alteration in chloroplasts’ 
structure, decreasing in photosynthetic pigment contents, decline in energy and 
electron transfer due to reducing ATP synthesis activity, and decreasing in sto-
matal conductance and transpiration rate can indirectly influence plant photo-
synthesis (Meazza et al. 2002; Wu et al. 2004; Yu et al. 2003, 2006). Main effect 
of allelochemicals on photosynthesis is influencing the function of PSII 
(Wasternack and Hause 2013; Wink and Latzbruning 1995; Sunmonu and Van 
Staden 2014; Achigan-Dako, et al. 2014). Studies show that the D1 subunit of 
this photosystem is highly susceptible to the allelochemicals, which are directly 
or indirectly destructed by increasing the concentration of free radicals in the 
photosynthetic space. Given that this protein is the first electron emitter to the 
electron transport chain, its disruption can disrupt the entire system (Gonzalez 
et al. 1997; Shao et al. 2009; Uddin et al. 2012). Failure in transferring of elec-
trons in such conditions leads to the production of ROS. Studies show that alle-
lopathic compounds can also affect photosynthesis by interfering with the signal 
transduction pathways of hormones such as ABA (Inderjit and Einhellig 1993; 
Maighany 2003; Weir et al. 2004). Despite the decrease in photosynthesis, the 
concentration of soluble sugars increases under allelopathic stress, which can be 
due to the growth decline. Generally, growth is affected under stress conditions 
before photosynthesis, and its reduction leads to decline in demand for carbon 
skeletons, resulting in artificial increase in the concentration of soluble sugars 
(Dehghani et al. 2014).
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17.5.9  Effect on Respiration

Allelochemicals affect plant growth by influencing various stages of respiration, 
such as electron transfer in the mitochondria, oxidative phosphorylation, CO2 gen-
eration, and ATP synthesis enzyme activity. Some allelochemicals can reduce oxy-
gen intake, prevent NADH oxidation, inhibit or reduce ATP synthesis in the 
mitochondria, disturb plants’ oxidative phosphorylation, and ultimately inhibit res-
piration (Abrahim et al. 2003a, b; Cruz Ortega et al. 1988; Hejl and Koster 2004a, 
b; Inderjit and Einhellig 1993; Pruvis 2000). The extracts from pollen grains of 
grasses cause the mitochondrial electron transfer chain to be inhibited. Studies show 
that the specific inhibition site was most likely located upstream of cytochrome C 
(Cruz Ortega et al. 1988). Alpha-pinene is a compound in pine resin which inhibits 
the coupling between oxidative phosphorylation and electron transfer, so that elec-
tron transfer does not lead to ATP production and finally causes disruption in the 
respiration metabolism (Hejl and Koster 2004a, b; Rasmussen et al. 1992). Although 
the main effect of allelopathic compounds on respiratory metabolism is inhibition 
of the electron transfer chain, in some studies, the role of these compounds in inhi-
bition of the ADP transport complex as well as the reduction of the mitochondrial 
membrane potential has been demonstrated (Abrahim et al. 2003a, b).

17.5.10  Effect on Water Relations and Mineral Nutrition

Almost all of the allelochemicals have an effect on the absorption of nutrients through 
the roots. They can induce water stress and reduce availability of water and nutrients 
in the agronomic plants. Studies reveal that, under allelopathic stress condition, 
increasing in ABA level changes the plant’s water relations and, consequently, ion 
uptake due to decreasing in stomatal opening (Inderjit and Einhellig 1993; Maighany 
2003). Allelopathic compounds affect the H+-ATPase pump in the plasma membrane 
which is involved in the uptake and transport of vital ions from the membrane, result-
ing disturbance in the ions uptake such as K+, Na+, and the other ions (Kohli et al. 
2001; Maighany 2003). Some allelochemicals such as ferulic acid cause interference 
with the uptake of phosphates, nitrates, and sulfates and stimulate the inactive outlet 
of phosphate from the plants’ root (Ahrabi et al. 2011; Bradow and Connick 1987). In 
addition, certain compounds likes ferulic acid, sorgoleone, syringic, and umbellifer-
one disrupt Ca2+, Mg2+, Fe2+, and Cl− uptake (Yu and Matsui 1997; Yu et al. 2003). Studies 
have shown that allelochemicals affect ion uptake often by altering membrane per-
meability and the proton pump activity. In addition, according to involvement of 
active process in ion uptake, decline in the energy levels of cells under stress condi-
tions isn’t ineffective in this subject (Hejl and Koster 2004a, b; Lv et  al. 2002). 
Allelochemicals, such as cinnamic acid and p-hydroxybenzoic, strongly inhibit the 
activities of root dehydrogenase, root- combined ATPase, and nitrate reductase, thus 
inhibiting the root uptake of K+, NO3, and H2PO4 and nitrate assimilation (Yuan et al. 
1998; Lv et al. 2002). Decline in the molybdenum absorption during allelopathic 
stress has also been reported, which can be one of the factors leading to reduction in 
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nitrogen fixation in legume plants (Barros et al. 2014). It is often argued that the 
allelopathic compounds do not lead to accumulation of specific ions in the plants, but 
nitrogen accumulation in the amaranth plant is controversial (Inderjit and Einhellig 
1993; Khalaj et al. 2013; Weir et al. 2004).

17.5.11  Effect on Biosynthesis and Metabolism of Proteins 
and Nucleic Acids

Alkaloids are the important compounds involved in the allelopathy phenomenon. 
Due to similarity of some alkaloids to the DNA structure, they can enter the DNA 
structure and increase the optimum temperature of DNA strand denaturation. Some 
of them can inhibit DNA polymerase I and prevent the transcription and translation 
of DNA, whereas other alkaloids can inhibit protein biosynthesis (Wink and 
Latzbruning 1995; Sunmonu and Van Staden 2014; Achigan-Dako et  al. 2014). 
Most allelochemicals can alter the absorption and transfer of amino acids in relation 
to the proteins synthesis and challenge the cells’ growth (Abenavoli et al. 2003). All 
phenolic acids have the potential to affect the integrity of DNA and RNA. This sug-
gests that the allelopathic effects are the result of all interactions of the allelopathic 
compounds with their main goals in the cells such as DNA, RNA, proteins, and 
other processes associated with them (Xiao-Jun et al. 2013; Li et al. 2010; Mahmood 
et al. 2013). Investigating the gene expression profile in the plants exposed to alle-
lopathic stress has shown that allelochemicals can be involved in one of the follow-
ing pathways (Golisz et al. 2008): (1) response of plants to the environment, (2) 
intracellular placement, (3) in the activity of proteins as inhibitors or cofactors, (4) 
cell protection from toxins, (5) defensive responses, and (6) metabolism.

Generally, plants display similar responses to nonbiological and biological 
stresses, including allelopathic stress. This suggests that allelopathic compounds 
have similar cross-talking in signal transduction pathways with biotic and abiotic 
stresses, for example, in the production of free radicals (Baerson et al. 2005; Bais 
et al. 2003; Golisz et al. 2008, 2011). Recent finding shows that the allelochemical 
affects the expression of psbA, mcyB, prx, and faab (Shao et al. 2009). Cyanamide 
is an allelochemical that alters the expression of the expansin genes, LeEXPA9 and 
LeEXPA18, which are responsible for cell wall remodeling after cytokinesis (Soltys 
et al. 2012). Recent studies revealed that the role of allelochemicals in the expres-
sion of miRNAs, which have a role in plant hormone signal transduction, p53 sig-
naling pathways, nucleotide excision repair, and the peroxisome proliferator-activated 
receptor (Fang et al. 2015).

In the allelopathic interactions, receiver plants’ responses to allelochemicals pro-
duced by donor plants are important viewpoint. The largely receiver plants will 
response (or react) to the donor plants by induction of the changes in gene expres-
sions. The upregulated expression of phenylalanine ammonia lyase (PAL), 
cinnamate- 4-hydroxylase (C4H), ferulic acid 5-hydroxylase (F5H), and caffeic acid 
O-methyltransferases (COMT) was observed in the plants that exposed to the alle-
lopathic stress (He et al. 2012a, b).
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17.5.12  Effects on Lipids’ Prevalence

Lipids are the most abundant component of the cell membranes and play a key role 
in the resistance of plant cells to environmental stresses. Allelopathic stress and its 
related compounds not only decrease the membrane integrity by lipid peroxidation 
but also reduce the amount of unsaturated fatty acids by decreasing the activity of 
desaturase enzymes. Decline in unsaturated fatty acids of the cells reduces fluidity 
of the membrane and increases its sensitivity to the low and high temperatures (Dos 
Santos et al. 2008; Rasmussen et al. 1992). Studies have shown that the prevalence 
of fatty acids such as palmitic, stearic, and oleic acid is increased and prevalence of 
linoleic and linolenic acid is reduced. It seems that the lipid saturation is targeted in 
the allelopathic action, which is very destructive to the activity of chloroplasts (Dos 
Santos et al. 2008; Maighany 2003).

17.5.13  Morphological and Anatomical Effects

Studies show that allelochemicals prevent seed germination of different species 
and lead to decline in seedlings’ viability (Haddadchi and Massoodi Khorasani 
2006; Maighany 2003; Dayan et al. 2009). Some of the allelopathic compounds, 
such as colchicine, cause irregularities in the process of cell division and also 
change the rate of division (Inderjit and Einhellig 1993). Some of them cause 
damage to cell walls through interruptions in the function of biosynthesis 
enzymes and interfering in the pathway of the hormonal signals that are involved 
in the biogenesis of the cell wall (Haddadchi and Gerivani 2009; Inderjit and 
Einhellig 1993). The loss of organelles organization, the increase in the number 
of vacuoles, and the appearance of fatty grains, which are the result of a decline 
in metabolism, are the other anatomical effects of allelochemicals at the cellular 
level; that final results are observable on the whole plant (Inderjit and Einhellig 
1993). The plants treated with allelochemicals show varied morphological differ-
ences with the control plants from early stages of seedling growth. Most impor-
tant differences include the induction of short roots with brown apexes, reduction 
in the growth rate of seedlings, reduction of root and shoot length, and seedlings’ 
etiolation. Some of these effects are very intense that the plant is unable to sur-
vive and dying during the seedling stage. Some of the effects are also moderate 
and don’t cause a quick death of the plant, but it reduces the power of survival 
and competition potential of the plant as well as its power for reproduction 
(Dayan et al. 2009; Shao-Lin et al. 2004).

17.5.14  Effect on Microorganisms and Ecological Relationships

Researchers believe this fact that there are significant relationships between crop 
growth and soil microbe’s during allelopathic stress (Bais et al. 2006; Barazani 
and Friedman 1999; Mishra et  al. 2013). Indirect effects of allelopathy can be 
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more important than its direct effects through the mediation of the soil microor-
ganisms (Zeng 2014). After the release of allelochemicals from the donor plant, a 
cascade of chemical and photochemical reactions occurs that are determinant in 
fate of the allelopathic phenomenon. Microorganisms are the main factors of this 
cascade and placed downstream of allelopathic effects, and also they are the one 
of the main goals of the allelopathy (Huang et al. 2013; Li et al. 2002; Stinson 
et al. 2006; Abenavoli et al. 2003; Dayan et al. 2009). Allelopathic phenomenon 
can have a negative effect on the growth and development of agronomic plants as 
well as elements’ availability in soil, indirectly by impact on soil microflora 
(Macias et al. 2003). The association of many soil microorganisms with crops can 
have positive consequences. Among them, the symbiotic relationships and increas-
ing tolerance of environmental stresses by microorganisms can be pointed out. 
Allelopathic compounds, by changing the balance of microorganisms in the soil 
and by reducing the beneficial microflora for plants, can give opportunity to 
pathogenic microorganisms to act in the rhizosphere (Mishra et  al. 2012). 
Allelochemical such as some lactones and sulfide compounds have antibacterial 
effects (Chadwick et al. 2013; Khan et al. 2011).

The impact on microorganisms is only a small part of the effects of an allelo-
pathic interaction on ecosystems and ecological relationships. Allelopathic com-
pounds by affecting on physiological and morphological traits of plants alter their 
responses to environment as well as their ecological behaviors (Fernandez et  al. 
2013). Changing in the pattern and frequency of flora is another effect of the alle-
lopathy phenomenon on ecological level. The change in the ecological patterns of 
plants is one of the results of allelopathic interaction. Studies showed that the eco-
logical effects of this phenomenon can lead to balances in the population of plants 
and microorganisms, the control of pests in natural and agronomic environments, 
and diversity in the flora, fauna, and the microflora in different regions. In fact, alle-
lopathy is a phenomenon that has been created during evolution and was chosen 
through natural selection. On the other hand, allelopathy is one of the evolutionary 
tools of natural selection, which is more sensible about plants and affects many 
aspects of their evolution (Field et al. 2006; Inderjit and Einhellig 1993; Inderjit 
et al. 2011; Kohli et al. 2001; Weir et al. 2004; Abenavoli et al. 2003; Chou 1999; 
Anaya 1999; Zheng et al. 2015).

17.6  Plants’ Responses and Resistance to Allelopathic Stress

Crops have mechanisms in order to resistance against allelopathic compounds that 
generally include toxins’ tolerance or neutralizing them. In contrast to soil’s phyto-
toxins that produce by deep roots, toxins are mostly absorbed and trapped in the 
surface layers of soil by colloids. By this manner, the plants will also protect them-
selves from their allelopathic compounds (auto-toxicity) (Chou 1999; Anaya 1999). 
Tolerance of plants to allelochemicals can be associated with several mechanisms as 
follows (Kohli et al. 2001; Maighany 2003):
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 1. Toxins secretion to the surface of the roots or leaves.
 2. Compartmentation of toxins in the apoplasts, vacuoles, and cell walls to elimi-

nate toxic compounds from active cell metabolism centers. If these sites are satu-
rated, the concentration of allelochemicals in the cytoplasm increases rapidly.

 3. Establishment of allelochemicals in the trichomes for secretion.
 4. Establishment of allelochemicals in the cytoplasm.
 5. The allelochemicals detoxification, which can be initiated or induced depending 

on the plant species.

All defense mechanisms of plants against allelopathic toxins have three steps. The 
first step is a metabolic attack on toxins, which occurs through molecular hydroxyl-
ation and dealkylation and increases the polarity of the molecules. The second step is 
detoxification of allelochemicals through conjugation with sugars, amino acids, and 
malonic acid, which increase the solubility of these compounds in the water. Finally, 
the third step is when the compounds are transferred to storage compartment such as 
vacuoles and cell walls or secreted to the plant surface. In fact, the overall goal of 
these three steps is to increase the solubility of toxic compounds in water for facilita-
tion of compound secretion from the cells, which can also include excretion into the 
vacuoles (Chou 1999; Anaya 1999; Kohli et al. 2001; Maighany 2003).

Some crops are able to enter external allelochemicals into the secondary metabo-
lites’ pathways. This ability depends on the plant species and the type of allelo-
pathic compounds in the environment. For example, the cucumber increases the 
lignin biosynthesis in the presence of ferulic acid in its growth medium. However, 
this plant is sensitive to other phenylpropanoids (Dos Santos et al. 2008). Ultimately, 
all of these pathways lead to the production of compounds that accumulate in the 
apoplast or vacuoles (Maighany 2003).

17.7  Soil and Fate of Allelochemicals

The amount of allelochemicals added to the soil depends on the plants’ biomass and 
density as well as concentration of released compounds and the solubility in the soil 
(Maighany 2003; Vidal and Bauman 1997). Allelopathic compounds are removed 
from the soil by leaching, chemical processes, microorganisms decomposing, and 
absorption by plants. The degree of allelochemicals’ influence severity depends on 
the distance from origin and time of transfer of these compounds in the soil. So that, 
reducing the distance and transfer time increases the effectiveness level, although 
some allelopathic compounds also become toxic for longer time (Inderjit and 
Einhellig 1993; Vidal and Bauman 1997). After entering of the allelochemicals into 
the soil, different fates are awaiting them as follows (Inderjit and Einhellig 1993; 
Kohli et al. 2001; Gimsing et al. 2009; Maqbool et al. 2013; Narwal 2000):

 1. Maintenance on the soil due to allelochemicals’ absorption by the colloids. 
Therefore, the content of colloids in soil is determinant factor for allelochemi-
cals’ accumulation in soil.
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 2. The transformation that occurs mainly by microorganisms intermediation. 
Initially, allelochemicals are active and toxic in soil, but that concentration and 
subsequently toxicity gradually reduce because of degradation by microorgan-
isms. An example of the microorganism’s intermediation effect on the allelo-
pathic action is the absence of the allelopathic effect of benzoxazinones in the 
sterile soil.

 3. Some allelochemicals are also reaching to receiver plant or away from it during 
the transfer phenomenon.

In addition to the interaction between allelochemicals and soil microorganisms, 
other soil characteristics also are effective on the allelopathic phenomenon (Soltys 
et al. 2013; Maighany 2003). In many studies, it has been observed that the allelo-
chemicals’ affectivity and toxicity are depending on soil texture. Allelopathic com-
pounds in sandy soils show a more inhibitory effect than clay soils which is due to 
lower absorption rate by soil particles and higher amount in the soil solution (Kohli 
et al. 2001; Maighany 2003; Singh et al. 2001). pH, organic carbon, and cations’ con-
centration also are affective on the absorption rate of allelochemicals in the soil. 
Accordingly, the absorption of these compounds increases with increasing the amount 
of organic matter and multivalent cations. In addition, higher soil organic matter gener-
ally leads to increase in soil microbial activity (Inderjit and Einhellig 1993; Kohli et al. 
2001; Vidal and Bauman 1997) that can be an effect of allelopathic phenomenon.

17.8  Allelopathy and Environmental Stresses

17.8.1  Drought Stress

Studies have shown that during drought stress, allelopathic potential  of plants 
increases. This phenomenon not only is a result of an increase in the amount of 
released toxins but also depends on the increase in their concentration in the soil due 
to lower water content and diminished activity of microorganisms. Under drought 
stress, the growth and development of crops is reduced, and the size of the plants 
becomes smaller, which is a resistance mechanism in order to reduce water wastage 
(Inderjit and Einhellig 1993). Studies have shown that there is an inverse relationship 
between plant size and allelochemicals’ concentration. On the other hand, reducing 
the size of the plant, which is affected by the decline of plant water content, increases 
the concentration of allelochemicals. Generally, the drought stresses accelerate the 
allelopathic phenomenon from either donor or receiver plant viewpoint (Kohli et al. 
2001). Allelopathy in desert ecosystems appears to be more severe due to its dryness, 
limited sources of nutrients, and the increased toxicity of compounds due to the low 
activity of microorganisms. Studies showed that in most cases, allelopathic effects are 
higher in dehydrated conditions and decrease with increasing water. The reason of this 
finding is that drought conditions increase secondary metabolites’ production and 
accumulation in plants, while no significant increase in the concentration of these 
compounds was observed during flooding condition (Einhellig 1995, 1996).

17 Agronomic Crops Response and Tolerance to Allelopathic Stress



334

There is a bilateral relationship between allelopathy phenomena and drought 
stress so that allelopathy can induce drought stress condition in the soil (Maighany 
2003). Low soil humidity is due to the dehydration of the soil or the increasing of 
water absorbent compounds in the soil. The allelochemicals decrease the water 
potential of soil by increasing the osmotic pressure and suction power of the soil, 
leading to induction of pseudo-drought or physiological drought (Cheema and 
Khaliq 2000; Cheema et al. 2004; Maighany 2003).

17.8.2  Deficiency and Toxicity of Nutrients

The effect of nutritional deficiencies and toxicity on the phenomenon of allelopathy 
has been studied. Donor plants that are subjected to nutrient deficiencies, especially 
nitrogen, show a significant increase in allelochemicals concentration (Inderjit and 
Einhellig 1993). It is predictable that the lower availability of nutritional elements 
will enhance the allelopathic action. Donor plants increase the amount of toxic com-
pounds as well as their releasing rate to the environment in order to control condi-
tions in their favor such as elimination of competitors (Geng et al. 2009; Maighany 
2003). Adding fertilizer to agricultural fields is a new way to reduce the allelopathic 
interactions, although the use of the fertilizer has its own special complexity and is 
associated with the considerations (Sodaeizadeh and Hosseini 2012). Studies have 
shown that after removing of nutrient deficiency stress, donor plants resume their 
growth and development faster than other plants. This is because donor plants can 
use allelochemicals as a nutrient chelator. Secondary compounds such as phenolic 
compounds are able to bind metal elements such as iron (Kohli et al. 2001).

Interestingly, under the influence of nutrient toxicity, target plants are less 
affected by allelochemicals. It seems that growth slows down in these conditions, 
and consequently decreasing demand for sinks reduces the uptake of allelochemi-
cals from the environment (Einhellig 1995, 1996). Some allelochemicals also inter-
fere with the nutrient uptake, causing pseudo-deficiency or pseudo-toxicity. These 
compounds mainly including phenolic compounds, such as chlorogenic acid, which 
in treated plants with this compound, nitrogen accumulation and its toxicity symp-
toms are observed. Nitrogen toxicity is one of the stresses rarely seen in certain 
environments; however, it is inducible by allelopathic action (Einhellig 1995; 
Inderjit and Einhellig 1993; Khalaj et al. 2013).

17.8.3  Temperature Stress

There is a direct relationship between the increase in temperature and the production 
of allelochemicals in plants. Temperature stress increases the amount of production 
and even releasing of these compounds (Maighany 2003). Studies have shown that 
under full sunlight in midday, growing seedlings are affected by a lower concentra-
tion of allelochemicals. Therefore, a donor plant is more successful to produce and 
release allelopathic compounds into the environment during this period. Significant 
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temperature increase in the midday and its effect on the temporary water deficit are 
benefits for donor plants, and these plants with the least energy go through the alle-
lopathic phenomenon (Inderjit and Einhellig 1993; Kohli et al. 2001).

Increasing temperature is one aspect of temperature stress. However, reducing the 
degree of environment temperature also is another aspect of temperature stress. 
Reducing the temperature induces the synthesis of allelopathic compounds. For 
example, in response to temperature drop, the tobacco plant increases the chlorogenic 
acid content in its tissues up to five times. It seems that in addition to electron utiliza-
tion in biosynthesis of these compounds which can reduce production of ROS, in such 
situations, allelochemicals’ production play a protective role (Einhellig 1995, 1996).

17.8.4  Light Stress

Investigations have shown that in the adverse light conditions, receiver crops are 
more affected by allelopathic phenomenon (Einhellig 1995, 1996). The effect of 
light on the allelopathy is considered to both in terms of quantity and quality of light 
spectrum (Maighany 2003). Increasing of light flow increases the concentration and 
toxicity of allelopathic compounds (Bhowmik and Doll 1982). Studies have shown 
that the quality of light in the environment is much more effective than its quantity 
so that the treatment of seeds of donor plants such as sorghum with gamma rays 
considerably increases the allelopathic outflow from the mature plant roots 
(Einhellig 1996). The cause of this phenomenon is still unexplained. Ultraviolet 
rays also increase the concentration and toxicity of phenolic compounds in plants. 
It has been observed that in the presence of high quantity of ultraviolet in the light 
spectrum, more toxic phenolic compounds are produced in plants, which are likely 
to produce very low under normal conditions (Inderjit and Einhellig 1993; Maighany 
2003). It seems that the length of the light period is also very effective, but the avail-
able reports do not give a logical and general conclusion (Kohli et  al. 2001). 
Therefore, the conclusion in this regard requires more extensive studies.

Other abiotic stresses such as the presence of ozone molecules in the plants 
atmosphere, heavy metal toxicity, environmental pH changes, and flooding stress 
have similar effects (Einhellig 1996; Inderjit and Einhellig 1993; Kohli et al. 2001; 
Maighany 2003; Narwal 2000).

17.8.5  Biotic Stresses

The causes of disease in crops, such as microorganisms and insects, intensify the 
phenomenon of allelopathy. These factors make the agronomic plants more suscep-
tible to allelochemicals, and allelochemicals also make the target plants more sus-
ceptible to contamination with pathogens (Einhellig 1996). Studies have shown that 
the presence of allelochemical residues in the environment can increase the infectiv-
ity of pathogens such as Fusarium, fungus responsible for root rot, and increase the 
duration of its activity (Odeyemi et  al. 2013; Peng et  al. 2004; Wu et  al. 2015). 
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Surprisingly, the pathogens’ attack increases the concentration of allelopathic com-
pounds in the donor plants, because allelochemicals in such situation act in favor of 
the donor plants and reduce the damage caused by the pathogens. There are roughly 
similar reports about insects and herbivores (Einhellig 1995, 1996; Fang et al. 2013).

Important point in this context is the impact of allelopathic phenomenon on the 
symbiotic relationship between crops and microorganisms. Symbiotic microorgan-
isms often don’t show pathogenicity to host plants. The presence of donor plants in 
the environment of symbionts, especially the mycorrhizal symbiont, makes fungus 
to change their strategy and compete for nutrient sources with the host plants and 
subsequently act as parasitic microorganisms for the host plants. Eventually, the 
elimination of fungus by the host plant from the environment and the lack of this 
symbiosis make the host plant more susceptible (Einhellig 1995, 1996). The reason 
for the occurrence of such a phenomenon is still not well clear. On the other hand, 
there are reports that the presence of phenolic allelochemicals in the rhizosphere of 
leguminous plants causes a disturbance on their symbiosis with rhizobium. Studies 
shown that the primary response of rhizobium to plant-produced phenolic com-
pounds is impaired (Bais et al. 2006; Cheng 2012; Zhou et al. 2010). In addition to 
adverse effects of the microorganisms present in the rhizosphere of receiver plants, 
some of these organisms have a positive effect on plants under these conditions. 
Some microorganisms can use allelopathic compounds as carbon sources (Mishra 
et  al. 2012; Mishra and Nautiyal 2012); therefore, these compounds are decom-
posed and eliminated from the allelopathic cycle.

17.9  Allelopathy and Herbicides

Although the presence of herbicides in ecosystems in the old perspective is an abi-
otic stress, herbicides are not a natural ecological factor and are often artificially 
added into the ecosystems by human activities. Therefore, studying their impacts on 
the allelopathic phenomenon in a separated study field would be more appropriate.

Although allelopathic compounds and herbicides have different origins, the 
probability of the presence of both is very high particularly in the arable systems 
(Guillon 2003). Many studies have shown that allelochemicals and herbicides have 
synergic behavior, despite of their different physicochemical characteristics. 
Increasing allelopathic effects during co-application of allelochemicals and herbi-
cides has been observed in numerous bioassays, such as synergic activity of atrazine- 
ferulic acid and fluraline-salicylic acid (Einhellige 1996; Guillon 2003; Nawaz et al. 
2014; Ihsan et al. 2015). Therefore, if a donor plant (especially a weed) has a resis-
tance to herbicides, the use of these toxins is not only beneficial for crops’ produc-
tion, but also exacerbates its allelopathic potential.

In addition to collaboration of herbicides with allelopathic compounds, studies 
have shown that herbicides also stimulate the production and releasing of allelo-
chemicals from donor plants so that the treatment of donor plants with herbicides 
such as 2,4-D and glyphosate increases the concentration of allelochemicals in these 
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plants (Einhellig 1995, 1996). There are various reports of increased synthesis of 
secondary metabolites during treatment of plants with low concentrations of herbi-
cides (Inderjit and Einhellig 1993; Kohli et al. 2001; Maighany 2003).

17.10  Allelopathy Genetics

Allelochemicals are produced by biological systems so that their biosynthesis is 
controlled by genes. Therefore, the study of allelopathy genetics in order to intro-
duce effective varieties for allelopathic interactions is completely unavoidable 
(Duke et al. 2001; Haddadchi and Gerivani 2009; Maighany 2003). Unlike to the 
numerous challenges in assessing the allelochemicals inheritance, few studies in the 
field of genetics are available. Some of these challenges are as follows (Inderjit and 
Einhellig 1993; Kohli et al. 2001; Maighany 2003):

 1. Difficulty in isolation, purification, and determination of allelochemicals due to 
the lack of advanced chemical techniques.

 2. The difficulty of studying allelopathic inheritance due to the interference of sev-
eral genes in their biosynthesis and the variation in the type of compounds as 
well as biochemical pathways for biosynthesis of them.

 3. The absence of a linear relationship between the production of allelochemicals 
in a particular tissue and the tissue’s allelopathic potential.

 4. Control of the production and release of allelopathic compounds by regulating 
genes that are controlled by ecological factors. Consequently, different allelo-
pathic behavior appears in different environments.

 5. Information about molecular biology being limited for chemical structure and 
biosynthetic pathway of known compounds.

 6. The difficulty of discovering genes associated with biosynthesis of allelochemi-
cals due to the high specificity of these genes.

 7. Complexity of identification of enzymes involved in the biosynthesis of allelo-
pathic compounds due to the low abundance of these enzymes in the enzymatic 
set of plants.

 8. The difficulty of sequencing and even the production of antibodies for the men-
tioned enzymes due to failure to isolate and purify sufficient amounts of enzymes.

Already, various methods have been tested by scientists to track the genetics of 
allelopathic interaction such as different mutagenic methods, the use of donor cells’ 
mRNAs, immunoblotting techniques, and so on (Duke et al. 2001; Haddadchi and 
Gerivani 2009; Inderjit and Einhellig 1993; Kohli et  al. 2001; Maighany 2003; 
Abenavoli et al. 2010; Chou 1999; Anaya 1999). Among all of these methods, muta-
genesis by transposons in the donor plants tissues and, thereafter, the differential 
screening of mutated and wild-type cells have been effective and provide valuable 
results. The basis of this method is based on the existence of two cell groups that are 
the same in all traits and only differ in the allelopathic behavior (Duke et al. 2001).
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The production and subsequently isolation of cells that are only mutant in the genes 
involved in the allelopathy phenomenon is a very difficult, laborious, time- 
consuming, and costly process, which are the major disadvantages of this method 
(Maighany 2003; Abenavoli et al. 2010; Chou 1999; Anaya 1999).

Today, an improvement in the practical issues of plant biotechnology has con-
tributed to a better understanding of the allelopathy heredity. Studies have shown 
that the allelopathic phenomenon, like all other quantitative traits, is controlled by 
QTL (quantitative trait locus) genetic factors. Hence, genetic markers such as 
RAPDs, RFLPs, AFLPs, SCARs, and SSRs can provide beneficial information for 
the allelopathic traits (Kohli et al. 2001). This subject has revealed the exploring 
mystery of allelopathic genetics in the not too distant future. The launch of a mas-
sive plant genomic decoding program over the past few decades will undoubtedly 
be a great help in realizing this.

17.11  Allelopathy and Biotechnology

The yield of crop plants is very important in food production on the earth planet. 
Crops are always exposed to pathogens and parasites that ultimately reduce yield 
and lead to problems for farmers to keep them. Yearly, large quantities of poisons 
are used as herbicides, fungicides, insecticides, and so on in agricultural lands. 
Apart from the economic costs of production, these compounds are toxic substances 
that impose irreparable effects on the environment and are also hazardous to humans 
and livestock, the main consumers of crops. During the last two decades, allelo-
pathic compounds have been regarded as biological compounds with anti-pathogen 
and anti-parasite effects. Studies showed that most plants have potential for allelo-
chemicals’ production, but crop plants mainly lost these characteristics during plant 
breeding for selection of desirable traits (Anaya 1999; Bhadoria 2011; Inderjit and 
Einhellig 1993; Kohli et al. 2001; Abenavoli et al. 2010; Chou 1999; Soltys et al. 
2013). Nowadays, scientists tried to isolate the allelochemicals’ genes from wild 
species or even microorganisms and inserted them into the crops by using tradi-
tional methods of plant breeding and recombinant DNA technology and genetic 
engineering. As a result, keeping of crops was more easily, reducing keeping costs 
and preventing the entering of hazardous and toxic substances to the environment 
(Anaya 1999; Fragasso et al. 2013; Gealy and Yan 2012; Kohli et al. 2001; Mahmoud 
and Croteau 2002; Kremer 2006; Maighany 2003; Soltys et al. 2013). Production of 
a resistant transgenic plant and its reproduction can lead to the expansion of the 
fields of protected crops against various pests.

In recent years, many efforts have been made to produce allelopathic effective 
wheat cultivars by using QTL traits (Bertholdsson 2004, 2010; Fragasso et al. 2013; 
Gealy and Yan 2012; Kong et al. 2011). Although no plant has been produced by 
these traits, it seems that in the near future, this important issue will come true.

Despite all the advantages of producing allelopathic cultivars, the actual use of 
these plants is accompanied by the following considerations (Cheema et al. 2013; 
Duke et al. 2001; Farooq et al. 2013; John et al. 2010): (1) Natural donor plants 
often have an auto-toxicity potential, but they also have mechanisms to avoid it. 
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This is because the transgenic crops have necessary genetics potential for being 
donor, but they lack the ability to avoid auto-toxicity and can damage themselves 
more than any other one. (2) It is very important to assess the potential risks to 
humans, especially for plants that have feed usages. Therefore, transgenic allelo-
pathic crops must be evaluated for harm to human health and the environment 
before transformed. Human health issues include the toxicity of allelochemicals and 
their metabolism intermediates, the allergenic effects of transgenes into the crops, 
and their unpredictable metabolic effects, which can reduce the nutritional value of 
agronomic plants. Another most important risk in this regard is the horizontal trans-
fer of wild-type species genes into crops that can make the recipient species more 
competitive than other endemic plants. Always must keep cautious in ecological 
relationship manipulation, because human beings wittingly or unwittingly are com-
ponents of these relations and affected from. This apply to the use of natural tools 
such as allelopathic phenomenon is also true.

17.12  Application of Allelopathy in Agronomic Systems

Allelopathy is a natural ecological behavior among organisms particularly plants. 
It has been known and used anciently in agriculture in many civilizations such as 
Egyptian and Chinese (Zeng 2008, 2014). Allelochemicals can stimulate or inhibit 
plant germination, growth, and even development; thus it can facilitate some agro-
nomic aims. They are suitable substitutes for synthetic herbicides because allelo-
chemicals’ efficacy and specificity are limited in the environment (Bhadoria 2011; 
Macias et al. 2003; Zeng 2008). Therefore, allelopathy can be used as tool in agri-
cultural production and reduction of the chemical pesticides usage and conse-
quently environmental pollution and as effective method for the sustainable 
development of agricultural production and ecological systems (Han et al. 2013; 
Jabran et al. 2015; Zeng et al. 2008; Macias et al. 2003). Nowadays, application of 
allelopathic crops in agriculture systems is regarded as components of crop rota-
tions, for intercropping, as cover crops, or as green manure (Cheema et al. 2004; 
Dhima et  al. 2006; Iqbal et  al. 2007; Reeves et  al. 2005; Singh et  al. 2003; 
Albuquerque et al. 2010; Wezel et al. 2014; Wortman et al. 2013). The application 
of allelopathy for the improvement of crop productivity and environmental protec-
tion by environmentally friendly control of weeds, insect pests, and crop diseases, 
conservation of nitrogen in crop lands, and synthesis of novel agrochemicals based 
on allelochemicals has gained much attention from scientists (Haider et al. 2015; 
Farooq et  al. 2011; Khanh et  al. 2005; Xuan et  al. 2005; Yildirim and Guvenc 
2005). Allelochemicals are important components of plant defense mechanisms 
against weeds and herbivores. Accordingly, allelochemicals’ modification for the 
production of environmentally friendly pesticides and plant growth regulators 
allows the effective management of agricultural production and makes less envi-
ronmental problems in the soil due to the high degradability of allelochemicals 
(Bhadoria 2011; Ihsan et al. 2015; Uddin et al. 2014). Nitrogen leaching is a severe 
ecological problem in the agricultural systems. Mineralization of soil organic 
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nitrogen, especially during the nitrification of fertilizer nitrogen, is one of the main 
reasons for the enrichment of nitrogen in the soil. In recent years, studies have 
proven that nitrification-inhibiting substances produced by plants are the first 
choice for soil nitrification management. For example, allelochemicals, such as 
ferulic acid, p-hydroxybenzoic acid, and hydroxamic acid, can act on soil microbes 
to inhibit soil nitrification (Abenavoli et  al. 2010; Dietz et  al. 2013; Ma 2005). 
Breeding of allelopathic cultivars, which have great potential to minimize the pest 
damages and effectively control weeds in agronomic ecosystems, represents the 
most promising application of allelopathy (Fragasso et al. 2013; Mahmood et al. 
2013; Weston and Duke 2003). Both traditional breeding methods and transgenic 
technology can be useful in the breeding of allelopathic cultivars (Gealy and Yan 
2012). Despite all efforts, until now, a successful allelopathic crop cultivar has not 
been obtained, but it will be a good research subject for scientist in the future.

17.13  Conclusion

Although allelopathy has been known in agriculture since ancient times to now, 
scientists and farmers had less attention to allelopathy as biotic stress, and there 
isn’t enough information about it. Allelopathy is a prevalent stress factor and can 
affect different aspects of crops growth, development, and yield. Furthermore, 
allelochemicals can act as environmentally friendly herbicides, fungicides, insecti-
cides, and plant growth regulators and can be most important in the sustainable 
agriculture. With increasing reliance on organic agriculture and environmental 
health, increasing attention has been paid to allelopathy research, and the molecular 
mechanisms of allelopathy are gradually being elucidated as well. It is clear that 
allelopathy requires advanced techniques and more research for widespread appli-
cation in agricultural system worldwide.
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Abstract
Abiotic stresses such as drought, cold and high temperature, heavy metals, salin-
ity, UV and ozone exposure, mineral deficiencies, etc. induce a negative influ-
ence on the crop production and food security globally through the generation of 
reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the cells 
of the crop plants. ROS is an umbrella term which encompasses radical and non- 
radical products generated by incomplete reduction of oxygen through the enzy-
matic processes like photosynthesis, respiration, and fatty acid oxidation or by 
non-enzymatic mechanisms. Oxidative stress shows its effect on almost all com-
ponent of cell as oxidation of DNA fragment; RNA degradation; oxygenation, 
modification, and destruction of lipids and proteins; and leakage of ions that 
causes decline in the growth, development, and productivity of crop plants. Nitric 
oxide (NO)-derived molecules are referred to as RNS and associated with nitro- 
oxidative stress. NO is a small, uncharged, free radical, and lipophilic molecule 
acting as a protective and signaling molecule. Diverse sources are reported for 
NO generation in plants by enzymatic synthesis involving putative nitric oxide 
synthase (NOS)-like enzymes, xanthine dehydrogenase/oxidase nitrate reduc-
tase, nitrite-NO reductase, as well as non-enzymatic synthesis. Stress conditions 
induces ROS generation and sometime concomittant increase in NO concentra-
tion in plant cells. Both these molecules also present acooperative mechanism in 
plant cell to counteract the harmful effects of stress. Failing to properly coordi-
nate and balance these two molecules in plant cells affects growth, development, 
yield, productivity and ultimately survival of plants.
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Reactive oxygen species · NO · Oxidative stress · NOS · Antioxidant system
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Abbreviations

AOX Alternative oxidase
APX Ascorbate peroxidase
CAT Catalase
H2O2 Hydrogen peroxide
NADPH oxidase or NOX Nicotinamide adenine dinucleotide phosphate oxidase
NO Nitric oxide
NOS Nitric oxide synthase
NR Nitrate reductase
RNS Reactive nitrogen species
ROS Reactive oxygen species
SOD Superoxide dismutase

18.1  Introduction

In both natural and agriculture conditions, plants are frequently exposed to various 
types of stress due to their sessile nature. Environmental factors such as temperature 
(chilling, cold, or heat) can become stressful in just a few minutes or hours, but oth-
ers may take days to weeks (water/drought) or even months (mineral nutrients or 
heavy metals) to become stressful. Abiotic stresses such as mineral deficiency, 
drought, low and high temperature, and UV and ozone exposure all induce the gen-
eration of reactive oxygen species (ROS) and reactive nitrogen species (RNS). 
Plants started facing oxygen at least approximately 2.7 billion years, when they 
started generating from H2O, and its level has been constantly rising, which has 
contributed in the evolution of species (Dowling and Simmons 2009).

ROS is an umbrella term which encompasses radical and non-radical products 
generated by incomplete reduction of oxygen; radical components include superox-
ide radical (O2

•−), hydroxyl radical (•OH), alkoxyl radical (RO•), and peroxyl radical 
(ROO•), while non-radical components are hydrogen peroxide (H2O2), singlet oxy-
gen (1O2), and ozone (O3). ROS are generated in diverse metabolic pathways as a 
by-product or from free metals released from enzymes (Gupta et al. 2015). ROS 
initiates oxidative destructive processes as well as triggers various signaling path-
ways. Thus, maintenance of non-harmful, appropriate ROS levels might represent a 
healthy condition in plants.

Nitric oxide (NO)-derived molecules are referred to as RNS and associated with 
nitro-oxidative stress. RNS are basically a family of molecules produced via the 
enzymatic as well as non-enzymatic activity in plants as by-products of aerobic 
metabolism or in response to stress. NO is a ubiquitous intra- and intercellular mes-
senger and one of the key RNS which interact with ROS in various ways and might 
serve an antioxidant function during various stress conditions (Beligni and Lamattina 
1999) (Table 18.1).
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The harmful ROS molecules are removed from cell system through either enzy-
matic (superoxide dismutase, catalase, glutathione peroxidase (GPX), peroxire-
doxin (Prx), and the ascorbate-glutathione cycle) or non-enzymatic systems (NO, 
ascorbic acid, glutathione (GSH), carotenoids). ROS also plays a key role in signal-
ing for several cellular processes in response to many abiotic and biotic stresses 
(Mittler et al. 2011) and shows cross talk with phytohormones, Ca2+, kinases (Petrov 
and Van Breusegem 2012), and other bioactive molecules like NO.

ROS are best-suited molecules as by-product or signaling molecules’ secondary 
messenger because of their non-toxic levels which can be maintained within normal 
cell by balancing its generation and scavenging through enzymatic and non- 
enzymatic process (Mittler et  al. 2004). Diverse sources of ROS generation, the 
mobile nature of forms like H2O2, and local as well as distant signaling have been 
implicated in physiological processes like programmed cell death (PCD), disease 
resistance, and various types of stress tolerance which are inevitable to be faced by 
sessile nature organisms like plants.

18.2  ROS Generation in Plants

Many pathways for ROS generation exist in plants involving enzyme-catalyzed pro-
cesses like photosynthesis, respiration, and fatty acid oxidation or directly through 
amine oxidase, glycolate oxidase, oxalate oxidase, xanthine oxidase, peroxidases, 
or non-enzymatic means like excited chlorophyll and metals (Mittler 2002). Apart 
from these, organelles like chloroplast, peroxisome, mitochondria, and plasma 
membrane also contribute in ROS generation (Fig. 18.1).

18.2.1  Chloroplasts

Chloroplasts are organelles that transform kinetic energy of the sun into chemicho- 
potential energy in ATP and NADPH. It is carried out by a specialized subpart of 
chloroplast known as thylakoids which is also one of the key sources for the ROS 
generation (Tripathy and Oelmuller 2012). Chloroplasts are contributing a great 
amount of ROS in the cell in the form of O2

•− and singlet oxygen (1O2) (Apel and 
Hirt 2004). In the presence of light, oxygen-evolving complex (OEC) of photosys-
tem II causes the photolysis of water that releases oxygen. But the main site of ROS 

Table 18.1 Different types of ROS and RNS generated in plants

Reactive oxygen species Reactive nitrogen species
Non-radical Free radicals Non-radical Free radicals
Hydrogen peroxide 
(H2O2) hypochlorous 
acid (HOCl), ozone 
(O3), singlet oxygen 
(1O2)

Superoxide (O2
•−), 

hydroxyl (•OH), 
hydroperoxyl (HO2), 
peroxyl (RO2

•)

Nitrous acid (HNO2), 
nitrosyl cation (NO+), 
nitroxyl anion (NO−), 
peroxynitrite (ONOO−)

Nitric oxide 
(NO•), nitrogen 
dioxide (NO2

•), 
nitrate radical 
(NO3

•)
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generation is the photosystem I (PSI) because under excessively reduced ferredoxin 
and low NADP availability, the auto-oxidation of this iron-sulfur protein occurs 
with the formation of O2

• (Asada 2006). As ROS generation is a normal phenome-
non in the chloroplast, the organelle has evolved counteractive strong antioxidant 
system to eliminate it in normal conditions (Møller 2001). Sometimes, ROS genera-
tion in the form of O2

• occurs, and then reduced ferredoxin reacts with O2
• and forms 

hydrogen peroxide (H2O2), which is relatively a mobile form of ROS (Mehler 1951).
Under high light, PSII is involved in ROS production via energy transfer and 

electron transport. Singlet oxygen is produced by the energy transfer form triplet 
chlorophyll to molecular oxygen formed by the intersystem crossing from singlet 
chlorophyll in the PSII antennae complex or the recombination of the charge- 
separated radical pair in the PSII reaction center. Triplet carbonyls are also formed 
by lipid peroxidation that transfers energy to molecular oxygen forming singlet 
oxygen (Pospisil 2016). Additionally, it has been also found that biosynthetic and 
catabolic intermediates of chlorophyll are photosensitizers that also generate singlet 
oxygen (Pruzinska et al. 2005).

Fig. 18.1 Sources of reactive oxygen species (ROS) in a plant cell
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18.2.2  Mitochondria

In plants, mitochondria are also one of the main ROS production sites. It occurs due 
to electron leakage from respiratory electron transport chain (ETC) components to 
O2 producing superoxide (O2

−). The free radical (O2
−) generation sites reside mainly 

in complex I and complex III of ETC. Both complexes release O2
− to the matrix of 

mitochondria, while complex III may also release some O2
− to the inter-membrane 

space (IMS). A matrix-localized manganese superoxide dismutase (Mn-SOD) 
enzyme further converts O2

− to H2O2 (Rinalducci et al. 2008).
Alternative oxidases (AOX) are ubiquitous in the kingdom Plantae (Mcdonal and 

Vanlerbughe 2006). AOA is an interfacial membrane protein and a cyanide- 
insensitive metalloprotein located toward the matrix side of the inner mitochondrial 
membrane (IMM) and coupling the oxidation of ubiquinol to the four-electron 
reduction of O2 to water (Vanlerburghe 2013). AOX gets activated when the reduc-
tion level of ubiquinone increases. It reduces ATP generation and the energy released 
is dissipated as heat. Thus, AOX provides a heat-dissipating mechanism useful for 
certain plant species showing thermogenesis and to prevent the overproduction of 
superoxide radicals (Gupta et al. 2018). AOX acts to prevent the over- reduction of 
ETC components that leads to single electron leak and also indirectly controls the 
synthesis of signaling molecules like H2O2, O2

−, and NO. ROS generation in mito-
chondria is usually overcome by anti-oxidative system but when it goes beyond 
control leads to stress, necrosis, and programmed cell death.

18.2.3  Plasma Membrane

Plant membrane-bound nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidase (NADPH oxidase or NOX) is a transmembrane protein, also known as 
respiratory burst oxidase homologue (RBOH). The molecular structure of plant 
NOX shows two parts: (a) membrane-bound respiratory burst oxidase homologue 
(M.W. 105 to 112 kDa) and (b) its cytosolic regulator Rop (Rho-like protein), which 
is a Rac homologue of plants. The enzyme protein also possesses regulatory com-
ponents involving phosphorylation and Ca2+ (Ogasawara et al. 2008).

NOX transfer electrons from intracellular NADPH across the plasma membrane 
before they are coupled to molecular oxygen in the apoplast to produce O2

∙−, and its 
subsequent dis-mutation product is H2O2. The apoplastic ROS synthesis by plants 
after pathogen recognition is also a membrane-bound NAPDH oxidase-induced 
phenomenon (Skelly and Gary 2013).
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18.2.4  Peroxisomes

Peroxisomes are asubcellular organellae bound with single membrane involved in 
diverse functions, namely, the β-oxidation, the glyoxylate cycle, the photorespira-
tion, the ureide metabolism, and the metabolism of ROS and RNS. The peroxisome 
also contains two marker enzymes catalase and H2O2-generating flavin oxidase 
involved in oxidative metabolism. The peroxisomal membrane is a potential source 
of ROS in the form of O2

•- through the existence of a small electron transport chain 
using NADH as electron donor. It is composed of a flavoprotein NADH:ferricyanide 
reductase of about 32  kDa and a cytochrome b (Schrader and Fahimi 2006). 
Xanthine oxidase is an FAD-, molybdenum-, iron-, and sulfur-containing hydroxy-
lase enzyme present in peroxisome that uses substrate xanthine and converts into 
uric acid with the concomitant formation of H2O2 and O2

•− (Harrison 2002).
Thus, it is evident that the ROS production in plant cells is limited to apoplast, 

chloroplasts, mitochondria, and peroxisomes. The ROS level is maintained at a level 
which is not harmful and can be coped with by plants. But when it exceeds under 
certain adverse conditions which we call stress, ROS can damage all biological 
molecules and structures. Therefore, the ability of cells to resist oxidative damage 
induced by ROS is determined by the strong antioxidant molecules and system 
operative in plant system.

18.3  Physiological Effects of Oxidative Stress

Oxidative stress affects almost all components of cell, and effects become visible as 
oxidation of DNA fragment; RNA degradation; oxidation, modification, and 
destruction of lipids and proteins; and leakage of ions (Farmer and Mueller 2013) 
that ultimately may lead to necrosis and cell death. Lipid oxidation also known as 
peroxidation is induced by stress that causes damage of cell membranes and prod-
ucts of it (malondialdehyde (MDA), 4-hydroxyalkenals, etc.) that induces a muta-
genic and cytotoxic effect on cell (Dubovskaya et  al. 2007). High level of 
peroxidation causes breakdown of intigrity of cell membrane, lysis of organelles, 
oxidation and dysfunctions of proteins, DNA and RNA (Halliwell and Gutteridge 
2015).

Proteins are modified due to ROS interaction and lose their native structure and 
become prone for the action of protease (Mehta et al. 1992) or inactivation or frag-
mentation RuBisCO (Soengas et al. 2018). Proteins are nitrosylated at tyrosine resi-
dues by RNS (Corpas et  al. 2008), and such nitrosylation is responsible for 
inactivation of RuBisCO (Abat and Deswal 2009). The only ROS species which 
directly causes DNA damage is OH•, and its effects visible as oxidation of nitroge-
nous bases and their modification, breaking the sugar phosphate bonds that ulti-
mately causes chromosome damage. The high levels of ROS inhibit DNA synthesis 
and cell division, which ultimately leads to cell death (Apel and Hirt 2004) 
(Fig. 18.2).
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18.4  NO Generation in Plants

NO is one of the key RNS molecules. It is a small, uncharged, free radical, lipo-
philic molecule acting as a protective and signaling molecule. It has very short 
life span due to unstable nature (less than 6 s) (Bethke et al. 2004). These fea-
tures make it able to diffuse within the cell but only a short distance of about 30 
microns and to cross plant membranes (Leshem 2001). Diverse sources are 
reported for NO generation in plants through enzymatic synthesis putative by 
nitric oxide synthase (NOS)-like enzymes, xanthine dehydrogenase/oxidase, 
nitrate reductase, and nitrite-NO reductase as well as non-enzymatic synthesis 
(Gupta et al. 2010) (Fig. 18.3).

18.4.1  Nitric Oxide Synthase-like Enzymes

Nitric oxide synthase (NOS; EC 1.14.13.39) was first identified and described in 
1989 in an animal system, and its three isoforms were cloned and purified between 
1991 and 1996 (Stuehr 1996; Stuehr et al. 1991). The first X-ray crystallographic 
structure of NOS domains was published in 1998 and 1999  in humans (Li et al. 
1999; Raman et al. 1998). The Nobel Prize was awarded jointly to R. Furchgott, 
L. Iganarro, and F. Murad in 1998 for the work that led to the discovery of nitric 
oxide as a signaling molecule produced by mammalian cells.

Oxida�ve 
Stress 

Oxida�on of 
DNA fragment

Degradation 
of RNA
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of lipids and 

proteins

Leakage of 
ions 

Fig. 18.2 Effects of reactive oxygen species (ROS) in a plant cell
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NOS enzyme is a dimer in the active form which contains relatively tightly 
bound cofactors like tetrahydrobiopterin (BH4), FAD, FMN, and iron protoporphy-
rin IX (heme). NOS catalyzes a reaction of L-arginine, NADPH, oxygen to the free 
radical nitric oxide (NO•), citrulline, and NADP+ through L-hydroxyarginine as an 
intermediate. NADPH and oxygen act as co-substrate for the enzyme (Knowles and 
Moncada 1994; Marletta 1992; Nathan and Xie 1994). Electrons are donated by 
NADPH to the reductase domain of the NOS enzyme and move via FAD, FMN 
redox carrier of the heme iron, and tetrahydrobiopterin at the active site to catalyze 
the reaction of oxygen with L-arginine generating NO and citrulline as products.

NOS enzymes responsible for the production of NO in animal systems have an 
array of physiological roles. It provoked plant biologists to hunt for homologue of 
NOS enzyme in plants. Plant research initially used anti-NOS antibodies raised 
against animal NOS. Similarly using mouse anti-NOS from the brain, western blot 
analysis showed the presence of positive immune reactivity to this protein in yeast 
and wheat germ (Kuo et al. 1995). The rabbit anti-NOS from the brain used in pea 
embryonic axis revealed the presence of single band of 105.4 kDa, while in wheat 
germ, two bands 57.5 and 89.7 kDa were observed (Sen and Cheema 1995). Based 
on western blot analysis using antibodies raised against mouse macrophage NOS 
and rabbit brain NOS, a protein band about 166  KDa was detected in soluble 
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Fig. 18.3 Sources of nitric oxide (NO) within a plant cell
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fraction of root tips and young leaves of maize seedling which was capable of con-
verting [U-14C] arginine to L- [U-14C] citrulline.

Later on, immunofluorescence study in the maize showed that NOS protein is 
present in the cytosol of cells in the division zone and is translocated in the nucleus 
in the cells of elongation zone of the maize root tips, indicating the existence of a 
NOS enzyme in maize tissue with the localization of this protein depending on the 
phase of cell growth (Ribberio et al. 1999).

After sometime plant NOS research shifted to the use of NOS inhibitors, and 
radiolabelled substrate which was well established in animal system to confirm the 
presence of NOS activity in higher plants (Ninnemann and Maier 1996) revealed the 
presence of putative NOS activity in roots and nodules of Lupinus albus (Cuteo 
et al. 1996). In soybean cell extract, NOS activity was found to be calcium depen-
dent and present primarily in cytosolic fraction which was further confirmed by 
using NOS inhibitor L-NNA, PBITU (Delledonne et al. 1998). NOS-like activity 
has also been reported in TMV-resistant tobacco, infected with TMV that was inhib-
ited by NOS inhibitor (Durner et al. 1998).

The subcellular presence of NOS in peroxisome and chloroplast from leaves of 
pea using activity assay in purified intact peroxisomes, a Ca2+-dependent NOS 
activity has been reported. It showed inhibition by mammalian NOS inhibitor, and 
revealed the presence of protein band of 130 kDa when immune blot analysis of 
peroxisome carried out with a polyclonal antibody raised against the C-terminal 
region of murine iNOS. Electron microscopy immune gold labeling also confirmed 
the subcellular localization of NOS in matrix of peroxisome as well as chloroplast 
(Barraso et al. 1999). The presence of NO in peroxisome was further substantiated 
by fluorometric analysis and EPR using Fe-MGD (Corpas et al. 2001).

Studies in Arabidopsis by use of NOS inhibitors suggest the presence of induc-
ible form of NOS (Garces et  al. 2001). It was found in Arabidopsis that a gene 
AtNOS1 encodes a protein involved in NO synthesis and its presence was confirmed 
by activity assay, inhibitor, mutants, and fluorescent dye (Guo et al. 2003). Later on, 
it was demonstrated that pathogen-induced, NO-synthesizing enzyme is a variant 
form of glycine decarboxylase (GDC) from Arabidopsis. It is a Ca2+- and CaM- 
dependent enzyme and appeared to be ~120 kDa (Chandok et al. 2003), but later on 
concerns about the reliability of the published data led to their retraction (Klessig 
et al. 2004). Presence of NOS-like protein in various plant systems has been con-
firmed, but it has also been shown that there is no NOS-like gene homologue in 
Arabidopsis (Butt et al. 2003).

Recently a gene encoding one functional NOS that resembles human NOSes has 
recently been discovered in the green alga Ostreococcus tauri (Mamiellophyceae, 
Chlorophyta) (Foresi et al. 2010). Further, in silico study has revealed that NOS-like 
sequences exist in two additional members of this class, Bathycoccus prasinos and 
Ostreococcus lucimarinus (Kumar et al. 2015). However, neither a NOS protein nor 
a gene has been found in embryophytes till date.

In addition, in some cases NO production was not inhibited by NOS inhibitors 
suggesting that some alternative forms of NOS or alternative enzymes (like NR) 
might be operative in plants.
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18.4.2  Nitrate Reductase

Nitrate reductase (NR) is one of the oldest known enzymes for NO generation 
(Dean and Harper 1988). NR helps in assimilation of most of the nitrate absorbed 
by their roots into organic nitrogen compound through the reduction of nitrate to 
nitrite in the cytosol (Oakes 1994) with the help of the enzyme NR as

 
NO NADPH e NO P H O3 2 22− − − +

+ + → + ( ) +NAD  

The nitrite is further converted into NH3 that gets incorporated into amino acids 
or used in NO synthesis. NR-mediated NO generation is also reported in plant spe-
cies like soybean, winged bean (Dean and Harper 1986), Arabidopsis thaliana 
(Seligman et  al. 2008), moss Physcomitrella patens (Rigoberto Medina-Andrés 
et  al. 2015), and green algae like Scenedesmus obliquus (Mallick et  al. 2000), 
Chlamydomonas reinhardtii (Sakihama et  al. 2002), and Chlorella sorokiniana 
(Tischner et al. 2004). Thus, NR-generated NO also plays a key role in protecting 
plants from abiotic stresses through activating antioxidant enzymes and increasing 
antioxidant content in plant cells.

18.4.3  Nitrite:NO Reductase (NI-NOR)

NI-NOR enzyme has been found responsible for the generation of NO.  It was 
reported from purified plasma membrane of tobacco (Nicotiana tobaccum L. cv. 
samsun) roots. The root-specific succinate-dependent PM-bound nitrate reductase 
reduces apoplastic nitrite to NO with reduced cytochrome c as an electron donor. 
NI-NOR has a molecular mass which was 310 kDa in comparison to 200 kDa PM-NR 
and insensitive to cyanide and anti-NR IgG which makes it different from 
PM-NR. The enzyme is most suitable for root system because it works in low avail-
ability to oxygen, whereas NOS requires ample oxygen for NO production (Stohr 
et al. 2001).

18.4.4  P Protein-Induced NO Synthesis

It was reported that pathogen-inducible nitric oxide synthase (iNOS) in plants is a 
variant of the P protein of the GDC which is over 1300 kDa in size and present in 
the mitrochondrial matrix of plant and animal cells and in microbes. P protein con-
tains a 100–120 kDa pyridoxal phosphate, an L protein, and a 50–60 KDa lipoamide 
dehydrogenase; T protein a 40–45 kDa tetrahydrofolate-containing enzyme; and H 
protein an ~15 kDa lipoamide. The GDC complex, along with serine hydroxymethyl 
transferase, catalyzes the conversion of two glycine molecule into serine, CO2 and 
NH3 (Chandok et al. 2003); later on concerns about the reliability of the published 
data led to their retraction (Klessig et al. 2004).
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18.4.5  Xanthine Oxidoreductase

The enzyme is peroxisome based, and the main products of enzymes are uric acid 
and superoxide under aerobic conditions. It also catalyzes the nitrite reduction to 
NO under anaerobic conditions, using NADH or xanthine as reducing substrate 
(Gupta et al. 2010).

18.4.6  Polyamine-Mediated NO Production

Though exact locations are not known, high levels of the polyamines spermine and 
spermidine induce NO release which is involved in root development and embryo-
genesis, cadmium toxicity, and drought stress (Gupta et al. 2010).

18.4.6.1  Non-enzymatic Sources
NO is also generated from non-enzymatic mechanisms. It was reported in human by 
chemical reduction of inorganic nitrite that yield NO under acidic or reducing con-
ditions. At a low or acidic pH, the nitrite ion (NO2) will be converted to nitrous acid 
and then into nitrogen oxides including NO. Reducing agents like ascorbic acid help 
in nonenzymatic NO generation. Here, ascorbate reacts with nitrous acid and forms 
NO and dehydroascorbate (Weitzberg and Lundburg 1998). The barley aleurone 
cells can generate a sufficient acidic apoplastic environment to support nitrite to NO 
conversion using ascorbate as a reductant. Under acidic pH and selected compart-
ment of the cells, the light-mediated conversion of nitrogen dioxide to NO can be 
catalyzed by carotenoides (Cooney et  al. 1994). NO2 was also reported to be 
absorbed by rush, lawn grass and gingko leaves and released as NO. The potential 
reductant was fractionated and identified as a polysaccharide (Nishimura et  al. 
1986).

18.5  Abiotic Factors and Nitro-Oxidative Stress in Crop 
Plants

Abiotic stress generated on plants is a key threat that affects crop growth and pro-
duction (Fancy et al. 2017). Water/drought, temperature, salt, heavy metal, mineral 
deficiency, and ozone are considered as main factors under abiotic stresses. The 
stress conditions lead to the excessive ROS production in the cell (Neill et al. 2002). 
Parallel to this, plant cell also shows increase in NO concentration in plants. Thus, 
it can be seen as a co-action mechanism existing in plant cell to counteract the harm-
ful process. Thus, it can be seen as a cooperative mechanism existing in plant cell to 
counteract the harmful nitro-oxidative process. Failing to properly coordinate and 
balance the nitro-oxidative process affects plant growth, development and survival 
(Fig. 18.4).
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18.5.1  Oxidative Stress and Water Stress

Day by day the requirement for water is increasing, while clean water availability is 
decreasing, leading to drought stress in crop plants. Drought is undoubtedly one of 
the most important stresses having a great impact on growth and productivity of the 
crops. Drought stress affects seed germination and seedling establishment in early 
stage and significant yield losses in later stages of life in major field crops limiting 
crop productivity (Misra et al. 2011). NO evolution in stressed reed plants imparts 
osmotic tolerance through its protection against oxidative damage.

Change in osmotic stress and induction of soil drought stress are two major out-
comes of water stress and later on are mostly encountered in agricultural fields 
(Misra et al. 2011). Drought stress is physiologically countered by plants by closure 
of stomata, water retention, and induction of antioxidant system in plants. Drought 
stress induces generation of ROS and develops oxidative stress in cells. It has been 
found that under abiotic and biotic stress conditions, extracellular ROS are mainly 
produced by plasma membrane-localized NADPH oxidases, whereas intracellular 
ROS are produced in multiple organelles like chloroplast, peroxisome, 

Fig. 18.4 Generalized 
pathway in plants against 
oxidative stress to provide 
abiotic stress tolerance

A. K. Maurya



361

mitochondria, etc. These ROS form a complex cellular signaling network. It has 
been observed that accumulation of apoplastic ROS is an early hallmark that help in 
regulating stomatal movement, ABA, CO signaling, and immunity responses. It 
suggests that ROS signaling is integrated in various pathways during abiotic and 
biotic stress in plants (Qi et al. 2018).

To cope up the physical or physiological drought condition, plants have devel-
oped counteractive mechanisms, and among them NO is playing an important role. 
It is found that NO works with phytohormone ABA during drought and provides 
drought stress tolerance but its exact role is still under investigation. ABA is synthe-
sized following turgor loss and stimulates guard cell to synthesize NO which also 
causes the upregulation of the antioxidant system especially the ascorbate- 
glutathione cycle possibly by S-nitrosylation of its enzymes (Bai et al. 2011).

Leshem and Haramaty (1996) reported that wilting increased NO emission from 
pea plants. Possibly NO does not act alone but interacts with other signaling mole-
cules such as H2O2 and ABA to effect stomatal closure, thereby reducing transpira-
tion and conserving water. Water stress increased NOS-like activity in wheat 
seedling, and ABA accumulation was inhibited by NOS inhibitors (Zhao et al. 2001) 
and showed cross talk between ABA, ROS, and NO levels. Nitric oxide induces 
stomatal closure and enhances the adaptive plant responses against drought stress in 
wheat and various other species by application of NO donors (Garcia-Mata and 
Lamattina 2001). Cotton has evolved various physiological responses against 
drought stress apart from ROS scavenging, such as stomata closing, root develop-
ment, cellular adaptations, photosynthesis, and abscisic acid (ABA) and jasmonic 
acid (JA) production (Ullah et al. 2017).

During drought, the mitochondrial ETC also acts as source of superoxide and 
H2O2. The ROS-inducible alternative oxidase (AOX) limits ROS production in 
mitochondria, which suggests that deficiency in the AOX pathway enhances drought 
sensitivity (Wang and Vanlerberghe 2013).

18.5.2  Oxidative Stress and Temperature

Temperature is a crucial factor that influences crop productivity. Biennial and peren-
nial crops are exposed to face seasonal changes because of their life cycle. Extreme 
temperature (cold and high temperature) responses are seen as an increment in reac-
tive oxygen species (ROS) that affects the photosynthetic activity and consequently 
the yield. The ROS accumulation in chloroplasts decreases the chlorophyll content 
and provokes photoinhibition that leads to a low fixation of CO2 and loss of dry 
weight. Plants increase the antioxidant defenses and decrease the chlorophyll con-
tent as a low-temperature response in comparison with heat conditions, but dry 
weight losses are higher when plants are grown under heat than under cold condi-
tions, probably because of the inactivation of RuBisCO and/or the associated 
enzymes as observed in Brassica oleracea (Soengas et al. 2018). NO production 
measured in the shoot apoplast of Brassica juncea seedlings showed non-enzymatic 
nitrite reduction to NO in cold stress where thiol pool enrichment, and 48 putative 
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S-nitrosylated proteins, provided the preview of RNS-mediated cold stress signaling 
in the apoplast (Sehrawat et al. 2013) Low temperature-induced S-nitrosylation is 
responsible for significant (approximately 40%) inactivation of RuBisCO (Abat and 
Deswal 2009) (Table 18.2).

High temperature (HT) and light also had activating effect on the different indi-
cators of reactive nitrogen species (RNS) metabolism in pea plants, and results sug-
gest that low and high temperature, continuous light, and high light intensity are 
abiotic stress conditions that can induce nitrosative stress. Protein tyrosine nitration 
is a potential marker of nitrosative stress (Carpos et al. 2008). High temperature 
provokes inhibition of sunflower carbonic anhydrase (β-CA) activity (Chaki et al. 
2013) that affects the growth and production of cucumbers (Yu et al. 2018).

High bush blueberry, PSII photochemical activity was restored and antioxidant 
system elevated to provide protection under high-temperature stress (Wei et  al. 
2010). HT stress resulted in a marked decrease in membrane thermostability and 
cell viability and an increase in content of lipid peroxide and activities of antioxi-
dant enzymes, viz., superoxide dismutase, catalase, ascorbate peroxidase, guaiacol 
peroxidase, and glutathione reductase of two cultivars of wheat (Bavita et al. 2012). 
High temperature (HT) inhibits NO accumulation by guard cell protoplasts (GCPs); 
suppresses activation of the BA auxin-responsive effects such as expansion of pro-
toplast 20- to 30-fold, cell wall regeneration and dedifferentiation, and cell cycle 
reentering and division. It also reduces the mitotic indices of primary root meri-
stems and inhibits lateral root elongation in tobacco plant (Beard et al. 2012).

Involvement of NO in stresses such as heat and chilling has also been showed. 
Short-term stress caused an increase in NO production in alfalfa (Leshem 2001). 
Application of NO which mediates chilling resistance has been shown in tomato, 
wheat, and corn (Lamattina et al. 2001) reflecting the antioxidant properties of NO 
via suppression of the high levels of ROS that accumulates following exposure to 
chilling or heat stress (Neill et al. 2002b). An appropriate dosage of exogenous NO 
could also enhance the activity of antioxidant system and alleviated the cell injury 
in loquat leaves under low-temperature stress (Wu et al. 2009). NO causes polarized 

Table 18.2 Impact of heat stress on certain crop plants

S. No Plant species Effect References
1. Soybean (Glycine 

max)
Damaged PSII at 42–43 °C Li et al. (2009)

2. Rice (Oryza sativa) Decreased photosynthesis at 33 °C for 
5 days

Hurkman et al. 
(2009)

3. Maize (Zea mays) Decreased pollen viability and pollen tube 
elongation at 32.5 °C

Herrero and 
Johnson (1980)

4. Common bean 
(Phaseolus vulgaris)

Degeneration of tapetal cells at 33/29 °C Suzuki et al. 
(2001)

6. Wheat (Triticum 
aestivum)

Abnormal ovary development resulting in 
reduced pollen growth and seed set at 30 °C

Saini et al. (1983)

7. Mustard (Brassica 
napus)

Abnormal embryo sac development at 
32/26 °C

Polowich and 
Sahney (1988)
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pollen tube growth in Camellia sinensis by alterations to gene expression under 
low-temperature stress (Pan et  al. 2016). Contrary to that NO production from 
NOS-like enzyme reaction decreased the cold-responsive pollen germination, inhib-
ited tube growth, and reduced Pro accumulation, partly via cGMP signaling path-
way in C. sinensis (Wang et al. 2012). It has been observed that CO acts as a novel 
regulator to improve the tolerance of recalcitrant seeds to low temperatures through 
NO-mediated glutathione homeostasis.

Cold-induced NO is involved in the inhibition of pollen tube growth along with 
disruption of the cytoplasmic Ca(2+) gradient, increase in ROS content, acidification 
of cytoplasmic pH, and abnormalities in organelle ultrastructure and cell wall com-
ponent distribution in the pollen tube tip in the C. sinensis. In a tropical country like 
India, thermal stress is one of the major factors which significantly affect the pro-
ductivity of crop plants.

18.5.3  Oxidative Stress and Salinity

Approximately 30 crop species provide 90% of our food, most of which display 
negative effects as severe yield losses under moderate salinity worldwide. Na+, Cl−, 
Mg2+, SO4

2−, or HCO3
− contributes to salt salinity and toxicity. The inhibition of 

biochemical or physiological processes causes imbalance in metabolism and cell 
signaling and enhances the production of ROS interfering with cell redox and energy 
state. Salinity effects are seen as ion imbalance resulting in toxicity, osmotic stress, 
and generation, and over-accumulation of ROS results in oxidative damage of mem-
brane lipids, proteins, and nucleic acids (Gill and Tuteja 2010).

Maize (Zea mays) is an economically important cereal crop affected by high 
salinity that induces differential oxidative stress and antioxidant responses in maize 
seedling organs (AbdElgawad et al. 2016). Salt stress causes reduction in sunflower 
(Helianthus annuus L.) seedling growth (Arora and Bhatla 2017), injurious to ger-
minating P. sativum L. (var. Shubhra IM-9101), and reduction in growth and bio-
mass yield, leaf relative water content (LRWC), and chlorophyll content in chickpea 
plants (Ahmad et al. 2016). The effects of high salinity are seen as increase in elec-
trolyte leakage, carotenoid content, the levels of osmolytes (proline, glycine beta-
ine, soluble proteins, and soluble sugars), hydrogen peroxide (H2O2), and 
malondialdehyde (MDA). High salinity also induces antioxidant enzymes such as 
superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glu-
tathione reductase in chickpea (Cicer arietinum L.) plants (Ahmed et al. 2016) and 
drastically affect redox and NO homeostasis in tomato roots (Manai et al. 2014).

The ROS decreases but increased NO was seen under salinity stress and ethylene 
promoted germination of Arabidopsis seed (Lin et al. 2013) via EIN3 protein. EIN3 
(ethylene insensitive 3) is an ethylene signaling transduction transcription factor. 
High salt enhanced the expression of EIN3 transcripts and was largely attenuated in 
the NO biogenesis mutant nia1nia2 plants than in wild ones (Li et al. 2016).

Salt stress induced an increase in endogenous carbon monoxide (CO) production 
and the CO synthetic enzyme heme oxygenase (HO) in wheat seedling roots which 
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showed improved salt tolerance by nitric oxide-mediated maintenance of ion homeo-
stasis and upregulation of antioxidant defense (Xie et al. 2008). NO affected the salt-
induced changes in free amino acid levels and cadaverine levels that may be involved 
in regulating the response to salt stress in maize (Simon-Sarkadi et al. 2014).

Exogenous application of NO in the form of its donor had the capability to miti-
gate the adverse effects of high salinity on chickpea plants by improving LRWC, 
photosynthetic pigment biosynthesis, osmolyte accumulation, and anti-oxidative 
defense system (Ahmed et al. 2016) and in J. curcas during seedling establishment 
by inducing an effective antioxidant system and limiting toxic ion and reactive oxy-
gen species (ROS) accumulation (Gadelha et al. 2017) by increasing the accumula-
tion of proline content, total protein content, and total soluble sugar in line with 
increasing antioxidant enzyme activity under salinity conditions in raspberry (Rubus 
idaeus var. Danehdrosht) (Ghadakchiasl et al. 2017).

The cocktail of SA and NO donor (SNP) shows positive response against salinity 
stress in Pisum sativum L. (Yadu et al. 2017). The atmospheric application of trace 
amounts of nitric oxide enhances tolerance to salt stress and improves nutritional 
quality in spinach (Spinacia oleracea L.) (Du et al. 2015).

The interaction network among nitrate reductase (NIA/NR) and NOA1- 
dependent NO production and HY1 expression showed that upon salinity stress, the 
majority of NO production was attributed to NIA/NR/NOA1 confirmed by use of 
mutants which exhibited progressive salt hypersensitivity and was rescued by NO 
donors suggesting compensatory and synergistic modes, linking NIA/NR/NOA1- 
dependent NO production and HY1 expression in the modulation of plant salt toler-
ance in Arabidopsis (Xie et al. 2013).

Changes in S-nitrosylation of pea mitochondrial proteins (Camejo et al. 2013) 
and protein carbonylation and nitration are involved in acclimation to salinity stress 
in the roots and leaves of sour orange plants (Citrus aurantium L.) (Tanou et al. 
2012). It involves caspase-like enzymatic activity, and the ascorbate-glutathione 
cycle participates in salt stress tolerance of maize conferred by exogenously applied 
nitric oxide (Keyster et al. 2012). NO and salt stress act as potent regulators of GST 
gene and enzyme expression through both ABA-dependent and ABA-independent 
pathways in soybean (Glycine max L.) plants (Dinler et al. 2014).

Salinity increases NO production selectively in mesophyll cells of sorghum 
leaves, where photosynthetic C4 phosphoenolpyruvate carboxylase (C4 PEPCase) is 
located, which in turn is regulated by a phosphoenolpyruvate carboxylase-kinase 
(PEPCase-k), whose levels are greatly enhanced by salinity (Monreal et al. 2013).

The relationship between salinity and oxidative stress (ROS) in two cereal crops, 
barley (Hordeum vulgare) and wheat (Triticum aestivum), showed the tissue- specific 
and ROS type association between flux responses of K+ and Ca2+ to oxidative stress, 
and salinity stress tolerance was found (Wang et al. 2018).
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18.5.4  Oxidative Stress and Heavy Metals

Heavy metal (HM) presence in the soil causes toxicity. It affects the crop plant 
growth, development, and ultimately decline seen in productivity. Heavy metal 
stresses also tend to alter the hormonal balance of the roots which in turn affects the 
root structure. The effects of different HM on physiology of crop plants are dis-
cussed below.

18.5.4.1  Cadmium (cd)
NO is reported to be involved in the plant response to cadmium (Cd) stress (Gill 
et al. 2013) and counteract HM-induced ROS either by direct scavenging it or by 
stimulating antioxidant defense mechanism. The imbalance between ROS, NO, and 
antioxidant system of cell becomes visible as nitrosative and oxidative stress or a 
combination of both, i.e., nitro-oxidative stress. NO counteracts cadmium-induced 
cytotoxic processes mediated by ROS in Brassica juncea through cross talk between 
ROS, NO, and antioxidant responses (Verma et  al. 2013). During HM stress the 
organelles such as mitochondria, chloroplasts, peroxisomes, cytoplasm, endoplas-
mic reticulum, and apoplast of plant cells can biosynthesize NO parallel to the ROS 
synthesis (Sahay and Gupta 2017). The role of NO is tested by application of NO 
donor (SNP) that successfully ameliorates adverse impact of silver nanoparticles 
(AgNps) on pea seedlings by regulating the Ag uptake, antioxidant system, oxida-
tive stress, and anatomical structures of root and shoot (Tripathi et al. 2017).

Cadmium (Cd) is one of the very toxic metals among HMs. It inhibits the growth 
of the primary root by inhibiting root meristem growth involving NO-mediated 
repression of auxin accumulation and signaling in Arabidopsis. Cd exposure also 
causes decrease in auxin levels. It is associated with reduced PIN1/3/7 protein accu-
mulation, and additionally Cd stabilized AXR3/IAA17 protein to repress auxin sig-
naling. It is confirmed by use of either NO-specific scavenger or NO synthase 
inhibitor (Yuan and Huang 2016). Higher concentration of Cd (100 μM) markedly 
reduced biomass, NO production, and chlorophyll level concentration (Chl a, Chl b, 
and total Chl) but stimulated ROS and Cd accumulation in plants.

The NO donor (SNP, 50 μM) substantially attenuated growth inhibition, reduced 
hydrogen peroxide (H2O2) and malonyldialdehyde (MDA) levels along with stimu-
lated ROS-scavenging enzymes/agents, and mitigated the H(+)-ATPase inhibition in 
proton pumps in Trifolium repens L. plants. S-nitrosylation is involved in the ame-
liorating effect of SNP against Cd toxicity in leaves of Boehmeria nivea (L.) Gaud. 
This involvement exhibited a concentration-dependent property (Wang et al. 2016). 
SNP considerably upregulated the level of jasmonic acid (JA) and proline in plant 
tissues but downregulated the level of ethylene (ET) in both shoots and roots and the 
level of salicylic acid (SA) in roots only, which might be related to the elevated NO 
synthesis. Exogenous NO could promote the scavenging of ROS, keep the mineral 
nutrition in balance, and alleviate the damage of Cd stress to the leaf photosynthetic 
apparatus, making the tomato seedlings preserve their photosynthetic efficiency 
(Zhang et al. 2010).

18 Oxidative Stress in Crop Plants



366

NO modulates protein changes in the plasma membrane. A quantitative pro-
teomics approach showed 66 differentially expressed protein, among which phos-
pholipase D (PLD) was altered substantially after the treatment of Cd or Cd and NO 
suggesting that NO signaling is associated with the accumulation of antioxidant 
enzymes, glutathione and PA, which increases cadmium tolerance in rice via the 
antioxidant defense system (Yang et al. 2016).

Alleviation of Cd toxicity by NaCl treatment contributed to reduction of NO 
accumulation in plants where root number was reduced in plants exposed to Cd and 
increased by the addition of NaCl and reduced by the addition of SNP (Zhang et al. 
2014). SNP exerted an advantageous effect on alleviating the inhibitory effect of Cd 
on rice seed germination and seedling growth, which might interact with NO in rice 
(Oryza sativa L.) (He et al. 2014).

Cd exposure caused a significant decrease in total phenolic, GSH, and nitric 
oxide (NO) levels at the highest concentration tested when compared with control 
in maize plants (Akinyemi et al. 2017). GSH regulates tolerance to cadmium (Cd) 
stress confirmed by inhibition of GSH biosynthesis by buthionine sulfoximine 
(BSO) which aggravated Cd toxicity by increasing accumulation of ROS and reduc-
ing contents of NO and S-nitrosothiol (SNO) in tomato roots. GSH modulated the 
cellular redox balance through maintaining increased GSH:GSSG and AsA:DHA 
ratios and also increased phytochelatin contents. Thus, GSH increases Cd stress 
tolerance not only by promoting the chelation and sequestration of Cd but also by 
stimulating NO, SNO, and the antioxidant system through a redox-dependent mech-
anism (Hasan et al. 2016).

NO promotes Cd2+-induced PCD by promoting MPK6-mediated caspase-3-like 
activation in Arabidopsis (Ye et al. 2013) and in roots and signaling response of yel-
low lupine plants. These changes were accompanied by the NADPH oxidase- 
dependent superoxide anion (O2

·-) production (Arasimovicz et al. 2012). Gibberellic 
acid (GA) involved in alleviation of Cd toxicity which is mediated through the 
reduction of the Cd-dependent NO accumulation and expression of Cd2+ uptake- 
related gene IRT1  in Arabidopsis (Zhu et  al. 2012). On the other hand, Ca may 
alleviate Cd toxicity via endogenous NO with variation in the levels of non-protein 
thiol, protein thiol, and matrix polysaccharides (Zhang et al. 2012). Thus, it seems 
that nitrogen (N) management is a promising agronomic strategy to minimize cad-
mium (Cd) contamination in crops.

18.5.4.2  Zinc (Zn)
Heavy metal such as Zn can induce oxidative stress by generation of ROS and reac-
tive nitrogen species (RNS), which can reduce growth and yield in crop plants. NO 
via SNP ameliorates zinc oxide nanoparticle-induced phytotoxicity in rice seedlings 
(Chen et  al. 2015). Nine-day-old hydroponically grown Brassica juncea (Indian 
mustard) and B. napus (oilseed rape) seedlings were treated with ZnSO4 that showed 
B. juncea is more tolerant to Zn stress than B. napus in terms of ROS, and RNS 
parameters suggested that the oxidative components are predominant compared with 
the nitrosative components in the root system of both species (Feigl et al. 2015).
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Role of GSNO is like a NO donor that help in the modulation of Zn uptake and in 
root-to-shoot translocation during the transition from deficient to sufficient levels of 
Zn supply in hydroponically cultured wheat plants (Triticum aestivum cv. Chinese 
Spring) (Buet et al. 2014). Zn-induced NO production promoted an increase in ROS 
accumulation in Solanum nigrum roots by modulating the expression and activity of 
anti-oxidative enzymes, and programmed cell death (PCD) was observed in primary 
root tips. These events are favorable for the S. nigrum seedling response to long- term 
Zn toxicity by modulating root system architecture and subsequent adaptation to Zn 
stress (Xu et al. 2010). NO-activated hydrogen sulfide is essential for cadmium stress 
response in Bermuda grass (Cynodon dactylon (L). Pers.) (Shi et al. 2014).

The use of zinc oxide nanoparticles (ZnO NPs) is rapidly increasing in agricul-
ture and consumer products. The impact has been evaluated on crops like wheat, 
maize, radish, bean, lettuce, tomato, pea, cucumber, and beet which showed that soil 
pH and plant species are key factors affecting the Zn availability and phytotoxicity 
of ZnO NPs (García-Gómez et al. 2018).

18.5.4.3  Iron (Fe)
It was observed that Arabidopsis HY1 confers cadmium tolerance by decreasing 
nitric oxide production and improving iron homeostasis (Han et al. 2014). Wild- 
type and iron uptake-inefficient tomato (Solanum lycopersicum) mutant (T3238fer) 
plants were grown in pH-buffered hydroponic culture which showed the upregula-
tion of the Fe uptake system was responsible for NO3

−-facilitated Cd accumulation 
in plants (Luo et al. 2012).

Fe deficiency triggered significant accumulation of NO in the root system pre-
dominantly in the outer cortical and epidermal cells of the elongation zone of in 
Malus xiaojinensis (Zhai et al. 2016), and various dicots increase their root branch-
ing which contributes to the enhancement of ferric-chelate reductase activity (Jin 
et al. 2011). The deficiency of P, Fe, or both increased the cluster root number and 
cluster zones and also enhanced NO accumulation in pericycle cells and rootlet 
primordia at various stages of cluster root development with the expression of 
LaSCR1 and LaSCR2. These two genes are crucial in cluster root formation in 
white lupin (Meng et al. 2012).

Fe deficiency leads to an increase in the expression of ferritin during the senes-
cence of Lotus japonicus nodules (Chungopast et  al. 2017). Glutathione plays an 
essential role in nitric oxide-mediated iron deficiency signaling and iron deficiency 
tolerance in Arabidopsis (Shanmugam et  al. 2015). The interplay of three factors, 
namely, auxin, ethylene, and NO, is crucial in the regulation of Fe deficiency responses 
by Strategy I plants (non-leguminous). Here, auxin acts upstream of ethylene and NO, 
and ethylene is probably the last activator (Romera et al. 2011) evidenced by the fact 
that NOS-generated, rather than NR-generated, NO acts downstream of auxin in regu-
lating this Fe deficiency-induced response, which enhances the plant tolerance to Fe 
deficiency (Jin et al. 2011). NO and glutathione impact the expression of iron uptake- 
and iron transport-related genes as well as the content of metals in A. thaliana plants 
grown under iron deficiency (Koen et al. 2012).
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GSH threshold requirement for NO-mediated expression of the AtFer1 ferritin 
gene is seen in response to iron in Arabidopsis (Tauraine et al. 2012). NO is involved 
in regulating the synthesis of cell wall. Root apoplast is the main reservoir for iron. 
The iron deficiency elevated NO level in tomato (Solanum lycopersicum) roots. 
However, application of S-nitrosoglutathione, a NO donor, significantly enhanced 
iron retention in root apoplast of iron-deficient plants, accompanied with a decrease 
of iron level in xylem sap of shoots. It is accompanied with increased pectin methy-
lesterase (PME) activity and decreased degree of pectin methylation in root cell 
wall of both iron-deficient and iron-sufficient plants, and it causes iron retention in 
pectin fraction and increased binding capacity of iron to the extracted cell wall (Ye 
et al. 2015).

18.5.4.4  Copper (Cu)
Increasing concentrations of Cu resulted in increase in cellular damage and nitro- 
oxidative stress, with an induction in activity of ROS and RNS metabolism enzymes 
(SOD, CAT, APX, NR) with an increased concentration of the allergenic protein 
profiling production in basil plants. The increasing concentrations of Cu and Zn led 
to a decrease in the concentration of total proteins and antioxidant capacity, and 
severe Cu stress resulted in the accumulation of specific proteins related to transpi-
ration and photosynthetic processes. In comparison to Cu and Zn, Ni stress appears 
to be less damaging and with lower allergenic potential (Georgiadou et al. 2018).

NO contributes to copper tolerance by influencing ROS metabolism in Arabidopsis 
(Peto et al. 2013). The main effect of Cu2+ was seen as lipid peroxidation, reduction 
in root and nitrate reductase (NR) activity, and Cu accumulation. NO alleviated nega-
tive effects and made the biomass of tomato seedlings recover and increased root 
activity (Wang et al. 2016). Exogenous NO mediated GSH-PC synthesis pathway in 
tomato under copper stress (Wang et al. 2014) and differently affected the sub cel-
lular distribution of Cu. An NR-mediated early NO production in the shoots of hul-
less barley plays an important role protecting from Cu toxicity through enhanced 
antioxidant enzyme activities and antioxidant pools (Hu et al. 2015).

Copper (Cu2+) at a concentration of 50 μm resulted in a large reduction in coty-
ledon area and hypocotyl and primary root lengths, accompanied by an increase in 
auxin levels. In cotyledons, a low Cu(2+) concentration promoted NO accumulation, 
negativated by NOS or NR inhibitors, and inhibition of auxin transport resulted in 
an increase in NO levels suggesting that auxin and NO negatively regulate each 
other’s level and NO intensifies the metal-induced cotyledon expansion but miti-
gates elongation processes under Cu(2+) exposure (Peto et al. 2011). Copper-induced 
cross talk among calcium, H2O2, and NO and a calcium-dependent activation of 
gene expression involving calmodulins and calcium-dependent protein kinases are 
involved in management in Ulva compressa (Gonzalez et al. 2012).

18.5.4.5  Lead (Pb)
Pb exposure significantly decreased in vivo NO level, and exogenous NO partially 
ameliorated Pb toxicity, but could not restore the plant growth on prolonged Pb 
exposure (Kaur et  al. 2015). It was found that NR was responsible for the 
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Pb-triggered NO burst and played a critical role in Pb uptake by P. crinitum root 
cells (Yu et al. 2012).

18.5.4.6  Manganese (Mn)
NO participates in tolerance to Mn stress, but negative effects of the highest SNP 
dose were also observed in Matricaria chamomilla (Kovacik et al. 2014). NO allevi-
ates aluminum (Al) toxicity when the exogenous NO treatments are given in plants 
through activating anti-oxidative capacity to eliminate reactive oxygen species (He 
et al. 2012).

18.5.5  Oxidative Stress, UV, and Ozone

The incoming solar radiation (insolation) coming from the sun to earth also consists 
of UV radiation. The UV radiation is subdivided into UV-A (315–400 nm), UV-B 
(280–315  nm), and UV-C (200–280  nm). The UV-C radiation is completely 
absorbed by atmospheric gases; UV-B radiation is partially absorbed by strato-
spheric ozone, while UV-A radiation is hardly absorbed by ozone (Frohnmeyer and 
Staiger 2003). The adverse effects of UV-B on plants involve oxidative stress, 
increased ion leakage and H2O2 content, and thylakoid membrane protein oxidation 
in bean (Phaseolus vulgaris) leaves (Shi et al., 2005). Heme oxygenase (HO) has 
antioxidant properties and is upregulated by ROS in UV-B-irradiated plants 
(Yannarelli et al. 2006). It has been observed that UV-B triggers an increase in ABA 
concentration in maize leaves (Tossi et al. 2009) followed by H2O2 generation and 
an enhancement of NO production through NOS-like enzymes or by NR in guard 
cells and involves multifaceted pathway mediated by ABA, UVR8, COP1, HY5, 
NADPH oxidase, and H2O2 (Tossi et al. 2014). It is found that tomato plants use 
non-enzymatic antioxidant pathways to cope with moderate UV-A/B irradiation 
inducing oxidative stress that could be used in protected tomato horticulture sys-
tems (Mariz-Ponte et al. 2018).

The secondary metabolites like flavonoids and anthocyanins are important actors 
in protecting plants from UV-B effects. The induction of Chs by UV-B appears to be 
meditated by NO. Two compounds known to generate NO, GSNO and SNAP, were 
found to lead to an increase in Chs transcript levels in the absence of UV-B, suggest-
ing the importance of NO in regulating gene expression in response to UV-B radia-
tion (Mackerness et  al. 2001). NO and ROS have also been implicated in 
UV-B-induced ethylene production in maize seedlings (Wang et  al. 2006). The 
effect of UV-B exposure on chili pepper (Capsicum annuum cv. ‘Coronel’) associ-
ated with response to subsequent drought stress showed that when both are applied 
combinedly, it induced a reduction both in stem length, stem dry weight, and num-
ber of floral primordial and induced mitochondrial Mn-SOD gene expression to 
cope with the oxidative stress but flavonoids were increased only with UV-B treat-
ment suggesting that the UV-B treatment alone did not induce significant tolerance 
in plants toward drought stress under the conditions used (Rodríguez-Calzada et al. 
2018).
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Rapid industrialization has led to releases of chemical precursors of ozone; 
therefore, the ozone concentration has risen and given rise of ozone pollution. It 
affects the yield of many ozone-sensitive crops such as winter wheat. It has been 
found that the accumulation of endogenous NO in wheat leaves was found to 
increase in response to ozone mitigating the adverse effect induced by ozone (Li 
et al. 2018).

18.5.6  Oxidative Stress and Mineral Deficiency

Soil acidity associated with aluminum (Al) toxicity and low phosphorus (P) avail-
ability is considered the most important problem for agricultural production. 
Oxidative stress induced by Al toxicity and P deficiency activates antioxidant sys-
tems and upregulates expression of phosphate transporters gene in ryegrass (Lolium 
perenne L.) plants (Parra-Almuna et al. 2018).

In the Krebs cycle, aconitases are the major NO targets in animals (Mott et al. 
1997) and directly affect the aconitase functionality (Gardner et al. 1998). Aconitase 
is an iron-sulfur (4Fe-4S)-containing enzyme that catalyzes the reversible isomeri-
zation of citrate to isocitrate. This inactivation of aconitase decreases cellular 
metabolism and may have protective effect against additional oxidative stress by 
acting as a reversible circuit breaker. Inactivation results in reduced electron flow 
through the mitochondrial electron transport chain and thereby decreases the gen-
eration of ROS, the natural by-product of respiration. Conversely, aconitase inacti-
vation has been proposed to increase ROS generation due to the accumulation of 
reduced metabolite, a condition termed “reductive stress” (Yan et al. 1997).

An additional role for aconitase in animals was found when the iron regulatory 
protein (IRP), a protein that controls iron homeostasis, was determined to be the 
cytosolic isoform of aconitase (Klausner et al. 1993). IRP binds to mRNAs contain-
ing a specific iron-responsive element (IRE) consensus sequences and thereby regu-
lates their translatability and/or stability. NO converts the cytosolic aconitase into an 
IRP by promoting the loss of the iron-sulfur cluster which otherwise prevents IRE 
binding. Thus, aconitase in addition to being a key NO sensor in animals also regu-
lates iron homeostasis. The tobacco aconitase-like animal counterparts were inhib-
ited by NO donors. A tobacco cytosolic aconitase gene (NtACO1) whose deduced 
amino acid sequence shared 61% identity and 76% similarity with the human IRP-1 
was cloned. Furthermore, residues involved in mRNA binding by IRP-1 were con-
served in NtACO1. These results reveal additional similarities between the NO sig-
naling mechanisms used by plant and animals (Navarre et al. 2000).

Iron deficiency impairs chlorophyll biosynthesis and chloroplast development in 
both dicotyledon and monocotyledon species; therefore, iron availability maintains 
direct correlation with plant productivity. When the strategies for iron acquisition 
fail, stress symptom becomes evident. NO is involved in iron homeostasis in plants, 
and most of the leaf iron (80%) is located in chloroplast. NO donors completely 
prevented leaf interveinal chlorosis in maize plants growing with an iron concentra-
tion as low as 10 μM Fe-EDTA in the nutrient solution. In NO-treated maize plants, 
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mesophyll chloroplast appeared completely developed. NO treatment did not 
increase iron content in plant organs when expressed in a fresh matter basis, indicat-
ing that root iron uptake was not enhanced. Under iron-deficient growth condition, 
NO treatment increases the chlorophyll content of leaves. These increases are 
accompanied by the accumulation of transcript encoding both the D1 protein of PS 
II and the RuBisCO large subunit (LSU). D1 protein was more sensitive to oxidative 
stress than the LSU (Giardi Masojidek and Godde 1997). Oxidative stress causes 
cross-linking of RuBisCO large subunit and protein degradation (Mehta et al. 1992). 
An iron-storing protein known as ferritin is found in bacteria, plants, and animal 
cells. Its level, which is regulated by NO in Arabidopsis, was found by treating 
Arabidopsis cell suspension culture with NO donors which showed the accumula-
tion of ferritin at both mRNA and protein levels. Iron is not necessary for this 
NO-mediated ferritin transcript accumulation. Ferritin regulation though the IRDS 
sequence of the Atfer 1 promotor was responsible for transcriptional repression 
under low iron supply, suggesting that NO, by acting downstream of iron in the 
induction of ferritin transcript accumulation, is therefore a key signaling molecule 
for regulation of iron homeostasis in plants (Murgia et al. 2002).

18.6  Conclusions

After the abundance of oxygen in earth atmosphere, it led to evolution a life based 
on aerobic respiration and other oxygen-based reactions. Simultaneously, it also 
gave birth of many harmful processes that force and threaten to end cellular process 
and ultimately affect life, if not managed properly. Oxidative stress (ROS) is one of 
the phenomena that have negative impact on cellular systems of organisms. Plants 
including crop plants are also severely affected by oxidative stress and poses great 
threat for sustainable food production. Apart from ROS, RNS (NO) is also another 
cellular factor that gets induced. NO acts as a signaling molecule and helps in coun-
teracting the ROS effects generated in plant systems. ROS and NO involvement has 
been observed in most of the abiotic stresses like drought or water stress, salinity, 
high and low temperature, heavy metal, UV and ozone, and mineral deficiency. 
There is a great need to minimize impact of ROS to achieve the optimum yield from 
crop plants. It can be overcome by either minimizing the impact of stress factors or 
augmenting the crop plants (biochemical or genetic level) so that they can generate 
enough antioxidants, protective metabolite, or protein to cope up the bad effects of 
stress.
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Abstract
Weeds have been proved as the ultimate pests of crop plants. Use of herbicides 
has become one of the best solutions to control weeds on a large scale. Due to 
ignorance, less diversity in herbicides, and their availability in local markets and 
cost affordability etc. The farmers use only one or a few major herbicides for long 
time, and it causes the herbicide résistance in weeds. Genetically modified (GM) 
herbicide-resistant (HR) crops have been blindly cultivated by farmers through-
out the world, especially in the United States. GE crops have been blamed for 
increased problems with HR-weeds. Due to adoption of GM, herbicide-resistant 
cultivars substantially reduced herbicide diversity in maize, cotton, and soybean. 
Intensive use of glyphosate in these crops largely displaced herbicides that were 
likely to be selected for HR-weeds and the impact of reduced herbicide diversity 
has been mitigated. It has been expected that if the same pattern of use of herbi-
cides continues, more HR-weeds will develop and the need for developing more 
HR-crops will increase.
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19.1  Introduction

In the 1950s, the first case of herbicide resistance was found in the United States, 
and field bindweed resistant against 2,4-D was listed in Kansas in 1964, as common 
groundsel resistant to the herbicide “triazine” was reported in Washington in 1970. 
The number of discovered bio-types in the beginning of the 1980s was noted with a 
rapid increase in the United States, and all over the world; resistance to more than 1 
of the 25 herbicides has been reported in more than 65 weed species in the United 
States. In India, Phalaris minor developed resistance to isoproturon during 1992–
1993 in N-W wheat belt mainly in Punjab and Haryana. Herbicide resistance in the 
crops is the main trait that has been engineered into crops. Weed resistance problem 
to herbicides is the key factor to provide information for scientists to develop crop 
resistance against previously nonselective herbicides. Herbicide-resistant crops 
(HRCs) can be categorized as non-transgenic and transgenic. Non-transgenic HRCs 
are the traditional genetic methods of selection for resistance character, while trans-
genic HRCs are the genetic engineering methods. Non-transgenic HRCs were made 
through the techniques of conventional breeding. In 1984, the first crop canola was 
developed as a resistant crop against triazine through breeding program. After that 
many other methods introduced, e.g., pollen mutagenesis, microspore selection, tis-
sue culturing, seed mutagenesis, cell selection, and transfer through a weed relative, 
have been used for producing a non-transgenic HRCs.

19.2  Definitions

19.2.1  Weed

Weed is a valueless wild plant which is growing at a cultivated land or an unwanted 
plant at an improper place that has no economic value.

19.2.2  Herbicide

Herbicides can be defined as chemical substances used to control weeds in the field 
crops.

19.2.3  Resistance

Resistance is defined as a change in the sensitivity of a pest population to a pesti-
cide, resulting in the failure of a correct application of the pesticide to control the 
pest.
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19.2.4  Herbicide Resistance

Herbicide resistance is the inherited ability of a plant to survive and reproduce fol-
lowing exposure to a dose of herbicide that would normally be lethal to the wild 
type.

19.2.5  Weed Resistance

Weed resistance is the decreased response of the population of a weed species to an 
herbicide because of long and continued application of the same herbicide.

19.2.6  Susceptibility

Susceptibility is defined as the extent to which a plant has to face injury or death by 
a particular herbicide.

19.2.7  Herbicide Tolerance

Tolerance is the inherent ability of the weed species to survive and reproduce after 
herbicide treatment.

19.2.8  Dormancy

Seed dormancy is a survival mechanism by which seeds can delay germination until 
the right environmental conditions for seedling growth and development.

19.3  Resistance Types

19.3.1  Multiple Resistance

The phenomenon in which a weed is resistant to more than one herbicide having 
different modes of actions. Resistant plants possess more than one distinct resis-
tance modes, e.g., first developed in Lolium rigidum against PS-II inhibitors, ALS 
inhibitors, ACCase inhibitors, mitotic inhibitors, glyphosate, etc. Continuous use of 
single herbicide until population of weed shows resistance, and then another single 
herbicide is used again and again without proper management, and the same weeds 
become resistant to the second herbicide and so on. One of the other sources of 
multiple resistance can also take place by the movement of pollens in cross- 
pollination between sexually companionable plants having different resistant genes.
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19.3.2  Cross-Resistance

The phenomenon of cross-resistance occurs when the gene that made it resistant to 
the single herbicide makes it resistant for the others by the same mode of action. In 
cross-resistance, a weed biotype is resistant to more than one herbicides due to the 
single mode of action, e.g., Phalaris minor resistant to isoproturon has also gain 
cross-resistance against clodinafop-propargyl, diclofop-methyl, and sulfosulfuron. 
More common type of resistance is cross-resistance than multiple, but multiple 
resistance is of great concern potentially because it decreases the used number of 
herbicides to control weeds.

19.3.2.1  Target Site–Based Resistance
Resistance to two or more herbicides due to a similar target site, e.g., triazines, 
phenylureas, and uracil, which inhibit PS-II.

19.3.2.2  Metabolic-Based Resistance
Resistance to two or more herbicides due to similar mechanisms of degradation of 
herbicides, e.g., in Phalaris minor showing resistance to isoproturon and 
diclofop-methyl.

19.4  Mechanism of Herbicide Resistance

19.4.1  Altered Target Site

Every herbicide has a specific targeted site of action where it disrupts by acting to a 
specific plan process or function. Somewhat alteration in the target site resulted in 
no longer binding of herbicide to the site of action, and hence, it becomes unable to 
put its phytotoxic effects. This type of mechanism of herbicide resistance is more 
common. More number of examples of resistance to herbicide “triazine,” like as 
“atrazine” and “simazine,” are due to an alteration in the target site.

19.4.2  Enhanced Metabolism

Plants use mechanism of metabolism to detoxify outsider compounds such as her-
bicides. A weed plant having quickly degrading ability to herbicides can actively 
inactivate the herbicides prior to reaching its target site within the plants, e.g., resis-
tance to propanil in E. colona is due to enhanced enzyme activity of aryl- acylamidase 
that detoxifies propanil.
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19.4.3  Sequestration or Compartmentalization

Some plants have restricting ability to the movement of outsider herbicidal com-
pounds within their tissues or even cells to stop cause of harmful effects of that 
compound. In this situation, herbicides are inactivated through binding (e.g., to a 
molecule of plant sugar) or removed through metabolically active region to inactive 
region like glyphosate resistance in Lolium rigidum and paraquat resistance in 
Hordeum glaucum.

19.4.4  Over-Expression of Target Protein

If the target protein, on which the herbicide acts, can be produced in large quantities 
by the plant, then the effect of the herbicide becomes insignificant.

19.5  Guidelines for Prevention and Management 
of Herbicide Resistance

19.5.1  Where Resistance Has Already Cropped up

Make awareness, training, and participatory approach among farmers. Abandon the 
herbicide to which weeds are showing resistance. Stop sale/purchase/borrowing or 
exchange of crop seed from area under resistance to other areas where resistance is 
not reported. Prevent its spread and seed bank enrichment in soil. Clean tillage and 
harvest equipment. Rogue for prevention of contamination of crop harvest.

19.5.2  Cultural Approaches

 (i) Competitive and high-yielding variety.
 (ii) Pure and certified crop seed.
 (iii) Stale seed bed technique.
 (iv) Closer row spacing.
 (v) Proper time, method, and rate of sowing.
 (vi) Crop rotation.
 (vii) Crop residue management.

19.5.3  Mechanical and Manual Options

 (i) Tillage practices.
 (ii) Soil solarization.
 (iii) Harrowing.
 (iv) Manual weeding.
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19.5.4  Biological Control of Resistance

Trichoderma viride are the biological agents which are helpful in controlling 
Phalaris minor selectively by making colonies in roots of the plants.

19.5.5  Reducing the Risks of Herbicide Resistance

The steps in reducing the risks of herbicide resistance are given below:

 (i) Evaluation of alternative herbicides by using suitable doses and time to con-
trol flushes of resistant weed.

 (ii) Use of herbicide mixtures with different sequences and rotation to delay/avoid 
the development of cross- or multiple resistance in the previously resistant 
weeds.

 (iii) By the use of crop safeners/protectants and synergists.
 (iv) Well knowledge about spraying techniques and equipment.
 (v) By the use of different agronomic practices like as field fallowing, manual 

weeding, and also sterilization/fumigation.
 (vi) Proper monitoring.
 (vii) Integrated weed management (IWM).

19.6  Selection by Herbicide

19.6.1  Characteristics of Cropping System

 (i) No or little crop rotation.
 (ii) No or little pre-plant tillage.
 (iii) Less competition of crop.
 (iv) No or little rotation of modes of action (MOA) of herbicides.

19.6.2  Characteristics of Weed

 (i) Annual growth pattern.
 (ii) High rate of seed production.
 (iii) Less extent of seed dormancy.
 (iv) Longevity of some seeds in seed bank.
 (v) Greater frequency of resistance mutations or alleles.
 (vi) More generations per year.
 (vii) Trends of gene flow, e.g., pollen or seed.
 (viii) No fitness consequence for resistance trait.
 (ix) High susceptible species to the herbicides.
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19.6.3  Characteristics of Herbicide

 (i) Single action’s site.
 (ii) High rate of efficacy.
 (iii) High rate of usage relative to need amount (favors selection of target-site 

resistance).
 (iv) Less or marginally effective use rates (favors selection of non-target-site 

resistance).
 (v) Long residual activity of soil.
 (vi) Higher use frequency.

19.6.4  Other Factors

19.6.4.1  Resistance Inheritance
Nuclear inheritance is the key factor to determine resistance in most classes of her-
bicides whereby offspring get resistance genes by both pollen and ovules. In most 
weeds in which the resistance inheritance has been studied, single and major nuclear 
genes control the resistance. Additionally, in the majority of species, a dominant or 
partially dominant allele conferred the resistance. Through mathematical models it 
has been shown that a single conferred resistance, dominant allele consequences as 
more quick evolution of resistance in out crossing weeds as compared to recessive 
allele. It is rare that when a resistance mutation earliest appears in a weed popula-
tion. In recessive mutation, only homozygotes will be resistant, while, in the case of 
dominant resistance, homozygotes and heterozygotes both will be resistant and able 
to survive under herbicide treatment.

19.6.4.2  Fitness in the Absence of Herbicide Treatment
Some time resistant plants have been found to have lower fitness in the survival, 
growth, and successes of seed production as compared to susceptible plants in the 
lack of herbicidal treatment. The decreased fitness of resistant plants in the periods 
of herbicides which are not applied will cause slow resistance evolution process and 
spread as well, in addition to by increasing effectiveness of herbicide rotations by 
cultural practices in the management of resistance. If equal fitness is found in resis-
tant and susceptible plants, then there is no increase or decrease in the relative fre-
quency of resistant plants, but it also remains constant throughout the periods in 
which herbicides are not used. On the other hand, if resistant plants have lesser fit-
ness as compared to susceptible plants in the lack of herbicide treatment, the 
decreased fitness causes a reduction during herbicide-off periods in resistant indi-
viduals among population.

19.6.4.3  Mating System and Life Span
Evolution rate and spread of resistance are influenced by the mating system and life 
span of a weed species. In a new arisen resistance as mutation or immigrant, gene 
will be present initially in heterozygotes due to mostly presence of such individuals 
in the population for susceptible homozygotes for that gene. Heterozygous plants 
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will survive the herbicide treatment if the mutation is dominant. But in the case of 
recessive mutation, heterozygous plants will be susceptible and will not survive in 
the herbicide treatment.

On the other hand, in the case of highly self-fertilized weeds, e.g., plants that 
pollinate their own ovules like green foxtail, recessive resistance mutations can 
readily become established and disperse. Frequency of homozygotes is rapidly 
increased by selfing, at the cost of heterozygotes then exposing recessive resistance 
alleles to herbicide selection and decreasing the chances of loss of a new homozy-
gous recessive mutation. In highly self-fertilized species, recessive resistance muta-
tions disperse at generally the same rate as dominant resistance mutations.

19.7  Current Status of Herbicide Resistance in Weeds

19.7.1  Herbicide Resistance

Herbicide-resistive ant weeds are a common problem throughout the world, but 
greater than herbicide-resistant weed problem with resistance found in those coun-
tries which are using highly mechanized agriculture cropping systems due to the 
higher reliance on herbicides. At least in 60 countries, biotypes of herbicide- resistant 
weeds were reported which included about 400 distinctive combinations of species- 
herbicide groups. Due to a highly intensive cropping system, the United States has 
a higher number of resistant biotypes (144) as compared to other countries followed 
by Australia 62; Canada 59; China, France, Germany, Spain, and Brazil 31–35; and 
California having 21 distinctive cases of herbicide-resistant weeds in which there 
are 15 grasses or sedges and 6 broadleaf species.

Resistance to photosystem-II inhibitors and ALS inhibitors is dominant over 
herbicide-resistant weeds in the whole world and the United States due to extensive 
use of unlike herbicides in broader areas of cereal and grain crops. Multiple resistant 
biotypes are more problematic than others, for example, in Australia, a single popu-
lation of rigid ryegrass is reported with resistance to nine different modes of action, 
while in California, ALS inhibitor resistance is dominant over herbicide-resistant 
biotypes, mostly due to intense pressure of selection in rice cropping systems.

Even though herbicide resistance has been reported in most of the weedy species, 
a few genera have been documented to dominate. There are 17 genera that have 
been presented to have biotype resistance with 4 or more herbicide mode of action 
groups. These weeds tend to be more problematic species among the most wide-
spread weed species, and herbicide resistance is becoming more complicated for 
effective management.

19.7.2  Mechanism of Resistance in Weeds

In crop plants herbicide resistance is mostly conferred by mechanisms which cause 
herbicide resistance in weeds (Fig.  19.1). At first, lack of herbicide activity can 
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cause resistance at the action site, e.g., target site absent, present the target site but 
binding site of herbicide is absent, extreme amount of target enzyme related to the 
herbicide amount. Mutation of non-target sites like fast metabolic detoxification of 
herbicide is another process that keeps the plants live with less or no non-reversible 
effects of herbicidal applications. Plant growth stages and environmental conditions 
influence the metabolic rates. This is one of the reasons that weed control and crop 
safety are more different dramatically in cool environment than ideal growing con-
ditions (Fig. 19.1).

When any herbicide is applied, a selective pressure is exerted on a weed in a field 
by killing all S-biotype plants and not injuring the R-biotype plants. Selection of 
pressure intensity can be enhanced:

• If an herbicide acts on a single site of action, e.g., ALS inhibiting herbicides act 
on a particular single enzyme in the plant. Herbicide substrate binds to the 
enzyme and does not permit to further function in the S-biotype plant, while in 
the R-biotype plant, due to change in enzyme structure, a herbicide cannot 
remain bind for longer time, and enzyme functions normally. (Fig. 19.1).

• If the herbicide is highly effective (>95% control), the R-biotype will be able to 
flourish, and there is no competition since few, if any, S-biotypes survived.

• Soil activity provided by herbicides for longer period of time can control weeds 
that characteristically emerge late in the season, and so it continues to remove 
S-biotypes and permits R-biotypes to survive after emergence.

Fig. 19.1 Herbicide resistance mechanism in plants
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19.7.3  Conventional Method

Almost all species of plants are resistant to some herbicides and susceptible to oth-
ers at the same time naturally. Conventional techniques of breeding mostly consist 
of identification of parental lines of potential variety by screening with the inter-
ested herbicide. One of the methods is to survey the germplasm of crop species, 
because some varieties and breeding lines may show more resistance than a cultivar. 
Identification of higher resistant lines and introgression the gene of resistance by 
traditional crossing and used to transfer the resistance genes into the commercial 
cultivars. The second method is exposing the crop species to sublethal doses of 
related herbicide and then selecting the best performed survivors after many of the 
generations and spray regimes.

Induced mutation is the conventional approach used by breeders by ionizing 
radiation, mutagenic chemicals, etc. for alteration of genetic makeup of a plant for 
producing resistance to a variety of herbicides. This one is the simplest method in 
which breeders first of all take seeds in a large amount and then expose them to the 
mutagen, sow and grow them and then spray the progeny with the herbicide, and 
select any survivors as prospective resistant mutants. By using mutagenesis, several 
herbicide-resistant crop cultivars are developed, in which wheat cultivars are 
described which were based on a mutagenized hard red wheat line (FS-4) with 
novel resistance to imidazolinone herbicides.

19.7.4  Molecular Method

Methods of genetic engineering in the late 1980s had become advanced. According 
to these methods, genes of specific traits transferred into various species of crops. In 
the first experiment, traits (which opposed to experimental marker) were herbicide 
resistant which were used as single genes conferring resistance to particular herbi-
cides and had been passing through the processes of isolation, cloning, and then 
characterization. The first herbicide resistance genes were conferred to the glypho-
sate and glufosinate, of which examples are Rely™, Liberty™, and Basta ™ herbi-
cides. After that, initially genes were utilized as in vitro selective marker (still in use 
as such) being developed for the control of weeds in transgenic herbicide-resistant 
crops. At the same time, herbicide-resistant genes came into being to develop crop 
resistance against other herbicides like bromoxynil, sulfonylurea, and imidazoli-
none herbicides. With these genes in the early crop species were canola, soybean, 
corn, flex, and cotton. In spite of advanced research and development, few crop 
cultivars have been evolved by genetic engineering commercially. However, trans-
genic modified crops are getting popular in the farmer community.
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19.8  Concerns Related to Herbicide-Resistant Crops

19.8.1  Selection for Herbicide-Resistant Weeds

Evolution and selection of herbicide-resistant weeds are the issues having largest 
concerns associated with adoption of herbicide-resistant crops. Attributes that make 
herbicide-resistant crops attractive to growers (i.e., broad weed control spectrum, 
low application cost, fewer non-target or negative environmental effects) can lead to 
reliance on a single herbicide mode of action and impose tremendous selection 
pressure for resistant weeds. For example, although glyphosate has been used in 
North America since the early 1970s, glyphosate-resistant weeds were not reported 
until 2001, several years after the commercialization of the first Roundup Ready 
crop. In the years since the first report, 21 unique cases of glyphosate-resistant 
weeds have been reported, and many appear to have been selected in glyphosate- 
resistant cropping systems. Among the most dramatic examples of this include 
glyphosate-resistant cotton, soybean, and corn systems in the Midwestern and 
Southeastern United States afflicted with glyphosate-resistant pigweeds 
(Amaranthus palmeri, A. rudis, A. tuberculatus) and horseweed/marestail to the 
point of almost total failure in some regions.

19.8.2  Managing Herbicide-Resistant Crop Volunteers

Herbicide-resistant crop volunteers that emerge in subsequent crops can be a signifi-
cant agronomic concern and may require alternate management practices compared 
to susceptible crop volunteers. Herbicide-resistant crop volunteers may become 
more problematic and difficult to control if another crop resistant to the same herbi-
cide is planted in rotation. For example, volunteer soybean in cotton became a prob-
lem in the Southeastern United States with the commercialization of 
glyphosate-resistant soybean and cotton.

19.8.3  Effects on Rotational Crops

Herbicides differ in both their residual activity and recommended plant-back inter-
vals for different crops. One of the benefits to farmers using herbicide-resistant 
crops is a decrease in the rotation time between the harvest of one crop and the 
planting of the next because a sensitive crop cannot be rotated into a field until a 
residual herbicide has dissipated to the point that the rotational crop will not be 
affected. Herbicide-resistant crops, which share an herbicide resistance trait, would 
allow farmers to rotate crops promptly; however, this practice is likely to encourage 
monoherbicide application which is detrimental to resistance management.
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19.8.4  Gene Flow

Gene flow is important in the maintenance of genetic variation in populations as 
well as in the spread of new traits among populations and across species boundaries. 
Gene flow can occur by pollen movement or by direct movement of seed or in some 
cases by vegetative propagules, but within an agronomic system, these pathways 
often are linked. Global expansion in cultivation of herbicide-resistant crops has 
increased concerns regarding pollen- and seed-mediated gene flow from herbicide- 
resistant crops to conventional and organic crops. Although gene flow is not unique 
to herbicide-resistant crops, it has been suggested consistently and repeatedly as an 
environmental concern. The primary areas of concern are that unexpected gene flow 
could cause changes in food safety, harm markets, and lead to changes in biodiver-
sity of agricultural or natural areas.

19.8.5  Pollen-Mediated Gene Flow

Pollen-mediated gene flow is the transfer of genetic information between plant pop-
ulations resulting from cross-pollination. Gene flow between populations of the 
same species is known as intra-specific gene flow, whereas gene flow among differ-
ent species (e.g., between domesticated crops and wild relatives) is known as inter- 
specific gene flow. A number of factors determine the likelihood and extent of 
intra-specific pollen-mediated gene flow among plant populations. These include 
the reproductive biology of a species or cultivar within a species, flowering phenol-
ogy, sexual compatibility, pollen load, and environmental conditions at specific veg-
etative or reproductive stages of plant development, spatial and temporal distribution 
of pollen donors and recipient plants, and also size of the pollen donor and recipient 
plant populations.

19.8.6  Seed-Mediated Gene Flow

Seed-mediated gene flow primarily occurs through seed dispersal within and among 
agricultural fields but may also be facilitated by seed spill during transport, admix-
ture of seed used for planting, and co-mingling of seeds within the seed handling 
system. Seed-mediated gene flow may occur by natural dispersal mechanisms via 
animals, wind, or water or by human actions such as tillage and transport. Unlike 
natural seed-mediated gene flow, seed movement by human results in a limitless 
dispersal capability. Due to the “permeable” nature of the supply chain, seed- 
mediated gene flow can occur at most stages of production. Although seed-mediated 
gene flow is a large source of transgene input into the environment and the agricul-
tural supply chain, it has received relatively little attention in the scientific literature 
compared to pollen-mediated gene flow from herbicide-resistant crops.
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19.8.7  Environmental Issues

There are environmental issues related to herbicide-resistant crop use, which, 
although not unique to genetically engineered cultivars, are still relevant. Herbicides 
are widely used at present, and most areas where farmers will use herbicide- resistant 
crops are already treated with herbicides as part of a weed control program. The 
herbicides for which herbicide-resistant crops are being developed are, in general, 
low-use-rate, low-mammalian-toxicity herbicides with short soil half-lives; there-
fore, the use of these herbicide-resistant crops should result in lower environmental 
impact than occurs at present with higher-impact herbicides.

19.8.8  Herbicide Use

The existence of herbicide-resistant crops does not necessarily translate into an 
increased use of herbicides. If industry succeeds in making herbicide-resistant crops 
cost-effective, the herbicides to which tolerance is being engineered will almost 
certainly increase in sales. An increase in sales does not necessarily mean that farm-
ers are applying more herbicide per acre, but may simply mean that the acreage 
being treated using these herbicides has been increasing and/or that the older herbi-
cides are being replaced by those used with the transgenic cultivars. While herbicide- 
resistant crops do encourage continued use of herbicides, they also offer farmers 
alternatives at a time when the development and registration of new herbicides or 
other effective weed management strategies have been slowed by market, economic, 
and regulatory issues.

19.8.9  Water and Environmental Quality

Most herbicide-resistant crops are based on glyphosate, glufosinate, imidazolinone, 
and sulfonylurea herbicides. The specific herbicides and application rates used in 
these crops usually have acceptable persistence in soil, low mammalian toxicity, 
and fewer issues with leaching than compounds such as simazine and diuron which 
are commonly found in California groundwater. Rotation of cropping systems with 
herbicide-resistant crops and non-engineered varieties of the same crop species 
should encourage the rotation of herbicides, thereby reducing environmental 
buildup.

19.8.10  Economic Issues

The additional cost of herbicide-resistant crops, coupled with the cost of the herbi-
cides, imposes some additional economic burdens on farmers; however, indiscrimi-
nate use of herbicides will never be cost-effective, nor would it be permissible based 
on US Environmental Protection Agency (EPA) policy. In order to be adopted in the 
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marketplace, herbicide-resistant crops must lead to weed control strategies that pro-
vide an economic and/or managerial benefit to growers and be acceptable to the 
consumers of the end products. Attaining this goal is time-consuming; estimates of 
the time required for the identification and introduction of a tolerance trait are 
6 years or more. Acceptance and establishment of the HRC cultivars in the market-
place could take several more years.

19.8.11  Effects on the Herbicide Industry

Cropping systems developed to rely on only a few nonselective herbicides can be 
expected to affect the development and commercialization of new alternative herbi-
cides. The development of herbicide-resistant crops has already led to a global 
restructuring of private-sector agrochemical research, development, and marketing 
systems. Certainly, in the near term, development activity will continue to focus on 
herbicide-resistant crop strategies, but the effect of this on the development of other 
agrichemical approaches is not known.

19.8.12  Labeling

Labeling foods as being derived from genetically modified (GMO) crops has been a 
controversial issue. The call for such labeling has been resisted in the United States 
and Canada because mandatory labels in those countries are based on the composi-
tion and features of the final food, rather than on the particular method of breeding 
or processing. Not least of the problems is that there is no standard definition of a 
“GMO” food. Every jurisdiction, from the United States to Canada to the European 
Union (EU), has different definitions of what would need to be labeled. For exam-
ple, the EU already has a process trigger for food labels, such that any food made 
“with” GMOs requires a label. However, foods made “from” GMOs do not. To 
avoid any confusion that may arise in distinguishing between food made “from” 
GMOs and those made “with” GMOs, the United States and Canada use an objec-
tive compositional trigger for mandatory labels, so only foods with a measurable 
nutritional compositional change or changes to levels of substances normally pres-
ent (including allergens or other anti-nutritional substances) are required to carry 
labels.

19.8.13  Export Markets

The term “adventitious presence” refers to the unintentional and incidental com-
mingling of trace amounts of one type of seed, grain, or food product with another. 
When used in relation to herbicide-resistant crops, the term describes the inadver-
tent presence of herbicide-resistant crop seeds or other materials in conventional or 
organic crop seeds. Low levels of impurities are inherent in commodity crops due to 

Z. Aslam et al.



395

the nature of the supply chain; herbicide-resistant crops are grown in close proxim-
ity to other crops, and common equipment is frequently used to plant, harvest, trans-
port, and store grains.

19.8.14  Mechanism of Resistance in Crops

Herbicide resistance mechanisms can be classified into two groups: exclusionary 
resistance and site of action resistance (Dekker and Duke 1995).

19.8.14.1  Exclusionary Resistance
Those that excludes the herbicide molecule from the site in plants where they induce 
toxic response. In exclusionary resistance mechanism, the herbicide is excluded 
from the site of action in many ways.

19.8.14.1.1 Differential Herbicide Uptake
In resistant biotypes, the herbicides are not taken up readily due to morphological 
uniqueness like overproduction of waxes, reduced leaf area, etc.

19.8.14.1.2 Differential Translocation
In resistant biotypes the apoplastic (cell wall, xylem) and symplastic (plasma 
lemma, phloem) transport of herbicide is reduced due to different modifications.

19.8.14.1.3 Compartmentation
Herbicides are sequestered in many locations before they reach the site of action. 
For example, some lipophilic herbicide may become immobilized by partitioning 
into lipid-rich glands or oil bodies (Stegink and Vaughn 1988).

19.8.14.1.4 Metabolic Detoxification
Herbicide is detoxified before it reaches the site of action at a rate sufficiently rapid 
that the plant is not killed. The biochemical that detoxifies herbicides can be grouped 
into four major categories: oxidation, reduction, hydrolysis, and conjugation. Three 
enzyme systems are known to be involved in resistance due to increased herbicide 
detoxification. Resistance to atrazine in some population of Abutilon theophrasti is 
due to increased activity of glutathione S-transferase that detoxifies atrazine.

19.9  Weed Control Spectrum of Selective Herbicides 
and Population Shift Factors

 1.1 Plant factors and herbicide selectivity.
 (i) Plant age and growth rate.
 (ii) Morphology.
 (iii) Physiological and biochemical processes.
 (iv) Genetic inheritance.
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 1.2 Herbicides and edaphic factors.
 1.3 Factors related to weed resistance and dormancy, avoidance, and weed 

density.
 1.4 Factors enhancing herbicide resistance.

19.10  Conclusions

Resistance mitigation seeks to diversify weed control methods in order to delay the 
evolutionary process by reducing the selection pressure exerted by herbicides. 
Target-site resistance is conferred by an alteration causing loss of plant sensitivity 
to herbicides with a specific mechanism of action. It is, therefore, clear that one way 
of dealing with the problem is by switching to another herbicide effective on the 
same weed species, but having a different mechanism of action. The use of herbi-
cide mixtures or sequences involving herbicides with different mechanisms of 
action can protect the herbicides and delay the evolution of resistance to each, since 
mutants with resistance to one herbicide would be controlled by the other herbicide 
and vice versa. The recurrent use of the same herbicide mixture could theoretically 
select for biotypes with resistance to both herbicides (multiple resistance).

From this discussion of resistance mechanisms in herbicide-resistant weeds, it 
should be clear that resistance cannot be mitigated only by switching or combining 
herbicides in production systems that rely solely on the intensive use of selective 
herbicides for weed control. Instead, herbicide resistance management requires the 
integrated diversification of chemical and non-chemical weed control methods to 
reduce selection pressure for resistant weed biotypes. Herbicides are one of the 
most effective tools for weed management; however, they must be used judiciously. 
They should be “one of the many tools” in a weed management toolbox rather than 
the only tool, or else we are at risk of losing effective herbicides due to the evolution 
of herbicide-resistant weeds.
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Abstract
Food security and crop improvement has become one of the foremost challenges 
faced by the world today. The production of both food and economic crops is com-
promised due to different man-made activities that affect the environment adversely, 
including abiotic and biotic factors. So, the agriculture around the world is under 
pressure to increase the food production by 70% by 2050 in order to cope with the 
ever-increasing population’s requirement. Thus, there is a need to improve agro-
nomic traits of the crops by enhancing their nutritional value and also increasing 
resistance with a better chance of survival. A range of approaches including the 
utilization of additional land and water resources or agrochemicals are being 
adopted to achieve improved crop productivity. The idea of conventional breeding, 
frequently applied for crop improvement, is not so successful since the gene pool 
of elite trait is quite restricted that requires other state-of-the- art techniques. Thus, 
this paper (a) overviews induced mutations and major molecular crop improve-
ment techniques; (b) appraises recent works on the strategies for mutation induc-
tion and approaches for their detection; (c) critically reviews reports on the major 
molecular genetic approaches for crop improvement; (d) highlights the role of bio-
informatics in crop improvement; and finally (e) concludes the major outcomes of 
the discussion and highlights the major aspects so far unexplored in the present 
subject.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0025-1_20&domain=pdf


398

Keywords
Induced mutation · Molecular techniques · Crop improvement · Genetic engi-
neering · Bioinformatics · TILLING · MAS

20.1  Introduction

Mutation breeding is based on selfing mutants until the induced character has a 
stable expression in the advanced mutant generations. It is a way of creating varia-
tions in the existing germplasm or genetic resources which are phenotypically 
screened or are present in the genome. It helps the plant breeders to make decision 
on utilizing these variations for increasing the food productivity so as to overcome 
the future challenges (Sikora et al. 2011a). The most common variations are due to 
point mutations. Mutation breeding has advantages of being cost-effective, quick, 
proven, and robust apart from being non-hazardous and environmentally friendly. 
There are more than 3200 mutant varieties officially released for commercial use 
(FAO/IAEA 2016).

For decades forward genetic approach was used by breeders and geneticists for 
studying variations and their functions, but it was based on defective mutants of our 
interest. Today, the use of reverse genetics has made possible to study any gene by 
disrupting it (Belhaj et al. 2013). Random mutagenesis is a naturally occurring phe-
nomenon. Genome editing has evolved from the use of chemical and physical muta-
genic agents to biological tools including sequence-specific nucleases and 
oligonucleotide-directed mutagenesis (Songstad et al. 2017). Induction of mutation 
has been an important tool for crop breeding since the release of first-ever mutant 
variety of tobacco in the 1930s (Jankowicz-Cieslak et al. 2017).

Mutation breeding serves as a platform for breeders to showcase their varieties 
to a global audience and at the same time to stimulate germplasm transfer for culti-
vation, breeding, or genomic studies.

A mutant variety is a new plant variety that is bred through:

 1. Direct use of a mutant line that is developed through physical and chemical 
mutagenesis or somaclonal variation and activation of endogenous transposable 
elements.

 2. Indirect use of a mutant line/lines, which is/are used as a parental variety/variet-
ies in crossbreeding (cross between mutant lines or with a commercial variety/
varieties).

Use of wild species’ genes translocated into plant genomes through irradiation 
facilitated translocations, e.g., genes of wheat wild relative species (FAO/IAEA 
2016). Molecular biotechnology tools such as of the genetic engineering and the 
marker-assisted breeding by utilization of QTL techniques have led to increased 
understanding of the complex traits responsible for decline in crop productivity. The 
present paper (a) appraises recent works on the strategies for mutation induction and 
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molecular approaches for their detection of induced mutations using molecular crop 
improvement techniques; (b) critically reviews reports on the major molecular 
genetic approaches for crop improvement; (c) highlights the role of bioinformatics 
in crop improvement; and finally (d) highlights the major aspects so far unexplored 
in the present subject.

20.2  Mutagens: Tools for Inducing Genetic Variability

Several types of mutagenic agents are used extensively to create genetic variation 
for use in genetics and crop improvement. Muller (1928) was the first to discover 
the mutagenic properties of X-rays (Fig.  20.1). Since then, several physical and 
chemical mutagens have found their application and contributed in induced muta-
genesis. Living cells quickly respond to DNA damage caused by physical and 
chemical mutagens and further kill the damaged cell or repair DNA lesions. Ionizing 
radiations cause single- and double-strand breaks and also produce chemically reac-
tive species that interact with the cellular and molecular environment of the cell 
(Suprasanna et al. 2015). Mutations have been induced to enhance the nutrient con-
tents of crops. Mutations were induced in red pepper to enhance the production of 
beta-carotene (a precursor of vitamin A). It was observed that the induced mutation 
had no detrimental effects on the concentration of mineral elements and secondary 
metabolites in the fruits (Tomlekova et al. 2017; Table 20.1).

Mutation is a spontaneous change that is caused due to point mutation during the 
replication of DNA or during cell division. Though the rate of natural mutation is 
very low in nature but can be increased artificially  by exposure to chemical 
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mutagens, ionizing radiation, etc. The induced mutations enhance the process of 
evolution by modifying and exploiting a single or few characters of a superior cul-
tivar (Jain et al. 2013). Induced mutagenesis produces macromolecular changes in 
plants, which may lead to alteration in biophysiology and morphology of crop geno-
types (Laskar et al. 2018).

Induction of mutation has been successfully used in a range of economically impor-
tant crops including barley, rice, wheat, cowpea, cotton, and peanut (Gottschalk and 
Wolff 2012). The types of mutations differ with relevance to plant type, mutagen used, 
and its dosage and time applied. The mutations bring changes in phenotype due to 
modifications in transcriptome and structural and numerical changes in chromosome 
(Gill et al. 2015). Mutation that occurs at a single point due to transitions or transver-
sions can cause frame shifting and gives rise to new codons and new proteins. Genome 
editing or targeted mutation has a promise for molecular breeding (Ma et al. 2017).

20.3  Strategies for Mutation Induction

The initial step for introducing mutations in a crop plant is the identification of the 
plant part followed by selecting the mutagen. The γ-ray bombardment is less 
destructive causing point mutations and small deletions, whereas fast neutron bom-
bardment causes translocations, chromosome losses, and large deletions (Suprasanna 
et al. 2015). Ion beam that has been successfully used on rice in China and Thailand 
against disease resistance,  has obtained high grain quality and a shorter growth 
cycle (Huang and Han 2014). Mutagenesis was induced in groundnuts using EMS 

Table 20.1 Penetrating effect of different radiations on plant tissues (Suprasanna et al. 2015)

Type of radiation Property description
Penetration in 
plant tissue Energy

X-rays Electromagnetic radiation A few mm to 
many cm

50–300 keV

Gamma rays Electromagnetic radiations similar to 
X-rays

Through 
whole parts

Up to several 
MeV

Neutron (fast, 
slow, and thermal)

Uncharged particle, slightly heavier 
than proton, observable only through 
interaction with nuclei

Many cm From less than 
1 eV to several 
MeV

Alpha particles A helium nucleus, ionizing heavily Small fraction 
of a mm

2–9 MeV

Beta particles, fast 
electrons, or 
cathode rays

An electron (− or +) ionizing much 
less densely than alpha particles

Up to several 
cm

Up to several 
MeV

Protons or 
deuterons

Nucleus of hydrogen Up to many 
cm

Up to several 
GeV

Low-energy ion 
beams

Ionized nucleus of various elements A fraction of 
mm

Dozens of keV

High-energy ion 
beams

Ionized nucleus of various elements A fraction of 
cm

Up to GeV
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and gamma rays. It was observed that the mutants possess desirable agronomic 
characters and favorable oil chemistry (Kavera 2017).

Chemical mutagens provide high mutation rates and induce mostly point muta-
tions. These include base analogues, acridine dyes, nitrous acid, hydroxylamine, 
etc. (Haussman and Parzies 2009) (Table 20.2). Lestari (2012) has detailed various 
plant chemical mutagens and their action. Alkylating agents, such as ethyl methane-
sulfonate (EMS), react with guanine or thymine by adding an ethyl group which 
causes the DNA replication machinery to recognize the modified base as an adenine 
or cytosine, respectively (Table 20.3).

20.3.1  Mutation Discovery

A variety of molecular techniques are available for the identification and study of 
mutants. Both forward and reverse genetics are applied to investigate the change 
(Table 20.4). Forward genetics is a classical method in which a particular pheno-
typic change that is brought about by mutation is compared to a wild-type variety of 
the same plant to characterize the mutated gene (Mba 2013). However, plants which 
are genetically polyploids have much variation in some genes, and the change is 
difficult to detect via a phenotypic change. When such a problem arises, reverse 
genetics needs to be applied that studies the genotype of the plant and then the phe-
notype. With the discovery of PCR and sequencing techniques, it has now become 
quite easy to detect the genomic changes of a plant directly.

20.3.2  Mutation Detection by TILLING

Target-induced local lesions in genomes (TILLING) is a high-throughput, non- transgenic 
molecular technique that applies reverse genetics and facilitates high-throughput study of 

Table 20.2 Mutagens

Name Abbreviation
Molecular 
weighta

Ethyleneimine EI 43.07
Dimethyl sulfate DMS 126.13
Diethyl sulfate dES (DES) 154.19
Ethyl methanesulfonate EMS 124.2
N-ethyl-N-nitrosourea ENU (ENH) 117.11
N-methyl-N- 
nitrosourea

MNU (MNH) 103.08

N-methyl-N1-nitro-N-
nitrosoguanidine

MNNG 147.09

Sodium azide NaN3 65.01

Note: aData from Haussman and Parzies (2009)
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point mutations in specific genes (Figs. 20.2 and 20.3). The technique compares the enzy-
matic cleavage of mismatches among wild and mutant types of the crop plants (Mba 
2013). This technique detects mutations in a small population of plants rather than pro-
ducing large amounts of mutants with considerable mutation. TILLING saves a lot of 
time and hence increases the efficiency of mutation breeding. TILLING has been used on 
a variety of plant species including maize, barley, tomato, banana, etc. (Chen et al. 2014; 
Esfeld et al. 2013).

TILLING combines chemical mutagenesis which can be detected by a sensitive 
mutation detection instrument. DNA from a collection of EMS-mutagenized plants 
can be pooled and then subjected to PCR amplification. The product was screened 

Table 20.3 Effect of different concentrations of alkylating agent on different plant species for 
different exposure time (Shu 2012)

Alkylating 
agent Plant species Plant material

Concentration 
(mM) Exposure References

MNU 
(MW 
103.08)

Begonia Leaf explants 
(in vitro)

0.2–10 1 h Bouman and De 
Klerk (2001)

Lathyrus sativus Pre-soaked 
seeds (12 h)

0.5–1.4 3 h Rybinski (2003)

Lens culinaris Seeds 0.49–3.88 6 h Sharma and 
Sharma (1986)

Nicotiana glauca Pre-soaked 
seeds (16 h)

1 2 h Marcotrigiano 
and Hackett 
(2000)

Oryza sativa Panicles 1 45 min Suzuki et al. 
(2008)

Pisum sativum Seedlings 1 1–4 h Pereira and 
Leitão (2010)

ENU 
(MW 
117.11)

Var. botrytis Pieces of curd 
(in vitro)

0.3 Days Deane et al. 
(1995)

N. 
plumbaginifolia

Protoplasts 0.1 Days Rey et al. 
(1990)

Phaseolus 
vulgaris

Seeds 1.5–6.2 8 h Svetleva (2004)

P. sativum Seedlings 5 1–4 h Pereira and 
Leitão (2010)

Zea mays Callus 1–30 4–8 h Moustafa et al. 
(1989)

EMS 
(MW 
124.16)

Glycine max Embryogenic 
cultures

1–30 4 h Hofmann et al. 
(2004)

G. max Seeds 18 24 h Wilcox et al. 
(2000)

Helianthus 
annuus

Pre-soaked 
seeds (4 h)

80 5–12 h Nehnevajova 
et al. (2007)

O. sativa Panicles 94.2 (injected) Lee et al. (2003)
P. vulgaris Seeds 6.2–25 8 h Svetleva (2004)
Trigonella 
foenum-graecum

Pre-soaked 
seeds (4 h)

10–300 2–24 h Saikat et al. 
(2008)
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for mutations using denaturing HPLC (DHPLC). DHPLC detects mismatches in 
heteroduplexes created by melting and annealing of heteroallelic DNA. TILLING is 
suitable for any organism that lacks genetic tools.

Uauy et al. (2009) suggested a modified TILLING approach for wheat of which 
mutations were screened using non-denaturing polyacrylamide gel. TILLING is a 
high-throughput method to detect point mutations in crop plants, the plants under 
study are required to be free of chimeras, and a large population of mutants is 
required. Recently, Serrat et al. (2014) reported a new method that enables one to 
rapidly obtain TILLING mutant population from rice. The raw material used was 
seed-derived rice calli and mutation induced by ethyl methanesulfonate (EMS). The 
screening of in vitro regenerated plants showed a high rate of desirable mutations in 
the population. Using reverse genetic strategies like TILLING, mutations have been 
induced in Arabidopsis, wheat, barley, tomato, and soybean (Jankowicz-Cieslak 
et al. 2017).

Another modified TILLING system using non-labeled primers and fast capillary 
gel electrophoresis was applied in O. sativa by Suzuki et al. (2008). This method 
proved to be very efficient and convenient in screening the mutant population. The 
same method was used in the detection of single nucleotide substitution mutations. 
The mutation rate was as high as 7.4 × 10−6 per nucleotide representing one muta-
tion in every 135 kb genome sequence (Fig. 20.4). Suzuki et al. (2008) developed 
mutant populations of O. sativa japonica cv. Taichung 65, by treating single zygotic 
cells with N-methyl-N-nitrosourea (MNU). Mutagenesis in single zygotes created 
mutations at a high frequency and rarely formed chimeric plants. A modified 
TILLING system using non-labeled primers and fast capillary gel electrophoresis 
was applied for EcoTILLING.

Table 20.4 Identification of mutants in target genes for target traits in different crops (Martin 
et al. 2009)

Crop Target trait Target gene
Amplicon 
length

Lines 
screened

Mutants 
identified References

Rice Leaf 
emergence

PLA1 1327 bp 767 10 Suzuki et al. 
(2008)

Sorghum Forage 
digestibility

COMT 1013 bp 768 2 Xin et al. 
(2008)

Barley Grain hardness Hin-a 420 bp 4608 4 Caldwell 
et al. (2004)

Virus 
resistance

eIF4E 525 bp 3148 5 Talamè 
et al. (2008)

Bread 
wheat

Starch quality Wx-A1 2114 bp 1152 106 Slade et al. 
(2005)

Plant height GA20ox1A 1289 bp 1152 17 King et al. 
(2015)

Durum 
wheat

Photosynthesis RCA-A1 1435 bp 480 13 Martin et al. 
(2009)

Oil seed 
rape

Oil quality FAE1 852 bp 930 15 Wang et al. 
(2000)
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20.3.3  EcoTILLING

EcoTILLING, a modified version of TILLING, has been used as an efficient tool to 
detect SNPs in natural populations and also to identify polymorphisms in large pop-
ulations (Kong et  al. 2014). The DNA pooling in EcoTILLING is conducted by 
mixing the genomic DNA of the test plant with the control genotype in 1:1 ratio. It 
is a quick, accurate, and economical method to recover a wide range of haplotype 

Mutagen
(Chemical or

physical).

Pooling in 96 well
microtiter plate

DNA
extractionPCR using end labelled

primers with florescence and
denaturing and annealing

forms heteroduplexes

Polymorphic
amplicons Detection by

polyacrylamide gel
electrophoresis followed

by analysis

G

G

C

C

T

T

A

A
Heteroduplexes

M1 population

(Chimeric)

M2 population

(Non-chimeric)

Fig. 20.2 Basic approach for TILLING. The seeds of the selected plants are mutated using muta-
gen (physical/chemical) to induce choice of mutation (point, chromosomal mutation). The first 
generation (M1) is chimeric (i.e., different mutations occur in different cells of the plant). TILLING 
cannot be performed on chimeric population. Thus, it is eliminated in M2 generation which is cre-
ated by crossing only mutagenized population from M1 population. The DNA is extracted and 
pooled in a 96-well plate for PCR using end-labeled primers with fluorescence. Mutation is 
screened using enzymatic cleavage which forms heteroduplexes detected by polyacrylamide gel 
electrophoresis. Different fragments are used for molecular weight analysis for characterization of 
mutation
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diversity in target genes in natural populations. The method has been exploited for 
a number of applications that include population diversity studies in different crops. 
Xia et  al. (2013) has applied EcoTILLING technique in barley to detect SNPs 
unique haplotypes. Similarly, Negrao et al. (2013) genotyped 392 rice varieties by 
EcoTILLING to study the genotypic differences in 5 key salt-related genes. 

Fig. 20.3 Mutations with and without amino acid changes detected in four gene fragments in 
three genes, OsAHP1, OsSAD1, and PLA1. Nucleotide substitutions and their locations are shown 
in the schematic gene and domain structures. The beginning, indicated by the letters a, t, g, or c in 
each, was the original nucleotide in T65 followed by the nucleotide number from the translation 
start point and ends with one of four nucleotides substituted. Letters and Figures in parentheses 
indicate the same for amino acid changes. DNA fragments amplified by PCR are shown by arrow-
head lines with their bp length at the bottom of each gene (Suzuki et al. 2008)

20 Improving Crop Health and Productivity: Appraisal of Induced Mutations…



406

Similarly, Frerichmann et al. (2013) studied polymorphisms in BvFL1 gene, associ-
ated with winter hardiness in beetroot. Nowadays, EcoTILLING identifies the role 
of genetic polymorphism in phenotypic variations with the help of computer pro-
grams such as TASSEL. This coupling with computer programs allows EcoTILLING 
to be more feasible in crop improvement programs (Kong et al. 2014).

Fig. 20.4 Basic principle of MALDI-TOF. There are two parts to the apparatus, the first being 
MALDI and the second which measures the time of flight of the excited particle (TOF). The matrix 
consists of organic molecules that are mixed with the sample (e.g., a mutated plant sample). The 
ionizing source which is a pulsed laser ionizes the matrix and sample mixture converting them to 
high-energy ions. The excited ions (matrix+ sample) are accelerated in the chamber and allowed to 
move in a specific direction. After a short distance, the matrix separates from the sample donating 
a proton to it (desolvation). The separated sample ion moves to the detector, and its time of flight 
is detected in the form of peaks on a display. The time of flight is proportional to mass to charge 
ratio of the ions
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20.3.4  High-Resolution Melt Analysis

Another approach known as high-resolution melt analysis (HRM) is used to screen 
the population from TILLING procedures. The process involves the use of fluores-
cently labeled DNA which is subjected to thermal denaturation, while the fluores-
cence is lost in the process. The results are displayed as temperature to fluorescence 
graphs. Graphs of mutated lines are compared with those of wild-type varieties 
(Sikora et al. 2011b). Close control of temperature and monitoring of fluorescence 
allow the single-base mutations as mismatches in amplicons of about 500 bp length 
(Simko 2016). Though, the efficiency of HRM is limited by the length of the ampli-
cons and GC content but it is most useful when the sequence under study has many 
short exons.

20.3.5  Matrix-Assisted Laser Desorption/Ionization Time-of- 
Flight Spectroscopy

Matrix-assisted laser desorption/ionization time-of-flight spectroscopy (MALDI- 
TOF) has been widely used for proteomics studies but is also used for screening 
mutations in a TILLING population. The method is very sensitive and accurate in 
the detection of homozygous mutations (Sikora et al. 2011b).

A mass spectrometry usually possesses an ionizing chamber where the sample is 
ionized, a mass analyzer in which the ionized sample particles move toward the 
detector in a controlled pathway, and a detector where the analysis of sample’s mass 
to charge ratio is calculated and presented on the screen (Fig. 20.5). In MALDI- 
TOF, the matrix is able to crystallize the sample and allows it to absorb light at a 
specific wavelength. The matrix is usually composed of organic molecules. The 
sample is excited in the MALDI-TOF by a pulsed laser which is absorbed by the 
matrix. The sample is excited by the laser absorption of the matrix, and it covers a 
short distance after leaving the surface and taking the matrix along with it. The 
sample is prepared for analysis by the TOF. This happens because during desolva-
tion, a proton is transferred to the sample from matrix-forming ions. The TOF mea-
sures the time of flight of the ion which is proportional to the mass to charge ratio. 
The results are displayed on the monitor attached to the apparatus (Katam et al. 
2015). The principle of MALDI-TOF for mutation detection is based on analysis of 
base-specific fragments which are generated by using PCR prior to MALDI-TOF 
application. A primer with a transcription site present at 5′ end is used for PCR. Once 
the transcripts are achieved; fragments are produced using RNAses. Gut (2004) 
used an alternate approach where DNA polymerase which attaches NTPs was used 
in the PCR. The NTP substrate was supplied in the PCR recipe, and any of the 
dNTPs were replaced by an NTP, and fragments were obtained by alkali backbone 
cleavage at NTP points.

Kamal et al. (2009) applied MALDI-TOF mass spectrometry to study cultivar- 
specific proteins in wheat. The different concentrations of proteins which were 
related to pathogen-related proteins, abiotic and biotic stress proteins, proteins 
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Fig. 20.5 Agrobacterium-mediated gene transformation. The agrobacterium-mediated gene 
transformation is carried out in vitro via tissue culture technique. The plant cell (target plant) is 
subjected to transformation. The T-DNA of Ti plasmid is modified by engineering the target gene 
into the plasmid. The virulence gene of the agrobacterium is removed and allowed to clone. The 
transformation is done by co-inoculating the bacterial cell and the plant cell in a media. The 
T-DNA is transferred into the host pant with the help of proteins. Once in the host cell, the T-DNA 
carrying the gene of interest integrates into the host cell genome. If transformation is successful, 
the gene begins to express. The transformed cells are grown by tissue culture into a callus and into 
a plantlet. The plantlet is subjected to hardening which forms into a transformed plant. The trans-
genic plant may be taken for field trials
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responsible for roughness and viscoelasticity of wheat, proteins responsible for 
causing allergies in consumers, proteins responsible for grain textures, and other 
proteins responsible for antimicrobial and toxin activity were observed. Westphal 
et al. (2010) screened cell wall mutants which could be used for further analysis in 
Arabidopsis using MALDI-TOF.

20.3.6  MutMap

The latest developments in genome sequencing technologies have eased the scien-
tists and breeders to study phenotypic changes and associate them with different 
genome sequences. A recent technique, MutMap is now applied to study the casual 
nucleotide changes in plant genome. MutMap accelerates the genetic improvement 
of many crop plants significantly rice. In MutMap a recessive mutant having the 
phenotype of interest is crossed with the parental line used for the mutagenesis. The 
DNA of several individuals of mutant F2 progeny is sequenced. The short reads 
obtained are aligned with reference sequences which are constructed using the 
parental lines. The resulting alignment is used to infer the genomic location of the 
casual mutation that was responsible for the change in phenotype (Abe et al. 2012). 
The reference sequence should contain the genomic fragment spanning causative 
mutation which is unfortunately not guaranteed. This is because the reference 
sequence is constructed using the reference genome of a representative cultivar or 
line of the species, for instance, cv. Nipponbare in rice (Oryza sativa) and the Col 
ecotype in Arabidopsis thaliana. The parental line will be resequenced, and the 
nucleotides of the reference genome will be replaced with those of the parental line 
at all available SNPs. MutMap is particularly useful for crop species because it 
minimizes the number of genetic crosses and mutant F2 progeny that is required. 
Abe et al. (2012) applied MutMap to seven mutants of a Japanese elite rice cultivar. 
They successfully identified the unique genomic positions that most probably 
caused the mutations that lead to pale green leaves and semi-dwarfism. Fekih et al. 
(2013) further enhanced the MutMap technique calling it MutMap+. Through this 
method, it is not necessary to cross mutants and the wild-type parental line artifi-
cially, and thus it is useful in detecting mutations that cause lethality or sterility 
during early developmental stages. It is also a good approach for isolation of genes 
in plants that are recalcitrant to artificial crosses.

Despite its efficiency, the MutMap cannot identify gaps when comparing with 
the reference sequences. For this purpose, a new technique which is a combination 
of MutMap and de novo assembly of gap regions called the MutMap-Gap has been 
applied.

The MutMap-Gap technique involves delineating a region of interest that carries 
the required mutation using the MutMap method and followed by de novo assem-
bly, alignment, and identification of the mutation within genome gaps. Takagi et al. 
(2013) successfully applied the MutMap-Gap method to isolate the blast-resistant 
gene Pii from cv. Hitomebore in rice mutant lines that have nonfunctional Pii gene. 
It is inferred that MutMap-Gap method will further value the application of 
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whole- genome sequencing in isolating novel plant genes using forward genetic 
approaches.

20.3.7  In Vitro Mutagenesis

In vitro mutagenesis also known as cell culture mutagenesis is used to produce 
somaclonal variation in plants which are later screened concerning a particular con-
dition such as for drought tolerance, disease resistance, or resistance against other 
abiotic stress (Lestari 2012). Mutation induction during tissue culture enhances the 
effectiveness of mutation. It is easier to differentiate between mutated and non- 
mutated varieties as tissue culture also allows a variety of parts to be used for induc-
ing mutation. It also encourages the use of large population to be subjected to 
mutagens and also selection and cloning of mutated variants (Jain et  al. 2013). 
Tissue culture also solves the problem of heterozygosity and absence of a pheno-
type due to the existence of mutation as predominantly recessive. To obtain homo-
zygous alleles, several cycles of regeneration are required in the conventional 
method, while tissue culture saves capital and time that is utilized in the regenera-
tion of cycles by producing double haploids (Suprasanna et al. 2015).

Mutations cannot only be induced blindly, but in the era of molecular biology 
and genomics, they can be applied, modified, and detected by using various new 
techniques. These techniques may not necessarily involve the use of traditional 
mutagenesis to induce mutations in plants; rather, they are focused on introducing 
mutations at the molecular level.

20.3.8  Transposable Element Insertion and RNAi Mutants

Transposable elements are either introduced or are activated in genes and cause 
such changes in the genotype that are easily detected in the phenotype. This tech-
nique can be characterized as both forward and reverse genetics because these ele-
ments allow one to study specific gene sequences on the basis of a specific phenotype 
(Azman et al. 2014). On the other hand, in order to create mutants in crop varieties, 
techniques such as RNAi or antisense RNA suppression technique are applied 
although RNAi mutants produced have a very low range of allele varieties.

20.3.9  Gene-Targeted and Transcriptome Mutations

Specific genes of interest are targeted for modifications so as to achieve maximum 
desired results. A gene can be modified by either completely inactivating it, or a 
novel sequence appears suddenly due to successful repair of the DNA. This also 
gives the opportunity to introduce a gene of interest in the DNA break (Peer et al. 
2015). Gamma ray mutation brings about modifications in the transcriptome. Batista 
et  al. (2008) observed 11,000 affected genes in rice after exposure to gamma 
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radiations. These changes give an opportunity to study the expression of many 
genes and then tailor them for novel traits and characteristics as per requirement in 
different crop plants. Using this technique, even the silent mutations can be detected 
easily.

20.4  Other Advanced Molecular Techniques and Crop 
Improvement

With the advancement of molecular biology, many sophisticated techniques are now 
being practiced for the improvement of various crop plants. The need for producing 
a large amount of food grains and economically important crops has led to much 
research in the field of molecular biology. The early techniques of enhancing the 
food grains were based on Mendelian genetics. Later the release of new semi-dwarf 
varieties of rice and wheat for increasing food production resulted in “Green 
Revolution.” Finally many of the breeding programs were based on the modern 
tools and techniques of cell and molecular biology. The latter was equipped with 
other techniques of identifying the useful loci carrying the gene of interest known 
as quantitative gene loci (QTL) which led to a new era of plant breeding that made 
use of genomics. The last two decades have witnessed a remarkable activity in the 
development and use of molecular markers in plant systems that revolutionized the 
crop breeding methods (Gupta et al. 2008). Next-generation sequencing and array- 
based assays have further added to the revolutionary process, and the technology 
has now become high throughput with the effective use of bioinformatic tools (Kage 
et al. 2015). Many techniques can be carried out in silico that makes the process and 
progress of crop improvement cost-effective, fast, and accurate. Nowadays, the crop 
improvement has been taken to a much greater level without using traditional breed-
ing approaches. These new techniques include the tissue culture applications espe-
cially those involved in genetic transformation of the crops and also the latest 
technique of RNA interference.

20.4.1  RNA Interference

RNA interference (RNAi) has immense potential in opening a new vista for crop 
improvement as it interferes with the expression of genes in a specific mechanism 
that degrades its complementary mRNA. It has been employed successfully to alter 
the gene expression in plants for better quality traits like nutritional improvement in 
terms of bio-fortification and bio-elimination and also in overcoming the biotic and 
abiotic stresses (Saurabh et al. 2014). For gene silencing, miRNAs are extensively 
used. Many aspects of the plant growth including floral differentiation, leaf morpho-
genesis, transition from the vegetative stage to reproductive growth, hormonal 
changes, defensive mechanisms against pathogen invasions, and responses toward 
environmental stress are controlled by miRNA (Saurabh et al. 2014).

20 Improving Crop Health and Productivity: Appraisal of Induced Mutations…



412

One of the main limitations of RNAi occurs when siRNA-based RNAi plays a 
role in antiviral defense mechanism as plant viruses encode proteins that suppress 
silencing (Alvarado and Scholthof 2009). Also, suppressors of silencing from 
unrelated viruses involve a variety of mechanisms to block silencing, thereby 
making it difficult to persuade broad-spectrum protection. Another major limita-
tion is that post-transcriptional silencing in plants is mobile which once induced 
locally can then spread throughout the plant. Thus, siRNA-based RNAi strategies 
might not be suitable for applications where tissue-specific silencing of genes is 
required.

20.4.2  Plant Tissue Culture and Genetic Engineering

Tissue culture is the method of clonal propagation that consists of a set of in vitro 
techniques and strategies. These methods have been exploited to create genetic vari-
ability for crop improvement. Crop improvement is achieved by producing gameto-
clonal and somaclonal variation in the plant.

Tissue culture helps in improving the state of health of the planted material and 
also increases the number of desirable germplasms available to the plant breeder. 
Tissue culture techniques in combination with molecular techniques have been suc-
cessfully used to incorporate specific traits through gene transfer.

It is believed that for decades to come, genetic engineering will be the answer 
to the rising problems of the world. Genetic engineering tools produce plants with 
superior traits that are incorporated into the genome as well as engineered to pro-
duce high nutritional value crops (bio-fortification) and also modify plant prod-
ucts such as starch, oil, etc. for industrial or commercial use (Zhu et al. 2013). 
Genetic engineering improves crops by improving quality of plant products, 
increasing yield and productivity, and producing plants resistant to biotic and abi-
otic factors. Useful genes are incorporated in the plants from bacteria, animals, or 
other organisms by chemical, mechanical, or biological (via biological organism) 
method.

Genetic transformation can be carried both by direct method and indirect 
method. In the direct method of gene transformation, the gene is transferred using 
methods like electroporation, liposome-mediated transformation, microinjections, 
biolistics, and microprojectile bombardment or through chemical method usually 
using polyethylene glycol. On the other hand, in the indirect method, the transfor-
mation of the gene of interest is carried by a biological vector which is generally 
Agrobacterium tumefaciens or A. rhizogenes or vectors of viral origins. This patho-
genic bacterium transfers its DNA segment known as T-DNA found in the Ti plas-
mid (extrachromosomal DNA) into the host cell. Once this T-DNA is incorporated 
into the host cell genome, the desired trait is expressed in the cell (Fig.  20.3). 
Transgenics for useful traits have been studied in many crop plants (Datta 2012, 
2013).
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20.4.3  QTL Mapping and MAS

Basically, breeding is giving rise to a progeny that is better than its parent by cross-
ing the best varieties together. Many of the traits that are of economic value are 
controlled by many loci at a time, and each locus has a positive or negative effect 
upon the trait. These loci are termed as QTLs (quantitative trait loci) which are 
tightly linked with one or groups of genes that inherit together. The progeny with 
elite traits is usually backcrossed many times with its elite parents so as to make the 
trait stable and to introgress a single gene. With each generation of backcross, the 
gene of interest is selected, and recovery of plants with superior genotype is done. 
Gene pyramiding is done in the same way by crossing and introgressing more than 
one gene for the same trait followed by selection. Another breeding known as pedi-
gree breeding is done to make elite varieties in which parents with the elite genotype 
are crossed and their F1 generation is then self-pollinated to make the plant geno-
type stable. The identification of QTL associated with a complex trait is difficult and 
requires a closely linked DNA marker called as marker-assisted selection (MAS). 
MAS has become important for the traits governed by both major and minor genes. 
It can also be used to exploit and introgress the desirable traits that are present in the 
wild type. This approach is an important technique to identify useful traits that can 
be scrutinized and can be used toward crop improvement. The success of a breeding 
project mainly depends upon the choice of the parents that need to be crossed, the 
size of the population, and the individuals chosen for phenotypic and molecular 
analysis.

Gene pyramiding phenomenon works well to cumulate the superior trait genes 
present in the parents in a single plant against resistance to biotic and abiotic stress. 
Gene pyramiding has been applied successfully in wheat, against powdery mildew 
and rust diseases, and in barley against yellow mosaic virus and against soybean 
mosaic virus (Suzuki et al. 2015). Gene pyramiding gives the elite variety in just 
two subsequent generations (Joshi and Nayak 2010). Gene pyramiding, when 
applied along with genetic markers (biological features), is very efficient and can 
make the screening of desirable traits much faster. Since the genetic markers are 
close to the gene of interest on a chromosome, they are passed from generations to 
generations. This phenomenon is known as genetic linkage.

The possible advantage of MAS over conventional breeding is that these markers 
will only be useful and effective for every trait, if a huge investment is made in time, 
money, and resources required for their development. These do not have much role 
for those traits where effective phenotypic screening methods already exist and the 
traits where their genetic control is known or understood.

Many markers of desirable traits and disease resistance traits are now available 
for the majority of the important crops (Ibitoye and Akin-Idowu 2015). These mark-
ers includes (a) restriction fragment length polymorphism (RFLP), (b) random 
amplification of polymorphic DNA (RAPD), (c) amplified fragment length poly-
morphism (AFLP), (d) sequence-characterized amplified regions (SCAR), (e) 
sequence-tagged sites (STS), and (f) simple sequence repeat (SSR).
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RFLP are hybridization-based markers which are probed with specific DNA 
sequence as their restriction sites are changed in the target DNA. Different restric-
tion enzymes may be used to detect polymorphism, and these fragments are sepa-
rated on agarose gel. This method is time-consuming and has the involvement of 
radioactivity for detection purposes due to which it has been replaced by other PCR- 
based markers like RAPD, AFLP, SCAR, STS, SSRs, and SNPs. Of these, SSRs are 
the “markers of choice” due to the high rate of polymorphism, no prior genome 
information, and low cost of production. Nowadays, SNP markers are considered to 
be a high-throughput marker that can be used for screening of crops. These are 
based on point mutations, and their main limitation is that they are biallellic. SNPs 
are only restricted to major food crops but have been identified in silico from EST 
database or genomic databases.

In the urge of speeding up the process of selection and in turn breeding process, 
the development of microarrays on DNA chips was introduced. Microarrays have 
several spots of microscopic DNA that are immobilized over a solid surface that 
may be of nylon, glass, or silicon. These DNAs act as probes for its complementary 
mRNA. These are SNP-based markers which are used to transcript profiling of a 
cultivar by measuring the differences in hybridization signals. The level of polymor-
phism is detected by the amount of hybridized mRNA to it respective probes 
(Akpınar et al. 2013).

20.4.4  Next-Generation Sequencing

Few years ago, sequencing was very expensive and laborious. The problem is solved 
by the new array of sequencing technologies such as Roche/454 FLX Pyrosequencer, 
Illumina/Solexa sequencing, SOLiD sequencing, HeliScope single molecule 
sequencing, single molecule real-time (SMRT) sequencing, massively parallel sig-
nature sequencing, DNA nanoball sequencing, Ion Torrent semiconductor sequenc-
ing, and polony sequencing. Roche/454 FLX Pyrosequencing was one of the first 
methods introduced as the NGS. It uses the measurement of light that is produced 
proportionally to the number of nucleotides incorporated by DNA polymerase 
enzyme in the chain. In Illumina/Solexa sequencing, the nucleotide bases are labeled 
with a specific fluorescent dye and a special DNA polymerase for them. The read 
length is from both the paired ends.

20.4.5  Diversity Arrays Technology

The research of new SNP markers and then finding of more and more efficient 
assays to analyze or genotype SNPs is a very expensive and tiring work. A new 
promising technology of Diversity Arrays Technology (DArT) is able to discover 
many markers at a time and does not demand for an assay to detect them. This had 
been developed as a powerful tool for whole-genome fingerprinting tool (Kilian 
et al. 2012). DArT makes use of a complexity reduction step similar to the AFLP 
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marker that is used both for the generation of arrayed probe sequences and produc-
tion of labeled target DNA. DArT has been applied to a wide range of crop species 
because no prior genomic or DNA sequence is required. Since the markers are 
derived from a random library, the map position of each marker has to be deter-
mined experimentally. DArT technology is a good technique for species with large 
and complex genomes where sequence-based markers are difficult to obtain. There 
is currently a growing potential for the increased use of microarrays in crop research. 
A greater range of technological platforms will become available for more crops as 
sequencing efforts will proceed and as new resequencing methods will provide large 
number of new potential molecular markers (Galbraith and Edwards 2010).

DArT assay has been developed for about 16 crops including rice being the first 
one, wheat, barley, and sugarcane (Castillo et al. 2013).

20.4.6  Genome-Wide Association Studies and Genomic-Wide 
Selection

Finding the genetic basis of agronomic traits has been one of the major scientific 
challenges in the process of crop improvement. Most of the agronomically impor-
tant traits are quantitative in nature, and hence finding the discerning genetic differ-
ences underlying the phenotype of interest is a difficult task. More recently the use 
of genome-wide association studies (GWAS) and wide genomic selection (GS) is 
applied for plant breeding. This technology covers the whole genome so that all the 
genes are expected to have a linkage disequilibrium and also the population of unre-
lated individuals.

A number of unbiased set of common SNPs were studied in rice by Huang et al. 
(2011) to identify strong associations between genetic loci and different agronomic 
traits like heading date, grain size, and starch quality.

In genome-wide association studies, the traits that are strongly confounded 
reduce the power of the analysis and can lead to false negatives. Traits such as flow-
ering time and cold tolerance, which are governed by environmental gradients, 
reduce the association signals around major adaptive genes (Bergelson and Roux 
2010). Also rare alleles that are involved in natural variation are not detected.

20.5  Molecular Cytogenetics

Molecular cytogenetics of plants is a field of molecular biology that includes tech-
niques that are applied to identify the physical position of a known gene on a 
chromosome.

The power of cytogenetics has increasingly focused on two related aspects of the 
genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) 
technique Advances in microscopic sensitivity, signal increase, and noise reduction 
have all contributed to improved detection limits. The use of cytogenetic tools to 
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guide genome sequencing efforts in tomato and potato has been a milestone to study 
synergy between plant genomics and cytogenetics (Figueroa and Bass 2010).

FISH and GISH are frequently used for chromosome mapping in plants, to iden-
tify the chromosomes using species-specific genes or ribosomal genes. Using this 
physical technique, mapping of many crops has been carried out. GISH is also used 
in characterization of hybrid plants and recombinant breeding lines. GISH can elu-
cidate the relationship between wild and cultivated plants to identify their ancestry 
that can be identified in terms of phylogeny and taxonomy. The FISH patterns of a 
tissue culture regenerated population can be useful in identifying the somaclonal 
variation occurrence in the individuals. These results are useful specially when 
inducing mutations in the plants for crop improvement. GISH and FISH help in the 
detection of an alien chromosome in new plant varieties that may have segregated 
along with the desirable trait during the crossing (LU and Ellstrand 2014).

20.6  Bioinformatics and Crop Improvement

Progress in plant genomics based on omics research has led to significant discover-
ies. This has modernized the methods of crop improvements. The high-throughput 
methods of analyzing the immense amount of genomics and proteomics data have 
made it possible for scientists to sequence the genomes of model plants like 
Arabidopsis and rice and construction of large-scale EST libraries for large-scale 
comparative analysis (Chuang et al. 2015). Compared to the conventional methods 
of crop improvement, the latest techniques of molecular breeding like QTL and 
MAS have greatly increased the efficiency of the breeding process. MAS has lim-
ited role, when it comes to the selection of complex traits which are controlled by 
many genes and also genes with discrete phenotypes (Bosquet et  al. 2012). The 
availability of genomic tools and resources has facilitated the study of the relation-
ship between the genotype and its phenotype, particularly for complex traits.

The mass sequencing of genomes and transcriptomes using NGS is producing 
vast data, and thus the genomes can be tailored as per breeders’ needs. This has 
helped us to understand the complexity of the genome of an organism and their role 
in evolution. Even the resequencing of genomes is useful for genome-wide discov-
ery of markers (Perez-de-Castro et al. 2012; Barabaschi et al. 2016). The advent of 
NGS has unhidden all the valuable genes which were once hidden in landraces and 
wild cultivars and also their current diversity present in the gene pool.

Even an in silico paleogenomic study which is based on a deep comparison of 
monocot and eudicot genomes has allowed the reconstruction of ancestral proto-
chromosome segments and has provided the description of the evolutionary dynam-
ics which lead to the present-day genomes, their organization, and regulation (Salse 
2012).
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20.7  Conclusion and Prospects

Crop improvement is a fundamental process that needs to be performed rapidly and 
efficiently so as to meet the requirement of commercial and industrial crops in 
today’s time. This paper emphasized on the molecular techniques and techniques 
applied to induce mutations to produce better crops in respect to yield, productivity, 
resistance against biotic and abiotic stress, and enhanced production of secondary 
metabolites. Induced mutation has been seen to be an effective, safe, cheap, and 
successful technique for introducing new and improved crop varieties. Techniques 
such as TILLING and EcoTILLING have greatly contributed toward the improve-
ment of this method. However, these techniques are not frequently applied for the 
concerned purpose mainly due to the large population size of putative mutants that 
needs to be handled and repeated crossing of the plants to many generations in order 
to eliminate the presence of chimeras. Moreover, the mutations are usually recessive 
and require repeated crosses to achieve viable homozygous plants.

Induced mutation is not only a useful technique in crop improvement but also 
overcomes the regulatory restrictions imposed on GMOs. It involves screening 
approaches along with the reverse genetic selection of useful mutations that could 
result in a major impact on crop breeding in the near future. It is frequently applied 
for functional genomics, and new genes are exploited for their new functions, 
thereby indirectly contributing toward crop improvement. Gene editing through 
induced mutations has allowed improvement in nutrition, plant breeding proce-
dures, seed oil composition, weed protection, and disease resistance in polyploidy 
food crops including wheat, citrus, potato, peanut, cotton, apple, and Brassica oils 
including rapeseed, Camelina, and canola (Weeks 2017).

Recent techniques in inducing and screening mutations allow the identification 
of novel alleles of target genes within existing germplasm collections and muta-
genized populations, thereby assessing the candidate genes for future crop improve-
ment. Researchers are adopting plant gene editing techniques including CRISPR-Cas 
genome editing tools, which have potentials in work on model organisms, evolu-
tionary studies, and improvement of food crops (Carroll 2017).

Although molecular biology is now much advanced and new techniques are 
available to speed up the process of crop improvement at low cost, still much work 
is required in the field to achieve the required target of crop production. One such 
hindrance is the identification of desirable traits. Not many elite traits are available 
for manipulation in the gene pool that can give improved crops. This can be achieved 
by extensive knowledge of functional genomics which is possible by the integration 
of various fields such as bioinformatics, biotechnology, molecular biology, and bio-
chemistry toward identifying useful traits. Another challenge faced in plant breed-
ing for crop improvement especially in MAS of QTLs is of analyzing the data and 
scoring methods available to do so especially when a large size of population is 
under study. Improved scoring methods and screening tests need to be developed to 
make screening of bred plants more efficient and make it possible to breed useful 
traits effectively.
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It will be advantageous if other fields of biology also contribute toward crop 
improvement along with molecular biology. More focus needs to be given to cash 
crops and food crops such as rice, wheat, potato, cassava, cotton, etc. Utilization of 
genome-wide approaches, such as genome sequencing, is helping to design the new 
plant with selected traits for all the loci in the genome, in a cost-effective manner. 
This would eliminate the need for extra multi-location field trials at each generation 
but would only require some phenotyping to maintain and increase the accuracy of 
the prediction models. With newer techniques being introduced in the field of 
molecular biology and their use in plant breeding, novel alleles will not be impeded 
from the crops, and this will assure a continuous supply of food grains, and the 
problem of food shortage as foreseen can be avoided.

The development of mutated crops will lead to the satisfaction of high demand 
of consumers, nutrient-rich crops, food safety and security, and production of high 
value-added crops in the future (Ilahy et  al. 2018). These improved crops are 
expected to produce pharmaceutically important compounds and show resistance to 
biotic and abiotic stresses. However, there is a long way to go to achieve success in 
commercialization of mutated plants (Dawkar et al. 2018).
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Abstract
The world population is exceeding 7.63 billion, resulting in more than quadru-
pled compared to that of 1915 (1.8 billion), and according to the United Nations 
most recent predictions, we may reach 9.7 inhabitants by the year 2050. This 
exponential growth, along with the shift from rural to urban life, the increase in 
per capita food consumption, and the changes in diet in developing countries, 
due to the rise in income, are driving up the global food demand, which is 
expected to increase worldwide from 59% to 98% in the next 30 years. However, 
it will be hard to square the twin challenge of reconciling a maximization of 
agricultural production with environmental sustainability. Indeed, in the last 
50 years, mechanization and new management techniques based on the massive 
use of fertilizers and irrigation have increased agricultural production also in arid 
and semi-arid areas, but they have also exacerbated the problems of soil salinity 
and pollution. In fact, one of the most serious effects of these unsustainable prac-
tices has been the salinization of at least 20% of all irrigated and productive 
lands. Therefore, the main objective of modern agriculture is to increase crop 
yield production and potential, also in marginal and salinized areas, through 
innovative farming systems and/or products with an eco-friendly approach. 
Among the new products which have favorable effects both on soil and cultivated 
crops, even under environmental constrains like salinity, are biostimulants. They 
include substances, metabolites, or mixtures of metabolites and/or microorgan-
isms which, when applied to plants or soil, increase the nutrient availability, 
uptake, and assimilation while reducing the use of agrochemicals in agriculture 
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and improving food resources, preventing leaching of nutrients, and increasing 
the response to stress in an eco-friendly perspective. Biostimulants do not replace 
fertilizers or pesticides but represent a complement to the action of both fertiliz-
ers and crop protection products, allowing enhancing crop performance even 
under stress. We will consider the biostimulants derived from plants or animals 
like seaweed extracts, humic substances, protein hydrolysates, microbial inocu-
lations, etc. and will describe their beneficial effects on plants, especially nutrient 
use efficiency and plant fitness to abiotic stresses and in particular to salinity.

Keywords
Biostimulants · Salinity · Abiotic stress tolerance · Resource use efficiency · 
Seaweed extracts · Humic substances · Protein hydrolysates · Microbial 
inoculations

Abbreviations

APX ascorbate peroxidase
CAT catalase
EBIC European Biostimulants Industry Council
GMOs genetically modified organisms
GR glutathione reductase
HS humic substances
MF mycorrhizal fungi
PGPR plant growth-promoting rhizobacteria
PHs protein hydrolysates
ROS reactive oxygen species
RUE resource use efficiency
SOD superoxide dismutase
SWEs seaweed extracts

21.1  Introduction

Agriculture is an essential component of the economic and productive system of 
many countries. Since the last century and in particular over the past five decades, 
conventional agriculture has spread all over the world, replacing the traditional one. 
Thanks to the green revolution, the possibility to use high-yielding variety seeds, 
chemical fertilizers, and pesticides together with mechanization has oriented farm-
ers toward the objective to maximize production and profits. Over time, it has 
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allowed tripling the cereal crop production increasing only of 30% the cultivated 
land area and to cope with the doubling of world’s population (Wik et al. 2008). 
However, this agricultural model has required not only large public investment in 
crop engineering and technologies, mainly by developed countries, but has also 
entailed the use of intensive agricultural practices critical for the ecology of the 
agricultural system as well as for the environment in general and directly or indi-
rectly on human health (Pingali 2012). The use of high-yielding varieties has 
brought about, in fact, high inputs of fertilizers, water, and pesticides and at the 
same time intensive tillage. These practices, disturbing soil microorganisms’ bio-
logical activity and diversity, have led to soil erosion, runoff, and loss of soil organic 
matter (Annunziata et al. 2013). Moreover, they have determined accumulation of 
pollutants in soil and water, nonselective toxicity on fauna, induced resistance by 
pests, reduction of biodiversity, and presence of potentially harmful chemicals in 
food products (Pingali 2012 and references therein).

In order to limit these negative effects, various agricultural production systems 
with a lower environmental impact have been introduced, like integrated agricul-
ture, eco-compatible agriculture, sustainable agriculture, and biodynamic and 
organic farming. All of these agricultural systems imply a sustained crop production 
without relying on chemical synthesis products in the field and/or invasive prac-
tices, like intensive tillage and monoculture, for preserving natural resources and 
environment (De Pascale et al. 2012; Tal 2018; Muller et al. 2017; Bullock 1992).

In recent years, expectations and demands of consumers for good-quality and 
healthier food and government policies focused on eco-friendly agriculture practices 
have both boosted organic farming system (Dornburg et al. 2010). Between 2008 and 
2016, organic horticulture has almost doubled, with about 3.5 million hectares culti-
vated following this production system, practiced in more than 87 nations (Willer 
and Lernoud 2016). Organic farming, according to the European Union Organic 
Regulation 834/2007, is a global system of “farm management and food production” 
relying on the beneficial interaction between eco-friendly practices, preservation of 
natural resources, conservation and protection of plant and animal biodiversity, and 
crop production obtained with natural substances and processes.

However, the main disadvantage of organic farming compared to the conven-
tional one is the lower yield that makes it necessary to increase the surface area of 
the soil to obtain the same amount of product and therefore to deforest a larger area 
to be used for agriculture, limiting the environmental benefits of biological system 
(Seufert et al. 2012). Recent studies conducted on the productivity of the noncon-
ventional systems have shown that the decrease in yield of organic farming can 
range between 5% and 34%. This decrease can be mainly attributable to reduced 
availability of nutrients such as N and P and to a greater biotic pressure that is 
expressed in the increase in fungal, bacterial, or parasitic diseases in general (Seufert 
et al. 2012; Orsini et al. 2016; and references therein). These aspects are in contrast 
with the need to increase crop production to meet the growing food demand from 
the rapidly expanding human world population. The predictions based on recent 
studies conducted in the United Nations estimate a population of almost ten billion 
by 2050, increasing the agricultural demand by 50%, at least, compared to 2013. 
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The better per capita incomes in developing countries would imply higher con-
sumption of meat, fruits, and vegetables compared to that of cereals, boosting the 
pressure on soil, water, and already heavily depleted ecosystems (FAO 2017).

Nowadays, agriculture is responsible for the 69% of freshwater withdrawn 
worldwide, and in the coming decades, the share of this resource accessible on 
Earth may not be sufficient to meet the anthropic demands (UN 2018). In addition, 
agricultural lands, particularly in arid or semi-arid regions, which require more fre-
quent irrigation, undergo secondary salinization that reduces productivity. Today, 
around 15–20% of irrigated soils are characterized by an increase in salinity that 
hinders the development of most crops (Carillo et  al. 2011a; Machado and 
Serralheiro 2017).

Allocating new areas of the land surface for agricultural use to support global 
food needs would result in a significant increase in costs in ecological terms due to 
the consequent increase in CO2 emissions and loss of biodiversity. Therefore, the 
most satisfactory alternatives are those that aim to increase the yield per unit of land 
area in a sustainable way.

A very important approach is that of genetic engineering, which could allow 
obtaining transgenic lines of some species of crops able to grow and develop even 
in environmental conditions characterized by high salinity or low water availability. 
However, the use of genetically modified organisms (GMOs) creates concern over 
potential unintended effects and new risks to food security and environmental and 
human health and therefore implies numerous ethical, political, and social implica-
tions (Maghari and Ardekani 2011).

On the contrary, a promising and sustainable alternative that is attracting global 
interest is the use of natural substances and microorganisms, called biostimulants, 
that can improve the resource use efficiency by plants and increase their ability to 
tolerate and react to biotic or abiotic stresses(du Jardin 2015). Biostimulants repre-
sent a valuable tool that can help to reduce the yield gap between the organic pro-
duction system and conventional agriculture with more efficient and environmentally 
sustainable use of natural resources. Their use can respond to the increasing global 
food demand and at the same time meeting the requirements of food security and 
quality of products (Colla and Rouphael 2015; Van Oosten et al. 2017).

21.2  Salinity Stress

Soil salinity is one of the most widespread threats limiting the yield potential of agri-
cultural crops, which affects all climatic regions, mostly in arid and semi-arid 
regions(Hasanuzzaman et al. 2014). Agricultural losses caused by this abiotic stress are 
difficult to evaluate, but it has been estimated that it jeopardizes the food production of 
about 6% of the worldwide cultivated lands and 20% of all irrigated lands (Aslam et al. 
2017; Munns and Tester 2008; Hasanuzzaman et al. 2013). Climate changes will exac-
erbate this phenomenon; predictive models have estimated that irrigated soils affected 
by salinity may reach 50% in the coming years (Pitman and Läuchli 2002).
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Soil salinity can be caused by many natural or anthropogenic factors. Primary 
salinization is mostly due to the intrinsic characteristics of the soil and natural 
factors, while secondary salinization is mainly due to human activities. The main 
factors liable for primary soil salinization are weathering of rocks, capillary rise 
from shallow brackish groundwater, intrusion of seawater in fresh aquifers along 
the coast, salt-laden sand blown by sea winds, hindered drainage, and last, but 
not the least, seasonal rainfall variability. While the human activities that cause 
secondary soil salinization are the deleterious practices in agricultural manage-
ment, in particular the introduction of irrigation without proper drainage system, 
excessive use of fertilizers, removal of natural plant cover, flooding with salt-rich 
waters, and use of poor-quality groundwater for irrigation (Rasool et al. 2013; 
Carillo et al. 2011a).

On the basis of their different ability to tolerate salinity, plants can be classified 
into glycophytes and halophytes. Halophytes are plant species able to complete 
their life cycle even under conditions of high salt concentration in the soil. Most of 
the terrestrial plants including agricultural crops are, instead, salt-sensitive glyco-
phytes, and their growth is strongly inhibited by high levels of salt which cause 
osmotic stress and ion toxicity (Cheeseman 2015; Munns and Tester 2008; Gorham 
et al. 2010). In alkaline soils, the excess of sodium ions interacts with the negative 
charges present on the surface of the soil particles, hindering their interaction with 
other particles. In this way, the soil is more compact, less permeable, and aerated, 
with resulting problems soil hypoxia (Keren 2003). Moreover, if evapotranspiration 
exceeds the amount of irrigation and rainfall, the excess of Na+ and Cl− in the soil 
solution causes a lowering of its osmotic potential and consequently a reduction of 
root water uptake ability, stomatal aperture, and transpiration and therefore an alter-
ation of all plant water relations (Zhu 2003; Munns 2002; Läuchli and Epstein 1990; 
Flowers et al. 2015; Annunziata et al. 2017). In particular, when sodium is present 
at high concentration in the plant cells, it is able to substitute potassium in key enzy-
matic reactions inhibiting enzymes, affecting metabolic processes, and inducing 
plant nutritional imbalance and oxidative stress. These effects further impair pro-
cesses like protein synthesis, enzyme activities, and photosynthesis, reducing plant 
growth and development (Carillo et al. 2011b; Hasegawa et al. 2000; Munns and 
Tester 2008) (Fig. 21.1). Germination and seedling stages are particularly sensitive 
to salt toxicity (Ferchichi et al. 2018).

However, plants try to limit stress damages and restore growth by sequestrating 
toxic ions (mainly sodium and chloride) in the vacuole, as cheap osmotica, and 
synthesizing and accumulating compatible osmolytes in the cytosol to prevent tox-
icity and osmotically adjust the cell (Annunziata et al. 2017). The synthesis of these 
compatible compounds is energy-consuming (50–70 moles ATP for mole) (Raven 
1985; Shabala and Munns 2012), but they, in addition to their supposed role as 
osmolytes, can scavenge reactive oxygen species (ROS), osmoregulate the cytosolic 
compartments, stabilize membranes, buffer redox potential, and induce salt- 
responsive genes (Carillo 2018).
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21.3  Biostimulants

Plant biostimulants are substances or microorganisms that when introduced into the 
plant growing environment may have positive effects on growth and tolerance to 
biotic and abiotic plant stresses. Biostimulants increase the availability, uptake, and 
assimilation of nutrients, as well as the resistance to environmental stresses such as the 
presence of parasites or pathogens, water deficit, soil salinization, and exposure to 
suboptimal growth temperature (du Jardin 2015) (Fig. 21.1). Biostimulants are not 
nutrients and do not have direct effects on parasites and pathogens, so they cannot be 
considered as fertilizers or pesticides (Colla and Rouphael 2015). On the contrary, 
they are a category of products that includes different types of materials and sub-
stances, similar to each other for the effects they have on crops, but with a very differ-
ent chemical or biological composition (du Jardin 2015). They often are mixtures of 
complex compounds or aggregates that make it difficult to determine which of the 
specific components make positive contributions (Van Oosten et  al. 2017). The 
improvement of the nutritional status of plants, contextual to the use of biostimulants, 
may be due to synergistic and additive effects regarding the (i) improvement of bio-
logical nitrogen fixation processes, (ii) higher mineralization of dead organic matter 
by microorganisms,(iii) better mobility and solubility of nutrients, (iv) structural 
changes of roots which increase the volume of soil accessible by the root system itself, 
and (v) upregulation of transporters and enzymes involved in uptake and assimilation 
processes in various tissues (De Pascale et al. 2018) (Fig. 21.1).

Fig. 21.1 Overview of the effects of salinity stress and biostimulant application on plants
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Usually, in the soil, less than 5% of total nitrogen is present as inorganic nitrogen 
compounds (i.e., NH4

+, NO2
−, and NO3

−), although it is essential for the normal 
growth of the plant and the main form of the element absorbed (Brady and Weil 2008). 
In agriculture, the maintenance of soil fertility to meet the nutritional requirements of 
crop plants is guaranteed by the application of organic and inorganic fertilizers (Hartz 
2003). However, not all the fertilizers applied to soil are absorbed and available to the 
plants, since most are lost by leaching, volatilization, and denitrification (Brady and 
Weil 2008). In particular, losses of nitrogen fertilizers from the soil/plant system can 
not only decrease soil fertility and crop yield but also severely impact on the environ-
ment, causing eutrophication, greenhouse effect, and acid rains (Cameron et al. 2013; 
Gastal and Lemaire 2002). Moreover, the consumption of contaminated water or 
crops containing high amounts of nitrates and nitrites can be very dangerous for ani-
mal and human health (Cockburn et al. 2013). Biostimulants can improve the nutrient 
uptake and assimilation efficiency in plants while reducing the use of agrochemicals 
in agriculture and improving food resources, preventing leaching of nutrients, and 
increasing the response to stress (Meena et al. 2015; de Wit 1992).

The use of pesticides is regulated by European Union regulations. For this rea-
son, targeted research is necessary in order to be able to find suitable substances that 
are not harmful to the environment and, at the same time, to humans. The use of 
chemical products in agriculture could be drastically reduced by the use of plant 
biostimulants, which are completely safe and do not damage the environment.

In Europe, in order to promote the growth and development of the European bios-
timulant industry and overcome regulatory differences between member states, the 
European Biostimulants Industry Council (EBIC) was legally recognized in 2013. The 
EBIC represents a platform for interaction and exchange of information between the 
various stakeholders such as farmers, industrialists, investors, scientists, and consum-
ers. In 2012, the European Commission supported a study carried out internationally 
by Patrick du Jardin, which made it possible to identify and list many substances with 
biostimulant properties. The list includes humic substances, complex organic materi-
als, beneficial chemical elements (e.g., silicon), inorganic salts (e.g., bicarbonates), 
algae extracts, chitin and chitosan derivatives, antiperspirants (e.g., kaolin), amino 
acids, and other nitrogen compounds. EBIC defined biostimulants as “Products con-
taining substances and/or micro-organisms that, when applied to the plant or the rhizo-
sphere, stimulate natural processes that improve the efficiency of absorption and 
assimilation of nutrients, the tolerance to abiotic stress and/or product quality regard-
less of their nutrient content” (du Jardin 2015). More recently, Yakhin et al. (2016) have 
given a more detailed definition of biostimulants to discriminate between them and the 
already existing product categories, among which are fertilizers, pesticides, and plant 
hormones. This definition describes biostimulants as “a formulated product of biologi-
cal origin that improves plant productivity because of the novel or emergent properties 
of the complex of constituents and not as a sole consequence of the presence of known 
essential plant nutrients, plant growth regulators, or plant protective compounds.”

Many studies have highlighted the numerous positive effects of the diverse ani-
mal- and plant-derived biostimulants on plant growth and metabolism even under 
environmental stresses and in particular under salinity (Table 21.1).

21 Use of Biostimulants to Improve Salinity Tolerance in Agronomic Crops



430

Table  21.1 Summary of the effects exerted by different animal- and plant-derived biostimulants 
on plants under salinity stress

Biostimulant Crop Effect related to salinity tolerance References
Seaweed 
extracts

Solanum 
melongena

Increase of phenols, tannins, total 
soluble sugars, activity of SOD and 
APX, and potassium to sodium ratio

Hegazi et al. (2014)

Triticum 
aestivum

Increase of antioxidant enzyme 
activity (SOD, CAT, APX, and GR)

Ibrahim et al. 
(2014)

Triticum durum Increase of seed germination, growth, 
and antioxidant enzyme activities

Latique et al. 
(2017)

Triticum durum Increase of leaf pigments, total 
phenolics, carotenoids, and 
antioxidant enzymatic activities

Chernane et al. 
(2015)

Persea 
americana Mill.

Improve growth parameters. Increase 
potassium and calcium content in 
leaves

Bonomelli et al. 
(2018)

Humic 
substances

Solanum 
lycopersicum

Increase root growth and decrease 
membrane damages

Türkmen et al. 
(2004) and Paksoy 
et al. (2010)

Phaseolus 
vulgaris

Increase proline levels Aydin et al. (2012)

Capsicum Increase mineral nutrient uptake 
efficiency in shoot and root. Reduce 
sodium content in shoot and root

Çimrin et al. (2010)

Lepidium 
sativum

Increase germination. Masciandaro et al. 
(2002)

Zea mays Improve growth parameters Masciandaro et al. 
(2002)

Protein 
hydrolysates

Diospyros kaki Increase the synthesis of compatible 
osmolytes

Visconti et al. 
(2015)

Lactuca sativa Increase root dry weight, total length, 
and macronutrient uptake and 
assimilation

Lucini et al. (2015)

Zea mays Increase plant biomass and proline 
content in leaves. Stimulate nitrogen 
metabolism and antioxidant defense

Ertani et al. (2013)

Microbial 
inoculations

Lactuca sativa Increase germination and fresh and 
dry weight

Barassi et al. 
(2006)

Zea mays Increase of uptake of potassium and 
phosphorus and nitrogen availability, 
exclusion of sodium

Rojas-Tapias et al. 
(2012)

Triticum 
aestivum

Increase biomass, N content, and 
grain yield

Chaudhary et al. 
(2013)

Cicer 
arietinum, Vicia 
faba

Increase nodulation and root and 
shoot development

Hamaoui et al. 
(2001)

Hordeum 
vulgare

Reduce ethylene emission and root 
surface sodium uptake. Increase root 
and shoot dry weight and water 
content in the root system

Suarez et al. (2015)
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21.3.1  Seaweed Extracts

In agriculture, the use of seaweeds as fertilizer is a very old practice, known in 
Roman times and also adopted in Britain, France, Spain, Japan, and China for centu-
ries (Nedumaran and Arulbalachandran 2015). Seaweeds contain all the elements 
and the hormones required for plant growth. The extracts are rich in minerals like 
nitrogen, phosphorus, and potassium and growth hormones like auxins, cytokines, 
and gibberellins, as well as vitamins, fatty acids, amino acids, antibiotics, and micro-
nutrients (Blunden 1972; Booth 1965). Carbohydrates and other organic substances 
present in algae can change the nature of the soil and improve its ability to retain 
moisture (Zodape 2001). Often, seaweed material is even more efficient than chemi-
cal fertilizers (Craigie 2011). Several studies, in many species, have highlighted the 
positive effects on the growth of plants favored by seaweed extracts (SWEs). 
However, the nature of seaweeds is very mutable and complex; this makes it difficult 
to determine which constituents are responsible for this activity (Di Stasio et  al. 
2018; Van Oosten et al. 2017). The SWEs can also improve the tolerance to salinity, 
heat, cold, and drought (Latique et al. 2014; Shukla et al. 2018; Di Stasio et al. 2018). 
Many studies have shown that SWEs have excellent activities against salt stress 
(Chernane et al. 2015). In particular, their positive effects are due to the induction of 
synthesis of antioxidant molecules and bioactive compounds which could improve 
plant growth and stress resistance (Cardozo et al. 2007). Hegazi et al. (2014) showed 
that SWE application to eggplants under salinity could increase phenol, tannin, and 
total soluble sugar content and superoxide dismutase (SOD) and ascorbate peroxi-
dase (APX) enzymatic activities, promoting higher potassium to sodium ratio. In T. 
aestivum seedlings under salinity, the increase in the concentration of applied SWEs 
from 1% to 10% can determine a significant rise in plant fresh and dry weight and the 
increase of activity of APX and glutathione reductase (GR) at 1% SWEs and SOD 
and catalase (CAT) at higher concentration of algal extracts (Ibrahim et al. 2014). 
Ascophyllum nodosum-based SWEs increased the accumulation of minerals, antioxi-
dants, and essential amino acids in tomato fruits under salinity, improving the fruit 
growth and nutritional value (Di Stasio et al. 2018).

21.3.2  Humic Substances

Humic substances (HS) are natural substances produced by chemical and biological 
transformations of organic residues and by microbial metabolism during the decom-
position process (du Jardin 2015; Canellas et al. 2015). Humic substances represent 
about 80% of the organic fraction of the soil and affect its physicochemical proper-
ties, in particular helping soil to retain water in a very efficient way than does sand 
and to reduce water needs in agriculture. Humic substances are polymeric com-
pounds with inconstant composition depending on their genesis, without specific 
chemical formula, dark, colloidal, partially aromatic, acidic, hydrophilic, and able 
to retain water and cations. Humic substances have a high molecular weight and are 
very resistant to degradation. They are mainly composed of humic acids, fulvic 
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acids, and humin. These molecules differ from each other because of the degree of 
solubility, the molecular weight, and the functional groups. Fulvic acids have a 
higher oxygen content and a lower molecular weight compared to humic acids 
(Bulgari et al. 2015).

The stimulation of root growth and the improvement of the nutritional status of 
plants, mainly linked to the increase of resources’ (nutrients plus water) availability 
in the soil, are the principal biostimulant effects of HS. They improve the availabil-
ity of nutrients by increasing the cation exchange capacity and the buffering power 
of the soil (du Jardin 2015; Canellas et al. 2015). Furthermore, the HS form soluble 
complexes with micronutrients (e.g., iron), which improve the nutrients’ availability 
for plants preventing their leaching (Chen et al. 2004; García-Mina et al. 2004). The 
micronutrients complexed with fulvic acids can also be absorbed directly from the 
plant cells, because of the low molecular weight of fulvic acid which can easily 
reach the plasma membrane. Humic acids can interact only with the cell wall 
because of its larger size (Nardi et al. 2009).

Humic substances show significant effects also on plant secondary metabolism, 
promoting tolerance to environmental stresses. For example, the hydroxyl, carbox-
ylic, and phenolic groups of humic substances are the main binding sites for herbi-
cides and heavy metals. In particular, humic acids enhance the photolysis and 
therefore the detoxification of atrazine (Zeng et  al. 2002). Moreover, they form 
complexes with free Pb2+ ions in solution limiting their absorption and translocation 
in plants and their entry into the food chain (Santos et al. 2014). Furthermore, there 
are numerous examples showing the potential of these substances to improve the 
tolerance to salinity stress in plants. Tomato studies have shown that the application 
of HS can induce salt tolerance by increasing root growth and decreasing membrane 
damage (Paksoy et al. 2010; Türkmen et al. 2004). Application of humic acids to the 
common bean (Phaseolus vulgaris L.) in conditions of high salinity (120 mM NaCl) 
resulted in increased levels of endogenous proline (Aydin et al. 2012).

21.3.3  Protein Hydrolysates

Plant- and animal-derived protein hydrolysates (PHs), defined as mixtures of poly-
peptides, oligopeptides, and amino acids, produced from plant or animal protein 
sources through partial hydrolysis, are applied as biostimulants on numerous crops 
(Colla et al. 2015a). Chemical reactions (acid or alkaline hydrolysis) and thermal 
and enzymatic hydrolysis of many animal wastes and plant biomass are principally 
used for the production of PHs (Colla et al. 2017; du Jardin 2015). The innovative 
use of plant and animal biomass, which represents a largely available and cheap raw 
material, could be a valid eco-friendly solution for producing these bio-products 
while reducing the need for their disposal in landfills, which could adversely impact 
the environment (Carillo et  al. 2012; Carillo and Morrone 2017; Baglieri et  al. 
2014). The chemical composition of PH commercial products can highly differ in 
dependence on the source of proteins (animal or plant residual biomass) and synthe-
sis process (chemical and/or enzymatic hydrolysis) (Ertani et al. 2009, 2013; Colla 
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et al. 2017). Anyhow, the major components are represented by free peptides and 
amino acids (Calvo et al. 2014). Other compounds may also be found, such as car-
bohydrates and trace amounts of mineral elements, phenols, phytohormones, and 
other organic compounds (Ertani et al. 2014; Colla et al. 2015a).

Protein hydrolysates are having a fair success in agriculture because of their abil-
ity to increase germination, productivity, and quality of a wide range of horticultural 
and agronomic crops. They can indirectly affect plant growth by increasing the 
availability of nutrients in the soil and the absorption and use efficiency of nutrients 
as well as stimulating the growth of microorganisms in the rhizosphere and phyl-
losphere (Colla et al. 2015b). Protein hydrolysates can directly stimulate carbon and 
nitrogen metabolism, regulating key enzymes involved in the N uptake and assimi-
lation process and interfering with hormonal activity (Colla and Rouphael 2015; 
Colla et al. 2015a; du Jardin 2015; Nardi et al. 2016).

Their application can also alleviate the negative effects of salinity, drought, 
and heavy metals on the plant (Rouphael et  al. 2017). Several studies on the 
mechanisms underlying their beneficial effects show the ability of small pep-
tides and other amino acid derivatives to induce plant defense responses, thus 
increasing plant tolerance to abiotic stresses (Tuteja 2007). According to 
Visconti et al. (2015), the application of PHs and calcium was able to reduce 
Cl− uptake, leaf necrosis, and leaf water potential in persimmon trees grafted on 
Diospyros lotus under salinity, even if soil salinity and Cl− concentration 
increased upon treatment. The increase of compatible osmolytes like glycine 
betaine and proline and salt stress response proteins in the PH-treated plants 
(Visconti et al. 2015) suggests that these biostimulants can activate an alterna-
tive plant defense mechanism. As also seen in plants under the combined appli-
cation of multiple stresses, PHs probably induce new transcription factors able 
to modify gene expression programs and create new genetic traits for salinity 
stress adaptation (Woodrow et al. 2011, 2017). Accordingly, Lucini et al. (2015) 
found that the application of plant-derived PHs on roots and/or leaves of lettuce 
plants under salinity improved the nitrogen assimilation and photosynthesis 
efficiency in treated plants. The authors related the improved lettuce crop toler-
ance to salinity to a PH-dependent phenomenon of oxidative stress mitigation, 
due to the increase of osmolyte and glucosinolate synthesis and accumulation 
and changes in sterol and terpene composition.

21.3.4  Microbial Inoculations

The plant microbiota consists of a complex microbial consortium including bac-
teria, fungi, protists, and viruses, many of which are able to create a beneficial, 
neutral, or harmful interaction with the host. In particular, beneficial interactions 
with microorganisms like mycorrhizal fungi or nitrogen-fixing symbiotic bacte-
ria play a crucial role in availability and acquisition of nutrients by crop plants 
indirectly influencing their growth and development (Jacoby et al. 2017; Philippot 
et al. 2013), even under abiotic stress conditions (Bulgarelli et al. 2013). These 
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microorganisms have co-evolved with their hosts and are significant for crop 
growth and for ecosystem functioning (Turner et  al. 2013; Marin et  al. 2017; 
Bona et al. 2018). Their cell number highly exceeds that of plant cells, and their 
genome is also generally defined as the second genome of the plant or its micro-
biome (Berendsen et al. 2012). Several studies have shown that phylogenetically 
not related plants present a radical microbiome dominated only by a few phyla of 
bacteria, principally belonging to proteobacteria, actinobacteria, bacteroidetes, 
and to a lesser extent firmicutes (Berg et al. 2016). The fungal communities, on 
the other hand, are more numerous and assorted, and their composition varies 
according to biogeography, the host plant species, and the plant compartment 
(Shakya et al. 2013).

Most of the interactions between microorganisms and plants occur in the rhizo-
sphere, a confined area of soil that surrounds and is influenced by plant roots, as 
well as in the phyllosphere which covers the surface of the leaves. The rhizosphere 
is rich in root mucilage, exudates, and sloughed cells (Bertin et al. 2003). Plant and 
cultivar species influence the composition of root exudates (Micallef et al. 2009), 
which are mainly composed of organic acids and sugars but also amino acids, fatty 
acids, vitamins, growth factors, hormones, and antimicrobial compounds (Bertin 
et al. 2003). Cellulose and pectins, instead, predominate in mucilage and sloughed 
cells (Dennis et al. 2010) and are degraded by cellulolytic bacteria, in particular 
Bacillus, Pseudomonas, Streptomyces, and Clostridium (Carillo et al. 2012), and 
fungi present in soil and operate via a two-stage process that at the end forms glu-
cose that can be rapidly used as a carbon source by heterotrophic soil microorgan-
isms (Killham and Prosser 2015).

Plant growth-promoting rhizobacteria (PGPR) are of particular interest since 
they are able to bring beneficial effects to plant growth, making nutrients avail-
able and favoring their absorption (Bloemberg and Lugtenberg 2001). They can 
fix atmospheric nitrogen, synthesize several compounds like amides or phytohor-
mones, solubilize phosphorus-containing minerals, as well as transfer nutrients, 
trace elements, and water directly into the roots and promote the process of 
decomposition of the organic matter of the soil. Many PGPR may also influence 
plant growth indirectly by acting as antagonists to plant pathogens through the 
production of antimicrobials (Rezzonico et  al. 2005). In particular, actinomy-
cetes are very common in soil and in the rhizosphere and produce many antibac-
terial substances but also antifungal, antiviral, nematocide, and insecticide 
compounds (Turner et  al. 2013). Similar to PGPR, the association between 
mycorrhizal fungi (MF) of the soil and the roots of the plants is also beneficial. 
Fungi can also improve the availability of phosphate, ammonium, nitrate, cal-
cium, zinc, and iron in conditions of nutrient deficiency or low availability, since 
the dense network of external hyphae, which extend the surface of absorption of 
nutrients and production of secretions of organic substances, are able to bind 
and/or solubilize nutrients (Marschner 1986).
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Symbiotic microorganisms can also improve the plant’s tolerance to abiotic 
stresses. Bacteria potentially able to act as biostimulants belong to different genera 
such as Rhizobium, Bradyrhizobium, Azotobacter, Azospirillum, Pseudomonas, and 
Bacillus (Selvakumar et al. 2009; Upadhyay et al. 2009). One of the strategies these 
microorganisms adopt is the production of a protective biofilm layer on the root 
surface, thanks to the greater accumulation in the cell wall of exopolysaccharides, 
proteins-lipopolysaccharides, and lipids-polysaccharides. Moreover, they are able 
to reduce the concentration of the solutes in the surrounding solution by accumulat-
ing them inside the cells. These mechanisms allow plants to improve water retention 
and therefore promote greater tolerance to salt-induced osmotic and ionic stresses 
(Paul and Lade 2014). Improved stress tolerance and growth-promoting effects after 
treatment with microorganisms have been observed in several species. In fact, a 
study of Barassi et al. (2006) showed that the inoculation of lettuce seeds (Lactuca 
sativa L. cv. Mantecosa) with A. brasilense increased germination and tolerance to 
high salinity and allowed to obtain even plants with higher fresh and dry weight. In 
maize plants under salinity, inoculation with Azotobacter increased potassium and 
phosphorus uptake and nitrogen availability while excluding sodium; moreover, it 
increased the polyphenol content, with a protective function against ROS (Rojas- 
Tapias et  al. 2012). The inoculation with salinity-tolerant Azotobacter strains of 
wheat plants under salinity improved the tolerance to stress by increasing biomass, 
nitrogen content, and grain yield (Chaudhary et al. 2013).

21.4  Conclusion

Many obstacles stand in the way of the efforts to maximize agricultural production. 
The massive uses of synthetic fertilizers and pesticides and repeated irrigations to 
improve crop yields have had a very negative impact on the environment and are no 
more usable. One of the most serious problems has been the reduction of irrigated 
lands, which supply more than 40% of the food produced worldwide, mainly due to 
the increase in soil salinization (FAO 2017). Therefore, a major goal of agricultural 
research and innovation is to improve the resource (mainly nitrogen and water) use 
efficiency (RUE) and the salt tolerance/resistance in crop plants, to obtain higher 
yields without affecting the environment. The use of biostimulants can improve 
RUE combining economic development, food security, and environmental sustain-
ability even in conditions of salinity. However, plants treated with animal- or plant- 
derived biostimulants show tailored responses completely different from non-treated 
plants, probably due to the biostimulant induction of changes in plant genome and 
the consequent specific metabolic modifications. Therefore, exploring the molecu-
lar mechanisms underlying the global responses of plants to biostimulants is of 
capital importance to maximize their action and allow targeted interventions, with 
the creations of new formulations, able to improve crop yields even under salinity.

21 Use of Biostimulants to Improve Salinity Tolerance in Agronomic Crops



436

References

Annunziata MG, Carillo P, Fuggi A, Troccoli A, Woodrow P (2013) Metabolic profiling of cauli-
flower under traditional and reduced tillage systems [online]. Aust J Crop Sci 7(9):1317–1323. 
Availability: <https://search.informit.com.au/documentSummary;dn=619753813033866;res=I
ELHSS> ISSN: 1835-2693. [cited 28 Jul 18]

Annunziata MG, Ciarmiello LF, Woodrow P, Maximova E, Fuggi A, Carillo P (2017) Durum 
wheat roots adapt to salinity remodeling the cellular content of nitrogen metabolites and 
sucrose. Front Plant Sci 7:2035. https://doi.org/10.3389/fpls.2016.02035

Aslam M, Ahmad K, Arslan Akhtar M, Maqbool MA (2017) Salinity stress in crop plants: effects 
of stress, tolerance mechanisms and breeding strategies for improvement. J Agric Basic Sci 
2(1):70–85

Aydin A, Kant C, Turan M (2012) Humic acid application alleviates salinity stress of bean 
(Phaseolus vulgaris L.) plants decreasing membrane leakage. Afr J Agric Res 7(7):1073–1086

Baglieri A, Cadili V, MozzettiMonterumici C, Gennari M, Tabasso S, Montoneri E, Nardi S, Negre 
M (2014) Fertilization of bean plants with tomato plants hydrolysates. Effect on biomass pro-
duction, chlorophyll content and N assimilation. Sci Hortic 176:194–199

Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobrero MT (2006) Seed inoculation with 
Azospirillum mitigates NaCl effects on lettuce. Sci Hortic 109(1):8–14. https://doi.
org/10.1016/j.scienta.2006.02.025

Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. 
Trends Plant Sci 17(8):478–486. https://doi.org/10.1016/j.tplants.2012.04.001

Berg G, Rybakova D, Grube M, Köberl M (2016) The plant microbiome explored: implications for 
experimental botany. J Exp Bot 67(4):995–1002. https://doi.org/10.1093/jxb/erv466

Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizo-
sphere. Plant Soil 256(1):67–83. https://doi.org/10.1023/a:1026290508166

Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and bio-
control by rhizobacteria. Curr Opin Plant Biol 4(4):343–350. https://doi.org/10.1016/
S1369-5266(00)00183-7

Blunden G (1972) The effects of aqueous seaweed extract as a fertilizer additive. Proc Int Seaweed 
Symp 7:584–589

Bona E, Todeschini V, Cantamessa S, Cesaro P, Copetta A, Lingua G, Gamalero E, Berta G, Massa 
N (2018) Combined bacterial and mycorrhizal inocula improve tomato quality at reduced fer-
tilization. Sci Hortic 234:160–165. https://doi.org/10.1016/j.scienta.2018.02.026

Bonomelli C, Celis V, Lombardi G, Mártiz J (2018) Salt stress effects on avocado (Persea ameri-
cana mill.) plants with and without seaweed extract (Ascophyllum nodosum) application. 
Agronomy 8(5):64

Booth E (1965) The manorial value of seaweed. Bot Mar 8:138–143
Brady NC, Weil RR (2008) Soil colloids: seat of soil chemical and physical acidity. In: Brady NC, 

Weil RR (eds) The nature and properties of soils. Pearson Education Inc, Upper Saddle River, 
pp 311–358

Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and 
functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64(1):807–838. https://doi.
org/10.1146/annurev-arplant-050312-120106

Bulgari R, Cocetta G, Trivellini A, Vernieri P, Ferrante A (2015) Biostimulants and crop responses: 
a review. Biol Agric Hortic 31(1):1–17. https://doi.org/10.1080/01448765.2014.964649

Bullock DG (1992) Crop rotation. Crit Rev Plant Sci 11(4):309–326. https://doi.
org/10.1080/07352689209382349

Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 
383(1):3–41. https://doi.org/10.1007/s11104-014-2131-8

Cameron KC, Di HJ, Moir JL (2013) Nitrogen losses from the soil/plant system: a review. Ann 
Appl Biol 162(2):145–173. https://doi.org/10.1111/aab.12014

D. A. Emilia et al.

https://search.informit.com.au/documentSummary;dn=619753813033866;res=IELHSS>
https://search.informit.com.au/documentSummary;dn=619753813033866;res=IELHSS>
https://doi.org/10.3389/fpls.2016.02035
https://doi.org/10.1016/j.scienta.2006.02.025
https://doi.org/10.1016/j.scienta.2006.02.025
https://doi.org/10.1016/j.tplants.2012.04.001
https://doi.org/10.1093/jxb/erv466
https://doi.org/10.1023/a:1026290508166
https://doi.org/10.1016/S1369-5266(00)00183-7
https://doi.org/10.1016/S1369-5266(00)00183-7
https://doi.org/10.1016/j.scienta.2018.02.026
https://doi.org/10.1146/annurev-arplant-050312-120106
https://doi.org/10.1146/annurev-arplant-050312-120106
https://doi.org/10.1080/01448765.2014.964649
https://doi.org/10.1080/07352689209382349
https://doi.org/10.1080/07352689209382349
https://doi.org/10.1007/s11104-014-2131-8
https://doi.org/10.1111/aab.12014


437

Canellas LP, Olivares FL, Aguiar NO, Jones DL, Nebbioso A, Mazzei P, Piccolo A (2015) 
Humic and fulvic acids as biostimulants in horticulture. Sci Hortic 196:15–27. https://doi.
org/10.1016/j.scienta.2015.09.013

Cardozo KHM, Guaratini T, Barros MP, Falcão VR, Tonon AP, Lopes NP, Campos S, Torres MA, 
Souza AO, Colepicolo P, Pinto E (2007) Metabolites from algae with economical impact. 
Comp Biochem Physiol C Toxicol Pharmacol 146(1–2):60–78. https://doi.org/10.1016/j.
cbpc.2006.05.007

Carillo P (2018) GABA shunt in durum wheat. Front Plant Sci 9:100. https://doi.org/10.3389/
fpls.2018.00100

Carillo P, Morrone B (2017) Chapter 11: converting residual biomasses into energy through anaer-
obic digestion. In: Tzortzakis N (ed) Municipal solid waste: management strategies, challenges 
and future directions. Nova Science Publishers, New York, pp 271–292

Carillo P, Annunziata MG, Pontecorvo G, Fuggi A, Woodrow P (2011a) Salinity stress and salt 
tolerance. In: Hanker A, Venkateswarlu B (eds) Abiotic stress in plants  – mechanisms and 
adaptations. InTech, Rijeka, pp 21–38

Carillo P, Parisi D, Woodrow P, Pontecorvo G, Massaro G, Annunziata M, Fuggi A, Sulpice R 
(2011b) Salt-induced accumulation of glycine betaine is inhibited by high light in durum 
wheat. Funct Plant Biol 38(2):139–150. https://doi.org/10.1071/FP10177

Carillo P, Carotenuto C, Di Cristofaro F, Kafantaris I, Lubritto C, Minale M, Morrone B, Papa S, 
Woodrow P (2012) DGGE analysis of buffalo manure eubacteria for hydrogen production: 
effect of pH, temperature and pretreatments. Mol Biol Rep 39(12):10193–10200. https://doi.
org/10.1007/s11033-012-1894-3

Chaudhary D, Narula N, Sindhu SS, Behl RK (2013) Plant growth stimulation of wheat (Triticuma 
estivum L.) by inoculation of salinity tolerant Azotobacter strains. Physiol Mol Biol Plants 
19(4):515–519. https://doi.org/10.1007/s12298-013-0178-2

Cheeseman JM (2015) The evolution of halophytes, glycophytes and crops, and its implications 
for food security under saline conditions. New Phytol 206(2):557–570. https://doi.org/10.1111/
nph.13217

Chen Y, De Nobili M, Aviad T (2004) Stimulatory effects of humic substances on plant growth. 
In: Magdoff R, Weil R (eds) Soil organic matter in sustainable agriculture. CRC Press, Boca 
Raton. https://doi.org/10.1201/9780203496374.ch4

Chernane H, Latique S, Mansori M, El Kaoua M (2015) Salt stress tolerance and antioxidative 
mechanisms in wheat plants (Triticum durum L.) by seaweed extracts application. J Agric Vet 
Sci 8(3):36–44. https://doi.org/10.9790/2380-08313644

Çimrin KM, Türkmen Ö, Turan M, Tuncer B (2010) Phosphorus and humic acid application allevi-
ate salinity stress of pepper seedling. Afr J Biotechnol 9(36):5845–5851

Cockburn A, Brambilla G, Fernández M-L, Arcella D, Bordajandi LR, Cottrill B, van Peteghem C, 
Dorne J-L (2013) Nitrite in feed: from animal health to human health. Toxicol Appl Pharmacol 
270(3):209–217. https://doi.org/10.1016/j.taap.2010.11.008

Colla G, Rouphael Y (2015) Biostimulants in horticulture. Sci Hortic 196:1–2. https://doi.
org/10.1016/j.scienta.2015.10.044

Colla G, Nardi S, Cardarelli M, Ertani A, Lucini L, Canaguier R, Rouphael Y (2015a) Protein 
hydrolysates as biostimulants in horticulture. Sci Hortic 196:28–38. https://doi.org/10.1016/j.
scienta.2015.08.037

Colla G, Rouphael Y, Di Mattia E, El-Nakhel C, Cardarelli M (2015b) Co-inoculation of Glomus 
intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and 
nutrient uptake of vegetable crops. J Sci Food Agric 95(8):1706–1715. https://doi.org/10.1002/
jsfa.6875

Colla G, Hoagland L, Ruzzi M, Cardarelli M, Bonini P, Canaguier R, Rouphael Y (2017) 
Biostimulant action of protein hydrolysates: unraveling their effects on plant physiology and 
microbiome. Front Plant Sci 8:2202. https://doi.org/10.3389/fpls.2017.02202

Craigie J (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23(3):371–
393. https://doi.org/10.1007/s10811-010-9560-4

21 Use of Biostimulants to Improve Salinity Tolerance in Agronomic Crops

https://doi.org/10.1016/j.scienta.2015.09.013
https://doi.org/10.1016/j.scienta.2015.09.013
https://doi.org/10.1016/j.cbpc.2006.05.007
https://doi.org/10.1016/j.cbpc.2006.05.007
https://doi.org/10.3389/fpls.2018.00100
https://doi.org/10.3389/fpls.2018.00100
https://doi.org/10.1071/FP10177
https://doi.org/10.1007/s11033-012-1894-3
https://doi.org/10.1007/s11033-012-1894-3
https://doi.org/10.1007/s12298-013-0178-2
https://doi.org/10.1111/nph.13217
https://doi.org/10.1111/nph.13217
https://doi.org/10.1201/9780203496374.ch4
https://doi.org/10.9790/2380-08313644
https://doi.org/10.1016/j.taap.2010.11.008
https://doi.org/10.1016/j.scienta.2015.10.044
https://doi.org/10.1016/j.scienta.2015.10.044
https://doi.org/10.1016/j.scienta.2015.08.037
https://doi.org/10.1016/j.scienta.2015.08.037
https://doi.org/10.1002/jsfa.6875
https://doi.org/10.1002/jsfa.6875
https://doi.org/10.3389/fpls.2017.02202
https://doi.org/10.1007/s10811-010-9560-4


438

De Pascale S, Orsini F, Caputo R, Palermo MA, Barbieri G, Maggio A (2012) Seasonal and multi-
annual effects of salinisation on tomato yield and fruit quality. Funct Plant Biol 39(8):689–698. 
https://doi.org/10.1071/FP12152

De Pascale S, Rouphael Y, Colla G (2018) Plant biostimulants: innovative tool for enhancing 
plant nutrition in organic farming. Eur J Hortic Sci 82(6):277–285. https://doi.org/10.17660/
eJHS.2017/82.6.2

de Wit CT (1992) Resource use efficiency in agriculture. Agric Syst 40(1):125–151. https://doi.
org/10.1016/0308-521X(92)90018-J

Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources 
of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 
72(3):313–327. https://doi.org/10.1111/j.1574-6941.2010.00860.x

Di Stasio E, Van Oosten MJ, Silletti S, Raimondi G, dell’Aversana E, Carillo P, Maggio A (2018) 
Ascophyllum nodosum-based algal extracts act as enhancers of growth, fruit quality, and 
adaptation to stress in salinized tomato plants. J Appl Phycol 30(4):2675–2686. https://doi.
org/10.1007/s10811-018-1439-9

Dornburg V, van Vuuren D, van de Ven G, Langeveld H, Meeusen M, Banse M, van Oorschot M, 
Ros J, Jan van den Born G, Aiking H (2010) Bioenergy revisited: key factors in global poten-
tials of bioenergy. Energy Environ Sci 3:258–267

du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci 
Hortic 196:3–14. https://doi.org/10.1016/j.scienta.2015.09.021

Ertani A, Cavani L, Pizzeghello D, Brandellero E, Altissimo A, Ciavatta C, Nardi S (2009) 
Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of 
maize seedlings. J Plant Nutr Soil Sci 172(2):237–244. https://doi.org/10.1002/jpln.200800174

Ertani A, Schiavon M, Muscolo A, Nardi S (2013) Alfalfa plant-derived biostimulant stimulate 
short-term growth of salt stressed Zea mays L. plants. Plant Soil 364(1):145–158. https://doi.
org/10.1007/s11104-012-1335-z

Ertani A, Pizzeghello D, Francioso O, Sambo P, Sanchez-Cortes S, Nardi S (2014) Capsicum 
chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term 
period: chemical and metabolomic approaches. Front Plant Sci 5:375. https://doi.org/10.3389/
fpls.2014.00375

FAO (2017) The future of food and agriculture  – trends and challenges. Food & Agriculture 
Organization of the United Nations, Rome. ISBN 978-92-5-109551-5

Ferchichi S, Hessini K, Dell’Aversana E, D’Amelia L, Woodrow P, Ciarmiello LF, Fuggi A, 
Carillo P (2018) Hordeum vulgare and Hordeum maritimum respond to extended salinity stress 
displaying different temporal accumulation pattern of metabolites. Funct Plant Biol 45:1096–
1109. https://doi.org/10.1071/FP18046

Flowers TJ, Munns R, Colmer TD (2015) Sodium chloride toxicity and the cellular basis of salt 
tolerance in halophytes. Ann Bot 115(3):419–431. https://doi.org/10.1093/aob/mcu217

García-Mina JM, Antolin MC, Sanchez-Diaz M (2004) Metal–humic complexes and plant micro-
nutrient uptake: a study based on different plant species cultivated in diverse soil types. Plant 
Soil 258:57–68. https://doi.org/10.1023/b:plso.0000016509.56780.40

Gastal F, Lemaire G (2002) N uptake and distribution in crops: an agronomical and ecophysiologi-
cal perspective. J Exp Bot 53(370):789–799. https://doi.org/10.1093/jexbot/53.370.789

Gorham J, Läuchli A, Leidi EO (2010) Plant responses to salinity. In: Stewart JM, Oosterhuis DM, 
Heitholt JJ, Mauney JR (eds) Physiology of cotton. Springer, Dordrecht, pp 129–141. https://
doi.org/10.1007/978-90-481-3195-2_13

Hamaoui B, Abbadi J, Burdman S, Rashid A, Sarig S, Okona Y (2001) Effects of inoculation with 
Azospirillum brasilense on chickpeas (Cicer arietinum) and faba beans (Vicia faba) under dif-
ferent growth conditions. Agronomie 21:553–560

Hartz TK (2003) The assessment of soil and crop nutrient status in the development of efficient fertil-
izer recommendations. Acta Hortic 627:231. https://doi.org/10.17660/ActaHortic.2003.627.30

Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exoge-
nous protectants to mitigate salt-induced damages. In: Ahmad P, Azooz MM, MNV P (eds) 

D. A. Emilia et al.

https://doi.org/10.1071/FP12152
https://doi.org/10.17660/eJHS.2017/82.6.2
https://doi.org/10.17660/eJHS.2017/82.6.2
https://doi.org/10.1016/0308-521X(92)90018-J
https://doi.org/10.1016/0308-521X(92)90018-J
https://doi.org/10.1111/j.1574-6941.2010.00860.x
https://doi.org/10.1007/s10811-018-1439-9
https://doi.org/10.1007/s10811-018-1439-9
https://doi.org/10.1016/j.scienta.2015.09.021
https://doi.org/10.1002/jpln.200800174
https://doi.org/10.1007/s11104-012-1335-z
https://doi.org/10.1007/s11104-012-1335-z
https://doi.org/10.3389/fpls.2014.00375
https://doi.org/10.3389/fpls.2014.00375
https://doi.org/10.1071/FP18046
https://doi.org/10.1093/aob/mcu217
https://doi.org/10.1023/b:plso.0000016509.56780.40
https://doi.org/10.1093/jexbot/53.370.789
https://doi.org/10.1007/978-90-481-3195-2_13
https://doi.org/10.1007/978-90-481-3195-2_13
https://doi.org/10.17660/ActaHortic.2003.627.30


439

Ecophysiology and responses of plants under salt stress. Springer, New York, pp 25–87. https://
doi.org/10.1007/978-1-4614-4747-4_2

Hasanuzzaman M, Nahar K, Alam MM, Bhowmik PC, Hossain MA, Rahman MM, Prasad MNV, 
Ozturk M, Fujita M (2014) Potential use of halophytes to remediate saline soils. Biomed Res 
Int 2014:12. https://doi.org/10.1155/2014/589341

Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses 
to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499. https://doi.org/10.1146/
annurev.arplant.51.1.463

Hegazi AM, El-Shraiy AM, Ghoname AA (2014) Alleviation of salt stress adverse effect and 
enhancing phenolic anti-oxidant content of eggplant by seaweed extract. GesundePflanz 
67(1):21–31

Ibrahim WM, Ali RM, Hemida KA, Sayed MA (2014) Role of Ulva lactuca extract in alleviation 
of salinity stress on wheat seedlings. Sci World J 2014:11. https://doi.org/10.1155/2014/847290

Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The role of soil microorganisms 
in plant mineral nutrition – current knowledge and future directions. Front Plant Sci 8:1617. 
https://doi.org/10.3389/fpls.2017.01617

Keren R (2003) Soil alkalinization. In: Benbi DK, Nieder R (eds) Processes in the soil-plant sys-
tem: modeling concepts and applications. The Haworth Press, Inc, Binghamton, pp 199–225

Killham K, Prosser JI (2015) The bacteria and archaea. In: Paul EA (ed) Soil microbiology, ecol-
ogy and biochemistry, 4th edn. Elsevier Science Publishing Co Inc, San Diego

Latique S, Elouaer M, Chernane H, Hannachi C, Elkaoua M (2014) Effect of seaweed liquid 
extract of Sargassum vulgare on growth of durum wheat seedlings (Triticum durum L) under 
salt stress. Int J Innov Appl Stud 7(4):1430–1435

Latique S, Elouaer MA, Chernane H, Hannachi C, El Kaoua M (2017) Alleviation of salt stress in 
durum wheat (Triticum durum L.) seedlings through the application of liquid seaweed extracts 
of Fucus spiralis. Commun Soil Sci Plant Anal 48(21):2582–2593. https://doi.org/10.1080/00
103624.2017.1416136

Läuchli A, Epstein E (1990) Plant responses to saline and sodic conditions. In: Tanji KK (ed) 
Agricultural salinity assessment and management. American Society of Civil Engineers, 
New York, pp 113–137

Lucini L, Rouphael Y, Cardarelli M, Canaguier R, Kumar P, Colla G (2015) The effect of a plant- 
derived biostimulant on metabolic profiling and crop performance of lettuce grown under 
saline conditions. Sci Hortic 182:124–133. https://doi.org/10.1016/j.scienta.2014.11.022

Masciandaro G, Ceccanti B, Ronchi V, Benedicto S, Howard L (2002) Humic substances to reduce 
salt effect on plant germination and growth. Commun Soil Sci Plant Anal 33(3–4):365–378

Machado R, Serralheiro R (2017) Soil salinity: effect on vegetable crop growth. Management 
practices to prevent and mitigate soil salinization. Horticulturae 3(2):30

Maghari BM, Ardekani AM (2011) Genetically modified foods and social concerns. Avicenna 
J Med Biotechnol 3(3):109–117

Marin IA, Goertz JE, Ren T, Rich SS, Onengut-Gumuscu S, Farber E, Wu M, Overall CC, Kipnis 
J, Gaultier A (2017) Microbiota alteration is associated with the development of stress-induced 
despair behavior. Sci Rep 7:43859. https://doi.org/10.1038/srep43859. https://www.nature.
com/articles/srep43859#supplementary-information

Marschner H (1986) Mineral nutrition of higher plants, vol 150. ZeitschriftfürPflanzenernährung 
und Bodenkunde, vol 5. Academic Press Inc, London. https://doi.org/10.1002/jpln.19871500520

Meena V, KumariMeena S, Prakash Verma J, Meena RS (2015) The needs of nutrient use effi-
ciency for sustainable agriculture. J  Clean Prod 102:562–563. https://doi.org/10.1016/j.
jclepro.2015.04.044

Micallef SA, Shiaris MP, Colón-Carmona A (2009) Influence of Arabidopsis thaliana accessions 
on rhizobacterial communities and natural variation in root exudates. J Exp Bot 60(6):1729–
1742. https://doi.org/10.1093/jxb/erp053

Muller A, Schader C, El-HageScialabba N, Brüggemann J, Isensee A, Erb K-H, Smith P, Klocke 
P, Leiber F, Stolze M, Niggli U (2017) Strategies for feeding the world more sustainably with 
organic agriculture. Nat Commun 8(1):1290. https://doi.org/10.1038/s41467-017-01410-w

21 Use of Biostimulants to Improve Salinity Tolerance in Agronomic Crops

https://doi.org/10.1007/978-1-4614-4747-4_2
https://doi.org/10.1007/978-1-4614-4747-4_2
https://doi.org/10.1155/2014/589341
https://doi.org/10.1146/annurev.arplant.51.1.463
https://doi.org/10.1146/annurev.arplant.51.1.463
https://doi.org/10.1155/2014/847290
https://doi.org/10.3389/fpls.2017.01617
https://doi.org/10.1080/00103624.2017.1416136
https://doi.org/10.1080/00103624.2017.1416136
https://doi.org/10.1016/j.scienta.2014.11.022
https://doi.org/10.1038/srep43859
https://www.nature.com/articles/srep43859#supplementary-information
https://www.nature.com/articles/srep43859#supplementary-information
https://doi.org/10.1002/jpln.19871500520
https://doi.org/10.1016/j.jclepro.2015.04.044
https://doi.org/10.1016/j.jclepro.2015.04.044
https://doi.org/10.1093/jxb/erp053
https://doi.org/10.1038/s41467-017-01410-w


440

Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–
250. https://doi.org/10.1046/j.0016-8025.2001.00808.x

Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681
Nardi S, Carletti P, Pizzeghello D, Muscolo A (2009) Biological activities of humic sub-

stances. In: Senesi N, Xing B, Huang PM (eds) Biophysico-chemical processes involv-
ing natural nonliving organic matter in environmental systems. Wiley, Hoboken. https://doi.
org/10.1002/9780470494950.ch8

Nardi S, Pizzeghello D, Schiavon M, Ertani A (2016) Plant biostimulants: physiological responses 
induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci 
Agric 73:18–23. https://doi.org/10.1590/0103-9016-2015-0006

Nedumaran T, Arulbalachandran D (2015) Seaweeds: a promising source for sustainable develop-
ment. In: Thangavel P, Sridevi G (eds) Environmental sustainability: role of green technolo-
gies. Springer India, New Delhi, pp 65–88. https://doi.org/10.1007/978-81-322-2056-5_4

Orsini F, Maggio A, Rouphael Y, De Pascale S (2016) “Physiological quality” of organically grown 
vegetables. Sci Hortic 208:131–139. https://doi.org/10.1016/j.scienta.2016.01.033

Paksoy M, Türkmen Ö, Dursun A (2010) Effects of potassium and humic acid on emergence, 
growth and nutrient contents of okra (Abelmoschus esculentus L.) seedling under saline soil 
conditions. Afr J Biotechnol 9:5343–5534

Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline 
soils: a review. Agron Sustain Dev 34(4):737–752. https://doi.org/10.1007/s13593-014-0233-6

Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: 
the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789. https://doi.org/10.1038/
nrmicro3109

Pingali PL (2012) Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci U S A 
109(31):12302–12308. https://doi.org/10.1073/pnas.0912953109

Pitman MG, Läuchli A (2002) Global impact of salinity and agricultural ecosystems. In: Läuchli 
A, Lüttge U (eds) Salinity: environment – plants – molecules. Springer Nature Switzerland, 
Dordrecht, pp 3–20

Rasool S, Hameed A, Azooz M, Rehman M, Siddiqi TO, Ahmad P (2013) Salt stress: causes, 
types and responses of plants. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology 
and response of plants under salt stress. Springer LLC, New  York, pp  1–24. https://doi.
org/10.1007/978-1-4614-4747-4_1

Raven JA (1985) Tansley review no. 2. Regulation of pH and generation of osmolarity in vascular 
plants: a cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New 
Phytol 101(1):25–77

Rezzonico F, Binder C, Défago G, Moënne-Loccoz Y (2005) The type III secretion system of bio-
control Pseudomonas fluorescens KD targets the phytopathogenic chromista pythium ultimum 
and promotes cucumber protection. Mol Plant-Microbe Interact 18(9):991–1001. https://doi.
org/10.1094/MPMI-18-0991

Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R (2012) Effect 
of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress 
in maize (Zea mays). Appl Soil Ecol 61:264–272. https://doi.org/10.1016/j.apsoil.2012.01.006

Rouphael Y, Cardarelli M, Bonini P, Colla G (2017) Synergistic action of a microbial-based bio-
stimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and 
salinity. Front Plant Sci 8:131. https://doi.org/10.3389/fpls.2017.00131

Santos NM, Accioly AMA, Nascimento CWA, Santos JAG, Silva IR (2014) Humic acids and 
activated charcoal as soil amendments to reduce toxicity in soil contaminated by lead. RBCS 
38:345–351

Selvakumar G, Joshi P, Mishra PK, Bisht JK, Gupta HS (2009) Mountain aspect influences the 
genetic clustering of psychrotolerant phosphate solubilizing pseudomonads in the Uttarakhand 
Himalayas. Curr Microbiol 59(4):432–438

Seufert V, Ramankutty N, Foley JA (2012) Comparing the yields of organic and conventional 
agriculture. Nature 485:229

D. A. Emilia et al.

https://doi.org/10.1046/j.0016-8025.2001.00808.x
https://doi.org/10.1002/9780470494950.ch8
https://doi.org/10.1002/9780470494950.ch8
https://doi.org/10.1590/0103-9016-2015-0006
https://doi.org/10.1007/978-81-322-2056-5_4
https://doi.org/10.1016/j.scienta.2016.01.033
https://doi.org/10.1007/s13593-014-0233-6
https://doi.org/10.1038/nrmicro3109
https://doi.org/10.1038/nrmicro3109
https://doi.org/10.1073/pnas.0912953109
https://doi.org/10.1007/978-1-4614-4747-4_1
https://doi.org/10.1007/978-1-4614-4747-4_1
https://doi.org/10.1094/MPMI-18-0991
https://doi.org/10.1094/MPMI-18-0991
https://doi.org/10.1016/j.apsoil.2012.01.006
https://doi.org/10.3389/fpls.2017.00131


441

Shabala S, Munns R (2012) Salinity stress: physiological constraints and adaptive mechanisms. 
CAB, Wallingford

Shakya M, Gottel N, Castro H, Yang ZK, Gunter L, Labbé J, Muchero W, Bonito G, Vilgalys 
R, Tuskan G, Podar M, Schadt CW (2013) A multifactor analysis of fungal and bacterial 
community structure in the root microbiome of mature populus deltoides trees. PLoS One 
8(10):e76382

Shukla PS, Shotton K, Norman E, Neily W, Critchley AT, Prithiviraj B (2018) Seaweed extract 
improve drought tolerance of soybean by regulating stress-response genes. AoB Plants 
10(1):plx051

Suarez C, Cardinale M, Ratering S, Steffens D, Jung S, Zapata A, Geissler-Plaum R, Schnell S 
(2015) Plant growth-promoting effects of Hartmannibacter diazotrophicus on summer barley 
(Hordeum vulgare L.) under salt stress. Appl Soil Ecol 95:23–30

Tal A (2018) Making conventional agriculture environmentally friendly: moving beyond the glori-
fication of organic agriculture and the demonization of conventional agriculture. Sustainability 
10(4):1078

Türkmen Ö, Dursun A, Turan M, Erdinç Ç (2004) Calcium and humic acid affect seed germina-
tion, growth, and nutrient content of tomato (Lycopersicon esculentum L.) seedlings under 
saline soil conditions. Acta Agric Scand Sect B 54(3):168–174

Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14(6):209–209
Tuteja N (2007) Mechanisms of high salinity tolerance in plants. In: Häussinger D, Sies H (eds) 

Methods Enzymol 428: 419–438
UN (2018) Sustainable development goal 6. Synthesis report 2018 on water and sanitation. United 

Nations Publications, New York
Upadhyay S, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria 

isolated from rhizospheric soil of wheat under saline condition. Curr Microbiol 59:489–496
Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A (2017) The role of biostimulants and 

bioeffectors as alleviators of abiotic stress in crop plants. Chem Biol Technol Agric 4(5):12
Visconti F, de Paz JM, Bonet L, Jordà M, Quiñones A, Intrigliolo DS (2015) Effects of a commer-

cial calcium protein hydrolysate on the salt tolerance of Diospyros kaki L. cv. “RojoBrillante” 
grafted on Diospyros lotus L. Sci Hortic 185:129–138

Wik M, Pingali P, Broca S (2008) Background paper for the world development report 2008: 
global agricultural performance: past trends and future prospects. World Bank, Washington, 
DC

Willer H, Lernoud J (2016) The world of organic agriculture statistics and emerging trends. FiBL 
end IFOAM. https://shop.fibl.org/fileadmin/documents/shop/1698-organicworld-2016.pdf. 
Accessed 29 July 2018

Woodrow P, Pontecorvo G, Ciarmiello LF, Fuggi A, Carillo P (2011) Ttd1a promoter is involved in 
DNA-protein binding by salt and light stresses. Mol Biol Rep 38(6):3787–3794

Woodrow P, Ciarmiello LF, Annunziata MG, Pacifico S, Iannuzzi F, Mirto A, D’Amelia L, 
Dell’Aversana E, Piccolella S, Fuggi A, Carillo P (2017) Durum wheat seedling responses to 
simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohy-
drate metabolism. Physiol Plant 159(3):290–312

Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH (2016) Biostimulants in plant science: a global 
perspective. Front Plant Sci 7:2049

Zeng K, Hwang H-m, Yuzuri H (2002) Effect of dissolved humic substances on the photochemical 
degradation rate of 1-aminopyrene and atrazine. Int J Mol Sci 3(10):1048

Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6(5):441–445
Zodape ST (2001) Seaweeds as a biofertilizer. J Sci Ind Res 60(5):378–382

21 Use of Biostimulants to Improve Salinity Tolerance in Agronomic Crops

https://shop.fibl.org/fileadmin/documents/shop/1698-organicworld-2016.pdf


443© Springer Nature Singapore Pte Ltd. 2020
M. Hasanuzzaman (ed.), Agronomic Crops, 
https://doi.org/10.1007/978-981-15-0025-1_22

M. Ahmed (*) 
Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University,  
Rawalpindi, Pakistan 

Department of Agricultural Research for Northern Sweden, Swedish University of 
Agricultural Sciences, Umeå, Sweden 

Department of Biological Systems Engineering, Washington State University,  
Pullman, WA, USA
e-mail: ahmadmukhtar@uaar.edu.pk 

U. Qadeer · Fayayz-ul-Hassan 
Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University,  
Rawalpindi, Pakistan 

S. Fahad 
Department of Agriculture, University of Swabi,  
Swabi, Khyber Pakhtunkhwa (KPK), Pakistan 

W. Naseem 
Department of Agronomy, University College of Agriculture & Environmental Sciences 
(UCA&ES), Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan 

S. Duangpan 
Department of Plant Science, Faculty of Natural Resources, Prince of Songkla University, 
Songkla, Thailand 

S. Ahmad 
Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan

22Abiotic Stress Tolerance in Wheat 
and the Role of Silicon: An Experimental 
Evidence

Mukhtar Ahmed, Ummara Qadeer, Fayayz-ul-Hassan, 
Shah Fahad, Wajid Naseem, Saowapa Duangpan, 
and Shakeel Ahmad

Abstract
Silicon (Si) has beneficial effect on crop growth and development under water 
stress condition. The study about the effect of silicon application on growth and 
water relation of wheat under water-limited conditions was carried out in pots at 
PMAS Arid Agriculture University, Rawalpindi, Pakistan. Seeds of two culti-
vars, i.e., NARC-2009 and Chakwal-50, were taken from the National Agricultural 
Research Center (NARC). In this experiment, as the source of silicon, silicic 
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acid, sodium silicate, and silica gel were used in the silicon-applied treatments. 
The effect of silicic acid, sodium silicate, and silica gel at rate of 0.5%, 1.0%, and 
1.5% solution was investigated for germination, physiological, and yield traits, 
and it was compared with control. Physiological parameters like leaf membrane 
stability index, epicuticular wax, crop growth rate, relative water content, stoma-
tal conductance, transpiration rate, photosynthetic rate, leaf area, leaf area index, 
chlorophyll contents, leaf succulence, relative leaf water contents, silicon con-
centration in leaves, and proline contents were measured. The results depicted 
that different silicon rates and application levels have a significant impact upon 
crop growth and development. Wheat crop responded well to silicon priming 
treatments. Maximum grain yield was obtained for silica gel with 1.5% silicon 
application level, whereas minimum grain yield was obtained by control treat-
ment. Similarly, genotypes responded significantly to silicon priming treatments 
for grain production. Cultivar NARC-2009 performed well under different sili-
con regime of the rainfed zone of pothwar, while cultivar Chakwal-50 gave less 
seed production. Silicon priming could be a good viable option in the future to 
cope abiotic stress.

Keywords
Silicon · Water stress · Silicic acid · Sodium silicate · Silica gel · Physiological 
parameters · Grain yield

22.1  Introduction

A decline in quality and productivity of crops due to water scarcity is sufficiently 
severe enough to reduce crop yield and a common problem of arid and semiarid 
regions. Drought is the prolonged dry weather condition because of little rain and 
high temperatures. It can take a week, a month, and even years. Whereas if soil 
moisture availability to plants has dropped to such a level that it adversely affects 
the crop yield and hence agricultural profitability, then it is called an agricultural 
drought. This kind of drought could be evaluated by the soil water time series frame-
work. The dry year has been observed in 4–10 years instead of 3 out of 10 years. 
About 25% of the GDP is affected due to drought because the crop yields are 
affected. The drought has directly or indirectly affected the social, environmental, 
and economic aspects of the world, and some can be handled or managed, whereas 
others are not. The drought has led to unemployment in the field of agriculture and 
other industries as well.

Plant growth and development even under drought could be optimized by the use 
of silicon (Si). It is the element which can boost agricultural crop productions under 
abiotic stresses (Ahmed et al. 2011). Silicon can increase drought tolerance in crops 
by maintaining water potential (Hattori et al. 2005a, b). Water economy and dry 
matter yield of water have been improved due to the application of Si (Gong et al. 
2003). Silicon can also help to improve salinity tolerance in plants (Romero-Arnada 
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et al. 2006). The stimulation of antioxidant system and alleviation of specific ion 
effect by reducing Na uptake were also drought tolerance mechanisms in plants 
exposed to Si application (Liang et al. 2005). Silicon is next to oxygen in abundancy 
and is taken up directly as silicic acid (Ma et al. 2001). Its main accumulation is in 
leaves, and in dried plant parts, the silica bodies are located in silica cells below the 
epidermis and in epidermal appendices (Dagmar et al. 2003). Growth effects of sili-
con, including increased dry mass and yield, enhanced pollination, and most com-
monly increased disease resistance, were concluded earlier. Silicon can also alleviate 
imbalances between zinc and phosphorus supply (Rodrigues et al. 2004).

Silicon is not considered as essential plant nutrient, but it has beneficial effects on 
the growth and production of plants. It can mitigate environmental stresses and build 
resistance in plants against fungal and bacterial pathogens. Silicon and plant- 
pathogen interactions have been reported by various authors in which they concluded 
Si-induced biochemical/molecular resistance during plant-pathogen interactions. It 
can act as a modulator influencing plant defense responses and interacting with key 
components of plant stress signaling systems leading to induced resistance (Ye et al. 
2013). Abiotic stress in the form of diseases is a major threat to agricultural produc-
tion which can be mitigated using Si as it can control fungal and bacterial diseases 
(Rodrigues and Datnof 2015). Regulation of Si in plant diseases has been summa-
rized in Table  22.1. Meanwhile, activities of defense-related enzymes have been 
boosted by the application of Si (Ye et al. 2013). The detail has been presented in 
Table 22.2. Application of Si helps the plant to build resistance against pathogens as 
Si accumulates beneath the cuticle and forms cuticle-Si double layer (Fig. 22.1).

Water stress is a common problem in the rainfed regions of the world nowa-
days, which have caused deviation of plant functions from normal to abnormal. It 
is a major environmental issue which can limit the growth and production of 
crops. Silicon application improves the plant hydraulic properties by promoting 
root water uptake and decreased water loss under water stress conditions (Chen 
et al. 2018). The mechanism of plant root water uptake under water stress due to 
the application of Si involves (1) osmotic adjustment, (2) improvement in trans-
port activity of aquaporin, and (3) increased root-shoot ratio by modification in 
root growth (Fig. 22.2).

Furthermore, water stress problem can be solved by using seed priming. Silicon 
has the potential to be used as priming material as it can improve germination 
percentage and seedling vigor under stress (Janmohammadi and Sabaghnia 2015). 
It can augment plant defense against biotic and abiotic pressures. Silicon applica-
tion by seed priming helped to improve growth of stressed plants by enhancement 
in LRWC (leaf relative water content) and levels of photosynthetic pigments, 
soluble sugars, soluble proteins, total free amino acids, and K+, as well as activi-
ties of SOD (superoxide dismutase), CAT (catalase), and POD (peroxidase) 
enzymes. These findings indicated that Si plays a pivotal role in removing the 
negative effects of stress. The authors further concluded that seed priming with Si 
is an efficient strategy that can be used to boost the tolerance of crop plants to 
abiotic stress (Latef and Tran 2016). Different scientists reported new panorama 
of Si research involves seed priming (exposing seeds to Si for only few hours) to 
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Table 22.1 Effects of silicon on plant disease and related resistance mechanisms

Hosts Diseases Pathogens Effects
Resistance 
mechanisms

Arabidopsis Powdery mildew Erysiphe cichoracearum, 
Agrobacterium tumefaciens

+ Physical, 
biochemical, and 
molecular

Banana Black sigatoka Mycosphaerella fijiensis + Physical and 
biochemical

Fusarium wilt Fusarium oxysporum f. sp. 
cubense

+ Physical and 
biochemical

Root rot Cylindrocladium 
spathiphylli

+ Biochemical

Xanthomonas 
wilt

Xanthomonas campestris + Physical and 
biochemical

Barley Powdery mildew Blumeria graminis + Physical
Bean Angular leaf spot Pseudocercospora griseola + Physical
Belle pepper Phytophthora 

blight
Phytophthora capsici + Physical

Bent grass Dollar spot Sclerotinia homoeocarpa + Physical and 
biochemical

Bitter gourd Powdery mildew Erysiphe sp. + Biochemical
Capsicum Anthracnose Colletotrichum 

gloeosporioides
+ Physical and 

biochemical
Cherry Fruit decay Penicillium expansum, 

Monilinia fructicola
+ Biochemical

Chinese 
cantaloupe

Fusarium root rot Fusarium spp. + Physical and 
biochemical

Postharvest pink 
rot

Trichothecium roseum + Physical and 
biochemical

Coffee Leaf rust Hemileia vastatrix + Physical
Root-knot 
nematode

Meloidogyne exigua + Biochemical

Common 
bean

Anthracnose Colletotrichum 
lindemuthianum

+ Biochemical

Cotton Fusarium wilt Fusarium oxysporum f. sp. 
vasinfectum

+ Physical and 
biochemical

Creeping, 
turf grass

Brown patch Rhizoctonia solani + Physical and 
biochemical

Cucumber Crown and root 
rot

Pythium ultimum + Biochemical

Fusarium wilt Fusarium oxysporum f. sp. 
cucumerinum

+ Physical and 
biochemical

Powdery mildew Sphaerotheca fuliginea, 
Podosphaera xanthii

+ Physical and 
biochemical

Gerbera 
daisy

Powdery mildew Erysiphe cichoracearum, 
Podosphaera fusca

/ /

(continued)
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Table 22.1 (continued)

Hosts Diseases Pathogens Effects
Resistance 
mechanisms

Hami melons Decay Alternaria alternata, 
Fusarium semitectum, 
Trichothecium roseum

+ Biochemical

Lettuce Downy mildew Bremia lactucae + Physical and 
biochemical

Melon Bacterial fruit 
blotch

Acidovorax citrulli + Biochemical

Powdery mildew Podosphaera xanthii + Biochemical
Muskmelon Pink rot disease Trichothecium roseum + Biochemical

Powdery mildew Sphaerotheca fuliginea + Physical and 
biochemical

Oil palm Basal stem rot Ganoderma boninense + Physical
Pea Brown spot Mycosphaerella pinodes + Biochemical
Pearl millet Downy mildew Sclerospora graminicola + Physical and 

biochemical
Perennial 
ryegrass

Fusarium patch Microdochium nivale + Physical

Gray leaf spot Magnaporthe oryzae + Biochemical
Potato Dry rot Fusarium sulphureum + Biochemical
Pumpkin Powdery mildew Podosphaera xanthii + Physical and 

biochemical
Rice Blast Pyricularia oryzae, 

Magnaporthe grisea, 
Magnaporthe oryzae

+ Physical, 
biochemical, and 
molecular

Brown spot Bipolaris oryzae, 
Cochliobolus miyabeanus

+ Physical, 
biochemical, and 
molecular

Grain 
discoloration

Bipolaris oryzae + Molecular

Leaf scald Monographella albescens, 
Microdochium oryzae

+ Physical and 
biochemical

Sheath blight Rhizoctonia solani + Physical and 
biochemical

Rose Powdery mildew Podosphaera pannosa + Physical
Sorghum Anthracnose Colletotrichum sublineolum + Physical and 

biochemical
Soybean Phytophthora 

stem and root rot
Phytophthora sojae + Molecular

Rust Phakopsora pachyrhizi + Biochemical
St. Augustine 
grass

Gray leaf spot Magnaporthe grisea + Physical and 
biochemical

Strawberry Powdery mildew Sphaerotheca aphanis + Physical and 
biochemical

Sugarcane Brown rust Puccinia melanocephala + Physical and 
biochemical

(continued)
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protect plants against future stress events (van Hulten et al. 2006; Conrath 2011; 
Van Bockhaven et al. 2013; Azeem et al. 2015; Coskun et al. 2016). Based upon 
the above review related to the importance of Si, present study was conducted to 
evaluate the response of two wheat varieties under different levels of silicic acid, 
sodium silicate, and silica gel as priming materials. The specific objectives of the 
proposed study were as follows:

• To evaluate the effect of wheat seed priming for drought stress tolerance.
• To compare various silicon sources for their priming effect on wheat seed.

22.2  Review of Literature

The application of silicon is known to enhance crop tolerance against various envi-
ronmental stresses. Recent studies on water uptake and transport in crops revealed 
that silicon affected these traits and the effects differed among species. Other recent 
studies have shown relationships between silicon and dehydration tolerance at cell 
or tissue levels. Water stress is a severe environmental constraint to plant productiv-
ity. The loss in crop yield due to water scarcity probably exceeds losses from all 
other causes. Plants cannot survive without water. Water deficiency has adverse 

Table 22.1 (continued)

Hosts Diseases Pathogens Effects
Resistance 
mechanisms

Tall fescue Brown patch Rhizoctonia solani − /

Tobacco Viral infection Tobacco ringspot virus + Molecular
Tobacco mosaic virus / /

Tomato Bacterial speck Pseudomonas syringae + Biochemical
Bacterial wilt Ralstonia solanacearum + Molecular
Fusarium crown 
and root rot

Fusarium oxysporum f. sp. 
radicis-lycopersici

+ Physical

Tomato, 
bitter gourd

Root rot Pythium aphanidermatum + Biochemical and 
molecular

Wheat Blast Pyricularia grisea + Physical and 
biochemical

Leaf blast Pyricularia oryzae + Biochemical
Leaf streak Xanthomonas translucens + Physical and 

biochemical
Powdery mildew Blumeria graminis + Physical, 

biochemical, and 
molecular

Spot blotch Bipolaris sorokiniana + Physical and 
biochemical

Zucchini 
squash

Powdery mildew Erysiphe cichoracearum, 
Podosphaera xanthii

+ Physical and 
biochemical

Wang et al. (2017)
Positive (+), negative (−), or no effect (/) of Si on plant resistance to diseases
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effects on a number of physiological parameters of plants. Drought caused a more 
pronounced inhibition growth and photosynthetic rates in the more sensitive culti-
vars Adamello compared with the relatively tolerant cultivars Ofanto. Drought also 
affects transpiration efficiency of plants. To confirm this, a field experiment was 
designed using wheat, and less transpiration rate was recorded which resulted in a 
decrease in productivity compared to the irrigated field. Carbon dioxide assimila-
tion and chlorophyll content were also influenced from drought (Monneveux et al. 
2006). Similarly, Younis et  al. (2000) applied water stress at vegetative or at the 
reproductive stage in three sorghum cultivars. Water stress was found to reduce rela-
tive growth and net assimilation rates. Short-term water stress in the vegetative 
phase improved the chlorophyll content in leaves, while long-term stress in the veg-
etative and reproductive phases reduced chlorophyll content (Chang-juan 2006). 
Many studies have suggested the positive effects of silicon on plant growth under 
stress. Effect of silicon on growth under water stress is getting reputed because of 
the good response of Si fertilization. Gong et al. (2005) stated that application of 

Table 22.2 Defense-related enzymes regulated by silicon in plant-pathogen interactions

Hosts Diseases Pathogen Defense-related enzymes
Bean Anthracnose Colletotrichum 

lindemuthianum
Superoxide dismutase, ascorbate 
peroxidase, glutathione reductase

Cucumber Crown and 
root rot

Pythium spp. Chitinase, peroxidases, polyphenol 
oxidases

Powdery 
mildew

Podosphaera xanthii Peroxidases, polyphenol oxidases, 
chitinases

Melon Pink rot Trichothecium 
roseum

Peroxidase

Powdery 
mildew

Podosphaera xanthii Chitinases, superoxide dismutase, 
β-1,3-glucanase

Chinese 
cantaloupe

Pink rot Trichothecium 
roseum

Peroxidases, phenylalanine 
ammonia-lyase

Pea Leaf spot Mycosphaerella 
pinodes

Chitinase, β-1,3-glucanase

Perennial 
ryegrass

Gray leaf 
spot

Magnaporthe 
oryzae

Peroxidase, polyphenol oxidase

Rice Blast Magnaporthe 
oryzae, Pyricularia 
oryzae

Glucanase, peroxidase, polyphenol 
oxidase, phenylalanine ammonia-lyase, 
superoxide dismutase, catalase, ascorbate 
peroxidase, glutathione reductase, 
lipoxygenase

Brown spot Bipolaris oryzae Chitinase, peroxidase
Sheath blight Rhizoctonia solani Phenylalanine ammonia-lyases, 

peroxidases, polyphenol oxidases, 
chitinases

Soybean Target spot Corynespora 
cassiicola

Chitinases, β-1-3-glucanases, 
phenylalanine ammonia-lyases, 
peroxidases, polyphenol oxidases

Wheat Blast Pyricularia oryzae Chitinases, peroxidases

Wang et al. (2017)
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silicon increased the contents of photosynthetic pigments and soluble proteins 
under drought. In this experiment, wheat (Triticum aestivum L.) plants were grown 
in pots applied with or without silicon under drought stress. The results showed that 
application of silicon improved the water status of drought-stressed plants com-
pared with the non-silicon treatment.

Plant biomass and yield of crops are severely affected by drought stress due to its 
impact upon various physiological and agronomical parameters. In an experiment, 
Humayun et al. (2010) investigated the influence of fertilization on various plant growth 
attributes including shoot length and plant fresh and dry weight. The effect of fertiliza-
tion with Si compounds on accumulation of Si in wheat (Triticum aestivum L.) has been 
studied by Joanna et al. (2007) in which wheat plants were grown under identical grow-
ing conditions but subjected to fertilization with various Si compounds (pyrolitic fine 
silica particles, sodium silicate, silica gel), and the Si content of the aboveground plants 
was analyzed via X-ray microanalysis (EDX) and atomic absorption spectroscopy 
(AAS). Silicon under different water regimes was evaluated on wheat crop. Si was 
added in soil at 50 mg/kg and 150 mgkg−1 of soil. Three levels of water contents (50%, 
75%, and 100% of field capacity) were maintained (Ahmad et al. 2007). Growth perfor-
mance, relative water contents (RWC), and mineral nutrition were studied by Mali and 
Aery (2008) in Triticum aestivum L. treated with different concentrations of silicon (25, 
50, 100, 200, 400, and 800  ppm). Lower administrations of silicon (25–200  ppm) 
resulted in an enhancement in relative yield, relative water contents, and calcium and 
potassium contents. Shoots were significantly richer in silicon content than roots.

Fig. 22.1 Silicon application and fungal disease (Wang et al. 2017)
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22.3  Methodology

The experiment relating to the effect of silicon on wheat growth, development, and 
drought resistance index was conducted in a crop physiology laboratory, Department 
of Agronomy, Arid Agriculture University, Rawalpindi, Pakistan. Seeds of two cul-
tivars, viz., NARC-2009 and Chakwal-50, were primed with T1 = control (distilled 
water only), T2  =  silicic acid (0.5%, 1.0%, 1.5%), T3  =  sodium silicate (0.5%, 
1.0%, 1.5%), and T4 = silica gel (0.5%, 1.0%, 1.5%). The experiment was laid out 
as CRD, and pots of uniform size were covered with aluminum foils to prevent an 
increase in soil temperature caused by solar radiation. Pots were irrigated before 
adding soil. Each pot was filled with 10 kg of well-pulverized soil. Fertilizer was 
added on the rate of N:P as 100:50 on the basis of soil weight in the pots. Two wheat 
cultivars primed in T2, T3, and T4 with three replications were used as plant mate-
rial in the present study. Ten seeds of each cultivar were sown per pot. Plastic sheets 
coated with aluminum film were placed on the soil surface to prevent evaporation 
from the pots. Evaporation data was taken from Meteorological Observatory, and it 
correlated with all treatments. Data for the silicon concentration of the fully 
expanded flag leaves was measured according to Lux et al. (2002). Physiological 

Fig. 22.2 Si mediated water balance of plants (Chen et al. 2018)
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parameters like photosynthetic rate (An), transpiration rate (E), and stomatal con-
ductance (gs) were measured at flag leaf stage by infrared gas analyzer (IRGA) 
(Long and Bernacchi 2003). Leaf membrane stability index (LMSI) was determined 
according to the method described by Chandrasekar et al. (2000). Leaf succulence 
(LS) and relative water content (RWC) were calculated by the following formulae:

LS = fresh leaf weight  – dry leaf weight/leaf area
RWC (%) = [(fresh leaf weight  – dry leaf weight) ∕ (turgid leaf weight  – dry leaf 

weight)] × 100

Epicuticular wax was measured by the procedure proposed by Silva et al. (1964). 
Chlorophyll content was measured by SPAD chlorophyll meter by taking three 
readings from the flag leaf and then taking the average. Drought resistance index 
(DRI) was calculated by using the following formulae:

DRI = DC × (Ya/Y′a)
DC =   drought resistance coefficient = Ya/Ym

where:

Ya is the average yield of all the varieties with no irrigation.
Y′a is the yield of the variety without irrigation.
Ym is the maximum yield of variety under irrigation.

Proline content was estimated spectrophotometrically following the ninhydrin 
method (Bates et al. 1973) using pure proline. At maturity, plant height (cm), spike 
length (cm), number of spikelet per spike, number of grains per spike, hundred grain 
weight, biological yield (g m−2), and grain yield (g m−2) were calculated from five 
randomly selected plants.

22.3.1  Statistical Analysis

The observations collected were analyzed for variance by STATISTICA version 8. 
Means were compared by the LSD test at the 5% level of probability.

22.4  Results and Discussions

22.4.1  Silicon Concentration in Plants

Results depicted significant variation for silicon accumulation of different silicon 
priming treatments on wheat at three-leaf stage (Appendix 22.1). Silicon priming 
treatments differed significantly for silicon accumulation at three-leaf stage (Z-13) 
for wheat crop (Table  22.3). Maximum silicon was recorded for silica gel 
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(0.0279  μg  g−1), whereas minimum silicon was recorded for control treatment 
(0.0034 μg  g−1) at three-leaf stage. Meanwhile, silicon application rates differed 
significantly for silicon accumulation in the wheat plant. Maximum silicon was 
accumulated for 1.5% application rate (0.0165 μg g−1); however, minimum silicon 
contents were accumulated for 0.5% application rate (0.0157 μg g−1) at three-leaf 
stage. Similarly, wheat genotypes differed significantly for silicon accumulation. 
Genotype NARC-2009 accumulated maximum silicon contents (0.0181 μg g−1) at 
three-leaf stage; however, genotype Chakwal-50 accumulated minimum silicon 
contents (0.0143 μg g−1). The interactive effect G × T and T × L were highly signifi-
cant. Considerable variation was observed among wheat genotypes at varying sili-
con priming rates and different chemicals at anthesis stage (Appendix 22.2). Priming 
by silicon chemicals differed significantly for silicon accumulation in wheat plants 
at anthesis stage (Z-60). The highest silicon contents were accumulated for silica 
gel (0.0718 μg g−1), while the lowest silicon contents (0.0086 μg g−1) were accumu-
lated for control treatment (Table  22.3). Similarly, different silicon levels varied 
greatly for silicon accumulation at anthesis stage of wheat. The highest silicon con-
tents were accumulated (0.0426 μg g−1) for 1.5% silicon application levels, whereas 
the lowest silicon contents were accumulated (0.0397 μg g−1) for 0.5% application. 
The percentage difference among the highest and lowest level was 7. In the same 
way, wheat genotypes differed significantly for silicon accumulation at anthesis 
stage. Maximum silicon (0.0426 μg g−1) was accumulated by cultivar NARC-2009, 
whereas minimum silicon (0.0401 μg g−1) was accumulated by cultivar Chakwal-50. 
The percentage difference among both genotypes for silicon accumulation at anthe-
sis stage was 6%.

The effect of different silicon priming by different silicon application rates on 
wheat genotypes at maturity stage (Z-92) was elaborated by ANOVA table 
(Appendix 22.3). Silicon priming chemicals varied considerably in depicting silicon 
accumulation in wheat crop at maturity stage. The highest silicon was accumulated 
(0.1026 μg g−1) for silica gel, whereas the lowest silicon (0.0123 μg g−1) was accu-
mulated for control silicon priming treatment. Meanwhile, silicon application rates 
differed greatly for silicon accumulation at maturity stage. Maximum silicon was 
accumulated (0.0609 μg g−1) for 1.5% silicon application levels, whereas minimum 
silicon (0.0568 μg g−1) was accumulated when silicon application level was 0.5%. 
The percentage difference among the highest and lowest silicon application levels 
was 7. Similarly, wheat cultivars varied greatly for silicon accumulation at maturity 
stage. Cultivar NARC-2009 accumulated maximum silicon contents (0.0608 μg g−1), 
while minimum silicon contents (0.0572  μg  g−1) were accumulated for cultivar 
Chakwal-50. The percentage difference among two cultivars was 5.

Silicon contents increased by increasing silicon application rates. Different 
chemicals behaved differently for uptake of silicon in wheat. Silica gel dissolved 
predominantly frequently than other chemicals, viz., sodium silicate and silicic 
acid. However, various studies have demonstrated that Si application increased 
plant growth significantly (Alvarez and Datnoff 2001). The highest silicon was 
accumulated for 1.5% silicon application rate, while the lowest silicon was accu-
mulated for 0.5% silicon application rates. The results of current study were as per 
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with Hattori et al. (2005a, b) who testified that silicon concentration in leaf was 
increased by Si application regardless of soil water regime. Our results were also 
in accordance with Hodson and Sangster (1988) and Mecfel et al. 2007 who stated 
that silicon deposition in wheat plant leaves can be enhanced by silicon chemicals 
in the soil.

22.4.2  Photosynthetic Rate (An)

The effect of different silicon priming compounds by different silicon application 
rates and levels on wheat genotypes were elaborated by ANOVA (Appendix 22.4). 
Silicon priming compounds have significant effect on photosynthesis of wheat crop 
(Table 22.4). The highest net photosynthesis was calculated (25.87 μ mole m−2 sec−1) 
for silica gel, whereas the lowest net photosynthesis was calculated (22.8 μ mole 
m−2 sec−1) for control silicon priming treatment. There was 13% difference among 
the highest and lowest silicon compounds. Meanwhile, silicon application rates did 
not differ for net photosynthesis. On the other hand, wheat cultivars varied greatly 
for net photosynthesis at flag leaf stage. Maximum net photosynthesis was calcu-
lated for cultivar NARC-2009 (24.38 μ mole m−2 sec−1), while minimum net photo-
synthesis (22.87 μ mole m−2  sec−1) was calculated for cultivar Chakwal-50. The 
percentage difference among two cultivars was 7%. The interaction among G × L 
was significant at 5% P level, and T × G was significant at 1% P level. Net photo-
synthesis is reduced in drought conditions. Different silicon compounds behaved 
differently for photosynthesis during current study. The variation among different 
compounds was due to their solubility. With the addition of silicon as seed priming 
treatment, photosynthesis increases. Our results were in line with Liang et al. (2003) 
who reported that silicon enhances different metabolic activities in plants like pho-
tosynthesis and transpiration. Also Matichenkov et  al. (2001) stated that silicon 
enhanced photosynthetic activity in wheat.

22.4.3  Transpiration Rate (E)

Significant difference was observed for transpiration rate among two wheat culti-
vars for all silicon treatments and application levels (Appendix 22.5). Silicon appli-
cation compounds varied significantly for transpiration rate. The highest transpiration 
rate (9.78 mole m−2 sec−1) was recorded for silica gel, whereas the lowest transpira-
tion rate (6.21 mole m−2 sec−1) was calculated for control treatment. There was 36% 
difference among silica gel and control treatment for transpiration rate. Similarly, 
there was a significant difference among the highest and lowest silicon application 
levels. Maximum transpiration rate was calculated for 1.5% silicon application level 
(8.50 mole m−2 sec−1), whereas minimum transpiration rate was calculated for 0.5% 
silicon application level (7.69 mole m−2 sec−1). There was 10% difference among 
1.5% and 0.5% silicon application levels. In the same way, wheat cultivars due to 

M. Ahmed et al.



455

their genetic behavior differed considerably for transpiration rate. The highest tran-
spiration rate (8.86 mole m−2  sec−1) was calculated for cultivar NARC-2009, 
whereas the lowest transpiration rate (7.35 mole m−2 sec−1) was calculated for culti-
var Chakwal-50. Both the cultivars differed 17% for transpiration rate. All the inter-
actions for transpiration were non-significant (Table 22.4). Silicon remains in the 
leaves of crop plants which reduces the water losses through stomatal transpiration 
(Agarie et al. 1998; Savant et al. 1999). The leaves applied with silicon were thicker 
than control silicon treatment, so it is assumed that silicon reduces transpiration in 
wheat plants. Our results were in line with Gong et al. (2003) who stated that by 
applying silicon, water losses reduce by decreasing transpiration rate. Silicon is also 
known to increase drought tolerance in plants by maintaining plant water balance, 
photosynthetic activity, erectness of leaves, and structure of xylem vessels under 
high transpiration rates (De Melo et al. 2003; Hattori et al. 2005a, b). Shu and Liu 
(2001) also found that by adding silicon, transpiration rate increased by increasing 
plant water potential.

22.4.4  Stomatal Conductance (gs)

The effect of different silicon priming compounds by different silicon applica-
tion rates and levels on wheat genotypes for stomatal conductance (gs) was 
expressed by ANOVA table (Appendix 22.6). Silicon application treatments var-
ied significantly for stomatal conductance. Maximum stomatal conductance was 
calculated for silica gel treatment (0.7806 mole m−2  sec−1), whereas minimum 
stomatal conductance (0.4772 mole m−2 sec−1) was calculated for control silicon 
treatment. Similarly, different silicon application rates varied significantly for 
stomatal conductance. Maximum stomatal conductance (0.6637 mole m−2 sec−1) 
was calculated for 1.5% silicon application level, while minimum stomatal con-
ductance (0.5979 mole m−2  sec−1) was recorded for 0.5% silicon application 
level. There was 11% difference for stomatal conductance among maximum and 
minimum silicon application levels. In the meanwhile, wheat cultivars varied 
noticeably for stomatal conductance. Cultivar NARC-2009 accumulated the 
highest stomatal conductance (0.6978 mole m−2  sec−1), whereas cultivar 
Chakwal-50 accumulated the lowest stomatal conductance (0.5644 mole 
m−2 sec−1). The percentage difference among both genotypes for stomatal con-
ductance was 19. However, all interactions remained non- significant for stomatal 
conductance (Table 22.4). Stomatal conductance reduces in drought conditions 
to save water losses. By reducing stomatal conductance, photosynthesis reduces 
which results in less biomass production. In the current study by adding silicon, 
stomatal conductance increased which led to enhanced biomass production. 
Stomatal conductance increased by enhancing silicon application levels. Our 
results were in accordance with Yeo et al. (1999) who stated that by adding sili-
con, stomatal conductance enhanced in drought conditions that might be because 
of maintenance of water in the leaf of crops.
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22.4.5  Stomatal Resistance (rs)

Significant variation was observed for stomatal resistance (rs) among two wheat 
cultivars for all silicon treatments and application levels (Appendix 22.7). Silicon 
application led to significant difference in stomatal resistance. Maximum stomatal 
resistance (0.7833 m2 s mole−1) was observed for control treatment, whereas silica 
gel gave minimum (69.12 m2 s mole−1) stomatal resistance. There was 58% differ-
ence among silica gel and control treatments. Meanwhile, silicon application levels 
varied significantly for stomatal resistance. Maximum stomatal resistance 
(0.7417  m2  s mole−1) was calculated for 0.5% silicon application level, whereas 
minimum stomatal resistance (0.5375 m2 s mole−1) was recorded for 1.5% silicon 
application level. On the other hand, wheat cultivars did not vary significantly for 
stomatal resistance. The interaction among G  ×  L was significant at 1% P level 
(Table 22.4). Stomatal resistance causes reduction in physiological activities of the 
plant. For control silicon application treatment, the highest stomatal resistance was 
recorded during current study. However by adding silicon, stomatal resistance 
reduced. Minimum stomatal resistance was recorded by the highest silicon applica-
tion level. Several researchers supported that the silicon was involved in physiologi-
cal activities under drought and reduces stomatal resistance (Liang et al. 2003; Zhu 
et al. 2004).

22.4.6  SPAD Chlorophyll Contents

Silicon priming chemicals and application levels varied extensively for chlorophyll 
contents (Appendix 22.8). Silicon application treatments varied significantly for 
chlorophyll contents. Maximum SPAD chlorophyll contents were calculated for sil-
ica gel treatment (55.35), whereas minimum chlorophyll contents (37.85) were cal-
culated for control silicon treatment. The percentage difference among the highest 
silicon application treatment and control treatment for chlorophyll contents was 
32%. Similarly, there was a significant difference among the highest and lowest sili-
con application levels. Maximum chlorophyll contents (47.83) were calculated for 
1.5% silicon application level, whereas minimum chlorophyll contents (44.85) were 
calculated for 0.5% silicon application level. There was 6% difference among 1.5% 
and 0.5% silicon application levels. Similarly, wheat cultivars varied considerably 
for chlorophyll contents. Cultivar NARC-2009 accumulated the highest chlorophyll 
contents (48.537), whereas cultivar Chakwal-50 accumulated the lowest chlorophyll 
contents (44.13). The percentage difference among both genotypes for chlorophyll 
contents was 9%. However, the interactions remained non-significant (Table 22.4). 
Chlorophyll contents are the direct measures of photosynthesis. Under drought con-
ditions, the number of chlorophyll contents decreased. In the current study, maxi-
mum chlorophyll contents were recorded for silica gel with 1.5% application level, 
while minimum chlorophyll contents were recorded for control treatment. Our 
results were in line with Paknejad et al. (2007) who found that chlorophyll contents 
in different wheat cultivars could be reduced more than 25% due to drought stress.
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22.4.7  Drought-Resistant Index (DRI)

Significant variation was observed for drought-resistant index (DRI) among two 
wheat cultivars for all silicon treatments and application levels (Appendix 22.9). 
Silicon application chemicals varied significantly for drought-resistant index 
(Table  22.5). The highest DRI (0.53) was recorded for silica gel, whereas the 
lowest DRI (0.43) was calculated for control treatment. There was 22% differ-
ence among silica gel and control treatment for drought-resistant index. Similarly, 
there was a significant difference among the highest and lowest silicon applica-
tion levels. Maximum DRI was calculated for 1.5% silicon application level 
(0.4864), whereas minimum DRI was calculated for 0.5% silicon application 
level (0.4719). There was 3% difference among 1.5% and 0.5% silicon applica-
tion levels. In the same way, wheat cultivars due to their genetic behavior dif-
fered considerably for drought- resistant index. The highest DRI (0.521) was 
calculated for cultivar NARC-2009, whereas the lowest DRI (0.439) was calcu-
lated for cultivar Chakwal-50. Both the cultivars differed 19% for drought-resis-
tant index. Drought-resistant index is the key factor to determine better crop 
growth under drought conditions. Different silicon compounds behaved differ-
ently for drought-resistant index. Silica gel enhanced drought-resistant index to 
cope with different types of stresses. Wheat cultivar NARC-2009 accumulated 
more silicon contents and higher DRI. The results of the current study were in 
line with the findings of Zhao et al. (2007) who calculated the DRI values for 
wheat cultivars grown under different moisture regime and silicon conditions and 
found that cultivars applied with higher silicon concentrations had more DRI 
values and were more resistant to drought.

22.4.8  Epicuticular Wax (ECW)

Silicon priming chemicals and application levels varied considerably for epicu-
ticular wax (Appendix 22.10). Silicon compounds differed greatly for epicutic-
ular wax accumulation. Maximum ECW was accumulated for silica gel 
(7.6459  mg), whereas control treatment accumulated minimum epicuticular 
wax (6.2852 mg). There was 22% difference among the highest and lowest sili-
con application treatments. On the other hand, silicon application levels did not 
fluctuate for epicuticular wax accumulation. Meanwhile, wheat cultivars due to 
genetic makeup differed significantly for epicuticular wax accumulation. 
Cultivar NARC-2009 accumulated maximum EW (7.7732  mg), while 
Chakwal-50 accumulated minimum epicuticular wax (6.2048 mg). There was 
25% difference among both cultivars for epicuticular wax accumulation. Silicon 
enhances epicuticular wax to overcome drought. Silicon compounds on the 
basis of their solubility enhanced epicuticular wax on the leaves. Our findings 
were in accordance with Avestan et al. (2019) who documented that cuticle wax 
accumulation enhances the drought tolerance in plants and silicon holds a vital 
place under such circumstances.
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22.4.9  Relative Water Content (RWC)

The effect of different silicon priming chemicals by different silicon application 
rates on wheat genotypes for relative water contents (RWC) were elaborated by the 
ANOVA (Appendix 22.11). Silicon application treatments varied significantly for 
relative water contents (Table 22.5). Maximum relative water contents were calcu-
lated for silica gel treatment (83.88%), whereas minimum relative water contents 
(74.10%) were calculated for control silicon treatment. The percentage difference 
among the highest silicon application treatment and control treatment was 13. 
However, different silicon application rates did not vary significantly for relative 
water contents. On the other hand, wheat cultivars varied considerably for relative 
water contents. Cultivar NARC-2009 accumulated the highest RWC (83.19%), 
whereas cultivar Chakwal-50 accumulated the lowest relative water contents 
(75.14%). The percentage difference among both genotypes for RWC was 10.  
Relative water content is directly related to plant physical status. Relative water 
content is the measure of crop physical conditions. Application of Si enhanced rela-
tive water content in wheat crop. The findings of Ma et al. (2006) supported our 
results as they thought that silicon improved crop relative water potential. Relative 
water contents also enhance silicon concentration in the leaves as silicon enters 
through transport chain. Similar to our results, Dehghanipoodeh et al. (2018) also 
described that Si uptake enhances with an increase in moisture contents as it is 
impassively absorbed via mass flow.

22.4.10  Leaf Succulence (LS)

The chemicals used for silicon priming and application levels varied considerably 
for epicuticular wax (Appendix 22.12). Silicon priming chemicals differed signifi-
cantly for leaf succulence (Table 22.5). Maximum leaf succulence was recorded for 
silica gel (15.13  mg/m2), while minimum leaf succulence (12.44  mg/m2) was 
recorded for control treatment. There was 22% difference among silica gel and con-
trol treatment for leaf succulence. Meanwhile, silicon application levels did not 
differ significantly for leaf succulence. Whereas, wheat cultivars due to variation in 
their genetic makeup varied considerably for leaf succulence. Maximum leaf suc-
culence (15.42 mg m−2) was recorded for cultivar NARC-2009, while minimum leaf 
succulence (12.25 mg m−2) was recorded for Chakwal-50. There was 26% differ-
ence for leaf succulence among both wheat cultivars. The interaction among all the 
treatments was not significant at 5% P level. Leaf succulence represents the activity 
of plant leaves. Less leaf succulence denotes stunted plant growth. Leaf succulence 
increased with the increase in silicon application. Silicon-enhanced leaf water 
potential ultimately increased leaf succulence. Zhu et al. (2019) also found that sili-
con increases water potential which increased leaf succulence value.

M. Ahmed et al.



459

22.4.11  Leaf Membrane Stability Index (LMSI)

Significant variation was observed for leaf membrane stability index (LMSI) 
among two wheat cultivars for all silicon treatments and application levels 
(Appendix 22.13). Silicon priming chemicals differed potentially for leaf mem-
brane stability index (Table  22.5). The highest leaf membrane stability index 
(78.90%) was observed for silica gel, whereas control silicon application treat-
ment observed the lowest (69.12%) leaf membrane stability index. There was 
14% difference among silica gel and control treatments. However, silicon appli-
cation levels did not differ significantly for leaf membrane stability index. In the 
meanwhile, wheat cultivars varied significantly for leaf membrane stability index 
accumulation. Maximum LMSI (77.82%) was calculated for cultivar NARC-
2009, whereas Chakwal-50 accumulated minimum leaf membrane stability index 
(70.54%). Both the cultivars varied 10% for leaf membrane stability index. All 
the interactions remained non- significant at 5% P level. Leaf membrane stability 
index is the ability of plant to be alive in drought conditions. Silicon increased 
leaf membrane stability index. Minimum leaf stability index was recorded for 
control treatment, whereas, by the addition of silicon, the membrane stability 
index increased. The findings of the current study were in accordance with 
Maghsoudi et al. (2016) who reported that silicon played a significant role in 
maintaining membrane stability.

22.4.12  Proline Content

The chemicals used for silicon priming and application levels varied considerably 
for proline contents (Appendix 22.14). Silicon application treatments varied sig-
nificantly for proline contents. Maximum proline contents were calculated for sil-
ica gel treatment (54.90 μg g−1), whereas minimum proline contents (45.12 μg g−1) 
were calculated for control silicon treatment. Similarly, there was a significant 
difference among the highest and lowest silicon application levels. Maximum pro-
line contents (50.85 μg  g−1) were calculated for 1.5% silicon application level, 
whereas minimum proline contents (49.34 μg g−1) were calculated for 0.5% silicon 
application level. There was 3% difference among 1.5% and 0.5% silicon applica-
tion levels. Similarly, wheat cultivars varied considerably for proline contents. 
Cultivar NARC-2009 accumulated the highest proline contents (53.82  μg  g−1), 
whereas cultivar Chakwal-50 accumulated the lowest proline contents 
(46.54 μg g−1). The percentage difference among both genotypes for proline con-
tents was 16% (Table 22.3). Silicon priming increased proline contents with an 
increase in drought. Similar findings have been documented that proline contents 
reduced under increased stress; however, it increased in resistant cultivars which 
led to higher yield (Mamrutha et al. 2019).
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22.4.13  Plant Height

The effect of different silicon priming compounds on plant height by different sili-
con application rates on wheat genotypes was elaborated by ANOVA (Appendix 
22.15). Silicon priming compounds varied considerably on plant height at maturity 
stage (Table 22.4). The highest plant height (85.05 cm) was recorded for silica gel, 
whereas the lowest plant height (75.27 cm) was recorded for control silicon prim-
ing treatment. The percentage difference among the highest and lowest priming 
treatments for plant height was 13%. Meanwhile, silicon application rates differed 
greatly for plant height at maturity stage. Maximum plant height (81.00 cm) was 
recorded for 1.5% silicon application levels, whereas minimum plant height 
(79.49 cm) was recorded when silicon application level was 0.5%. The percentage 
difference among the highest and lowest silicon application levels for recording 
plant height was 13%. Similarly, wheat cultivars varied greatly for plant height at 
maturity stage. Maximum plant height (85.19 cm) was recorded for cultivar NARC- 
2009, while minimum plant height (75.47 cm) was recorded for cultivar Chakwal-50 
(Table 22.5). The percentage difference among two cultivars was 2. Plants reduce 
their height under drought conditions. Drought can be mitigated by applying sili-
con nutrients to plants. In the current study, minimum plant height was recorded 
for control treatment where drought was at its peak, whereas, by adding silicon 
through seed priming, drought was mitigated, and maximum plant height was 
recorded. Gong et al. (2003) observed that silicon increased plant height, leaf area, 

Table 22.3 Silicon concentration in plants at three-leaf (Z13), anthesis (Z-60), and maturity 
(Z92) stage

Treatments Si-Z13 Si-Z-60 Si-Z92
Genotype (G)
NARC-2009 0.0181a 0.0426a 0.0608a
Chakwal-50 0.0143b 0.0401b 0.0572b
Treatments (T)
Control 0.0034d 0.0086d 0.0123d
Silicic acid 0.0136c 0.0343c 0.049c
Sodium silicate 0.0199b 0.0505b 0.0722b
Silica gel 0.0279a 0.0718a 0.1026a
Application level (L)
0.50% 0.0157b 0.0397c 0.0568c
1% 0.0164a 0.0416b 0.0594b
1.50% 0.0165a 0.0426a 0.0609a
Interactions
C × T ∗∗∗ ∗∗∗ ∗∗∗
C × L NS NS NS
T × L ∗∗∗ ∗∗∗ ∗∗∗
C × T × L NS NS NS

Any two means not sharing a common letter in a column differ significantly at 5% probability 
level. (∗∗∗significant at P < 1% level, NS non-significant)
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Table 22.4 Physiological parameters among two wheat cultivars for different silicon priming 
chemicals and levels

Treatments An E gs rs SPAD
Cultivar (C)
NARC-2009 24.3a 8.8a 0.71a 0.63NS 48.5a
Chakwal-50 22.8b 7.3b 0.56b 0.65 44.1b
Treatments (T)
Control 22.8b 6.2d 0.47d 0.78a 37.8d
Silicic acid 23.2b 7.7c 0.59c 0.63ab 43.3c
Sodium silicate 22.5b 8.6b 0.67b 0.65ab 48.8b
Silica gel 25.8a 9.7a 0.78a 0.49b 55.3a
Application level (L)
0.50% 23.0NS 7.6c 0.60c 0.74a 44.8c
1% 24.2 8.1b 0.63b 0.64ab 46.3b
1.50% 23.5 8.5a 0.66a 0.54b 47.8a
Interactions
C × L ∗∗ NS NS ∗∗∗ NS

T × C ∗∗∗ NS NS NS NS

L × T NS NS NS NS NS
C × T × L NS NS NS NS NS

Any two means not sharing a common letter in a column differ significantly at 5% probability level 
(∗∗∗significant at P < 1% level, ∗∗significant at P < 5% level, NS non-significant)

Table 22.5 Physiological parameters among two wheat cultivars for different silicon priming 
chemicals and levels

Treatments DRI ECW RWC LS LMSI Proline
Genotype (G)
NARC-2009 0.52a 7.77a 83.19a 15.42a 77.82a 53.82a
Chakwal-50 0.44b 6.20b 75.14b 12.25b 70.54b 46.54b
Treatments (T)
Control 0.43d 6.28c 74.11d 12.44c 69.12d 45.12d
Silicic acid 0.47c 6.80b 77.81c 13.46bc 72.83c 48.87c
Sodium silicate 0.50b 7.22ab 80.85b 14.29ab 75.87b 51.87b
Silica gel 0.53a 7.64a 83.88a 15.13a 78.90a 54.90a
Application level (L)
0.50% 0.47b 6.87NS 78.32NS 13.60NS 73.34NS 49.34b
1% 0.48a 7.01 79.33 13.88 74.34 50.35a
1.50% 0.48a 7.08 79.84 14.01 74.85 50.85a
Interactions
L × T NS NS NS NS NS NS
G × L NS NS NS NS NS NS
T × G NS NS NS NS NS NS
G × T × L NS NS NS NS NS NS

Any two means not sharing a common letter in a column differ significantly at 5% probability 
level. (NS non-significant)
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and dry mass of wheat even under drought. Sundahri et al. (2001) showed positive 
effects of silicate on the wheat grown under stressed conditions in increasing plant 
height and biological yield.

22.4.14  Grains per Spike

Priming silicon application compounds and application levels varied extensively for 
number of seeds per spike (GS) (Appendix 22.16). Silicon application treatments 
varied considerably for number of seeds per spike (Table 22.5). Maximum number 
of seeds per spike was calculated for silica gel (47.11), whereas minimum number 
of seeds per spike (37.13) was calculated for control silicon treatment. There was 
27% percentage difference among the highest silicon application treatment and con-
trol treatment. Similarly, there was a major difference among the highest and lowest 
silicon application levels for calculating the number of seeds per spike. Maximum 
number of seeds per spike (42.94) was calculated for 1.5% silicon application level, 
whereas minimum number of seeds per spike (41.35) was calculated for 0.5% sili-
con application level. There was 4% difference among 1.5% and 0.5% silicon appli-
cation levels for number of seeds per spike. Similarly, wheat cultivars varied 
noticeably for number of seeds per spike. Cultivar NARC-2009 accumulated the 
highest number of seeds per spike (45.86), whereas cultivar Chakwal-50 accumu-
lated the lowest number of seeds per spike (38.61). The percentage difference 
among both genotypes for number of seeds per spike was 19%. The interactions 
were non-significant. Drought can decrease seeds per spike on wheat plant. Silicon 
as seed priming chemical reduces drought and enhances seeds per spike. Our results 
were in line with the findings of Tamai and Ma (2008) who reported an increase in 
yield due to silicon application.

22.4.15  Spike Length

Significant variation was observed for spike length among two wheat cultivars for 
all silicon priming compounds and their application levels (Appendix 22.17). Spike 
length differed significantly for all Silicon application treatments (Table 22.5). The 
highest spike length (15.70 cm) was observed for silica gel, whereas control silicon 
application compound observed the lowest (12.38 cm) spike length. There was 27% 
difference among silica gel and control compounds for spike length. Similarly, there 
was significant difference among the highest and lowest silicon application levels. 
Maximum spike length (14.31  cm) was calculated for 1.5% silicon application 
level, whereas minimum spike length (13.78 cm) was calculated for 0.5% silicon 
application level. There was 4% difference among 1.5% and 0.5% silicon applica-
tion levels for spike length. In the meanwhile, wheat cultivars varied expressively 
for spike length. Maximum spike length (15.29  cm) was recorded for cultivar 
NARC-2009, whereas Chakwal-50 accumulated minimum spike length (12.87 cm). 
Both the cultivars varied 10% for spike length. The interactions were non- significant 
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at 5% P level. Birsin (2005) supported our results, as he was of the opinion that 
spike length was significantly affected under stressed conditions and ultimately 
impacted grain yield. The highest spike length attributed toward good source-sink 
relationship as more photoassimilates translocated from source to sink efficiently.

22.4.16  Spikelet per Spike

Significant variation was observed for spikelet per spike (SLS) among two wheat 
cultivars for all silicon priming compounds and application levels (Appendix 22.18). 
Silicon application chemicals varied significantly for spikelet per spike (Table 22.5). 
The highest spikelet per spike (17.91) was calculated for silica gel, whereas the low-
est spikelet per spike (14.59) was calculated for control treatment. There was 23% 
difference among silica gel and control treatment for spikelet per spike. In the same 
way, there was a major difference among the highest and lowest priming silicon 
application levels. Maximum spikelet per spike (16.52) was calculated for 1.5% sili-
con application level, whereas minimum spikelet per spike (15.99) was calculated 
for 0.5% silicon application level. There was 3% difference among 1.5% and 0.5% 
priming silicon application levels. Meanwhile, wheat cultivars due to their genetic 
behavior differed considerably for spikelet per spike. The highest spikelet per spike 
(17.50) was calculated for cultivar NARC-2009, whereas the lowest spikelet per 
spike (15.08) was calculated for cultivar Chakwal-50. Both the cultivars differed 
19% for spikelet per spike. This variation might be due to the length of spike because 
of efficient utilization of available water and temperature and efficiently accumula-
tion of photoassimilates. Similar results had been documented, demonstrating that 
cultivars differed among themselves regarding spikelets/spike under various silicon 
applications (Arif et al. 2016).

22.4.17  Hundred Grain Weight

Substantial difference was observed among wheat genotypes at varying silicon 
priming rates and different compounds for hundred grain weight (Appendix 22.19). 
Priming different silicon compounds diverged significantly for hundred grain 
weight in wheat plants (Table 22.5). The highest hundred grain weight was accumu-
lated for silica gel (4.468 g), while the lowest hundred grain weight (3.2826 g) was 
calculated for control treatment (Table 22.5). Similarly, different silicon levels var-
ied greatly for hundred grain weight. The highest hundred grain weight was recorded 
(3.9739 g) for 1.5% silicon application levels, whereas the lowest hundred grain 
weight was recorded (3.8025 g) for 0.5% application levels. The percentage differ-
ence among the highest and lowest level was 7%. In the same way, wheat cultivars 
differed significantly for hundred grain weight. Maximum hundred grain weight 
(4.3934 g) was accumulated by genotype NARC-2009, whereas minimum hundred 
grain weight (3.3934 g) was accumulated by genotype Chakwal-50. The percentage 
difference among both genotypes for silicon accumulation at anthesis stage was 6%. 
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Hundred grain weight varied due to droughts, and this variation might be due to an 
increase in temperature and moisture stress during later growth stages of wheat 
crop, and ultimately it had marked influence on grain yield of crop. Results were in 
line with the findings of Aggarwal (2008). Ultimately grain yield is the most impor-
tant entity for farmer. Varieties having more grain weight under stressed conditions 
can be considered as drought-resistant varieties. So the selection of drought-resis-
tant varieties may be based on 100 grain weight for optimum production under 
stressful environment.

22.4.18  Biological Yield

Priming silicon application compounds and application levels varied extensively for 
biological yield (BY) (Appendix 22.20). Silicon application treatments varied con-
siderably for biological yield (Table 22.5). Maximum biological yield was calcu-
lated for silica gel (13,938 kg ha−1), whereas minimum biological yield (9384 kg ha−1) 
was calculated for control silicon treatment. There was 48% difference among the 
highest silicon application treatment and control treatment. Similarly, there was a 
major difference among the highest and lowest silicon application levels for calcu-
lating biological yield. Maximum biological yield (12,555 kg ha−1) was recorded 
for 1.5% silicon application level, whereas minimum biological yield (11,471 kg ha−1) 
was recorded for 0.5% silicon application level. There was 9% difference among 
1.5% and 0.5% silicon application levels for biological yield. Similarly, wheat cul-
tivars varied prominently for biological yield. Cultivar NARC-2009 accumulated 
maximum biological yield (12,239 kg ha−1), whereas cultivar Chakwal-50 accumu-
lated minimum biological yield (11,880 kg ha−1). The interaction among T × L was 
significant at 1% P level. Silicon priming increased biological yield with the addi-
tion of silicon. By adding silicon, drought was reduced. Similar to our findings, 
Singh et al. (2006) suggested that the increased dry matter and yield by adding sili-
con. Sundahri et al. (2001) also observed positive effects of silicate on the wheat 
grown under stressed conditions in increasing plant height and biological yield.

22.4.19  Grain Yield

The effect of different silicon priming compounds by different silicon application 
rates and levels on wheat genotypes for grain yield was expressed by ANOVA 
table (Appendix 22.21). Silicon application treatments varied significantly for 
grain yield. Maximum grain yield was calculated for silica gel treatment 
(3010 kg ha−1), whereas minimum grain yield (2404 kg ha−1) was calculated for 
control silicon treatment. The percentage difference among the highest silicon 
application treatment and control treatment was 25% for grain yield. Similarly, 
different silicon application rates varied pointedly for grain yield. Maximum grain 
yield (3213 kg ha−1) was calculated for 1.5% silicon application level, while mini-
mum grain yield (2575 kg ha−1) was recorded for 0.5% silicon application level. 

M. Ahmed et al.



465

There was 24% difference for grain yield among maximum and minimum silicon 
application levels. In the meanwhile, wheat cultivars varied noticeably for grain 
yield. For cultivar NARC-2009, maximum grain yield (3381  kg  ha−1) was 
recorded, whereas cultivar Chakwal-50 accumulated minimum grain yield 
(2295 kg ha−1) (Table 22.6). The percentage difference among both genotypes for 
grain yield was 47%. All the interactions remained non-significant. Grain yield 
can be reduced by drought. Silicon reduced drought and increased grain yield. 
Similar to our findings, Mukkram et al. (2006) also found that silicon increased 
growth and yield due to decreased stress. Many studies have suggested the posi-
tive growth effects of silicon, including increased dry mass and yield and enhanced 
pollination (Korndörfer and Lepsch 2001).

22.5  Summary

Silicon has beneficial effect on crop growth and development under water stress 
condition. The effect of silicic acid, sodium silicate, and silica gel at rate of 0.5%, 
1.0%, and 1.5% solution was investigated for germination, and it was compared 
with control. The present study revealed that different silicon rates and application 
levels have significant impact upon crop growth and development. Wheat crop 
responded well to silicon priming treatments. Maximum grain yield was obtained 

Table 22.6 Yield and yield parameters among two wheat cultivars for different silicon priming 
chemicals and levels

Treatments GS SL SLS HGW PH GY BY
Genotype (G)
NARC-2009 45.86a 15.29a 17.50a 4.39a 85.19a 3381a 12239a
Chakwal-50 38.61b 12.87b 15.08b 3.39b 75.47b 2295b 11880b
Treatments (T)
Control 37.13d 12.38d 14.59d 3.28d 75.27d 2404b 9384d
Silicic acid 40.76c 13.59c 15.80c 3.73c 78.98c 2974a 11286c
Sodium silicate 43.94b 14.65b 16.86b 4.09b 82.02b 2965a 13630b
Silica gel 47.11a 15.70a 17.91a 4.47a 85.05a 3009a 13938a
Application level (L)
0.50% 41.35b 13.78b 15.99b 3.80b 79.49NS 2575b 11471c
1% 42.41a 14.14a 16.35a 3.90a 80.497 2726b 12153b
1.50% 42.94a 14.31a 16.52a 3.97a 81.003 3213a 12555a
Interactions
L × T NS NS NS NS NS NS NS
G × L NS NS NS NS NS NS NS
T × G NS NS NS NS NS NS ∗∗∗
G × T × L NS NS NS NS NS NS NS

Where GS grains per spike, SL spike length, SLS spikelets per spike, HGW hundred grains weight, 
PH plant height, GY grain yield, and BY biological yield
Any two means not sharing a common letter in a column differ significantly at 5% probability 
level. (∗∗∗significant at P < 1% level, NS non-significant)
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for silica gel with 1.5% silicon application level, whereas minimum grain yield was 
obtained by control treatment. Similarly, genotypes responded significantly to sili-
con priming treatments for grain production. Silicon priming could be future prim-
ing strategy to cope abiotic stress.

 Appendices

 Appendix 22.1: Analysis of Variance for Silicon Concentration 
in Plants at Three-Leaf Stage Among two Wheat Cultivars 
for Different Silicon Chemicals and Different Application 
Levels

SoV DF SS MS F P
Cultivar (C) 1 2.57E-04 2.57E-04 620.76 ∗∗∗
Treatments (T) 3 0.0058 0.00193 4669.49 ∗∗∗
Application level (L) 2 1.08E-05 5.39E-06 13 ∗∗∗
C × T 3 6.15E-05 2.05E-05 49.46 ∗∗∗
C × L 2 8.79E-07 4.40E-07 1.06 NS
T × L 6 1.57E-05 2.62E-06 6.32 ∗∗∗
C × T × L 6 2.98E-06 4.96E-07 1.2 NS
Error 48 1.99E-05 4.14E-07
Total 71 0.00617
CV 3.97

∗∗∗p ≤ 0.001 and NS = Non-significant

 Appendix 22.2: Analysis of  Variance for  Silicon Concentration 
in Plants at Anthesis Stage Among two Wheat Cultivars for Different 
Silicon Chemicals and Different Application Levels

SoV DF SS MS F P
Cultivar (C) 1 1.13E-04 1.13E-04 78.13 ∗∗∗
Treatments (T) 3 0.03835 0.01278 8818.93 ∗∗∗
Application level (L) 2 1.03E-04 5.15E-05 35.5 ∗∗∗
C × T 3 4.27E-05 1.42E-05 9.82 ∗∗∗
C × L 2 8.58E-07 4.29E-07 0.3 NS
T × L 6 1.60E-04 2.66E-05 18.37 ∗∗∗
C × T × L 6 3.34E-06 5.56E-07 0.38 NS
Error 48 6.96E-05 1.45E-06
Total 71 0.03884
CV 2.91

∗∗∗p ≤ 0.001 and NS = Non-significant
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 Appendix 22.3: Analysis of  Variance for  Silicon Concentration 
in Plants at Maturity Stage Among two Wheat Cultivars for Different 
Silicon Chemicals and Different Application Levels

SoV DF SS MS F P
Cultivar (C) 1 2.31E-04 2.31E-04 78.13 ∗∗∗
Treatments (T) 3 7.83E-02 2.61E-02 8818.93 ∗∗∗
Application level (L) 2 2.10E-04 1.05E-04 35.5 ∗∗∗
C × T 3 8.72E-05 2.91E-05 9.82 ∗∗∗
C × L 2 1.75E-06 8.75E-07 0.3 NS
T × L 6 3.26E-04 5.44E-05 18.37 ∗∗∗
C × T × L 6 6.81E-06 1.13E-06 0.38 NS
Error 48 1.42E-04 2.96E-06
Total 71 7.93E-02
CV 2.91

∗∗∗p ≤ 0.001 and NS = Non-significant

 Appendix 22.4: Analysis of Variance for Photosynthetic Rate 
Among two Wheat Cultivars for Different Silicon Chemicals 
and Different Application Levels

SoV DF SS MS F P
Cultivar (C) 1 40.95 40.951 5.08 ∗∗
Application level (L) 2 18.81 9.403 1.17 NS
Treatment (T) 3 125.27 41.756 5.18 ∗∗∗
G × L 2 67.33 33.665 4.17 ∗∗
T × G 3 414.79 138.265 17.14 ∗∗∗
L × T 6 64.19 10.698 1.33 NS
G × T × L 6 56.23 9.372 1.16 NS
Error 48 387.11 8.065
Total 71 1174.68
CV 12.02

∗∗p ≤ 0.01, ∗∗∗p ≤ 0.001, and NS = Non-significant
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 Appendix 22.5: Analysis of Variance for Transpiration Rate Among two 
Wheat Cultivars for  Different Silicon Chemicals and  Different 
Application Levels

SoV DF SS MS F P
Cultivar (C) 1 41.299 41.2989 146.66 ∗∗∗
Application level (L) 2 7.796 3.8982 13.84 ∗∗∗
Treatment (T) 3 123.364 41.1212 146.02 ∗∗∗
G × L 2 0.013 0.0066 0.02 NS
T × G 3 0.588 0.1961 0.7 NS
L × T 6 1.589 0.2648 0.94 NS
G × T × L 6 0.085 0.0141 0.05 NS
Error 48 13.517 0.2816
Total 71 188.251
CV 6.55

∗∗∗p ≤ 0.001 and NS = Non-significant

 Appendix 22.6: Analysis of  Variance for  Stomatal Conductance 
Among  two Wheat Cultivars for  Different Silicon Chemicals 
and Different Application Levels

SoV DF SS MS F P
Cultivar (C) 1 0.32 0.32 216.14 ∗∗∗
Application level (L) 2 0.05202 0.02601 17.57 ∗∗∗
Treatment (T) 3 0.87983 0.29328 198.09 ∗∗∗
G × L 2 0.00068 0.00034 0.23 NS
T × G 3 0.00974 0.00325 2.19 NS
L × T 6 0.00736 0.00123 0.83 NS
G × T × L 6 0.00021 0.00004 0.02 NS
Error 48 0.07107 0.00148
Total 71 1.34091
CV 6.1

∗∗∗p ≤ 0.001 and NS = Non-significant
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 Appendix 22.7: Analysis of  Variance for  Stomatal Resistance 
Among  two Wheat Cultivars for  Different Silicon Chemicals 
and Different Application Levels

SoV DF SS MS F P
Cultivar (C) 1 0.005 0.005 0.05 NS
Application level (L) 2 0.50083 0.25042 2.46 ∗
Treatment (T) 3 0.75278 0.25093 2.47 ∗
G × L 2 1.08583 0.54292 5.34 ∗∗∗
T × G 3 0.34833 0.11611 1.14 NS
L × T 6 0.68139 0.11356 1.12 NS
G × T × L 6 0.50083 0.08347 0.82 NS
Error 48 4.88 0.10167
Total 71 8.755
CV 49.69

∗p ≤ 0.05, ∗∗∗p ≤ 0.001, and NS = Non-significant

 Appendix 22.8: Analysis of  Variance for  Chlorophyll Contents 
Among  two Wheat Cultivars for  Different Silicon Chemicals 
and Different Application Levels

SoV DF SS MS F P
Cultivar (C) 1 350.46 350.463 326.22 ∗∗∗
Application level (L) 2 106.22 53.1093 49.44 ∗∗∗
Treatment (T) 3 3030.77 1010.26 940.38 ∗∗∗
C × L 2 0.24 0.12043 0.11 NS
T × C 3 6.87 2.29083 2.13 NS
L × T 6 8.91 1.48531 1.38 NS
C × T × L 6 0.02 0.00337 0 NS
Error 48 51.57 1.07431
Total 71 3555.07
CV 2.24

∗∗∗p ≤ 0.001 and NS = Non-significant
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 Appendix 22.9: Analysis of  Variance for  Drought-Resistant Index 
Among  two Wheat Cultivars for  Different Silicon Chemicals 
and Different Application Levels

SoV DF SS MS F P
Application level (L) 2 0.00262 0.00131 6.1 ∗∗∗
Treatments (T) 3 0.0864 0.0288 134.14 ∗∗∗
Cultivar (C) 1 0.12083 0.12083 562.76 ∗∗∗
T × L 6 0.00112 1.87E-04 0.87 NS
C × L 2 9.93E-06 4.97E-06 0.02 NS
C × T 3 3.28E-04 1.09E-04 0.51 NS
C × T × L 6 4.26E-06 7.10E-07 0 NS
Error 48 0.01031 2.15E-04
Total 71 0.22161
CV 3.05

∗∗∗p ≤ 0.001 and NS = Non-significant

 Appendix 22.10: Analysis of Variance for Epicuticular Wax Among two 
Wheat Cultivars for  Different Silicon Chemicals and  Different 
Application Levels

SoV DF SS MS F P
Application level (L) 2 0.5548 0.2774 0.49 NS
Treatments (T) 3 18.3074 6.1025 10.75 ∗∗∗
Cultivar (C) 1 44.2765 44.2765 77.99 ∗∗∗
T × L 6 0.2378 0.0396 0.07 NS
C × L 2 0.0044 0.0022 0 NS
C × T 3 0.1446 0.0482 0.08 NS
C × T × L 6 0.0019 0.0003 0 NS
Error 48 27.2494 0.5677
Total 71 90.7767
CV 10.78

∗∗∗p ≤ 0.001 and NS = Non-significant
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 Appendix 22.11: Analysis of  Variance for  Relative Water Content 
Among  two Wheat Cultivars for  Different Silicon Chemicals 
and Different Application Levels

SoV DF SS MS F P
Application level (L) 2 28.65 14.3247 1.76 NS
Treatments (T) 3 945.43 315.143 38.71 ∗∗∗
Cultivar (C) 1 1166.94 1166.94 143.32 ∗∗∗
T × L 6 12.28 2.04638 0.25 NS
C × L 2 0.07 0.03454 0 NS
C × T 3 2.28 0.75989 0.09 NS
C × T × L 6 0.03 0.00493 0 NS
Error 48 390.82 8.14209
Total 71 2546.5
CV 3.6

∗∗∗p ≤ 0.001 and NS = Non-significant

 Appendix 22.12: Analysis of Variance for Leaf Succulence Among two 
Wheat Cultivars for  Different Silicon Chemicals and  Different 
Application Levels

SoV DF SS MS F P
Application level (L) 2 2.173 1.087 0.44 NS
Treatments (T) 3 71.714 23.905 9.57 ∗∗∗
Cultivar (C) 1 181.341 181.341 72.62 ∗∗∗
T × L 6 0.931 0.155 0.06 NS
C × L 2 0.018 0.009 0 NS
C × T 3 0.599 0.2 0.08 NS
C × T × L 6 0.008 0.001 0 NS
Error 48 119.863 2.497
Total 71 376.647
CV 11.42

∗∗∗p ≤ 0.001 and NS = Non-significant
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 Appendix 22.13: Analysis of  Variance for  Leaf Membrane Stability 
Index Among  two Wheat Cultivars for  Different Silicon Chemicals 
and Different Application Levels

SoV DF SS MS F P
Application level (L) 2 28.65 14.325 1.15 NS
Treatments (T) 3 945.43 315.143 25.37 ∗∗∗
Cultivar (C) 1 955.29 955.293 76.91 ∗∗∗
T × L 6 12.28 2.046 0.16 NS
C × L 2 0.07 0.035 0 NS
C × T 3 2.28 0.76 0.06 NS
C × T × L 6 0.03 0.005 0 NS
Error 48 596.24 12.422
Total 71 2540.27
CV 4.75

∗∗∗p ≤ 0.001 and NS = Non-significant

 Appendix 22.14: Analysis of Variance for Proline Content Among two 
Wheat Cultivars for  Different Silicon Chemicals and  Different 
Application Levels

SoV DF SS MS F P
Application level (L) 2 28.65 14.325 6.25 ∗∗∗
Treatments (T) 3 945.43 315.143 137.4 ∗∗∗
Cultivar (C) 1 955.29 955.293 416.5 ∗∗∗
T × L 6 12.28 2.046 0.89 NS
C × L 2 0.07 0.035 0.02 NS
C × T 3 2.28 0.76 0.33 NS
C × T × L 6 0.03 0.005 0 NS
Error 48 110.09 2.294
Total 71 2054.12
CV 3.02

∗∗∗p ≤ 0.001 and NS = Non-significant
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 Appendix 22.15: Analysis of Variance for  Plant Height Among  two 
Wheat Cultivars for  Different Silicon Chemicals and  Different 
Application Levels

SoV DF SS MS F P
Application level (L) 2 28.65 14.3247 1.23 NS
Treatments (T) 3 945.43 315.143 26.96 ∗∗∗
Cultivar (C) 1 1700.04 1700.04 145.44 ∗∗∗
T × L 6 12.28 2.04638 0.18 NS
C × L 2 0.07 0.03454 0 NS
C × T 3 2.28 0.75989 0.07 NS
C × T × L 6 0.03 0.00493 0 NS
Error 48 561.08 11.6891
Total 71 3249.86
CV 4.26

∗∗∗p ≤ 0.001 and NS = Non-significant

 Appendix 22.16: Analysis of Variance for Grain Per Spike Among two 
Wheat Cultivars for  Different Silicon Chemicals and  Different 
Application Levels

SoV DF SS MS F P
Application level (L) 2 31.3 15.652 6.57 ∗∗∗
Treatments (T) 3 987.4 329.133 138.07 ∗∗∗
Cultivar (C) 1 945.91 945.909 396.82 ∗∗∗
T × L 6 13.42 2.236 0.94 NS
C × L 2 0.08 0.038 0.02 NS
C × T 3 1.01 0.338 0.14 NS
C × T × L 6 0.03 0.005 0 NS
Error 48 114.42 2.384
Total 71 2093.57
CV 3.66

∗∗∗p ≤ 0.001 and NS = Non-significant
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 Appendix 22.17: Analysis of Variance for  Spike Length Among  two 
Wheat Cultivars for  Different Silicon Chemicals and  Different 
Application Levels

SoV DF SS MS F P
Application level (L) 2 3.478 1.739 6.57 ∗∗∗
Treatments (T) 3 109.711 36.57 138.07 ∗∗∗
Cultivar (C) 1 105.101 105.101 396.82 ∗∗∗
T × L 6 1.491 0.248 0.94 NS
C × L 2 0.008 0.004 0.02 NS
C × T 3 0.113 0.038 0.14 NS
C × T × L 6 0.004 0.001 0 NS
Error 48 12.713 0.265
Total 71 232.619
CV 3.66

∗∗∗p ≤ 0.001 and NS = Non-significant

 Appendix 22.18: Analysis of  Variance for  Spikelet Per  Spike 
Among  two Wheat Cultivars for  Different Silicon Chemicals 
and Different Application Levels

SoV DF SS MS F P
Application level (L) 2 3.478 1.739 6.57 ∗∗∗
Treatments (T) 3 109.711 36.57 138.07 ∗∗∗
Cultivar (C) 1 105.101 105.101 396.82 ∗∗∗
T × L 6 1.491 0.248 0.94 NS
C × L 2 0.008 0.004 0.02 NS
C × T 3 0.113 0.038 0.14 NS
C × T × L 6 0.004 0.001 0 NS
Error 48 12.713 0.265
Total 71 232.619
CV 3.16

∗∗∗p ≤ 0.001 and NS = Non-significant

M. Ahmed et al.



475

 Appendix 22.19: Analysis of  Variance for  Hundred Grain Weight 
Among  two Wheat Cultivars for  Different Silicon Chemicals 
and Different Application Levels

SoV DF SS MS F P
Application level (L) 2 0.35622 0.17811 7.64 ∗∗∗
Treatments (T) 3 13.8041 4.60137 197.32 ∗∗∗
Cultivar (C) 1 18 18 771.89 ∗∗∗
T × L 6 0.06434 0.01072 0.46 NS
C × L 2 1.58E-31 7.90E-32 0 NS
C × T 3 7.41E-31 2.47E-31 0 NS
C × T × L 6 2.57E-31 4.29E-32 0 NS
Error 48 1.11932 0.02332
Total 71 33.344
CV 3.92

∗∗∗p ≤ 0.001 and NS = Non-significant

 Appendix 22.20: Analysis of Variance for Biological Yield Among two 
Wheat Cultivars for  Different Silicon Chemicals and  Different 
Application Levels

SoV DF SS MS F P
Cultivar (C) 1 2,321,931 2,321,931 17.61 ∗∗∗
Treatment (T) 3 2.48E+08 8.25E+07 625.76 ∗∗∗
Application level (L) 2 1.44E+07 7,199,275 54.6 ∗∗∗
T × C 3 59000.3 19666.8 0.15 NS
C × L 2 4844.28 2422.14 0.02 NS
L × T 6 9,146,901 1,524,483 11.56 ∗∗∗
C × T × L 6 797.112 132.852 0 NS
Error 48 6,328,712 131,848
Total 71 2.80E+08
CV 3.01

∗∗∗p ≤ 0.001 and NS = Non-significant
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 Appendix 22.21: Analysis of  Variance for  Grain Yield Among  two 
Wheat Cultivars for  Different Silicon Chemicals and  Different 
Application Levels

SoV DF SS MS F P
Cultivar (C) 1 2.12E+07 2.12E+07 131.53 ∗∗∗
Treatment (T) 3 4,541,380 1,513,793 9.38 ∗∗∗
Application level (L) 2 5,333,167 2,666,584 16.52 ∗∗∗
T × C 3 166,185 55,395 0.34 NS
C × L 2 195,159 97579.6 0.6 NS
L × T 6 1,584,736 264,123 1.64 NS
C × T × L 6 57,991 9665.17 0.06 NS
Error 48 7,745,683 161,368
Total 71 4.09E+07
CV 14.15

∗∗∗p ≤ 0.001 and NS = Non-significant
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Abstract
Plant responses to biotic and abiotic stresses have been extensively studied in 
isolation. But, in their natural environments, plants are frequently exposed to 
combination of stresses. The recent studies using model as well as non-model 
systems indicate that plant responses to combined stresses are often unique and 
cannot be completely deduced from their responses to individual stresses. These 
responses are regulated by complex and distinct regulatory pathways, mediated 
by diverse genes, proteins, and metabolites, which might vary with plant species 
and with the intensity of stress experienced. A thorough understanding of these 
mechanisms is essential for improving crop tolerance to combined stresses. 
Drought and heat stress cause severe impact on crop growth and productivity, 
independently, and are more likely to coexist in field conditions, especially in the 
changing climate scenario. This chapter aims to brief the relevance of combined 
drought and heat stress, elucidate the underlying mechanisms under individual 
stresses as well as in combination, and highlight the options for crop improve-
ment under combination of stresses.
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23.1  Introduction

Plants are constantly exposed to unfavorable growth conditions caused by various 
types of abiotic stresses such as drought, high or low temperatures, salinity, flood-
ing, high or low light, deficient or excess nutrients, heavy metals, pollutants, etc. 
Among these, drought is the most prevalent one, as water is one of the most limiting 
resources for agriculture in many parts on the globe (Basu et al. 2016). In nature, 
most of the stresses occur concurrently and hence crop plants are often subjected to 
combination of stresses in field conditions (Mittler 2006; Suzuki et al. 2014). Many 
times, drought is accompanied by or associated with high temperature (heat), 
another important stressor, critically affecting agriculture worldwide (IPCC 2014). 
This condition is common among crops growing in tropical or subtropical regions 
which are characterized by erratic rainfall and high temperature (Hamidou et  al. 
2013). Independent studies have shown around 50% reduction in crop yield under 
drought and heat stresses (Lamaoui et al. 2018), and combined stresses can have 
more impact (Rollins et al. 2013; Awasthi et al. 2017). The impact of drought would 
be further intensified by rise in global temperature due to climate change (Fang and 
Xiong 2015; Basu et al. 2016). The predicted 0.2 °C increase in global temperature 
per decade (Sita et  al. 2017), coupled with the limiting water resources would 
have an alarming impact on crop growth and productivity.

Most often, the effect of drought and heat on crop plants has been assessed inde-
pendently (Wahid et al. 2007). Since these stresses are considered to occur simulta-
neously, they may have different synergistic and antagonistic effects on plant stress 
responses. Therefore, the understanding of plant’s responses to combined stress is 
highly important to design strategies for mitigation (Dreesen et  al. 2012). Plant 
stress responses can be comprehended only if we understand the underlying cell 
tolerance trait associated and the molecular manifestation of that response. There 
are novel approaches and technologies that have been instrumental in identifying 
key genetic partners involved, thereby unraveling signaling modules and crucial 
signaling cross-talk (Parvathi and Nataraja 2016; Nataraja et al. 2017). This chapter 
presents an overview of the plant responses under combined drought and heat stress.

23.2  Plant Responses to Drought and Heat Stress: A Generic 
View

Plants respond to environmental cues through well-coordinated physiological trait 
manifestations. Cell tolerance trait is a sum effect of molecular-level regulations of 
a specific signaling cascade module. There exists a tightly regulated signaling net-
work starting from stress signal perception to downstream functional gene/protein 
activation and regulation (Nataraja and Parvathi 2016). A general signal cascade 
starts from the stress-specific receptor-mediated signal perception followed by sig-
nal amplification by secondary messengers, and further transmission through either 
protein kinase/phospholipid signaling leading to activation/disruption of regulatory 
protein activity. The regulatory protein governs functional or final effector gene 
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activation and/or expression involved in stress response (Nataraja and Parvathi 
2016). An overview of a typical signaling module in plant stress response and its 
representative components is presented in Table 23.1. As mentioned above, plants 
perceive drought and heat stress signals through cell-surface receptors, and many 
molecules such as inositol trisphosphate, inositol hexaphosphate, diacylglycerol, 
and reactive oxygen species (ROS) act as stress signals, which might increase intra-
cellular Ca2+ levels (Hirayama and Shinozaki 2010). Such a complex network of 
signaling activates the synthesis of many primary and secondary metabolites 
required for plant acclimation responses (Fraser and Chapple 2011; Zandalinas 
et al. 2017). Specific molecular mechanisms associated with stress response path-
ways, specific to drought and heat stress, are presented in Tables 23.2 and 23.3, 
respectively. An overall summary of plant responses to drought and heat stress has 
been summarized in Figs. 23.1 and 23.2, respectively.

23.3  Plant Responses to Combined Drought and Heat Stress

At the whole plant level, most of the abiotic stresses induce a cascade of biochemi-
cal and molecular events leading to, in some cases, similar responses. The effect of 
the combination of drought and heat stress is more severe than when these stresses 
are taken individually (Dreesen et  al. 2012). In wheat, barley, and tobacco, the 
combination of drought and heat results in similar physiological responses, with 
severe intensity, when compared to individual stress-induced effects (Keles and 
Oncel 2002; Rizhsky et al. 2002; Rollins et al. 2013). Plant responses, as well as 
their ability to withstand individual and combined stress, vary with plant species. 
For example, C4 crops like maize and sorghum have better tolerance to combined 

Table 23.1 Typical stress-specific signaling module in plant stress responses

Stress signaling 
module component Cascade partner Representative candidate groups
Signal perception Signal receptors Receptor-like kinases (RLKs), Receptor-like 

cytoplasmic kinases (RLCKs), Histidine kinases
Signal 
amplification

Secondary 
messengers

Calcium, reactive oxygen species (ROS), Inositol 1, 
4, 5-trisphosphate (IP3), Diacylglycerol (DAG)

Signal 
transduction

Protein kinases/ 
phospholipid 
signal transducers

Mitogen-activated protein kinases (MAPK), 
calcineurin B-like (CBL)-interacting protein kinase 
(CIPK) pathway, Ca-dependent protein kinases 
(CDPK) pathway

Activation of 
upstream 
regulatory 
proteins

Transcription 
factors/regulons

AREB/ABF (ABA-responsive element-binding 
protein/ABA-binding factor) regulon; MYC/MYB 
regulon; CBF/DREB (cold-binding factor/
dehydration-responsive element binding) regulon; 
NAC regulon; ZF-HD (zinc finger homeodomain) 
regulon

Downstream 
effectors

Functional genes/
proteins

Compatible solutes, metabolite biosynthesis genes, 
transporters, Water channel proteins/ Aquaporins, 
ROS scavengers/homeostasis, wax biosynthesis/
deposition
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Table 23.2 Drought stress-specific molecular mechanisms in plants

Signaling partner/ 
component/ physiological 
trait Stimulus and molecular mechanism References

A Signal receptor
1 ARCK1 (Arabidopsis 

thaliana) (Arabidopsis 
receptor like cytosolic 
kinase 1)

ABA- and osmotic stress-inducible; 
Interacts with cysteine-rich receptor- 
like kinase 36 (CRK36)

Tanaka et al. (2012)

2 GsCBRLK (Glycine soja) 
(Calcium/calmodulin- 
binding receptor-like 
kinase)

High salinity and ABA inducible; 
Calcium-binding RLCK

Yang et al. (2010b)

3 PSTOL1 Pup1-specific 
protein kinase gene

Phosphate-deficit soil; Improved root 
growth and grain yield of rice and 
drought response

Gamuyao et al. 
(2012)

4 OsRLCK253 (Rice) 
(Oryza sativa receptor 
like cytoplasmic kinase 
253)

Interacts with stress-associated proteins 
(OsSAP1/11) to mediate drought and 
salt stress responses

Giri et al. (2011)

5 OsGUDK (Oryza sativa 
growth under drought 
kinase) 

Drought stress signaling by activation 
of stress genes by OsAP37 
(APETALA2/ETHYLENE 
RESPONSE FACTOR OsAP37)

Ramegowda et al. 
(2014)

B Signal Amplification: Secondary Messengers
Calcium, ROS, Inositol 1, 4, 
5-trisphosphate (IP3), Diacylglycerol 
(DAG)

Nataraja and 
Parvathi (2016)

C Signal Transduction: Protein Kinases/Phospholipids
1 Protein Kinases
a CDPK (Calcium- 

dependent protein kinase)
Dependent upon Ca2+ binding; 
Activated CDPKs relay signals through 
phosphorylation of specific substrates

Ray et al. (2007)

b CBL-CIPK (Calcineurin 
B-like protein-interacting 
protein kinase)

SOS pathway: In the presence of Ca2+, 
SOS3/CBL4 interacts physically with 
the regulatory domain, SOS2/CIPK24.

Martinez-Atienza 
et al. (2007)

c MAPK (Mitogen- 
activated protein kinase)

Sequential phosphorelay by MAPK kinase kinase 
(MAPKKK), a MAPK kinase (MAPKK), and a MAPK

AtMEKK1 (Arabidopsis 
thaliana MAP kinase or 
ERK kinase kinase 1)

In addition to dehydration, the protein 
is responsive to cold and salinity

Mizoguchi et al. 
(1996), Moustafa 
et al. (2008) and 
Teige et al. (2004)

AtMPK1 (Arabidopsis 
thaliana mitogen- 
activated protein kinase 1)

Cold, dehydration, hyperosmolarity, 
salinity

Ichimura et al. 
(2000), Droillard 
et al. (2002) and Yu 
et al. (2010)

AtMKK7 (Arabidopsis 
thaliana MAP kinase 
kinase 7)

Dehydration, hyperosomolarity, 
salinity

Moustafa et al. 
(2008)

(continued)
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Table 23.2 (continued)

Signaling partner/ 
component/ physiological 
trait Stimulus and molecular mechanism References
OsMPK3 (Oryza sativa 
mitogen-activated protein 
kinase 3)

Drought, temperatures, salinity Agrawal et al. 
(2002, 2003)

OsMKK6 (Oryza sativa 
mitogen-activated protein 
kinase 6)

Cold, drought, salinity Kumar et al. (2008) 
and Wen et al. 
(2002)

OsMPK4/OsMAP1 
(Oryza sativa mitogen- 
activated protein kinase 
4)

Cold, drought, salinity Xiong and Yang 
(2003)

DSM1 (Drought 
hyper-sensitive mutant 1)

Drought Ning et al. (2010)

MMK4 (mitogen- 
activated MAP kinase 4)

Cold, drought Jonak et al. (1996)

ZmMPK3 (Zea mays 
mitogen-activated protein 
kinase 3)

Cold, drought, salinity Wang et al. (2010)

GhMPK2 (Gossypium 
hirsutum mitogen- 
activated protein kinase 
2)

Cold, drought, salinity Wang et al. (2007)

GhMPK16 (Gossypium 
hirsutum mitogen- 
activated protein kinase 
16)

Drought Shi et al. (2011)

2 Phospholipids Phospholipase C, phospholipase D 
(PLD), phospholipase A2 (PLA2), 
diacylglycerol
pyrophosphate (DGPP), and 
phosphatidylinositol 3,5-bisphosphate 
(PI(2, 3)P2)

Nataraja and 
Parvathi (2016) and 
Lata et al. (2015)

D Transcription factors/regulons
AREB/ABF regulon 
(ABA response element 
binding/ABRE-binding 
factor)

ABA-dependent; ABA-responsive 
element-binding protein/ABA-binding 
factor

Saibo et al. (2009), 
Hirayama and 
Shinozaki (2010), 
Lata and Prasad 
(2011) and Lata 
et al. (2015)

MYC/MYB regulon ABA-dependent
CBF/DREB (C repeat 
binding factor/
dehydration response 
element binding) regulon

ABA-independent; Cold-binding 
factor/dehydration-responsive element 
binding

NAC (NAM-ATAF-CUC) 
and ZF-HD (zinc finger 
homeodomain) regulon

ABA-independent; NAM-ATAF-CUC; 
zinc finger homeodomain

(continued)
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stress compared to C3 crops like wheat and sunflower (Machado and Paulsen 2001; 
Killi et al. 2017). Generally, one of the most affected physiological processes under 
combined drought and heat stress is the photochemistry and biochemistry of pho-
tosynthesis. The combined stress is known to disrupt PS-II function, Rubisco activ-
ity, and hence drastically reduce photosynthetic activity (Sainz et al. 2010; Awasthi 

Table 23.2 (continued)

Signaling partner/ 
component/ physiological 
trait Stimulus and molecular mechanism References

E Trait-associated functional genes
Water mining GmNAC, V-H+ Ppase (Vascular H+ 

pyrophosphatase), ThVPVH+ Ppase, 
TaVP (Triticum aestivum vascular H+ 
pyrophosphatase), AtAVP1 
(Arabidopsis vascular H+ 
pyrophosphatase); Aquaporin 
(NtAQP7)

Liu et al. (2014), Pei 
et al. (2012), Li 
et al. (2014a), 
Pasapula et al. 
(2011) and Zhou 
et al. (2012)

Water conservation EsWAX1 (Eutrema salsugineum wax 
1)
DEWAX; AtSHN1 (Arabidopsis 
thaliana SHINE 1)

Zhu et al. (2014), 
Go et al. (2014) and 
Sajeevan et al. 
(2017)

Water relations OsLEA3-2 (Oryza sativa late 
embryogenesis abundant protein 3-2), 
HVA1 (Hordeum vulgare late 
embryogenesis abundant protein 1)

Duan and Cai 
(2012) and Chen 
et al. (2015)

Osmoregulation Trehalose- OsTPS1 (Trehalose-6- 
phosphate synthase 1), AtTPPD 
(Arabidospsis trehalose 6 phosphate 
phosphatase D); Proline- P5CS 
(Pyrroline 5 carboxylase synthase), 
PvP5CS (Phaseolus vulgaris pyrroline 
5 carboxylase synthase); Mannitol- 
mltD; Glycine betaine-codA

Li et al. (2011), 
Krasensky et al. 
(2014), Ghanti et al. 
(2011), Chen et al. 
(2013), Hema et al. 
(2014) and Goel 
et al. (2011)

ROS scavenging Ec-APX1 Bhatt et al. (2012)
mRNA and protein 
turnover

OsRDCP1 (Oryza sativa ring domain 
containing protein 1), OSRIP18 (Oryza 
sativa ribosome-inactivating protein 1), 
CspA/B (Cold shock domain protein 
A/B), AtCSP3 (Arabidopsis thaliana 
cold shock domain protein 3), OsSUV3 
(Oryza sativa SUV3 helicase), p68 
helicase

Bae et al. (2011), 
Jiang et al. (2012), 
Castiglioni et al. 
(2008), Kim et al. 
(2013), Tuteja et al. 
(2013) and Tuteja 
et al. (2014)

ER stress response Endoplasmic
reticulum (ER)-resident
molecular chaperone BiP
(binding protein)- OsBiP

Valente et al. (2009)

ABA biosynthesis- 
stomatal regulation

OsNCED2 Xiao et al. (2009)

Membrane integrity CaXTH3 (xyloglucan endo- 
transglucosylase/hydrolase)

Choi et al. (2011)
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Table 23.3 Heat stress-specific molecular mechanisms in plants

Signaling partner/ 
component/ physiological 
trait Stimulus and molecular mechanism References

A Signal receptor
PhyB (Phytochrome B) Heat, light Song et al. (2017)

B Signal transduction: protein kinases/phospholipids
MAPK Heat Link et al. (2002)
SlMPK1 (Solanum 
lycoersiocn mitogen- 
activated protein kinase 1)

Heat Ding et al. (2018)

C Transcription factors/regulons
DPB3-1(DNA 
polymerase II subunit 
3-1)/DREB31

Specifically active under stressful 
condition to impart heat tolerance

Sato et al. (2016)

MBF1C (Multiprotein 
bridging factor 1)

Regulates the expression of 36 different 
transcripts during heat stress, including 
the important transcriptional regulator 
DRE-binding protein 2A (DREB2A), 
two heat shock transcription factors 
(HSFs), and several zinc finger proteins

Suzuki et al. 
(2011)

HSFA2 (heat shock factor 
A2)

Heat inducible, HSP expression, 
thermotolerance

Charng et al. 
(2007)

OsHSF7 Functions as a high-temperature 
receptive and responsive factor

Liu et al. (2009)

AtDREB1A Tolerance to heat stress Hong et al. (2009)
HSFA6b Tolerance to heat stress Huang et al. 

(2016)
SNAC3 (Stress responsive 
NAC3)

Tolerance to heat stress, drought and 
oxidative stress

Fang et al. (2015)

D Trait-associated functional genes
ROS scavenging TaFER-5B (Triticum aestivum ferritin 

5B)
Zang et al. (2017)

Protein turnover OsHTAS (Oryza sativa heat tolerance at 
seedling stage), OsHCI1 (Oryza sativa 
heat and cold induced 1), SlSIZ1 
(Solanum lycopersicon SIZ1 E3 ligase)

Lim et al. (2013), 
Liu et al. (2016) 
and Zhang et al. 
(2017)

Membrane integrity sHSP17.7 (small heat shock protein 
17.7)

Hu et al. (2010)

Chaperon activity; 
Protection of RNA and 
proteins

Ef-Tu, AtP3B (ribosomal protein 3), 
OsHSP18.6; UBP1y (oligouridylate- 
binding protein 1b)

Fu et al. (2008), Ji 
et al. (2017), 
Wang et al. (2015) 
and Nguyen et al. 
(2016)
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et al. 2014). Drought, high temperature, and their combination affect ultrastructure 
of chloroplasts and mitochondria in wheat leaves, and the defective phenotypes are 
more pronounced in combined drought and heat stress conditions (Grigorova et al. 
2012). Chloroplasts have also been recently referred to as the center of stress per-
ception and regulation. Understanding the remodeling of the chloroplast proteome 
during abiotic stress acclimation both under individual and combined stresses 
involving both anterograde (from the nucleus to the chloroplast) and retrograde 
(from the chloroplast to the nucleus) signaling events is the current focus (Bechtold 
and Field 2018). Another notable impact of combined stress is on stomatal 
responses. Combined stress leads to a reduction in stomatal conductance that pre-
vents plant evaporative cooling, which ultimately leads to an increase in leaf tem-
perature (Rizhsky et al. 2002; Rizhsky et al. 2004; Zandalinas et al. 2016a). This 
increase in leaf temperature is a common response under heat stress (Carmo-Silva 
et al. 2012). In tobacco, a 2–3 °C increase in leaf temperature was observed under 
combined stress (Rizhsky et al. 2002). Combination of drought and heat stress also 
influences plant developmental processes. Combined stress can limit viable leaf 
area (Shah and Paulsen 2003), increase stomatal density (Vile et  al. 2012) and 
influence grain growth (Shah and Paulsen 2003). Reproductive tissues are the most 
sensitive to the individual as well as combined stress effects, although the pro-
cesses affected are different (Barnabas et al. 2008; Prasad et al. 2011). For exam-
ple, the heading to maturity stage of wheat cultivation in Mediterranean climate 
encounters combined stress, which has a critical impact on kernel filling and hence 
grain yield (Wardlaw 2002).

The most common responses to any abiotic stress are the stress-dependent gen-
eration of ROS and activation of ROS detoxification system. Combined drought and 
heat stress also trigger oxidative stress and associated cellular responses. 
Photorespiration accounts for a major metabolic pathway generating ROS under 
combined stress (Zinta et al. 2014). For this reason, a C3 crop like sunflower has 
more impact of combined stress compared to maize, a C4 plant (Killi et al. 2017). 
The ROS deactivation system in Arabidopsis involved alternative oxidase (AOX), 
glutathione peroxidase (GPX), glutathione reductase (GR), copper/zinc superoxide 
dismutase (Cu/Zn-SOD), and glutathione-S-transferase (GST) (Rizhsky et al. 2002). 
In chickpea, higher levels of ascorbate peroxidase (APX), GR, ascorbate, and glu-
tathione were induced in seeds and leaves to reduce the stress effect (Awasthi et al. 
2017). Stress-induced activation of heat shock proteins (HSPs) is another important 
response under combined stress, which is also similar to heat stress (Ashoub et al. 
2015; Zhao et al. 2016). Combined stress can influence carbohydrate metabolism, 
leading to altered starch and sucrose content due to reduced activity of their respec-
tive synthesizing enzymes as evidenced in chickpea, lentil, and Arabidopsis 
(Awasthi et al. 2014; Sehgal et al. 2017; Zinta et al. 2018). Accumulation of osmo-
lytes and compatible solutes is a common stress-adaptive strategy in plants 
(Krasensky and Jonak 2012). Proline is crucial for stress adaptation in barley under 
combined drought and heat stress (Templer et al. 2017). However, proline accumu-
lation is absent in Arabidopsis and tobacco under combined drought and 
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temperature stress suggesting that some of the stress responses are unique and might 
vary with crop species (Rizhsky et al. 2002).

Phytohormones have a crucial role in plant adaptation to stressful conditions 
(Wani et  al. 2016). Under drought, abscisic acid (ABA) has long been acknowl-
edged as a major chemical signal associated with root-to-shoot communication 
(Schachtman and Goodger 2008). However, the relevance of hormones and their 
interactions is not completely understood under heat stress. Accumulation of 9-cis 
epoxycarotenoid dioxygenase (NCED) protein required for ABA synthesis has been 
upregulated under drought and heat combination (Li et al. 2014b). Abscisic acid is 
also required for the accumulation of proteins APX1 and multiprotein bridging fac-
tor 1c (MBF1c), required for survival under a combination of drought and heat 
stress in Arabidopsis (Zandalinas et al. 2016b). Antagonistic to ABA, salicylic acid 
is known to play a role in stress signaling in citrus (Moeder et  al. 2010). In 
Arabidopsis, jasmonic acid was highly accumulated as compared to salicylic acid 
(Caarls et al. 2015). This suggests that hormonal responses under a combination of 
stresses vary with crop species.

23.4  Plant Responses to Combined Drought and Heat Stress 
Are Also Unique

Studies on plant responses to the combination of diverse abiotic and/or biotic 
stresses have revealed that several of these responses are unique and cannot be 
inferred from the plant responses to their respective individual stresses (Pandey 
et al. 2015). This is evidenced by the identification of specific transcript profiles and 
a combination of metabolites and proteins that are unique to the combination of 
drought and heat stresses (Zandalinas et al. 2018). Several of such responses induce 
partially opposing physiological changes compared to its individual effects (Rizhsky 
et al. 2002; Prasch and Sonnewald 2013). For example, drought and heat stress in 
combination alters photosynthesis, respiration, stomatal conductance, and leaf tem-
perature, distinctly from heat or drought alone (Rizhsky et al. 2002). Drought sup-
presses photosynthesis and respiration while heat enhances respiration without 
significantly affecting photosynthesis. However, the combination suppresses photo-
synthesis and enhances respiration, distinct from the individual stress effect. The 
combination also leads to stomatal closure similar to drought leading to enhanced 
leaf temperature. Another feature of combined drought and heat stress is the replace-
ment of proline with sucrose in Arabidopsis (Rizhsky et al. 2002).

The uniqueness in plant responses to combined stress effect is also reflected in 
global transcriptome analysis (Rizhsky et al. 2004; Pandey et al. 2015; Jia et  al. 
2017). These responses seem to differ among plant species, and are complex, regu-
lated by multiple genes and pathways, which might interact and/or inhibit each 
other (Prasch and Sonnewald 2013; Rasmussen et al. 2013; Suzuki et al. 2014). This 
transcriptional level response is also quite different from other stress conditions 
(cold, salt, or pathogen) (Rizhsky et al. 2002). Transcriptomic studies in different 
plant species like Arabidopsis (Rizhsky et al. 2004), tobacco (Rizhsky et al. 2002), 
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durum wheat (Rampino et al. 2012), and sorghum (Johnson et al. 2014) and tree 
species like poplar (Jia et al. 2017), have identified a unique transcript profile that is 
activated under combined stress when compared to individual drought and heat 
stress, and the transcripts also vary with plant type, duration, and severity of stresses 
(Suzuki et al. 2014; Pandey et al. 2015). The transcripts identified code for different 
protein kinases, transcription factors (TFs), heat shock proteins (HSPs), proteins 
involved in ROS detoxification, and proteases and enzymes involved in lipid bio-
synthesis and starch degradation (Rizhsky et al. 2004). In sorghum, TFs like MYB8 
and ATAF1, chaperons including heat shock proteins, LEAs (late embryogenic 
abundant proteins) and metabolic pathways including polyamine biosynthesis were 
specific to combined stress (Johnson et al. 2014). The higher expression levels of 
WOX1 (WUSCHEL related homeobox 1), a TF involved in polyamine biosynthesis 
is also unique to the combined stress response in sorghum (Johnson et al. 2014). In 
wheat seedlings, 17–36% of the differentially expressed transcripts were specifi-
cally induced under a combination of drought and heat (Liu et al. 2015). Majority 
of these transcripts exhibited alternative splicing (AS) events unique to a combina-
tion of drought and heat stress (Liu et al. 2018). AS events have been observed in 
several stress-responsive genes like TGN-localized SYP41-interacting protein 
(TNO1), WD repeat like 50 superfamily protein (WRD5A), Alfin-like 5(AL5), etc. 
Glutathione biosynthetic process and DNA methylation-associated transcripts were 
significantly enriched among these AS genes, suggesting the relevance of these 
responses under combined stress (Liu et al. 2018).

Proteomic studies have identified diverse types of proteins specific to combined 
stress, which involve enzymes associated with malate metabolism, Calvin cycle, 
and detoxification of ROS, while cytosolic APX is the key player in response to 
combined stress (Koussevitzky et al. 2008). The most abundant proteins in poplar, 
Carissa, and potato under combined stress were HSPs (Zhang et al. 2010; Li et al. 
2014b; Sprenger et  al. 2016). However, the metabolic profiles under combined 
drought and heat stress have been contradictory to transcriptomic profiles, with 
their similarity to heat stress response (Zandalinas et al. 2017). In a drought-toler-
ant Eucalyptus globulus clone, drought-specific responses and trait manifestations 
were interestingly similar or different (Correia et al. 2018). But the shikimic acid 
pathway was activated under heat stress, strikingly different from that under 
drought. A combined stress treatment wherein drought-stressed Eucalyptus plants 
were subjected to a heat shock resulted in a decrease in photosynthesis and jas-
monic acid with alterations in glutathione pool in relation to control. A noticeable 
response triggered by the combined stress alone was the accumulation of cinna-
mate (Correia et  al. 2018). The combined heat and drought stress responses in 
cereals indicated massive induction of HSPs and the sugar starvation phenotype in 
anthers (Lawas et al. 2018).

Stress tolerance in plants needs to be evaluated by simulating field conditions 
where multiple abiotic stresses occur simultaneously, and a lot of cross-talk exists 
among multiple stress situations (Chinnusamy et al. 2004; Shinozaki and Yamaguchi- 
Shinozaki 2007). A good number of genes that play a role in drought tolerance also 
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confer some degree of tolerance to salt and cold stresses. However, drought cum 
heat-tolerant crops will be the major targets of attention in the event of the drastic 
global climate change in tropical and subtropical regions (Battisti and Naylor 2009). 
The challenge shortly will be to identify the signaling elements that are missing in 
the current models/pathways and increasing our understanding of the cross-talk 
between pathways, as our knowledge about stress signaling networks remains gray 
(Yang et al. 2010a). An attempt has been made to compile the various pathways and 
the associated molecular mechanisms/ cascade patterning in case of both drought 
(Fig. 23.1) and heat (Fig. 23.2) stresses. It is very interesting to note the commonal-
ity in the stress response pathway construction with common secondary messengers 
like ROS and calcium and phosphorelay transduction events. For example, soybean 
DREB1/CBF-type TFs function in heat and drought as well as cold stress- responsive 
gene expression (Kidokoro et al. 2015), but it is unclear as to whether similar path-
ways operate upstream and downstream of these key regulatory moieties.

23.5  Options for Manipulation of Traits to Improve Stress 
Tolerance Under Stress Combinations

Concerted efforts are being made to improve the tolerance levels of both food and 
feed crops since abiotic stresses cause more than 50% yield loss in major crops 
worldwide (Bray et al. 2000; Lobell et al. 2011; Shao et al. 2009). Better under-
standing of the combined stress effects would be useful for targeted manipulation of 
traits contributing to tolerance in crops. Traditional crop breeding has had limited 
success in desired trait manipulation and mitigating the effects of abiotic stress. 
Genes/gene products regulating multiple molecular mechanisms are to be carefully 
identified and combined by novel gene stacking approaches to alter multiple traits 
required for combined stress tolerance in crop plants (Vemanna et al. 2013). There 
are options now to manipulate certain cellular tolerance traits such as protein syn-
thesis and protein turnover, ROS detoxification, osmoregulation, etc., using trans-
genic approaches. Such attempts can be made by employing upstream regulatory 
proteins like stress-specific or basal transcription factors, which would improve the 
inherent tolerance capacity of crop plants (Pruthvi et al. 2014; Parvathi et al. 2015). 
There have been case studies where such conceptual approaches have rendered tol-
erance to both drought/osmotic stress as well as temperature induced stresses 
(Babitha 2012; Ramu et al. 2016). Multiple trait manipulation can result in multi- 
stress tolerant genotypes, which can be achieved by identifying and manipulating a 
super-regulatory gene capable of coordinating multiple trait-related gene/s expres-
sion (Parvathi and Nataraja 2017). As mentioned earlier, manipulating specific mas-
ter regulatory genes such as TFs in transgenic crops has been demonstrated to be 
effective in engineering a broad-spectrum stress tolerance (Karaba et  al. 2007; 
Pruthvi et  al. 2014). In addition to stress-specific genes, microRNAs (miRNAs) 
which are small regulatory RNAs that act at the posttranscriptional level (Bartel 
2004; Beauclair et al. 2010) have been found to be useful to impart stress tolerance 
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(Zhao et  al. 2018). An increasing number of studies on plant miRNAs, such as 
miR393, have demonstrated that they are promising candidates for imparting mul-
tiple stress tolerance in plants and hence can be good candidates for crop genetic 
engineering (Rhoades et al. 2002; Shriram et al. 2016; Zhao et al. 2018).

In recent years, there are reports on the targeted DNA sequence modifications or 
editing using DNA sequence-specific nucleases. The zinc finger (ZF) nucleases, 
transcription activator-like effector nucleases (TALENs), and clustered, regularly 
interspaced, short palindromic repeats (CRISPR) have been employed in plants for 
genome editing (Voytas 2013). Now, CRISPR-cas9 technology has been used to 
specifically edit wheat genome (Liang et al. 2017). This can be extended for tar-
geted manipulation of drought and heat tolerance. Better understanding of the crop 
genome, genes associated with the traits, and the optimization of genome editing 
technology in crops would advance our abilities towards the development of crops 
tolerant to combined drought and heat stresses. Similarly, as another approach to 
mitigate abiotic stresses, endophytes have been used, and endophytic microbiome 
research offers opportunities for improving biotic and abiotic stress tolerance in 
crops (Sangamesh et al. 2018). It is now well established that plant mechanisms to 
combat drought and/or heat stresses can be mediated by the microbes within and 
surrounding a plant (Lata et al. 2018). In wheat, grain yield and second-generation 
seed viability have been improved by fungal endophytes under drought and heat 
stress (Hubbard et  al. 2014). These types of new-generation technologies would 
help in sustaining crop production under fast-changing climate.
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Abstract
The development, growth, and productivity of field crops are negatively influ-
enced by abiotic stresses resulting in significant losses in crop yield. Therefore, 
understanding tolerance of agronomic crops to abiotic stress factors like drought, 
salinity, heat, and chilling is of paramount importance for plant scientists for 
effective management. However, due to the complexity of abiotic stress response 
and tolerance, initial efforts through gene-based approaches were not enough to 
understand whole level mechanisms. Recently, tremendous developments made 
in the field of omics (genomics, transcriptomics, proteomics, metabolomics, and 
phenomics) have opened new avenues to understand and investigate the complex 
mechanisms of abiotic stress tolerance in plants, although integration of data col-
lected from omics studies with such traits is still a challenging one. This chapter 
will emphasize the significance of omics field in understanding crop responses to 
different abiotic stresses, focusing on the recent developments made in field of 
omics with future prospects to overcome the major drawbacks of omic 
approaches.
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Abbreviations

2D-PAGE 2-dimensional polyacrylamide gel electrophoresis
ABA abscisic acid
CE-MS capillary electrophoresis mass spectroscopy
EGFP enhanced green fluorescent protein
FT-ICR-MS Fourier transform ion cyclotron resonance mass spectroscopy
G x E genotype–environment interaction
GBS genotyping by sequencing
GC-MS gas-chromatography mass spectroscopy
GWAS genome-wide association study
ICP-MS inductively coupled plasma mass spectrometer
ICP-OES inductively coupled plasma-optical emission spectrometry
LA-ICP-MS laser ablation inductively coupled plasma mass spectroscopy
LC-MS liquid-chromatography mass spectroscopy
MALDI-TOF matrix-assisted laser desorption/ionization time-of-flight
MAS marker-assisted selection
mQTL metabolite quantitative trait locus
MS mass spectroscopy
MW molecular weight
NAA neutron activation analysis
NGS next-generation sequencing
NMR nuclear magnetic resonance
pI isoelectric point
QTL quantitative trait loci
ROS reactive oxygen species
SNP single-nucleotide polymorphism
XAP X-ray absorption spectroscopy
XRF X-ray fluorescence

24.1  Introduction

Yield losses due to abiotic stresses including drought, salt, heat, and chilling are still 
the main concern in agriculture in a world of increasing population and decreasing 
water resources. Plants frequently encounter abiotic stress conditions during their 
lifetime and they have developed three main approaches to either avoid the harmful 
effects of these unfavorable conditions or at least ensure the fate of their offspring. 
They can “escape” or “avoid” the abiotic stress by seeding earlier or by severe mor-
phological changes, both of which lead to yield loss in terms of agriculture, or they 
can “tolerate” the stress conditions up to a certain level, which also cause yield loss, 
but usually to an acceptable level. As can be expected, among these approaches, 
plant’s ability to tolerate abiotic stress conditions has been extensively studied to 
understand the key factors and ultimately to transfer them to field crops to prevent 
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yield loss due to unfavorable environmental conditions. However, years of scientific 
research showed that plant’s response to abiotic stress conditions is a very complex 
mechanism with changes in transcription, translation, and posttranslation, causing 
an extensive alteration in both metabolic and biochemical levels, leading to physi-
ological and morphological adaptation.

Omic technologies simply mean the determination of all genes, transcripts, pro-
teins, or metabolites in a biological sample using high-throughput technologies. The 
Latin suffix “-ome” was first used by Professor Hans Winkler as “genome” to 
express all hereditary material in different chromosomes (Winkler 1920). The same 
suffix was used to identify all cellular activities such as transcriptome, proteome, 
and metabolome in the following years and became “-omics” expressing whole data 
obtained by high-throughput technologies. The development of new technologies 
enlarged the omic technologies from transcriptomics, proteomics, and metabolo-
mics to different levels including lipidomics, ionomics, and phenomics. All data 
obtained by omic technologies have recently started to be integrated into systems 
biology through bioinformatics approaches (Fig. 24.1).

Considering the complexity of the changes in cellular metabolism, development 
of omic technologies led to new insights into understanding the abiotic stress 
response of plants. It is safe to say that all levels of omic technologies were effec-
tively used in this scientific area and generated massive amount of data in genomics, 
transcriptomics, proteomics, and recently, metabolomics, that still need to be inte-
grated to identify the key factors increasing abiotic stress tolerance of field crops. In 
this chapter, we will try to summarize different omic approaches to understand abi-
otic stress response and tolerance of several field crops by focusing on the recent 

Fig. 24.1 Omic 
technologies
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developments with future prospects and approaches to overcome major drawbacks 
of these high-throughput technologies.

24.2  Genomics Approach to Abiotic Stress Tolerance

Genomics is the use of high-throughput technologies to understand the complex 
biological functions of the genetic material of a cell, the genome. Development of 
next-generation technologies, including 454 Life Sciences (Roche), SOLiD 
(Applied biosystems), and Illumina (Solexa) platforms, enabled the sequencing of 
the whole plant genomes (Mochida and Shinozaki 2011; Unamba et al. 2015). With 
the decrease in the cost of sequencing by the use of high-throughput technologies 
and the increase in the effectiveness of bioinformatics analyses for the assembly of 
genome from thousands of contigs, currently the whole genomes of over 50 plant 
species have been sequenced and almost wholly assembled (Hamilton and Buell 
2012; Michael and Jackson 2013; Unamba et al. 2015). The availability of whole 
genome sequences also enables the identification of all the potential genes and regu-
latory elements on the genome by bioinformatics approaches. Genomics data can 
further be used to find the function(s) of the gene(s) identified through functional 
genomics, checking the genome structure in different organisms or different organs 
through comparative genomics, and finding the location of gene(s) on the genome 
by genetic and physical mapping through structural genomics.

Functional genomics is important to reveal and prove the functions and roles in 
cellular metabolism of all the genes identified on the genome (Rhee and Mutwil 
2014). Although the genome can be sequenced and the potential genes and regula-
tory elements can be identified, the function of the protein, its subcellular localiza-
tion, its transcription, and the change in the transcription in different organs, in 
different developmental stages, and under a wide array of environmental conditions, 
considering the possibility of potential alternative splicing products, have to be 
investigated to assign a functional role in cellular metabolism. In this respect, func-
tional genomics is the most important approach to understand the plant genome 
functionally.

In terms of agriculture, genomics is widely used to find single-nucleotide poly-
morphisms (SNPs) through comparative genomics approach. The ultimate goal is to 
find SNPs or quantitative trait loci (QTLs) associated with a desired phenotype. 
However, SNPs are very common on the genome and do not usually cause a detect-
able phenotype due to strong environment pressure on plants. This is especially 
important for abiotic stress studies which necessitate the observation of the desired 
phenotype, in this case the tolerance to abiotic stresses, under different environmen-
tal conditions to eliminate the changes in the desired trait due to genotype x environ-
ment (G x E) interaction. Genome-wide association studies (GWAS) and genotyping 
by sequencing (GBS) approaches are, therefore, commonly used to identify SNPs 
associated with tolerance to abiotic stresses of field crops, through which, when 
there is a strong relationship between tolerance and SNP(s), a marker can be 
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developed to be used for selection in large-scale breeding studies with marker- 
assisted selection (MAS) (He et al. 2014; Unamba et al. 2015; Kang et al. 2016).

Both GWAS and GBS have been used for several field crops to identify SNPs or 
QTLs possibly related to tolerance to a wide array of abiotic stresses (Table 24.1). 
Most of these studies reported several, generally at least around a hundred, SNPs and 

Table 24.1 Examples of GWAS and GBS approaches used in field crops in response to major 
abiotic stresses

Plant Abiotic stress References
Aegilops tauschii Drought Qin et al. (2016)
Brassica napus 
(rapeseed)

Drought, salinity Tan et al. (2017)

Glycine max 
(soybean)

Drought Kaler et al. (2017)
Salinity Zeng et al. (2017)

Gossypium hirsutum 
(cotton)

Drought Baytar et al. (2018)
Drought Lu et al. (2016)
This study specifically 
focused on GWAS analyses 
of stress-responsive long 
noncoding RNAs
Salinity Du et al. (2016) and Cai et al. (2017)

Hordeum vulgare 
(barley)

Drought Elwafa (2016), Tavakol et al. (2016), 
and Merchuk-Ovnat et al. (2018)

Salinity Hazzouri et al. (2018)
Medicago sativa 
(alfalfa)

Drought Yu (2017)
Salinity Yu et al. (2016) and Liu and Yu (2017)

Medicago truncatula 
(caliph medic)

Salinity Yaish et al. (2018)

Oryza sativa (rice) Drought Ereful et al. (2016), Ma et al. (2016), 
Pantaliao et al. (2016), Li et al. (2017), 
Deshmukh et al. (2018), and Guo et al. 
(2018)

Salinity Shi et al. (2017), Yu et al. (2017), 
Batayeva et al. (2018), Frouin et al. 
(2018), Naveed et al. (2018), and 
Patishtan et al. (2018)

Chilling Pandit et al. (2017) and Schläppi et al. 
(2017)

Sesamum indicum 
(sesame)

Drought, salinity Li et al. (2018)

Sorghum bicolor 
(sorghum)

Drought, chilling, salinity, 
heat, ABA, ROS

Woldesemayat et al. (2018)

Triticum aestivum 
(wheat)

Drought Mwadzingeni et al. (2017)

Triticum aestivum 
(wheat)

Drought, heat, drought and 
heat

ElBasyoni et al. (2017)

Triticum durum 
(durum wheat)

Drought, heat Sukumaran et al. (2018)

(continued)
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in some cases QTLs associated with the abiotic stress tolerance. However, the confir-
mation of SNPs and QTLs has been performed in independent genotypes only in a 
few studies. It is almost clear that GWAS, when used in identification of SNPs asso-
ciated with tolerance to abiotic stresses, demonstrates changes in nucleotide sequence 
of genes or regulatory regions that might have a role in increasing the strength of the 
plant under unfavorable environmental conditions. The main drawback for these 
SNPs and QTLs to be used as reliable markers in breeding approaches for increasing 
abiotic stress tolerance is the changes in the observed phenotype due to strong envi-
ronmental interaction which can hinder the demonstration of the same SNPs or QTLs 
to be functional in the selection of tolerant genotypes in independent plants.

It is important to realize that the expected effect of global climate change is the 
occurrence of multiple abiotic stresses together; for example, decrease in water 
availability will eventually force field crops to deal with high salinity, and increase 
in temperature will cause decreased water availability due to accelerated evapora-
tion. That means, even though you have a drought-tolerant crop, if it is sensitive to 
heat, the yield loss will still be a concern in terms of agriculture. Therefore, the 
research in finding SNPs or QTLs should focus on the combination of abiotic 
stresses, and maybe even on the possible scenarios of effects of climate change on 
the cultivation area, since the expected results are very diverse depending on the 
region. There are two interesting studies that consider multiple abiotic stresses 
together on oil content of sunflower (Mangin et al. 2017) and the effects of increase 
in temperature and decrease in water availability based on climate change scenarios 
in maize cultivation in Europe (Millet et al. 2016). Both of these studies are pioneers 
in the use of GWAS in genomics approach to increase the tolerance of field crops to 
abiotic stresses, and more such studies with other field crops are required to ensure 
the sustainability of agriculture in the future.

24.3  Transcriptomics Approach to Abiotic Stress Tolerance

Transcriptome represents all the RNA molecules having transcription or expression 
from the genome in a cell at a certain time point. Transcriptomics stands for sequenc-
ing, profiling, and counting all the RNA molecules from the genome, which enables 

Table 24.1 (continued)

Plant Abiotic stress References
Triticum turgidum 
ssp. dicoccoides 
(wild emmer wheat)

Salinity Feng et al. (2017)
This study specifically 
focused on GWAS analyses 
of stress-responsive miRNAs

Zea mays (maize) Drought Li et al. (2016), Wallace et al. (2016), 
Wang et al. (2016), Zhang et al. 
(2016), Shikha et al. (2017), and Wang 
et al. (2017)

Chilling Hu et al. (2017)
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the detailed and/or comparative analyses of gene expression quantitatively. The 
genome of an organism contains all the necessary genes for all developmental 
stages, for every tissue and for all environmental stimuli, and represents what the 
plant is capable of doing at a certain condition. The gene expression, or transcrip-
tome, on the other hand, changes depending on the developmental stage, tissue, and 
even cells of the same tissue. Therefore, transcriptomics represents what the plant is 
metabolically doing at that developmental stage, at that tissue, or upon the environ-
mental conditions at a certain time point.

Transcriptomics studies are mostly performed with microarray or next- generation 
sequencing (NGS) platforms, both of which provide high-throughput data repre-
senting all the transcripts depending on the availability of the whole genome 
sequence in microarray platform and on the sequencing depth in the next-generation 
sequencing approach (Unamba et  al. 2015). With respect to understanding the 
plant’s response and/or tolerance to abiotic stresses, transcriptomics is the most 
widely used approach (over 25,000 articles according to Google Scholar) and there 
is no easy way to summarize or mention all the findings related to the field crops 
(Agarwal et al. 2014; Imadi et al. 2015). Therefore, this chapter will mainly focus 
on the common approaches, critical factors, and future perspectives.

Transcriptomics studies to reveal factors related to understanding the response or 
factors increasing the tolerance to abiotic stresses of field crops mainly involve the 
comparison of gene expression of the plants with or without environmental stress 
conditions. The studies to understand the plant’s response to abiotic stress condi-
tions simply involve the growth of the plants and treatment with the stress. The 
studies aiming to investigate the factors causing the increase in tolerance or sensitiv-
ity, on the other hand, require an initial experiment or knowledge to identify the 
plants with increased tolerance or sensitivity to the abiotic stress worked on. In both 
cases, there are some critical factors to consider in experimental design to reveal all 
the changes in the metabolic activity upon environmental stress: RNA instability 
and the appropriate control group. RNA is not a stable molecule and since transcrip-
tomics enables the quantification of gene expression, plant samples should be fro-
zen in liquid nitrogen or stored in other means that prevents degradation. Samples 
should further be stored at −80 °C with or without RNA isolation, bearing in mind 
that several thawing of the same RNA sample or melting of the tissue sample will 
lead to erroneous conclusions due to severe degradation. The second factor, the 
appropriate control group, is very critical since the gene expression profile is highly 
depended on the developmental stage and growth conditions. The plants to be used 
as a reliable control should be grown under the same conditions, with the same 
treatments, except the stress, and be kept alive and healthy to obtain only the changes 
related to the abiotic stress conditions by comparison of transcriptomes. The tissues 
from stress-treated and control plants should be collected at the very same time and 
from the very same tissues considering the gene expression profile depends not only 
on the tissue and/or developmental stage but also on the daytime point. This is espe-
cially important to reveal the gene expressions of the photosynthesis-related genes 
whose expression changes even with the availability of sunlight.
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All of these factors are reliably considered by the scientists working on the abi-
otic stress tolerance of field crops. As stated before, there are huge amount of data 
on transcriptomics in response to a certain abiotic stress condition; however, the 
integration of all these data to obtain a “big picture” is still a challenge. First of all, 
the metabolism is interconnected and should be considered as a whole to find the 
key factors involved in the response or tolerance. The most effective approaches to 
this problem so far are the use of heat maps or MapMan program (Thimm et al. 
2004). Both of these approaches, especially MapMan, enable the correct visualiza-
tion of cellular metabolism, which is very important considering that in most cases, 
an increase in gene expression of a single gene in a metabolic pathway does not 
necessarily mean the increase in the whole pathway, since its product can also func-
tion as a substrate of another metabolic pathway, so that it can lead to starting up or 
increase in the efficiency of another pathway. The main problem with integrating all 
the knowledge on the responses of plants to abiotic stress in the transcriptomic level 
is the differences in the plant, genotype, growth conditions, pretreatments, age of 
the plant at the stress treatment, and the time period of the stress. All these factors 
depend on the experimental design, which somehow differs from study to study, and 
considering the transcriptome is highly variable on the factors mentioned before, it 
appears that most of these data can never be efficiently integrated into a “big pic-
ture.” Therefore, it is important to revolutionize the abiotic stress treatments into a 
more common way to make use of data obtained from one study to be compared 
with the data from another study.

Most of the literature on the transcriptomics of abiotic stress tolerance states the 
response upon a single treatment, drought, salinity, cold, or heat. However, the cli-
mate change scenarios, as stated before, estimate multiple stresses to affect the pro-
duction of field crops. Therefore, the changes in transcriptomes upon combined 
stress treatments are becoming the main approach in transcriptomics studies. 
Another perspective to consider is the understanding of the changes in gene expres-
sion profiles upon priming, which might have clues to find the key factors on 
increasing the tolerance of the plant to abiotic stress conditions. Priming is simply 
using chemical agents such as hydrogen peroxide or sodium hydrosulfide to the 
seeds, which increases their tolerance to abiotic stresses during their lifetime 
(Savvides et al. 2016; Ashraf et al. 2018). Both of these approaches are important to 
get new insights into transcriptomics studies to increase the abiotic stress tolerance 
of field crops. However, in all cases, it is important to not to neglect the fact that the 
presence of the transcript does not necessarily mean the presence of the active pro-
tein functional in the response metabolism.

24.4  Proteomics Approach to Abiotic Stress Tolerance

Proteome represents all the proteins present in the tissue or the cell, and considering 
that not all transcripts become a functional protein, is possibly the most correct way 
of understanding the changes in cellular metabolism depending on growth condi-
tions, developmental stage, or environmental stimulus. Proteomics involves the 
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identification and investigation of proteins, possible posttranslational modifications, 
structures, functions, and interactions with other proteins or subcellular elements to 
understand the cellular metabolism using high-throughput technologies (Fig. 24.2). 
As such, it involves several other omic approaches including localisome studies for 
subcellular localization, interactomics for protein-protein interactions, kinomics for 
protein with kinase activity to understand signal transduction, and secretomics for 
proteins functional after secretion to extracellular space (Agarwal et al. 2012).

Proteomics studies on understanding the response and/or tolerance of field crops 
to abiotic stresses mainly focused on 2-dimensional polyacrylamide gel electropho-
resis (2D-PAGE) and further identification and characterization of the protein spots 
obtained. The first dimension in 2D-PAGE differentiates proteins according to their 
isoelectric point (pI) and the second dimension according to their molecular weight 
(MW). Theoretically, two proteins in a cell cannot have the same pI and MW, which 
enables a separation at high resolution, that is, each spot on the gel represents a dif-
ferent protein. It is important to note that a cell can contain 10,000–20,000 proteins 
at any time; therefore, even at the highest resolution possible, 2D-PAGE cannot 
represent the whole proteome. The next step in proteomics analyses is the recovery 
and purification of the protein spots obtained and identification with techniques 
most common of which is matrix-assisted laser desorption/ionization time-of-flight 
(MALDI-TOF) mass spectroscopy. After the proper isolation and identification of 
the proteins, interactions with other proteins, DNA, or RNA can be investigated 
through yeast two hybrid system or protein microarrays, structural analyses by 
nuclear magnetic resonance (NMR), or X-ray crystallography, and subcellular 
localization through fluorescent proteins like EGFP or X-ray tomography can be 
investigated (Fields and Song 1989; Moreno-Risueno et  al. 2010). Although all 
these techniques are available, except 2D-PAGE, they cannot deliver high- 
throughput data and there are still many drawbacks in the use of these techniques in 
proteomics (Abreu et  al. 2013; Uhrig and Moorhead 2013; Vanderschuren et  al. 
2013; Jorrin-Novo 2016). Therefore, proteomics still has a long way to identify all 

Fig. 24.2 Proteomics analyses
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the cellular proteins and changes in their functions, structures, and interactions with 
other molecules in response to abiotic stresses.

Nonetheless, proteomics has been widely used to understand the response of 
abiotic stress conditions in several field crops, especially rice, wheat, and maize 
(Table 24.2). These studies have mostly shown the involvement of defense, energy 
metabolism, protein synthesis, protein degradation, protein folding, photosynthetic 
metabolism, and carbohydrate metabolism-related proteins, heat shock proteins, 
and detoxifying enzymes in abiotic stress response along with many proteins with 
an unknown function (Abreu et al. 2013; Barkla et al. 2013; Gong et al. 2014; Kim 
et al. 2014; Komatsu et al. 2014). The main drawback here is that all the proteins 
identified by the proteomics studies to understand the plant’s response or tolerance 
to abiotic stress conditions mainly prove the presence of the protein of the transcript 
or the gene already found by genomics or transcriptomics approaches. The key fac-
tors associated with the increase in tolerance might probably be in the proteins of 
unknown function, which cannot be purified or identified due to technical problems 
associated with the technology used in proteomics approaches. It is rather clear that 
proteomics, compared to genomics and transcriptomics, is more promising to pro-
vide useful background information for understanding and development of abiotic 
stress-tolerant field crops, and improvement of technical advances is certainly 
required for this approach to achieve these goals.

24.5  Metabolomics Approach to Abiotic Stress Tolerance

Metabolome stands for all the biochemical, that is the small molecules, present in a 
cell or a tissue, and metabolomics for analysis of all metabolic byproducts, hor-
mones, signaling molecules, and secondary metabolites present in a biological sam-
ple with techniques like mass spectroscopy (MS), gas-chromatography-MS 
(GC-MS), liquid-chromatography-MS (LC-MS), capillary electrophoresis-MS 
(CE-MS), Fourier transform ion cyclotron resonance-MS (FT-ICR-MS), and NMR 
(Oliver et al. 1998; Hong et al. 2016; Samota et al. 2017; Tian et al. 2017; Alseekh 
and Fernie 2018). Although metabolomic profiling is very important to understand 
complex phenotypic responses of plants to changes in environmental conditions, 
metabolomics is probably the hardest of the omic approaches, since metabolome is 
extremely varied with developmental stage and growth factors, like availability of 
nutrients and water, not only between the tissues but also between the cells compos-
ing the tissue, and it is almost impossible to identify secondary metabolites of com-
plicated structure which probably have an important role in abiotic stress response 
(Fuhrer and Zamboni 2015; Nakabayashi and Saito 2015). Therefore, it is safe to 
say that metabolomics has not been effectively used in studies related to abiotic 
stress tolerance of field crops (Table 24.3).

Although it does not provide definitive results as genomics, transcriptomics, and 
even proteomics approaches, metabolomics provides a reliable metabolite quantita-
tive locus (mQTL) data that appear to be used as a marker for breeding studies for 
increasing tolerance of field crops to abiotic stresses (Mochida and Shinozaki 2011). 
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Table 24.2 Examples of proteomics studies on understanding abiotic stress response of field 
crops

Plant
Abiotic 
stress References

Allium cepa (onion) Chilling Chen et al. (2013)
Brassica juncea 
(Indian mustard)

Salinity Yousuf et al. (2017)

Brassica napus 
(canola)

Salinity Alagoz and Toorchi (2018) and Yin et al. (2018)

Glycine max 
(soybean)

Salinity Ma et al. (2012); Fercha et al. (2016); Ji et al. (2016)
Heat Ahsan et al. (2010)
Flooding Komatsu et al. (2009, 2010), Yin et al. (2014), and Oskuei 

et al. (2017)
Gossypium 
hirsutum (cotton)

Salinity Li et al. (2015) and Peng et al. (2018)

Hordeum vulgare 
(barley)

Salinity Witzel et al. (2009) and Gao et al. (2013)
Chilling Longo et al. (2017)

Lolium multiflorum 
(ryegrass)

Drought Pan et al. (2018)

Medicago sativa 
(alfalfa)

Drought Zhang and Shi (2018)
Salinity Ma et al. (2017)

Oryza sativa (rice) Drought Agrawal et al. (2016), Wang et al. (2017), and Wade et al. 
(2002)

Salinity Fukuda et al. (2003), Chen et al. (2009), Liu and Bennett 
(2011); Song et al. (2011), Liu et al. (2013), Damaris et al. 
(2016), and Chintakovid et al. (2017)

Chilling Hashimoto and Komatsu (2007), Lee et al. (2009), 
Hashimoto et al. (2009), and Ji et al. (2017)

Pennisetum 
glaucum (pearl 
millet)

Drought Ghatak et al. (2016)

Phaseolus vulgaris 
(common bean)

Drought Zadraznik et al. (2013)

Pisum sativum 
(pea)

Drought Wang et al. (2012)

Solanum 
lycopersicum 
(tomato)

Salinity Chen et al. (2009) and Manaa et al. (2011)
Chilling Sanchez-Bel et al. (2012)

Solanum tuberosum 
(potato)

Salinity, 
chilling

Evers et al. (2012)

Triticum aestivum 
(wheat)

Drought Ford et al. (2011), Kang et al. (2012), Alvarez et al. 
(2014), Faghani et al. (2014), Zhang et al. (2014), Ding 
et al. (2017), and Ullah et al. (2017)

Salinity Peng et al. (2009), Guo et al. (2012), Jacoby et al. (2013), 
Capriotti et al. (2014), and Fercha et al. (2014)

Heat Wang et al. (2015)
Chilling Vitamvas et al. (2012) and Kosova et al. (2013)

Zea mays (maize) Drought Zhao et al. (2013)
Salinity Zorb et al. (2010), Farooq et al. (2015), and Guo et al. 

(2017)
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Combined with phenotypic studies such as GWAS in response to abiotic stress con-
ditions, mQTL can be used as metabolite markers as long as the change in the con-
centration of the metabolite governs the change in the phenotype. Such a use of 
metabolomics can also give information on the mQTLs responsible for the adapta-
tion to unfavorable environmental conditions of plants, which can further be used to 
improve the tolerance of field crops to abiotic stress conditions.

24.6  Ionomics Approach to Abiotic Stress Tolerance

Ionomics is the omics approach for identification and quantification of all low 
molecular weight inorganic molecules and their roles in plant metabolism in a par-
ticular developmental stage and physiological condition with the techniques like 
inductively coupled plasma mass spectrometer (ICP-MS), inductively coupled 
plasma-optical emission spectrometry, X-ray fluorescence (XRF), X-ray absorption 
spectroscopy (XAP), neutron activation analysis (NAA), and laser ablation induc-
tively coupled plasma mass spectroscopy (LA-ICP-MS) (Satismruti et  al. 2013; 
Singh et al. 2013). Inorganic molecules are known to be important for inter- and 
intracellular signal transduction and regulation of enzyme activities for the balance 
of cellular metabolism. In this respect, ionomics is rather important for agricultural 
perspective, especially in intelligent agriculture approaches, to find out if plants can 
make efficient use of soil minerals and correct adjustment of fertilization regime. 
Ionomics can also give information on the changes in the functional state of the 
plant due to abiotic stress conditions.

Table 24.3 Metabolomics studies on understanding abiotic stress response of field crops

Plant Abiotic stress References
Brassica napus (rapeseed) Salinity Hasanuzzaman et al. (2011)
Cicer arietinum (chickpea) Salinity Dias et al. (2015)
Glycine max (soybean) Drought Silvente et al. (2012)

Salinity Lu et al. (2013)
Heat Chebrolu et al. (2016)
Flooding Komatsu et al. (2011)

Hordeum vulgare (barley) Salinity Widodo et al. (2009) and Wu et al. (2014)
Lens culinaris (lentil) Drought, 

salinity
Muscolo et al. (2015) and Skliros et al. 
(2018)

Lolium multiflorum 
(ryegrass)

Drought Pan et al. (2018)

Lotus japonicas (legume) Drought Sanchez et al. (2012)
Pisum sativum (pea) Drought Charlton et al. (2008)
Oryza sativa (rice) Salinity Ghosh et al. (2011)

Chilling Maruyama et al. (2014)
Drought, 
salinity

Fumagalli et al. (2009)

Zea mays (maize) Drought Sun et al. (2016)
Salinity Gavaghan et al. (2011) and Guo et al. (2017)

Z. N. Ozturk Gokce et al.



515

There are only a few reports of plant ionomics in literature proving its usefulness 
in finding functions of novel genes, altering nutritional profile of field crops by 
intelligent agriculture approaches and understanding the changes in ionome profile 
of plants in response to different environmental conditions (Baxter 2015; Huang 
and Salt 2016; Watanabe et al. 2016). However, integration of data on individual 
inorganic molecules considering their interaction with each other and other subcel-
lular molecules in changing the phenotype of the plant with changes in environmen-
tal conditions is still required to make effective use of data obtained by ionomics 
studies. It is clear that ionomics approach by itself has not been helpful in under-
standing the key factors enabling field crops to tolerate abiotic stress conditions, yet 
more studies are still required to reveal the role of the trace elements in abiotic stress 
response and tolerance.

24.7  Lipidomics Approach to Abiotic Stress Tolerance

Lipidomics aims to profile lipids in a cell with mass spectroscopy-based approaches 
to identify lipid molecules, their concentrations, and modifications to reveal their 
functions in membrane structure and generation (Tenenboim et  al. 2016; Gross 
2017). Lipids not only form membrane structures but also have roles in subcellular 
transportation and signal transduction. Thus, in terms of agriculture, lipidomics 
offer the manipulation of lipid composition to enhance the tolerance of field crops 
to abiotic stresses, as long as the roles and characteristics of all the lipid molecules 
changing in response to environmental stress conditions in the plants are well char-
acterized. However, lipidomics studies have mainly focused on Arabidopsis thali-
ana and still has a long way to go to solve the problems related to standardization of 
isolation of lipidome, selection of appropriate internal standards, development of a 
reliable data processing system, and a broad use of high-throughput technologies 
(Welti et al. 2007; Tenenboim et al. 2016).

24.8  Phenomics Approach to Abiotic Stress Tolerance

All omics studies summarized before are performed to understand plant’s response 
to find out key elements for enhancing their tolerance to abiotic stress conditions. 
Yet, all these studies are mostly performed under controlled conditions with mini-
mizing G x E interaction, a factor that certainly defines the biochemical and physi-
ological changes in plants under natural growth conditions, i.e., in field. Therefore, 
most of the findings of the other omics approaches are not applicable to field or not 
reliable in nature (Alexandersson et al. 2014).

The base of breeding is defining the phenome in field conditions. Phenomics 
aims at the integration of the phenotypic data collected with the use of high- 
throughput technologies in field trials with other omics approaches to select the 
candidate genotypes having the desired characteristics using noninvasive, computer- 
based visualization techniques for the detection of even the small changes in, for 
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example, leaf area, leaf temperature, and root length (Furbank and Tester 2011; 
Alexandersson et al. 2014; Li et al. 2014; Fahlgren et al. 2015; Humplik et al. 2015; 
Poland 2015; Ubbens and Stavness 2017). In short, it integrates G x E interaction to 
data obtained with genomics, transcriptomics, proteomics, and metabolomics. 
Phenomics have been successfully used for selection of field crops tolerant to abi-
otic stresses, especially drought (Furbank and Tester 2011; White et  al. 2012; 
Humplik et al. 2015). Therefore, compared to other omics approaches widely used 
to understand plant’s response to abiotic stress conditions, phenomics gives the 
most promising results in terms of achieving sustainability in agriculture. The main 
disadvantage of phenomics not being widely used in increasing abiotic stress toler-
ance of field crops is the cost of establishing a phenomics field research area with 
several sophisticated visualization systems such as hyperspectral cameras and 
equipment like tractors, drones, and even some robotic systems allowing remote 
control.

24.9  Integration of Omics Data on Abiotic Stress Tolerance 
of Field Crops: Is it Possible?

The area of omics technologies is diversified with the development of high- 
throughput technologies on other research areas. There are omics approaches 
including epigenomics, glycomics, hormoneomics, cytomics, metallomics, ribo-
nomics, and regulomics, each having a great potential to generate data for enhance-
ment of abiotic stress tolerance of field crops. Integration of data obtained from 
genomics, transcriptomics, proteomics, and metabolomics is performed by systems 
biology approach (Fig.  24.3). Systems biology basically aims to understand the 
organism as a whole at all metabolic levels to generate interactome of cellular mol-
ecules (Mochida and Shinozaki 2011; Rhee and Mutwil 2014; Yugi et al. 2016).

However, integration of data obtained by different omics approaches upon differ-
ent abiotic stresses using different plants and/or genotypes is still the major problem 

Fig. 24.3 Integration of omics approaches for systems biology to generate interactome
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on making beneficial use of huge data already generated. The problem here is not 
just the use of different genotypes of the same plant, but also using different devel-
opmental stages and different strategies or time period for abiotic stress treatment. 
That is to say, almost each laboratory generates an omics data on genomic, tran-
scriptomic, proteomic, or metabolomics levels that can be used or repeated only for 
that particular plant with the very same treatment design used by that laboratory. 
This approach makes the data integration for omics approaches a very hard, almost 
impossible, task for finding the key factors behind the abiotic stress tolerance. In 
systems biology approach, researchers mostly integrate omics data they have gener-
ated in their own laboratories with phenotypic data they have collected in field trials. 
As long as a unified stress treatment design depends on the plant and the abiotic 
stress, considering each plant species requires a particular dosage of stress to show 
the effect, the integration of all data available on literature seems to be beneficial to 
the use of one group of researchers only.

24.10  Conclusion

It is quite clear that to feed rapidly increasing human population in this changing 
climate, agriculture requires development of abiotic stress-tolerant field crops. Use 
of omics technologies is very promising and widely used in understanding plants’ 
response to abiotic stresses and in generating field crops with increased tolerance to 
unfavorable environmental conditions and there are excellent reviews summarizing 
the findings in literature (Debnath et al. 2011; Gupta et al. 2013; Hayward 2014; 
Zhuang et al. 2014; Kumari et al. 2015; Van Emon 2016). Therefore, the main aim 
of this chapter was to lay emphasis on drawbacks and problems associated with the 
outcomes already reviewed.

More studies are still required to integrate data from omics studies to understand 
complex abiotic stress tolerance traits. First of all, the climate change scenarios 
estimate the presence of multiple abiotic stresses that occured together. Therefore, 
genomics, transcriptomics, proteomics, metabolomics, and especially phenomics, 
studies should be more focused on the response to combined stresses together. The 
comparison of abiotic stress-tolerant and sensitive genotypes is also very promising 
with respect to finding the key factors related to tolerance and/or sensitivity; how-
ever, the problem here is the characterization of the genotype having more tolerance 
or sensitivity to another genotype. In this respect, wild-type plants already adapted 
to unfavorable environmental conditions, such as halophytes for salinity stress or 
extremophiles for cold stress, can be used to enhance abiotic stress tolerance of field 
crops (Kumari et al. 2015; Barrero-Sicilia et al. 2017; Shen et al. 2018). Finally, 
omics analyses of increasing tolerance to abiotic stresses with priming need to be 
investigated which can provide insights of metabolic adaptation to environmental 
stimulus. New perspectives are definitely required in omics analyses. For example, 
rather than looking at cellular metabolism as a whole, the omics profiling of mito-
chondria or chloroplast, having an important role in initiating signaling cascades 
and regulation of photosynthesis in response to abiotic stress conditions, can 
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provide knowledge on decreasing yield loss due to environmental stresses (Watson 
et al. 2018).

Nevertheless, it is quite clear that omics perspective of abiotic stress tolerance of 
field crops is a very wide topic with huge data already available on every valuable 
field crop which needs to be further studied and analyzed to achieve the primary 
goal of agriculture: sustainability of human nutrition in global climate change.
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Abstract
Stress is any external factor that interferes with the normal functioning and 
growth of crops. Abiotic stress has been extensively studied for causing devastat-
ing loss to agronomic crop yield across the globe. These problems were worse 
than they are today. Currently, we have contemporary genomic tools to find the 
root cause of problems and we have to broaden our horizon in understanding 
stress tolerance. Current advancement in genomics has paved our path for a more 
precise and comprehensive description of quantitative trait loci (QTLs) that regu-
late a specific trait. QTLs enable researchers to study genes that are responsible 
for even a single phenotypic trait. In other words, they help to study which sets 
of genes are responsible for making crops tolerant to stress. Numerous studies 
have been conducted to describe QTL mapping a significant tool for finding traits 
against stress tolerance. QTL mapping enables to evaluate the numbers, loca-
tions, and gene action pattern. Polygenes affect controlling a trait. Moreover, 
QTL has provided ease to dissect complex traits. Phenotypic analysis of QTL is 
done by observing numerous plants from the same segregating population for 
finding loci for a trait. The QTL tolerance trait so far has been accomplished in 
major agronomic crops, which include wheat, rice, maize, cotton, etc. In conclu-
sion, we can say that QTL mapping is a crucial technique to elucidate specific 
components that allow direct assessment of stress tolerance. Therefore, in this 
chapter, we tried to explicate different QTL studies exploited for trait improve-
ment of various agronomic crops for stress tolerance.
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25.1  Introduction

Plants being sessile have to survive under existing environmental conditions, and 
due to this, they are exposed to harsh environments (Suzuki et al. 2014). Stresses 
either biotic or abiotic are the major external factors that impede with the normal 
functioning of the plant throughout the course of its growth until harvesting (Tester 
and Langridge 2010). Major biotic and abiotic stresses include drought stress, salin-
ity problem, heat episodes, and bacterial, viral, fungal, and insect attack that are 
lethal for agronomic crops (Agrios 2005; Mittler and Blumwald 2010; Naika et al. 
2013). Salinity problem exists on almost 10% of the dry land zone, and 50% of the 
irrigated agricultural land zone is facing this issue (Ruan et al. 2010). Development 
of high-yielding crop cultivars is the prime goal of modern-era plant breeding. A 
significant example of green revolution is shown by producing semidwarf varieties 
of wheat and rice that have fed a lot of population until now (Alexandratos and 
Bruinsma 2012). However, it is an alarming situation that we have to increase the 
production of food for the burgeoning world population, as it is predicted that popu-
lation will increase to 9.3 billion by 2050 (Brown and Funk 2008; Smith et al. 2010). 
Some agronomic crops are so sensitive to deviation from their normal environmen-
tal habitat (Pasha et al. 2015). Change in global environment is also contributing to 
adverse conditions favoring the environmental stress conditions for crops (Atkinson 
and Urwin 2012; Shabala 2013).

Drought is a condition when there is limited or no water available for normal 
growth of the crop. In a field, somehow, plants suffer from water-deficit conditions 
having detrimental yield losses (Bartels and Sunkar 2005). Plants immediately sig-
nal after detecting dry soil conditions and activate different mechanisms to cope 
with the harsh environment, and they have to survive under existing conditions 
(Duan et  al. 2007; Shahzad et  al. 2016). Moreover, less water availability in the 
vicinity of roots forces plants to develop a larger root system, higher stomatal activ-
ity, increased antioxidant activity, and accumulation of osmolyte to cope with water- 
deficit conditions for better yield (Manschadi et al. 2006).

Quantitative trait loci (QTL) mapping is a complex phenotypic trait that has 
enabled researchers to understand the diverse genetic basis of plant traits by separat-
ing phenotypic components (Bo et al. 2015). The major step is to identify QTLs 
affecting stress tolerance for developing stress-tolerant cultivars. It is known that 
QTL is an indirect procedure for controlling heritable variations of traits (Collins 
et al. 2008). The old conventional breeding tools were also fruitful for generating 
stress-tolerant cultivars (Duvick 2005; Cooper et al. 2009), but they require much 
time as compared to modern-era techniques that provide most accurate genotypic 
makeup for dissecting stress-tolerant cultivars within a short period of time (FAO 
2009). In this regard, QTLs have been extensively studied to dissect stress-tolerant 
agronomic crops (Hammer et al. 2006). QTL is a technique to identify loci giving 
varying phenotypic traits under stress or any deviation from normal environmental 
factors. QTLs have broadened our horizon for improving crop performance under 
stress conditions (Collins et al. 2008). The first successful report of QTL mapping 
in plants was done approximately 20 years ago (Bernardo 2008), and since then, it 
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has been exploited in the analysis of complex traits specifically for biotic and abi-
otic tolerance. The genetic variance can occur even by loci; therefore, it was princi-
pally employed for breeding for stress resistance in numerous crops, that is, 
resistance against salinity and submergence in rice and fungal leaf diseases in maize 
and wheat (Crossa et al. 2014).

Drought tolerance is a quantitative trait with polygenic control (McWilliam and 
Baker 1989). Currently, identification of polygenic effect related to drought toler-
ance is the point of interest for improved cultivars having increased drought toler-
ance (Ribaut et al. 1996). Genomic regions are correlated with the phenotype of the 
plants to create accurate markers and, later on, the identification of QTLS associated 
with that specific trait. Root structure also has a pivotal role under drought stress 
conditions, as it can take water from deeper soil layers (Uga et  al. 2015). Plant 
breeders have studied genetic loci to determine drought stress-related QTLs 
(Kalladan et  al. 2013). Up to now, numerous studies have been documented for 
overcoming stress tolerance (Ravi et al. 2011). Functional genomics has aided in 
this situation to correlate phenotypic variations with the genotypic changes by 
observing the genome, and by this way, QTL is given importance (El-Soda et al. 
2015).

25.2  The Procedure of QTL Mapping

Phenotypic variation in crops commonly shows a quantitative variation in their phe-
notypes, similar to a normal distribution, unlike that of qualitative variation falling 
into discrete categories. Continuous phenotypic variation is considered polygenic 
and/or QTL traits, which are usually modified by environments as well as internal 
genetic interactions. For instance, yield, biomass, quality, and tolerance to abiotic 
stress are considered major quantitative traits among agricultural crop plants. 
Similar to simple Mendelian genetic variation at a locus, any marker with allelic 
patterns that is separating mean values of a trait with a continuous phenotypic varia-
tion into two or more groups that are significantly different from each other is said 
to be linked and/or associated with QTL marker to the trait of interest. With the 
detection of variable molecular markers, it became as easy as simple Mendelian 
inheritance to understand complex phenotypic variation, to construct genetic maps, 
and to locate QTLs for copious traits in many economically important crops.

Correct estimations of the mean phenotypic values are the most crucial points dur-
ing QTL identifications. Therefore, any environment-affected phenotypic value esti-
mation is approved by replicated trials in different years and environments with known 
plant genotypes, such as clonally reproduced genotypes and/or mapping populations. 
Mapping populations can be created by crossing two divers’ parents and then produc-
ing segregating populations, such as F2 families, back cross lines (BCLs), doubled hap-
loid lines (DHLs), recombinant inbred lines (RILs), or nearly isogenic lines (NILs). 
Lately, QTL also can be associated with a trait of interest using unrelated individuals in 
a population if linkage disequilibrium still exists for the trait of interest and the marker 
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used. Thus, it is called association mapping since this technique is based on the associa-
tion between quantitative phenotypic trait and marker genotypes.

Here is the illustration of QTLs similar to regular Mendelian genes to explore 
the genetic basis of continuous phenotypic values using hypothetical data for F2 
segregating families developed from a cross with high- x low-yielding tomato gen-
otypes. Let us assume that two tomato genotypes are having mean fruit yields of 
30.2 and 11.5 kg/plant (Table 25.1). These two parents (maternal P1 and paternal 
P2) are crossed to get hybrid (F1). Then, the F1 is selfed to create segregating F2 
lines. Genotypes of the parents are symbolized as maternal (A) and paternal (B). 
Thus, hybrid (F1) genotype is symbolized as heterozygous (H). Three molecular 
markers are named as M1, M2, and M3. After evaluating the F2 segregating lines 
with the three molecular markers, individual F2 line is genotyped as A if only 
maternal marker alleles are present, as B if only paternal alleles are present, and as 
H if both maternal and paternal alleles are present. Mean fruit yields of the parents 
and segregating F2 families are determined after replicated field trials and are pro-
vided in Table 25.1.

Figure 25.1 shows the variation of mean yield/plant values plotted against F2 
segregating families. The mean yields range from 9.0 to 34.4 kg/plant among 128 
segregating families. When data are sorted from the lowest to highest yield value, 
variation shows no discrete groups (Fig. 25.2). Therefore, this type of variation is 
considered continuous (quantitative) variation. Please consider that there are also 
some environmental effects on yield along with the genetic effects.

Yield values are sorted and plotted against 128 segregating F2 families along 
with the three marker genotypes given in Fig. 25.3. The marker alleles from the 
low- yielding paternal genotypes (B) tend to place with the low-yielding F2 
families on the left side of the figure, while the marker alleles from the high-
yielding maternal genotypes (A) tend to place with the high-yielding F2 fami-
lies on the right side of the figure (Fig.  25.3). Thus, the markers with 
heterozygous (H) genotypes are placed within the central areas. For any one of 
the three molecular markers, it is possible to separate 128 segregating F2 fami-
lies into three genotypic (A, B, and H) groups. Marker allelic and trait value 
association is determined by testing the means of these three groups. If there is 
a significant difference between any of the pair-wise comparison, then there is 
a linkage and/or association between the molecular marker and traits of inter-
est, which is called QTL.

Statistical analysis of the molecular markers allelic positions and the trait values 
of the 128 segregating F2 families can be done using any suitable statistical test 
methods to determine if there are any significant differences. For the above tomato 
yield data, there are three markers (M1, M2, and M3), each of which has three geno-
typic classes or levels (A, B, and H). Analysis of variance table for the markers and 
yield data is provided, and it is seen that all the markers and interactions have a 
significant effect on the yield of tomato plants (Table 25.2).

The three markers and the tomato yields are determined to be linked (associ-
ated) after statistical analysis, while the markers are not linked to each other. They 
are either located far from each other on the same chromosome or located on 
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different chromosomes. It is left for the readers to figure out why molecular mark-
ers are not linked.

As seen in Table 25.3, high-yielding plant genotypes can be selected using these 
markers singly, any of two, or three of them together. If M1 is used, then the selected 
high-yielding genotypes would have a mean yield of 25.43 kg/plant, while if M2 or 
M3 is used, then the selected high-yielding genotypes would have mean yields of 
27.34 or 28.59 kg plant−1, respectively. Hence, M3 has the biggest effects on the 
yield among the three markers. If the two markers M1 and M2 are used together, then 
the selected high-yielding genotypes would have a mean yield of 30.77 kg plant−1, 
while if M1 and M3 or if M2 and M3 are used, then the selected high-yielding geno-
types would have mean yields of 31.70 or 33.17 kg plant−1, respectively. Hence, the 
M2 and M3 combination has the biggest effects on the yield among the two marker 
combinations. However, the highest yielding genotypes with a mean yield of 
34.30 kg/plant can be selected using three markers together (Table 25.3) since each 
of the three markers has effects on the yield and shows quantitative variations. 
However, one should consider that, most often, the time markers are not the gene 
controlling the traits. Therefore, crossover may occur any time between the QTL 
loci and the gene controlling the traits of interest. It is advised to breeders to check 
QTL marker alleles and traits of interest if they are still at linkage disequilibrium in 
the genetic resources in hand before the marker-assisted selection is applied.

25.3  QTL Mapping for Stress Tolerance in Wheat

Hexaploid bread wheat is important for being the third largest-grown crop globally 
with 600 million tons produced annually (Green et al. 2012; Edae et al. 2014). It is 
cultivated on irrigated, arid, and semiarid climate zones of the world (Raza et al. 
2015). It is one of the top lists of the most-traded crop in the world (Curtis and 
Halford 2014). It is the sole source of provision of 19% grain production compared 
to other cereal crop family, and it constitutes 55% carbohydrate consumption by 
human population globally (Gupta et al. 2002; Bagge et al. 2007). The yield of the 
crop is at risk due to unusual harsh environments (Xin et al. 2010). Climatic changes 

Table 25.2 Analysis of variance for yield, using adjusted sum of squares (SS) for tests

Source DF Seq SS Adj SS Adj MS F P
M1 2 1036.84 722.53 361.27 1390.55 0.000
M2 2 2284.84 1651.61 825.80 3178.59 0.000
M3 2 3433.96 2460.16 1230.08 4734.68 0.000
M1∗M2 4 15.44 9.47 2.37 9.11 0.000

M1∗M3 4 35.60 25.60 6.40 24.63 0.000

M2∗M3 4 93.20 74.24 18.56 71.44 0.000

M1∗M2∗M3 8 63.96 63.96 7.99 30.77 0.000

Error 101 26.24 26.24 0.26
Total 127 6990.08
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Table 25.3 Least square means of three markers singly and with two- and three-way interactions 
for the yield

M1 Mean SE mean M1 x M2 x M3 Mean SE mean
A 25.43 0.10 A AA 34.30 0.36
B 17.97 0.10 A A B 25.90 0.36
H 21.70 0.07 A A H 32.10 0.25
M2 Mean SE mean A B A 27.90 0.36
A 27.34 0.10 A B B 11.90 0.36
B 16.06 0.10 A B H 18.90 0.25
H 21.70 0.07 A H A 32.90 0.25
M3 Mean SE mean A H B 18.10 0.25
A 28.59 0.10 A H H 26.90 0.18
B 14.81 0.10 B A A 31.50 0.36
H 21.70 0.07 B A B 15.50 0.36
M1 x M2 Mean SE mean B A H 24.50 0.25
A A 30.77 0.19 B B A 17.50 0.36
A B 19.57 0.19 B BB 9.10 0.36
A H 25.97 0.13 B B H 11.30 0.25
B A 23.83 0.19 B H A 25.30 0.25
B B 12.63 0.19 B H B 10.50 0.25
B H 17.43 0.13 B H H 16.50 0.18
H A 27.43 0.13 H A A 33.70 0.25
H B 15.97 0.13 H A B 19.70 0.25
H H 21.70 0.09 H A H 28.90 0.18
M1 x M3 Mean SE mean H B A 23.70 0.25
A A 31.70 0.19 H B B 9.70 0.25
A B 18.63 0.19 H B H 14.50 0.18
A H 25.97 0.13 H H A 30.50 0.18
B A 24.77 0.19 H H B 12.90 0.18
B B 11.70 0.19 H HH 21.70 0.13
B H 17.43 0.13
H A 29.30 0.13
H B 14.10 0.13
H H 21.70 0.09
M2 x M3 Mean SE mean
A A 33.17 0.19
A B 20.37 0.19
A H 28.50 0.13
B A 23.03 0.19
B B 10.23 0.19
B H 14.90 0.13
H A 29.57 0.13
H B 13.83 0.13
H H 21.70 0.09
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are contributing to impediment in growth and yield. Significant factors responsible 
are drought and salinity (Shanker et al. 2014). Moreover, the population is increas-
ing day by day, and we have more mouths to feed currently which are expected to 
increase in the coming years, so food security is at risk because we are using the 
potential of arable lands to get high yield. Therefore, it is need of the hour to increase 
the yield with existing situations (Yang et  al. 2012); therefore, the prime aim of 
breeder is to increase the yield of wheat by combining traits (Ashfaq et al. 2014). 
QTLs for drought tolerance were studied in wheat (Hamada et al. 2012).

25.3.1  QTLs Associated with Root Traits for Stress Tolerance

Roots play a crucial role in the growth of wheat because they are the sole source of 
taking water from the soil and absorbing nutrients as well as providing adjustment 
to stress conditions (Manschadi et al. 2006; Reynolds et al. 2007). Therefore, roots 
have been extensively studied to observe their functions under water-limited envi-
ronment in wheat (Manschadi et al. 2008, Wasson et al. 2012). Genetic control of 
root traits has been given importance for understanding the root architecture of 
wheat (Christopher et  al. 2013; Zhang et  al. 2014). QTLs for root traits were 
observed that assist in coping with drought condition for a future breeding program 
such as QTLs being responsible for root length, number, volume, and dry weight 
(Christopher et al. 2013; Bharti et al. 2014).

25.3.2  QTLs Responsible for Physiological Characteristics 
Under Stress Conditions

Drought severely affects physiological processes of wheat; therefore, there is a dire 
need to protect its chlorophyll content disruption and other reactive oxygen species 
produced in response to drought stress which affects photosynthesis (Peltzer et al. 
2002; Praba et al. 2009). Disruption of photosynthesis leads to decrease in growth, 
which ultimately causes a reduction in biomass (Ashraf and Foolad 2007). QTLs 
were reported to play a role in physiological machinery for the normal smooth 
functioning of plants under adverse conditions to help understand the physiologi-
cal traits responsible during drought tolerance for remarkable progress in crop 
yield (Castonguay and Markhart 1992; Malik et al. 2015). QTLs for net photosyn-
thetic rate, cell membrane stability, and relative water contents were mapped in 
wheat subjected to drought. Moreover, some correlation of these traits was also 
worth mentioning that photosynthesis influences stomatal conductance and tran-
spiration rate, whereas relative water content aids in cell membrane stability (Malik 
et al. 2015). Wheat growth is affected due to water-deficit conditions, which also 
cause difficulty in selection of genotypes due to genotype–environment interac-
tions on each other (Yin et al. 1999; Teulat et al. 2002), and to overcome this prob-
lem, an alternative way is to broaden our horizon by looking into physiological 
changes occurring due to stress (Teulat et  al. 2002; Slafer et  al. 2005). 

A. F. Gökçe and U. K. Chaudhry



537

Water-soluble carbohydrate (WSC) of leaves has a pivotal role in drought stress 
and is a good indicator of drought tolerance (Ehdaie et al. 2006; van Herwaarden 
et al. 2006). Numerous works have been accomplished depicting the accumulation 
of WSC in wheat (Bancal and Triboi 1993; Galiba et al. 1997; Kerepesi and Galiba 
2000). Considering the importance of WSC, QTLs have been dissected in wheat 
responsible for stem water-soluble carbohydrates also during early flowering stage 
and grain filling stage (Yang et al. 2007a); furthermore, grain filling of wheat is 
mainly dependent on stem reserves of WSC during drought (Rebetzke et al. 2008; 
Zhang et al. 2014).

25.3.3  QTLs Assisting in Yield Improvement Under Stress 
Conditions

Wheat grain yield is a complex trait which includes various components, that is, 
spike number, kernels per spike, and kernel weight (Reynolds et al. 2011). Grain 
yield can be improved with genetic improvement in its architecture by QTL map-
ping (Holland 2007). QTL responsible for yield variation was dissected, as it was 
due to either more aboveground biomass production or harvest index. It was inferred 
that it successfully aids greater biomass at anthesis, which leads to an increase in the 
number of florets per ear and ultimately increased harvest index (Quarrie et  al. 
2006). Chromosomal regions have a great influence on grain components contribut-
ing toward the overall net grain yield of wheat under limited moisture supply, which 
is only possible through QTL analysis (Bennett et al. 2012).

25.4  QTL Mapping for Stress Tolerance in Rice

Rice is the essential nutrition for the majority of the human population in the world. 
Among cereal group, therefore, it is of high priority for production worldwide. It needs 
a flooded condition for better growth throughout its life cycle (Li and Xu 2007; Toorchi 
et al. 2003). Water shortage is the major issue for the growth of rice, which causes seri-
ous constraint in its production and yield, specifically in the arid zone (Nguyen et al. 
1997). Rice is not restricted to specific agroecosystems for its growth. It is grown on 
rainfed lowland to rainfed high land, deep water, and irrigated flooded lands under 
tropical and temperate climatic conditions. Although there is diversity of options avail-
able for rice cultivation, until now, no breakthrough has been achieved for breaking 
some yield barriers (Dixit et al. 2014). The lowland rice ecosystem has the potential for 
improvement in yield. In Asia, rice is grown on 42 million ha land area (Huke and 
Huke 1997); therefore, it is particularly suffering from varying intensities of drought 
stress every year. Drought has posed serious threats to many rice-producing parts of the 
globe, which has created trouble for rice researchers to come out with an appropriate 
solution. Therefore, rice breeders have exploited mapping studies to create drought-
tolerant cultivars (Zhao et al. 2008). Currently, rapidly changing climate further exac-
erbates the environment for future crops (Wassmann et al. 2009), and it is predicted that 
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drought will be worse with the passage of time in the coming future (Bate et al. 2008). 
Globally, rice fields affected due to drought are approximately 23 million ha (Huke and 
Huke 1997; IRRI 2002). Improvements in rice genetic material are tedious (Evenson 
and Gollin 2003). Contrarily, drought-resistant traits are mapped in rice (Bernier et al. 
2008; Kamoshita et al. 2008). Currently, QTLs for a number of drought-tolerant traits 
have been dissected in rice (Li and Xu 2007; Kamoshita et al. 2008).

25.4.1  Role of Roots and QTL Dissection for Drought Tolerance

Currently, breeders are more considering the role of root under stress conditions for 
the purpose of normal functioning and high yield of the crop (Passioura 2007). 
Roots are the prime source to evade drought and protect the crop from desiccation 
(Passioura 2012). Root traits including its structure and anatomy are responsible for 
searching water in limited moisture availability to cope with drought (Cruz et al. 
1992; Price et al. 2000). The long thick root system of rice helps against drought 
conditions (Ling et al. 2002). Geneticist have discerned the root system as a power-
ful tool of QTLs linked for root traits (Zhang et al. 2001; Kamoshita et al. 2002). 
QTLs for root penetration have been reported to assist in drought tolerance (Zheng 
et al. 1999; Ali et al. 2000; Zhang et al. 2001; Price et al. 2000); by exploiting QTLs 
for root characteristics, the yield of rice is improved in drought-stricken areas (Fukai 
and Cooper 1995; Nguyen et al. 1997). QTLs associated with roots of rice were 
recognized, which are basal root thickness, number, and maximum length of the 
root (Li et al. 2005). Root traits assisting in drought stress were reported, which 
include root stele and xylem vessel diameter (Uga et al. 2010).

25.4.2  Yield Improvement by Exploiting QTL Technique 
against Drought Stress

Breeding rice genotypes for drought tolerance is slow (Fukai and Cooper 1995). 
Grain yield is mainly affected under drought stress; especially at the reproductive 
stage, the losses are much more to count (Venuprasad et al. 2009); however, QTLs 
have an enormous effect on the yield of rice (Salekdeh et al. 2002). QTL for grain 
yields at drought stress has been mapped (Sandhu et al. 2014). In the few recent 
decades, at least two or three rice cultivars have been given importance among farm-
ers from region to region, depending on the suitability of their growing conditions; 
somehow, these cultivars give less grain yield under drought stress conditions. So, 
QTL identification for grain yield was carried out in breeding drought-tolerant cul-
tivars (Vikram et al. 2011). Donor N22 was selected from landrace, which conferred 
drought tolerance and maintained high spikelet fertility (Selote and Chopra 2004; 
Tyagi and Chandra 2006). QTL responsible for agronomic traits in rice depicted 
resistance against drought (Srividhya et al. 2014).

A. F. Gökçe and U. K. Chaudhry



539

25.4.3  QTL Mapping for Stress Tolerance in Cotton

The world’s largest population is directly or indirectly linked with cotton for 
reasons of its value and usage. Farmers are closely associated with it to get high 
production; thousands of ginning industry and textile industry are dependent on 
cotton (Tatsiopoulos and Tolis 2003). Moreover, millions of people are associ-
ated with cotton chains for their earnings (Myers and Stolton 1999). It is also 
exported in the form of yarn and worthy garments, so it has been named white 
gold due to its value in the world (Arshad et  al. 2005; Tefft 2010). Cotton 
(Gossypium hirsutum L.) is composed of 50 diverse species based on their mor-
phology and economic characteristics. Cotton that has higher fiber quality and 
yield is generally tetraploids (Wendel and Cronn 2002). Cotton is a leading fiber 
crop globally, and it is irrigated for better growth and lint quality of cotton 
(Pettigrew 2004). Cotton is sensitive to drought, causing severe yield losses. 
However, old-era breeding techniques were successful for creating drought toler-
ance in cotton with modification in physiological traits. The major drawback of 
these was tediousness and the efforts involved. Several exertions have been done 
for drought tolerance, which integrates traditional breeding with contemporary 
genetic tools like QTL (Iqbal et al. 2013).

25.4.3.1  QTLs for Physiological Traits in Cotton
Water stress causes a change in genetic makeup of cotton (Saeed et al. 2011). A 
wide range of plant responses have been observed to assist tolerance against drought 
(Xiong and Zhu 2002). Plant’s adaption under water-deficit conditions regulates 
physiological adjustments like osmotic adjustments for maintaining metabolic 
activity and growth (Ashraf and Iram 2005); therefore, QTL responsible for physi-
ological changes was studied for better performance of cotton under water-limited 
environment (Saeed et al. 2011). QTLs play a role even in response to high tempera-
tures for increased stomatal conduction to keep the plant cool under harsh climatic 
conditions in tropical regions (Ulloa et al. 2000).

25.4.3.2  QTL Mapping for Improving Cotton Yield and Lint Quality
Cotton yield and fiber quality are important for every farmer to earn handsome 
amount after the course of struggle for growing cotton; but unfortunately, poor 
fiber quality and low lint yield are handicaps in cotton breeding program since long 
ago (Meredith and Bridge 1971; Meredith 2005), but now, QTLs have provided 
ease in the breeding program to overcome yield-related issues (Yu et al. 2011; Fang 
and Yu 2012; Yu et al. 2013). QTL mapping has opened new avenues for improving 
crop productivity for drought tolerance (Baytar et al. 2018). Currently, 726 QTLs 
are reported for fiber quality of cotton (Said et al. 2013).

25 Use of QTL in Developing Stress Tolerance in Agronomic Crops



540

25.5  QTL Mapping for Stress Tolerance in Maize

Maize (Zea mays L.) is the principal cereal crop grown globally due to its suitability 
for every agroclimatic zones and its multiuses and benefits for humanity (Li et al. 
2010). However, suitable growth conditions are necessary for maize crop for normal 
growth and yield. In some circumstances, maize suffers from adverse conditions 
like water deficit and its yield falls (Setter and Flannigan 2001). Water requirement 
of maize is 600–700 mm for optimal growth (Reddy 2006). Deficiency of water at 
any growth stage causes drastic yield loss (Paudyal et  al. 2001). Drought stress 
causes the same effects to crop as any other environmental stress (Pandey et  al. 
2000); it causes a reduction in plant height leaf area expansion and cell division 
(Reymond et al. 2003). The global reduction in grain yield of maize is caused by 
drought stress, especially at the flowering stage. Drought also affects other growth 
stages of maize, such as delay in silking and increase in anthesis-silking interval 
(ASI), and ultimately, all these traits contribute to decrease in the overall yield of 
maize (Harrison et al. 2014; Vargas et al. 2006). Maize is extremely sensitive to 
drought during early growth stages just after the onset of flowering (Banziger et al. 
2000). It is susceptible to drought due to the separation of flower parts, tassel blast-
ing, and embryo abortion (Lu et al. 2011). Therefore, it is the need of the hour for 
maize breeders to develop tolerant maize varieties that can withstand drought stress 
conditions and provide higher yield (Messmer et al. 2009). QTL analysis for maize 
drought tolerance was successfully documented for the first time by Lebreton et al. 
(1995).

25.5.1  QTL Mapping for Physiological Characteristics 
under Drought in Maize

Maize stay-green is a good determinant of robust growth under any adverse condi-
tions like drought (Xu et al. 2000a; Borras et al. 2003). Aging of plant destroys its 
chlorophyll machinery, which hampers growth and yield (He et al. 2005); therefore, 
QTL responsible for chlorophyll content was dissected, which is responsible for the 
greenness of maize (Messmer et al. 2011). Moreover, chlorophyll keeps the plants 
above threshold level necessary for photosynthesis, which is important under 
drought stress (Schussler and Westgate 1995). QTL analysis for stay-green charac-
teristics of maize was documented; likewise QTLs for grain weight and ear diame-
ter of maize (Zheng et al. 2009).

25.5.2  QTL Mapping for Yield Enhancement in Maize

Grain yield is an important factor for consideration because it is the final product 
that we get after harvesting the maize, so QTLs for yield-associated components 
and grain yield were reported (Ribaut et  al. 1997; Tuberosa and Salvi 2009). 
Endeavors have been made to gain insight into maize architecture as tassel and ear 
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have a potent relationship in grain yield of maize (Upadyayula et  al. 2006). In 
maize breeding programs, an active area of focus is short anthesis-silking interval 
(ASI) for tolerant maize cultivars (Li et al. 2003). Indeed, selection of small ASI is 
proved to be a significant trait for higher grain yield (Araus et al. 2011). QTLs for 
ASI were dissected on different chromosome locations under severe stress and 
well water regime by a cross of susceptible and tolerant maize cultivars (Ribaut 
et al. 1996). Consistent QTLs have been identified for grain yield under adverse 
conditions (Collins et al. 2008).

25.5.3  QTL Associated with Flowering and its Time

Maize flowering can be affected due to drought stress; therefore, QTLs were 
evaluated at the flowering stage and for yield components (ear length, kernel 
number per row). These traits were deeply considered for the creation of 
drought tolerance in maize in the future (Lu et al. 2006). Genomic regions were 
searched for the harboring effect of QTL on traits. It was evaluated that all 
chromosomes were found to have some influence on traits; furthermore, maize 
exhibits flowering time variation naturally (Gouesnard et  al. 2002; Camus-
Kulandaivelu et  al. 2006); therefore, to control this variation, QTL has been 
observed for better understanding the flowering time and traits of maize 
(Chardon et al. 2004). QTLs controlling different traits are mostly on the same 
chromosomal region (Marino et al. 2009).

25.5.4  QTLs for Root Architecture to Alleviate Drought Stress

Root is another important trait that aids in alleviating drought stress. QTLs respon-
sible for root functions under harsh conditions were mapped in maize (Mano et al. 
2005). Root traits were exploited to address drought conditions by increased root 
growth in search for moisture from the soil (Lynch 2013). QTLs have been marked 
from maize chromosomes influencing root formation and grain yield (Landi et al. 
2010) under well-watered and water stress conditions. Various fruitful reports have 
been documented of QTLs for maize stress breeding programs and also to enhance 
its growth and grain yield (Li et al. 2012; Ali et al. 2015).

25.6  QTL Mapping for Stress Tolerance in Sorghum

Sorghum is a primary nutrition for millions of people in Africa and Asia (Murty 
et al. 2007). The climate of these regions is prone to drought, as there is low rainfall 
and high precipitation due to high-temperature resulting in lower crop yield 
(Haussmann et al. 2002; Turner 2004). Plant under drought stress is in urgent search 
of water, which is normally available in lower pockets of soil (Xiong et al. 2006). 
The breeder’s main goal for drought tolerance is on improving root and 
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physiological parameters (Rajendran et al. 2011). Stress causes obstruction in ger-
mination and early senescence (Khayatnezhad et al. 2010).

25.6.1  QTLs Associated with Stay-Green Characteristic 
of Sorghum

Stay-green trait of sorghum is an important indicator of tolerating stress, especially 
during the postflowering in response to drought (Rosenow and Clark 1981). 
Preflowering is also important for drought tolerance, as it assists plant breeders in 
amending the traits for stay-green in order to create drought tolerance in sorghum 
(Kebede et al. 2001). Stay-green indicates resistance, which confers sorghum toler-
ance to early senescence (Borrell et al. 2000; Borrell and Hammer 2000). It assists 
in grain filling under adverse drought conditions (Thomas and Howarth 2000). 
QTLs for stay-green trait have been located on chromosome which varies for their 
phenotypic variance, and this trait is also influenced by the environmental factors 
(Xu et al. 2000b; Harris et al. 2007).

25.6.2  QTLs for Root Morphology

Root traits also play an important role in coping with stress tolerance. Root angle 
was less considered for crop improvement because of the difficulty of assessing 
roots from a large area having various plants (Singh et al. 2011). However, sor-
ghum is considered good for root trait under drought spells because of its seminal 
root system which forms the nodal root (Singh et  al. 2010); therefore, QTLs 
responsible for root angle were mapped for validation of this trait for better yield 
performance under drought stress. Various QTLs were observed, but only one 
showed a positive additive effect for the nodal angle of sorghum root (qRA1_5), 
which facilitated better plant stand and added more height to plants which ulti-
mately gives higher yield (Mace et al. 2012).

25.6.3  QTLs Assist in Contributing for Yield

Yield increment enhances their domestic production of crop; therefore, QTLs asso-
ciated with yield were mapped in sorghum (Sabadin et al. 2012). The forage yield 
of sorghum is more if the plants produce a greater number of leaves, which is con-
sidered as an important component of yield. QTL is favorable because panicle 
length and the number of leaves have a robust relationship in increased transport of 
photosynthate (Srinivas et al. 2009; Fakrudin et al. 2013).
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25.7  QTL Mapping for Stress Tolerance in Barley

Barley occupies the fourth position in terms of production in world agriculture 
after wheat, rice, and maize. Potential uses of barley include 75% as a feed and 
remaining portion of it for beverages and food (Sreenivasulu et al. 2008). Barley 
is adapted to adverse conditions and shows differential behavior in response to 
drought conditions (Nevo and Chen 2010). It is cultivated from tropical to tem-
perate climate zones of the world (Schulte et al. 2009), exhibiting higher toler-
ance as compared to its tribe member, wheat (Colmer et al. 2006). Moreover, 
barley is an ideal crop for genetic studies having a simple background of genet-
ics (Costa et al. 2001). Water is essential for plants to grow and produce suffi-
cient yield. However, sometimes in some regions, plants suffer from drought, 
which limits their growth and ultimately affects the yield (Blum 2011; Pennisi 
2008). So, to cope with such situations or make plants better survive under 
existing water-deficit environments, researchers have invented different molec-
ular approaches for drought tolerance. The aim is not to make barley as a cactus 
plant, but to make it survive and give good yield if they face a period of drought 
during their growth stages. To dissect complex traits for the most appropriate 
approach, numerous QTL analyses have been done in barley (Teulat et al. 2001; 
Teulat et al. 2003; Tondelli et al. 2006).

25.7.1  QTLs for Physiological Changes Under Drought in Barley

Stress causes several physiological changes in plants. The most abundant and 
common one is the production of proline under drought stress. Proline is amino 
acid, which works as a chelating agent, plays role in antioxidative defense mecha-
nism, and finally sends signals during stress. Therefore, it assists in stress toler-
ance (Hayat et al. 2012); by considering the mechanism of proline during stress, 
QTL associated with proline content was mapped on chromosome and observed 
to increase proline content due to the dominance of elite alleles over the exotic 
alleles (Sayed et al. 2012).

25.7.2  QTLs Associated with Vegetative Growth of Barley

QTLs for vegetative drought response in barley were observed under drought stress. 
QTLs reported contributing to better agronomic traits of barley, such as shoot area 
integral, absolute growth rate integral, dry biomass, water-use efficiency, and tiller 
numbers (Honsdorf et al. 2014).
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25.8  Conclusion

Stress impedes normal functioning and growth response of crop, which results in 
devastating yield losses. For a long time, breeders are concerned with improving the 
yield of the crop under ideal as well as stress conditions. So, breeding for stress 
tolerance is of utmost importance to save crops and enhance yield. QTL mapping 
has provided easiness to identify different chromosomal positions controlling a spe-
cific trait; therefore, with the advent of this technique, we can thoroughly study the 
segment of a chromosome which makes the plant susceptible and tolerant against 
such stresses in the field. It has been done in almost every agronomic crop. Different 
studies illustrating its importance aforementioned in the chapter suggest that it is 
useful against stress tolerance. Table 25.4 shows QTLs reported in agronomic crops. 
We can improve different agronomic and physiological traits by simply exploiting 
QTL studies against harsh environments. These agronomic traits like root elonga-
tion aid in seeking the available moisture in soil pockets under drought stress 
because root is the base and an essential component of every plant for providing 
nutrition from soil to the top of the plants. Physiological traits have been improved 
by dissecting/marking chromosome positions and later developing them as a marker 

Table 25.4 List of QTLs identified for various traits under abiotic stress in agronomic crops

Crops Traits QTL name References
Rice Grain yield qtl 12.1 Bernier et al. (2009)

Coleoptile length qCL2a, qCL2c Hu et al. (2007)
Basal root thickness qbrt4.1 Li-Feng et al. (2007)
1000 – Grain weight qtgw6.1 Li-Feng et al. (2007)
Root number qrn1a Mu et al. (2003)
Maximum root length qmrl2 Mu et al. (2003)
Flag leaf width qFLW3.1 Singh et al. (2017)
Root penetration qprl11.1 Nguyen et al. (2004)
Plant height qphs1.1 Babu et al. (2003)
Total spikelet number qtsn9.4 Lanceras et al. (2004)
Shoot length qsl1.1 Srividhya et al. (2014)
Germination rate qGR–1 Mardani et al. (2013)

Wheat Plant height QPH.caas–4BS.2 Gao et al. (2015)
Grain yield QYld.idw–2B Maccaferri et al. (2008)
Grain yield Q.Yld.aww–1B Bennett et al. (2012)
Stem water-soluble carbohydrates QSwscf.cgb–4B.1 Yang et al. (2007b)
Root length QRl.ccsu–2B.1 Hamada et al. (2012)
Root angle QRA.qgw–2A Christopher et al. (2013)
Root length QRl.ccsu–2B.1 Bharti et al. (2014)
Net photosynthetic rate QPn2AC Malik et al. (2015)
Cell membrane stability QCMSa2AC Malik et al. (2015)
Stem reserve mobilization QSrm.ipk–2D Salem et al. (2007)
Chlorophyll content Qchl.ksu–3B Kumar et al. (2012)
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Table 25.4 (continued)

Crops Traits QTL name References
Barley Water-use efficiency QWue.S42IL–4H Honsdorf et al. (2014)

Tiller numbers QTil.S42IL–3H Honsdorf et al. (2014)
Chlorophyll content QtChl2.1 Guo et al. (2008)
Drought tolerance QDT.TxFr.2H Fan et al. (2015)
Chlorophyll fluorescence QFv2H Siahsar and Narouei (2010)
Water-soluble carbohydrate QWSC2H Siahsar and Narouei (2010)
Proline content QPC.S42.3H Sayed et al. (2012)
Plant height QPh.NaTx–1H Wang et al. (2014)
Relative water contents qRWC6–6 Liu et al. (2015)
Stomatal conductance qGs2–10 Liu et al. (2015)

Sorghum Stay green qstg1 Xu et al. (2000a)
Stay green qstgJ Kebede et al. (2001)
Lodging tolerance qLdg G Kebede et al. (2001)
Preflowering drought tolerance qPrf F Kebede et al. (2001)
Leaf area qTLA3–8 Mace et al. (2012)
Plant height qPH10 Fakrudin et al. (2013)
Number of leaves qNL10 Fakrudin et al. (2013)
Day to anthesis QDan–sbi01–1 Srinivas et al. (2009)
Total number of leaves QTnl–sbi01–1 Srinivas et al. (2009)

Maize Stay green qsg1 Zheng et al. (2009)
Grain yield qgy1 Lima et al. (2006)
Grain weight qgw 1.1 Zheng et al. (2009)
Ears per plant qep1 Lima et al. (2006)
Ear diameter qed 1.1 Zheng et al. (2009)
Plant lodging qpl1a Lima et al. (2006)
Plant height qph1a Lima et al. (2006)

Cotton Relative leaf water contents qtlRLWC1 Amjid et al. (2015)
Cell membrane stability qtlCMS Amjid et al. (2015)
Stomatal size qtlSS Amjid et al. (2015)
Stomatal frequency qtlSF Amjid et al. (2015)
Osmotic potential qtlPH–1 Saeed et al. (2011)
Boll numbers qtlBN–1 Saeed et al. (2011)
Plant height qPH.SP.lg12–1 Abdelraheem et al. (2015)
Root weight qRW.SP.Ig2–2 Abdelraheem et al. (2015)
Plant height qtlPH–1 Saeed et al. (2011)
Boll number qtlBN–1 Saeed et al. (2011)
Osmotic potential qtlOP–2 Saeed et al. (2011)
Osmotic adjustment qtlOA–1 Han et al. (2004)
Seed cotton yield qtlSC–1 Wang et al. (2006)
Fiber strength QTLfs1 Zhang et al. (2003)
Fiber strength qFS–D8–1 Shen et al. (2005)
Fiber length qFL–D11–1 Ning et al. (2014)
Fiber length qFL10.1 Tang et al. (2015)
Fiber elongation qFE–c22 Wang et al. (2015)
Lint yield qLY–D8–1 Shen et al. (2007)
Seed cotton yield q–SCY–15–1 Sankeshwar et al. (2018)
Fiber length qFL–A12–2 Keerio et al. (2018)

25 Use of QTL in Developing Stress Tolerance in Agronomic Crops



546

for further breeding programs. We can exploit them as a marker in our future breed-
ing studies. However, one should consider that, most often, the time markers are not 
the gene controlling the traits. Therefore, crossover may occur any time between the 
QTL loci and the gene controlling the traits of interest. It is advised to breeders to 
check QTL marker alleles and traits of interest if they are still at linkage disequilib-
rium in the genetic resources in hand before the marker-assisted selection is applied.
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Abstract
Abiotic stress is a multifarious factor that mainly affects the growth and yield of 
crop plants worldwide. Crop production is highly affected by abiotic stresses 
including drought, water submergence, salt, and heavy metals. The plants have 
developed various biochemical, physiological, and metabolic mechanisms to 
fight against different abiotic stresses. In order to get detailed knowledge about 
these complex molecular systems, we need the development of systems biology 
approaches, namely genomics, proteomics, transcriptomics, and metabolomics. 
Each one of the “omics study” has its own importance in developing the stress 
tolerance in agronomic crops. In order to combat changing environments, plants 
modify their “omics” profile for their survival. Recent developments in omics 
technologies provide deep insights into the molecular mechanisms and functions 
of particular genes and its resulting phenotypes. In recent times, these omic 
approaches are aimed to understand the molecular interaction and the involve-
ment of signalling networks on abiotic stress plants. This chapter briefs about the 
involvement of different omics approach in understanding the effect of abiotic 
stress and the development of stress tolerance in agronomically important crops.
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Abbreviations

2-DE two-dimensional electrophoresis
APX ascorbate peroxidase
CAT catalase
CID collision-induced dissociation
EMS ethyl methane sulphonate
ESI electrospray ionization
FTIR Fourier transform-infrared spectroscopy
GC-MS gas chromatography-mass spectrometry
GPX guaiacol peroxidase
GSH glutathione
ICAT isotope-coded affinity tags
ICPMS inductively coupled plasma mass spectrometry
ICPOES inductively coupled plasma optical emission spectroscopy
IRT infrared thermography
iTRAQ isobaric tags for relative and absolute quantification
LC-MS liquid chromatography-mass spectrometry
LEAP late embryogenesis abundant proteins
MALDI matrix-assisted laser desorption ionization
MAS marker-assisted selection
MDA malondialdehyde
MRI magnetic resonance imaging
MS mass spectrometry
NAA neutron activation analysis
NGS next-generation sequencing
NMR nuclear magnetic resonance
PET positron emission tomography
PiiMS Purdue Ionomics Information Management System
QTL quantitative trait locus
ROS reactive oxygen species
SE stem elongation
SILAC stable isotope labelling by amino acids in cell culture
SOD superoxide dismutase
TCA tricarboxylic acid

26.1  Introduction

In the recent scenario, abiotic stresses are the major threats to the living world, 
especially in the plant kingdom, which have been intensified due to global warming 
and industrialization. They were the important reason for morphological, physio-
logical, biochemical, and molecular changes in plants, resulting in reduced produc-
tivity of important crop plants (Hasanuzzaman et  al. 2012). In the conflicting 
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climatic changes, crops are exposed more frequently to various abiotic stresses, 
such as drought, salinity, elevated temperature, water submergence, and nutrient 
deficiencies. Plants as a sessile organism need to hastily adapt to overcome different 
environmental stresses to complete their lifespan. Unlike biotic stresses, abiotic 
stresses are multigenic and quantitative in nature (Muthuramalingam et al. 2017a). 
Hence, it is necessary to understand the plant adaptation during different abiotic 
stresses, which is useful for the establishment of multiple responses pertaining in 
complex gene interactions and molecular crosstalk between several pathways 
(Umeszawa et  al. 2006; Basu 2012). This could be addressed with the help of 
ultrahigh- throughput systems biology coupled with computational biology 
(Fig. 26.1).

Marginal efforts were made to expand our knowledge of plants in response to 
abiotic stresses using integrated system biology approaches. Genomics, proteomics, 
proteogenomics, transcriptomics, metabolomics, ionomics, and phenomics are 
modern system biology approaches that have been useful in studying the stress 
mechanism of plants (Muthuramalingam et  al. 2017b). These technologies are 
known as “Omics Technologies.” They afford new insights and open new horizons 
for understanding the molecular mechanism of stresses and responses with the 
improvement of plant responses and resistance to stress (Duque et al. 2013). These 
“omics” technologies are high throughput, fast data generating, and produce enor-
mous data outputs. This chapter will provide important information for molecular 

Fig. 26.1 Importance of omics technologies in crop improvement against abiotic stresses
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biologist and plant physiologists to develop the large spectrum abiotic stress- tolerant 
crops through “omics technologies.”

26.2  Agronomic Crops

Agronomic crops contribute to the greater proportion of man’s food either for direct 
or indirect consumption through livestock products. The most important agronomic 
crops include cereal grains, seed legumes, and forage crops. Cereal grains, which 
are grown for their edible starchy seeds, are by far the most important source of 
concentrated carbohydrates for man and beast. They are the main items in the diet 
of much of the world’s population, and about 70% of the harvested acreage in the 
world is devoted to growing them. Recent statistics showed that only three species 
of wheat, rice, and corn each account for essentially one quarter of the total cereal 
supply in the world. Seed legumes are higher in protein than the cereals and have 
evolved symbiotic associations with bacteria for the fixation of gaseous nitrogen. 
Forage crops, which include both annual and perennial kinds of grass and legumes, 
contribute 25–30% of the typical American’s food supply through livestock prod-
ucts and more acreage is devoted to growing them than all other crops combined.

26.3  Abiotic Stresses

Abiotic stress will result in changes in plant growth, development, and productivity; 
severe stress may threaten the survival of plants. There are many environmental 
stresses like drought, salinity etc., cause drastic changes in plant metabolism which 
result in the enhanced accumulation of secondary metabolites in the plants. All 
plants have seasonal environmental variables; in fact, this is an inbuilt ability to 
adjust the circadian variables are often decisive factors of controlling in certain 
physiological attributes, such as the length of the vegetative phase, the onset of the 
reproductive cycle, flowering intensity, timing of fruit set, and induction of whole- 
plant senescence (Debnath et al. 2011). The primary effects of abiotic stress are ion 
imbalance and hyperosmotic stress. A direct result of these primary effects is the 
enhanced accumulation of reactive oxygen species (ROS), which is harmful to the 
plant cells at higher concentration. Oxidative stress occurs when there is a severe 
imbalance in any cell compartment among the production of ROS and antioxidant 
defense, leading to significant physiological challenges. Abiotic stresses such as 
low water availability, high salinity, high or low temperatures, heavy metals, and 
nutrient deficiency are among the major causes of crop failure. Plants are able to 
survive different environmental conditions; however, the degree of tolerance and 
adaptability to abiotic stresses varies among species and varieties. Crops exposed to 
abiotic stresses respond by activating defense mechanisms. Therefore, crops in an 
early stage of stress do not show visible symptoms, but their physiology can undergo 
significant changes (Cramer et al. 2011).
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26.4  Plant Response to Environmental Stresses

The plant response is complicated as a result of reflecting off space and time and the 
integration of stress effects and responses at all underlying levels of organization 
(Blum, 1996). Under field conditions, these responses are synergistically or antago-
nistically altered by the superimposition of different stresses. Plants have developed 
several biochemical, physiological, and metabolic actions in order to combat such 
abiotic stresses. Often, it is complicated to predict the complex signalling pathway 
that is activated or deactivated in response to different abiotic stresses (Chawla et al. 
2011). The plants have primary stress response mechanisms involved in the control 
of water transport and ion homeostasis: activation/inactivation of aquaporins and 
ion transport systems, acting at the plasma membrane and the tonoplast and leading 
to the reduction of cellular water loss or the accumulation of toxic ions in the vacu-
ole (Boscaiu et al. 2008). Other stress responses to plants are the synthesis of pro-
tective molecules or osmolytes which includes sugars, polyalcohols, amino acids 
such as proline, quaternary ammonium compounds, etc. and different specific pro-
teins such as heat shock proteins, LEA proteins, osmotin, etc. The secondary stress 
response involves the generation of “reactive oxygen species” (ROS), which 
includes H2O2 peroxidation and lipid peroxidation (MDA content was increased). 
ROS highly accumulated in the cell cytoplasm leads to antioxidant enzyme activity, 
which includes reduced glutathione, superoxide dismutase, catalase, ascorbate per-
oxidase, glutathione peroxidase, glutathione reductase, etc. (Kant et  al. 2006; 
Turkan and Demiral 2009; Geissler et al. 2010). Specific stress activates a target 
gene or cluster of genes that act as signals for cascade activation events and second-
ary responses (Drew 1997).

26.4.1  Drought

Among different abiotic stresses, drought is one of the most devastating environ-
mental stresses that affect the growth, development, productivity, and crop yield 
(Hasanuzzaman et al. 2017). Global warming and growing water crisis persistently 
increase drought stress in the agricultural plants (Harb et al. 2010). Plants often alter 
morphoanatomical traits, physiological and biochemical processes, gene expres-
sion, and metabolic regulatory networks in response to a water-stressed condition. 
Rice (Oryza Sativa) is a well-studied model crop to understand drought stress 
(Tripathy et al. 2000; Guo et al. 2006; Kathiresan et al. 2006; Zhou et al. 2007; Ji 
et al. 2012). Plants respond to changes in the environment. For example, root often 
grows thicker, deeper, and larger in response to drought in rice genotypes (Azhiri- 
Sigari et al. 2000; Asch et al. 2005; Yue et al. 2006; Ji et al. 2012; Lemoine et al. 
2013). It is related to the higher proportion of dry matter and soluble sugar in the 
roots, which increase the leaf sucrose-phosphate synthase and root invertase activity 
(Wei et al. 2009). The impacts of drought include growth, yield, membrane integ-
rity, pigment content, osmotic adjustment, water relations, and photosynthetic activ-
ity (Benjamin and Nielsen 2006; Praba et  al. 2009). Plants often re-allocate 
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assimilates into shoot growth to root growth during drought stress condition, thereby 
increasing root extension of deeper soil layers (Rich and Watt 2013). Drought dur-
ing reproductive and grain-filling stage causes yield reductions in wheat due to 
increased leaf senescence (Yang et al. 2001), oxidative damage to photo- assimilatory 
machinery (Farooq et al. 2009), decreased rates of carbon fixation and assimilate 
translocation (Asada 2006), reduced grain set and development (Ahmadi and Baker 
2001; Nawaz et al. 2013), and reduced sink capacity (Liang et al. 2001). The effects 
of terminal drought on wheat yield are possible to extend in the near future (Araus 
et al. 2002; Dias de Oliveria et al. 2013). Drought stress is adversely affecting the 
maize crop, which accordingly blocks productivity, than other crops (Tai et  al. 
2011). Under drought stress, the rigidity of leaves is reduced and leaves are folded 
(Du Plessis 2003). Drought stress can cause a potential loss in yield and quality dur-
ing kernel development (Pannar 2012). Drought stress decreased the net photosyn-
thetic rate of barley, but it had no significant effect on the grain-filling rate under 
high vapor pressure deficit (Sanchez et  al. 2002). The drought stress induces 
increased ROS accumulation; meanwhile, the antioxidant activity is also increased, 
and in some varieties of finger millet, it is decreased (Bhatt et al. 2011). Plants pro-
tect themselves from drought-induced oxidative damage, through a production of 
antioxidative enzymes like superoxide dismutase (SOD), catalase (CAT), ascorbate 
peroxidase (APX), guaiacol peroxidase (GPX), etc., which helps to limit the levels 
of reactive oxygen species. Increased enzyme activity is the direct relationship to 
increased tolerance to environmental stresses (Liu et  al. 2011; Sayfzadeh and 
Rashidi 2011). The deficiency in water may cause an adverse effect on seed germi-
nation and embryo growth rate in the field, but many sorghum cultivars adapted well 
to semiarid areas (Patane et al. 2012). Sorghum developed two important strategies 
for surviving to drought stress. The primary strategy is the ability to maintain sto-
matal opening and photosynthesis at low water potentials and the ability for osmotic 
adjustment (Ludlow et al. 1990). The second mechanism is the escape from water 
stress due to deep and dense root formation (Mayaki et al. 1976, Jordan and Miller 
1980). Drought-tolerant genotypes have a high epicuticular wax deposition on the 
leaf surface, which decrease the transpiration (Surwenshi et al. 2010) and reduce the 
cuticular conductance to water vapor and so extend water-use efficiency.

26.4.2  Water Submergence

Waterlogging is turning into a worldwide abiotic threat to several agricultural areas 
(Ghassemi et al. 1995). According to Sergey (2011), globally 12% of cropping areas 
are affected by waterlogging. Waterlogging affects the biological and chemical pro-
cesses in plants and the primary effect of waterlogging is anoxia (O2 deprivation and 
elevation of CO2), and excess water itself does not react chemically with the plant. 
Plants required oxygen for cell division, growth, uptake, and transport of nutrients. 
Lack of oxygen in the root causes root damage and may weaken the plant; it will be 
poorly produced and may eventually die. In addition to O2 deficiency, it produces 
the toxic substances such as Fe2+, Mn2+, and H2S by reduction of redox potential 
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causes severe damage to plants (Drew and Lynch 1980; Setter et al. 2009). In early 
stages of plant growth, waterlogging causes severe reductions in plant height, dry 
matter accumulation, and yield (Mukhtar et al. 1990; Rao and Li 2003; Rosenzweig 
et al. 2002; Liu et al. 2001). It adversely affects the soil-water-plant relationships to 
create an ecological imbalance. Leaf senescence is a basic response when plants 
undergo waterlogging stress (Yan et al. 1996). Chlorophyll content, related photo-
synthetic enzymes, and photochemical efficiency were reduced due to the waterlog-
ging stress, which resulted in the yield reduction of crops (Ren et  al. 2016). In 
sorghum plants, long-term flooding causes a significant reduction in biomass pro-
duction, leaf area, photosynthetic rate, stomatal conductance, and transpiration 
(Promkhambut et al. 2010). Flood leads to lack of oxygen in the roots; decreased 
oxygen inhibits mitochondrial respiration and ATP synthesis and also enhances a 
less efficient metabolism pathway – glycolysis in Zea mays. Among cereals, rice is 
well adapted to the submergence of water and can germinate in the complete absence 
of oxygen (Magneschi and Perata 2009), and deepwater rice cultivars have defense 
mechanism of oxygen escapes syndrome (Bailey-Serres and Voesenek 2008; 
Colmer and Voesenek 2009), which involves fast elongation of internodes to rise 
above the water level. Waterlogging stress reduced the concentrations of P, K, and 
Mg in wheat shoots, but the endogenous levels of calcium are unaffected (Stieger 
and Feller 1994). Flooding also reduces leaf elongation, photosynthesis, plant 
height (Ghobadi et  al. 2007), and root and shoots growth (Sharma and Swarup 
1988). It can reduce grain yield in winter wheat about 20–50% (Musgrave and Ding 
1998). Waterlogging occurred during the stem elongation period (SE) is predomi-
nantly reducing the wheat yield (Marti et al. 2015).

26.4.3  Salinity

High salt is another abiotic stress closely related to drought which widely inhibits 
growth, development, and crop production severely. Approximately salinity affects 
20% of irrigated land and reduces crop yield significantly (Qadir et al. 2014). The 
basic response of plants to salinity can be described in two phases. In an initial 
phase, ion-independent response to salinity inflicts stomatal closure, and therefore, 
it inhibits leaf expansion (Munns and Termaat 1986), whereas in the second phase, 
ion-dependent response to salinity causes premature senescence of leaves and ulti-
mately reduces yield or perhaps death (Munns and Tester 2008). Rice is rated as a 
salt-sensitive crop compared to other cereal crops (Grover and Pental 2003; Joseph 
and Jini 2010). An excess amount of salt adversely affects the metabolic activities 
of rice, including cell wall damage, accumulation of electron-dense proteinaceous 
particles, plasmolysis, cytoplasmic lysis, and damage to ER and also accumulates 
citrate, malate, and inositol in leaf blades within 1 day of salt treatment (Sahi et al. 
2006). Chlorophyll and carotenoid contents in rice leaves were significantly 
decreased after the deception of salt stress (Cha-umi et  al. 2009). Sorghum is a 
moderate, salt-tolerant agronomic crop. Swami et al. (2011) reported that reduced 
leaf surface area and chlorosis were observed under salt-stress conditions. In sweet 
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sorghum, salinity decreased the percentage of germination (Almodares et al. 2007) 
and increased the duration of germination (Gill et al. 2003). Salt stress in sorghum 
plants causes changes in the proteome level (Swami et al. 2011). Salinity stress in 
finger millet shows increased caspase-like activity, H2O2 content, and two times 
more proline accumulation in shoots (Satish et al. 2016). Salinity causes a signifi-
cant effect on physiological parameters of both wheat and barley (Izadi et al. 2014).

26.4.4  Heavy Metals

Heavy metal stress is one of the abiotic stresses influencing the growth and yield of 
crops. In higher plants, heavy metals induce oxidative stress by the generation of 
superoxide radical (O2

∙−), hydrogen peroxide (H2O2), hydroxyl radical (OH), and 
singlet of oxygen (1O2), collectively termed as reactive oxygen species (ROS). The 
ROS can rapidly attack all types of biomolecules, such as nucleic acids, proteins, 
and amino acids, leading to irreparable metabolic dysfunction and cell death. In rice 
seedlings, cadmium stress induced superoxide anion and  resulted in higher lipid 
peroxidation and also increased the antioxidant enzyme activity (Shah et al. 2001). 
It also decreased the chlorophyll content, which leads to inhibiting the photosyn-
thetic activity and accumulates GSH and SOD in rice roots (Chen et  al. 2013). 
Heavy metals disclosed the reduction in germination percentage, plumule length, 
radicle length, number of lateral roots, and biomass in Triticum aestivum (Athar and 
Ahmad 2002). Tiwari et al. (2013) reported lead cause reduction in carbohydrate 
and protein content in wheat. Cadmium and zinc metals reduced the lengths of the 
roots and leaves of the barley (Kherbani et al. 2015). The increased concentration of 
Cu > Zn > Pb causes an adverse effect on seed germination and early growth of rice, 
wheat, and barley seedlings (Mahmood et al. 2007).

26.5  Omics Approaches in Abiotic Stress of Crops

Understanding the basis of tolerance to abiotic stress responses in agronomic crops 
is an important and very challenging task especially in higher plants. Plants have 
developed several stress tolerance mechanisms, including physiological and bio-
chemical changes which result in adaptive or morphological changes. Integrated 
data obtained from various omics approaches will provide a more comprehensive 
picture of abiotic stress responses. Omics approaches will facilitate a multitargeted 
assessment by allowing one to identify regulatory networks in complex hubs. Omics 
approaches target molecular parts transcripts, proteins, and metabolites of an organ-
ism and try to identify the functional networks or models designed to predict the 
activities of an organism in different environmental conditions.
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26.5.1  Genomics

Genomics has generated new tools, including functional molecular markers and 
informatics, along with new knowledge about statistics and inheritance phenomena 
which will increase the efficiency of crop improvement (Varshney et  al. 2005). 
Biological research has revolutionized by the arrival of functional genomics in sev-
eral crop species and is predicted to have a high impact on plant breeding – espe-
cially in the identification of genes underlying agronomic traits (Varshney et  al. 
2009). Polyploidy genome complicates genomics-based breeding of agronomic 
crops, including wheat, potato, rice, cotton, sugarcane, and oat (Bancroft et  al. 
2011). The discovery of important genes and it’s signal transduction pathways of 
plants to abiotic stress will play a major role in developing new strategies for crop 
improvement. The emergence of crop functional genomics greatly identifies a vast 
number of abiotic stress-related genes. Recent advancements in genomic technolo-
gies provide effective, high-throughput methods for genome-wide identification of 
stress-related genes. Especially, with the advent of next-generation sequencing 
(NGS) technologies, now the whole genome of several plant species was available 
for ease utilization of crop improvement. The genomics-based approaches also 
 provide details on agronomically desirable genes linked with QTLs, thereby helps 
the improvement of abiotic stress-tolerant plants. Marker-assisted selection (MAS) 
is generally helping the breeders to improve drought-related traits. Cloning of 
important genes in target QTLs through genetic engineering was facilitated by the 
sequence data and the gene products. In rice, several QTL-related genes have been 
cloned (Xing and Zhang 2010; Miura et al. 2011; Huang et al. 2013). Genetic char-
acterization of the cloned genes will provide a great opportunity to understand the 
molecular mechanisms of important agronomic traits in rice (Yu et al. 2013; Zuo 
and Li 2014).

26.5.2  Transcriptomics

Plants adapted to different abiotic stresses through deep changes in gene expression 
patterns which also resulted in changes in transcriptome, proteome, and metabo-
lome of the particular plant species, thus, play an important role in the acclimation 
to the stress. Understanding the stress responses of plants is very important for suc-
cessful management of abiotic stress. Sequencing and analysis of transcriptome are 
the simple, reliable, and cost-effective method to understand the molecular mecha-
nisms globally in stressed plants (Shinozaki and Dennis. 2003). There are many 
reports available for individual stress (Tian et  al. 2013; Gahlan et  al. 2012) and 
combined stresses. Transcript-level analyses, microarray, RT-qPCR, etc. were gen-
erally used to evaluate the complex network during the abiotic stress defense. 
Stressors activate several genes and a large number of proteins in order to trigger the 
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signalling pathways associated with stress tolerance (Valliyodan and Nguyen, 2006; 
Tran et al. 2010). These genes are classified into two groups: the regulatory genes 
and the functional genes (Tran et  al. 2010). Easy availability of transcriptome 
sequencing facility resulted in a transcriptome analysis of several crop plants, 
including rice, wheat, barley, and many more crops, which leads to study the exact 
molecular response of the plants against various stress. Availability of whole- 
genome sequences in rice, as well as the use of microarrays to analyze the transcrip-
tome response, will facilitate the identification of genes involved in abiotic stress 
tolerance, which can be validated by RNA interference and T-DNA/transposon/
EMS mutational studies.

26.5.3  Proteomics

Analyzing the effects of stress in plants has been studied using various tools and 
approaches, one of them is proteomics. Proteomics is an important omics technol-
ogy used to study the functional and structural characteristics of the proteins present 
in an organism. Besides, major technical advances have been made easy the plant 
proteomics for food security (Agrawal et al. 2013). With the advent of technical 
developments in the proteomics, now it is easy to identify plant proteins with more 
reproducible manner. Complex biological mechanisms like plant response to abiotic 
stress tolerance were studied through proteomics approaches. Expression of stress- 
induced genes and proteins during the plant stress treatment leads to understanding 
the molecular mechanism of abiotic stress resistance in plants. In crop breeding 
programs, proteomics is used to detect the stress-responsive proteins through com-
parative proteomic analysis between control and the stressed plants. Then, the pro-
teins responsible for particular phenotype will be assessed through expression 
analysis (Salekdeh and Komatsu 2007). Recent developments in methods of pro-
teomic analysis paved ways to better explain the mechanisms of stress and stress 
response in plants. The conventional two-dimensional electrophoresis (2-E) cou-
pled with mass spectrometry (MS) is used extensively in resolving proteins and to 
identify the stress-induced alterations in the proteome composition of plants 
(Isaacson et al. 2006). The alternative gel-free methods, which are based on frac-
tionation with liquid chromatography (LC), are becoming popular (Hossain and 
Komatsu 2013). Breakthroughs in soft ionization methods, viz., matrix-assisted 
laser desorption ionization (MALDI), electrospray ionization (ESI), and peptide 
fragmentation by collision-induced dissociation (CID) in tandem MS have made 
easy to the protein identification (Ghosh and Xu 2014). Second-generation gel-free 
proteomic techniques, namely LC-MS-based isotope-coded affinity tags (ICAT), 
isobaric tags for relative and absolute quantification (iTRAQ), and stable isotope 
labeling by amino acids in cell culture (SILAC), were useful to assess compara-
tively and quantitatively, which helps to the global level effects of the plant stress 
(Hossain and Komatsu 2013, Ghosh and Xu 2014). Plant stress proteomics can 
identify possible candidate genes, which can be used for the genetic improvement 
of plants against various stresses (Cushman and Bohnert, 2000; Rodziewicz et al. 
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2014; Barkla et al. 2016). In rice, several studies have been done to identify the dif-
ferentially expressed proteins during drought (Salekdeh et al. 2002), heavy metal 
stress (Ahsan et al. 2007), chilling stress (Huang et al. 2017), and various abiotic 
stresses (Kosová et  al. 2011), which will provide insights into the abiotic stress 
mechanism and also a good starting point for further dissection of their functions 
using genetic and other approaches.

26.6  Role of Metabolomics in Crop Improvement

Metabolomics plays an important role in the field of plant biology, especially in the 
improvement of crop plants resistance to biotic and abiotic stresses. Among the 
various “omics” studies, metabolomics is one of the chief disciplines which opens 
the way for studying the dynamic biochemical composition in living systems (Dixon 
et al. 2006; Kusano and Saito 2012). Metabolomics has wide advantages because it 
has the ability to discover a huge range of metabolites from a single extract quickly 
and accurately. In other words, metabolomics is used to study elaborately about the 
cellular metabolites involved in different cellular events at a particular physiological 
state of a cell. Advancement in metabolomics paves the way for investigation of 
metabolites in mutants and transgenic lines in order to understand the metabolic 
networks and responsible candidate gene(s) (Hong et al. 2016; Kumar et al. 2017). 
In addition to that, metabolomics helps to determine the gene’s function and how a 
particular gene involved in the metabolic pathway, regulation, and interception 
between linked pathways (Kumar et al. 2017). In recent days, metabolomics has 
been widely used in several crop species irrespective of the availability of a trans-
genic system. It has the ability to assist in the selection of superior traits and 
improvement of breeding materials (Kumar et al. 2017). In combination with the 
modern metabolomics, the accessibility of cost-effective genotyping assays, whole- 
genome sequence, and genome-wide genetic variants provides effective integration 
of metabolomics in crop breeding programs (Hall et al. 2002; Fernie and Schauer 
2009; Kumar et al. 2017). Plants are frequently exposed to a variety of environmen-
tal stresses during their growth and development processes, which evolved series of 
adaptive responses at both transcriptional and posttranscriptional levels in plants, 
which leads to the rearrangement of functional networks to maintain homeostasis 
(Verslues et al. 2006; Hong et al. 2016). Commonly, environmental stresses are two 
types: abiotic and biotic. Once the plants are affected by stress, the receptors are 
activated by stress signals, which stimulates the expression of stress-responsive 
genes and subsequent production of specialized metabolites for the adaptation to 
environmental stresses (Nakabayashi and Saito 2015). The qualitative and quantita-
tive analyses of metabolites in plants during environmental stress conditions will 
help not only to identify phenotypic changes but also to explore the genetic and 
biochemical mechanisms and also to study the plant plasticity for the production of 
stress-resistant/tolerant plants. There are lots of different techniques involved in 
metabolomics: (1) analytical techniques, such as liquid chromatography-mass spec-
trometry (LC-MS), gas chromatography-mass spectrometry (GC-MS), nuclear 
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magnetic resonance (NMR), and Fourier transform-infrared (FT-IR) spectroscopy, 
provide the metabolomic platform about particular sample, that is, detection and 
identification of metabolites. (2) Metabolite target analysis is another technique 
used in the preparation and analysis of samples from complex mixtures. It is widely 
used for the screening of phytohormones and studies the primary effect of genetic 
alteration directly. (3) Metabolite profiling and (4) metabolite fingerprinting – defin-
ing metabolic phenotypes. These are the four important techniques which involve 
the quantification of hundreds or thousands of metabolites from a complex mixture 
of chemicals present in cellular extracts and differentiate samples based on their 
genotype, phenotype, or biological relevance (Resham et al. 2014). For example, 
individual or combined abiotic stresses in maize have significantly changed the lev-
els of six important metabolites, such as citrate, fumarate, phenylalanine, valine, 
leucine, and isoleucine, which indicate crosstalk between these metabolites, which 
can be used as a marker for abiotic stresses (Hong et al. 2016).

26.6.1  Ionomics

The ionome is defined as “mineral nutrient and trace element composition of an 
organism” and represents the inorganic component of cellular and organismal sys-
tems (Satismruti et al. 2013). Ionomics involves the quantitative and simultaneous 
measurement of the elemental composition of living organisms (Salt et al. 2008). 
The composition of ionome changes from physiological stimuli, developmental 
state, and genetic modifications. Ionomics helps to study the information about the 
genetic and developmental differences of plants under biotic and abiotic factors. 
Ionomics is an important factor to understand element composition and their role in 
biochemical, physiological functionality, and nutritional requirements of plants. 
Plants require many macro- and microelements for their growth within; phosphorus 
(P) and potassium (K) are the two key elements used as macronutrients in fertilizer 
for better crop yield. Plants were evolved into element uptake ability at different 
locations due to the various soil types (Fujita et  al. 2013). This legitimizes the 
requirement of integrating ionomics with genomics to explore genetic variations. 
The ionomic analysis is a powerful approach to the functional analysis of the genes 
and networks of the genes that control the ionome and physiological processes 
which are involved in controlling ionome (Baxter 2010). Ionomics provides rela-
tively high-throughput results in low cost and gives an easy means of analysis. 
Various tools used for the analysis of total ionomic profiling of plants are ICP-MS, 
ICP-OES, X-ray crystallography, neutron activation analysis (NAA), etc. PiiMS 
(Purdue Ionomics Information Management System) is the database for storing all 
the ionic profiles of plants (Baxter et al. 2007). The information present in this data-
base helps in various structural and functional genetic studies of plants. For exam-
ple, ionome analyzed on NaCl-treated barley shows decreased amounts of K, 
magnesium (Mg), P, and manganese (Mn) in roots and decreased amounts of K, 
calcium (Ca), Mg, and sulfur (S) in shoots, and accumulated Na and metabolites 
involved in glycolysis and tricarboxylic acid (TCA) cycle have been observed (Wu 
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et al. 2013). This study suggests the potential rearrangement of elemental profiles 
and metabolic processes to change the physiological mechanisms of salinity toler-
ance. Abiotic stress tolerance to the application of several inorganic elements has 
been observed. For example, silicon (Si) has shown beneficial effects on different 
abiotic stresses, including salinity, water stress, heavy metal stress, and UV-b (Liang 
et al. 2007). Ionomic profiles of plants may be useful as biomarkers for the specific 
physiological condition. In plants, ionomic biomarkers may be a simple way to 
determine if a plant has entered a particular physiological or biochemical state, for 
example, biotic and abiotic stress.

26.6.2  Phenomics

Phenome is defined as the complete set of phenotypic characterization of an organ-
ism that represents the sum total of its phenotypic traits and measurable physical 
and chemical outcomes of the interactions between genes and environments. 
Phenomics involves the measurement of phenomes, which includes physical and 
biochemical traits of an organism. Plant phenomics is the study of plant growth, 
performance, and composition; phenome of the plant changes from genetic muta-
tions and environmental influences. It is further related to other “-omics” technolo-
gies like genomics, transcriptomics, and metabolomics, to analyze the plant 
performance in the field and further link it to the core molecular genetics. Phenomics 
speeds up phenotyping by using automated high-tech sensors, imaging systems, and 
computing power. Phenotypic data and metadata descriptions of the experimental 
conditions are captured for elaborated data analysis. These analyses would deter-
mine relationships between genotype and phenotype, which additionally reveal 
apparently unrelated phenotypes (Schauer et  al. 2006; Lu et  al. 2008). Stress- 
associated phenotype traits and their interrelationships can be analyzed with the 
help of advanced phenotyping techniques, such as infrared cameras to scan tem-
perature profiles/transpiration, fluorescent microscopy/spectroscopy to assess pho-
tosynthesis/photosynthetic rates, three-dimensional camera, lidars (light detection 
and ranging) to measure growth rates, magnetic resonance imaging (MRI) to exam-
ine root/leaf physiology (Finkel 2009; Gupta et al. 2012), and positron emission 
tomography (PET) to map the functions of xylem and phloem (Hubeau and Steppe 
2015). Digital imaging, considered cornerstone for measuring quantitative pheno-
types, has allowed the modern researchers to monitor, measure, and track many 
aspects of plant development, function, and health, which was unimaginable using 
conventional measurement techniques. A number of software programs have been 
developed for extracting data from the digital images from roots, shoots, leaves, 
seeds, grains, etc. These tools can be used to high-throughput analysis of pheno-
types in natural conditions as well as under controlled environmental conditions. 
Phenomics is used to screen abiotic tolerance-related traits (Vandenbroucke and 
Metzlaff 2013). Infrared thermal imaging (thermography) is a high-throughput 
technique used for screening wheat genotypes for salinity tolerance. Scanalyzer 3D 
imaging technique estimates the biomass of cereal plants under saline condition 
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(Golzarian et al. 2011). Chlorophyll fluorescence analysis has been used to investi-
gate the photosynthesis of plants under stressful environments. Chlorophyll fluores-
cence has been used to access drought tolerance in winter bread wheat (Flagella 
et al. 1994; Roostaei et al. 2011) and arabidopsis (Woo et al. 2008). Infrared ther-
mography (IRT) identifies the significant differences between leaf temperature, air 
temperature, and canopy temperature under drought and high-temperature stress in 
melons, tomatoes, and lettuce (Qiu et  al. 2009). IRT has been used to evaluate 
response to salt stress in wheat and barley (Sirault et al. 2009) and water stress in 
grapevines and rice (Jones et al. 2002). Recently, Wedeking et al. (2017) used IRT 
to monitor leaf temperature and transpiration in Beta vulgaris plants exposed to 
continuous drought stress. Spectroscopic techniques can be used to study photosyn-
thetic rates at leaf and biochemical activities in plants. Leaf spectrometer explores 
the photosynthetic electron transport feedback regulation in Nicotiana sylvestris 
(Kiirats et al. 2009). Reflectance spectroscopy monitored the photosynthetic effi-
ciency, its activity, and biochemical pathway of pine (Busch et al. 2009) and barley 
(Siebke and Ball 2009). Altangerel et al. (2017) developed Raman spectroscopic 
technique for high-throughput stress phenotyping and in vivo early stress detection. 
Chlorophyll fluorescence combined with 2D digital imaging monitors Arabidopsis 
thaliana reactions under drought and chilling stress (Jansen et al. 2009). Chlorophyll 
fluorescence has been successfully used to monitor the photosynthetic effect of 
Arabidopsis thaliana under various abiotic stresses (Rungra et  al. 2016). Recent 
phenomics study helps to improve crops through biotechnological approaches. For 
this, QTL genes controlling yield benefit under drought conditions need to be iden-
tified using genotypic and phenotypic screens and then incorporated into elite germ-
plasm using modern breeding methods such as marker-assisted selection (Tester 
and Langridge 2010). The emerging tools and techniques in plant phenomics hold 
immense potential for the development of crop genotypes.

26.7  Concluding Remarks

Plants are primary producers on earth, and abiotic stresses caused by adverse envi-
ronmental conditions alter the metabolism of plant cells, which ultimately affect the 
plant growth, development, and potential productivity of the plant. Under stressed 
condition, plants adjust themselves and adapt to existing conditions by changing the 
expression pattern of a gene, proteins, and metabolites so that “omics” techniques 
such as genomics, transcriptomics, metabolomics, ionomics, and phenomics iden-
tify those changes. These are the techniques that allow us to understand the genetic 
makeup of plants and their adaptability under stressed conditions. Recent “omics” 
studies have an excellent deal of information on transcript, protein, and metabolite 
levels to perceive the survival potential of plants under stress. Abiotic stress toler-
ance is a genetically complex process that involves many components of signaling 
pathways and multigenic in nature. Therefore, plant-engineering methods of abiotic 
tolerance depend on the expression of a gene(s) whose product(s) are concerned 
either in signaling and regulatory pathways or within the synthesis of functional and 
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structural proteins and metabolites that confer abiotic stress tolerance. Recently, 
several efforts are being made to improve abiotic stress tolerance capacity through 
genetic engineering with several achievements. However, the genetically complex 
mechanisms of abiotic stress tolerance and transfer of technology to field conditions 
make it difficult. Advances in various functional tools, resources, and “omics” have 
helped in the molecular characterization of the genes, metabolites, and proteins 
involved in abiotic stress tolerance. The integrated “omics” ultimately required to 
improve abiotic tolerance in economically important crop plants.
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Abstract
The changing climate over the past few decades has been a major challenge for 
sustainable wheat production. Climate change includes factors such as increased 
carbon dioxide (CO2) concentration, changes in precipitation, and change in 
growing seasons. Climate change has a lot of impact on agricultural production. 
Crop phenology greatly changes due to climate change, particularly in warmer 
climates. Anthropogenic activities result in the emission of long-lived green-
house gases (LLGHGs) and other short-lived climate pollutants (SLCPs). 
Developing countries are more vulnerable to climate change due to increase in 
the concentration of greenhouse gases (GHGs) such as CO2, methane (CH4), and 
nitrous oxide (N2O) produced due to anthropogenic activities. Fossil fuels are 
also among the main contributors of greenhouse effect due to the emission of 
CO2. Elevated CO2, high temperatures, and drought condition are affecting bio-
mass and grain yield of crops. So, there is a need for breeding strategies to get 
more wheat varieties tolerant to high temperatures and drought conditions.
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IPCC Intergovernmental Panel on Climate Change
LLGHGs long-lived greenhouse gases
N2O nitrous oxide
O3 ozone
RCP Representative Concentration Pathways
SLCPs short-lived climate pollutants
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27.1  Introduction

Climate change has a lot of impact on crop production at global as well as regional 
level. Climate change is largely affecting agricultural lands across the world espe-
cially due to the increase in atmospheric carbon dioxide (CO2) levels (FAO et al. 
2013; Fig. 27.1). Climate has an impact on food as it affects agriculture as a whole 
(Lobell and Gourdji 2012). Along with CO2 other factors including changes in air 
temperature and precipitation patterns are the key drivers of crop responses to cli-
mate change, affecting crop productivity (Hatfield et al. 2011; Ludwig and Asseng 
2006). Michael and MacCracken (2012) has found six clues to recognize that cli-
mate change is a real problem for any society (Table 27.1). Initial two findings are 
well-established facts, the second two findings are becoming increasingly focused, 
and the last two findings are about how to face the challenging situation (Michael 
and MacCracken 2012).

increased 
global yields

1.8%

reduction in 
yield due to 

warming
1.5%

Effective 
Adaptation

4%

Fig. 27.1 Increased CO2 
trends affecting yield and 
plant adaptation in future 
10 years. (Lobell and 
Gourdji 2012)
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27.2  Factors Affecting Climate Change

27.2.1  Annual Precipitation and Climate Change

There is a thumb rule that crop growth becomes more difficult after 90 °F, and most 
locations in the midlatitudes are rarely exposed to such temperatures. Closer to the 
equator this temperature is more easily attained. While the equator has the biggest 
impact in the coming years in food production, plants are more stressed to produce 
consistent yields. With average temperatures already closer to 90 °F in equatorial 
regions, global warming’s first impacts could potentially be seen in these areas.

There is a growing demand for crop exports in midlatitudes, and higher yields 
are required in places such as the United States and Europe. This is why it is crucial 
to figure out how climate change will impact more temperate regions based on the 
predictions of how crop demand will only increase in the future (Godfray et  al. 
2010). First, climate change was observed in transpiration use efficiency (TUE) in 
case of wheat crop by checking the amount of grain produced per kg in per hectare 
as per mm transpired water from wheat crop.

•Anthropogenic activities including fossil fuel 
combustion lead to change in envirnmental 
composition

1

•Green house effect has a long term effect on global 
warming2

•Climate change as a result of past activities and 
these changes are along with a human influence3

• Future warming 4

•Environment and society both will get effected5

•Slowing the ongoing change will require substantial 
reductions in greenhouse gas (GHG) emissions over 
coming decades to limit anthropogenic interference with 
the climate system. 

6

Table 27.1 Clues to recog-
nize that climate change is a 
real problem for any society
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27.2.2  Groundwater Contents and Climate Change

Perhaps, the most dramatic effect that climate change may bring is the amplification 
of droughts. Droughts are one of the most devastating phenomena on the planet. 
Entire ecosystems can be whipped out or severely crippled from a lack of water. 
Usually, in the periods of droughts, plants can restrict their water usage and transpi-
ration by closing stomata and stopping growth all together, but over long periods, 
this can result in a slower development of a plant or even death (Eilmann et  al. 
2011). Crop yield in any dry area is totally dependent on the annual precipitation 
rate. Decreased precipitation severely affects crop yield in the areas where precipi-
tation is an only water source.

27.2.3  Temperature and Climate Change

Temperature, precipitation, and CO2 concentration have an impact on the plant 
yield. Increasing temperature increases the photosynthetic yield along with 
enhanced CO2 (Long et al. 2005; Parrya et al. 2004; Rosenzweig and Iglesias 1998; 
Thomson et al. 2005) up to a temperature threshold limit. Beyond which yield is 
influenced negatively (Singh et  al. 2014b). Increased temperature affects several 
physiological phenomena, including photosynthetic plant rate and respiratory activ-
ity (Chartzoulakis and Psarras 2005; Yang and Zhang 2006). IPCC (2000) declared 
that based on gas chromatography-mass spectrometry (GC-MS) climate change 
projections, in future it is expected to have a rise in global temperature from 2 °C to 
4.5 °C in this century and some regions may have even more temperatures (Giorgi 
and Bi 2005).

27.2.4  CO2 Concentration (ppm) and Climate Change

There are various studies in which the effect of increased CO2 is studied especially 
in C3 plant, and it is well documented that the crop yield increased as a result of CO2 
elevation if other factors are kept constant (Amthor 2001; Costa et  al. 2006; 
Bannayan et al. 2005; Yoon et al. 2009). Fossil fuels are being used for the produc-
tion of energy, and due to this reason, the concentration of CO2 has increased from 
275–280 ppm to 370 ppm since 1750 (Etheridge et al. 1996; Keeling and Whorf 
2000). Cox et al. (2000) stated that by the end of this century, it might reach up to 
600–1000 ppm.

Global climate change is largely due to change in concentration of CO2 in atmo-
sphere (Ittersum et al. 2003), and other than this, major gases are also contributing 
by their supportive role in climate change, including methane (CH4), nitrous oxide 
(N2O), ozone (O3), and other halocarbons (such as chlorofluorocarbons and CFCs) 
(Michael and MacCracken 2012). Angulo et al. (2013) documented that CO2 has an 
important impact on crop yield; other than this, climate change will have a negative 
effect on crop yield by 2050 and 2080 across the globe.

S. Shabir and N. Ilyas
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27.2.4.1  Impact of Past Climate and Future Climate CO2 Trends
Biomass and grain yield get affected by CO2 and temperature, as these are the key 
drivers in climate change as well as their effect on crop productivity (Mitchell et al. 
1993a, b; Kimball et al. 1995; Moot et al. 1996; Manderscheid and Weigel 1997; 
Fangmeier et al. 1999; Manderscheid et al. 2003). Increased CO2 trends affecting 
yield and plant adaptation in the future 10 years are shown in Fig. 27.1.

27.2.4.2  The Relative Role of CO2 Trends on Wheat Productivity 
Trends and Grain Quality

Ewert et al. (2002) found that there is no effect on phenological development of 
wheat due to elevated CO2 levels, and Pinter et al. (2000) observed that CO2 has 
little effects on stomatal conductance free-air CO2 enrichment (FACE) experiment. 
Mitchell et al. (1993a, b, 1996, 2001) found that elevated CO2 (360–690 ppm) has 
no effects on wheat phenology. So, it can be concluded that increased temperature 
is mainly responsible for fastening crop maturity (Anwar et al. 2015; Cooper et al. 
2009; Ludwig and Asseng 2006; Mitchell et al. 1993a, b; Sadras and Monzon 2006; 
Ittersum et al. 2003). Due to hasten phenological development of wheat, it results in 
shortening of time available for grain formation (Mitchell et al. 1993a, b). Rise in 
temperature since the 1980s has resulted in decreased yield by 5.5% without consid-
ering the effect of CO2.

27.2.4.3  Impact of Greenhouse Gases and Climate Pollutants
Long-lived greenhouse gas (LLGHG) emission has led to increased temperature 
globally, which has pronounced negative impacts on crop yields. Other than this 
short-lived climate pollutants (SLCPs), non-long-lived greenhouse gases (non- 
LLGHG) have also negative impacts over agriculture. Temperature, precipitation, 
monsoon patterns, and regional radiations directly damage the plants (Ramanathan 
et al. 2005).

27.2.4.4  Short-Lived Climate Pollutants
Short-lived climate pollutants include greenhouse gases (methane), black carbon 
(BC) aerosol, tropospheric ozone, and hydrofluorocarbons (HFCs). Collectively, 
these chemicals have contributed in 40% of total radiative forces (Ramanathan and 
Xu 2010). Short-lived climate pollutants and their atmospheric lifetime are shown 
in Table 27.2.

27.2.4.5  Effect of Ozone
Formation of ozone depends on the presence of CH4, carbon monoxide (CO), vola-
tile organic compounds (VOCs), and oxides of nitrogen (NOx = NO + NO2). Ghude 
et al. (2008) and Beig and Ali (2006) suggested that in monsoon months of summer, 
nitrogen oxides and ozone concentration are higher than in winter months, and this 
might be due to higher temperatures during these months (Sillman and Samson 
1995). Globally, ozone has led to crop loss over 79 million metric tons ($11 billion) 
during the year 2000 (Avnery et al. 2011).

27 The Possible Influence of Climate Change on Agriculture
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27.2.4.6  Effect of Black Carbon
Black carbon has direct impacts on crop growth and radiations. It is an absorbing 
aerosol that absorbs direct and diffused light available to plants causing yield loss. 
However, its effects are not easier to isolate because it emits with other scattering 
aerosols or it may get mixed with them after emission. So, it causes varying radia-
tive property (Chung et al. 2012).

27.3  Study to Access Climate Change

Most agriculture models are sensitive to emissions of CO2 and their immediate 
effects on the net absorption of solar radiation, which is why accurate models for 
global emissions are so crucial (Cai et al. 2009). Models are applied to accurately 
forecasts about future crop yields by doing alteration in CO2  availability, tempera-
ture, annual precipitation and ground water levels. This may help to depict how 
climate change will influence crops (Manges 2016).

27.3.1  Representative Concentration Pathways (RCP)

The use of Global Climate models helps in allocating the regions of the globe in 
thousands of grids, each of which calculates their own energy absorption and with 
the help of thermodynamic laws, we can predict the transfer of energy between grid 
points, and if done accurately, it depicts the cycle of energy throughout the globe. 
These data can be used to estimate variables such as winds, temperature, and mois-
ture. Each model is used on historical information and then matched to historical 
observations. The comparison of the model run to the actual observation and its 
accuracy is then used to project into the future what the temperature effects will be 
with different net amounts of energy being retained or radiative forcing by the earth 
in watts per meter squared. To prevent guessing the impacts of increased carbon 
dioxide levels on the temperature, the use of global climate models with tempera-
ture totals is required. Representative Concentration Pathways (RCPs) are global 
climate change models that have been run at different CO2 concentrations. Each 
RCP run represents different scenarios and what the global temperature impact will 
be by the year 2100.

27.3.2  Agricultural Production Systems sIMulator (APSIM)

APSIM is crop simulation model that is used across the globe for simulation of crop 
growth, yield, nitrogen fertilizer treatment, crop phenological development, bio-
mass accumulation, grain yield, and soil water balance in farming systems, and it is 
operated daily (McCown et al. 1996; Akponikpe et al. 2010; Dixit et al. 2011; Dixit 
and Telleria 2015; Moeller et al. 2014; Mohanty et al. 2012; Probert et al. 1998). It 
is also used to study the impact assessment of climate change, optimizing planting 
time and management practices (Anwar et al. 2015; Araya et al. 2015; Luo et al. 
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2005, 2009; Ludwig et al. 2009; Yang et al. 2014; Bassu et al. 2009; Zhang et al. 
2012). The APSIM is also used to access the impact of CO2 increase over crop yield 
(Ludwig and Asseng 2006; Asseng et al. 2004; O’Leary et al. 2015; Reyenga et al. 
1999; Yang et al. 2014).

27.4  Possible Effects of Climate Change on Agriculture

27.4.1  Cropping Systems and Crop Response to Global Change

Climate change has a negative impact over crops as a whole as temperature increases 
and rainfall decreases except in the regions where there are high latitudes, and the 
temperature is less than crop optimal ranges (Mariani et al. 2018). Elevating CO2 
levels has a pronounced effects on crops as it increases plant photosynthetic rate and 
increased transpiration; lessen transpiration results in increased plant production 
(Amthor 2001; Kimball et al. 1995; Long et al. 2004; Singh et al. 2014b; Sommer 
et al. 2013). So, this partially goes against the detrimental effects due to elevated 
CO2 concentration especially in C3 crops (i.e., wheat) (Singh et al. 2014a; Leakey 
et al. 2006).

Oliveira et al. (2013) stated that total wheat biomass and its grain yield increase 
regardless of increased temperature, even crop grown under drought condition. 
However, any big increase in temperature may result in restricting the positive 
effects of increased CO2 concentration (Schütz and Fangmeier 2001; Benlloch- 
Gonzalez et al. 2014).

27.4.2  Effects on Different Crop Type/Global Trends in Crop 
Productivity

Human impact on the surrounding environment from a large-scale perspective is 
clear. Decreasing ice sheets in the poles and the thawing tundra may be the most 
visible impacts of climate change, but yet their human impacts, thus far, are small. 
Most population centers are at the midlatitudes and are thousands of miles from the 
direct impacts of melting ice. Projected sea level changes and ocean current will 
have a dramatic effect on the global economy in the future, but still, the small scale 
and current perspective are missed. Rising oceans and temperatures still have yet to 
dramatically impact human’s wallets and most importantly our stomachs. Global 
warming’s impact on crops is still the defining questing when predicting the severity 
of the impact of global climate change. Still, many uncertainties surround how pre-
cipitation around the world will be affected by temperature increases (Huntingford 
2005). Midsummer temperatures in July in the United States typically cause the 
most water stress on the plant with temperatures exceeding 90 °F in the Corn Belt. 
The higher levels of rain in midsummer in most cases had the most impact in 
increasing yields (Changnon and Hollinger 2003). By midsummer, most crops have 
already flowered and have begun the processes of seeding, making this a key time 
for moisture absorption.
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27.4.3  Future Wheat Yields Due to Climate Change

Studies have shown that there is a reduction of wheat yield in rainfed wheat by 
10–40%, while irrigated wheat reduced by 20–50% (Parry et  al. 1999, 2004). 
Asseng et al. (2015) stated that wheat production would decrease by 6% with every 
rise of 1 °C temperature.

27.5  GHG Emissions in Food Production

Intergovernmental Panel on Climate Change (IPCC 2007a, b, c) has declared CO2 
as a major greenhouse gas produced due to anthropogenic activities especially due 
to fossil fuel burning. Other than CO2, other gases are also important climate change 
drivers, methane being second in this category due to its radiative forcing, while 
halocarbons and nitrous oxide lie in third and fourth numbers, respectively, due to 
their radiative forcing that varies among GHGs, for example, nitrous oxide is 300 
times more efficient than carbon dioxide. Elevated levels of methane and nitrous 
oxide are caused primarily by agriculture. IPCC (2007a, b, c) reported that in the 
year 2005, 60% nitrous oxides and 50% methane from agriculture account for total 
global emissions. GHG emission from commonly consumed food items is shown in 
Fig. 27.2.

The analysis of GHG emission during food items analysis including their pro-
cessing, transportation, the presence of meat, amount of N fertilizers, manure 
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Fig. 27.2 GHS emission from commonly consumed food items. (Kanyama and Gonza’lez 2015)
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application, and storage methods are considered. CO2 emission is dominant in veg-
etables, and nitrogen oxide emission depends on nitrogen application. Methane and 
nitrogen oxide emission is considered in animal products. Calculation of GHGs for 
animal products and rice grown in flooded condition is more complicated (Kanyama 
and Gonza’lez 2015).

27.6  Conclusions and Recommendations

There is a need to study the effects of mesoscale transport of pollutants. As there are 
different impacts of local and transported chemical pollutants, so it is a subject for 
future research. A more comprehensive network could be used to investigate the 
surface ozone and short-lived chemical pollutants for getting to know the origin of 
pollutants by examining their correlations between local emissions, ozone forma-
tion, and their distribution. These data could be used to cross-check chemical trans-
port models and to create observationally constrained emissions inventories. Several 
measures can be adapted to get benefit from climate change to increase crop yield 
and productivity.
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28Effect of Agricultural Pollution on Crops
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Abstract
The basic need of humans is food and wheat is the major staple food of people in 
the world. Wheat is the third most-produced cereal after maize and rice and in 
our average diet, it is considered as an inexpensive source of calories and protein. 
There is a severe need of increasing wheat production as the population is 
increasing day by day and future demand is also rising. To get dramatic yield in 
less time, conventional production uses pesticides, herbicides, and chemical fer-
tilizers. Though crop production is boosted up by application of chemical fertil-
izers, excessive use of these chemical fertilizers can cause many problems such 
as soil becoming hard, pesticides getting stronger and polluting the water as well 
as soil. On the other hand, the constant use of these chemicals leads to wear and 
tear of soil characteristics which compromises the nutritional value and edible 
quality of cereals and fruits due to the accumulation of heavy metals in plant tis-
sues. As a result, the protein content of wheat crop reduces and the quality of 
carbohydrate of such crops also degrades. Excessive use of chemical and natural 
products for farming is causing contamination of related surrounding and envi-
ronment, eventually resulting in agricultural pollution. Farming activities not 
only contribute to soil and air pollution but also to water pollution which is indi-
rectly affecting wheat crop productivity. Agricultural productivity rise has caused 
considerable impact on wheat, on crop production, as well as on the environ-
ment. As nitrogen salt in chemical fertilizers is high in content and the soil 
absorbs nitrogen more quickly, it results in drying up and dehydrates the plant. 
Besides this, intake of water for the plant is lowered by using chemical fertiliz-
ers, so it can cause fertilizer burn or root burn. Agriculture and environment are 
interconnected to each other. As agriculture causes disturbance of the rivers and 
streams, agricultural pollution has been stated as one of the major sources of 
water reservoir pollution, which in turn is affecting the productivity of the crop. 
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Pesticides cause severe threats to both human health and the environment. 
Overuse of nitrogen and phosphorus-based fertilizers on agricultural land has led 
to the high quantity of these minerals in the soil, on surface, and groundwater. 
Furthermore, genetically modified crops, because of their gene flow, have 
improved safety concerns, as well as a greater impact on biodiversity. Due to 
agricultural practices, health hazards are increasing while regulatory approaches 
have been taken in order to prevent occupational and environmental health haz-
ards by increasing awareness and doing research regarding agricultural health 
and safety in the current situation. Production of food showing less impact on the 
environment, human and animal health is the chief aim of the organic system. 
The existing issues of agricultural pollution can be solved by practices like intre-
gated pest management, waste management, and recycling of manure. 
Appropriate decisions and planning at the government level are mandatory to 
solve the current issue.

Keywords
Agricultural pollution · Agricultural practices · Chemical fertilizers · pesticides · 
Environment

Abbreviation

AOS Activated oxygen species
CH4 Methane
CO2 Carbon dioxide
CSI Chlorophyll stability index
DNA Deoxyribonucleic acid
GHG Greenhouse gases
H2O2 Hydrogen peroxide
HMs Heavy metals
N2O Nitrous oxide
O2

•– Superoxide anion
OH• Hydroxyl radical
Pb Lead
ppm Parts per million
Se Selenium
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28.1  Introduction

Agricultural pollution may be defined as the occurrence of contamination, degrada-
tion, as well as damage to the environment and ecosystem, and health risks as a 
result of the byproducts of farming practices. Agriculture is not only a basis of 
economic progress, but also of employment, however the pollution caused by agri-
culture leads to many environmental and health risks. To understand agricultural 
pollution, there is great importance given to the nature of pollutants and the pollut-
ant mode they behave in the environment (Abbasi et al. 2014). A major role in water 
pollution is governed by agriculture, which accounts for 70% of water abstractions 
worldwide. A greater quantity of agrochemicals, residues of drugs, saline drainage, 
and sediments is discharged into water bodies by farmers. As a result, there are 
demonstrated threats to human health and reproduction. Such threats affect every 
aspect of the environment and every organism from the earthworm to humans. 
Agricultural pollution also causes heavy economic losses. As agricultural pollution 
is not a solitary standing entity, its effects are carried over as air pollution and water 
pollution (UNEP 2016).

There are a number of reasons of agricultural pollution, and these are mainly the 
herbicides, pesticides, and fertilizers which are used to improve the output of arable 
land. These substances are used to increase yields and reduce the loss of crops but 
are leached into the groundwater systems through runoff mostly. One of the major 
hazards to the environment and human health is this agricultural runoff pollution 
(Ahmed et al. 2009).

28.2  Effect of Agricultural Pollution on Crops

28.2.1  Effect of Pesticides on Crops

The population of friendly microbes in the soil tends to decline due to the excessive 
treatment of pesticides. According to Dr. Elaine Ingham (soil scientist), “Soil 
degrades if we drop both bacteria and fungi. Soil organisms are affected by the 
excessive use of chemical fertilizers and pesticides that effect is similar to the over-
use of antibiotics on a human. For a few years indiscriminate use of chemicals 
might work, but in the end, there aren’t enough valuable soil organisms to hold onto 
the nutrients” (Savonen 1997).

Worldwide, the average yield of cereal crops increased by more than 98%. 
Alternatively, it is essential to trim down the injurious effect of pesticides on human 
health, on animals, and on the ecosystem (Enserink et  al. 2013). Numerous 
researches have revealed that pesticide exposure causes severe threats to human 
health of both rural and urban populations because it is directly affecting cereal crop 
(especially farmers) (Elbaz 2009).
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Presently, there is a diversity of integrated systems that include different levels of 
pesticide use which may lead to different levels of yield losses compared to high- 
input conventional systems. Pesticides are used to control pests and diseases in inte-
grated cropping systems, and by using other cropping practices pesticide sprays can 
be reduced as much as possible (e.g., cultivar that is resistant, needs lower nitrogen 
fertilizer and minimum tillage) (Loyce 2012; Debaeke 2009). As compared to 
organic systems, these systems can direct to advanced yields and reduce the use of 
pesticides as compared to conventional high-input cropping systems. Consequently, 
they symbolize a fascinating compromise between high-input cropping systems and 
organic. They may also be more gainful for farmers than high-input systems for 
some crops (Kaval 2004).

28.2.2  Effect of Herbicides on Crops

Insects like aphids, lady bugs, and others can be destroyed by herbicides which are 
used against grasses. Pests cannot be controlled naturally if the helpful insects are 
missing. Rather, there may be chances of rapid increase in insect population after 
initial application and as a result, requirements of the further application of pesti-
cides increase to overcome original pests. Herbicides can also kill spiders, butter-
flies, bees, and moths, which play another task in the environment, for instance, 
pollinating plants. Humans have utilized herbicides to protect their crops for several 
years. Crop yield is boosted up temporarily by the application of agricultural chemi-
cals but damage by pests is restrained, which also competes for weed for nutrients 
and water, and a large amount of nutrients in available form are provided. However, 
natural processes such as the conversion of organic matter and balance of microbes 
in the soil environment have been disturbed, which can lead to ruthless weakening 
of soils in the long-term uses (Boström and Fogelfors 2002).

28.2.3  Effect of Fertilizers on Crops

Unnecessary use of fertilizers has been a big risk to wheat crops. By the excessive 
application of inorganic fertilizers, environmental degradation may result, conse-
quently decreasing crop yields. Excessive use of nitrogen fertilizers for attaining 
optimum productivity is linked to the increased level of residual nitrate in the soil, 
and eventually, due to leaching and gentrification, it is contributing to atmospheric 
as well as groundwater pollution. The quality of crops and fruit is badly affected by 
the excessive application of fertilizers (Swietlik 1992).

Potassium and sodium-rich fertilizers can disturb the soil pH and structure (Good 
and Beatty 2011). The efficiency of field crop is declining, as the soil pH decreases 
due to constant use of nitrogen fertilizers (U.S. Environmental Protection Agency 
2007).
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28.2.4  Effect of Heavy Metals on Crops

Crops and other countless plant species can uptake higher heavy metals (HMs) from 
the soil. Consequently, heavy metals go into the food chain (Seregin and 
Kozhevnikova 2008). As anthropogenic interference is increasing, HM pollution is 
an extremely significant problem (Башмаков, Лукаткин 2009). Many HMs are 
requisite macroelements for plants since they play a part in a broad range of enzy-
matic redox reactions. The indispensable elements are a group of HMs that are 
required in trace amounts for plant growth, metabolism, and development but are 
also lethal at high concentrations (Ivanova et al. 2010). The metals like copper, zinc, 
and nickel have a high biological activity and toxicity (Seregin and Kozhevnikova 
2006; Wang et al. 2009). Some other metals, particularly lead (Pb), are called nones-
sential elements. In cell metabolism, they are actively involved but are not necessary 
or toxic to plants. Heavy metals are known to act together with different cellular 
metabolism which inhibits plant growth (Seregi and Ivanov 2001). However, the 
reason for all the destructive functional changes in plants under HM stress is the 
amendment in the balance of antioxidants in plant cells and activated oxygen spe-
cies (AOS). Heavy metals can generate and set off AOS, such as hydroxyl radical 
(OH•), superoxide anion (O2

•−), hydrogen peroxide (H2O2), etc. (Pradedova et al. 
2011). 

The most important inputs of heavy metals (e.g., cadmium, mercury, lead, and 
arsenic) into agricultural systems are an organic waste, for example, manures, fertil-
izers, and industrial byproduct wastes. Some farming techniques, for instance, irri-
gation, can bring about the gathering of selenium (Se) that occurs naturally in the 
soil (Ganje 1966). The germination of the wheat seed is significantly reduced when 
exposed to cobalt. However, it is very useful to expose the wheat crop to lower con-
centration of Co (up to 200 ppm, i.e., parts per million) for growth as well as for the 
development of morphophysiological attributes, but higher amount shows harmful 
effects. Results from different biochemical (CSI,  i.e., chlorophyll stability index, 
proline, chlorophyll a/b) studies also support this. A good phytoaccumulator for Co 
is wheat (Sarma et al. 2014).

28.2.5  Effect of Greenhouse Gases on Crops

Radiations of sunlight, especially infrared, are absorbed by these gases and are 
reflected back into the atmosphere; as a result earth’s temperature is sustained. This 
phenomenon is given the name of the greenhouse effect, but on the other hand, 
source and sink of these gases are not even; the concentration of these gases in the 
atmosphere is increasing slowly and gradually, which is a big challenge to our earth 
population, and now they are becoming the foremost contributors of changes in the 
atmosphere and climate (Preston and Leng 1989). Although agriculture is a slight 
emitter of carbon dioxide CO2, it is the main emitter of methane CH4 and nitrous 
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oxide N2O (Manono 2016). Unequal uses of fertilizers not only result in nonuni-
form growth, emissions of gases but also a waste of fertilizer and a decline in the 
usage coefficient of the plant (Kasraei 1993; Malakoti 1999). Environmental degra-
dation is mainly caused by nitrogen-containing fertilizers when they are applied to 
a large extent (Chen et al. 2005). One of the chief anthropogenic sources of nitrous 
oxide is nitrogen fertilizers, so they are also contributing to global greenhouse gas 
(GHG) emissions (Galloway et al. 2008; Vitousek et al. 1997).

28.2.6  Effect of Invasive Species on Crops

Worldwide, major economic and environmental problems are caused by invasive 
alien species. Assessing the loss of biodiversity and environmental damage due to 
alien species invasions worldwide is problematic due to the fact that out of 15 mil-
lion species on earth, only 1.5 million species have been identified as well as 
described. In the latest history, the rate of changing the environment has escalated 
swiftly because of human population and anthropogenic activities, so the rate and 
threats related with alien species introductions have increased extremely (Pimentel 
et al. 2000). These are causing massive economic and ecological harm and control 
costs (Pimentel et al. 2001).

28.2.7  Effect of Agricultural Pollution on Crops

Not only the crop’s quality but its production and yield are also badly affected due 
to agricultural pollution. Along with the number of pollutants, there are so many 
other conditions that adversely affect the growth and development of crops (Agrawal 
2005).

28.3  Amelioration of Agricultural Pollution

28.3.1  Biological Control

Biological control is not considered as a unique initiative for agriculture system. But 
it is gaining attention for controlling insect pests (Hoffmann and Frodsham 1993). 
Manufacturing organizations and government are making rules to ensure the appro-
priate and secure use of biocontrol. For evaluating agent safety, deploying and mea-
suring treatment success, biocontrol manufacturers continue to develop new 
protocols. Not only to humans and animals but biocontrol usually is safe to plants 
as well as to the environment. One of the most important benefits of biological con-
trol systems is that they drive the escalating implementation of the technology. 
Using chemical insecticides to a larger extent often causes environmental degrada-
tion which in consequence damages human health and the environment. Obvious 
reasons to promote the use of biocontrol platforms are mainly to secure biodiversity 
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and high benefit-to-cost ratio. It will not only require education but also understand-
ing of the general public and especially those concerned in agriculture to permit 
these alternate farming practices (Leonard and Mandjiny 2016).

28.3.2  Genetically Modified Crops

Genetically modified crops are produced with the aid of genetic engineering techniques 
where preferred genes of the desired characteristics are inserted into crops to modify 
their deoxyribonucleic acid (DNA). Unlikely, mutagenesis in which mutation is cre-
ated in DNA by exposing plants to radiation or other chemicals. These techniques are 
particularly specific and precise. Genetically modified crops result in enhanced nutri-
tion, shelf life and increase in productivity as well as herbicide and stress resistance. 
However, genetically modified crops remain in debate. Encouragement is equally from 
two different sides, and groups have their reason either in favor of or opposed. In 
Europe, the probable industrial and commercial scale farming of GM crops presents 
vast challenges and risks for the ecosystem (Gray 2004).

28.4  Conclusion

Agricultural pollution not only affects soil, water, and air but also causes issues 
associated with diverseness and health, particularly due to the utilization of organic 
matter, pesticides, chemical and gas emissions. There is increased public awareness 
regarding the impact of agricultural pollution on the environment in general. There 
is a demand to create foremost agricultural production for meeting up the increasing 
need for food. It is essential to increase wheat yield to fill the gap between consump-
tion and production. Throughout human history, farmers misused the practices to 
lift the crop quality and productivity. Though there are rules and laws, they are not 
implemented in agriculture as they are in alternative industries. Thus to stop agricul-
tural pollution and its severe effects on the surroundings should be a primary focus. 
There is a need to reduce its effects on our environment and ecosystem and to 
enhance the yield, improve quality, the agricultural practices, and the wellbeing of 
human being and biodiversity. For this purpose, correct policies ought to be created 
on native to world level. There is a severe need for producing crops in such a way 
that they do not require traditional fertilizers, pesticides, and herbicide. On the other 
hand, to fulfill the demand for crops and food, there is need of such techniques that 
can protect the crops from insects and pests without causing harm. It is becoming 
more difficult to supply fresh water, so alternatively we have to find and adopt sus-
tainable techniques for producing food. Adverse effects of agricultural pollution on 
wheat are the biggest challenge caused by anthropogenic activities that we should 
defeat to see a tomorrow and guarantee our generation a safe and healthy food. We 
should always remember that agricultural pollution not only affects the environment 
but all organisms. It is our obligation to do our best to protect this beautiful place 
called earth.

28 Effect of Agricultural Pollution on Crops



600

References

Abbasi A, Sajid A, Haq N, Rahman S, Misbah Z, Sanober G, Ashraf M, Kazi AG (2014) 
Agricultural pollution: an emerging issue improvement of crops in the era of climatic changes, 
vol 1. Springer, New York, pp 9–13

Agrawal M (2005) Effects of air pollution on agriculture: an issue of national concern. Natl Acad 
Sci Lett 28:93–106

Ahmed G, Uddin MK, Khan GM, Rahman MS, Chowdhury DA (2009) Distribution of 
tracemetal pollutants in surface water system connected to effluent disposal points of Dhaka 
ExportProcessing Zone (DEPZ), Bangladesh: a statistical approach. J Nat Sci Sus Technol 
3:293–304

Boström U, Fogelfors H (2002) Long-term effects of herbicide-application strategies on weeds and 
yields in spring-sown cereals. Weed Sci 50:196–203

Chen J, Tang C, Sakura Y, Yu J, Fukushima J (2005) Nitrate pollution from agriculture in differ-
ent hydrogeological zones of the regional groundwater flow system in the North China plain. 
Hydrogeol J 13:481–492

Debaeke P (2009) Iterative design and evaluation of rule-based cropping systems: methodology 
and case studies. A review. Agron Sustain Dev 29:73–86

Elbaz A (2009) Professional exposure to pesticides and Parkinson disease. Ann Neurol 66:494–504
Enserink M, Hines PJ, Vignieri SN, Wigginton NS, Yeston JS (2013) The pesticide paradox. 

Science 341:729
Food and Agriculture Organization of the United Nations (FAOSTAT). FAO Statistical Databases, 

http://faostat.fao.org/site/567/default.aspx. Accessed, October 2013
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger 

SP, Sutton MA (2008) Transformation of the nitrogen cycle, recent trends, questions, and 
potential solutions. Science 320:889–892

Ganje TJ (1966) Selenium. In: Chapman HD (ed) Diagnostic criteria for plants and soils. California 
University, Riverside, pp 394–404

Good AG, Beatty PH (2011) Fertilizing nature: a tragedy of excess in the commons. PLoS Biol 
9:e1001124

Gray AJ (2004) Ecology and government policies: the GM crop debate. J Appl Ecol 41:1–10
Hoffmann MP, Frodsham AC (1993) Natural enemies of vegetable insect pests. Cooperative 

Extension, Cornell University, Ithaca, p 63
Ivanova EM, Kholodova VP, Kuznetsov VV (2010) Biological effects of high copper and zinc 

concentrations and their interaction in rapeseed plants. Russ J Plant Physiol 57:806–814
Kasraei R (1993) Plant nutrition science abstract, 2nd ed. Tabriz University Press, Tibriz, Iran, (In 

Farsi) Sustainability 2018, 10, 759 13 of 15
Kaval P (2004) The profitability of alternative cropping systems: a review of the literature. J 

Sustain Agric 23:47–65
Leonard H, Mandjiny S (2016) Biological control of agriculture insect pests. Eur Sci J/SPECIAL/

edition ISSN: 1857 – 7881 (Print) e - ISSN 1857-7431. 216
Loyce C (2012) Growing winter wheat cultivars under different management intensities in France: 

a multicriteria assessment based on economic, energetic and environmental indicators. Field 
Crop Res 125:167–178

Malakoti MJ (1999) Sustainable agriculture and yield increase through optimization of fertilizer 
usage in Iran, 2nd edn. Tibriz, Agricultural Education. (In Farsi)

Manono BO (2016) Carbon dioxide, nitrous oxide and methane emissions from the Waimate 
District (New Zealand) pasture soils as influenced by irrigation, effluent dispersal and earth-
worms. Cogent Environmental Science 2:1256564

National Institute of Health and Medical Research in France (Inserm). Pesticides, effets sur la 
sante´. Expertise collective, Synthe’se et recommendations. http://www.inserm.fr/actualites/
rubriques/actualites-societe/pesticides-effets-sur-la-santeun-expertise-collective-de-l-inserm. 
Accessed June 2013

F. Bibi and N. Ilyas



601

Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonin-
digenous species in the United States. Bio Sci 50:53–65

Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, Wong E, Russel 
L, Zern J, Aquino T (2001) Economic and environmental threats of alien plant, animal, and 
microbe invasions. Agric Ecosyst Environ 84:1–20

Pradedova EV, Isheeva OD, Salyaev RK (2011) Classification of the antioxidant defense system as 
the ground for reasonable organization of experimental studies of the oxidative stress in plants. 
Russ J Plant Physiol 58(2):210–217

Preston TR, Leng RA (1989) The greenhouse effect and its implications for world agriculture, the 
need for environmentally friendly development. Livest Res Rural Dev 1

Sarma B, Prema D, Nirmali G, Yendrembam MD (2014) Effects of cobalt induced stress on 
Triticum aestivum l. Crop. Asian J Agric Biol 2(2):137–147

Savonen C (1997) Soil microorganisms object of new OSU service. Good Fruit Grower http: www.
goodfruit.com/archive/1995/6other.html

Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher 
plants. Russ J Plant Physiol 48:523–544

Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher 
plants. Russ J Plant Physiol 53:257–277

Seregin IV, Kozhevnikova AD (2008) Roles of root and shoot tissues in transport and accumulation 
of cadmium, lead, nickel and strontium. Russ J Plant Physiol 55(1):1–22

Swietlik D (1992) Causes and consequences of Overfertilization in orchards. Hort Technol 
2:112–132

U.S. Environmental Protection Agency (2007) Hypoxia in the northern Gulf of Mexico: an update 
by the EPA science advisory board; EPA-SAB-08-00; U.S. Environmental Protection Agency, 
Washington, DC

UNEP (2016) A snapshot of the world’s water quality: towards a global assessment. Nairobi, 
United Nations Environment Programme (UNEP)

Vitousek PM, Aber CD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, 
Tilman DG (1997) Human alterations of the global nitrogen cycle: sources and consequences. 
Ecol Appl 7:737–750

Wang C, Zhang SH, Wang PF, Hou J, Zhang WJ, Li W, Lin ZP (2009) The effect of excess Zn on 
mineral nutrition and antioxidative response in rapeseed seedling. Chemosphere 75:1468–1476

Башмаков ДИ, Лукаткин АС (2009) Эколого-физиологические аспекты аккумуляции и 
распределения тяжелых металлов у высших растений. – Саранск, , 236 с. (in Russian)

28 Effect of Agricultural Pollution on Crops

http://www.goodfruit.com/archive/1995/6other.html
http://www.goodfruit.com/archive/1995/6other.html


603© Springer Nature Singapore Pte Ltd. 2020
M. Hasanuzzaman (ed.), Agronomic Crops, 
https://doi.org/10.1007/978-981-15-0025-1_29

M. Saeed · N. Ilyas (*) 
Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
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Abstract
Soil hydrocarbon contamination is an emerging constraint across the globe. The 
presence of hydrocarbon alters the physical, chemical, and biological properties 
of soil and makes it unfit for plant growth. The intensity of effects varies accord-
ing to types of contaminants, the extent of contaminants, type of soil, and its 
properties. Mainly, hydrocarbon in soil decreases the germination of seed, 
growth, and yield of wheat. As different physical and chemical methods are used 
to treat polluted soil, such methods are not environmentally friendly and have 
certain disadvantages. Bioremediation is one of the environmental friendly and 
cost-effective techniques used for treating the contaminated site. Microorganisms, 
plants, or both plants and microbes can be used for remediation. The effective-
ness of technique depends on the amount and type of contaminants. Microbial 
degradation is not effective for a large area. Similarly, phytoremediation also has 
certain limitations. But the combination of both methods has shown a better 
result. So, there is a need to utilize such a method for remediation purpose and 
make soil favorable for the growth of crops.

Keywords
Bioremediation · Wheat · Phytoremediation

29.1  Introduction

The more urbanization and improvement in mechanized agriculture has led to an 
increase in the utilization of petroleum and its compounds (Ekpo and Nya 2012). 
Unintentional and unhurried crude oil spills have been and continue to be a 
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considerable source of environmental pollution, and start of serious environmental 
problem, due to the possibility of air, water, and soil contamination. Hydrocarbon- 
polluted soils are well known across the globe because of more need of petroleum 
as an energy source. Petroleum (crude oil) and its product enter the soil via oil tank 
ruptures, crude oil pipe leakages, and uncritical dumping of refinery products, 
resulting in changes in soil properties. Soils polluted with petroleum hydrocarbon 
(PHC) have less fertility and hence, do not sustain adequate crop growth and devel-
opment (Abii and Nwosu 2009).

Hydrocarbons are carbon and hydrogen containing organic substances. By struc-
ture, they are divided into two categories: one is straight chain hydrocarbons, which 
are again divided into single bond hydrocarbons and double or triple bond hydrocar-
bons. Another group of hydrocarbons contains a ring structure such as benzene 
(Palmroth 2006).

The main constituents of crude oil are hydrocarbons. Their percentage varies 
according to the isolation procedure and type of oil. In addition to hydrocarbon, 
crude oil also contains sulfur, nitrogen, oxygen, and heavy metals like lead, nickel, 
and cadmium (FGS 2009). The high content of hydrocarbons is due to the break-
down of dead remains of animals and plants. The effect of hydrocarbons on the 
environment varies according to their chemical structure and type of environment in 
which they move (Taylor 2007). The entry of hydrocarbon in to soil is determined 
by the density of hydrocarbon, water content, temperature, and texture of soil 
(Chaineau et  al. 2003). During low temperature, flat movement of polyaromatic 
hydrocarbons in soil occurs, while under high temperature PHCs have a tendency to 
enter perpendicularly into soil (McGill et al. 1981).

Hydrocarbon content in the soil can be absorbed on the surface of soil forming 
an external layer or it may move down and block the pores of soil (Trofimov and 
Rozanova 2003). Amount of hydrocarbons in soil relay on amount and types of 
solutes in nearby areas, kind of clay minerals, amount of organic matter, pH, and 
temperature of soil (Semple et al. 2003). Suleimanov et al. (2005) documented that 
in forest soils, more content of PHC is present in the eluvial horizons that has the 
larger pores, on the other hand, less content of PHC is present in the illuvial horizon 
that has small-sized pores.

29.2  Effect of Hydrocarbons on Soil Properties

Hydrocarbon-contaminated soil has variations in physical, chemical, and biological 
characteristics “as compared to” uncontaminated soil (Robertson et al. 2007). The 
first response of soil contaminated is a decline in microbes. On the other hand, there 
is an improved population of oil remediating microbes (Seghers et  al. 2003). 
Hofman et al. (2004) documented that with the passage of time, more population of 
microbes tends to decline. Hydrocarbon inhibits the movement of auxin, that is why 
preventing the association of a fungus with plants (Kirk et  al. 2005). There is a 
decrease in soil oxygen in contaminated soil. Nevertheless, soil rich with humus has 
shown less poisonous effect of hydrocarbons. The water content of the soil is also 
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decreased with hydrocarbons (Nwaoguikpe 2011). But, the structure of the soil is 
improved with hydrocarbon pollution (Certini 2005).

The pH and carbon content of soil have also been increased with the contamina-
tion of crude oil (Marinescu et al. 2011). Iron and sodium ions have also improved 
in such soil (Trofimov and Rozanova 2003). Contamination with crude oil has no 
remarkable effect on the properties of soil. For illustration, although Marinescu 
et al. (2011) recorded an improvement in the nitrogen content of contaminated soil, 
Obire and Nwaubete (2002) documented a decline in nitrogen of soil. In the same 
way, while Akpoveta et al. (2011) observed a decrease of phosphorus in contami-
nated soil, Marinescu et al. (2011) documented an improvement in phosphorus in 
the same soil. These divergences might be justified by the nature and preliminary 
characteristics of soil respectively (Semple et al. 2003).

29.3  Effect of Hydrocarbon-Polluted Soils on Crop Growth

Crop growth needs an accurate content of minerals, oxygen, water, and microbes. 
Hydrocarbons change the nutrient content of the soil and therefore decrease the 
capacity of holding the plants (Abii and Nwosu 2009). The acidity of soil results in 
damage of leaves, turning it into yellow and reducing plant growth.

Acidic soils resulting from this pollution may cause yellowing of leaves and 
stunting of crops. The concentration of magnesium and calcium ions also declines 
in such soil. Moreover, plants growing in such soil are more susceptible to disease. 
The decline in pH of soil due to hydrocarbons increases the content of heavy metals 
in the soil which can be harmful to plants by their absorption. Likewise, plant 
growth is affected as hydrocarbon causes reduction in necessary nutrients such as 
nitrogen and phosphorus (Obire and Nwaubete 2002; Akpoveta et al. 2011).

Microbes grow rapidly due to the high carbon content of hydrocarbon- 
contaminated soil. Although such microbes are not harmful to plant development, 
the opposite matter of their presence in large number offers struggle to get nutrients, 
in comparison to plants, thus resulting in a decrease in plant development (Trofimov 
and Rozanova 2003).

As water is necessary for good plant growth, hydrocarbon-contaminated soil 
makes water unavailable to plants and causes a reduction in germination of seeds. 
Crude oil blocks the pores of soil and causes unavailability of oxygen (Adam and 
Duncan 2002). Likewise, Rahbar et al. (2012) documented a decline in the root and 
leaf area in Helianthus annuus growing on a hydrocarbon-contaminated soil. It is 
quite justified that more the penetration of plant roots, more is their resistance to 
crude oil contamination, importantly in case of the surface of the soil. However, 
these hydrocarbons are beneficial to plants in fewer amounts. Moreover, Nicolotti 
and Eghi (1998) observed that such contaminants are harmful to plants as indirect 
interaction with plant tissue.

Zhu et al. (2012) reported that hydrocarbon contamination does not have a sig-
nificant effect on germination of wheat crop as compared to soybean and sunflower. 
However, plant height, fresh and dry biomass of wheat have shown drastic reduction 
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due to hydrocarbon in contrast to its respective control. However, the plant height of 
sunflower has shown no considerable reduction due to hydrocarbon contamination. 
Sunflower and soybean have stronger potential to grow in oil-contaminated soil 
because they are less sensitive as compared to wheat.

29.4  Bioremediation of PHC-Polluted Soils

Bioremediation is the utilization of living organisms for remediating contaminated 
soils. The living organisms can be microbes or plants that reduce, transfer, or remove 
the harmful compounds using biological systems. Bioremediation could take place 
naturally or it can be performed to reduce contaminants of soil. The end products of 
this process, such as water, carbon dioxide, and biomass, are not dangerous for 
crops. It is quite a cost-effective method, as it does not need any complex method 
for its effectiveness. It can occur at a contaminated site reducing the need for trans-
ferring the contaminated soil. In addition to such positive aspects, it also has some 
disadvantages, as it requires a longer period as compared to traditional methods. 
Some studies have shown that it is not effective for ringed hydrocarbons and heavy 
metals (Kumar et al. 2010). Nevertheless, this mostly focus on the use of microbes, 
as plants can be effectively used for reducing such contaminants (Ghosh and Singh 
2005).

Bioremediation can be classified into two classes based on the presence and 
types of contaminants. These categories are in situ and ex situ bioremediation. The 
first category focuses on the remediation of contaminants at a contaminated place 
without transportation of soil. There is a limitation of remediation, as its effective-
ness reduced with more depth of soil (Pal et al. 2010). The basic types of in situ 
bioremediation include:

29.4.1  Bioventing

It is the most famous method of remediation based on enhancing the activity of 
naturally occurring microbes by providing nutrients by wells to contaminated area, 
and it is more effective when contaminants are present in subsoil (FRTR 2005; 
USEPA 2005).

29.4.2  Biosparing

This method focuses on the oxidizing ability of indigenous microbes by supplying 
oxygen. Degradation potential and penetration of contaminated area are the main 
limitations in this process (USEPA 1994).

Ex situ bioremediation is based on the movement of contaminated soil to various 
areas for particular treatment. There is a high potential of contact of contaminants 
during the transport. Examples of ex situ treatments include:

M. Saeed and N. Ilyas



607

29.4.3  Land Farming

It is a cost-effective treatment that involves spreading and mixing of soil to enhance 
the transformation of contaminants in less toxic form by microorganisms.

29.4.4  Composting

This method is based on the use of organic waste like animal and plant waste mate-
rial to enhance the decomposition of contaminants by native microbes. The addition 
of waste increases the temperature of soil, which stimulates the decomposition 
process.

29.4.5  Biopiles

This method is a mixture of composting and land farming. It is focused on the loss 
of contaminants by making piles. It is mostly used for topsoil.

29.4.6  Bioreactors

It is based on the use of tubes for degrading contaminants. Soil solution is prepared 
and shaken inside the tube (Robles-Gonzalez et al. 2008). The interaction of con-
taminants and microbes is enhanced by shaking and increasing the decomposition 
of contaminants. Abiotic factors like pH and temperature can be maintained in a 
vessel to enhance degradation, although it is quite expensive in contrast to other 
remediating methods.

29.5  Use of Microorganisms for Soil Remediation

Different microbes have the ability to degrade pollutants. They utilize contaminants 
as a source of energy and carbon. Many of such microbes are oxygen-dependent 
bacteria like Pseudomonas, Mycobacterium, Rhodococcus, Arthrobacter, 
Acinetobacter, Nocardia, and Bacillus (Chaillan et al. 2004).

Few fungi also have the potential of bioremediation. For example, white rot fun-
gus (Phanerochaete chrysosporium) has the ability to degrade lignin and also 
degrade polyaromatic hydrocarbons and other dangerous contaminants (Pal et al. 
2010). For efficient bioremediation, association between microbes and contami-
nants is necessary and subsequently different kinds of contaminants are present in 
soil, a broad variety of microbes is needed for good degradation.

It is deliberately effective only when the action is done in a rational time period 
in contrast to other methods. Bioremediation could be done by the method of bios-
timulation that is focused on the degradation of contaminants by microbes 
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previously present in soil. Consequently, circumstances which enhance their actions 
are ready to increase degradation. This can be done by adding nutrients in the state 
of biological biomass as changing pH of the soil, water content, and presence of 
oxygen. The number of microbes in contaminated area governs the range of effi-
ciency of biostimulation as a method of bioremediation. Biostimulation is a rapid 
and efficient technique for the already contaminated area as compared to the area of 
without contamination. The reason behind that is the number of oil-degrading 
microbes present in the contaminated site. An additional feature of biostimulation is 
that additions of nutrients enhance the microbes’ decomposing potential, as these 
nutrients are utilized by all microbes, regardless of the types of microbes. That is 
why, there is no surety that nutrients will be utilized particularly by decomposing 
microbes (Naidu et al. 2010). Still, research has proved that biostimulation can be 
an efficient method for the treatment of contaminated area (Sarkar et al. 2005).

Bioaugmentation is another technique of bioremediation. In this method, a con-
sortium of hydrocarbons decomposing microbes is added in the contaminated site. 
Now, genetically modified organisms (GMOs) are also utilized, but there is a certain 
restriction in the use of genetically modified organisms because of their disputed 
behavior (Urgun-Demirtas et al. 2006). Research has proved that growth and estab-
lishment of plants improved in hydrocarbon-polluted soil. Adedokun and Ataga 
(2007) documented a considerable increase in cowpea (Vigna unguiculata) growth 
in a hydrocarbon-contaminated area with the addition of cotton biomass and saw-
dust. They documented that the treatment of contaminated area increases the germi-
nation of seeds, plant height, biomass, and leaf area. The related research by 
Kyung-Hwa et al. (2004) confirmed the increase in the length of red beans and corn 
in hydrocarbon-contaminated soil in addition to Nocardia spp. as compared to 
respective control. While in uninoculated soil, the length of red beans and corns was 
16% and 49%, respectively. Similarly, researchers documented that the damaging 
effect of experimental plants decreased by microbe remediation. Njoku et al. (2008) 
documented an improvement in chlorophyll amount, fresh and dry weight of soy-
bean grown in hydrocarbon-contaminated site treated with cow dung. Remarkable 
improvement in the germination, growth, and yield of soybean was observed in 
contaminated soil inoculated with Bacillus, Pseudomonas, and waste material of 
poultry (Nwadinigwe and Onyeidu 2012). The results proved that bioaugmentation 
is more effective as compared to biostimulation concerning growth and establish-
ment of plants.

29.6  Use of Plants for Soil Remediation (Phytoremediation)

Phytoremediation is a kind of in situ bioremediation focused on the utilization of 
green plants to maintain, remove, or decompose contaminants from the contami-
nated site. It is important for remediating heavy metals in cultivated site. Still, it 
could be utilized to degrade hydrocarbons. The procedure and effectiveness of this 
technique is based on kind, amount of the contaminants, plant type, and character-
istics of soil (USEPA 2012). It is more effective as contaminants are present in the 
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plant rhizosphere. Plants promote the treatment of contaminated soil by various 
methods specifically:

 1. Phytostabilization/phytoimmobilization: In such a technique, plants decrease the 
movement and bioaccessibility of contaminants in the area due to the absorption 
of contaminants. Penetrating substances are attached to plant surface and never 
returned to the surroundings. It is effective for less amount of contaminants. 
Contaminants remediating by this technique are heavy metals and cyclic organic 
compounds.

 2. Phytoextraction/phytoaccumulation: This technique is based on the storage of 
contaminants in root and stem of plants that absorb from the soil, afterwards 
plants can be uprooted and burned. It is mainly utilized for treating heavy 
metals.

 3. Phytodegradation/phytotransformation: Contaminants are decomposed by sub-
stances released by plants. It is effective for the degradation of water-loving 
compounds like atrazine and equally important for treating nonwater-loving 
compounds.

 4. Phytovolatilization: This method is based on the absorption and discharge of 
contaminants or their by-products into the atmosphere (Palmroth 2006; Pal et al. 
2010). Site contaminated with organic and inorganic contaminants like trichloro-
ethylene can be treated by such technique.

 5. Rhizodegradation/phytostimulation: Such method focuses on the degradation of 
contaminants in less harmful substances by rhizospheric microbes. It is a benefi-
cial association as plants make the availability of nutrients for microbes.

Mostly, cereals and pulses are utilized for the treatment of hydrocarbon contami-
nated site due to increase in rhizospheric area made by root area (Merkl et al. 2005). 
Certain illustrations of cereals have shown that their effectiveness in degradation in 
hydrocarbons comprises signal grass, guinea grass, rye grass, and prairie grasses 
(McCutcheon and Schnoor 2003). Such plants are capable of decomposing hydro-
carbons that exist in the soil. Ogbo et al. (2009) documented that weeds like Sida 
rhombifolia and Mariscus alternifolius decrease almost 60% of straight chain 
hydrocarbons as used for phytoremediation of the area contaminated with oil.

Plants with phytoremediating potential have particular restrictions. Rahbar 
et al. (2012) documented that sunflower can survive in 18,000 mg/kg hydrocarbon- 
containing soil. The best technique based on the determination of plants for phy-
toremediation ability is to noted the species indigenous to the contaminated area. 
The main features of plants include deep root system, the storage capacity of 
hydrocarbons in plant parts, high water-holding capacity, and rapid growth 
(ISAAA 2006).

Remediating soil with plants is a long time-dependent method and also causes 
the contamination of plants and food chain, if not done properly. Still, phytoreme-
diation is preferable in soil with large amount of contaminants due to its less cost. It 
is also effective at low amount of contaminants. At last, it could be used in combina-
tion with other techniques as plants are its last site remediator (Pal et al. 2010).
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the agronomic performance of the genotypes under stress conditions. The cor-
relation between yield and physiological as well as biochemical (nonenzymatic 
antioxidants and enzymatic antioxidants) responses of cotton under heat and 
drought stress conditions is also the most important factor to develop the efficient 
genotypes that are possible to grow. Whereas, screening of cotton genotypes 
under heat and drought stress is one of the essential protocols that can be used to 
select a large number of population within the shortest period. This approach can 
be used to differentiate the agronomical, physiological, and biochemical attri-
butes of cotton genotypes contrasting for drought and heat stress tolerance. The 
present review tried to highlight the management strategies that could be useful 
to mitigate the drought and heat stress by using antioxidant, phytohormone, 
nutrient management, and other appropriate management strategies for maxi-
mizing cotton yield. While, among the compatible antioxidants, exogenous 
application of proline or glycine betaine is a good option to improve drought and 
heat tolerance in cotton. Therefore, foliar application of antioxidants in combina-
tion with soil-applied organic fertilizers is very effective for reducing the nega-
tive effect of drought and heat stress and to increase productivity.
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Abbreviations

PAR Photosynthetically active radiation
AA Ascorbic acid
ABA Abscisic acid
APX Ascorbate peroxidase
APX1 Cytosolic ascorbate peroxidase 1
CAT Catalase
Chl Chlorophyll
CMT Cellular membrane thermostability
CSI Chlorophyll stability index
CTD Canopy temperature depression
DSI Drought stress index
GA3 Gibberellic acid
GB Glycine betaine
GMP Geometric mean productivity
GR Glutathione reductase
HSI Heat susceptibility index
JA Jasmonic acid
LEL Leaf electrolyte leakage
MDA Malondialdehyde
MeJA Methyljasmonic acid
MP Mean productivity
POD Peroxidase
ROS Reactive oxygen species
RWC Relative water content
SA Salicylic acid
SOD Superoxide dismutase
SSI Stress susceptibility index
STE Stress tolerance efficiency
STI Stress tolerance index
VPD Vapor pressure deficit
YSI Yield stability index

30.1  Introduction

Cotton (Gossypium hirsutum L.) is the most important fiber crop of the world that 
provides raw fiber to the textile industry (Zahid et al. 2016). The major cotton pro-
ducing countries include India (26%), China (24%), USA (13%), Pakistan (9%), 
Brazil (6%), Turkey (3%), and Uzbekistan (4%), which together produce about 80% 
of global cotton production (Gillson et  al. 2004; ICAC 2009). These kinds of 
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countries produced 60% of the total worldwide production of cotton fiber in 2004–
2005, compared to 47% of 30 years ago. The area, yield, production, and consump-
tion of major cotton producing countries of the world are shown in Fig. 30.1. Despite 
the strong competition with synthetic fiber, the demand for cotton fiber is continu-
ously growing. About 21 million tons of cotton fiber was produced across more than 
75 countries during crop season 2015–2016, and the major share comes from devel-
oping countries, which depicts the social and economic significance of cotton 
worldwide (ICAC 2017).

Improving the productivity and maintaining the stability of cotton yield under 
favorable as well as stressful conditions are necessary to cater to the demand of 
growing worldwide population (Basu et  al. 2016). The current study on climate 
change predicts that plants will be subjected to the combined effects of drought and 
heat more often in forthcoming years, than in the present. The heat and drought 
stress are two major issues because of increasing temperature trends and water 
shortage in climate change scenario. The combined effects of both stressful 
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conditions are very dangerous because drought stress further increases the negative 
impacts on plant growth.

These limit crop productivities worldwide and combined with these kinds of 
stresses lead to several physiological changes that influence crop production and qual-
ity (Rizhsky et  al. 2004). Similarly, Oosterhuis (2002) and Barnabas et  al. (2008) 
reported that temperature and drought stress are the main abiotic factors that harm-
fully affect cotton productivity, and also in arid and semiarid climates cotton yield has 
strongly depended on irrigation (Khalik et al. 2012). Therefore, it necessitates that 
cotton yield should be improved to fulfill the growing demand for fiber and to sustain 
the income of growers. The recent research also examined the effects of heat and 
drought stress and indicated that genetic tolerance to the stress combination differs 
from the genetic tolerance to individual stress (Cairns et al. 2013). It is apparent that 
high temperature and drought often occur together.

In this context, the present review aims to clarify drought and heat stress effects 
on agronomical, physiological, and biochemical profile for characterizing responses 
of cotton genotypes to different stress conditions. Moreover, we attempt to provide 
a better understanding of antioxidant enzyme activities and physiological mecha-
nisms of stress tolerance and consequently to contribute to understanding the agro-
nomic performance for genetic nature of tolerance potential of cotton genotypes for 
future breeding.

30.2  Cotton Responses to Heat and Drought Stress

30.2.1  Heat Stress

Among the abiotic factors, heat stress is one of the most significant limiting factors 
that affect cotton productivity (Snider et al. 2009, 2011), through negatively influ-
encing the growth and reproductive performances of plant by reducing the nutrient 
use efficiency, leading to higher abortion rates of bolls as well as lint yield 
(Oosterhuis and Snider 2011; Snider and Oosterhuis 2012). Snider et  al. (2009), 
Loka and Oosterhuis (2010), and Snider et al. (2010) also reported that heat stress 
causes a decrease in the production of carbohydrate, while, increase in carbohydrate 
starvation throughout the period of high respiration. Bibi et al. (2004) noticed that 
photosynthesis and leaf extension growth of cotton plants were decreased at tem-
peratures >35 °C that ultimately lead to decrease in the bolls as well as lint yield. In 
addition to this, heat stress also resulted in a significant reduction in the growth and 
net assimilation (Wahid 2007). Similarly, Ekinci et  al. (2017) reported that the 
development attribute of cotton was affected significantly by heat stress, hence it is 
depending on genotypes, stress duration, and intensity. The shedding of fruiting 
parts is accelerated during heat stress, and very few squares and flowers mature into 
bolls (Tariq et al. 2017). Akhtar et al. (2013) reported that boll retention at the first 
position was decreased, due to high-temperature stress both in the field and con-
trolled environmental conditions. Heat stress also reduces the rate of boll formation 
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and boll seed rate in the first position (Reddy et al. 2004) fruiting rate and a number 
of seeds (Brown et al. 1995; Brown and Zeiher 1998), and the number of nodes in 
the first position. The leaf temperature plays an important role in stomatal closure 
and it closes during heat stress to save water in the plant body, resulting in decreased 
photosynthesis rate and concomitant yield reduction (Carmo-Silva et al. 2012). Bibi 
et al. (2008) stated that the prime temperature for the photosynthetic carbon fixation 
was substantially 33  °C and photosynthesis reduces when temperatures reach at 
36 °C or higher. The higher temperature accelerates the advent of various pheno-
logical stages of cotton (Ahmad et al. 2017) like maize, sunflower, and sugarcane 
(Ahmad et al. 2016; Abbas et al. 2017; Tariq et al. 2018). It means global warming 
would have shortened the crop growing season and ultimately poor yield will be 
achieved. However, it may prolong the cotton season by increasing number of sum-
mer days in areas where cotton growth cycle is reduced by early occurrence of the 
fall season. Heat stress promotes the production of reactive oxygen species (ROS) 
in chloroplasts and mitochondria by disturbing membrane stability and biochemical 
reactions, resulting in photorespiration (Sharkey 2005; Jaspers and Kangasjarvi 
2010). Under high-temperature stress, the destructive impacts on cells and ROS 
might be due to different signaling molecules that are controlled by several biologi-
cal operations such as stomatal closure, growth, development, and stress signaling 
(Demiral et  al. 2011). The negative impacts of heat stress can be minimized by 
modifying certain management practices that would aid in plant stress tolerance. 
These may include shifting planting time, optimizing fertilizer, and irrigation 
management.

30.2.2  Drought Stress

The various physiological and metabolic processes that are taking place within the plant 
body are managed by the water contents of the plant (Mubeen et al. 2012), while its 
deficiency adversely affects the growth of crop plants including cotton from seedling 
growth up to crop maturity (Farooq et al. 2009). Whereas, supplementary irrigation at all 
the phases, normally six irrigations, is very important for achieving optimum seed cot-
ton yield (Mubeen et  al. 2012). While under drought stress, cotton leaf temperature 
increases between 3.5 and 4.5 °C due to deficit water stress (Carmo-Silva et al. 2012), 
through the reduction of transpiration (Shahenshah and Isoda 2010). Under drought 
stress, plant growth is affected by a number of morphophysiological disorders that cause 
a reduction in nutrient uptake and impaired active transport of photosynthates (Jaleel 
et al. 2009). Majumdar et al. (1991) found that under water deficit condition, chlorophyll 
(Chl) contents in plants were varied due to stress injury.

Drought stress also affects the relative water content (RWC), osmotic potential, 
and leaf temperature (Fanaei et al. 2012). Whereas, high cell electrolyte concentra-
tion disturbed the normal metabolic functioning of cell organelles, as reported by 
Mahajan and Tuteja (2005). Similarly, cell turgidity, the growth of cells and plant 
tissues are directly affected by drought stress (Reddi and Reddy 1995), which 
results in impaired cell elongation (Nonami 1998). While, Yuncai and Schmidhalter 
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(2005) reported that under drought condition, restricted nutrient uptake and their 
transport from root to shoot ceased the growth and development of plants, because 
of the restriction of transpiration rates, impaired active transport, and membrane 
permeability. Singh et al. (2007) suggested some biophysiological techniques select 
efficient genotypes that are tolerant to abiotic stresses; such as cellular membrane 
thermostability (CMT) and canopy temperature depression (CTD), chlorophyll flu-
orescence, as well as biochemical traits such as chlorophyll contents and these tech-
niques are getting popularity nowadays. Meanwhile, antioxidant activities decreased 
in drought-susceptible genotypes but increased in drought-tolerant genotypes 
(Ahmadizadeh et al. 2011).

Therefore, it can be concluded that drought is one of the limiting abiotic stresses 
that adversely affect the growth and development of plants which finally adversely 
affects the yield of crops. However, development of drought-tolerant genotypes is the 
best way to mitigate the stress under changing climate. Without this, different bio-
physiological approaches such as cellular membrane thermostability and canopy 
temperature depression, chlorophyll fluorescence as well as biochemical traits, that 
is, chlorophyll contents and management approaches, such as the exogenous applica-
tion of different antioxidants and soil application of organic amendments, could be 
used as alternative ways to mitigate the drought under changing the environment.

30.2.3  Combined Heat and Drought Stress

The extreme temperature and drought or their combination are inauspicious for growth 
and development of plants (Mittler and Blumwald 2010). However, the stress effect on 
crops is not always additive to the outcome of specific crops/plants (Choudhary et al. 
2016; Ramu et al. 2016). Hossain et al. (2012a, b) found that the adverse effect of high 
temperature in combination with drought was more perilous, compared with their indi-
vidual effect on all crops in the south-eastern arid region of Russia.

Therefore, the selection of cotton is an important issue for plant breeders to iden-
tify the cotton genotypes with tolerance to high temperature and drought and would 
be useful in both present and future climatic conditions (Kakani et al. 2005). Among 
the selection criteria, cellular membrane thermostability, canopy temperature 
depression, chlorophyll fluorescence as well as biochemical traits such as chloro-
phyll contents as well as stomatal conductance might be an identification criterion 
with higher productivity under extreme and normal temperatures (Rahman et  al. 
2000). Similarly, chlorophyll fluorescence and membrane leakage may be used as a 
sensitive and practical approach to quantifying high-temperature resistance geno-
types under controlled and field conditions (Oosterhuis et al. 2009).

Selection of cotton genotypes, which survive and give better yields in stressful 
conditions, has greater scope in breeding programs. However, a need for an efficient 
protocol to determine the stress tolerance of cotton germplasm is of prime impor-
tance. So, it is very important for the development of drought and heat tolerance 
genotypes through conventional breeding approaches, availability of a technique, 
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which could help to identify a huge number of varieties/lines quickly (Wahid et al. 
2007; Fita et al. 2015).

However, antioxidant mechanisms play a vital role in response to a combined 
effect of drought and heat stress. Among the antioxidants, proline was found to be 
accumulated in plants only under drought condition, but does not accumulate under 
the drought and heat stress combination (Rizhsky et al. 2004). From the discussion, 
it is confirmed that the combined effect of high temperature and drought is more 
hazardous as compared with their individual effect. Therefore, the selection of cot-
ton genotypes and their management techniques are important issues for plant 
breeders to identify the cotton genotypes with tolerance to high temperature and 
drought and would be useful in both present and future climatic conditions.

30.3  Physiology and Metabolism of Cotton Plants Under 
Heat and Drought Stress

Physiological responses of plants, such as photosynthesis, hormonal profile, lipid 
accumulation, and transcript expression, are affected by drought and heat stress and 
their combination (Rizhsky et  al. 2004). While, under stressful conditions plants 
carry out various physiological mechanisms to survive. Under stress conditions, pho-
tosynthetic capacity of susceptible crops is reduced by stomatal closure and also 
reduces metabolic impairments of proteins that are associated with photosystem and 
chlorophyll (Pirzad et al. 2011), resulting in lower CO2 intake and finally photosyn-
thates (Lawlor and Tezara 2009), which make plants susceptible to photodamage 
(Lawlor and Cornic 2002). Therefore, chlorophyll fluorescence should be considered 
as the most promising and stable heat tolerance identification technique as compared 
with the determination of membrane leakage (Bibi et al. 2003). Moreover, several of 
these plant responses to drought and heat stress are fine-tuned by a network of hor-
monal signaling pathways, including phytohormones (Peleg and Blumwald 2011; 
Kazan 2015; Llanes et al. 2016). In addition, phytohormones and hormonal cross-
talk play an important role in the molecular mechanisms that optimize plant responses 
to stresses when they occur simultaneously in the environment. Abscisic acid (ABA) 
is considered as the main hormone involved in several developmental processes, 
such as shoot growth inhibition, stomatal movement, leaf senescence, and primary 
root growth and as a modulator of responses to abiotic stresses. Moreover, different 
signal molecules, such as calcium ion, reactive oxygen species, and several protein 
kinases, play essential important roles in ABA signal transduction for plant response 
to stressful conditions such as drought and heat stress (Ding et al. 2013). Indeed, the 
transcriptional modulation of hormonal signals could be an important way for plants 
responding and adapting to stress conditions. Thus, a large number of genes are 
induced or repressed in plants under abiotic stresses (Lindemose et al. 2013). Several 
types of researches have shown that transcription factors, such as bZIP, HD-ZIP, 
NAC, MYB, MYC, and AP2/ERF, are involved in plant responses to abiotic stresses. 
For example, Quin et al. (2016) isolated and analyzed two cotton Di19 (drought-
induced 19) proteins. They suggest that Di19 proteins may be potential downstream 
targets of ABA signaling pathway in plants exposed to abiotic stresses. Thus, 
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activated Di19 proteins transduce the signals to downstream ABA and stress-respon-
sive genes promoting plant responses to abiotic stresses.

On the other hand, other phytohormones such as gibberellins, ethylene, and aux-
ins, among others, could also contribute, in part, to the development of stress- 
tolerant cotton plants. Thereby, Lu et  al. 2016 found that long noncoding RNAs 
(lncRNAs) of cotton plants under drought stress showed enriched expression in 
several pathways of plant hormone signal transduction. In these plants, the content 
of gibberellins and ethylene increased. This response could be related to an increase 
in the biosynthesis of proteins and nucleic acid to encourage the use of water in 
stressful conditions. The content of cytokinins and auxins decreased in some degree 
because the plants could reduce their energy and growth regulating substances 
demanded in the mechanism to stress tolerance (Pandey et al. 2003; Lu et al. 2016). 
However, a deep understanding of phytohormones regulating the drought and heat 
stress responses would be an important step toward improving cotton plant growth 
under these stressful conditions.

Accordingly, plants growing under different stress conditions (such as drought 
and heat, and their combined effect) modify their photosynthesis, fluorescence, 
chlorophyll content, cell membrane thermostability, and hormonal profile, which 
could be used as identification criteria for seed cotton production (Azhar et  al. 
2009); specifically, the relative cell injury rate in cotton could be used to determine 
heat tolerance criteria (Zhang et al. 2014).

Under high temperatures, plant growth is reduced by affecting the shoot net 
assimilation rates, finally decreasing the total dry weight of the plant (Wahid et al. 
2007). Whereas, different injuries such as scorching of leaves and stems, leaf abscis-
sion and senescence, shoot and root growth inhibition, or fruit damage occur when 
the crop is exposed to high-temperature stress, resulting in decreased crop yield 
(Vollenweider and Günthardt-Goerg 2005).

Whereas, under heat stress condition, the membrane structure is altered for 
improving permeability and electrolyte leakage increases eventually, as a result, 
causing the cell death (Azhar et al. 2009; Saifullah et al. 2015). Heat stress also 
directly influences the leakage of fluids from the cells, which showed higher value 
in the leaf of heat-sensitive crop cultivars (Singh et al. 2007; Cottee et al. 2010). 
However, the drought stress leads to an increase in electrolyte leakage in plant 
leaves (Sibet and Birol 2007). The cell membrane stability index was found to be 
higher in tolerant genotypes than susceptible genotypes under drought stress condi-
tions (Collado et al. 2010).

Relative water content (RWC) is an indicator for the amount of water present in 
the leaf tissue, and it is highly correlated with water deficit tolerance of a genotype 
(Silva et al. 2007; Colom and Vazzana 2003). The high RWC under drought stress 
conditions would be preferable to maintain the water balance. Therefore, the higher 
RWC in leaf might be a selection criterion to breed plants tolerant to drought stress 
(Rahman et al. 2000).

Although, photosynthesis is a very sensitive process for growth and development 
of plant under stress conditions, it is not practical for identification of a great number 
of genotypes for heat stress tolerance (Burke 2007; Bibi et al. 2008; Karademir et al. 
2012). Generally, plants try to change their architecture and hypocotyls and petioles 
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elongate resembling the morphological responses of shade avoidance to survive under 
heat stress condition (Hua 2009; Tian et al. 2009); change in cellular structures, organ-
elles, and the cytoskeleton, and membrane functions (Weis and Berry 1988) and also 
a decrease in the synthesis of normal proteins and translation of heat shock proteins 
(Bray et al. 2000). Similarly, the modification of hormonal levels or hormonal signal-
ing pathways and the production of antioxidants and other protective molecules also 
took place under heat stress condition (Maestri et al. 2002).

Further, chlorophyll ‘a’ and chlorophyll ‘b’ play a significant role in photosyn-
thetic activity which ultimately improves crop growth and productivity (Taiz and 
Zieger 2006). Drought stress is a significant factor that affects chlorophyll ‘a’, ‘b’ 
total chlorophyll, and a/b ratio (Hamayun et al. 2010).

30.4  Antioxidant Metabolism of Cotton to Heat and Drought 
Stress

Plants’ resistance to stress resulted in increasing antioxidant activities that face 
increased levels of ROS (Shao et  al. 2008). Meanwhile, antioxidant activities 
decrease in drought susceptible genotypes and vice versa (Ahmadizadeh et  al. 
2011). The stress-tolerant genotype has higher phenolic contents than the drought-
sensitive genotype (Yildiz-Aktas et al. 2009). Malondialdehyde (MDA) content is 
estimated as a marker for a degree of lipid peroxidation where the MDA is produced 
by peroxidation of unsaturated fatty acid on plant cell membrane. Lower MDA level 
displays higher antioxidative ability, improving the plant tolerance to drought stress 
(Shao et al. 2008).

Hydrogen peroxide (H2O2) is a nonradical reactive oxygen species (ROS), pro-
duced by normal aerobic metabolism in plants. At low concentrations, H2O2 acts 
as a signal molecule involved in the regulation of specific biological/physiological 
processes such as photosynthetic functions, cell cycle, growth and development, 
plant responses to biotic and abiotic stresses. While, excess H2O2 accumulation 
causes the eventual cell death in plants through oxidative stress (Sofo et al. 2015).

While, an increase in proline content in drought, heat, and salinity stresses is an 
adaptive mechanism for a plant to survive under stress condition (Mattioni et al. 
1997). Proline accumulation in plant cells exposed to stress is often considered to be 
involved in stress resistance mechanisms (Chen and Gallie 2004). They reported 
similar results for drought-tolerant genotypes. The proline accumulation in tolerant 
genotypes could be explained by increasing biosynthesis or inhibition of proline 
degradation under stress conditions.

Ahmadizadeh et al. (2011) reported that the tolerance of plants to stress such as 
drought and heat stress resulted in increasing antioxidant activities, which face 
increased levels of free radicals. Whereas Saneoka et  al. (2004) noticed that 
increased levels of free radicals during the stress condition damage the membrane 
polar lipids. Plants that are susceptible to drought face oxidative stress that produces 
an increased level of lipid peroxidation in the plants.
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Plant enzymatic defenses are found to minimize cellular damage caused by reac-
tive oxygen species during environmental stresses (Racchi 2013; You and Chan 
2015). Enzymatic activities are essential to restrict oxidative injury and destroying 
active oxygen species (Shao et al. 2008; Jaleel et al. 2009). Therefore, identification 
of nonenzymatic and enzymatic systems may be correlated with stress conditions 
and could be used as indicators of stress tolerance. The nonenzymatic antioxidants 
(proline) and enzymatic antioxidants are synthesized to minimize cellular damage 
caused by reactive oxygen species (ROS), such as superoxide, perhydroxy radicals, 
hydrogen peroxide, and hydroxyl radicals (Khatun et al. 2008). Water deficit condi-
tions generate reactive oxygen species, consequently, H2O2 is produced in the chlo-
roplasts and mitochondria of stressed cells causing cell damage (Foyer and 
Harbinson 1994).

However, it is essential to understand the biochemical mechanisms for the 
selection of crops that are tolerant to heat and drought stress (Ullah et al. 2017). 
Similarly, identification of nonenzymatic and enzymatic systems may also be 
associated with stress and could be used as indicators for identification of stress 
tolerance in plant. On the other hand, understanding the correlation between anti-
oxidant activities and yield attributes could also be helpful to develop an efficient 
screening method to select large amounts of plant materials within the shortest 
time (Bita and Gerats 2013). Therefore, the integration of conventional breeding 
with the antioxidants as screening criteria offers new opportunities for improving 
stress tolerance in cotton.

30.5  The Agronomical Response of Cotton to Heat 
and Drought Stress

Environmental stresses cause a wide range of physiological and biochemical modi-
fications that harmfully affect the growth and productivity of cotton. Heat stress is 
the major factor of abiotic stress, affecting cotton productivity. High temperature 
adversely affects the agronomic traits through shortening the crop growth period 
(Khan et al. 2008). Similarly, it also affects the shoot development and flowering 
(Saifullah et al. 2015). Consequently, identifying cotton genotypes with high degree 
temperature tolerance would be favorable in both present and future climates 
(Kakani et al. 2005; Soomro et al. 2001).

The reduction in seed cotton yield occurs due to the decrease in a number of bolls 
and boll weight under drought stress (Basal et al. 2009). Drought stress influences the 
lint quality of cotton in various ways, especially during the fiber elongation period, 
which results in a reduction in fiber length and produces immature fiber (Mert 2005).

For the development of drought and heat tolerance in adapted genotypes through 
conventional breeding approach, availability of an efficient and reliable technique 
could be helpful to identify a huge number of varieties/lines. Selection of cotton 
genotypes, which survive and produce better yield in stress, has greater scope in 
breeding programs. Thus, there is a need for a protocol to determine the stress toler-
ance of cotton germplasm.
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30.6  Correlations Between Growth Traits and Yield 
Attributes

It is important to establish a protocol to produce new opportunities to improve heat 
and drought tolerance in cotton. By understanding the correlation between yield and 
physiological traits as well as nonenzymatic and enzymatic antioxidant activities, 
we can develop an efficient screening method that could be able to screen a large 
number of plant materials in the shortest time. Physiological operations affecting 
cotton performance and their correlation with high-temperature stress were previ-
ously observed. For example, there was a strong positive relation between photo-
synthesis and high temperature (Schrader et al. 2004).

Under drought treatment, correlation analyses revealed that yield was positively 
and significantly correlated with all studied antioxidants (except lipid peroxidation, 
which was negatively and significantly correlated). Maximum correlation values 
were recorded by superoxide dismutase (SOD), ascorbate peroxidase (APX), cata-
lase (CAT), and phenolic content. This is in agreement with those of Ali et  al. 
(2007). A significant association between seed cotton yield and fluorescence was 
observed on cotton genotypes, and chlorophyll fluorescence was assumed to be one 
of the practical implements to develop seed cotton yield in huge breeding experi-
ments (Karademir et al. 2012).

30.7  Genotype Selection by the Resistance/Tolerance Indices

Stress tolerance selection is the main interest of cotton specialists. Khalili et  al. 
(2012) revealed that geometric mean productivity (GMP), mean productivity (MP), 
and stress tolerance index (STI) were positively associated with stress yield. STI 
and GMP indices, which produced the maximum association with yield under both 
control and stress conditions, might be used as the superior indices for the programs 
of breeding to produce drought resistance genotypes (Jafari et al. 2009).

Heat susceptibility index (HSI) is one of the important selections that estimate 
stress tolerance in genotype on the basis of yield reduction under stress condition in 
comparison with a favorable environment (Abro et al. 2015). The HSI values <0.5, 
>0.5 <l.0, and >1.0 represent the highly tolerant, moderately tolerant, and suscep-
tible, respectively (Fischer and Maurer 1978). While, the higher-ranking genotypes 
for heat tolerance achieved the least values of heat susceptibility index (HSI<1) and 
high production under stress condition (Saifullah et al. 2015). But for cotton, Ekinci 
et al. (2017) reported that cotton genotypes of high HSI value were high seed cotton 
yielding and their attributes under normal conditions, thus these traits were much 
more sensitive to high temperature.

Other selection indicators, like chlorophyll stability index (CSI), are the ratio 
between total chlorophyll under drought to total chlorophyll under normal irrigation. 
While high CSI is an indicator of drought tolerance. Patil et al. (2011) revealed that 
CSI was greater in drought resistance genotypes compared to susceptible genotypes. 
Effective identification technique must assess plant performance at critical develop-
mental stages (Johnson 1980).
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30.8  Strategies to Induce Heat and Drought Tolerance 
in Cotton

Oxidative damage normally occurs in plants facing abiotic stresses by the formation of 
ROS. These ROS pose a serious threat to cell functioning by damaging lipids and pro-
teins (Fahad et al. 2017). Osmoprotectants could be used to enhance crop tolerance 
against environmental stresses. Osmoprotectants elevated osmotic adjustment to 
improve turgor pressure and developed an accumulation of antioxidants to detoxify 
ROS, thus sustaining the enzymes and other macromolecules under environmental 
stresses (Anjum et al. 2011; Ullah et al. 2017). Osmoregulatory compounds are pro-
tecting plants by osmotic adjustment, maintaining membrane integrity, protecting mac-
romolecular structure and acceleration of reactive oxygen species scavenging systems 
(Rontein et al. 2002; Hayat et al. 2012). In addition, genes involved in osmoprotectant 
biosynthesis are upregulated under osmotic stress, and the concentration of accumu-
lated osmoprotectants correlates with osmotic stress tolerance (Rontein et al. 2002).

Application of proline causes improvement in its endogenous rates in plant tis-
sues treated with water stress conditions and promotes plant tolerance (Ashraf and 
Foolad 2007). Proline at optimum level has different roles such as osmoprotectant, 
in turgor generation, in carbon and nitrogen storage, in maintenance of protein 
structure, in maintenance of cytosolic pH, in the balance of redox status, by acting 
as a part of stress signal, an inhibitor of lipid membrane peroxidation, and antioxi-
dant as significant quencher of ROS formed in plants under stress conditions (Ashraf 
and Foolad 2007; Hayat et al. 2012).

Application of different osmoregulators such as glycine betaine (GB) or proline 
had a significant role in plant growth promotion and seed yield under normal or stress 
conditions as observed in canola (EL Sabagh et al. 2019a) and soybean (EL Sabagh 
et al. 2019b). GB is the most well-known quaternary ammonium compound in higher 
plants that induced and endogenously synthesized in the chloroplasts in response to 
various abiotic stresses such as drought (Silva et al. 2011) and oxidative stresses (Liu 
et al. 2011) in many crops and its concentration correlated with the level of tolerance. 
Raza et al. (2014) stated that interaction between GB at 100 mM and potassium (K) 
at 1.5% is the best strategy to ameliorate the drought impact on wheat grain yield.

Salicylic acid (SA) is a phytohormone, and it may be a potential growth regulator 
for improving plant growth under limited water availability (Kobeasy et al. 2011). 
In addition, it is reported that SA significantly induced the thermotolerance in plants 
(Hayat et  al. 2009). SA sprayed on cotton plants exposed to high temperatures 
decreased the membrane oxidative damage and increased antioxidative systems 
(Wang and Li 2006). Therefore, SA can improve plant adaptation to stressful condi-
tions by mechanisms such as increasing antioxidative protection (Xu and Tian 
2008), lessening photosynthetic damage (Arfan et al. 2007), and accumulating spe-
cific tolerance compounds (Poór et al. 2013).

Ascorbic acid (AA) has useful effects on crops under stress conditions. It has an 
antioxidative function in plant scavenging the ROS and enhancing crop productivity 
(Kamal et al. 2017). The performance of ascorbic acid as a vital molecule antioxidant 
included to ameliorate stress has been well documented in the literature, the latter 
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research revealed that it also participated in the detoxification of produced reactive 
oxygen species due to environmental stresses (Dolatabadian et al. 2009).

Silicon is an important trace element and its presence is necessary to induce 
resistance to distinct stresses, diseases, and pathogens of plants. The addition of sili-
con dioxide (SiO2) to plant medium reduces the penetrability of the plasma wall of 
the leaf cells resulting in the loss of lipid peroxidation and also, SiO2 protects the 
cell wall against heat and drought stress (Zhu et al. 2004). Application of nano-Si 
caused a significant increase in the activities of catalase and peroxidase (POD) in 
plant leaves, but caused a decrease in the activities of superoxide dismutase and 
glutathione reductase (GR) (Kalteh et al. 2014).

Two-year results of El-Okkiah (2017) showed that the optimum sowing date 
gave the largest area of a single leaf area (SLA) as well as the tallest plant (plant 
height (PH)) at 90 and 120 DAS (days after sowing) (Fig. 30.2). The optimum sow-
ing date also induced an increase in stem and its organs’ dry weight (g) at 120 
DAS. While the late sowing significantly reduced the leaves and stem dry weight 
recorded at 90 and 120 DAS in both the years (Fig. 30.2) (El-Okkiah 2017).

Both the seed cotton (SCY) and lint yield (LCY) were significantly increased in 
optimum sowing condition and sharply declined as sowing date was delayed 
(Fig. 30.3). However, there is no constanting effect on fiber properties by sowing 
dates. Also, sowing dates had no significant effect on both oil and protein seed con-
tent. Accordingly, organic compounds, viz., ascorbic acid and salicylic acid, exhib-
ited an improvement in growth and productivity of cotton crop in late sowing, 
compensated the reduction that occurred in any character, and overcame the adverse 
effect by mitigating the harmful effect of the late sowing (heat stress) cotton.
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Fig. 30.2 Leaves (LDW) and stem dry weight (SDW; g) of cotton variety “Giza 94” influenced 
by the foliar application of ascorbic, ascobine, and salicylic acids through alleviating negative 
effect of late sown heat stress (AA Ascorbic Acid, ASC Ascobine and SA Salicylic Acid)
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30.9  Summary and Conclusion

Drought and heat are the major environmental stresses that affect the growth, 
productivity, and quality of cotton plants. The better knowledge of antioxidant 
mechanism and physiological responses of plant stress tolerance will contribute 
to understanding the agronomic performances for genetic nature of tolerance of 
potential cotton genotypes. The present review highlighted the several manage-
ment strategies that could be useful to mitigate the drought and heat stress by 
using antioxidant, phytohormone, and nutrient management as well as other 
appropriate management strategies for sustainable cotton production under 
changing climate. While, among the compatible antioxidants, exogenous appli-
cation of proline or glycine betaine is a good option to improve drought and heat 
tolerance in cotton. The study revealed that the foliar application of antioxidants 
in combination with soil-applied organic fertilizers is very effective for reduc-
ing the adverse effect of drought and heat stress on growth and yield of cotton.
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ing the publication of this work.
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Cereal crops are the major contributors to the global dietary intake of nutrients, and 
therefore, grain quality is an important trait for crop improvement. Grain quality in 
cereals is strongly influenced by genotype and environmental factors. Drought 
stress alone significantly reduces grain yield and quality of cereal crops worldwide. 
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crops and suggests strategies to enhance grain quality. Drought significantly affects 
the nutritional properties and quality traits of crops by modifying morphological, 
physiological, and biochemical traits in plants. This understanding may help plant 
breeders in developing drought-tolerant varieties while maintaining the desired 
quality characteristics. Various management techniques have been suggested to 
enhance grain quality of crops under harsh environments. Among those, exogenous 
application of potential osmoprotectants (OSP) alone or in combination with soil 
organic amendments is a promising approach to alleviate drought stress and could 
be helpful in ameliorating the harmful effects of drought stresses on crop quality.

Keywords
Drought amelioration · Drought stress · Oil and protein content · Cereal and oil-
seed crops · Quality
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chl a Chlorophyll a
chl b Chlorophyll b
CI Conventional irrigation
DSI Drought stress index
DW Dry weight
Fe Iron
FW Fresh weight
FYM Farm yard manure
GB Glycinebetaine
GW Grain weight
GY Grain yield
MDA Malondialdehyde
OSP Osmoprotectants
OY Oil yield
PAL Phenylalanine ammonia lyase
PC Protein content
POD Peroxidase
Pro Proline
RLWC Relative leaf water content
ROS Reactive oxygen species
RWC Relative water content
SA Salicylic acid
SC Starch content
Se Selenium
SI Supplemental irrigation
SOD Superoxide dismutase
SY Starch yield
Tre Trehalose
TW Test weight
UV Ultraviolet radiation
Zn Zinc

31.1  Introduction

Food security may become a more vulnerable issue as compared to the past due to 
global climate change and increased uncertainties in weather patterns (FAO 2016). 
Change in climate is mainly attributed to the unrestricted increase in greenhouse 
gases that bring changes in rainfall pattern, temperature, and drought (Ali et  al. 
2017). Li et al. (2011) reported that approximately 25% of the global agricultural 
land is affected by drought that enforces to limit more than 50% average yield and 
quality of most major crops in many countries (Wang et  al. 2007; Dabiry et  al. 
2015), especially in arid and semiarid regions (Rajala et al. 2009; Shiri et al. 2010).
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The occurrence, severity, and duration of drought distressing the crop productiv-
ity which are associated with global climate changes, consequently, the question 
arises how best to address the ever-increasing demand for quality grain and ensuring 
food security (Ashraf 2010). It is challenging not only for farmers and governments 
to meet these demands but also for researchers and plant breeders to address the 
issue (Gous and Fox 2017). Numerous studies have discussed the impact of abiotic 
stresses on grain yield (GY), starch (SC), and protein content (PC) (Hakim et al. 
2012; EL Sabagh et al. 2018a, b).

Drought is one of the serious abiotic stresses that inhibit nutrient uptake by 
arresting root development and consequently influences grain yield (Bagci et  al. 
2007). It causes a major loss in cereal yield and quality in most of the cereal- growing 
areas throughout the world (Akanda 2010; Bagci et  al. 2007; Passioura 2007). 
Depending on the species and geographical location, drought occurring at vegeta-
tive and reproductive phase has a negative effect on crop life. Drought at vegetative 
phase affects shoot apical and may render stunted growth, at reproductive phase, it 
may deteriorate crop quality and yield. Drought during floral initiation and develop-
ment of inflorescence delays flowering (Winkel et al. 1997; Wopereis et al. 1996). 
Final grain yield and quality are the results of interaction between genotypic poten-
tial and the environmental conditions, which are modified by different agronomic 
management (Mariani and Ferrante 2017). Protein and starch are arguably the most 
important components of the grain quality and contribute considerably to its nutri-
tional and commercial value (Gous et al. 2015).

Crop quality is considered as one of the most essential dietary components 
in human as well as animal feed, which strongly varies with crop cultivars as 
well as growing conditions. Therefore, maintenance of nutritional quality in 
crops may offer good opportunity to provide quality human food as well as 
animal feeding under stressed environments. Adverse environmental condi-
tions during critical growth phases, such as anthesis and grain-filling period, 
have been identified as a major constraint to crop productivity and grain quality 
(Jiang et al. 2009).

Recently, attention has been drawn to examine the various effects of drought 
stress on grain quality of cereal crops, as well as stress mitigating strategies as the 
possible role of exogenous application of osmoprotectants (OSP) (i.e., proline (Pro), 
glycinebetaine (GB), trehalose (Tre)) with organic fertilizer in the provision of 
drought tolerance in plants against drought stress conditions (Ali and Ashraf 2011). 
However, limited information is available on the relative importance of their inter-
action with genotype and environment on grain quality (Rharrabti et  al. 2003). 
Therefore, evaluation of grain quality of crops under drought and further under-
standing of the current status of crop quality and to clarify their interaction on major 
quality traits is of prime importance. It is also essential to assess the degree of Exo-
application of osmoprotectants that could alter seed/grain quality of crops under 
environmental stress conditions.
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31.2  Adverse Effect of Drought on the Quality of Crops

Drought stress is a major factor that affects yield and grain quality of wheat during 
grain developmental stage (Ahmed and Fayyaz-ul-Hassan 2015). Grain yield and 
quality of a crop depend on the frequency and severity of extreme climatic events 
(Thornton et  al. 2014). Among the crop growth stages, the reproductive stage is 
considered most sensitive to drought (Alqudah et  al. 2010). Negative effects of 
drought on seed quality have been well documented in wheat (Balla et al. 2011) and 
many other crops. Drought shortens the time of anthesis or grain filling in cereal 
crops such as maize, wheat, barley, and rice leading to reduced seed size and poor 
grain quality (Estrada-Campuzano et al. 2008; Fahad et al. 2017).

31.2.1  Adverse Effect of Drought on Grain Yield and Quality 
of Major Cereals

31.2.1.1  Maize (Zea mays L.)
Maize is an important cereal crop that requires ample water supply and is sensitive to 
drought and hence growth is negatively affected by the scarcity of water (Byrne et al. 
1995; EL Sabagh et al. 2018a, b). Storage components of the mature kernel of maize 
(starch, protein, and oil content) are the major determinants of the final grain weight 
(GW) (Boyer and Hannah 2001). Drought has been reported to reduce grain starch, 
granule size and increase relative protein content in maize (Balla et al. 2011). According 
to Zhao et al. (2009), maize protein is very sensitive to drought stress during grain-filling 
stage. While Rehman et al. (2011) reported that grain protein, oil, and starch content of 
maize are generally stable in different environments. Similarly, EL Sabagh et al. (2017, 
2018a, b) opined that water deficit stress remarkably influenced maize productivity.

Barutcular et al. (2016a) reported that drought significantly reduced soil, starch, 
protein, and ash contents in maize (Table 31.1). Gooding et al. (2003) pointed out 
that variations in flour quality were related to the changes in protein structure from 
drought stress throughout grain-filling stage. Similarly, Ghassemi-Golezani and 
Dalil (2011) also reported that seed protein and oil yields of maize were decreased 
significantly under drought condition, due to a sharp decline in the grain-filling 
period (Ghassemi-Golezani and Lotfi 2013).

Drought has also been shown to cause a small reduction in total protein content 
in maize cultivars (Ali et al. 2011; Barutcular et al. 2016a, b). It seems that initial 
increase in total soluble proteins during drought stress is associated with the expres-
sion of new stress proteins, but the decrease was due to a severe reduction of photo-
synthesis (Mohammadkhani and Heidari 2008). Drought decreases carbon 
assimilation (Havaux et al. 1987) and protein synthesis. The dwindling of total sol-
uble proteins under drought stress was consistent with the findings of Riccardi et al. 
(1998) and Ti-da et al. (2006) in maize.

31 Adverse Effect of Drought on Quality of Major Cereal Crops: Implications…



640

Ta
bl

e 
31

.1
 

Ir
ri

ga
tio

n 
re

gi
m

es
 e

ff
ec

t o
n 

gr
ai

n 
qu

al
ity

 p
ar

am
et

er
s 

of
 m

ai
ze

 h
yb

ri
ds

 in
 th

e 
gr

ow
in

g 
se

as
on

s 
of

 2
01

4 
an

d 
20

15

T
re

at
m

en
ts

G
W

 (
m

g)
T

W
 (

kg
 h

l−
1 )

SC
 (

%
)

PC
 (

%
)

O
C

 (
%

)
A

C
 (

%
)

SY
 (

kg
 h

a−
1 )

PY
 (

kg
 h

a−
1 )

O
Y

 (
kg

ha
−

1 )
A

Y
 (

kg
 h

a−
1 )

Ir
ri

ga
te

d 
(c

on
tr

ol
)

29
2

72
.2

64
.0

8.
05

2.
63

1.
07

91
59

11
50

37
6

15
2

D
efi

ci
t i

rr
ig

at
ed

27
5

72
.0

64
.1

8.
09

2.
60

1.
05

80
69

10
20

32
8

13
3

R
ed

uc
tio

n
−

0.
06

0.
00

0.
00

0.
01

−
0.

01
−

0.
01

−
0.

12
−

0.
11

−
0.

13
−

0.
13

Pr
ob

ab
ili

ty
 le

ve
l

∗
N

s
N

s
N

s
N

s
N

s
∗∗

∗∗
∗

∗
A

da
pt

ed
 f

ro
m

 B
ar

ut
cu

la
r 

et
 a

l. 
(2

01
6a

)
ns

 In
di

ca
te

s 
no

ns
ig

ni
fic

an
t. 

G
W

 g
ra

in
 w

ei
gh

t, 
T

W
 te

st
 w

ei
gh

t, 
SC

 s
ta

rc
h 

co
nt

en
t (

%
),

 P
C

 p
ro

te
in

 c
on

te
nt

 (%
),

 O
C

 o
il 

co
nt

en
t (

%
),

 A
C

 a
sh

 c
on

te
nt

 (%
),

 S
Y

 s
ta

rc
h 

yi
el

d 
(k

g/
ha

),
 P

Y
 p

ro
te

in
 y

ie
ld

 (
kg

/h
a)

, O
Y

 o
il 

yi
el

d 
(k

g/
ha

),
 a

nd
 A

Y
 a

sh
 y

ie
ld

 (
kg

/h
a)

∗,
 ∗
∗,

 a
nd

 ∗
∗∗

, s
ig

ni
fic

an
t P

 ≤
 0

.0
5,

 P
 ≤

 0
.0

1,
 a

nd
 P

 ≤
 0

.0
01

 p
ro

ba
bi

lit
y,

 r
es

pe
ct

iv
el

y

A. EL Sabagh et al.



641

31.2.1.2  Wheat (Triticum aestivum L.)
Wheat is a major cereal crop that contributes more calories and protein to the world 
diet than any other cereal crop (Abd-El Haleem et al. 2009). Water deficit (drought) 
at grain filling shortens grain-filling duration in wheat and ultimately reduces grain 
number and size (Gooding et al. 2003; Barutcular et al. 2017). Flour quality is com-
prised of attributes such as gluten, glutenin, gliadin, and protein. Drought has been 
reported to significantly reduce this grain quality train (Eivazi et al. 2006). Protein 
composition of grain plays a key role in determining the quality of wheat for bread- 
making, which has been deteriorating due to increasing drought (Mikhaylenko et al. 
2000). The protein contents and baking quality of wheat grain mainly depend on the 
genetic as well as environmental factors, and drought stress during grain filling 
greatly affects grain quality (Luo et al. 2000; Rharrabti et al. 2001). Gooding et al. 
(2003) noted that if wheat plants face drought during grain filling, flour quality 
diminishes due to deteriorated protein composition of grain. Similarly, drought also 
reduces the test weight (TW) of wheat through decreasing carbohydrate (starch), 
protein, and other mineral content of wheat (Pierre et al. 2008). Barutcular et al. 
(2016c) found that grain weight, protein, starch, test weight, Zeleny test, dry gluten, 
gluten index, and grain flour content of 16 bread wheat genotypes were significantly 
decreased under water deficit conditions (Table 31.2).

Starch accumulation has a direct relationship with sucrose content in wheat grains 
(Yan et al. 2008). Reduction in grain starch leads to low sucrose content and enzyme 
activity associated with starch synthesis. Environmental factors, especially drought, 
play a significant role in starch accumulation (Bhullar and Jenner 2005). Water stress 
has a significant effect on B-starch granules per endosperm and decreases its con-
tents and reduces the size of the largest A-starch granules, while the number of 
A-starch granules remained unaffected by drought (Brooks et al. 1982).

Guttieri et  al. (2001) found that drought at grain filling increased protein and 
sedimentation volume of wheat but reduced grain yield, 1000-grain weight (Aslani 
et al. 2013). Similarly, Noorka and Teixeira da Silva (2012) noticed that under water 
stress, the ranges of protein content varied from 12.47% to 13.92%, while under 

Table 31.2 Performance of studied traits for 16 bread wheat genotypes under two irrigation 
regimes

Water regime
GW 
(mg)

GPC 
(%)

GSC 
(%)

TW (kg/
hl)

ZT 
(ml)

DG 
(%)

GI 
(%)

GFC 
(%)

Rainfed 
(drought)

24.3 18.1 60.7 76.3 32.3 14.2 86.3 44.9

Irrigated 35.3 15.2 63.8 83.4 31.7 12.9 85.5 49.5
Drought effect 
(%)

−45.3 16 −5.1 −9.3 1.9 9.2 0.9 −10.2

Probability 
levels

∗∗ ∗∗ ∗∗ ∗∗ NS ∗∗ NS ∗∗

Adapted from Barutcular et al. (2016c)
ns nonsignificant. GW grain weight, GPC grain protein content, GSC grain starch content, TW test 
weight, ZT Zeleny test, DG dry gluten, GI gluten index, GFC grain flour content
∗∗ is significant at 0.01 probability level
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well-irrigated condition these values varied from 11.20% to 13.78%. Both the stud-
ies indicated that drought increased the grain protein quality, where 1000-grain 
weight decreased.

Hammad and Ali (2014) observed a significant reduction in total protein and 
carbohydrates and a gradual increment in total fibers in wheat grains under severe 
drought conditions. On the other hand, moderate drought during grain filling was 
found to increase grain protein content, although a slight decrease in grain yield was 
also observed in wheat (Rezaei et al. 2010). Balla et al. (2011) showed that drought 
causes a disproportionate reduction in the glutenin fraction compared with gliad in 
fraction in wheat grain. Ali et al. (2010) showed that drought stress conditions not 
only cause a reduction in grain oil content by 40% but also cause oleic acid to 
increase to >25% of the total at the expense of linoleic acid.

Drought significantly reduces the grain nutrients such as nitrogen (N), potassium 
(K), calcium (Ca2+), manganese (Mn), and zinc (Zn) contents of wheat as compared 
to the well-watered condition (Naeem et  al. 2018). In drought treatment, grain 
macro- (N, K, Ca) and micronutrient (Zn, Mn) contents decreased considerably as 
compared to well-watered conditions, indicating that nutrient uptake was restricted 
under drought conditions that might be due to declined transpiration rate, reduced 
active transport, and lowered membrane permeability (Naeem et al. 2017).

31.2.1.3  Barley (Hordeum vulgare L.)
Drought is a major factor that contributes to grain quality as well as feed quality, 
such as dry matter digestibility, protein, starch, different minerals, and fiber content, 
etc., in barley (Gous et  al. 2012). Similarly, 1000-grain weight, which is also a 
determining character for grain yield and product quality of barley, is affected by 
drought stress (Prokesova et al. 2016). El-Shawy et al. (2017) recorded the adverse 
effect of drought on grain weight of different barley genotypes (Fig. 31.1). A signifi-
cant reduction in the grain yield of barley under drought conditions occurs mainly 
due to fewer fertile tillers which resulted in poor grain formation and reduced 1000-
grain weight (Samarah 2005).

Fig. 31.1 Thousand-grain weight of 15 barley genotypes grown under two water regimes. 
(Adapted from El-Shawy et al. 2017)
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Barley quality parameters such as grain size, weight, starch content, extraction 
potential, and malt quality have industrial values (Newman and Newman 2008). 
Drought increases the protein content but reduces the starch content (SC) in barley 
grain (Ahmed et al. 2012). These parameters varied with genotypes, but the effect 
of the growing environment has a great impact on these quality parameters (Psota 
and Kosar 2002).

Abiotic stress like drought can negatively impact grain content and quality by 
affecting starch biosynthesis, resulting in structural changes in starch (Hollmann 
et al. 2014). These structural changes may affect starch properties, which may make 
the grainless suitable for downstream quality-driven industries such as malting and 
brewing (Hollmann et al. 2014).

When barley crop is subjected to water stress after anthesis, a reduction in grain 
weight is observed though the protein content increases (Wu et al. 2017). On the 
other hand, total protein content in barley grains is generally increased under 
drought or heat stress (Qi et al. 2006).

31.2.1.4  Rice (Oryza sativa L.)
It is generally recognized that rice quality is determined both genetically and envi-
ronmentally (Krishnan and Rao 2005). A proportion of 50% of head rice is gener-
ally usable, since its other 50% is wasted as husk and bran after milling (Bleoussi 
et al. 2016). About 13% (156 million ha) rice is cultivated as rainfed under upland 
conditions in the globe where moisture stress affects its growth, yield, and quality 
(Carlos et al. 2008).

Drought might be a major factor for the gap in producing enough quantity of rice 
as well as grain quality (Tomlins et  al. 2005). It reduces the production of rice, 
through changing morphological, physiological, biochemical, and molecular char-
acteristics (Al-Ashkar et al. 2016). Carlos et al. (2008) also reported that soil mois-
ture stress caused a reduction in grain weight and quality. The influence of water 
deficit on rice quality could be variable for upland and lowland rice cultivars (Cheng 
et al. 2003), depending on genetic makeup and their growing environmental condi-
tions (Krishnan and Rao 2005; Pandey et al. 2014). The occurrence of soil moisture 
stress at the grain-filling stage affects several physiological, biochemical, and enzy-
matic activities, resulting in poor quality of rice (Samonte et al. 2001). Similarly, 
Bleoussi et al. (2016) also found that water deficit during the reproductive stage of 
rice reduced the market quality of rice due to less swelling as well as stickiness. 
Anis et al. (2016) revealed highly significant differences existed among the tested 
rice genotypes (Fig. 31.2). The hulling percentage of rice could be attributed due to 
the genetic makeup of the specific rice genotype (Anis et al. 2016). Pandey et al. 
(2014) reported that protein content in rice grain was associated with head rice ratio, 
milled grain dimensions, milled grain appearance, and viscosity parameters. 
Although hamylose content of rice grain was decreased under drought, there was a 
passive link between amylose and protein content of rice grain under water stress.

Drought increases the total protein content in rice grain (Fofana et al. 2010). The 
dramatic influence of soil water status on grain quality of rice was observed during 
the grain-filling period (Dingkuhn and Gal 1996). The milled rice recovery and the 
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brown rice protein content significantly increased due to reduced soil moisture con-
tent, but the percentage of unripened grains was decreased, meanwhile, the amylose 
content in milled rice was decreased under water deficit conditions (Renmin and 
Yuanshu 1989).

Drought affects plant growth and reduces grain yield and quality of rice (Carlos 
et al. 2008). The occurrence of soil moisture stress affects many of the physiological 
processes such as photosynthesis and transpiration resulting in reduced growth and 
poor grain filling in rice (Samonte et  al. 2001). Therefore, soil moisture stress 
appears to be a major factor for the gap in producing enough quantity as well as 
grain quality of rice (Tomlins et al. 2005). Drought-induced reduction in crop yield 
might be the possible reason for several factors including reduced photosynthesis 
(Flexas et al. 2004), less partitioning of assimilates (Farooq et al. 2009) as well poor 
flag leaf development (Rucker et al. 1995). Drought treatment affected the photo-
synthesis process, which altered carbohydrate formation and its translocation to 
seeds. In the end, the lack of carbohydrate caused more seeds not to be fully formed 
or to become unfilled grains (Jaleel et al. 2009). The occurrence of water deficit 
during grain ripening stage can be considered as a factor that increases grain quality 
as preferred by the local consumer because of a lower rate of broken grains (Sakurai 
et al. 2006). Late drought that occurs during ripening appears to increase the main 
characteristics defining rice grain quality including total milling rate, head rice 
ratio, and protein content of rice (Fofana et al. 2010).

31.3  Management Strategies

Abiotic stresses such as salinity, heavy metals, cold, heat, light, drought, flood, UV, 
hypoxia, etc. are the major threat to a plant through adversely affecting growth and 
development, finally the end product of target crops by altering physiological and 
biochemical processes of the plant. Abiotic change can not only hamper plants’ 
growth and development but also reduce crop yield which can in a broad sense 

Fig. 31.2 Mean performance of hulling and milling values of rice genotypes during 2014 and 
2015 (combined data). Bars indicate standard errors. (Adapted from Anis et al. 2016)
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promote famine and other calamities. Therefore, it is a global concern to manage 
abiotic stresses as their severity is increasing due to global changing climate. As a 
part of evolution, plants build a complex and integrated self-defense mechanism 
against stressful condition by changing morphological, physiological, biochemical, 
and molecular level to adapt as well as to survive. The extreme climate change over 
the world sometimes constructs its extreme challenges to grow tolerance against 
abiotic stress conditions.

31.3.1  Management of Drought to Improve the Yield and Quality 
of Major Cereal Crops

Under extreme environmental stresses (i.e., drought, salinity, heat stress, ultraviolet 
(UV) radiation, and heavy metals), exogenous application of growth regulators and 
osmolytes at various crop growth stages plays a significant role in inducing resistance 
against abiotic stresses including drought (Fahad et  al. 2017). The glycinebetaine 
(GB) and proline (Pro) are two major organic compatible osmotic solutes that gather 
in a variety of plant species (Ashraf and Foolad 2007; Farooq et al. 2013; Hossain 
et al. 2013). These solutes are applied through various approaches such as seed prim-
ing (Farooq et al. 2006) and foliar application. Although, many researchers already 
noted that both GB and Pro have positive roles in mediating the osmotic adjustment to 
help plants survive under drought stress through influencing the physiological and 
biochemical activity such as enzymatic and membrane integrity, while their actual 
roles in plant osmotolerance still remain debatable (Ashraf and Foolad 2007).

31.3.1.1  Maize
Ali et al. (2013) reported that exogenous Pro significantly improved the oil saponi-
fication and iodine values, but the oil unsaponifiable matter reduced due to exoge-
nous applied Pro both under normal and drought stress conditions. Similarly, Ali 
and Ashraf (2011) noticed improved grain yield and oil quality of maize under nor-
mal and water deficit conditions by applying Pro and GB.

However, there is a significant association between the total phenolics, carot-
enoids and antioxidant activity has been recorded in cereals (Dykes and Rooney 
2007). While, foliar application of osmolytes, such as GB and Pro, alters chemical 
composition in seeds such as fatty acids, tocopherols, carotenoids, phenolics, and 
flavonoids, particularly in the seed oil of maize (Ali et al. 2013). In their other stud-
ies, a significant relationship was observed in seed oil antioxidant activity and dif-
ferent lipophilic antioxidant compounds in maize under water deficit condition, due 
to exogenous application of different compatible osmolytes (Ali et al. 2010; Ali and 
Ashraf 2011).

Similar to other organic osmoprotectants (OSP), application of abscisic acid 
(ABA) and yeast significantly improved protein and oil of maize under water deficit 
conditions (Abdelaal et al. 2017; Figs. 31.3 and 31.4). The valuable effects of ABA 
and yeast on protein, oil, and moisture percentages were associated with the 
enhancement of chlorophyll concentrations, relative water content, antioxidant, 
enzymes activity, and reduce lipid peroxidation (Dolatabadian et al. 2009).
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Fig. 31.3 Effect of abscisic acid (ABA) and yeast on protein percentages of maize plants under 
water deficit conditions during 2015 and 2016 seasons. (Adapted from Abdelaal et al. 2017)

Fig. 31.4 Effect of abscisic acid (ABA) and yeast oil percentages of maize plants under water 
deficit conditions during 2015 and 2016 seasons. (Adapted from Abdelaal et al. 2017)
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The use of proline and gibberellic acid is an innovative and promising way to 
reduce the impact of drought on maize yield and grain quality (Al-shaheen and Soh 
2016). ABA, under drought-regulated protein content in maize plants, may help to 
elucidate the underlying mechanisms of ABA-enhanced tolerance to drought stress 
in maize (Zhao et al. 2016).

Exogenous application of salicylic acid (SA) treatment of drought-stressed 
plants with different levels (0.5 and 1.0 mM) not only caused a decline in the adverse 
effect of drought in yellow Maize (Z. mays L.) plants, but also stimulated physiolog-
ical traits, productivity by enhancing plant resistance to drought stress (Elgamaal 
and Maswada 2013). The SA can enhance some physiological processes and can 
inhibit others depending on its concentration, plant species, developmental stage, 
and environmental conditions (EI-Mergawi and Abdel-Wahed 2004).

Exogenous treatment of calcium-containing fertilizers (Ca2+) improved tolerance to 
drought stress (Naeem et al. 2017). Calcium is relatively immobile in plants, and their 
uptake reduces in above-ground portions of plants (shoots and leaves) as well as in 
roots under drought conditions due to decline in transpiration rate (Brown et al. 2006).

Under limited irrigation water in the arid regions, application of farm yard 
manure (FYM) has improved crop water productivity and helps to reduce irrigation 
water up to 15%. Therefore, application of FYM can be used as a strategy to improve 
water productivity and grain yield of maize under dry conditions where water is 
limited (Abd el-wahed et al. 2015). Majid et al. (2017) found that full irrigation is 
the best treatment to achieve the optimum growth and yield of maize under arid and 
semiarid regions. They also opined that increasing soil moisture within the root 
zone during crop growing period through irrigation has a great concern to enhance 
water use efficiency as well as crop productivity.

31.3.1.2  Wheat
Among the abiotic stresses, drought stress is considered as a major threat that hinders 
plant growth, grain yield, and quality of crops including wheat (Ashraf and Foolad 
2007; Farooq et  al. 2013; Hossain et  al. 2013). Water stress reduced 30.0% and 
13.8% grain yield of wheat as reported by (Barutçular et al. 2017). While, develop-
ment to tolerant genotypes in relation to different improved management practices 
such as the foliar application of GB, Pro, and soil applied of organic amendments 
could ameliorate the adverse effect of drought on yield and grain quality parameters 
of crops including wheat (Dabiry et al. 2015). This ameliorating effect of exogenous 
application of Pro altered the seed chemical parameters through maintaining the tur-
gor in plants both under well-watered and water stress conditions, by this means of 
preserving more photosynthates (Ali et al. 2007), resulting in the dissemination of 
more assimilates to developing seeds of wheat (Mäkelä et al. 1998).

Nawaz et al. (2015) reported that selenium (Se) seed priming, fertigation, and 
foliar spray influenced the yield and nutritional quality of wheat under both nor-
mal and water deficit conditions through enhancing the production of OSP and 
improved the antioxidant enzymes activity of wheat. They also found that grain 
Se, Fe, phosphorus (P), Zn, and magnesium (Mg) contents were significantly 
decreased when drought stress occurred. Noori et  al. (2017) found that NPK 
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(nitrogen-phosphorus- potassium) fertilizers enhanced the productivity and grain 
quality such as minerals, crude proteins, and water-soluble pentosane of wheat 
grain under drought stress through ameliorating the adverse effects of drought.

Under arid and semiarid regions of Mediterranean environment (dry land agri-
cultural system) conventional irrigation (CI), supplemental irrigation (SI) with dif-
ferent sprinkler line-source systems increased the yield and grain quality such as 
protein content, wet gluten content, and sedimentation volume of wheat variety 
“Adana 99” during flowering and grain-filling stages of wheat. Among the irrigation 
systems, CI with full irrigation system achieved the highest grain yield, quality 
parameters, and maximum net return. They also found that CI with full irrigation 
system helped to improve the grain quality when higher drought stress occurred in 
the dry year, indicating that CI full irrigation with different sprinkler line-source 
systems could be helpful to obtain higher grain yield and good quality under 
Mediterranean environmental conditions (Alghory and Yazar 2018).

Whereas, Farooq et al. (2006) reported that seed priming (presowing hydration) 
is an important and short-term approach that helps to initiate the germination 
metabolism but the emergence of radicle is escaped under drought condition. Ajouri 
et al. (2004) recorded a 44% increase in the germination of wheat seeds through 
seed priming under drought conditions. Seed priming with ascorbic acid (AsA) 
resulted in improved drought resistance of wheat cultivars due to the better accumu-
lation of the Pro through maintaining the tissue water content and membrane stabil-
ity (Farooq et al. 2013). Whereas, seed priming with potassium chloride improved 
the performance of some wheat cultivars under drought conditions as reported by 
Fahad et al. (2017).

Application of yeast extract and amino acids improved wheat grain quality, and 
yeast extract is superior to amino acids on grain quality (Abbas 2013). Mohamed 
(2005) found that active dry yeast as the foliar application had a beneficial effect on 
growth, yield, and chemical constituents of plants.

The cultivation of high-quality winter wheat varieties needs an adequate sup-
ply of micronutrients, which act as stimulants for macronutrients, in particular, 
nitrogen (Potarzycki 2004). The high nitrogen dose can also increase the amount 
of gluten in wheat grains (Woźniak and Gontarz 2011). Gharib et al. (2016) found 
that application of N in combination with the foliar application of ascobein 
increased N use efficiencies and also increased the productivity of wheat under 
stress condition.

Amino acids for the production of biostimulants are obtained by chemical syn-
thesis, from plant proteins (e.g., algae, corn, and soybean), as well as from animal 
proteins by chemical or enzymatic hydrolysis (Calvo et al. 2014; Kucińska et al. 
2014). Laboratory tests showed that biostimulants led to an increase of technologi-
cal characteristics of grain-like ash content (AC), zeleny sedimentation index, and 
content of protein (Popko et al. 2018).

Calcium-applied alleviation of drought-induced damage has been elucidated in 
numerous plants, for example, T. aestivum (Nayyar and Kaushal 2002). Therefore, 
the foliar fertilization can be an effective approach to improve the nutritive status of 
plants (Shabbir et al. 2015).
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Silicon application lowered down the oxidative damage under water stress 
through improved membrane stability (Pei et al. 2010) and enhanced production of 
antioxidants such as glutathione reductase, catalase, peroxidase (POD), and super-
oxide dismutase (SOD) under water stress conditions in wheat (Gong et al. 2005).

31.3.1.3  Barley
Crop losses due to abiotic stresses may be reduced through applying OSP and soil 
application of different organic manures and chemical fertilizers (Annicchiarico 
et al. 2011; Hamail et al. 2015). Among the OSP, GB is accumulated by some plants 
to survive under stress conditions by altering the physico-biochemical process of 
plants. Mäkelä et al. (1996) found that application of GB under drought condition 
increased the above-ground biomass, leaf area index, leaf chlorophyll, yield and 
quality of barley, oat (Avena sativa L.), spring wheat, and summer turnip rape 
(Brassica rapa ssp. oleifera DC.) under a greenhouse research. Similarly, Ashraf and 
Foolad (2007); Farooq et al. (2013); Hossain et al. (2013) reported that exogenous 
OSP improved the drought resistance in plants through altering the physiological, 
biochemical, and enzymatic activities of the drought-affected plants. Hussain et al. 
(2008) also found that the application of GB can help plants to survive under stress 
condition through improving their physiological process under drought conditions.

Similar to OSP, other studies (Gong et al. 2005; Hattori et al. 2005) also reported 
that exogenous application of silicon in drought-affected plants, that is, wheat, rice, 
maize, and sorghum, increased the drought tolerance of plants through improving 
root growth, stomatal conductance, photosynthetic rate, and antioxidant defense. 
Barley seeds treated with GB improved the drought tolerance ability by improving 
cell membrane stability, the rate of photosynthesis, balancing the leaf water status, 
as well as osmotic adjustment (Wahid and Shabbir 2005).

Fahad et al. (2017) demonstrated that the spraying of growth regulators and OSP 
at various growth phases played a significant role in inducing the tolerance against 
drought. While, under drought condition seed Pro is an important technique that 
influences the germination metabolism of seed through short-term presowing hydra-
tion of seeds both under normal and drought but the emergence of radicle is inter-
rupted (Farooq et al. 2006, 2007; Bajwa and Farooq 2016). Similarly, the application 
of spermidine has also been found beneficial in minimizing the harmful effects of 
drought in barley (Kubis 2003). Silicon under chromium stress resulted in the stim-
ulation of antioxidants (SOD, POD, and CAT), enzyme activities, improved barley 
germination and growth (Ali et al. 2013).

Nitrogen fertilizer is applied in order to increase the agronomic yield and improve 
grain quality (Nowotna et al. 2007). High rates of nitrogen application increase the 
protein content, especially the hordein component, which is of poor nutritive value 
when compared with other proteins (Duffus and Cochrane 1993).

31.3.1.4  Rice
Applications of nutrients in rice underwater-stressed conditions improved most of the 
yield contributing characters. Silicon (Si) is not directly involved in quality enhance-
ment (Wang et al. 2015), but it manages diseases and different environmental stresses 
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to improve the quality of crops (Shashidhar et al. 2008). Silicon application improved 
grain diameter in rice plant (Ahmad et al. 2013). Seed priming has proved beneficial in 
improving early stand establishment of crops under stress conditions (Farooq et al. 
2007; Bajwa and Farooq 2016).

Application of compost along with the foliar application of ascobein can be 
saved from 50 to 110  kg  N  ha−1 without reducing grain quality (Gharieb et  al. 
2016). Application of GA3 remarkably improved the seed quality of rice by 
increasing the rate of germination percentage, germination index, and early seed-
ling growth (Abo- Gendy et al. 2016), however, in seed treated with SA, no improve-
ment was recorded in seed quality for germination rate, germination index, and 
initial growth and establishment (Tavares et al. 2014). Proline plays a positive role 
in plants exposed to drought stress through improving their tolerance ability against 
drought stress conditions (Verbruggen and Hermans 2008). Whereas, Pandey and 
Shukla (2015) found that exogenous application of proline in plants under stress 
condition increases the accumulation of Pro that helps the plant for repairing the 
damage under stress by improving antioxidant activity in plants. Exogenous appli-
cation of GB improves crop growth and yield (Hussain et al. 2008) by improving 
stomatal conductance, photosynthetic rate, and proline accumulation in plants 
against drought conditions (Ma et al. 2007).

Silicon application under water stress improved plant height, leaf area, dry mat-
ter, and yield of rice crop (Singh et al. 2006). A number of research findings have 
demonstrated the positive effect of foliar application of Si in suppressing a foliar 
plant disease in different crops, such as rice (Cacique et al. 2013). Application of Si 
improves the crop quality as reported by Shashidhar et al. (2008) and Si (0.50% sili-
con solution) produced maximum grain diameter and grain protein (Ahmad et al. 
2012). Si treatment increased the insoluble protein accumulation and decreased 
total soluble protein in different rice cultivars in drought stress conditions (Emam 
et al. 2014). Using Si solubilizers, one would expect to raise the nutrition demand, 
yield quality many folds of rice and fulfill the demand of overgrowing population in 
the upcoming years under severe climate change conditions (Sarma and Shankhdhar 
2017). Different studies also showed that silicon application helps in improving the 
drought resistance in major crops including rice through improved root growth, 
stomatal conductance, photosynthetic rate, and antioxidant defense (Gong et  al. 
2005; Hattori et al. 2005). While genetically improved genotypes tolerant to stress 
with high grain quality is the most important approach of rice under changing the 
climate (Fazaa et al. 2016).

31.4  Conclusions

The present review demonstrated that drought is the most detrimental stress that 
significantly influenced the yield and quality traits of major cereal crops. The nega-
tive effect of drought stress has been observed in almost all crops depending on crop 
species and their stages. In addition, the review discussed strategies that can improve 
the grain quality and adopted to cope with the effects of drought stress on crops, 

A. EL Sabagh et al.



651

producing several ideas to overcome the negative effect of drought stress condi-
tions. However, in recent decades, exogenous application of antioxidants has been 
observed to improve crop quality under drought stress conditions. Exogenous appli-
cation of OSP and nutrients ameliorates the adverse effects of drought stress on the 
seed quality of different crops.
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