
Chapter 14
Simulating Quantum Dynamics in
Classical Nanoscale Environments

Gabriel Hanna and Alessandro Sergi

Abstract In this chapter, we describe a mixed quantum-classical approach for
simulating the dynamics of quantum mechanical phenomena occurring in nanoscale
systems. This approach is based on the quantum-classical Liouville equation
(QCLE), which prescribes the dynamics of a quantum subsystem coupled to a
classical environment. We explain how the QCLE can be solved using a stochastic
surface-hopping algorithm and how expectation values of observables can be
computed. Schemes for reducing the number of trajectories required in these
computations and for ensuring the continuous evolution of the quantum subsystem
states along the trajectories are also outlined. To demonstrate the utility of these
techniques, we describe two recent applications: vibrational energy transfer in
an alpha-helical polypeptide and the field-driven dynamics of a plasmonic meta-
molecule.
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14.1 Introduction

Nanotechnologies have attracted the attention of many over the last several decades
due to their versatility and advanced functionality. Optoelectronics [24, 88], molec-
ular electronics [62] and quantum computing/information [8, 58, 59] are just a
few prominent examples of fields that have benefitted tremendously from nan-
otechnologies. Nowadays, researchers are faced with the challenge of designing
high-performance, efficient and environmentally friendly materials and devices.
This challenge could translate into, for example, constructing devices that are
capable of highly efficient transfer of energy [43, 57], charge [30, 54] or quantum
information [58, 59] in complex nanostructures. To achieve such goals, however,
one must gain a fundamental understanding of the dynamical processes involved
and how these processes are influenced by their nanoscale environments. In this
regard, molecular simulation has proven to be an indispensable tool for probing the
structure and dynamics of nanoscale systems.

When the process under study is of a quantum nature and occurs in a complex,
many-particle system such as a nanomaterial, a fully quantum approach to mod-
elling the dynamics will be computationally intractable. In this case, an approximate
treatment of the dynamics is required to gain insight into the process. Mixed
quantum-classical dynamics methods, which treat a subsystem of interest quantum
mechanically and the particles in its environment (or bath) in a classical-like fashion,
can provide tremendous computational savings over fully quantum methods. For
example, the subsystem could be a key proton/electron in a charge transfer reaction,
a chromophore involved in a vibrational/electronic energy transfer process or an
exciton in a light-harvesting system, while the environment could be a molecule,
solvent or crystal.

The partitioning of a system into different sets of degrees of freedom (DOF)
lies at the heart of the Born–Oppenheimer (BO) approximation, which assumes
a time/energy scale separation between the motions of the nuclei and electrons.
In quantum chemistry, the BO approximation greatly simplifies calculations of
molecular energies and wave functions by enabling one to solve the electronic
Schrödinger equation for a fixed configuration of the nuclei to obtain electronic
energies and wave functions that depend on the nuclear configuration. By repeating
this calculation for a sufficiently large number of nuclear configurations, one can
then construct the potential energy surfaces (PESs) of the electronic subsystem.
These PESs give rise to forces (known as Hellmann-Feynman forces) that act on
the nuclei over the course of their dynamics. When the energy scale separation
between the nuclei and electrons is sufficiently large, the nuclei will evolve subject
to the forces obtained from the PES corresponding to the current state of the
electrons (which will not change because the electrons will not have enough energy
to hop to another PES). This is known as adiabatic dynamics. However, when
their energy scales become comparable, the nuclei can evolve subject to the forces
obtained from another PES (because the electrons may acquire enough energy from
the nuclei to hop to another PES). This breakdown of the BO approximation is
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Fig. 14.1 A schematic
representation of the ground
and excited electronic PESs
of a system. In adiabatic
dynamics, the nuclei evolve
on a single PES. However, in
the vicinity of an avoided
crossing, a nonadiabatic
transition can occur, which
causes the nuclei to evolve on
another PES
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known as nonadiabatic dynamics. It typically occurs in the vicinity of an avoided
crossing or conical intersection between PESs. (See Fig. 14.1 for an illustration of
the aforementioned concepts.)

In general, adiabatic dynamics arises whenever one set of DOF changes slowly
compared to another set, as in the case of nuclei and electrons in the BO
approximation. If one is able to partition a system into a subsystem containing
fast DOF of interest and an environment containing slow DOF, then the dynamics
of the environmental DOF will be governed by a single PES corresponding to the
state of the subsystem. However, when the time scales of motion of the subsystem
and environmental DOF become comparable, motion on a single PES is no longer
able to accurately capture the dynamics of the slower DOF. Many important
processes in physics, chemistry and biology involve this nonadiabatic dynamics.
Examples include intersystem crossings and internal conversions in photochemistry,
electron transfer reactions in electrochemistry, ion–molecule reactions, reactions at
metal surfaces, photo-induced dynamics of molecules adsorbed to semiconductor
substrates (as in a photovoltaic cell) and photo-induced dynamics in quantum dots.

Due to the importance of nonadiabatic dynamics, a great deal of effort has been
devoted to developing simulation methods over the years that take nonadiabatic
effects into account. In particular, many mixed quantum-classical methods have
been proposed for simulating nonadiabatic dynamics, which essentially differ in
the way they couple the subsystem and bath DOF [1, 3, 25, 27, 33, 35, 39, 41, 48,
50, 61, 70, 74, 76, 81, 84, 85]. The two most widely used methods are mean-field
(or Ehrenfest) and fewest switches surface-hopping (FSSH) dynamics [5–7, 10, 20,
29, 60, 67–69, 71, 75, 77, 86]. Mean-field dynamics is based on the assumption
that the environmental motions are governed by a single effective PES, which is
a weighted average over the adiabatic PESs of the subsystem. On the other hand,
surface-hopping methods evolve the environmental DOF on a single adiabatic PES
at any given time, with instantaneous hops to other PESs at times when the BO
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approximation breaks down. However, mean-field and FSSH dynamics suffer from
several drawbacks. Both methods do not correctly describe the “quantum back-
reaction”, i.e. the effect due to the subsystem-environment coupling, whereby a
change in the environmental DOF modifies the subsystem Hamiltonian, which in
turn modifies the forces governing the motion of the environmental DOF. Mean-
field dynamics is not capable of capturing decoherence, while FSSH can do so
after incorporating some ad hoc corrections [68, 71]. Both methods also struggle
to satisfy detailed balance. Due to the incorrect nature of the energy transfer
between the subsystem and environment, it is possible for the subsystem to approach
unrealistically high temperatures in mean-field dynamics [55]; in such cases, one
can employ quantum correction factors that modify the dynamics in such a way that
detailed balance is enforced [4]. In FSSH, it is possible to satisfy detailed balance
in certain limits if the so-called frustrated hops are allowed [64].

In this chapter, we focus on a mixed quantum-classical dynamics approach that
is based on the quantum-classical Liouville equation (QCLE) [2, 22, 33, 89], which
can be derived from the quantum Liouville equation by first taking its partial Wigner
transform [87] over the bath DOF (leading to a description of the subsystem and
bath DOF in terms of operators and phase space variables, respectively) and then
truncating the resulting equation after first order in h̄. The QCLE constitutes an ideal
starting point [31, 32] for deriving mixed quantum-classical dynamics algorithms
because (i) it can be rigorously derived from the more fundamental quantum
Liouville equation based on a well-defined and physically reasonable approxi-
mation, and (ii) it yields the exact quantum dynamics for quantum subsystems
that are bilinearly coupled to harmonic environments [45], which are frequently
used models in chemical and condensed matter physics research. A large number
of QCLE-based algorithms have been developed over the years [16–18, 23, 26–
28, 34, 36, 37, 40, 41, 44, 46, 47, 49, 53, 63, 82, 83]. This chapter will deal with a
particular algorithm known as sequential short-time propagation (SSTP) [23, 47],
due to its favourable compromise between accuracy and ease of implementation.
SSTP is a hybrid molecular dynamics/Monte Carlo algorithm, which relies on the
so-called momentum jump approximation [23, 65] and solves the QCLE in terms of
an ensemble of surface-hopping trajectories. However, a direct application of this
algorithm has proven to be very challenging due to severe numerical instabilities
that arise beyond short times when the subsystem-bath coupling strength is not
very weak. In this case, the statistical weights associated with the Monte Carlo
sampling of the nonadiabatic transitions (and that enter into the calculation of the
observable) grow very rapidly in time, thereby necessitating very large numbers
of trajectories to obtain converged expectation values. Transition filtering schemes
[12, 13, 15, 23, 66, 79, 80], which impede the growth of these weights by filtering
out the low-probability nonadiabatic transitions, have been shown to significantly
alleviate the numerical instabilities. We will discuss one such scheme [12, 13] in
this chapter.

In most mixed quantum-classical surface-hopping approaches (including the
SSTP algorithm), one must evaluate the adiabatic states and nonadiabatic couplings
between them at each time step of the simulation. In most cases, they are evaluated
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numerically, which first entails a numerical diagonalization of the Hamiltonian
matrix. However, the resulting eigenvectors are determined uniquely up to a
sign, which leads to an arbitrariness in the signs of the nonadiabatic coupling
vectors. These signs must be corrected by requiring that the eigenvectors change
continuously from one point to the next along a trajectory in configuration space.
However, the situation is further complicated when one is interested in computing
time-dependent expectation values based on an ensemble of trajectories (which are
typically initialized at different points in the configuration space). In this chapter,
we outline a recently proposed method [14] for ensuring eigenvector sign continuity
across an ensemble of trajectories in surface-hopping simulations.

To illustrate the utility of the aforementioned methods for simulating the
dynamics of mixed quantum-classical systems, we present two applications. The
first one demonstrates how transition filtering can be used to facilitate the calculation
of amide I mode populations in a six-site model of an alpha-helical polypeptide,
after a vibrational excitation at one end of the chain. The second one involves
calculations of populations and coherences in a reduced model of a plasmonic
metamolecule in an external field, using a generalized version of the SSTP algorithm
for simulations of systems with time-dependent Hamiltonians.

The chapter is organized as follows. In Sect. 14.2, we present the QCLE, discuss
how it can be solved via the SSTP algorithm, and explain how expectation values of
observables can be computed. Recently proposed schemes for transition filtering and
eigenvector sign correction are also outlined in this section. In Sect. 14.3, we present
two recent applications of the aforementioned techniques to simulating vibrational
energy transfer in an alpha-helical polypeptide and the field-driven dynamics of a
plasmonic metamolecule. Our summary and future outlook are given in Sect. 14.4.

14.2 Mixed Quantum-Classical Liouville Dynamics

14.2.1 The Quantum-Classical Liouville Equation

We begin by considering a quantum subsystem, whose Hamiltonian operator is ĤS,
embedded in a classical environment, whose Hamiltonian function is HB(Q, P ) =
P 2

2M
+ V (Q). The coordinates (Q, P ) denote the positions and momenta, respec-

tively, of the atoms or molecular fragments (characterized by masses M and
interacting according to the potential energy function V (Q)) in the environment.
The coupling between the quantum subsystem and classical environment is gov-
erned by the operator ĤC(Q), which is also a function of the configuration of the
environment. (In this chapter, we do not consider situations where the subsystem
interacts with a magnetic field, such that the coupling Hamiltonian depends only on
the configuration.) Hence, the Hamiltonian of the total system is given by

Ĥ (Q, P ) = ĤS + HB(Q, P ) + ĤC(Q) , (14.1)
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Fig. 14.2 A schematic
representation of the total
system and its components.
The Hamiltonian of the total
system is the sum of the
subsystem (ĤS), bath (HB)
and coupling (ĤC)
Hamiltonians

Classical  
bath 
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where S, B and C stand for subsystem, bath and coupling, respectively (see Fig. 14.2
for a schematic representation of the total system). The statistical and dynamical
properties of the hybrid quantum-classical system defined by the Hamiltonian in
Eq. (14.1) can be obtained in terms of the system’s time-dependent density matrix
ρ̂(Q, P, t), which is also a function of the phase space coordinates (Q, P ). The
mixed quantum-classical dynamics of ρ̂(Q, P, t) is governed by the QCLE:

∂

∂t
ρ̂(Q, P, t) = − i

h̄

[
Ĥ , ρ̂(Q, P, t)

]
+1

2

{
Ĥ , ρ̂(Q, P, t)

}
−1

2

{
ρ̂(Q, P, t), Ĥ

}
,

(14.2)

where [·, ·] and {·, ·} denote the commutator and Poisson bracket, respectively. The
QCLE can either be postulated by requiring energy conservation (i.e. the antisym-
metry of the right-hand side guarantees that the time derivative of the Hamiltonian
Ĥ (Q, P ) is identically zero) or derived from a fully quantum dynamical description
of the total system in the limit that the particles in the environment are much heavier
than those in the subsystem. This derivation first involves a representation of the
heavy coordinates in Wigner phase space, followed by a linearization of the resulting
equation in the smallness parameter μ = √

m/M , where m is a characteristic
mass of the quantum DOF and M is a characteristic mass of the classical DOF.
By coupling the dynamics of the quantum and classical DOF in this fashion, the
QCLE consistently describes the back-and-forth exchange of energy between the
quantum subsystem and classical environment.

Knowledge of ρ̂(Q, P, t) allows one to calculate the average of any observable
property of the system, which is represented in this formalism by a microscopic Her-
mitian operator that depends on the phase space point, i.e. χ̂ (Q, P ) = χ̂†(Q, P ).
Finally, the value of a macroscopic observable at time t is given by

〈χ̂ (t)〉 = Tr′
∫

dQdP χ̂(Q,P )ρ̂(Q, P, t) , (14.3)

where Tr′ denotes a partial trace over the quantum DOF. It is also possible to
evaluate the average in the Heisenberg picture,
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〈χ̂ (t)〉 = Tr′
∫

dQdP ρ̂(Q,P )χ̂(Q, P, t) , (14.4)

where the mixed quantum-classical equation of motion of χ̂ (Q, P, t) is given by

∂

∂t
χ̂(Q, P, t) = i

h̄

[
Ĥ , χ̂(Q, P, t)

]
− 1

2

{
Ĥ , χ̂(Q, P, t)

}
+ 1

2

{
χ̂ (Q, P, t), Ĥ

}
.

(14.5)

14.2.2 Representing the QCLE in the Adiabatic Basis

To arrive at a surface-hopping algorithm for solving the QCLE, one must first
represent it in the adiabatic basis defined by the following eigenvalue problem (i.e.
the time-independent Schrödinger equation):

Ĥad(Q)|�k(Q)〉 = εk|�k(Q)〉 , (14.6)

where Ĥad(Q) = ĤS + ĤC(Q) + V (Q) is the so-called adiabatic Hamiltonian
operator, |�k(Q)〉 is the kth adiabatic basis state, and εk is the energy of that state.
In this basis, the QCLE becomes [34]

∂

∂t
ρkk′(Q, P, t) = −

∑
jj ′

δkj δk′j ′ (iωkk′ + iLkk′) ρjj ′(Q, P, t)

−
∑
jj ′
Kkk′,jj ′ρjj ′(Q, P, t) , (14.7)

where ρkk′(Q, P, t) = 〈�k|ρ̂(Q, P, t)|�k′ 〉 are the density matrix elements, ωkk′ =
[εk(Q) − εk′(Q)]/h̄ are the Bohr frequencies, iLkk′ are the matrix elements of a
classical-like Liouville operator

iLkk′ = P

M

∂

∂Q
+ Fk(Q) + Fk′(Q)

2

∂

∂P
, (14.8)

with Hellmann-Feynman forces Fk = −∂εk/∂Q, and Kkk′,jj ′ are the matrix
elements of a nonadiabatic transition super-operator

Kkk′,jj ′ = δk′j ′ckj (Q, P )

(
1 + 1

2

h̄ωkj

ckj (Q, P )
dkj (Q) · ∂

∂P

)

+ δkj c
∗
k′j ′(Q, P )

(
1 + 1

2

h̄ωk′j ′

c∗
k′j ′(Q, P )

d∗
k′j ′(Q) · ∂

∂P

)
, (14.9)

with dkj = 〈�k|∂�j/∂Q〉 the nonadiabatic coupling vector and ckj = P/M · dkj .
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14.2.3 The Sequential Short-Time Propagation Algorithm

Now, we demonstrate how one can obtain a numerical algorithm for solving
the QCLE in terms of a swarm of stochastic trajectories, where each trajectory
is composed of piecewise deterministic segments interspersed with stochastic
transitions of the quantum subsystem between different adiabatic states.

The sequential short-time propagation (SSTP) solution to Eq. (14.7) for
ρkk′(Q, P, t) is [47]

ρkk′(Q, P, t) =
∑

(k1k
′
1)...(kN k′

N )

[ N∏
j=1

(e−iL̂	tj )kj−1k
′
j−1,kj k′

j

]
ρkNk′

N
(Q,P ),

(14.10)
where the time interval t is divided into N segments and 	tj = tj −tj−1. In the limit
that 	tj is sufficiently small, the propagator for segment j may be approximated by

(e−iL̂	tj )kj−1k
′
j−1,kj k′

j
≈Wkj−1k

′
j−1

(tj−1, tj )e
−iLkj−1k′

j−1
	tj

×
(
δkj−1kj

δk′
j−1k

′
j
− 	tKkj−1k

′
j−1,kj k′

j

)
, (14.11)

where Wkj−1k
′
j−1

(tj−1, tj ) = e
−iωkj−1k′

j−1
	tj

is the phase factor associated with

that segment. To simulate the action of Kkk′,jj ′ on functions of the momenta, the
momentum-jump approximation (MJA) [23, 65] is invoked, namely,

(
1 + h̄ωkj

2

dkj

ckj

· ∂

∂P

)
f (P ) =

(
1 + h̄ωkj

∂

∂(P̄ · ¯̂
dkj )2

)
f (P )

≈ eh̄ωkj ∂/∂(P̄ · ¯̂dkj )2
f (P )

= f (P + 	P), (14.12)

where P̄ = P/
√

M , ¯̂
dkj = d̄kj /|d̄kj |, d̄kj = dkj /

√
M , and the momentum shift,

	P , is given by

	P = √
M

¯̂
dkj

[
sgn(P̄ · ¯̂

dkj )

√
(P̄ · ¯̂

dkj )2 + 	εkj − (P̄ · ¯̂
dkj )

]
. (14.13)

(N.B.: dkj /
√

M = dT
kjM

−1/2, where T stands for the transpose and M−1/2 is a
diagonal matrix containing the inverse square root of the masses.) According to

Eq. (14.13), if 	εkj < 0 (i.e. an upward transition from k → j) and (P̄ · ¯̂
dkj )

2 <∣∣	εkj

∣∣ (i.e. there is insufficient kinetic energy from the bath momenta along ¯̂
dkj for

the nonadiabatic transition to occur), then the argument of the square root is negative
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leading to imaginary momentum changes. If this occurs, the nonadiabatic transition
is forbidden, and the trajectory is continued adiabatically. It should be noted that
the approximation made in the second line of Eq. (14.12) relies on |h̄ωkj dkj c

−1
kj /2|

being small. Also, the total energy of the system is conserved along a trajectory
under the MJA.

The expectation value of χ̂ (Q, P, t) is given by

〈χ̂ (t)〉=
∑
kk′

∫
dQdPχk′k(Q, P )ρkk′(Q, P, t)

=
∑

(k0k
′
0)...(kN k′

N )

∫
dQdPχk′

0k0
(Q, P )

[ N∏
j=1

(e−iL̂	tj )kj−1k
′
j−1,kj k′

j

]
ρkNk′

N
(Q,P ),

(14.14)

or, in the Heisenberg representation, by

〈χ̂ (t)〉 =
∑
kk′

∫
dQdPχkk′(Q, P, t)ρk′k(Q, P )

=
∑

(k0k
′
0)...(kN k′

N )

∫
dQdPρk′

0k0
(Q, P )

[ N∏
j=1

(eiL̂	tj )kj−1k
′
j−1,kj k′

j

]
χkNk′

N
(Q,P ).

(14.15)

The SSTP algorithm evaluates Eq. (14.15) via a hybrid molecular dynamics
(MD)/Monte Carlo (MC) approach, whereby the multidimensional sums over
the state indices are evaluated using MC sampling, the initial conditions of
the subsystem and bath are determined from ρk′

0k0
(Q, P ), and χkk′(Q, P, t) is

propagated in time using MD simulation.
We now detail the steps of the SSTP algorithm for evaluating Eq. (14.15) by

considering the evolution through a single time step (i.e. N = 1):

〈χ̂(	t)〉 =
∑

(k0k
′
0)(k1k

′
1)

∫
dQdPρk′

0k0
(Q, P )(eiL̂	tj )k0k

′
0,k1k

′
1
χk1k

′
1
(Q, P ).

=
∑

(k0k
′
0)(k1k

′
1)

∫
dQdPρk′

0k0
(Q, P )Wk′

0k0
(t0, t1)e

iLk0k′
0
	t1

×
(
δk0k1δk′

0k
′
1
+ 	tKk0k

′
0,k1k

′
1

)
χk1k

′
1
(Q, P ). (14.16)
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1. After specifying the initial density matrix, ρk′
0k0

(Q, P ), of the system, sample
the initial conditions from |ρk′

0k0
(Q, P )| using an appropriate scheme.

2. Propagate the bath DOF adiabatically on the adiabatic PES corresponding to the
pair of indices (k0k

′
0), i.e. (εk0 + εk′

0
)/2, for a time interval 	t , and calculate the

phase factorWk′
0k0

(0,	t) for this interval.
3. According to Eq. (14.9) for Kk0k

′
0k1k

′
1
, determine stochastically whether or not a

nonadiabatic transition (k0k
′
0) → (k1k

′
1) takes place. One way of sampling the

nonadiabatic transitions involves first identifying which of the two terms in the
expression for Kk0k

′
0,k1k

′
1

acts (viz. the first term changes the index k0 → k1,
while the second changes the index k′

0 → k′
1). This can be accomplished using

MC by assigning a 50% probability to selecting each term. Once one of these
terms has been selected, the actual transition is MC sampled with a probability

Pkj = 	t |dkj · P
M

|
1 + 	t |dkj · P

M
| . (14.17)

The probability of remaining in the same adiabatic state (i.e. no nonadiabatic
transition) is therefore

Qkj = 1

1 + 	t |dkj · P
M

| , (14.18)

satisfying Pkj + Qkj = 1. If the transition is accepted, then the momenta are
shifted according to Eqs. (14.12) and (14.13), and the value of the observable
becomes

χk1k
′
1
(	t)=2Wk0k

′
0
(0,	t)dkj·P	t

M
χk0k

′
0
(Q	t , P	t+	P)

1

Pkj

. (14.19)

In the above equation, the factor of 2 is the MC weight associated with the
sampling of the k0 → k1 or k′

0 → k′
1 term in Kk0k

′
0,k1k

′
1

(which each occur
with a probability of 50%), and 1/Pkj is the MC weight associated with the
sampling of the transition. On the other hand, if the transition is rejected, there is
no momentum shift, and the value of the observable becomes

χk1k
′
1
(	t) =Wk0k

′
0
(0,	t)χk0k

′
0
(Q	t , P	t )

1

Qkj

, (14.20)

where 1/Qkj is the MC weight associated with no transition.
4. Repeat steps 2–3 until time t to calculate χkNk′

N
(t).

5. Multiply χkNk′
N
(t) by the sign of the density matrix, and average the resulting

value over the initial conditions to obtain 〈χ̂ (t)〉.
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14.2.4 Transition Filtering

To obtain reliable expectation values beyond short times using the SSTP algorithm,
experience has shown that one requires extremely large ensembles of trajectories.
This is mainly due to the fact that the statistical weights associated with the MC
sampling of the nonadiabatic transitions grow very rapidly in time, making it
extremely difficult to obtain converged expectation values at longer times. More
specifically, each trajectory acquires a statistical weight,

∏N
j=1Wj (where Wj

is the MC weight for time step j ), which factors into the expectation value. In
practice, these weights grow exponentially with time [12], thereby requiring an
exponentially growing number of trajectories to converge expectation values at
longer times. To slow down the growth of these weights and thereby reduce the
number of trajectories required for convergence at longer times, observable cutting
[23] and transition filtering [12, 13, 15, 66, 79, 80] schemes have been used, both
separately and together, with varying degrees of success.

In observable cutting, one sets an upper bound on the magnitude of the weight at
each time step of the simulation, thereby ensuring that the magnitude of the weight
never becomes too large. Then, one computes the expectation value subject to this
upper bound. To determine the value of the upper bound that will yield a satisfactory
expectation value, one must repeat the calculation with increasingly larger values
of the upper bound. Using this scheme, however, it is difficult to know if one has
converged to the true result. In other words, if the upper bound is too small, the
result may appear stable but may be inaccurate. Conversely, if the upper bound is
too large, the result may be too noisy to be interpretable.

In contrast, transition filtering reduces the statistical noise by disallowing those
nonadiabatic transitions that would lead to large statistical weights. In this subsec-
tion, we will outline the transition filtering approach proposed and implemented
by Hanna et al. in Refs. [12, 13, 15]. In Refs. [12, 13], the scheme was laid out
and applied to two relatively simple systems (viz. 2 quantum states coupled to
20 classical DOF and 3 quantum states coupled to 1 classical DOF), yielding
substantial reductions in the numbers of trajectories required for convergence and
smoother and more accurate results than those obtained with observable cutting.
In Ref. [15], the scheme was applied to a model containing six quantum and six
classical DOF, in order to investigate the feasibility and efficacy of the scheme for
treating subsystems with larger numbers of states (as the number of trajectories
scales with the number of states in the quantum subsystem). In this case, it was
possible to obtain numerically stable results with more than one order of magnitude
fewer trajectories than the number of trajectories used to generate the results without
any filtering. This application will be discussed in more detail in Sect. 14.3.1.

We now outline the transition filtering scheme. To begin with, we define the
following transition probability for the MC sampling of nonadiabatic transitions
along an SSTP trajectory [12]
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 = 	t |A(Q,P )|w(καβ,	Eαβ)

1 + 	t |A(Q,P )|w(καβ,	Eαβ)
, (14.21)

where 	t is the time step and

w(καβ,	Eαβ) =
{

1, if|	Eαβ | ≤ καβ,

0, otherwise.
(14.22)

As can be seen, this transition probability restricts nonadiabatic transitions between
adiabatic PESs α and β to occur when the magnitude of the energy gap between
the surfaces is sufficiently small, i.e. less than a threshold value καβ . The functional
form of A(Q,P ) should be chosen in such a way to minimize the statistical noise in
the expectation value. One form that has been shown to work relatively well is [12]

A(Q,P ) = P

M
· dαβ

	Emin
αβ

	Eαβ

, (14.23)

where 	Emin
αβ is the smallest energy gap between the α and β surfaces. In practice,

	Emin
αβ may be extracted from a 	Eαβ histogram, generated by evolving the system

adiabatically on its ground-state PES for a sufficiently long time. By filtering out
nonadiabatic transitions with large 	Eαβ ’s according to w and placing 	Eαβ in the
denominator of A(Q,P ), one favours the high-probability transitions and thereby
slows down the temporal growth of the statistical weights.

For an n-state quantum subsystem, one must specify the values of n(n − 1)/2
	Emin

αβ ’s and καβ ’s (because there are n(n − 1)/2 possible α ↔ β nonadiabatic

transitions). The 	Emin
αβ values may be obtained as explained in the previous

paragraph, while sensible initial trial values for the καβ ’s are the mean values
of the 	Eαβ ’s. Using the SSTP algorithm, one then computes a time-dependent
expectation value out to some time t , using a reasonably large number of trajectories.
If the result is noisy, one may converge the expectation value according to the
following steps:

1. Reduce the value of κ1n (relative to its previous value) to filter the 1 ↔ n

transitions and recompute the expectation value out to time t .
2. If the result is noisy, then further reduce the values of καβ to filter the transitions

between states for which |α − β| = n − 2 (e.g. in the n = 4 case, the 1 ↔ 3 and
2 ↔ 4 transitions) and recompute the expectation value out to time t .

3. If n > 3, then repeat the previous step for the transitions with |α − β| = n − k

(where k = 3 . . . n − 1).
4. If the result is noisy, repeat steps 1 to 3.
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14.2.5 Eigenvector Sign Correction

In nonadiabatic dynamics methods such as the SSTP algorithm, the adiabatic states
and nonadiabatic couplings between them must be evaluated on-the-fly. Typically,
they are evaluated numerically, which first involves a numerical diagonalization of
the Hamiltonian matrix (represented in a convenient basis). The diagonalization
results in eigenvectors that are uniquely determined up to a sign, which leads to
arbitrary signs of the nonadiabatic coupling vectors. The signs may be corrected
by requiring that the eigenvectors change continuously from one time step to
the next. However, when a system is in the vicinity of an avoided crossing or
conical intersection between two PESs, it becomes more complicated to correctly
distinguish between physical and unphysical sign changes in the eigenvectors.
Previously, Errea et al. proposed a procedure for correcting the sign of an electronic
state, which involves tracking the sign of the overlap between the state evaluated at
neighbouring points in a grid of nuclear positions [19]. This procedure also accounts
for situations in which the system is in the vicinity of an avoided crossing or conical
intersections.

The procedure put forward in Ref. [19] focuses on ensuring the continuous
evolution of eigenvectors and nonadiabatic coupling vectors along a single trajectory
in configuration space. However, when computing time-dependent expectation
values based on an ensemble of trajectories (which are typically initialized at
different points in configuration space), one is faced with the issue of how to
ensure eigenvector sign continuity within the ensemble. In Ref. [14], building upon
elements of Errea et al.’s method, Hanna et al. proposed a simple procedure that
accomplishes this within the context of mixed quantum-classical surface-hopping
dynamics simulations. The utility of this procedure was demonstrated by calculating
both adiabatic state populations in a reduced model of a condensed phase proton-
coupled electron transfer reaction and subsystem state populations in an excitonic
model of an alpha-helical chain undergoing vibrational energy transport, using the
SSTP algorithm. More specifically, the results showed that ensuring eigenvector
sign continuity across the ensemble leads to minor (but significant) improvements
in the accuracy of expectation values in some cases and to drastic improvements in
other cases.

We now outline the procedure proposed in Ref. [14]. To properly evaluate the
expression for a time-dependent expectation value in Eq. (14.15), the sign continuity
of the eigenvectors must be preserved across all of the points in the configurational
space (of the classical DOF) visited by an ensemble of trajectories, as opposed to
the points within a single trajectory. This may be accomplished by first sampling
the initial conditions of the classical DOF for the first microcanonical (i.e. NVE)
trajectory from a canonical (i.e. NVT) trajectory, in which the eigenvector signs are
tracked and corrected at each time step according to the following steps:

1. Compute Oαα(t) = 〈α;Qt |α;Qt−	t 〉 (i.e. the overlap of eigenvector α with
eigenvector α of the previous time step) for each α. When the classical
configuration Qt−	t is not close to an avoided crossing or conical intersection
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and the time step is sufficiently small, the eigenvectors are not expected to rotate
by much. In this case, the Oαα’s will be close to 1 (assuming that the eigenvectors
are normalized). However, if an eigenvector undergoes an arbitrary sign flip, then
the Oαα’s will be close to -1. In contrast, when Qt−	t is close to an avoided
crossing or conical intersection, the eigenvectors may vary rapidly, leading to
Oαα’s that are substantially lower than 1 and possibly even negative. In this
case, if an eigenvector undergoes an arbitrary sign flip, then Oαα could lie in
the interval −δ < Oαα < δ, where |δ| is substantially lower than 1 (e.g. 0.7 or
lower).

2. Determine the value of mt(α) for all α’s, according to

mt(α) =

⎧⎪⎪⎨
⎪⎪⎩

0 if |Oαα(t) − 1| < ε

1 if |Oαα(t) + 1| < ε

2 otherwise

(14.24)

where ε is a threshold parameter (with 0 < ε < 1) that depends on the size
of the time step, 	t , and the details of the PESs. The mt(α) = 0 and 1 cases
would typically arise when Qt−	t is not in the vicinity of an avoided crossing
or conical intersection and the eigenvector undergoes a physical rotation and
unphysical sign flip, respectively. The mt(α) = 2 case would typically arise
when Qt−	t is in the vicinity of an avoided crossing or conical intersection. In
this case, one must return the system to the end of the previous time step, divide
the current time step in half, and evolve the system with the reduced time step.
This process is repeated until mt(α) becomes either 0 or 1. A sensible choice of
ε (in combination with a sufficiently small 	t) should yield mt(α) = 0, 1 most
of the time (in order to minimize the number of time steps needed).

3. Correct the signs of all eigenvectors according to

|α;Qt 〉c = (−1)mt (α)|α;Qt 〉, (14.25)

i.e. if mt(α) = 0, then the sign is not changed, and if mt(α) = 1, then the sign is
flipped to ensure the continuous evolution of the eigenvector.

At the end of this NVT dynamics phase, the eigenvectors are stored in memory
(i) to continue the sign tracking and correction during the first NVE trajectory
in the ensemble and (ii) to continue the sign tracking and correction during the
second NVT dynamics phase preceding the second NVE trajectory. This procedure
is repeated for the remaining trajectories in the ensemble (see Fig. 14.3 for an
illustration of this procedure). In this way, the basis coefficients in |α;Q〉 =∑

i cα
i (Q)|φi〉 (where {|φi〉} is a basis set of choice), which may enter explicitly

into the sampling of ρα′α(Q,P ) and into the dynamics of χαα′(Q, P, t), will evolve
continuously throughout the configurational space.

For systems that do not spend a significant amount of time in the vicinity of
an avoided crossing or conical intersection, one can reduce the computational time
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Fig. 14.3 A pictorial
depiction of the procedure for
ensuring sign continuity
within an ensemble of
trajectories

Fig. 14.4 Histogram of all
eigenvector overlap values,
Oαα , for the PCET model
considered in Ref. [14]. The
inset portrays a zoomed in
portion of the histogram
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associated with implementing the mt(α) = 2 case by neglecting it altogether, i.e.
one does not change the sign of the eigenvector (based on the assumption that
any sign change is physical in this region of the configurational space). In such
situations, one must choose the value of ε with great care. If ε is too large, then one
could erroneously change the eigenvector signs and, in turn, distort the results. We
now discuss a way of choosing appropriate ε values for a given system and time step
size (in general, the optimal value of ε will depend on these factors). To determine
which value or range of values would be appropriate, it is instructive to first generate
a histogram of the Oαα values. In Fig. 14.4, we present the histogram of Oαα values
for the proton-coupled electron transfer (PCET) model considered in Ref. [14],
which was calculated based on a sufficiently large ensemble of “sign-uncorrected”
trajectories. As can be seen, the most probable values of Oαα occur in the ranges
−1 < Oαα < −0.9 and 0.9 < Oαα < 1, with the remaining Oαα values having
very low probabilities. Zooming in on the region at low ordinate values (see inset of
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Fig. 14.4), one sees continuous decays starting from Oαα = ±1, followed by two
blips centred at Oαα ≈ ±0.5, and a peak centred at Oαα = 0 (which is presumably
due to character switches in the eigenstates after a nonadiabatic transition). The
discontinuities at Oαα ≈ ±0.5 are suggestive of the onset of eigenvector rotations
near an avoided crossing or conical intersection and thereby point to an optimal ε

value that is slightly less than ≈ 0.5.
To validate the accuracy of the expectation values calculated using the stream-

lined version of the eigenvector sign correction procedure, one could repeat the
calculation with a reduced time step and compare the results to those obtained with
the larger time step. (For the system considered in Ref. [14], it was found that the
percentage of the total time that the mt(α) = 2 case arises for a particular choice
of ε decreases by about two orders of magnitude when the time step is decreased
by at least a factor of ten.) If there is no significant change in the results, then the
streamlined method is justified.

Finally, to speed up the generation of the ensemble of trajectories, one can split
up the work onto many computer processors. As a result, however, one can no
longer easily ensure eigenvector sign continuity across the entire ensemble, but
only within the sub-ensemble of trajectories generated on a given processor. In
Ref. [14], the authors confirmed that the final expectation values were not adversely
affected by the parallelization by checking what happens after randomizing the
initial eigenvector signs every n trajectories on each processor. This check revealed
that for the system considered, one must run at least ≈400 trajectories per processor
to recover the fully sign-corrected results.

14.3 Applications

14.3.1 Vibrational Energy Transfer in an Alpha-Helical
Polypeptide

We now present an application in which the utility of the previously discussed
transition filtering scheme is demonstrated for simulating vibrational energy transfer
in a six-state model of an alpha-helical polypeptide [15]. In this case, the vibrational
energy transfer is monitored by computing the time-dependent amide I mode
populations, following a vibrational excitation at one end of the polypeptide.

The aforementioned model, portrayed in Fig. 14.5, involves a one-dimensional
chain of hydrogen-bonded (H-bonded) peptide groups, constituting one of the three
peptide chains in an alpha-helical polypeptide. Adopting a mixed quantum-classical
description, the high-frequency amide I modes are treated quantum mechanically,
while the low-frequency H-bond displacement coordinates to which the amide I
modes are coupled are treated classically. The Hamiltonian of this system is given
by

H = H0|0〉〈0| +
∑
m,n

Hmn|φm〉〈φn|, (14.26)
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E1

E0

Qm
qm

JJJJJ

Fig. 14.5 One-dimensional chain model of H-bonded peptide groups (blue spheres) in an alpha-
helical polypeptide. The position of the mth amide I mode (green rectangles) is denoted by qm,
while the longitudinal displacement of the mth unit (blue double-sided arrows) is denoted by Qm.
Initially, the first amide I mode in the chain is vibrationally excited (as indicated by the red arrow)
with energy E1, and the remainder of the amide I modes are in their ground states with energies
E0

where |φm〉 = |χm1〉∏n �=m |χn0〉 is the mth singly excited state and |0〉 =∏m |χm0〉
is the ground state of a chain of amide I modes. (N.B.: |χm0〉 and |χm1〉 denote
the ground and first excited states, respectively, of the mth amide I mode). The

ground-state matrix element is given by H0 = T + E0(Q), where T = �i
P 2

i

2M
is the

kinetic energy associated with the motion of the H-bond lattice displacements and
the potential energy has the following form:

E0(Q) =
∑
m

[
Em0 + (1 − δm,1)

W

2
(Qm − Qm−1)

2 + wm0(Q)

]
. (14.27)

The excited state matrix elements are given by

Hmn = δm,n [H0 + Em1 − Em0 + wm1(Q) − wm0(Q)]

−J
[
δm−1,n〈φm|qmqm−1|φm−1〉

+ δm,n−1〈φn|qnqn−1|φn−1〉
]
, (14.28)

where δi,j is the Kronecker delta function, J is the parameter governing the strength
of the transition dipole moment coupling between neighbouring amide I modes,
W is the force constant governing the motion of the H-bond lattice displacements,
Em1 − Em0 is the energy gap between the ground and first excited states of the
mth amide I mode, qm is the position of the mth amide I mode, and Q = {Qm}
corresponds to the set of H-bond lengths. The term wmν(Q), which describes the
coupling between the H-bond displacements and the amide I modes, is given by

wmν(Q) = (1 − δm,1)
χ

2
(Qm − Qm−1)〈χmν |q2

m|χmν〉, (14.29)

where χ is the coupling strength. The values of the various matrix elements of qm

and q2
m are taken from Table 2 in Ref. [73], while the values of the parameters
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Em1 − Em0, J , W , χ and M are taken from Table 1 in Ref. [73] and are given
by 1660 cm−1, 7.8 cm−1, 13 N/m, 62 pN and 87 mp, respectively.

The quantum subsystem of amide I modes and classical environment of H-bond
lattice displacements are uncorrelated initially, which yields the following factorized
initial density matrix:

ρ̂ (0) = ρ̂q (0) ρe (Q, P ) , (14.30)

where ρ̂q(0) and ρe(Q,P ) correspond to the initial densities of the quantum sub-
system and classical environment, respectively. Following a vibrational excitation
of the first amide I mode in the chain, the initial density matrix of the quantum
subsystem, represented in the subsystem basis of singly excited states, is given by

ρ̂q(0) =

⎛
⎜⎜⎜⎝

1 0 · · · 0
0 0 · · · 0
...

...
. . . 0

0 0 · · · 0

⎞
⎟⎟⎟⎠ . (14.31)

The positions and momenta of the classical oscillators are initialized by first treating
them as a collection of uncoupled harmonic oscillators at thermal equilibrium at
300 K, whose equilibrium Wigner distribution ρe (Q,P ) can be well approximated
by

ρe (Q,P ) ≈ 1

Z

M∏
j=1

exp

[
−β

{
P 2

j

2
+ 1

2
W 2Q2

j

}]
, (14.32)

where M is the number of oscillators and Z= ∫ dQdP exp
[
−β

2

∑
j (P

2
j +W 2Q2

j )
]

is the partition function. The correct thermal equilibrium distribution at 300 K
(in the absence of any amide I excitation) is then achieved by equilibrating the
coupled harmonic oscillators for 2 ps using the ground-state potential found in
Eq. (14.27) with a Nosé-Hoover thermostat and a time step of 0.25 fs. (In Ref. [21],
the ergodicity of the Nosé-Hoover thermostat was confirmed by comparing the
results to those generated with a Nosé-Hoover chain thermostat.) The initial state
of the quantum oscillators is sampled by first transforming ρ̂q(0) to the adiabatic
basis (see details of the transformation and sampling in Appendix A of Ref. [21]).
Following the classical equilibration and sampling of the initial quantum state,
a 50-fs microcanonical SSTP trajectory is generated using a time step of 1 fs.
The arbitrary sign flips in the eigenvectors upon numerical diagonalization of the
Hamiltonian matrix are corrected at each time step using the procedure described in
Sect. 14.2.5.

Before presenting the results for the time-dependent populations of the amide I
modes, one must describe how the optimal values of 	Emin

αβ and καβ are determined
(see Sect. 14.2.4 for the definitions of these quantities). Because the basis set
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Fig. 14.6 Histograms of
|	Eαβ | values (in units of
10−22 J) for all 15 possible
energy gaps between the
adiabatic states. The mean
value of each histogram is
denoted by a vertical arrow.
Each colour corresponds to
energy gaps with the same
value of |α − β|

contains six singly excited states (one per amide I mode), the number of adiabatic
states involved in the dynamics is n = 6, and, therefore, one has to determine
15 	Emin

αβ values and 15 καβ values. To accomplish this, the system is evolved
adiabatically on its ground-state PES for a sufficiently long time (i.e. to explore the
important regions of the configuration space of the classical DOF), and 15 |	Eαβ |
histograms are generated based on the 	Eαβ values calculated at each time step
(see histograms in Fig. 14.6). The first, second and third columns of Table 14.1
show the 	Emin

αβ values corresponding to the smallest 	Eαβ values with a non-zero
probability density in the histograms, the mean values of each |	Eαβ | histogram
and the optimal καβ values used to generate the results, respectively. It should be
noted that the |α − β| = 1 transitions (whose |	Eαβ | histograms have substantial
probability densities at lower |	Eαβ | values) are not filtered in an effort to minimize
the errors introduced by filtering out transitions.

Figure 14.7 shows the time-dependent populations of the amide I modes out to
50 fs, generated using the transition filtering scheme, 109 trajectories and a time step
of 1 fs. Comparing these results to the unfiltered ones [14] generated using 5 × 1010

trajectories, one sees that it is possible to obtain smoother and comparably accurate
results with more than an order of magnitude fewer trajectories when transition
filtering is used.
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Table 14.1 The values of the
transition filtering parameters
used in the simulations. All
values are in units of 10−22 J

α ↔ β 	Emin
αβ 	Eαβ καβ

1↔2 0.00182 9.3 –

1↔3 0.255 15.53 8

1↔4 3.117 20.57 12

1↔5 5.103 26.55 20

1↔6 6.327 35.72 23

2↔3 0.00035 6.19 –

2↔4 0.229 11.27 8

2↔5 3.117 17.27 12

2↔6 4.826 26.42 20

3↔4 0.0004 5.02 –

3↔5 0.181 11.01 8

3↔6 3.119 20.19 12

4↔5 0.000577 5.76 –

4↔6 0.234 15.15 8

5↔6 0.00119 8.98 –

Fig. 14.7 Comparison of the time-dependent populations of the six amide I modes, generated with
the transition filtering scheme (red lines) and without any filter (black lines). (The unfiltered results
are taken from Ref. [14])

14.3.2 Field-Driven Dynamics of a Plasmonic Metamolecule

We next present an application in which the SSTP algorithm is generalized
for simulating the dynamics of a metamolecule subjected to a time-dependent
driving field [78]. In this case, because the Hamiltonian is time-dependent, a time-
dependent basis is used. Metamolecules are important in the field of quantum
plasmonics [9, 11, 72, 90], which studies the interactions of surface plasmons with
quantum emitters (a metamolecule collectively refers to the surface plasmon and
quantum emitter). At the nanometre scale, metamolecules can operate at optical
frequencies [38, 42, 52, 56]. A typical example of such a metamolecule is a quantum
dot coupled to a surface plasmon in a metal nanoparticle [51].

A metamolecule can be modelled by a two-level system, representing the
quantum dot, coupled to a resonant mode, representing the surface plasmon in
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Fig. 14.8 A schematic illustration of a model metamolecule. The metamolecule is composed
of a quantum dot, represented by a two-level system, coupled to a surface plasmon in a metal
nanoparticle and represented by a quantum harmonic oscillator (with a manifold of equispaced
energy levels)

the metal nanoparticle (see Fig. 14.8 for a schematic illustration) [72]. In addition,
the effect of a time-dependent driving field on the dynamics of the metamolecule
can be considered. In this section, we present a study in which the two-level
system is treated quantum mechanically and the resonant mode and driving field
are treated classically. The time-dependent Hamiltonian of this mixed quantum-
classical system, written in terms of adimensional quantities (whose definitions are
given in the Appendix), is given by

Ĥ (t) = −�

2
σ̂z + P 2

2
+ 1

2
ω2Q2 − cQσ̂x + g cos(ωdt)σ̂x , (14.33)

where � is the frequency associated with the two-level system, ω is the frequency
associated with the resonant mode, c is a coupling constant, g denotes the
subsystem-field coupling strength, ωd is the driving frequency, and σ̂x/z denote
the Pauli matrices. The composite system is initialized in the factorized state
ρ̂(Q, P ) = ρ̂SρB(Q, P ), where the density matrix of the subsystem (i.e. the two-
level quantum dot), expressed in the subsystem basis, is given by

ρ̂S =
(

0 0
0 1

)
, (14.34)
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and ρB(Q, P ), the Wigner distribution function of the bath (i.e. the resonant
harmonic mode), is given by

ρB(Q, P ) = tanh(βω/2)

π
exp

[
−2 tanh(βω/2)

ω

(
P 2

2
+ ω2Q2

2

)]
. (14.35)

To simulate the quantum-classical Liouville dynamics of the Hamiltonian in
Eq. (14.33), a generalization of the SSTP algorithm to time-dependent Hamiltonians
is needed. To this end, one can introduce a time-dependent basis in terms of the
eigenstates of ĥ(Q, t) = Ĥ (Q, P, t) − P 2/2M (defined by ĥ(Q, t)|α;Q, t〉 =
Eα(Q, t)|α;Q, t〉, where |α;Q, t〉 and Eα(Q, t) are the αth eigenstate and eigen-
value, respectively). In this basis, the evolution of an observable χ takes the form

χαα′(Q, P, t) = T
⎧
⎨
⎩
∑
ββ ′

(
e
i
∫ t
t0

dτLt (τ )
)

αα′,ββ ′

⎫
⎬
⎭χββ ′(Q, P, t0) , (14.36)

where t0 is the initial time, T is the time-ordering operator and

iLt
αα′,ββ ′(t) = iL̃αα′,ββ ′(t) +K t

αα′,ββ ′(t) . (14.37)

In the above equation, the operatorK t is responsible for the nonadiabatic transitions
in the subsystem due to the interaction with the external field, and its matrix
elements are given by

K t
αα′,ββ ′ = 〈α̇|β〉δα′β ′ + 〈β|α̇′〉δαβ , (14.38)

where the dot denotes a time derivative. The matrix elements of the operator iL̃
have a similar form to those implied in Eq. (14.7) and are given by

iL̃αα′,ββ ′(t) = iL̃0
αα′(t)δαβδα′β ′ + K̃αα′,ββ ′(t) , (14.39)

where iL̃0
αα′(t) = iω̃αα′(t) + iL̃αα′(t), with the Bohr frequency ω̃αα′(Q, t) =

[Eα(Q, t)−Eα′(Q, t)]/h̄ and the classical-like Liouville operator iL̃αα′ = (P/M)·
(∂/∂Q)+(1/2)[F̃ α

W(t)+ F̃ α′
W (t)] ·∂/∂P (F̃ α

W(Q, t), is the time-dependent Hellman-

Feynman force derived from the adiabatic energy surface Eα(Q, t)); the operator K̃
is responsible for nonadiabatic transitions in the subsystem due to the interaction
with the bath and its matrix elements are given by

K̃αα′,ββ ′(t) = T̃α→β(t)δα′β ′ + T̃ ∗
α′→β ′(t)δαβ , (14.40)

where

T̃α→β(t) = P

M
· dαβ(Q, t)

(
1 + 1

2

	Eαβ(t)dαβ(Q, t)

P
M

· dαβ(Q, t)

∂

∂P

)
, (14.41)
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T̃ ∗
α′→β ′(t) = P

M
· d∗

α′β ′(Q, t)

(
1 + 1

2

	Eα′β ′(t)d∗
α′β ′(Q, t)

P
M

· d∗
αβ(Q, t)

∂

∂P

)
, (14.42)

with 	Eαβ(t) = Eα(Q, t) − Eβ(Q, t) and dαβ(Q, t) = 〈α;Q, t |∂/∂Q|β;Q, t〉 is
the nonadiabatic coupling vector between the time-dependent states α and β.

To arrive at an algorithm for computing χαα′(t), one starts by discretizing the
time to obtain

χαα′(t) =
∑
ββ ′
T
{

exp

[
i
∑
n

τnLt (τn)

]}

αα′,ββ ′
χββ ′(t0) , (14.43)

where
∑

n τn = t − t0. As in the derivation of the SSTP algorithm [47], one then
assumes very small time steps τn and applies the Dyson identity to obtain

χαα′(t) =
∑
ββ ′
T
∏
n

{
exp
[
iτnL̃0

αα′(τn)
]

×
(

1 + τnK̃αα′,ββ ′ + τnK t
αα′,ββ ′

) }
χββ ′(t0) . (14.44)

In what follows, it will be assumed that the subsystem-bath coupling is sufficiently
weak that the action of K̃αα′,ββ ′ can be disregarded. Thus, if τn = τ for every n,
then one obtains

χαα′(t) =
∑
ββ ′
T
∏
n

{
exp
[
iτ L̃0

αα′(τ )
] (

1 + τK t
αα′,ββ ′

) }
χββ ′(t0) . (14.45)

In practice, Eq. (14.45) can be evaluated using an analogous procedure to that
described in Sect. 14.2.3. At the beginning of each time step, one propagates the
phase space point deterministically using iL̃0

αα′,ββ ′(t). Then, at the end of the step,
one samples stochastically the nonadiabatic transition due to the driving field. This
is done by first sampling with probability 1/2 one of the two terms of K t

αα′,ββ ′ in
Eq. (14.38). The probability of accepting the transition is defined as

Pβ→α = τ |〈α̇|β〉|
1 + τ |〈α̇|β〉| , (14.46)

while the probability of rejecting the transition is given by

Qβ→α = 1

1 + τ |〈α̇|β〉| . (14.47)

As described in Sect. 14.2.3, the observable is then multiplied by the appropriate
MC weight, depending on whether or not the transition is accepted. Finally, the
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Fig. 14.9 Plot of the
time-dependent coherence,
〈σx(t)〉, for the weak
subsystem-field case
(g = 0.1)
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Fig. 14.10 Plot of the
time-dependent coherence,
〈σx(t)〉, for the strong
subsystem-field coupling case
(g = 1.5)
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average value of the observable is calculated according to Eq. (14.15), with the use
of the time-dependent basis as opposed to the time-independent one.

The results of the simulations are now presented and discussed. A time step of
τ = 0.1 and 105 trajectories were used to obtain all the results. First, the influence
of the driving field on the metamolecule is investigated by varying the subsystem-
field coupling from g = 0.1 to g = 1.5 while keeping the system parameters
fixed at β = 12.5, c = 0.01, � = 0.8, ω = 0.5 and ωd = 0.05. For this set
of parameter values, the coupling between the quantum dot and resonant mode is
weak, and, therefore, the effect of nonadiabatic transitions (due to this coupling)
on the dynamics is expected to be minor. Figure 14.9 shows the results for the
time-dependent subsystem coherence, 〈σx(t)〉, in the g = 0.1 case. We see that
〈σx(t)〉 exhibits both high- and low-frequency oscillatory modes, with the values
of 〈σx(t)〉 ranging between −0.5 and 0.5. The fast mode (with angular frequency
≈ 0.81) is superimposed on the slow mode (with angular frequency ≈ 0.05). The
low frequency corresponds to that of the driving field, while the high frequency
corresponds to that of the tunnel splitting, shifted by a very small amount due to the
weak coupling to the bath and field. As expected, in the case of weak coupling to
the driving field, the tunnel splitting dominates the time evolution of 〈σx(t)〉.

Figure 14.10 shows the results for the time-dependent subsystem coherence,
〈σx(t)〉, in the g = 1.5 case. When strongly coupled to the driving field, the time
evolution of 〈σx(t)〉 displays an irregular pattern, viz. it starts by rapidly oscillating
around 〈σx〉 = −0.25 between t = 0 and t ≈ 20; it undergoes large oscillations
from t ≈ 20 to t ≈ 40 and then switches to oscillating rapidly around 〈σx〉 = 0.25
until t = 80; and finally, it undergoes large oscillations again. Based on these
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Fig. 14.11 Plot of the
time-dependent population
difference, 〈σz(t)〉, for the
strong subsystem-field
coupling case (g = 1.5)
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Fig. 14.12 Rate of change of
the expectation value of the
Hamiltonian of the
metamolecule, d〈HM 〉/dt , as
a function of time. The main
figure displays the result for
the strong driving field case,
while the inset shows the
result for the weak driving
field case
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results, one can conclude that the quantum dot switches between two different
dynamical regimes, one in which the coherence is positive and the other in which it
is negative. Because of the strong coupling to the driving field, the frequency of the
fast oscillations is ≈ 200% greater than that obtained in the weak subsystem-field
coupling case.

Figure 14.11 shows the time evolution of the subsystem population difference,
〈σz(t)〉, in the strong driving regime. It also exhibits an irregular pattern, with
regions of large and fast oscillations separated by regions of small and slow
oscillations. In the weak driving regime, such a behaviour is not observed, and the
amplitude of the oscillations is much smaller (result not shown). This is simply
a reflection of the fact that a smaller fraction of the trajectories is driven into the
excited state by the driving field in this regime.

Figure 14.12 shows the rate of change of the expectation value of the energy of
the metamolecule for the g = 0.1 and g = 1.5 cases. For g = 1.5, we see that
d〈HM(t)〉/dt exhibits regions of large and fast oscillations about zero separated by
regions of small and slow oscillations about zero, in the same time intervals where
〈σx(t)〉 and 〈σz(t)〉 do. Instead, for g = 0.1, d〈HM(t)〉/dt exhibits much smaller
oscillations about zero.
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14.4 Summary and Future Outlook

Quantum dynamical modelling of nanoscale systems containing large numbers of
DOF is essential for understanding their microscopic and macroscopic properties.
Adiabatic mixed quantum-classical dynamics simulations, which rely on the Born-
Oppenheimer approximation, may be performed when there is a large separation
between the timescales of the quantum subsystem and classical environment.
However, for many chemical and biological processes of interest, this is not
the case, and, as a result, the dynamics is not confined to a single state of
the quantum subsystem. This has prompted the development of mixed quantum-
classical methods for simulating nonadiabatic dynamics.

In this chapter, we discussed a hybrid MD/MC method known as the SSTP
algorithm, which is based on a solution of the QCLE. This method has been
shown to perform quite well on relatively simple model systems, but its extension
to systems containing multiple (i.e. >2) quantum DOF and strong subsystem-
bath coupling has proven to be challenging. This is primarily due to the rapid
growth of MC weights (associated with the stochastic sampling of the nonadiabatic
transitions) in time, which render the expectation values difficult to converge. To
alleviate this problem, observable cutting and transition filtering techniques have
been put forward, which significantly reduce the number of trajectories required for
convergence of the expectation values. In this chapter, we discussed one transition
filtering scheme, which is designed to filter out the low-probability transitions
(which lead to the large MC weights) and thereby slow down the growth of the
weights. This scheme has been shown to yield substantial improvements in accuracy,
as compared to the other schemes, and to generate results with at least one order of
magnitude fewer trajectories than what would be required without the scheme. We
also discussed a simple procedure for ensuring sign continuity/consistency in the
evolution of eigenvectors within an ensemble of surface-hopping trajectories. This is
required because the on-the-fly numerical diagonalization of the Hamiltonian matrix
can yield eigenvectors with arbitrary signs. Without such a scheme, trajectory-based
calculations of expectation values in the adiabatic representation can be adversely
affected.

This chapter also covered two recent applications of the SSTP algorithm.
The first one demonstrated the efficacy of the aforementioned transition filtering
scheme for simulating vibrational energy transfer dynamics in systems with higher
dimensional Hilbert spaces and phase spaces. In particular, the time-dependent
populations of the amide I modes in a model of an alpha-helical polypeptide
(containing six quantum and six classical coordinates) were presented. The results
showed that it is possible to obtain smooth, reliable profiles with more than one
order of magnitude fewer trajectories compared to those obtained without any
filtering. In the second application, we presented a dynamical study of a model
for a plasmonic metamolecule interacting with an oscillatory driving field. In this
case, the Hamiltonian is explicitly time-dependent, and, thus, the SSTP algorithm
had to be generalized to account for this fact. Results showing the effects of the
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driving strength on the population and coherence dynamics of the quantum dot,
as well as on the rate of change of the metamolecule energy, were presented and
discussed. Interestingly, in the strong subsystem-field coupling case, large and
irregular variations in the populations and coherences of the quantum dot were
observed.

The QCLE-based approach to modelling quantum dynamics in classical envi-
ronments has proven to be successful in studying a variety of quantum processes at
the nanoscale. Nevertheless, the currently available algorithms present significant
challenges, necessitating the need for further improvements and developments.
Thus, we hope that this chapter will stimulate research along this direction. In
addition, we are interested in broadening the scope of applications studied by
the methods discussed herein. In particular, we believe that these methods can be
effectively used to study energy and charge transfer dynamics in nanoscale devices.

Appendix

The following adimensional coordinates and parameters were used to express the
metamolecule Hamiltonian in Eq. (14.33):

� = �′

ω′
a

, (14.48)

P = P ′
√

M ′h̄ω′
a

, (14.49)

Q =
√

h̄ω′
a

h̄
Q′ , (14.50)

ω = ω′

ω′
a

, (14.51)

c = c′
√

h̄ω′3
a M ′ , (14.52)

g = g′

h̄ω′
a

, (14.53)

β = h̄ω′
aβ

′ , (14.54)

where the primed quantities denote coordinates and parameters with dimensions
and M ′ is the inertial parameter of the resonant mode (which has been set to unity).
In the above equations, the energy scale h̄ω′

a has been introduced. ω′
a is chosen in

such a way that the frequency ω = 0.5 of the resonant mode corresponds to ω′ =
8.9 × 1012 Hz (which is typical of metal nanoparticles [51]) and a total simulation
time of 5.62 × 10−12 s.



542 G. Hanna and A. Sergi

References

1. F. Agostini, S.K. Min, A. Abedi, E.K.U. Gross, J. Chem. Theory Comput. 12, 2127 (2016)
2. I.V. Aleksandrov, Z. Naturforsch. A 36, 902 (1981)
3. S.M. Bai, W.W. Xie, Q. Shi, J. Phys. Chem. A 118, 9262 (2014)
4. A. Bastida, C. Cruz, J. Zúñiga, A. Requena, B. Miguel, The Ehrenfest method with quantum

corrections to simulate the relaxation of molecules in solution: equilibrium and dynamics. J.
Chem. Phys. 126(1), 014503 (2007)

5. M.J. Bedard-Hearn, R.E. Larsen, B.J. Schwartz, J. Chem. Phys. 123, 234106 (2005)
6. E.R. Bittner, P.J. Rossky, Quantum decoherence in mixed quantum-classical systems: nonadi-

abatic processes. J. Chem. Phys. 103, 8130–8143 (1995)
7. E.R. Bittner, B.J. Schwartz, P.J. Rossky, Quantum decoherence: a consistent histories treatment

of condensed phase non-adiabatic quantum molecular dynamics. J. Mol. Struct. Theochem
389, 203–216 (1997)

8. S. Bose, Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91(20),
207901 (2003)

9. J.G. Bouillard, W. Dickson, D.P. O’Connor, G.A. Wurtz, A.V. Zayats, Low-temperature
plasmonics of metallic nanostructures. Nano Lett. 12, 1561 (2012)

10. C. Brooksby, O.V. Prezhdo, Quantized mean-field approximation. Chem. Phys. Lett. 346, 463–
469 (2001)

11. X. Chen, S. Li, C. Xue, M.J. Banholzer, G.C. Schatz, C.A. Mirkin, Plasmonic focusing in
rod-sheath heteronanostructures. ACS Nano 3, 87 (2009)

12. D. Dell’Angelo, G. Hanna, Self-consistent filtering scheme for efficient calculations of
observables via the mixed quantum-classical liouville approach. J. Chem. Theory Comput.
12, 477–485 (2016)

13. D. Dell’Angelo, G. Hanna, Using multi-state transition filtering to improve the accuracy of
expectation values via mixed quantum-classical Liouville dynamics. AIP Conf. Proc. 1790,
020009(1)–020009(4) (2016)

14. D. Dell’Angelo, G. Hanna, Importance of eigenvector sign consistency in computations of
expectation values via mixed quantum-classical surface-hopping dynamics. Theor. Chem. Acc.
136, 75 (2017)

15. D. Dell’Angelo, G. Hanna, On the performance of multi-state transition filtering in mixed
quantum-classical Liouville surface-hopping simulations: beyond two- and three-state quan-
tum subsystems. Theor. Chem. Acc. 137, 15 (2018)

16. A. Donoso, D. Kohen, C.C. Martens, Simulation of nonadiabatic wave packet interferometry
using classical trajectories. J. Chem. Phys. 112, 7345 (2000)

17. A. Donoso, C.C. Martens, Simulation of coherent nonadiabatic dynamics using classical
trajectories. J. Phys. Chem. A 102, 4291–4300 (1998)

18. A. Donoso, C.C. Martens, Semiclassical multistate Liouville dynamics in the adiabatic
representation. J. Chem. Phys. 112, 3980 (2000)

19. L.F. Errea, L. Fernández, A. Macías, L. Méndez, I. Rabadán, A. Riera, Sign-consistent
dynamical couplings between ab initio three-center wave functions. J. Chem. Phys. 121(4),
1663–1669 (2004)

20. S.A. Fischer, C.T. Chapman, X. Li, J. Chem. Phys. 135, 144102 (2011)
21. H. Freedman, G. Hanna, Mixed quantum-classical Liouville simulation of vibrational energy

transfer in a model alpha-helix at 300 K. Chem. Phys. 477, 74–87 (2016)
22. V.I. Gerasimenko, Theor. Math. Phys. 50, 77 (1982)
23. G. Hanna, R. Kapral, Quantum-classical Liouville dynamics of nonadiabatic proton transfer.

J. Chem. Phys. 122, 244505 (2005)
24. G.J. Hedley, A. Ruseckas, I.D. Samuel, Light harvesting for organic photovoltaics. Chem. Rev.

117(2), 796–837 (2016)
25. I. Horenko, C. Salzmann, B. Schmidt, C. Schütte, J. Chem. Phys. 117, 11075 (2002)



14 Simulating Quantum Dynamics in Classical Nanoscale Environments 543

26. I. Horenko, C. Salzmann, B. Schmidt, C. Schütte, Quantum-classical Liouville approach to
molecular dynamics: surface hopping Gaussian phase-space packets. J. Chem. Phys. 117,
11075–11088 (2002)

27. C.Y. Hsieh, R. Kapral, J. Chem. Phys. 137, 22A507 (2012)
28. C.Y. Hsieh, R. Kapral, Analysis of the forward-backward trajectory solution for the mixed

quantum-classical Liouville equation. J. Chem. Phys. 138(13), 134110 (2013)
29. A.W. Jasper, C. Zhu, S. Nangia, D.G. Truhlar, Faraday Discuss. 127, 1 (2004)
30. C. Joachim, M.A. Ratner, Molecular electronics: some views on transport junctions and

beyond. Proc. Natl. Acad. Sci. U. S. A 102(25), 8801–8808 (2005)
31. R. Kapral, J. Phys. Condens. Matter. 27, 073201 (2015)
32. R. Kapral, Chem. Phys. 481, 77 (2016)
33. R. Kapral, G. Ciccotti, J. Chem. Phys. 110, 8919–8929 (1999)
34. R. Kapral, G. Ciccotti, Mixed quantum-classical dynamics. J. Chem. Phys. 110, 8919–8929

(1999)
35. A. Kelly, T.E. Markland, J. Chem. Phys. 139, 014104 (2013)
36. A. Kelly, T.E. Markland, Efficient and accurate surface hopping for long time nonadiabatic

quantum dynamics. J. Chem. Phys. 139(1), 014104 (2013)
37. A. Kelly, R. van Zon, J.M. Schofield, R. Kapral, J. Chem. Phys. 136, 084101 (2012)
38. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles:

the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668 (2003)
39. H. Kim, R. Kapral, Chem. Phys. Chem. 9, 470 (2008)
40. H. Kim, A. Nassimi, R. Kapral, J. Chem. Phys. 129, 084102 (2008)
41. H.W. Kim, Y.M. Rhee, J. Chem. Phys. 140, 184106 (2014)
42. S. Lal, S. Link, N.J. Halas, Nano-optics from sensing to waveguiding. Nat. Photon. 1, 641

(2007)
43. Z. Lin, I.V. Rubtsov, Constant-speed vibrational signaling along polyethyleneglycol chain up

to 60-Å distance. Proc. Natl. Acad. Sci. U. S. A. 109(5), 1413–1418 (2012)
44. J. Liu, G. Hanna, J. Phys. Chem. Lett. 9, 3928 (2018)
45. D. MacKernan, G. Ciccotti, R. Kapral, J. Chem. Phys. 116, 2346–2353 (2002)
46. D. MacKernan, G. Ciccotti, R. Kapral, Trotter-based simulation of quantum-classical dynam-

ics. J. Phys. Chem. B 112, 424 (2008)
47. D. MacKernan, R. Kapral, G. Ciccotti, Sequential short-time propagation of quantum-classical

dynamics. J. Phys. Condens. Matter. 14, 9069–9076 (2002)
48. C.C. Martens, J. Phys. Chem. Lett. 7, 2610 (2016)
49. C.C. Martens, J. Fang, Semiclassical-limit molecular dynamics on multiple electronic surfaces.

J. Chem. Phys. 106, 4918 (1997)
50. C.C. Martens, J.Y. Fang, J. Chem. Phys. 106, 4918 (1997)
51. K.R. McEnery, M.S. Tame, S.A. Maier, M.S. Kim, Tunable negative permeability in a quantum

plasmonic metamaterial. Phys. Rev. A 89, 013822 (2014)
52. C.L. Nehl, J.H. Hafner, Shape-dependent plasmon resonances of gold nanoparticles. J. Mater.

Chem. 18, 2415 (2008)
53. S. Nielsen, R. Kapral, G. Ciccotti, Non-adiabatic dynamics in mixed quantum-classical

systems. J. Stat. Phys. 101, 225–242 (2000)
54. A. Nitzan, M.A. Ratner, Electron transport in molecular wire junctions. Science 300(5624),

1384–1389 (2003)
55. P.V. Parandekar, J.C. Tully, Detailed balance in Ehrenfest mixed quantum-classical dynamics.

J. Chem. Theory Comput. 2(2), 229–235 (2006)
56. M. Pelton, J. Aizpurua, G. Bryant, Metal-nanoparticle plasmonics. Laser Photon. Rev. 2, 136

(2008)
57. V. Pouthier, Energy transfer in finite-size exciton-phonon systems: confinement-enhanced

quantum decoherence. J. Chem. Phys. 137(11), 114702 (2012)
58. V. Pouthier, Vibrational exciton mediated quantum state transfer: simple model. Phys. Rev. B

85(21), 214303 (2012)



544 G. Hanna and A. Sergi

59. V. Pouthier, Vibrons in finite size molecular lattices: a route for high-fidelity quantum state
transfer at room temperature. J. Phys. Condens. Matter. 24(44), 445401 (2012)

60. O.V. Prezhdo, Mean field approximation for the stochastic Schrödinger equation. J. Chem.
Phys. 111, 8366–8377 (1999)

61. O.V. Prezhdo, V.V. Kisil, Phys. Rev. A 56, 162 (1997)
62. M. Ratner, A brief history of molecular electronics. Nat. Nanotechnol. 8(6), 378 (2013)
63. M. Santer, U. Manthe, G. Stock, Quantum-classical Liouville description of multi-dimensional

nonadiabatic molecular dynamics. J. Chem. Phys. 114, 2001 (2001)
64. J.R. Schmidt, P.V. Parandekar, J.C. Tully, Mixed quantum-classical equilibrium: surface

hopping. J. Chem. Phys. 129(4), 044104 (2008)
65. A. Sergi, D. MacKernan, G. Ciccotti, R. Kapral, Simulating quantum dynamics in classical

environments. Theor. Chem. Acc. 110, 49–58 (2003)
66. A. Sergi, F. Petruccione, Phys. Rev. E 81, 032101 (2010)
67. N. Shenvi, J.E. Subotnik, W. Yang, Phase-corrected surface hopping: Correcting the phase

evolution of the electronic wavefunction. J. Chem. Phys. 135(2), 024101 (2011)
68. N. Shenvi, J.E. Subotnik, W. Yang, Simultaneous-trajectory surface hopping: a parameter-free

algorithm for implementing decoherence in nonadiabatic dynamics. J. Chem. Phys. 134(14),
144102 (2011)

69. J.E. Subotnik, Augmented Ehrenfest dynamics yields a rate for surface hopping. J. Chem.
Phys. 132(13), 134112 (2010)

70. J.E. Subotnik, A. Jain, B. Landry, A. Petit, W. Ouyang, N. Bellonzi, Annu. Rev. Phys. Chem.
67, 387 (2016)

71. J.E. Subotnik, N. Shenvi, A new approach to decoherence and momentum rescaling in the
surface hopping algorithm. J. Chem. Phys. 134(2), 024105 (2011)

72. M.F. Tame, K.R. McEnery, S.K. Özdemir, J. Lee, S.A. Maier, M.S. Kim, Quantum plasmonics.
Nat. Phys. 9, 329 (2013)

73. D.V. Tsivlin, V. May, Multidimensional wave packet dynamics in polypeptides: coupled amide-
exciton chain-vibrational motion in an α-helix. Chem. Phys. 338(2–3), 150–159 (2007)

74. J.C. Tully, J. Chem. Phys. 93, 1061–1071 (1990)
75. J.C. Tully, Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061 (1990)
76. J.C. Tully, Faraday Discuss. 110, 407–419 (1998)
77. J.C. Tully, Nonadiabatic dynamics, in Modern Methods for Multidimensional Dynamics

Computations in Chemistry, ed. by D.L. Thompson (World Scientific, New York, 1998), p. 34
78. D.A. Uken, A. Sergi, Quantum dynamics of a plasmonic metamolecule with a time-dependent

driving. Theor. Chem. Acc. 134, 141 (2015)
79. D.A. Uken, A. Sergi, F. Petruccione, Phys. Scr. T143, 014024 (2011)
80. D.A. Uken, A. Sergi, F. Petruccione, Filtering schemes in the quantum-classical Liouville

approach to nonadiabatic dynamics. Phys. Rev. E 88, 033301 (2013)
81. C. Wan, J. Schofield, J. Chem. Phys. 113, 7047 (2000)
82. C. Wan, J. Schofield, Exact and asymptotic solutions of the mixed quantum-classical Liouville

equation. J. Chem. Phys. 112, 4447 (2000)
83. C. Wan, J. Schofield, Mixed quantum-classical molecular dynamics: aspects of multithreads

algorithms. J. Chem. Phys. 113, 7047 (2000)
84. L.J. Wang, A. Akimov, O.V. Prezhdo, J. Phys. Chem. Lett. 7, 2100–2112 (2016)
85. L.J. Wang, A.E. Sifain, O.V. Prezhdo, J. Phys. Chem. Lett. 6, 3827–3833 (2015)
86. F. Webster, E.T. Wang, P.J. Rossky, R.A. Friesner, Stationary-phase surface hopping for

nonadiabatic dynamics – two-state systems. J. Chem. Phys. 100, 4835–4847 (1994)
87. E. Wigner, Phys. Rev. 40, 749 (1932)
88. R.P. Xu, Y.Q. Li, J.X. Tang, Recent advances in flexible organic light-emitting diodes. J. Mater.

Chem. C 4(39), 9116–9142 (2016)
89. W.Y. Zhang, R. Balescu, J. Plasma Phys. 40, 199 (1988)
90. J. Zuloaga, E. Prodan, P. Nordlander, Quantum plasmonics: nonlinear effects in the field

enhancement of a plasmonic nanoparticle dimer. ACS Nano 4, 5269 (2010)


	14 Simulating Quantum Dynamics in Classical Nanoscale Environments
	14.1 Introduction
	14.2 Mixed Quantum-Classical Liouville Dynamics
	14.2.1 The Quantum-Classical Liouville Equation
	14.2.2 Representing the QCLE in the Adiabatic Basis
	14.2.3 The Sequential Short-Time Propagation Algorithm
	14.2.4 Transition Filtering
	14.2.5 Eigenvector Sign Correction

	14.3 Applications
	14.3.1 Vibrational Energy Transfer in an Alpha-Helical Polypeptide
	14.3.2 Field-Driven Dynamics of a Plasmonic Metamolecule

	14.4 Summary and Future Outlook
	Appendix
	References


