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Preface

This book collects review chapters of theoretical chemistry for advanced nanoma-
terials from the points of view of both computational and experimental chemistry.
It is written for computational and experimental chemists, including undergraduate
students, who are working with advanced nanomaterials, where collaboration and
interplay between computation and experiment are essential.

This book consists of five parts:

– Part I Introduction
– Part II Computational Approach
– Part III Interplay Between Computational and Experimental Approaches
– Part IV Experimental Approach
– Part V Forthcoming Theoretical Approach

In Part I, the scientific meaning of nanomaterials is clearly defined. The
key point is that nanomaterials stand for not only nanosize materials but also
materials with nanoscale functionalities. After the explanation of computational
and experimental approaches for functional analysis, nanoscale functionalities are
introduced.

Part II: Functional Analysis from Computational Approach
• Hydride Ion Conducting Nanomaterials (Onishi)
• High-κ Dielectric Nanomaterials (Senami et al.)
• Organic Electronics (Yanagisawa et al.)

Part III: Functional Analysis from the Interplay Between Computational
and Experimental Approaches
• 0D–3D Carbon-based Nanomaterials (Taioli)
• Oligomers (Timoshkin et al.)
• Carbon Nanomaterials (Lin et al.)
• Sandwich Clusters (Nakajima et al.)

v



vi Preface

Part IV: Functional Analysis from Experimental Approach
• Silicon Nanomaterials (Hikaru Kobayashi et al.)
• Sodium Ion Conducting Glass Ceramics (Okura et al.)
• Surface Metal Oxides by Plasma-Electrolytic Oxidized Coating (Ustinov et al.)
• Organic Nanochannel (Hirokazu Kobayashi)

Part V: Forthcoming Theoretical Approaches
• Excited States (Bacalis)
• Quantum Dynamics (Hanna et al.)

Finally, I would like to thank Dr. Sinichi Koizumi and the Springer staff. I hope
this book facilitates readers’ understanding of how to analyze functionalities for
advanced nanomaterials.

“Materials development without basic science will face safety problem.”

Taku Onishi
May 2019
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Chapter 1
Theoretical Chemistry for Advanced
Nanomaterials: Computational
and Experimental Approaches

Taku Onishi

Abstract Nowadays, functional analysis is getting indispensable to develop
advanced nanomaterials. Functional analysis at electron and atomic levels can
be performed from both computational and experimental approaches, together with
developments of high-performance computers and experimental instruments. In this
chapter, after an explanation of the definition of nanomaterial, typical computational
and experimental approaches are briefly introduced. Nanomaterials stand for not
only nanosize materials but also materials with nanoscale functionality. After an
introduction of representative nanosize materials such as organic nanomaterial,
cluster and nanoparticle, nanoscale functionalities in perovskites are overviewed.
Finally, recent challenges related to advanced nanomaterials are discussed.
Especially, nanospace chemistry, hydrogen society in the future, lithium-ion battery
safety and replacement of lithium are mentioned.

Keywords Theoretical chemistry · Functional analysis · Nanosize material ·
Nanoscale functionality · Nanospace chemistry · Battery safety

1.1 Introduction

Computational chemistry and physics enable us to predict molecular and crystal
structures for advanced nanomaterials. The functionalities can be revealed by
means of further investigations of energetics, structure and electronic state. Since
experimental research can be also performed to investigate structure and electronic
state, collaborative functional analysis using both computational and experimental
approaches is nowadays getting popular.

T. Onishi (�)
Graduate School of Engineering, Mie University, Tsu, Japan

Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo,
Oslo, Norway
e-mail: taku@chem.mie-u.ac.jp; taku.onishi@kjemi.uio.no
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T. Onishi (ed.), Theoretical Chemistry for Advanced Nanomaterials,
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Fig. 1.1 Major calculation
targets in computational
chemistry and physics
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Every year we have been organising an international symposium on compu-
tational chemistry, which is held as main symposium in ICCMSE: International
Conference of Computational Methods in Science and Engineering [1–4]. From the
viewpoint of calculation targets, computational chemistry and physics are largely
classified into three categories: (1) nanomaterials, (2) chemical reaction and (3)
biology (See Fig. 1.1). In this book, “Nanomaterials” is mainly focused on.

Figure 1.2 depicts the schematic figure on the research of advanced nanomate-
rials. Theoretical aspect of nanomaterials science, especially functional analysis, is
mainly mentioned in this book. In Chap. 2, nanomaterials design of hydride ion
conductor is introduced. In Chaps. 5, 6, 8, 9, 10, 11, and 12, functional analysis for
new nanomaterials is also introduced, together with experimental results.

1.2 Definition of Nanomaterial

Nano itself means a unit of length: 1 nm = 10 Å = 10−9 m [5]. In a narrow
sense, nanomaterial stands only for nanosize material. On the other hand, in a broad
sense, it also includes large molecule and bulk. It is because they exhibit nanoscale
functionality. As shown in Fig. 1.3, nanomaterial can be widely defined as nanosize
material or material with nanoscale functionality. In this book, not only nanosize
material but also nanoscale functionality is hence mentioned.

http://dx.doi.org/10.1007/978-981-15-0006-0_2
http://dx.doi.org/10.1007/978-981-15-0006-0_5
http://dx.doi.org/10.1007/978-981-15-0006-0_6
http://dx.doi.org/10.1007/978-981-15-0006-0_8
http://dx.doi.org/10.1007/978-981-15-0006-0_9
http://dx.doi.org/10.1007/978-981-15-0006-0_10
http://dx.doi.org/10.1007/978-981-15-0006-0_11
http://dx.doi.org/10.1007/978-981-15-0006-0_12
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Fig. 1.3 Nanosize materials
and nanoscale functionality
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1.3 Computation and Experiment

1.3.1 Computational Approach

Energetics, structure and electronic state of nanomaterials can be investigated by
performing theoretical calculation. In a quantum mechanical manner, both quantum
chemical calculation based on molecular orbital (MO) theory and first principle
calculation based on band theory are widely utilised. Schrödinger equation, which is
the basis equation of quantum mechanics, is numerically solved in both calculations.
Before starting a calculation, two factors must be correctly taken into account.

Two Important Factors
1. Construction of scientifically reasonable model
2. Selection of calculation method

Note that they strongly depend on considering materials and system. Since a
model size is constrained in quantum calculation due to high computational cost,
classical mechanics calculation is useful for much larger model and system. For
example, dynamical process can be theoretically analysed in molecular dynamics
(MD) simulation. However, since quantum effect is neglected, fatal error is some-
times caused in functional analysis. As a solution, quantum mechanical manner is
often combined with classical mechanical manner. QM/MM and ab initio MD are
known to be as typical hybrid method. Note that QM and MM denote quantum
mechanics and molecular mechanics, respectively.

It has been widely accepted that density functional theory (DFT) is one of the
best methods to solve Schrödinger equation numerically. Figure 1.4 depicts the
schematic figure of DFT. Beyond Hartree-Fock (HF), DFT has been recognised
as practical and useful method to include strong correlation effect and calculate
integrals faster. In DFT calculation, specific functionals must be selected, depending
on considering nanomaterials and system. For example, B3LYP, where Becke +
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Slater + HF exchange functionals and LYP + VWN5 correlation functionals are
included, has been widely recognised as one of the best DFT methods for organics.
See Refs [6–9] regarding DFT functional. Though time-dependent DFT (TDDFT)
is generally useful for excited state, it often provides unreliable excited state.
DFT often fails to estimate dissociation energy and bandgap [10, 11] and exhibits
artificial stabilisation of delocalised state (self-interaction error) [11, 12]. It has
been still improved to overcome such problems. As a new trail, DFT under strong
magnetic field has been recently explored [13, 14]. In Chaps. 2, 4, 6, 7, and 8, DFT
calculation results are shown.

In this book, forthcoming theoretical approaches are introduced. In Chap. 3,
new theoretical approach based on quantum electrodynamics (QED) [15] is used to
discuss dielectric property. In Chap. 13, the theoretical method to estimate excitation
energy with low computational cost is introduced. In Chap. 14, quantum dynamical
under consideration of nanoscale environment is introduced.

1.3.2 Experimental Approach

As same as theoretical calculations, experimental techniques enable us to charac-
terise nanomaterials at electron and atomic levels (see Fig. 1.5). In X-ray diffraction
(XRD), solid structure (lattice constant) can be determined. Both elemental analysis
and bonding state analysis of solid surface can be performed by X-ray photoelectron
spectroscopy (XPS). In X-ray absorption fine structure (XAFS), charge density
of transition metal and bonding distance (atom-atom distance) can be estimated.
Elemental analysis is also possible by electron energy loss spectroscopy (EELS).
Nanomaterials can be directly observed by scanning electron microscope (STM)
and transmission electron microscope (TEM).

To examine molecular vibration (changes of atom-atom distance and angle) in
nanomaterials, Fourier transform infrared spectroscopy (FT-IR) and Raman spec-
troscopy are used. Note that vibration analysis is also possible by MO calculation.

http://dx.doi.org/10.1007/978-981-15-0006-0_2
http://dx.doi.org/10.1007/978-981-15-0006-0_4
http://dx.doi.org/10.1007/978-981-15-0006-0_6
http://dx.doi.org/10.1007/978-981-15-0006-0_7
http://dx.doi.org/10.1007/978-981-15-0006-0_8
http://dx.doi.org/10.1007/978-981-15-0006-0_3
http://dx.doi.org/10.1007/978-981-15-0006-0_13
http://dx.doi.org/10.1007/978-981-15-0006-0_14
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Fig. 1.5 Typical
experimental techniques for
characterising nanomaterials

Electron

Atom

Molecule

Nano

Bulk

Scale
Experimental Techniques

Direct Observation

To evaluate ion conductivity, alternating current (AC) impedance measurement is
popular in the field of solid-state chemistry and physics. As sodium and lithium
ions form ionic bonding with other atoms during ion conduction, activation energy
for lithium ion and sodium ion conductions can be estimated from Nyquist plot
analysis, where electric resistance is divided into three contributions: bulk, grain
boundary and electrode interface. However, when conducting ion forms covalent
bonding, the analytical manner provides a wrong activation energy [16, 17]. For
example, since covalency of hydrogen is variable during proton conduction, the
real activation energy cannot be obtained from Nyquist plot analysis. In Chap.
10, AC impedance measurement for sodium-ion conduction is introduced. Electron
paramagnetic resonance (EPR) and electron spin resonance (ESR) are applicable
to detect spin sources in nanomaterials. Magnetic interactions in nanomaterials are
discussed in Chaps. 8 and 12.

1.4 Nanosize Materials

1.4.1 Top-Down and Bottom-Up Approaches

Nanofabrication methods are roughly divided into two: top-down and bottom-up
approaches [5, 18], as shown in Fig. 1.6. In top-down approach, bulk materials
are reduced in nanosize by using nanolithography, etching, etc. On the other hand,
in bottom-up approach, atoms or molecules are arranged in nanosize by using
microscope, self-assembly, self-organisation, chemical synthesis, etc. Dissociation
and aggregation reactions are categorised as quantum interactions. Theoretical
analysis at quantum level is hence required to understand the processes.

http://dx.doi.org/10.1007/978-981-15-0006-0_10
http://dx.doi.org/10.1007/978-981-15-0006-0_8
http://dx.doi.org/10.1007/978-981-15-0006-0_12
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Bulk Nanosize material Atom or Molecule

Quantum interaction

Dissociation Reaction

Quantum interaction

Aggregation Reaction

Fig. 1.6 Schematic figure of top-down and bottom-up approaches

Table 1.1 Nanosize materials in this book

Nanosize
materials

Chapter

Organic
nanomaterials

Carbon
nanomaterials

Fullerene Chapter 5 Taioli

Graphene Chapter 5 Taioli
Chapter 7 Lin et al.

Macromolecule Oligomer Chapter 6 Timoshkin et al.
Nanoparticle Silicon oxide Chapter 9 Hikaru Kobayashi et al.
Cluster Metal-benzene sandwich Chapter 8 Nakajima et al.

Metal oxide Chapter 11 Ustinov et al.
Nanospace
materials

Chapter 5 Taioli
Chapter 12 Hirokazu Kobayashi

1.4.2 Organic Nanomaterials

Table 1.1 lists nanosize materials in this book. Since the discovery of carbon
nanotube and fullerene [19–21], many researchers have focused on carbon nano-
materials, due to many scientific interests such as nanosize structure itself, super-
conductivity, application to semiconductor device, storage material, etc. In Chaps.
5 and 7, functional analysis for several carbon nanomaterials is introduced. Note
that carbon nanomaterial with nanospace is here categorised as nanospace material.
Oligomer can be defined as nanomaterial consisting of relatively small amounts of
monomers. In Chap. 6, structure and electronic state of oligomers are introduced.

1.4.3 Cluster

It is roughly regarded that cluster (1 ~ 10 nm) is the aggregation of different
atoms, ligands and molecules. For example, Mn12-core cluster is known as cluster
magnet [22, 23], which exhibits unique magnetic property different from bulk
magnet. Fe4-core cluster [24] exhibits quantum spin crossover [25, 26]. Iron spin

http://dx.doi.org/10.1007/978-981-15-0006-0_5
http://dx.doi.org/10.1007/978-981-15-0006-0_5
http://dx.doi.org/10.1007/978-981-15-0006-0_7
http://dx.doi.org/10.1007/978-981-15-0006-0_6
http://dx.doi.org/10.1007/978-981-15-0006-0_9
http://dx.doi.org/10.1007/978-981-15-0006-0_8
http://dx.doi.org/10.1007/978-981-15-0006-0_11
http://dx.doi.org/10.1007/978-981-15-0006-0_5
http://dx.doi.org/10.1007/978-981-15-0006-0_12
http://dx.doi.org/10.1007/978-981-15-0006-0_5
http://dx.doi.org/10.1007/978-981-15-0006-0_7
http://dx.doi.org/10.1007/978-981-15-0006-0_6
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Fig. 1.7 Schematic figure of
nanoparticle shape Zoom

state is switchable by changing quantum interaction between core and surrounding
ligand with external stimulus. We here define such nanoscale quantum interaction
as “nano-synchronicity”. In Chap. 8, structure and magnetism of sandwich clusters
are introduced.

1.4.4 Nanoparticle

Nanoparticle basically tends to keep similar structure with corresponding bulk. It
is sometimes called nanopowder or nanocrystal. In principal, it can be expected
that chemical reaction on surface is enhanced, due to wide surface area. Since
nanoparticle shape and size are not uniform (see Fig. 1.7), bandgap varies in
several nanoparticles. In Chap. 9, structure and photoluminescent mechanism are
introduced in silicon nanoparticle. In addition, hydrogen molecule production using
silicon nanoparticle is introduced.

1.4.5 Plasma Electrolytic Oxidation

Metal alloy surface can be coated with metal oxide, using plasma electrolytic
oxidation (PEO) [27–29]. As many types of shape and size are possible (e.g.
cluster and nanolayer), PEO has many possibilities to enhance and control nanoscale
functionality of metal alloy. In engineering, corrosion and wear resistance of metal
alloy have been expected. In Chap. 11, PEO coating on aluminium alloy using nickel
and copper is briefly introduced.

1.5 Nanoscale Functionality in Perovskite

As shown in Fig. 1.8, perovskite nanomaterials are classified into two groups.
In Next Generation Energy group, they are used as light response nanomaterial,
hydrogen storage nanomaterial and ion-conducting nanomaterial for electrode and

http://dx.doi.org/10.1007/978-981-15-0006-0_8
http://dx.doi.org/10.1007/978-981-15-0006-0_9
http://dx.doi.org/10.1007/978-981-15-0006-0_11
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Perovskite
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Ion-
Conductivity

Ferroelectricity

Magnetism
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Hydrogen 
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Next Generation 
Energy

Next Generation 
Electronic Device

Fig. 1.8 Classification of perovskite nanomaterials: (1) Next Generation Energy; (2) Next Gener-
ation Electronic Device

Visible light

400nm 500nm 600nm

3.1eV 2.5eV 2.1eV

Wavelength

Bandgap

Fig. 1.9 Schematic figure of the relationship between visible light and bandgap

electrolyte in both secondary battery and solid oxide fuel cell (SOFC). On the other
hand, in Next Generation Electronic Device group, they are used as ferroelectric,
superconductor and magnetic nanomaterial in electronic devices.

1.5.1 Perovskite for Next Generation Energy

1.5.1.1 Light Response Perovskite

It is well known that SrTiO3 perovskite exhibits photocatalytic activity [30]. To
obtain the bandgap corresponding to visible light region (see Fig. 1.9), nitrogen
and carbon are doped at oxygen site. In undoped case, highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) consist of oxy-
gen 2p and titanium 3d orbitals, respectively. In carbon-doped SrTiO3 perovskite,
as Ti–C–Ti type covalent bonding is formed in HOMO, HOMO-LUMO energy
difference (bandgap in band theory) varies (see Fig. 1.10). Following the same
mechanism, photoluminescent colour [31] is changeable by defect doping. See the
details in Ref. [32–34].
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Fig. 1.10 Shapes of HOMO
and LUMO and bandgap in
carbon-doped SrTiO3
perovskite. BHHLYP
calculation was performed for
SrTi8O11C model by using
GAMESS [35]. (Reprinted by
permission from Springer
International Publishing
Switzerland, [34],
COPYRIGHT (2013). The
calculation details are
explained in Ref. [34])

Bandgap

HOMO

LUMO

2.41eV

1.5.1.2 Ion-Conducting Perovskite

1. Lithium Ion-Conduction

Since the discovery of lithium ion-conducting perovskite titanium oxide [36],
lithium ion-conducting perovskites have been explored. For example, we demon-
strated that lithium ion-conduction occurs in KxBa(1−x)/2MnF3 perovskite, based on
counter cation-vacancy mechanism (see Fig. 1.11) [37–39]. It is noted that counter
cation-vacancy is introduced by barium doping at potassium site, due to charge
compensation. The activation energy for lithium ion-conduction is 0.27 eV, which is
enough small for lithium ion-conduction at room temperature. In such perovskites,
conducting lithium ion forms ionic bonding with perovskite framework. It is because
lithium 1s orbital has no orbital overlap with others.

2. Oxide Ion-Conduction

Oxide ion or proton conductor is used for electrode and electrolyte of SOFC. In
oxide ion-conducting LaAlO3 perovskite [17, 40], as counter cation forms covalent
bonding with conducting oxide ion during the ion conduction (see Fig. 1.12), oxide
ion conductivity can be controlled by changing counter cation. The activation energy
in strontium-doped LaAlO3 (1.85–2.29 eV) is smaller than undoped case (2.73 eV).
It is noted that the doping of different counter cations is required to introduce oxygen
vacancy.

3. Proton-Conduction: Proton-Pumping Effect

Proton-conducting mechanism [16, 17, 41] is different from oxide ion-
conduction. In proton-conducting LaAlO3 perovskite, proton exists as a part of
OH, and hydrogen is allocated forward square centre (most stable position). When
proton-conduction starts, OH is pumped into square centre: proton-pumping effect
(see Fig. 1.13). After OH rotation, covalent bonding changes in a diagonal path (OH
and OHO covalent bondings) (see Fig. 1.14).
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Ba
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KK

K Ba

Ba BaK
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Fig. 1.11 Schematic figure of nanoscale lithium ion-conduction in KxBa(1–x)/2MnF3 perovskite.
(Reprinted by permission from Springer Nature Singapore Pte Ltd., [39], COPYRIGHT (2018).
Potassium and barium are fixed within cube, due to large ionic radius. Lithium ion migrates via
counter cation-vacancy (dotted circle))

4. Hydride Ion-Conduction

Recently hydride ion has attracted much scientific interest, from the viewpoint of
fast ion-conduction. We demonstrated that hydride fluctuation occurs in hydride ion-
conducting BaTiO3 perovskite [42]. In Chap. 2, hydride ion-conducting mechanism
in perovskite fluoride and hydride is overviewed.

1.5.1.3 Hydrogen Storage Perovskite

In metal hydrides, perovskite hydrides and related nanomaterials [43–50], hydrogen
storage applicability was experimentally and theoretically investigated. As shown
in Fig. 1.15, hydrogen (hydrogen molecule) is released through the dissociation of
perovskite hydride. In Chap. 2, chemical bonding between magnesium and hydride
ion is explained in KMgH3 perovskite.

http://dx.doi.org/10.1007/978-981-15-0006-0_2
http://dx.doi.org/10.1007/978-981-15-0006-0_2
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Fig. 1.12 Selected molecular
orbitals related to conducting
oxide ion in LaAlO3
perovskite. (Reprinted by
permission from Springer
Nature Singapore Pte Ltd.,
[17], COPYRIGHT (2018).
BHHLYP calculation was
performed for La2Al4O3
model by using GAMESS
[35]. When oxide ion is
allocated at diagonal centre,
oxide ion forms covalent
bonding with both lanthanum
atoms)

Orbital energy
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Fig. 1.13 Schematic figure of nanoscale proton-conduction in LaAlO3 perovskite. (Reprinted by
permission from Springer Nature Singapore Pte Ltd., [17], COPYRIGHT (2018). Black and white
circle denote aluminium and oxygen, respectively)
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H
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Diagonal
conductionProton-

pumping

OHO covalent bonding
at diagonal centre

OH covalent bonding
at lattice position

Fig. 1.14 Schematic figure of proton-conduction within Al4O4 square in LaAlO3 perovskite.
(Reprinted by permission from Springer Nature Singapore Pte Ltd., [17], COPYRIGHT (2018).
Black and white circles denote aluminium and oxygen, respectively)

Fig. 1.15 Schematic figure of nanoscale hydrogen release from perovskite hydride. Blue, black
and grey spheres denote hydrogen, magnesium and potassium atoms, respectively

1.5.2 Perovskite for Next Generation Electronic Device

1.5.2.1 Ferroelectric Perovskite

Ferroelectric can be applicable to high-performance memory. It is well known that
perovskite titanium oxides such as BaTiO3 and PbTiO3 exhibit ferroelectricity [51].
The direction of a nanoscale spontaneous electric polarisation is changeable by
applying electric field. As shown in Fig. 1.16, electric polarisation can be reversed
by applying an opposite electric field. In present, PbZrxTi1–xO3 perovskite has been
widely utilised as raw material of ferroelectric random access memory (FeRAM).
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Fig. 1.16 Schematic figure
of the relationship between
electric polarisation (P) and
applied electric field (E)
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Fig. 1.17 Crystal structures of (a) AMX3- and (b) A2MX4-type perovskites. A (black circle), M
(grey circle) and X (white circle) denote counter cation (K, La, Ba, etc.), metal (Cu, Ni, Mn, Ti,
Zr, Mg. etc.) and bridge anion (O, F, H, etc.), respectively

1.5.2.2 Superconductive Perovskite

Since the discovery of high-temperature superconductivity in copper oxide [52],
perovskite metal oxides have been explored as high-temperature superconductor
[53, 54]. It is noted that in this case, “high-temperature” implies that supercon-
ducting transition temperature is higher than ordinary superconductors. Figure
1.17 depicts crystal structures of (a) AMX3- and (b) A2MX4-type perovskites. In
La2CuO4 perovskite, non-magnetic CuO2 layer is separated by LaO layers. As
shown in Fig. 1.18, there is orbital overlap between copper 3dx

2−y
2 and oxygen 2px

orbitals in both MOα and MOβ. α spin of oxygen 2px orbital is cancelled out with β



16 T. Onishi

Fig. 1.18 Superexchange
interaction between copper
atoms via oxygen anion in
two-dimensional CuO2 layer
(Cu-O-Cu model)

MO MO

Cu O CuO

Fig. 1.19 Cu-F shrink and
elongation in K2CuF4
perovskite

Cu

F

spin of oxygen 2px orbital. Hence, α spin of left copper 3dx
2−y

2 orbital and β spin
of right copper 3dx

2−y
2 orbital remain: Superexchange Rule [55]. When electron or

hole is doped in two-dimensional CuO2 layer together with decreasing temperature,
superconductivity appears. Though many superconductor theories were proposed,
superconducting mechanism is fully unrevealed.

1.5.2.3 Magnetic Perovskite

1. Ligand Bonding Effect in Perovskite Fluoride

Ligand bonding effect [56] is observed in K2CuF4 perovskite. Cu-F distance
in two-dimensional CuF2 layer shrinks or elongates, though it is fixed along
perpendicular axis (see Fig. 1.19). As the result, orbital overlaps between copper
3d and fluorine 2p orbitals exist in specific directions (see MO1α and MO2α

in Fig. 1.20). In contrast to Cu-O-Cu model, left copper 3dz
2−y

2 orbital is not
overlapped with bridge oxygen 2px orbital, though there is overlap between right
copper 3dz

2−x
2 and bridge oxygen 2px orbitals. This is why the alternate 3dz

2−x
2-

type orbital ordering is caused in K2CuF4 perovskite.
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Fig. 1.20 Schematic figure
of ligand bonding effect in
F5-Cu-F-Cu-F5 model
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Fig. 1.21 Relationship
between orbital, spin and
charge in transition metal of
insulating perovskite
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2. Orbital Degree of Freedom

In La2CuO4 and K2CuF4 perovskites, though the formal charge of copper (+2)
is the same, 3d electrons occupation pattern is different: orbital degree of freedom.
Figure 1.21 depicts the relationship between orbital, spin and charge in transition
metal of insulating perovskite. It is noted that charge state imperceptibly changes,
even if orbital and spin dramatically change by structural distortion. Orbital degree
of freedom appears also in YTiO3, LaVO3 and LaMnO3 perovskites [57, 58].
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1.6 Challenges

1.6.1 Nanospace Chemistry Towards Nanomachine

Nanospace is defined as nanosize-space, where molecule, atom and ion can be
inserted. Though it looks easier to understand insertion process based on classical
host-guest chemistry [59], it must be noted that insert-framework interaction is
dominated by quantum mechanics. When insert has orbital overlap with framework,
covalent bonding is formed. Even if there is no orbital overlap between insert
and framework, quantum charge interaction exists. For example, metal organic
framework (MOF) [60–63], nanoporous material and inclusion compound have
nanospace. Figure 1.22 depicts the schematic figure of “nanospace chemistry”.
If insertion and release are completely controllable in nanospace, it will work as
“nanomachine” [64].

1.6.2 Hydrogen Society and Safety

Hydrogen has been expected as major energy carrier in industry. Figure 1.23
depicts hydrogen society in the future. This energy conversion system is partially in
practical use. Hydrogen molecule (H2) is produced using fossil fuel such as natural
gas or using renewable electric energy (via water splitting) [65]. In fuel cell system,
electricity is produced through H2 direct utilisation or natural gas reforming. To
use electricity more efficiently, secondary battery system is combined with fuel cell
system. Hydrogen can be also extracted via release reaction from hydrogen storage
material. Recently, biomass has been also expected in hydrogen production.

In relation to hydrogen society, many nanomaterials have been explored, e.g.
catalysts for hydrogen production, hydrogen storage materials, nanomaterials in

Fig. 1.22 The schematic
figure of “nanospace
chemistry”. Insert-framework
interaction is dominated by
quantum mechanics (not
classical interaction but
quantum interaction)

Insert

Framework

Quantum interaction
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Fig. 1.23 Schematic figure of hydrogen society in the future

SOFC and secondary battery and so on. Except secondary battery materials, there is
a possibility of direct contact with hydrogen species (H2, H+ and H−). Pure H2 is
neither explosive nor reactive. However, if the concentration of reactant gas (oxygen
molecule, etc.) is over the limit, it exhibits flammability [66]. It is required how to
store pure H2 safely from engineering viewpoint. In proton-conducting perovskite,
proton exists as a part of covalent OH or OHO bonding [16, 17]. On the other hand,
hydride ion, which exists at lattice position, acts as labile part [67]. In Chap. 2,
hydride ion safety is discussed.

1.6.3 Safety of Lithium Ion Battery

Lithium ion battery must be protected against high electric current, internal short
circuit, overcharging and overdischarging. It is because the factors cause thermal
run-away [68]. Unforeseen and uncontrollable chemical reaction such as gas
emission and liquid spillage may occur after thermal run-away.

Let us consider potential hazard of neutral lithium metal in lithium-ion battery.
Two possible reactions on lithium ion are considered, when charging lithium ion
battery (see Fig. 1.24).

Li+ → (
Li+
)

Inserted (1.1)

http://dx.doi.org/10.1007/978-981-15-0006-0_2
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Electrode Liquid Organic Electrolyte Negative

Electrode
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Inserted Lithium Ion

Energy Barrier

Fig. 1.24 Schematic figures of (a) lithium ion insertion to negative electrode and (b) lithium metal
formation on negative electrode when charging lithium ion battery

Li+ + e− → Li (1.2)

where (Li+)Inserted denotes lithium ion inserted into electrode. After accumulated
charging and discharging in liquid organic electrolyte, energy barrier for lithium
ion insertion appears, due to structural degradation of negative electrode surface,
overcharging, overdischarging and so on. As the result, lithium metal is produced
(Eq. (1.2)): Electrodeposition [69, 70]. Lithium metal causes following dangerous
reactions with water and oxygen molecule (Eqs. (1.3) and (1.4)).

2Li + H2O → 2LiOH + H2 (1.3)

4Li + O2 → 2Li2O (1.4)

Not only lithium metal produced by electrodeposition but also lithium metal
electrode always face the problem after repeated use in severe environment:
mechanical and thermal damages (see Fig. 1.25). In large lithium ion battery system
for electric vehicle, house and factory, it is much dangerous.

Liquid organic electrolyte itself exhibits flammability. From safety viewpoint of
lithium ion battery, all solid lithium ion battery without using lithium metal electrode
has been much expected. It is noted that no reaction occurs with water and oxygen
molecule, when lithium ion is kept inside solid electrodes and electrolyte. Though
lithium-oxygen (lithium-air) battery is recognised as theoretical high-performance
lithium ion battery [71], it will be difficult for a practical use, due to lithium metal
electrode.
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Fig. 1.25 Potential hazard of lithium ion battery using liquid organic electrolyte and lithium metal
electrode

1.6.4 Replacement of Lithium: Sodium Ion Battery

As lithium resource is restricted on earth, replacement of lithium ion battery has
been explored in secondary battery. One candidate is sodium ion battery, where
sodium ion migrates inside electrolyte instead of lithium ion. In sodium-sulphur
battery [72, 73], sodium metal, sulphur and β-alumina are used as negative electrode,
positive electrode and solid electrolyte, respectively. In spite of utilising solid
electrolyte, higher operation temperature (about 280–380 ◦C) is required. After
repeated use, there is possibility that sodium metal may react with water and oxygen
molecules. In addition, since β-alumina has a nonstoichiometric structure, sodium
ion conductivity is unstable. Low-temperature operation, replacement of sodium
metal electrode and solid electrolyte with high sodium ion conductivity are desirable,
from safety viewpoint of sodium ion battery. In Chap. 10, sodium-ion-conducting
glass is introduced. Recently, multivalent ions such as magnesium [74, 75] and
calcium [76–78] ions have been also investigated as ion conductor of secondary
battery.

1.7 Summary

After an explanation of the definition of nanomaterial, typical computational and
experimental approaches to perform functional analysis for advanced nanomaterials
were briefly introduced. In addition to introducing representative nanosize materials,
nanoscale functionalities such as light response, ion conductivity, hydrogen storage,
ferroelectric, superconductivity and magnetism were overviewed. Finally, recent
challenges were discussed.

http://dx.doi.org/10.1007/978-981-15-0006-0_10
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Chapter 2
Quantum Chemistry in Perovskite
Fluoride and Hydride: Nanoscale
Hydride Ion Conduction

Taku Onishi

Abstract Hydride ion, which implies negatively charged hydrogen, has recently
attracted much scientific attention from the viewpoint of nanoscale fast ion trans-
port. Molecular orbital calculations based on density functional theory were per-
formed for perovskite fluoride and hydride, in order to investigate the hydride
ion-conducting mechanism. In hydride ion-doped KMgF3 perovskite, it was found
that hydride ion conduction occurs, combined with “competitive fluctuation”, which
implies that fluorine anion also migrates around local minimum during hydride ion
conduction. The activation energy for hydride ion conduction was estimated to be
0.61–0.85 eV. It was also found that hydride ion conduction occurs in KMgH3
perovskite. The activation energy for hydride ion conduction was estimated to
be 0.40–0.61 eV. From the viewpoint of structural stability at high temperature,
it was concluded that hydride ion-doped KMgF3 perovskite is more favourable
than KMgH3 perovskite. In comparison with proton-conducting perovskites, it
was concluded that hydride ion conducting perovskites can be utilized as fast ion
conductor. Finally, we discuss hydride ion safety and outlook.

Keywords Molecular orbital calculation · Perovskite fluoride · Hydride ion
conduction · Competitive fluctuation · Perovskite hydride · Hydrogen storage
material

2.1 Introduction

It is well known that perovskites exhibit lithium ion, proton and oxide ion conduc-
tivities. Since the discovery of lithium ion conducting perovskite titanium oxides
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[1], they have been focused on as solid electrolyte of lithium ion battery [2, 3]. In
solid oxide fuel cell (SOFC), proton and oxide ion conducting perovskite oxides
have been utilized for solid electrolyte, due to stable structure at high operation
temperature [4–7].

In proton and hydride ion conducting perovskites, hydrogen atom migrates
inside perovskites. Proton and hydride ion conductions can be distinguished from
formal charge of hydrogen atom before and after ion conduction: proton (+1) and
hydride ion (−1). However, during proton conduction, the real charge density is
different from the formal charge (+1). For example, the charge density is close
to zero, in proton conducting LaAlO3 perovskite [8]. It is because OH and OHO
covalent bondings are formed during proton conduction. Norby et al. indicated the
possibility of hydride ion conduction in perovskite titanium oxides [9–11]. Recently,
in BaTiO3 perovskite, Kageyama et al. showed that oxygen anion can be replaced
by hydride ion [12], and hydride ion acts as labile part [13]. From our previous
theoretical calculations, it was found that hydride ion migrates via oxygen vacancy,
and fluctuation of hydride ion occurs [14].

Here we focus on perovskite fluoride and hydride, which have a typical per-
ovskite structure [15, 16], since they can be expected as fast ion conducting material.
In perovskite fluoride, hydride ion is incorporated by replacing fluorine anion at
lattice position [17, 18]. The hydride ion conducting mechanism is explained, from
the viewpoints of energetics and bonding.

2.2 Theoretical Approach: Molecular Orbital Calculation
and Chemical Bonding Rule

Molecular orbital (MO) calculations based on density functional theory (DFT) were
performed for perovskite fluoride and hydride. BHHLYP method, where functionals
of Hartree-Fock exchange, Becke exchange and LYP correlation are included,
was selected. 6-31G* basis set was used for magnesium, fluorine and hydrogen,
combined with MINI basis set for potassium. All calculations were performed by
using Firefly program package [19, 20]. The figures of MOs were depicted by
MOLEKEL [21]. Chemical bonding property was characterised by using chemical
bonding rule [22]. The rule is summarised as below.

Chemical Bonding Rule
For molecular orbitals including outer shell electrons, check whether orbital overlap
exists or not.

– With orbital overlap: Covalent.
– Without orbital overlap: Ionic.
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2.3 Hydride Ion Conduction in Perovskite Magnesium
Fluoride: KMgF3

The crystal structure of KMgF3 perovskite was experimentally investigated from
very low temperature to 1200 K. KMgF3 perovskite has a simple cubic structure
throughout the temperate range. The lattice parameter (Mg-F-Mg distance) is
3.973 Å [23, 24]. In relation to Jahn-Teller effect [25, 26], optical property and
magnetism, transition metals such as Co2+ [27], Cu2+ [28], Cr3+ [29, 30], Ni2+
[31, 32], etc. were doped at the lattice position of magnesium. No ion conductivity
was previously observed in KMgF3 perovskite [33]. Here we investigate whether
hydride ion-doped KMgF3 perovskite exhibits hydride ion conductivity or not, from
the viewpoints of energetics and bonding.

2.3.1 Calculation Models

Figure 2.1 depicts the calculation models for KMgF3 perovskite. From our previous
MO calculations, it is known that conducting anion migrates along a diagonal line
connecting two lattice positions in a cubic perovskite (see arrows in Fig. 2.1). It is
because ion conduction via square centre (from F1 to F3) requires larger energy.
It is noted that fluorine anion vacancy, which can be introduced by counter cation
vacancy or different counter cation doping [3], is required to cause fluorine anion
conduction. To take the effect of charge compensation into account, potassium
vacancy is also considered.

2.3.2 Fluorine Anion Conduction in Perovskite Magnesium
Fluoride

Figure 2.2a, b show the potential energy curves of K2Mg4F3 and KMg4F3 models,
when displacing fluorine anion along the diagonal line. In K2Mg4F3 model, local
minima are found between midpoint and lattice position (d = 0.4 and 2.4 Å), and
local maximum is found at the middle (d = 1.4 Å). Though the activation energy
for fluorine anion conduction is 2.23 eV, the partial activation energy crossing lattice
position is much smaller (0.49 eV). It is considered that fluorine anion is displaced
till local minimum at room temperature. It is because the partial activation energy is
as same as lithium conducting perovskite-type titanium oxides [1], where lithium
ion conduction occurs at room temperature. On the other hand, it is considered
that high temperature is required when crossing a midpoint. It is because the
activation energy is as same as proton conducting perovskite-type oxides [7, 8,
34], where proton conduction occurs at high temperature. The introduction of one
potassium vacancy causes one fluorine vacancy, due to charge compensation. In
order to investigate the effect, KMg4F3 model was also constructed (see Fig. 2.1b).
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Fig. 2.1 The calculation models for KMgF3 perovskite: (a) K2Mg4F3, (b) KMg4F3 with potas-
sium vacancy, (c) hydride ion-doped K2Mg4F2H, (d) hydride ion-doped KMg4F2H with potassium
vacancy. Note that dotted circle denotes fluorine or potassium vacancy

The figure of potential energy curve in KMg4F2H model is similar to K2Mg4F3
model. The total and partial activation energies are 2.41 and 0.33 eV, respectively.
In KMgF3 perovskite, it is also concluded that no fluorine anion conduction occurs
at room temperature, though partial fluorine anion displacement occurs.

Figures 2.3, 2.4, and 2.5 depict the shapes of selected MOs related to fluorine
2s and 2p orbitals in K2Mg4F3 model, at lattice positon, local minimum and local
maximum, respectively. At lattice position (d = 0.0 Å), F1 (conducting fluorine
anion) 2s and 2p orbitals overlap with F2 and F3 (other fluorine anions) orbitals. In
MO36 and MO37, F1 2s orbital overlaps with F3 2s orbital. In MO45–MO51, F1 2p
orbital overlaps with F3 2p orbital. Especially in MO45, MO47, MO48 and MO51,
F2 2p orbital also overlaps with F1 and F3 2p orbitals. From chemical bonding
rule, it is found that covalent bonding is formed between fluorine anions. MO52
consists of F2 2p orbital, though F2 2p orbital slightly overlaps with F1 and F3 2p
orbitals in MO53. In addition, from chemical bonding rule, it is found that ionic
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Fig. 2.2 The potential energy curves of (a) K2Mg4F3 and (b) KMg4F3 models, when displacing
fluorine anion along the diagonal line. Note that d notes a migration distance from fluorine lattice
position (see green arrow in Fig. 2.1a, b)
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Fig. 2.3 The shapes of
selected molecular orbitals
related to fluorine 2s and 2p
orbitals (fluorine outer shell
orbitals) at lattice position
(d = 0.0 Å) in K2Mg4F3
model. Note that orbital
energy is given in parenthesis

MO36
(-2.3682)

MO37
(-2.3681)

MO45
(-1.6241)
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(-1.6212)
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(-1.5741)
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(-1.5706)
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(-1.5514)

MO52
(-1.5138)

MO53
(-1.5092)

Orbital Energy

Fig. 2.4 The shapes of
selected molecular orbitals
related to fluorine 2s and 2p
orbitals (fluorine outer shell
orbitals) at local minimum
(d = 0.4 Å) in K2Mg4F3
model. Note that orbital
energy is given in parenthesis

Orbital Energy

MO36
(-2.4019)

MO45
(-1.6488)

MO47
(-1.6023)

MO48
(-1.6010)
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Fig. 2.5 The shapes of
selected molecular orbitals
related to fluorine 2s and 2p
orbitals (fluorine outer shell
orbitals) at local maximum
(d = 1.4 Å) in K2Mg4F3
model. Note that orbital
energy is given in parenthesis

Orbital Energy

MO36
(-2.4440)

MO42
(-1.8437)

MO45
(-1.6633)

MO47
(-1.6525)

MO46
(-1.6625)

bonding is formed between magnesium and fluorine anion, due to no orbital overlap
between them. At left local minimum (d = 0.4 Å), F1 2s and 2p orbitals have almost
no orbital overlap with other atoms. From chemical bonding rule, it is found that
conducting fluorine anion forms ionic bonding with fluorine anions, magnesium
and potassium. It is noted that symmetric MOs are given at right local minimum
(d = 2.4 Å). At local maximum (d = 1.4 Å), though F1 2s and 2p orbitals have no
orbital overlap with F2 and F3 orbitals, they overlap with K1 and K2 2p orbitals,
where 2px, 2py and 2pz orbitals are hybridized (see MO42, MO45 and MO47 in
Fig. 2.5). From chemical bonding rule, it is found that covalent bonding is formed
between conducting fluorine anion and potassium.

The shapes of MOs in KMg4F3 model are similar to K2Mg4F3 model, at
lattice position (d = 0.0 Å) and local minima (d = 0.3 and 2.5 Å). At local
maximum, one potassium participates in covalent bonding formation. In Fig. 2.6,
the orbital overlaps between conducting fluorine anion, and potassium is smaller
than K2Mg4F3 model. The larger activation energy crossing a midpoint is due to the
smaller covalency.
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Fig. 2.6 The shapes of
selected molecular orbitals
related to fluorine 2s and 2p
orbitals (fluorine outer shell
orbitals) at local maximum
(d = 1.4 Å) in KMg4F3
model. Note that orbital
energy is given in parenthesis

Orbital Energy

MO36
(-1.4658)

MO37
(-1.4649)

MO38
(-1.4549)

MO30
(-2.2456)

2.3.3 Hydride Ion Incorporation in Perovskite Magnesium
Fluoride

We next investigate whether hydride ion, which is incorporated in KMgF3 per-
ovskite, migrates or not. The calculation models used here are K2Mg4F2H and
KMg4F2H (see Fig. 2.1c, d).

2.3.3.1 Pure Hydride Ion Conduction

Figure 2.7a, b show the potential energy curves of K2Mg4F2H and KMg4F2H
models, when displacing hydride ion along the diagonal line. In both models, local
minima are found: d = 0.6 and 2.2 Å (K2Mg4F2H model); d = 0.5 and 2.3 Å
(KMg4F2H model). In K2Mg4F2H model, the activation energy for hydride ion
conduction is 0.58 eV, whereas the partial activation energy crossing a midpoint
is 0.29 eV. On the other hand, in KMg4F2H model, the activation energy for hydride
ion conduction is estimated from the total energy difference between midpoint and
local minimum (0.45 eV). It is noted that the highest total energy is given at the
midpoint.

Figure 2.8a–c depict the shapes of selected MOs related to hydrogen 1s orbital
in K2Mg4F2H model, at lattice positon, local minimum (d = 0.6 Å) and local
maximum (d = 1.4 Å), respectively. It is noted that MOs at right local minimum
(d = 2.2 Å) is symmetric to left local minimum (d = 0.6 Å). The wave functions of
MO49s are expressed as
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Fig. 2.7 The potential energy curves of (a) K2Mg4F2H and (b) KMg4F2H models, when
displacing hydride ion along the diagonal line. Note that d notes a migration distance from
hydrogen lattice position (see blue arrows in Fig. 2.1c, d)
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Fig. 2.8 The shapes of
selected molecular orbitals
related to hydrogen 1s orbital
at (a) lattice position
(d = 0.00 Å), (b) local
minimum (d = 0.6 Å) and (c)
local maximum (d = 1.4 Å),
when displacing hydride ion
in K2Mg4F2H model. Note
that orbital energy is given in
parenthesis

Orbital Energy
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H
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�MO49 (Lattice) = 0.29φH
(
1s′)+ 0.52φH

(
1s′′)− 0.15φF2

(
2px′)− 0.12φF2

(
2px′′)

− 0.11φMg1(2s) + 0.25φMg1
(
3s′)− 0.12φMg1

(
3px′)

(2.1)

�MO49 (Min) = 0.30φH
(
1s′)+ 0.52φH

(
1s′′)− 0.23φF2

(
2px′)− 0.18φF2

(
2px′′)

− 0.14φMg1(2s) + 0.22φMg1
(
3s′)− 0.10φMg1

(
3px′)

(2.2)

�MO49 (Max) = 0.11φK1 (3pz) − 0.11φK2 (3pz)

+ 0.32φH
(
1s′)+ 0.53φH

(
1s′′)

− 0.15φF2
(
2px′)− 0.12φF2

(
2px′′)+ 0.15φF3

(
2py′)+ 0.12φF3

(
2py′′)

− 0.17φMg1(2s) + 0.20φMg1
(
3s′)

(2.3)

At local maximum, hydrogen 1s orbital overlaps with fluorine p, magnesium s
and potassium p orbitals. From chemical bonding rule, it is found that hydride ion
forms covalent bonding with fluorine anion, magnesium and potassium. At lattice
position and local minimum, no potassium p orbital participates in covalent bonding
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formation. In MO48 at local minimum and MO45 at local maximum, hydrogen 1s
orbital overlaps with fluorine 2p orbitals. From chemical bonding rule, it is found
that covalent bonding related to hydride ion is also formed.

In KMg4F2H model, main MOs related to hydrogen 1s orbital were MO40s. The
wave functions of MO40s are expressed as

�MO40 (Lattice) = 0.29φH
(
1s′)+ 0.50φH

(
1s′′)− 0.16φF2

(
2px′)− 0.13φF2

(
2px′′)

−0.12φMg1(2s) + 0.26φMg1
(
3s′)− 0.12φMg1

(
3px′′)

(2.4)

�MO40 (Min) = −0.30φH
(
1s′)− 0.48φH

(
1s′′)+ 0.20φF2

(
2px′)+ 0.15φF2

(
2px′′)

+ 0.14φMg1(2s) − 0.27φMg1
(
3s′)+ 0.12φMg1

(
3px′)

(2.5)

�MO40 (Max) = 0.33φH
(
1s′)+ 0.46φH

(
1s′′)

− 0.13φF2
(
2px′)− 0.10φF2

(
2px′′)+ 0.13φF3

(
2py′)+ 0.10φF3

(
2py′′)

− 0.18φMg1(2s) + 0.27φMg1
(
3s′)− 0.10φMg1

(
3px′)

(2.6)

In Eqs. (2.4) and (2.5), hydrogen 1s orbital has similar orbital overlap pattern to
MO49s in K2Mg4F2H model. From chemical bonding rule, it is found that covalent
bonding is formed between hydride ion, magnesium and fluorine anion. On the other
hand, in Eq. (2.6), no potassium participates in covalent bonding formation. It is
considered that no covalent bonding formation between hydride ion and potassium
at local maximum is one of the reasons why total energy at the midpoint is larger
than K2Mg4F2H model.

2.3.3.2 Pure Fluorine Anion Conduction

Let us consider also pure fluorine anion conduction, when fixing hydride ion at
lattice position (see Fig. 2.9a). Figure 2.10a, b show the potential energy curves
of K2Mg4F2H and KMg4F2H models, when displacing fluorine anion along the
diagonal line. In both cases, the total energies at right local minima are higher
than left local minima, and total energies at initial lattice position are smaller than
final lattice position. The total activation energies for fluorine anion conduction
are 2.36 eV in K2Mg4F2H model and 2.52 eV in KMg4F2H model. The values
are too high to cause fluorine anion conduction at room temperature. It is however
considered that partial fluorine anion displacement is combined during hydride ion
conduction, due to its small energy difference: 0.45 (K2Mg4F2H model) and 0.30 eV
(KMg4F2H model).
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Fig. 2.9 The schematic figures of (a) pure fluorine anion conduction and (b) hydride ion
conduction combined with fluorine anion displacement on two dimensional layers in hydride ion-
doped KMgF3 perovskite

2.3.3.3 Competitive Fluctuation of Fluorine Anion

We understood that both hydride ion and fluorine anion migrate on two dimensional
layer of hydride ion-doped KMgF3 perovskite. Let us consider the relationship
between two competing migrations (hydride ion conduction and fluorine anion
displacement).

Figure 2.11 shows the potential energy curves of K2Mg4F2H model, when
displacing hydride ion along the diagonal line (see a blue arrow in Fig. 2.9b) and
fixing fluorine anion in the diagonal line (see a green arrow in Fig. 2.9b). Since
local minimum was given at 0.4 Å in pure fluorine anion conduction, 0.1, 0.2 and
0.4 Å were selected as a fixed distance. Though blue curve (0.4 Å fluorine anion
displacement) is lower than other curves at d = 0.0 Å, it is the highest at d = 2.8 Å.
Blue curve has crossing points at 1.3 Å with orange curve (0.2 Å fluorine anion
displacement), 1.9 Å with grey curve (0.1 Å fluorine anion displacement) and 2.5 Å
with yellow curve (no fluorine anion displacement). Orange curve is lower than grey
curve at all distances. From the results, it is concluded that fluorine anion migrates
between 0.2 and 0.4 Å in the diagonal line, during hydride ion conduction. The
effect is called “competitive fluctuation” (see Fig. 2.12).

Figure 2.13 shows the potential energy curves of KMg4F2H model, when
displacing hydride ion along the diagonal line and fixing fluorine anion in the
diagonal line. Since local minimum was given at 0.3 Å in pure fluorine anion
conduction, 0.1, 0.2 and 0.3 Å were selected as a fixed distance. Though blue curve
(0.3 Å fluorine anion displacement) is lower than other curves at d = 0.0 Å, it
is the highest at d = 2.8 Å. Blue curve has crossing points at 1.3 Å with orange
curve (0.2 Å fluorine anion displacement), 1.9 Å with grey curve (0.1 Å fluorine
anion displacement) and 2.4 Å with yellow curve (no fluorine anion displacement).
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Fig. 2.10 The potential energy curves of (a) K2Mg4F2H and (b) KMg4F2H models, when
displacing fluorine anion along the diagonal line. Note that d notes a migration distance from
fluorine lattice position (see a green arrow in Fig. 2.9a)
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Fig. 2.11 The potential energy curves of K2Mg4F2H model, when displacing hydride ion along
the diagonal line and fixing fluorine anion in the diagonal line. Note that d notes a migration
distance from hydrogen lattice position (see a blue arrow in Fig. 2.9b). Fluorine anion-displacement
distances are 0.0, 0.1, 0.2 and 0.4 Å in yellow, grey, orange and blue curves, respectively

Competitive Fluctuation

F2

Mg3

H Mg1Mg2

Mg4

F3

F2

Mg3

H

Mg1Mg2

Mg4

F3

F2

Mg3

H

Mg1Mg2

Mg4

F3

Fig. 2.12 The competitive fluctuation of fluorine anion during hydride ion conduction

Though orange curve is lower than grey curve between 0.0 and 2.4 Å, grey curve is
lower than orange curve after the crossing point. From the results, it is concluded
that competitive fluctuation occurs between 0.1 and 0.3 Å.
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Fig. 2.13 The potential energy curves of KMg4F2H model, when displacing hydride ion along
the diagonal line and fixing fluorine anion in the diagonal line. Note that d notes a migration
distance from hydrogen lattice position (see a blue arrow in Fig. 2.9b). Fluorine anion-displacement
distances are 0.0, 0.1, 0.2 and 0.3 Å in yellow, grey, orange and blue curves, respectively

2.3.4 Summary

In KMgF3 perovskite, fluorine anion conduction occurs only at high temperature.
On the other hand, in hydride ion-doped KMgF3 perovskite, hydride ion conduction
occurs at room temperature, combined with “competitive fluctuation” of fluorine
anion, which implies that fluorine anion also migrates around local minimum during
hydride ion conduction. In K2Mg4F2H model, the activation energy for hydride ion
conduction can be estimated to be 0.85 eV, from the total energy difference between
left local minimum of blue curve and final lattice position of orange curve. On the
other hand, in KMg4F2H model, it can be estimated to be 0.61 eV, from the total
energy difference between left local minimum of blue curve and final lattice position
of grey curve.

2.4 Hydride Ion Conduction in Perovskite Magnesium
Hydride: KMgH3

Perovskite magnesium hydride AMgH3 (A = alkali metal such as K, Na, etc.),
which has a similar structure with perovskite magnesium fluoride, has been expected
as hydrogen storage material, due to light weight and low cost. KMgH3 and
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NaMgH3 perovskites have cubic and GdFeO3-type structures, respectively [15, 16].
The experimental lattice parameter of KMgH3 perovskite is 4.023 Å [16]. Though
perovskite hydrides are synthesized over 500 K [35], hydrogen molecule is released
over 673 K [35–37]. Perovskite hydride cannot be hence utilized for alternative
electrolyte of present SOFC. In previous DFT calculations for perovskite hydrides,
structural stability, formation enthalpy and luminescence were discussed [16, 38–
42]. Here we explore a possibility of hydride ion conduction in KMgH3 perovskite
at low temperature, from the viewpoints of energetics and bonding.

2.4.1 Calculation Models

Figure 2.14 depicts calculation models for KMgH3 perovskite. To examine chemical
bonding between magnesium and hydride ion in perfect solid state (without
defect), K2Mg4H4 model was constructed. Since hydrogen vacancy, which can be
introduced by counter cation vacancy, is required to cause hydride ion conduction,
K2Mg4H3 model was constructed. To take the effect of charge compensation into
account, potassium vacancy is also considered in KMg4H3 model. In K2Mg4H3 and
KMg4H3 models, the hydride ion conduction along the diagonal line is considered,
because ion conduction via square centre (from H1 to H3) requires larger energy [7].

2.4.2 Chemical Bonding Between Magnesium and Hydride Ion

Before the investigation of hydride ion conduction, let us examine chemical bonding
between magnesium and hydride ion in no defect case. Figure 2.15 depicts the
shapes of selected MOs related to hydrogen 1s orbitals in K2Mg4H4 model. The
wave functions of MO39, MO40, MO41 and MO42 are expressed as

(a) (b)K1

K2

H1 Mg1Mg2

Mg4Mg3

H2

H3

H4

K1

K2

H1 Mg1Mg2

Mg4Mg3

H2

H3

(c) K1

H1 Mg1Mg2

Mg3

H2

H3 Mg4

Fig. 2.14 The calculation models for KMgH3 perovskite: (a) K2Mg4H4, (b) K2Mg4H3, (c)
KMg4H3 with potassium vacancy. Note that dotted circle denotes hydrogen or potassium vacancy
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Fig. 2.15 The shapes of
selected molecular orbitals
related to hydrogen 1s
orbitals in K2Mg4H4 model.
The site numbers of hydride
ions are also shown. Note that
orbital energy is given in
parenthesis
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�MO39 = 0.12φK1 (3pz) − 0.12φK2 (3pz)

+0.14φH1
(
1s′)+ 0.21φH1

(
1s′′)+ 0.14φH2

(
1s′)+ 0.21φH2

(
1s′′)

+0.14φH3
(
1s′)+ 0.21φH3

(
1s′′)+ 0.14φH4

(
1s′)+ 0.21φH4

(
1s′′)

+0.13φMg1
(
3s′)+ 0.13φMg2

(
3s′)+ 0.13φMg3

(
3s′)+ 0.13φMg4

(
3s′)

(2.7)

�MO40 = −0.13φH1
(
1s′)− 0.24φH1

(
1s′′)− 0.17φH2

(
1s′)− 0.31φH2

(
1s′′)

+0.13φH3
(
1s′)+ 0.24φH3

(
1s′′)+ 0.17φH4

(
1s′)+ 0.31φH4

(
1s′′)

−0.17φMg2
(
3s′)+ 0.17φMg4

(
3s′)

(2.8)
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�MO41 = 0.17φH1
(
1s′)+ 0.31φH1

(
1s′′)− 0.13φH2

(
1s′)− 0.24φH2

(
1s′′)

−0.17φH3
(
1s′)− 0.31φH3

(
1s′′)+ 0.13φH4

(
1s′)+ 0.24φH4

(
1s′′)

+0.17φMg1
(
3s′)− 0.17φMg3

(
3s′)

(2.9)

�MO42 = −0.17φH1
(
1s′)− 0.36φH1

(
1s′′)+ 0.17φH2

(
1s′)+ 0.36φH2

(
1s′′)

− 0.17φH3
(
1s′)− 0.36φH3

(
1s′′)+ 0.17φH4

(
1s′)+ 0.36φH4

(
1s′′)

(2.10)

In MO39, H1, H2, H3 and H4 1s orbitals are overlapped, and H1, H2, H3 and H4
have one lobe. From chemical bonding rule, it is found that σ-type covalent bonding
is formed between hydride ions. MO42 is inversion σ-type covalent bonding to
MO39. In MO39, MO40 and MO41, hydrogen 1s orbitals slightly overlap with
magnesium 3s orbitals. From chemical bonding rule, it is also found that slight
covalent bonding is formed between hydride ion and magnesium.

2.4.3 Hydride Ion Conduction

Figure 2.16a, b show the potential energy curves of K2Mg4H3 and KMg4H3 models,
when displacing hydride ion along the diagonal line. In K2Mg4H3 model, local
minima are found between midpoint and lattice position (d = 0.7 and 2.1 Å), and
local maximum is found at the midpoint (d = 1.4 Å). The activation energy for
hydride ion conduction is 0.61 eV, whereas the partial activation energy crossing
a midpoint (local maximum) is 0.23 eV. On the other hand, in KMg4H3 model,
local minima are found between midpoint and lattice position (d = 0.6 and 2.2 Å),
and local maximum is found at the midpoint (d = 1.4 Å). The activation energies
crossing a midpoint and lattice position are 0.39 and 0.40 eV, respectively. It is
because the total energy at lattice position is almost the same as local maximum.

Figure 2.17 depicts the shapes of selected MOs related to hydrogen 1s orbitals
in K2Mg4H3 model. In MO40s and MO41s, hydrogen 1s orbitals are overlapped.
From chemical bonding rule, it is found that covalent bonding is formed between
hydride ions. The wave functions of MO39s at lattice position, local minimum and
local maximum are expressed as

�MO39 (Lattice) = − 0.12φK1 (3pz) +0.12φK2 (3pz)

− 0.18φH1
(
1s′)−0.29φH1

(
1s′′)−0.13φH2

(
1s′)−0.19φH2

(
1s′′)

− 0.18φH3
(
1s′)−0.29φH3

(
1s′′)

− 0.13φMg1
(
3s′)−0.12φMg2

(
3s′)−0.12φMg3

(
3s′)

− 0.13φMg4(3s′)
(2.11)
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Fig. 2.16 The potential energy curves of (a) K2Mg4H3 and (b) KMg4H3 models, when displacing
hydride ion along the diagonal line. Note that d notes a migration distance from hydrogen lattice
position (see blue arrows in Fig. 2.14b, c)



46 T. Onishi

Fig. 2.17 The shapes of
selected molecular orbitals
related to hydrogen 1s
orbitals at (a) lattice position
(d = 0.0 Å), local minimum
(d = 0.7 Å) and local
maximum (d = 1.4 Å) in
K2Mg4H3 model. The site
numbers of hydride ions are
also shown. Note that orbital
energy is given in parenthesis
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(
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(
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(
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− 0.32φH1
(
1s′)− 0.56φH1

(
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+ 0.17φMg1(2s) − 0.17φMg1
(
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(2.13)

In Eq. (2.11), H1, H2 and H3 1s orbitals overlap with potassium 3p and magnesium
3s orbitals. In Eq. (2.12), H2, H2 and H3 1s orbitals overlap with potassium 3p
orbitals and magnesium 2s and 3s orbitals, whereas in Eq. (2.13), H1 1s orbital
overlaps with potassium 3p orbitals and magnesium 2s and 3s orbitals. From
chemical bonding rule, it is found that hydride ion forms covalent bonding also
with potassium and magnesium in MO39s.
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Fig. 2.18 The shapes of
selected molecular orbitals
related to hydrogen 1s
orbitals at (a) lattice position
(d = 0.0 Å), local minimum
(d = 0.6 Å) and local
maximum (d = 1.4 Å) in
KMg4H3 model. The site
numbers of hydride ions are
also shown. Note that orbital
energy is given in parenthesis
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Figure 2.18 depicts the shapes of selected MOs related to hydrogen 1s orbitals
in KMg4H3 model. In MO31s and MO32s, hydrogen 1s orbitals are overlapped as
same as MO40s and MO41s of K2Mg4H3 model. From chemical bonding rule, it is
found that covalent bonding is formed between hydride ions. The wave functions of
MO30s are expressed as

�MO30 (Lattice) = 0.11φK1 (3pz)

+0.18φH1
(
1s′)+0.29φH1

(
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+0.14φMg4
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(2.14)
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�MO30 (Min) = 0.12φK1 (3pz)

+ 0.26φH1
(
1s′)+0.43φH1

(
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(
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(
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+ 0.10φH3
(
1s′)+ 0.16φH3
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(
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(
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(
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(
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In Eq. (2.14), H1, H2 and H3 1s orbitals overlap with potassium 3p and magnesium
3s orbitals. In Eqs. (2.15) and (2.16), H1, H2 and H3 1s orbitals overlap with
potassium 3p orbital and magnesium 2s and 3s orbitals. From chemical bonding
rule, it is found that hydride ion forms covalent bonding also with potassium and
magnesium in MO30s. It is considered that higher total energy at a midpoint is due
to less covalency between hydrogen and potassium.

2.4.4 Summary

It was concluded that hydride ion conduction occurs at room temperature in KMgH3
perovskite. The activation energy for hydride ion conduction was estimated to be
0.40–0.61 eV. Though the activation energy is smaller than hydride ion-doped
KMgF3 perovskite, temperature must be strictly controlled, due to its structural
deformation [35–37]. It is concluded that hydride ion-doped KMgF3 perovskite is
more favourable than KMgH3 perovskite, from the viewpoint of structural stability
at high temperature.

2.5 Hydride Ion Safety and Outlook

In this chapter, hydride ion conducting mechanism in perovskite magnesium
fluoride and hydride was revealed. It was found that the activation energies are
smaller than proton conducting perovskites: e.g. 0.91–1.78 eV in LaAlO3 perovskite
[7, 8]. Hence, it is concluded that hydride ion conducting perovskites can be utilized
as fast ion conductor, compared with proton conducting perovskites. Finally, let us
discuss also safety and outlook for future engineering application.
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2.5.1 Safety of Hydride Ion Conduction

In respect to hydride ion conduction, hydride ion-doped KMgF3 perovskite can be
utilized for electrolyte of solid fuel cell, due to small activation energy and structural
stability at high temperature. If achieved, it could be called “solid fluoride fuel cell
(SFFC)”. However, we will face one big concern “hydrogen fluoride generation”.
Hydrogen fluoride molecule is very harmful for human. If ideal perovskite structure
is kept during hydride ion conduction, hydrogen fluoride is not produced. After
repeated use of SFFC, nonuniform distorted surface may be formed. For example,
hydrogen fluoride may be produced under electron withdrawing environment as
shown in Fig. 2.19. This point should be investigated in future experiment.

2.5.2 Safety of Hydrogen Molecule Production Combined
with Hydride Ion Conduction

Let us consider the special environment under applied voltage at high temperature.
KMgH3 perovskite starts to be dissociated, whereas hydride ion still migrates within
remained solid part. It implies that hydrogen migration is accelerated by hydride ion
conduction in KMgH3 perovskite (see Fig. 2.20). Thought the synergistic effect
on hydrogen molecule production sounds ideal, we must pay attention to rapid
hydrogen molecule production in the air. For safety, future experiment should be
performed using explosion-proof apparatus.

Fig. 2.19 The schematic
figure of hydrogen fluoride
production on nonuniform
distorted surface
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Fig. 2.20 The schematic
figure of hydrogen molecule
releases on nonuniform
distorted surface
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2.5.3 AC Impedance Measurement of Hydride Ion Conduction

In general, experimental data, which is obtained by AC impedance measurement,
is analysed under assuming that electric resistance is constant in bulk part. It is
noted that it is generally divided into three contributions: bulk, grain boundary and
electrode interface. However, covalency of hydrogen is changeable during hydride
ion conduction. It implies that electric resistance in solid part also varies. Hence,
this effect must be taken into account. Otherwise, incorrect activation energy will
be given as same as proton conduction [8].
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Chapter 3
Local Dielectric Constant Density
Analysis of High-k Dielectric
Nanomaterial

Masato Senami and Akinori Fukushima

Abstract This article reviews progress of recently proposed local dielectric con-
stant and polarizability. Local dielectric constant and polarizability are defined only
in the formalism of quantum field theory. These quantities are expected to be good
tool to the numerical analysis of nanosize materials. Basis set dependence of these
quantities is explained with examples, an atom and a cation. The distribution of local
polarizability in molecules is explained for covalent molecules, XHn (X=C, N, O,
F, Si, P, S, Cl, Ge, As, Se, and Br). Particularly, the relation between chemical bond
and dielectric property is discussed. Application to practical nanosize materials is
introduced for hafnium dioxide, which is the leading candidate for next-generation
gate dielectric thin film. Particularly, HfLaOx model is studied for the purpose of the
clarification of the effect of the incorporation of La atoms to HfO2 on the dielectric
properties.

Keywords Quantum field theory · Local polarizability · Local dielectric
constant · Hafnium dioxide

3.1 Introduction

The notion of nanotechnology has been started from the lecture by Richard P.
Feynman in 1959 [1]. Then technology has been progressed extremely for several
decades. In an industrial aspect, some electronic devices are designed and manufac-
tured in a nanometer scale. In laboratory level, molecular computer is studied hard
in computational and experimental methods. Properties of these extremely small
devices are often dominated by definite local regions in devices: for example, as a

M. Senami (�)
Department of Micro Engineering, Kyoto University, Kyoto, Japan
e-mail: senami@me.kyoto-u.ac.jp

A. Fukushima
Faculty of Engineering, University of Fukui, Fukui, Japan
e-mail: akinori@u-fukui.ac.jp

© Springer Nature Singapore Pte Ltd. 2020
T. Onishi (ed.), Theoretical Chemistry for Advanced Nanomaterials,
https://doi.org/10.1007/978-981-15-0006-0_3

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0006-0_3&domain=pdf
mailto:senami@me.kyoto-u.ac.jp
mailto:akinori@u-fukui.ac.jp
https://doi.org/10.1007/978-981-15-0006-0_3


54 M. Senami and A. Fukushima

local region, vacancy, interface, and impurity for condensed matter and functional
group and bonding to other molecules for molecular devices.

Gate leakage current through dielectric thin film can be explained by the
percolation model [2, 3]. In this model, almost all leakage current flows through
defect chain in a film. In other words, observable leakage current for thin films
is concentrated on a very restricted region. In another example, benzenedithiol
is studied by many groups as prototype for future molecular electronics devices.
Experimental measured values of conductance of Au-benzene-1,4-dithiolate-Au
junction show very wide range, 10−4 − 1[e2/h̄], [4–9]. This conductance is
considered to be heavily dependent on connections between Au atoms in electrodes
and sulfur atoms [10–12]. In addition, if π -bonding is broken by adding a functional
group, conductance is decreased significantly [13]. Therefore, analysis of a specific
local region in a material is important for nanosize device materials.

In Fig. 3.1, the difference between quantum mechanics and quantum field theory
is schematically depicted. Particularly, the local description of the equation of

Fig. 3.1 Schematic picture of the difference between quantum mechanics and quantum field
theory. The symbol, Ô, is an operator and Ĥ is the Hamiltonian. Wave function in quantum
mechanics is denoted by ψ , and field operator is denoted by ψ̂
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motion has a significant different feature. In quantum mechanics, the time evolution
of a physical quantity is given by Heisenberg equation. A physical quantity used in
Heisenberg equation of quantum mechanics is given as the inner product defined
by the integration over the whole space. Hence, Heisenberg equation in quantum
mechanics does not describe the evolution of a physical quantity density in a specific
local region. In quantum field theory, the density value of a physical quantity can be
treated simply by a field operator and its physical quantity operator. For example,
electromagnetic field even in classical field theory can be described as a local density
quantity. The time evolution of a physical quantity can be described even for the
density in field theory. Therefore, only quantum field theory can explain the behavior
of a physical quantity in a local region, and we believe that the analysis in a local
region of a device material should be studied based on this theory.

Quantum field theory is consistent with Maxwell’s equations, while quantum
mechanics is not consistent, as summarized in Fig. 3.2. This is another reason why
we should use quantum field theory. For example, quantum mechanics with static
Hamiltonian, which is often used in the field of quantum chemistry, cannot dictate
dynamical phenomena such as electric current, which is a typical object described
in electromagnetism. Dynamical motion of electrons is allowed to be explained
by the addition of vector potential to Hamiltonian in a gauge invariant manner.
Nevertheless, a simple introduction of vector potential is not sufficient, if we do not
include the effect of dynamical motion of electrons on electromagnetic field, which
obeys Maxwell’s equations. Hence, vector potential and scalar potential should
be included so that electromagnetic field is consistent with Maxwell’s equations.

Fig. 3.2 Schematic picture of the consistency with Maxwell’s equation and the quantum treatment
of electromagnetic field. p is the momentum operator, m is the mass of a particle in the system, and
V is the potential. A is vector potential, and the subscript ext means that vector potential is treated
as an external field and is not affected by the system
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This treatment is adopted in some groups and accurate enough for some purpose
of researches. However, if quantum property of photon is important for analyses,
quantum field theory should inevitably be used. The unified picture of the photon,
the electron, and their interactions are only described in quantum field theory.

As a result, we believe that response properties of nanosize devices to electro-
magnetic fields should be analyzed by using physical quantities based on quantum
field theory. For this purpose, local physical quantities based on quantum field
theory have been proposed for dielectric constant, conductivity, and spin torque [14–
16]. Local quantities for dielectric responses are the topic explained in this article.
For conductivity, two types of local conductivity are defined as local counterpart
of ordinary conductivity. One is the response to external electric field for a local
region, and the other is the response to internal electric field in a local region.
These two definitions of local conductivity are mentioned in the next section. Local
conductivity is demonstrated in computational approach for nanowire materials
and benzenedithiol and its derivatives [13, 17, 18]. By using GaN and silicon
nanowire models, internal and external conductivities have been studied [17, 18].
Importance of π -bonding has been studied in comparison between benzenedithiol
and its derivatives [13]. For spin torque, the equation of motion of the electron spin
is introduced based on quantum field theory, and local description of spin torque is
given in this formulation as shown in Fig. 3.1. In local description, in addition to the
local counterpart of the ordinary spin torque, new torque term for the electron spin
is introduced. This new torque describes a local effect, and this term gives zero if
integrated over the whole region. However, this effect is considered to be important.
Even for spin steady states, local spin torque does not vanish Heisenberg equation in
quantum mechanics, while the equation of motion of the electron spin in quantum
field theory gives zero torque state by the cancellation between the spin torque and
new torque term even in a local region. This is confirmed in numerical methods
for many molecules [19–21]. Hence, quantum field theory should be used for the
correct local description of spin torque.

The study of this local physical quantity in quantum field theory started recently,
and many things remain to be studied. In this article, we show the formalism
of the local dielectric constant and the local polarizability and introduce knowl-
edge derived by recent works. This article is organized as follows. In the next
section, definitions of the local dielectric constant and the local polarizability are
explained, and some related formulae are introduced, such as the relation with local
conductivity tensors. In Sect. 3.3, we explain the internal distribution of the local
polarizability in simple molecules, XHn (X=C, N, O, F, Si, P, S, Cl, Ge, As, Se,
and Br). These molecules are typical examples of molecules with covalent bond.
It will be seen which electrons in molecules responds to external electric field. In
Sect. 3.4, we review the dielectric property of metal oxide for the purpose of the
study of hafnium dioxide (HfO2). Hafnium dioxide has high permittivity (high-k)
and hence is often studied for a viewpoint of gate dielectric thin film as insulator
in semiconductor devices. In this section, four models are compared and discussed.
Four models are two different structures, monoclinic and cubic, of HfO2, La2O3
model, and HfLaOx model. The HfLaOx model is investigated for the effect of the
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incorporation of La atoms to HfO2 on the dielectric properties. The last two sections
are devoted to the summary of this article and perspective of local dielectric constant
and polarizability.

3.2 Theory

In this section, the formalism of dielectric constant density operator is reviewed
[14–16]. This operator can parametrize local dielectric constant, which is given as
the expectation value of this operator. The ordinary notion of the dielectric constant
is based on a concept of a capacitor sandwiched between parallel plates. For a local
region in nanosize condensed matter, parallel plates could not be inserted in matter.
Hence, it is considered that a system (A), which is a target to study, is embedded
in an environmental background medium (M) as depicted in Fig. 3.3, schematically.
A local region may be included in both A and M regions, for a particular case. For
example, magnetic dipole moment of a nucleus in a system region may be included
as a region M.

The electromagnetic scalar field operators for these regions A and M are defined
as the integrals of the electric charge density over respective regions,

Â0A,M(x) =
∫

A,M

d3s
ρ̂(ct, s)

|r − s| , (3.1)

where x = (ct, r), c is the speed of light in vacuum, and ρ̂(x) is the charge density
operator. The charge density operator is defined as

ρ̂(x) ≡ Zeeψ̂†(x)ψ̂(x), (3.2)

where Ze = −1 for the electron, e is the elementary electric charge, and ψ̂(x) is the
electron field operator. The electromagnetic vector field operators for these regions
A and M, which are the rest parts of the four-component vector potential Âμ, are
defined as the integrals of the transversal component of the electric current density,

Fig. 3.3 Schematic picture
of system A embedded in
environment M



58 M. Senami and A. Fukushima

ÂA,M(x) = 1

c

∫

A,M

d3s
ĵT (u, s)

|r − s| , (3.3)

where u = t −|r − s|/c means the retardation. The electric current density operator
is defined as

ĵ i (x) ≡ cZee
ˆ̄ψ(x)γ iψ̂(x), (3.4)

where the adjoint field, ˆ̄ψ ≡ ψ̂†γ0, is often called the Dirac conjugate field, and γ μ

is the gamma matrix. Here and hereafter, Latin indexes span from 1 to 3, and Greek
indexes span from 0 to 4, where the zero-th component means the time component of
space-time components. This form of the current obeys the Lorentz covariance and
hence special relativity. For our purpose in this article, familiar nonrelativistic form
of the current is enough, since most dielectric phenomena are nonrelativistic. In non-
relativistic theory, the local electric current density operator ĵ(x) can be given as,

ĵ(x) = Zee

2me

[
−ih̄ψ̂†(x)∇ψ̂(x) + e

c
ψ̂†(x)Â(x)ψ̂(x) + h.c.

]
, (3.5)

where h̄ is the reduced Planck constant.
The four-component electromagnetic gauge field is given as the sum of the

contributions from the regions A and M,

Âμ(x) = Â
μ
A(x) + Â

μ
M(x). (3.6)

The electric field operator, Ê(x), is known to be defined as

Ê(x) = −gradÂ0(x) − 1

c

∂

∂t
Â(x). (3.7)

The electric field is given by the contributions from the electric displacement density
operator D̂(x) of the medium M and the polarization density operator P̂ (x) of the
system A. These are defined as

D̂(x) = −gradÂ0M(x) − 1

c

∂

∂t
ÂM(x), (3.8)

P̂ (x) = 1

4π
gradÂ0A(x) + 1

4πc

∂

∂t
ÂA(x). (3.9)

Therefore, the electric field is cast into another form,

Ê(x) = D̂(x) − 4π P̂ (x). (3.10)
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The electric displacement D̂(x) is considered to be external electric field for the
system A. In the original definition [15], Â

μ
radiation is separately defined in Eq. (3.6),

and hence Â
μ
radiation is explicitly added in this expression (3.10).

In this relation, the polarization of the system A is considered to be linear
response to D̂(x),

P̂ i(x) = α̂ij (x)D̂j (x), (3.11)

where α̂ij (x) is the polarizability density tensor operator, which is 3 × 3 matrix. In
this expression, α̂ij is allowed to have time dependence, since α̂ij is known to have
dependence of frequency of electric field as well as dielectric constant.

The dielectric constant density tensor operator ε̂ij (x) is the relation between
D̂(x) and Ê(x), and the definition is given as

D̂i(x) = ε̂ij (x)Êj (x). (3.12)

With Eqs. (3.10) and (3.11), the local dielectric constant density tensor operator is
reduced to other form,

ε̂ij (x) =
(

1

1 − 4πα̂(x)

)ij

(3.13)

Physical values of these quantities are derived as expectation values of these
operators, which are calculated by using state vector. All the components of the
polarizability density tensor and the dielectric constant density tensor are real; the
above operators are defined to be Hermitian operators. However, as matrix, these
tensors are not Hermitian, and therefore these tensors have three real or one real and
two complex values as eigenvalues of these matrices. In almost all cases of ordinary
global dielectric constant tensor, tensor is diagonal, and its eigenvalues are only real.
Off-diagonal elements of dielectric constant tensor are negligible for large enough
materials, since polarization perpendicular to imposed electric field is very small
owing to the cancellation among contributions from various positions. However, in
a local region of material, dielectric response perpendicular to imposed electric field
is not negligible even for amorphous materials and crystals with high symmetry.
Hence, off-diagonal elements should not be neglected, and tensor representation of
polarizability and dielectric constant is inevitably required for local analysis.

These local dielectric constant and local polarizability should have the same
value as the ordinary dielectric constant and polarizability, if regions A and M are
chosen to be the same as parallel plate capacitor, and the local dielectric constant
and local polarizability are averaged over the whole region of the system A. The
averaging way has been proposed in Refs. [22–24], and average values are also
useful for the numerical expression of dielectric property of a specific local region
as well as the consistency check of these local quantity for ordinary quantities. For
a region V whose volume is V , the average of local polarizability is defined as the
integration of local polarizability,
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〈αij
V (t)〉 = 1

V

∫

V

〈α̂ij (x)〉dr. (3.14)

The quantity of operator sandwiched by 〈, 〉, which are state vectors, bra and ket,
means the expectation value. This definition of the average is reasonable. If the
region V is capacitor and the region M is parallel plates, this average corresponds to
the polarization induced by the parallel plates over D. The average of local dielectric
constant is defined as

〈εij
V (t)〉 = 1

V

∫

V

〈ε̂ij (x)〉dr. (3.15)

The local dielectric constant and local polarizability are interesting physical
quantities by themselves, and moreover, these quantities are important for the
representation of the relation between other quantities. In this article, we introduce
one example, the relation between local conductivities mentioned in the previous
section, and we refer Ref. [25] as another relation, where the variation of Lorentz
force density by the change of electric field is given with local dielectric constant.
Ordinary electrical conductivity is the linear response of the electric current to
electric field between electrodes. A local counterpart of conductivity is the matrix
relation of the electric current density of region A to electric displacement of region
M. This definition of local conductivity is given as [15, 17, 18]

ĵ i (x) = σ̂
ij
ext(x)D̂j (x). (3.16)

This definition of conductivity corresponds to ordinary conductivity as an average
value discussed above. In another definition, we can consider the relation between
the local electric current and the electric field E,

ĵ i (x) = σ̂
ij

int(x)Êj (x). (3.17)

These two definition are related through the local dielectric constant as,

ĵ i (x) = σ̂
ij
ext(x)D̂j (x)

= σ̂
ij
ext(x)ε̂jk(x)Êk(x)

= σ̂
ij

int(x)Êj (x). (3.18)

Before we introduce works using local dielectric constant, some limitation in
these works are mentioned. First, the time variation of vector potential in estimate
of E, D, and P is neglected. Only steady states are considered in the works,
and it has been reported that effects of vector potential can be negligible even
for conductive states where wave packets are prepared by computations based on
quantum mechanics [26]. In following sections, system region A is chosen to be
a whole cluster model, and electric displacement D(x) is simply assumed to be
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homogeneous constant vector D. Any definite environmental medium is not set.
Here and hereafter, in the expression of expectation values, bra and ket are dropped,
and we can discriminate an operator and its expectation value by the existence of
the hat symbol “ ˆ .”

Local polarizability density tensor is calculated by using a finite difference
method or coupled perturbed Hartree-Fock (CPHF) method. In both computations
of polarization, only electronic contributions are taken into account, and nuclear
contributions are not included. First computation of a finite difference method is
explained. With six results with different electric displacements, Di

1,2 = 0 ±
�Di/2 = ±0.0001 [a.u.] (i = x, y, z), that is, ±Dx, ±Dy and ±Dz, the
polarization difference can be calculated as

�P i(x) = P i(x)|+Dj − P i(x)|−Dj . (3.19)

With these three polarization difference vectors (j = x, y, z), local polarizability
density tensor is calculated with the expression,

�P i(x) = αij (x)�Dj . (3.20)

By using CPHF method, linear response to external electric field is strictly calcu-
lated, though contamination from nonlinear effect was negligible in the above finite
difference method. Local polarizability is calculated by CPHF method as follows
[18]. Hamiltonian h and density matrix R are expanded with the perturbation
parameter, λ, as

h(λ) = h(0) + λh(1), (3.21)

R(λ) = R(0) + λR(1) + · · · . (3.22)

The first order Fock matrix hF(1) is given as

hF(1) = h(1) + G(R(1)). (3.23)

The matrix G is two-electron interaction,

Gpq(R) =
∑

r,s

Rrs

([ψpψq |ψrψs] − [ψpψs |ψrψq ]) , (3.24)

where subscripts p, q, r, s are used for all molecular orbitals (MOs). Then, the first-
order CPHF equation is given by

(εa − εi)R
(1)
ai = −h

F(1)
ai , (3.25)

where ε is unperturbed orbital energy, and subscripts a and i are used for virtual and
occupied MOs, respectively. In the computation of local polarizability, perturbation
parameter is taken for external electric field,
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λjh
(1j) = λj D0ej, (j = x, y, z) (3.26)

and external electric field is considered to be Dj = λj D0 (j = x, y, z) with
the unit electric field, D0. With the first-order density matrices R(1x,1y,1z), local
polarization Pi(x) can be expanded as

Pi(x; λx, λy, λz) = P
(0)
i (x) + λxP

(1x)
i (x) + λyP

(1y)
i (x) + λzP

(1z)
i (x) + · · · ,

(3.27)

and local polarizability tensor αij is calculated from Eq. (3.11),

αij (x) = ∂Pi(x)

∂Dj

∣∣∣∣
Dj =0

= ∂Pi(x)

∂λj

∂λj

∂Dj

∣
∣∣∣
Dj =0

= P
(1j)
i (x)

D0
. (3.28)

In this article, eigenvalues and eigenvectors of these tensor are used for the
description of 3 × 3 matrix of αij and εij . As explained above, all eigenvalues are
real, or only one eigenvalue is real (and two eigenvalues are complex). For the case
with three real eigenvalues, eigenvalues are arranged as the descending order. On the
other hand, if there are two complex eigenvalues, the first eigenvalue is real one, the
second and third eigenvalues are complex. As an exception, the descending order of
real part is adopted when we explicitly state the choice of the order. The magnitude
of the imaginary part is represented by the argument θ defined as follows,

θ = sin−1
[ |Im(λi)|

|λi |
]

, (3.29)

where λi is the corresponding eigenvalue. Eigenvalues and eigenvectors of local
dielectric constant can easily be calculated by Eq. (3.13).

3.3 Local Dielectric Property of Simple Systems

In this section, we show local dielectric response properties of simple systems,
single atom and ion, and molecules, XHn (X=C, N, O, F, Si, P, S, Cl, Ge, As, Se, and
Br), by wave packets based on quantum mechanics computations. These molecules
are chosen to be typical examples of covalent molecules. Most results in this section
are based on Refs. [27, 28].
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Results in this section are useful for the comprehension of local dielectric
response property in hafnium dioxide discussed in the next section.

3.3.1 Dependence of Local Polarizability on Choice of Basis
Set

In this section, local dielectric response property of single atom and ion is discussed
for the purpose of clarification of basis set dependence. First, the strong basis set
dependence of local polarizability density is shown for hydrogen atom, where an
analytical solution of Schrödinger equation is known.

The first eigenvalue of local polarizability density is shown as a function of
the distance from the hydrogen nucleus (proton) in Fig. 3.4 [28]. The contraction
of basis sets used in this figure is summarized in Table 3.1. Computations of
electronic structure were performed by Gaussian 09 program package [29]. With
derived electronic structure, CPHF calculations were carried out by the program
code developed for this computation. The local polarizability calculated by the
analytical solution is shown as a red solid line. Results of smaller basis sets such as
double-zeta basis sets are significantly smaller than that of the analytical solution.
The choice of larger basis sets than triple-zeta basis sets shows good consistency
with the result of the analytical solution.

In Fig. 3.5, the degree of deviation from the analytical solution is shown [28]. The
accuracy is not good for the five basis sets from 6-31G** to cc-pVDZ in Table 3.1.
For these basis sets, deviations are 40–70% in an atomic region whose radius is
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Fig. 3.4 The dependence of local polarizability density on basis set. The horizontal axis means
the distance from the hydrogen nucleus
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Table 3.1 List of basis sets. The contraction and references are shown

Atom Basis set Contraction

H 6-31G** [30, 31] (4s,1p) – [2s,1p]

6-31++G** [30–32] (5s,1p) – [3s,1p]

6-311G** [33] (5s,1p) – [3s,1p]

6-311++G** [32, 33] (6s,1p) – [4s,1p]

cc-pVDZ [34] (4s,1p) – [2s,1p]

cc-pVTZ [34] (5s,2p,1d) – [3s,2p,1d]

cc-pVQZ [34] (6s,3p,2d,1f) – [4s,3p,2d,1f]

cc-pV6Z (K.A. Peterson, D.E. Woon,
T.H. Dunning Jr., unpublished)

(10s,5p,4d,3f,2g,1h) – [6s,5p,4d,3f,2g,1h]

Hf LANL2DZ [35–37] (5s,6p,3d) – [3s,3p,2d]

LANL2TZ [35–38] (5s,5p,3d) – [5s,5p,3d]

Def2-SVP [39, 40] (7s,6p,5d,1f) – [6s,3p,2d,1f]

Def2-TZVP [39, 40] (9s,7p,5d,1f) – [6s,4p,3d,1f]

Def2-QZVP [39, 40] (10s,8p,6d,3f,1g) – [7s,5p,4d,3f,1g]

cc-pVDZ-PP [41] (8s,7p,6d,1f) – [4s,4p,3d,1f]

aug-cc-pVDZ-PP [41] (9s,8p,7d,2f) – [5s,5p,4d,2f]
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Fig. 3.5 The deviation from the analytical solution. The horizontal axis means the distance from
the hydrogen nucleus

taken to be 1 [bohr], and in outer region (>1 [bohr]), deviations reach 50–90%.
The reason of the shortage of the accuracy is the lack of the degree of freedom
of polarization function. There is only one polarization function for these basis sets.
The accuracy becomes worse for outer region from nucleus. This trend is remarkable
for smaller basis sets such as double-zeta basis sets, since these basis sets have
poor degree of freedom for the change of wave function in outer region. For neutral
atoms, the degree of diffuse functions, which are s-type functions, is not important
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for the representation of local polarizability density from the comparison between
the results of 6-31G** (6-311G**) and 6-31++G** (6-311++G**). The deviation of
cc-pVQZ basis set is less than 10 % within 2 [bohr] from the nucleus. The difference
between results of cc-pVQZ and cc-pV6Z basis sets is not large, and hence
quadruple-zeta basis sets may be the best choice in viewpoints of computational
cost and accuracy for hydrogen atom. However, this may be overestimated for other
atoms. We consider that this accuracy is heavily dependent on the degree of freedom
of nonzero angular momentum orbitals, that is, p, d, f, . . . , types functions, since any
s-type function is spherically symmetric and cannot be polarized against electric
field. Hence, we consider that smaller basis sets, such as triple-zeta basis sets, are
accurate enough to represent the distribution of local polarizability density for atoms
with larger atomic number, since basis sets for atoms with large atomic number have
the large number of nonzero angular momentum orbitals even for double-zeta basis
sets. It is important that this conjecture is confirmed by numerical computations,
and, however, this confirmation for neutral single atoms has not been published as
far as we know.

In atoms or condensed matter, electrons in some atoms are moved to other
regions, so that chemical bonding is formed, such as covalent bond and ionic bond.
Particularly, charge transfer between donor and acceptor is larger in ionic bond.
Hafnium dioxide discussed in the next section is known to have ionic bond. Hence,
next, the basis set dependence of local polarizability is explained for cation, Hf4+,
where we assumed simple picture of Hf4+ and O2− in HfO2.

The first eigenvalue of local polarizability density tensor of Hf4+ is shown as a
function of the distance from the Hf nucleus in Fig. 3.6 [28]. Electronic structure and
CPHF computations were performed by Gaussian 09 program package [29] and the
program code developed for this computation, respectively. The contraction of basis
sets is listed in Table 3.1. These basis sets use pseudo potential for core electrons,
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and the result in inner region (< about 1 [bohr]) should be neglected. Analytical
solution for Hf4+ is not known, and we judge the accuracy by comparing with results
of the largest basis set group. Fortunately, all results are consistent with each other,
and basis set dependence is negligible for Hf4+. The response to electric field is
small in spite of large electron density, since four valence electrons are removed
and rest electrons are significantly stabilized. As a result, it is concluded that the
choice of basis sets is not important for cation, Hf4+.

On the other hand, valence electrons are destabilized significantly in anion.
Hence, larger basis sets are required for accurate description of local polarizability.
However, unfortunately, we cannot confirm this in a numerical method using a
single nucleus system, since the highest occupied molecular orbital (HOMO) of O2−
has positive energy, and isolated O2− cannot be calculated correctly. Nevertheless,
computations of isolated O2− were studied in Ref. [28] for the purpose of the
numerical confirmation of strong dependence on the choice of basis sets. It was
shown in Ref. [28] that results with larger basis sets have larger polarizability, and
diffuse functions are important. This is plausible, since HOMO is not bounded.

As a result, we can summarize the basis set dependence as follows. From the
hydrogen result, it is conjectured that triple- or quadruple-zeta basis sets are accurate
enough to describe local polarizability density for neutral atoms. For cations, the
basis set dependence is small, while a larger basis set is required for anions.

3.3.2 Local Dielectric Property of Molecules XHn (X = C, N,
O, F, Si, P, S, Cl, Ge, As, Se, and Br)

In this subsection, we explain results of local dielectric response properties of
simple molecules, XHn (X = C, N, O, F, Si, P, S, Cl, Ge, As, Se, and Br), by wave
packets based on quantum mechanics computations. These molecules are chosen
to be typical examples of covalent molecules, and these X atoms are elements of
group IV–VII in the second to fourth period. Most results in this section are based
on Ref. [27]. Results of these simple molecules are used for systematic analysis of
local dielectric properties in a molecule. In this subsection, the order of eigenvalues
is the descending order of real part.

Wave packets used in this section were computed by ordinary electronic structure
computations carried out by GAMESS program package [42]. The cc-pVQZ basis
set [34, 43, 44] was chosen, and geometrical optimization computations were
performed by Hartree-Fock (HF) method. Singlet spin multiplicity was chosen for
all molecules. Configuration interaction single and double (CISD) was adopted for
electronic structure computations. This choice is better than the usage of density
functional theory (DFT), since the problem of overestimate of dielectric constant is
known for DFT [45–49]. Excitation of all electrons in occupied orbitals is taken
into account in this CISD computation. Local polarizability was computed by
QEDynamics program package [50–55].



3 Local Dielectric Constant Density Analysis of High-k Dielectric Nanomaterial 67

In Fig. 3.7, the distributions of eigenvalues and eigenvectors of local polarizabil-
ity density tensor of H2O are shown on the plane including O and two H atoms. For
two-dimensional representation of distribution of local polarizability density, only

Fig. 3.7 The distribution of
eigenvalue and eigenvector of
local polarizability density of
H2O. From top, the first,
second, and third eigenvalues
and eigenvectors are shown.
Short lines show directions of
corresponding eigenvectors.
Eigenvalues are complex in
regions enclosed by solid
lines. The regions enclosed
by bold dashed line show
large polarizability density
(see text)
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one molecule is taken as an example, and common features explained below are
also seen for other XHn molecules. Other results are dropped since those are a little
lengthy, and all results of other molecules can be seen in Ref. [27]. The upper, mid-
dle, and bottom panels are the first, second, and third eigenvalues and eigenvectors,
respectively. Short lines show directions of corresponding eigenvectors. Eigenvalues
are complex in regions enclosed by solid lines. In the result of the largest eigenvalue,
the first eigenvalue, large polarizability region exists between O and H atoms, which
are enclosed by bold dashed line, and the direction of eigenvectors in the region
is that of covalent bond of O and H. This directionality shows salient contrast
compared to that of HfO2 discussed in the next chapter, whose bonding is ionic. This
directional response is considered to arise from covalent bond. Negative or complex
eigenvalues are seen around the oxygen nucleus. In negative eigenvalue regions,
the direction of polarization response is opposite to ordinary response. In complex
eigenvalue regions, polarization responds to electric field rotationally [18]. This
response is not familiar in macroscopic phenomena and originates in combination of
electric fields from nuclei and external field. These regions are more outstanding for
upper period elements in the periodic table, and similar distribution patterns appear
in a same group [27]. These properties explained above arise from the size of a
molecule, which correlates with the radius of X atom and the internuclear length
between X and H nuclei.

Eigenvalues of local polarizability tensor are shown along internuclear axis of X
and H bonding for XHn (X = C, N, O, F, Si, P, S, Cl, Ge, As, Se, and Br) molecules
in Fig. 3.8 (CH4, NH3, H2O, HF), Fig. 3.9 (SiH4, PH3, H2S, HCl), and Fig. 3.10
(GeH4, AsH3, H2Se, HBr). In these figures, top left panels show results of XH4, top
right ones show those of XH3, bottom left ones show those of H2X, and bottom right
ones show those of HX. In addition to three eigenvalues, the average of eigenvalues
is also shown in this figure. Bold dashed line means αi = 1/(4π) ∼ 0.08.
When αi = 1/(4π), the eigenvalue of dielectric constant tensor corresponding
to αi is divergent. For αi > 1/(4π), the corresponding dielectric constant has
negative sign. From these figures, large local polarizability density is seen in a
region between X and H atoms as seen in Fig. 3.7. This is due to the charge transfer
from a region around a nucleus to bonding region. In contrast, local polarizability
density is smaller around nuclei for all atoms than bonding region. Electrons around
nuclei are bounded strongly by electric field of nuclei, while electrons in bonding
region are not strongly trapped by electric field. From the comparison among a
same period, the average of local polarizability density is larger for smaller atomic
number. The difference of average comes from the difference of the second and
third eigenvalues. This is speculated to originate in the X-H internuclear length and
other X-H bonding. The peak at a X nucleus is formed by 1s core electrons of the
X atom. In Figs. 3.9 and 3.10, multiple peak structure around X nucleus is seen for
elements in the third and fourth period. This structure is formed by shell structure
of atoms. Inner electrons respond to electric field weakly by strong electric field
of a nucleus. Complex eigenvalues around transition region between bonding and
X nucleus regions for elements in V and VI groups. The arguments of complex
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Fig. 3.8 Eigenvalues of local polarizability tensor and their average along internuclear axis of X
and H bonding for CH4, NH3, H2O, and HF. Top left panels show results of CH4, top right ones
show those of NH3, bottom left ones show those of H2O, and bottom right ones show those of HF.
Bold dashed line means αi = 1/(4π)

eigenvalues are larger for smaller atomic number both in a same group and in a
same period.

The structure of peaks of the average of eigenvalues of local polarizability density
tensor is studied in order to see the relation between molecular size and dielectric
response. The response to external electric field is maximum at peak positions. Peak
positions from X nuclei of XHn molecules are shown in Fig. 3.11. The peak at a
X nucleus is trivial and not included in this figure. Multiple peak structure by core
electrons is seen for the third and fourth period X atoms. These peaks (third period
1, fourth period 2, and fourth period 3) are close to X nuclei and within 1 [bohr] and
almost independent of atomic number in a same period. Outermost peaks are more
distant from X nuclei for larger atomic number in a same group, while in a same
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Fig. 3.9 Eigenvalues of local polarizability tensor and their average along internuclear axis of X
and H bonding for SiH4, PH3, H2S, and HCl. Top left panels show results of SiH4, top right ones
show those of PH3, bottom left ones show those of H2S, and bottom right ones show those of HCl.
Bold dashed line means αi = 1/(4π)

period, these peaks are closer to the nuclei for larger atomic number. This trend of
peaks corresponds to that of internuclear length between X and H atoms.

The distance of peaks from X nuclei over internuclear length between X and
H atoms is shown in Fig. 3.12 in order to see the correlation between them. For
outermost peaks, this value is about 0.70–0.85. The difference between periods is
smaller than that of Fig. 3.11, though values of the second period are somewhat
smaller than other periods. In a same period, values are smaller for larger atomic
number. The difference of internuclear lengths in a same period is smaller than
that of peak positions. Since internuclear lengths are correlated with the strength
of covalent bond, the correlation between covalent radius [56] and peak position
is shown in Fig. 3.13. Values of outermost peaks are within 0.95–1.15, and this
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Fig. 3.10 Eigenvalues of local polarizability tensor and their average along internuclear axis of X
and H bonding for GeH4, AsH3, H2Se, and HBr. Top left panels show results of GeH4, top right
ones show those of AsH3, bottom left ones show those of H2Se, and bottom right ones show those
of HBr. Bold dashed line means αi = 1/(4π)

parametrization is more close to 1 than that using internuclear length. This also
confirms that peak position is dependent on the property of covalent bond.

Next, the correlation between peak positions and atomic radius defined by kinetic
energy density [14–16] is shown in Fig. 3.14. The kinetic energy density operator is
given as

T̂e(x) = − h̄2

2me

1

2

(
ψ̂†(x)D̂

2
e(x)ψ(x) + h.c.

)
, (3.30)

where D̂e(x) is the covariant derivative, and the expectation value of this operator
is denoted by Te. The surface Te = 0 is proposed to form the surface of an atom or
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Fig. 3.11 Peak positions of the average of eigenvalues of local polarizability density tensor from
X nuclei of XHn molecules. Horizontal axis means the group of a X atom. Second, third, and fourth
periods in the legend means periods of X atoms

a molecule [14–16]. Hence, the radius of the sphere, Te = 0, of an isolated single X
atom is adopted as the definitions of atomic radius. Values of outermost peaks are
in the region 0.65–0.75 and show strong correlation between these radii and peak
positions. The value is most distant from 1 among three parametrizations taken in
this article, and, however, both differences between periods and that among a same
period are smallest in the three parametrizations. This good property is attributed to
good property of kinetic energy density as atomic radius.

In this section, we have seen local dielectric property of molecules with typical
covalent bonding systematically. We have shown the distribution pattern of local
polarizability density in these molecules. Negative polarizability is seen around X
nuclei, and this is due to the complicated response to the combination of nuclear
and external electric fields. In addition, complex eigenvalue of polarizability tensor
is also seen around X nuclei, and dielectric response is rotational one in this region.
Then some relations of local dielectric response to internuclear length, covalent
radii, and radii of X atoms are studied, and strong correlation between them is
confirmed. Results for simple molecules introduced in this section are useful and
applicable for understanding dielectric property of any covalent molecules.
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Fig. 3.12 Peak positions in Fig. 3.11 over internuclear length. Horizontal axis means the group of
X atom

3.4 Local Dielectric Property of HfLaOx

In this section, we show local dielectric properties of metal oxides used in new
insulators for transistors. Among many materials, we focused on hafnium dioxide
(HfO2), which has high permittivity. HfO2 has two different structures, including
monoclinic and cubic. Cubic HfO2 (c-HfO2) has a larger dielectric constant than
that of monoclinic HfO2 (m-HfO2). However, the c-HfO2 is unstable. Yamamoto
et al. [57] reported that the crystal structure changes into the cubic phase by doping
La atoms into m-HfO2. Based on this report, in this study, we employed a HfLaOx

model to analyze the effect of the La atom on the dielectric properties. The details
of our work are in Refs. [22–24].

To clarify the effect of La atoms on the dielectric properties, four different
models were used, as shown in Fig. 3.15. Red spheres represent O atoms, green
spheres represent La atoms, and yellow spheres represent Hf atoms. Figure 3.15a is
a m-HfO2 model, Fig. 3.15b is a La2O3 model, Fig. 3.15c is a c-HfO2 model, and
Fig. 3.15d is a HfLaOx model. All models were rendered by VESTA [58]. These
models are made based on their crystal structures. The La2O3 has hexagonal unit
cell, the m-HfO2 has a monoclinic unit cell, and the c-HfO2 has a cubic unit cell. O
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Fig. 3.13 Peak positions of the average of eigenvalues of local polarizability density tensor from
X atoms of XHn molecules. Horizontal axis means the group of a X atom

atoms are at the center of La2O3 and m-HfO2, and the metal atom is at the center of
c-HfO2. In HfLaOx , the center of the model is vacant. Geometry optimization was
not conducted for all models. Point charges were placed around models to represent
the electronic structure of a bulk system using cluster models. The point charges
on the metal atom sites were given a positive charge, while those at the O sites
were given a negative charge. The values of these charges were determined again
so that the Mulliken charges of the atoms in the analyzed system were uniformly
distributed. Accordingly, point charges were set to 0.3 and −0.2 for La2O3, 1.0 and
−0.5 for m-HfO2 and c-HfO2, and 0.6 and −0.3 for HfLaOx . There were 2000 point
charges in the La2O3 model, 2800 in the m-HfO2 model, 606 in the c-HfO2 model,
and 560 in the HfLaOx model. In some quantum chemical calculations, the bonds
were terminated by H atoms to suppress the wrong response of dangling bonds.
However, in the cases of ionic compounds such as some kinds of metal oxides,
using the hydrogen- terminated cluster models results in an underestimation of the
dielectric responses [22]. Thus, we employed the method described above.

The HF method was used to derive the electronic state for the polarizability
density tensor and dielectric constant density tensor calculations. For basis set
functions, LanL2DZ [35–37] was used for La and Hf atoms, and D95* was
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Fig. 3.14 Peak position in Fig. 3.11 over atomic radius, whose definition is explained in the text.
Horizontal axis means the group of X atom

used for O atoms [59]. In addition, 4f polarization functions were added to that
of the La atom, whose exponent coefficients are 0.441 for the LanL2DZ basis
set [60]. Computations of the electronic structure were performed using Gaussian
09 program package [29]. Calculation procedures are the same in the case of the
small molecules. In this section, we consider only the contribution of electrons to
dielectric properties.

First, we focused on the averaged values of the polarizability density tensor and
the dielectric constant density tensor according to Eq. (3.14–3.15). We employed a
spherical region whose center corresponded to the central O atom, and the radius
was equal to the bond length between the central O atom and nearest metal atoms in
La2O3 and m-HfO2. In the case of c-HfO2, the cubic region was employed with its
vertices represented with eight O atoms that are nearest to the central Hf atom. In the
HfLaOx model, since the center of the model was vacant, the center of the sphere
was the O atom nearest this vacancy, and the radius of the sphere was the distance
between the O and La atoms. In this study, the averages of three eigenvalues were
employed as indicators, which were (α1+α2+α3)/3 and (ε1+ε2+ε3)/3, where αi are
the eigenvalues of the polarizability tensor and εi are the eigenvalues of the dielectric
constant tensor. Results are shown in Table 3.2. In the case of polarizability density,
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(a) (b)

(c) (d)

Fig. 3.15 Calculation models. Panel (a) is La2O3, panel (b) is m-HfO2, panel (c) is c-HfO2, and
panel (d) is HfLaOx . Red spheres represent O atoms, green spheres represent La atoms, and yellow
spheres represent Hf atoms. All models were rendered by VESTA [58]

Table 3.2 The averaged value of the polarizability density tensor and the dielectric constant
density tensor around the certain region obtained according to Eq. (3.14–3.15). The definition of
the region is in the text

Materials Polarizability Dielectric constant

La2O3 0.057 4.72

m-HfO2 0.041 2.40

c-HfO2 0.058 3.57

HfLaOx 0.047 2.50

the result for HfLaOx was 0.047, which is smaller than those of La2O3 (0.057) and
c-HfO2 (0.058). This value was quite close to that of m-HfO2 (0.041). In the case of
the dielectric constant, the result for HfLaOx was 2.50, which is smaller than those
of La2O3 (4.72) and c-HfO2 (3.57). Similar to the polarizability density, this value
is quite close to that of m-HfO2 (2.40).

We next focused on averaged values in the bond region. In this case, we employed
a cylindrical region whose axis corresponded to the bond axis with a radius of 1
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Table 3.3 The averaged value of the polarizability density tensor and dielectric constant density
tensor between O and metal atoms in HfLaOx obtained according to Eq. (3.14–3.15). Definition of
the cylindrical region is in the text

Bond Polarizability Dielectric constant

La−O 0.060 5.88

Hf−O 0.033 2.60

bohr. Results are shown in Table 3.3. The average polarizability density on a La-O
bond region was 0.06 and larger than that on the Hf-O bond region (0.03). The same
tendency was also observed in the average of the dielectric constant density. At the
La-O bond, the average was 5.88 and larger than that on the Hf-O bond (2.60). For
both polarizability and dielectric constants, an averaged value between La and O
atoms was large.

We focused on the distribution of the polarizability density tensor on a plane with
O and metal atoms. Figures 3.16, 3.17, 3.18, and 3.19 show results of La2O3, m-
HfO2, c-HfO2, and HfLaOx , respectively. The color map shows the real parts of the
eigenvalues. The black solid line segments show the directions of the eigenvectors.
The filled circle shows the pseudopotential of the metal atom. The green line
represents the argument of the eigenvalues. Panels (a)–(c) show the first, second, and
third eigenvalues, respectively. The values are presented in the descending order of
the real parts of the eigenvalues. Panel (d) shows all eigenvalues and their average
on the line between the metal and O atoms. In the case of the HfLaOx , panel (d)
shows the results between Hf and O atoms, and panel (e) shows results between
La and O atoms. Comparing Figs. 3.16 and 3.17, the large polarizability density
was distributed almost uniformly in the region in the first eigenvalue. Moreover,
the negative value was observed on the bond region in the third eigenvalues of m-
HfO2 (Fig. 3.17c). Eigenvectors of these negative values were parallel to the bond.
As shown in panel (d), the large value around 1/4π was distributed widely in the
results of La2O3, while it was very restricted around the O atom in the results of
m-HfO2. The dielectric constant density was divergent and changes the sign of
the polarizability density at 1/4π . Hence, the regions where the eigenvalues were
almost 1/4π produced divergently large dielectric constant density, and internal
polarization was cancelled out with an external electric field. In the case of c-
HfO2 (Fig. 3.18), more complex response was observed compared with m-HfO2.
These results were indicative of the basic response of metal oxides. In panel (d)
of Fig. 3.19, the region where first and second eigenvalues were about 1/4π spread
widely. However, in the region between Hf and O atoms, the first eigenvalues were
over 1/4π . Moreover, the second eigenvalues between Hf and O atoms were smaller
than those between La and O atoms. These make large difference in the cylindrical
average presented in Table 3.3. Next, we turned our attention to the distribution of
the eigenvalues, as shown in panels (a)–(c). In panel (a), large values in the first
eigenvalues were widely observed. The large values of the second eigenvalues can
be seen around O, Hf, and La atoms and the bond region between the O atom and
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Fig. 3.16 The eigenvalues of the polarizability density tensor of La2O3. Panels (a)–(c) present the
results of the first, second, and third eigenvalues (α1,2,3) on a plane with the central O atom and
a next La atom, respectively. The values are presented in the descending order of the real parts of
the eigenvalues. The color map shows the real parts of the eigenvalues, and bold lines represent
the contour of the argument, and their units are in degree. The solid black lines show the directions
of the eigenvectors. The filled circle shows the pseudopotential of the La atom. Panel (d) shows
all eigenvalues on the La-O line. The upper part of this panel is the real part of three eigenvalues
and their average. The lower part of this panel is the value of sine of the argument. The horizontal
dotted line on the upper panel represents 1/4π . The vertical dotted line between the O atom and
the La atom shows the boundary of the pseudopotential, and the left region from this line is the
inside of the pseudopotential

metal atoms. In other regions far from atoms, smaller values exist. Moreover, in
panel (c), the large values were only around La, Hf, and O atoms.

Finally, we focus on the distribution of the dielectric constant density tensor.
Figures 3.20, 3.21, 3.22, and 3.23 show results of La2O3, m-HfO2, c-HfO2, and
HfLaOx , respectively. The color map shows the inverse of the real parts of the
eigenvalues. The solid line segments show the directions of the eigenvectors. The
filled circle shows the pseudopotential of the metal atom. The green line shows
the argument of the eigenvalue. Panels (a)–(c) show the first, second, and third
eigenvalues, respectively. The values are presented in the descending order of the
real parts of the eigenvalues. Panel (d) shows all eigenvalues on the line between the
metal and O atoms. In the case of HfLaOx , panel (d) shows results between Hf and O
atoms, and panel (e) shows results between La and O atoms. In all models, negative
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Fig. 3.17 The eigenvalues of the polarizability density tensor of m-HfO2. Panels (a)–(c) are the
results of the first, second, and third eigenvalues (α1,2,3) on a plane with the central O atom and
the next Hf atoms, respectively. The values are presented in descending order of the real parts of
the eigenvalues. The color map shows the real parts of the eigenvalues, and bold lines represent
the contour of the argument, and their units are in degree. The solid black lines show the directions
of the eigenvectors. The filled circle shows the pseudopotential of the Hf atom. Panel (d) shows
all eigenvalues on the Hf-O line. This O atom is the upper one in panels (a)–(c). The upper part
of this panel presents the real part of three eigenvalues and their average. The lower part of this
panel is the value of sine of the argument. The horizontal dotted line on the upper panel represents
1/4π . The vertical dotted line between the O atom and the Hf atom shows the boundary of the
pseudopotential, and the left region from this line is the inside of the pseudopotential

values can be seen around O atoms. These negative values are due to the large
polarizability and decrease in the total dielectric constant. The fact that the large
polarizability decreases the dielectric constant is characteristic of local properties.
Moreover, a white region can be seen in the third eigenvalues of all models. In this
region, the absolute value of the real part of the eigenvalue was less than 1. This
indicated that the dielectric constant was less than that of vacuum space. Compared
with Figs. 3.20 and 3.21, a large difference can be seen in the third eigenvalues.
In the case of m-HfO2, the region where the dielectric constant was less than the
vacuum space was larger than that of La2O3. This difference may strongly affect
the total dielectric properties.

From dielectric response calculations of high-k oxides, we obtained three basic
insights as follows. The first insight is that the large eigenvalues of polarizability
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Fig. 3.18 The eigenvalues of the polarizability density tensor of c-HfO2. Panels (a)–(c) present
the results of the first, second, and third eigenvalues (α1,2,3) on a plane with the central Hf atom
and the next O atoms, respectively. The values are presented in descending order of the real parts
of the eigenvalues. The color map shows the real parts of the eigenvalues, and bold lines represent
the contour of the argument, and their units are in degree. The solid black lines show the directions
of the eigenvectors. The filled circle shows the pseudopotential of the Hf atom. Panel (d) shows
all eigenvalues on the Hf-O line. The upper part of this panel is the real part of three eigenvalues
and their average. The lower part of this panel is the value of sine of the argument. The horizontal
dotted line on the upper panel represents 1/4π . The vertical dotted line between the O atom and
the Hf atom shows the boundary of the pseudopotential, and the left region from this line is the
inside of the pseudopotential

density tensor over 1/4π were observed in the surrounding region of the nucleus of
the O atom. Due to its large polarizability density, the dielectric constant density
tensor has negative eigenvalues. The second one is that in the region where the
polarizability density tensor has the negative eigenvalues, one of the eigenvalues
of the dielectric constant density tensor shows the negative sign, and this negative
eigenvalue may affect the total dielectric constant of the material. At last, doping of
La atoms makes the local electric response of HfO2 more complex compared with
pure materials. Focusing the local properties, we can clarify what decreases the
total dielectric constant and polarizability, like the negative values of polarizability
density and dielectric constant density and may obtain the knowledge to construct
new high-k materials.
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Fig. 3.19 The eigenvalues of the polarizability density tensor of HfLaOx . Panels (a)–(c) are the
results of the first, second, and third eigenvalues (α1,2,3) on a plane with the O atom near the central
vacancy and the next Hf and La atoms, respectively. The values are presented in descending order
of the real parts of the eigenvalues. The color map shows the real parts of the eigenvalues, and
bold lines represent the contour of the argument, and their units are in degree. The solid black lines
show the directions of the eigenvectors. The filled circles show the pseudopotential of the La and
Hf atoms. Panels (d) and (e) show all eigenvalues on the Hf-O and La-O lines. The upper part
of this panel is the real part of three eigenvalues and their average. The lower part of this panel
is the value of sine of the argument. The horizontal dotted lines on the upper panels represent
1/4π . The vertical dotted lines between the O atom and the metal atom show the boundary of the
pseudopotential, and the left region from this line is the inside of the pseudopotential
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Fig. 3.20 The inverse of the eigenvalues of the dielectric constant density tensor of La2O3. Panels
(a)–(c) present the results of the first, second, and third eigenvalues (ε−1

1,2,3) on a plane with the
central O atom and the next La atom, respectively. The values are presented in the descending
order of the real parts of the eigenvalues. The color map shows the real parts of the eigenvalues,
and bold lines represent the contour of the argument and their units are in degree. The solid black
lines show the directions of the eigenvectors. The filled circle shows the pseudopotential of the La
atom. Panel (d) shows all eigenvalues on the La-O line. The upper part of this panel is the real
part of three eigenvalues and their average. The lower part of this panel is the value of sine of the
argument. The vertical dotted line between the O atom and the La atom shows the boundary of the
pseudopotential, and the left region from this line is the inside of the pseudopotential

3.5 Summary

In this article, local dielectric constant and local polarizability have been explained.
These quantities are based on quantum field theory, and formalism of these
quantities has been reviewed in this article. For a hydrogen atom and Hf4+, the
basis dependence of local polarizability is explained. Triple- or quadruple-zeta
basis sets are required for an accurate description of local polarizability density
for neutral atoms, while for cations, the basis set dependence is small enough.
We have also mentioned that a larger basis set is required for anions. For typical
covalent molecules, XHn (X = C, N, O, F, Si, P, S, Cl, Ge, As, Se, and Br),
we have shown the distribution pattern of local polarizability density. Negative
and complex eigenvalues of polarizability tensor are seen around X nuclei. These
arise from response to the combination of nuclear and external electric fields. We
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Fig. 3.21 The inverse of the eigenvalues of the dielectric constant density tensor of m-HfO2.
Panels (a)–(c) present the results of the first, second, and third eigenvalues (ε−1

1,2,3) on a plane with
the central O atom and the next Hf atom, respectively. The values are presented in the descending
order of the real parts of the eigenvalues. The color map shows the real parts of the eigenvalues,
and bold lines represent the contour of the argument, and their units are in degree. The solid black
lines show the directions of the eigenvectors. The filled circle shows the pseudopotential of the Hf
atom. Panel (d) shows all eigenvalues on the Hf-O line. This O atom is the upper one in panels
(a)–(c). The upper part of this panel is the real part of three eigenvalues and their average. The
lower part of this panel is the value of sine of the argument. The vertical dotted line between the
O atom and the Hf atom shows the boundary of the pseudopotential, and the left region from this
line is the inside of the pseudopotential

have also explained strong correlations of local dielectric response to internuclear
length, covalent radii, and radii of X atoms. As an example of application of these
quantities to the study of nanomaterial, hafnium dioxide was taken in this article
in viewpoints of gate dielectric thin film. Using monoclinic, cubic, and La-doped
cubic structures, we have evaluated the dielectric properties around the atoms and
the bond regions and clarified the effect of the La doping on the distribution of the
dielectric properties. We have shown that large polarizability density that makes the
negative eigenvalues of dielectric constant density can be seen around the nucleus
of the O atom, and the bond region affects the average dielectric constant strongly.
Moreover, we have also clarified that doping of La atoms makes the local electric
response of HfO2 more complex. By focusing the local properties, we may obtain
the basic insights to construct new high-k materials.



84 M. Senami and A. Fukushima

−6.0  0.0  6.0

[bohr]

−6.0

 0.0

 6.0
[b

oh
r]

−1.0

  0.0

 1.0
      20
       1
      20
       1

HfO O

(a)

−6.0  0.0  6.0

[bohr]

−6.0

 0.0

 6.0

[b
oh

r]

−1.0

  0.0

 1.0
      20
       1
      20
       1

HfO O

(b)

−6.0  0.0  6.0

[bohr]

−6.0

 0.0

 6.0

[b
oh

r]

−1.0

  0.0

 1.0
      20
       1
      20
       1

HfO O

(c)

 −1

0

  1

  2

 0
 /

i [
−

]

i =1 i =2 i =3

  0

  1

Hf O

|s
in
|

(d)

Fig. 3.22 The inverse of the eigenvalues of the dielectric constant density tensor of c-HfO2. Panels
(a)–(c) present the results of the first, second, and third eigenvalues (ε−1

1,2,3) on a plane with the
central Hf atom and a next O atom, respectively. The values are presented in the descending order
of the real parts of the eigenvalues. The color map shows the real parts of the eigenvalues, and
bold lines represent the contour of the argument, and their unit is in degree. The solid black lines
show the directions of the eigenvectors. The filled circle shows the pseudopotential of the Hf atom.
Panel (d) shows all eigenvalues on the Hf-O line. The upper part of this panel is the real part
of three eigenvalues and their average. The lower part of this panel is the value of sine of the
argument. The vertical dotted line between the O atom and the Hf atom shows the boundary of the
pseudopotential, and the left region from this line is the inside of the pseudopotential

3.6 Perspective

This analysis approach of the usage of local dielectric constant and local polar-
izability has been just started, and many subjects remain to be investigated. For
example, ordinary dielectric response is known to have the dependence on frequency
of electric field, and hence local dielectric constant and local polarizability have also
this dependence. However, this dependence has not been studied in any published
works. As another important issue, nuclear contribution to dielectric constant is
known to be important in hafnium dioxide. The works introduced in this article
have not included this contribution, and this important effect remains to be studied.

At last, the formalism of local dielectric constant and local polarizability is
based on quantum field theory. However, computations reviewed in this article
were performed by electronic structure computations based on quantum mechanics.
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Fig. 3.23 The inverse of the eigenvalues of the dielectric constant density tensor of HfLaOx .
Panels (a)–(c) present the results of the first, second, and third eigenvalues (ε−1

1,2,3) on a plane
with the O atom near the vacancy and the next Hf and La atoms, respectively. The values are
presented in the descending order of the real parts of the eigenvalues. The color map shows the
real parts of the eigenvalues, and bold lines represent the contour of the argument and their units
are in degree. The solid black lines show the directions of the eigenvectors. The filled circles show
the pseudopotential of the La and Hf atom. Panels (d) and (e) show all eigenvalues on the Hf-O
and La-O atoms. The upper part of this panel is the real part of three eigenvalues and their average.
The lower part of this panel is the value of sine of the argument. The vertical dotted lines between
the O atom and the metal atom show the boundary of the pseudopotential, and the left region from
this line is the inside of the pseudopotential
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Quantum field theory is more correct theory than quantum mechanics. Ideally,
electronic structure should be prepared by electronic structure computations based
on quantum filed theory, and unfortunately, these computations are not available
yet, except for some special cases such as Bethe-Salpeter equation, lattice QCD
[61], and NRQED [62]. Some groups are trying to establish electronic structure
computation based on quantum field theory [50, 63–69]. This advanced electronic
structure computation is hoped to be established in the near future.
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Chapter 4
Nanoscale First-Principles Electronic
Structure Simulations of Materials
Relevant to Organic Electronics

Susumu Yanagisawa and Ikutaro Hamada

Abstract Organic molecular materials have attracted considerable attention as a
candidate for next-generation flexible electronics in the near future. However, there
still remain open questions on fundamental electronic properties such as mecha-
nisms of the carrier transport and barriers for carrier injection at organic-inorganic
heterojunctions. In this review, we illustrate the progresses in first-principles
electronic structure calculations of the materials for investigation of the atomic-
or molecular-scale electronic properties of organic semiconductor materials, which
are in general difficult to observe even with present-day experimental techniques.
The theoretical studies not only help elucidate the mechanism of the experimental
measurement but also may allow us to gain insights into the essences of the
materials properties in terms of the electronic structure. Specifically, in this article,
we focus on the first-principles theoretical treatment of the geometric configurations
of organic semiconductors and their electronic structure at the level beyond the
approximation to the density functional theory (DFT) such as the local density
(LDA) and generalized gradient approximations (GGA), i.e., the van der Waals-
inclusive methods for describing the weak intermolecular interaction in organic
solids and the many-body perturbation theory within the GW approximation for
treatment of the charged excitation (quasiparticle) and thus the fundamental gap
and the band dispersion of the crystals. Here, we illustrate the recent studies on
(i) the effect of the molecular configuration on the quasiparticle energy in organic
semiconductors, (ii) the energy level alignment at organic-metal interfaces, and
(iii) prediction of the charge injection levels at a surface of organic thin film, i.e.,
the ionization energy and the electron affinity. Further progresses in theoretical
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methodologies, being enhanced by rapid progress in computational resource and
algorithm, might lead to in silico material simulation or design.

Keywords Organic semiconductors · Intermolecular van der Waals interaction ·
van der Waals density functional · GW approximation · Organic-metal
interfaces · Image potential states

4.1 Introduction

Semiconductors comprised of organic molecules have attracted considerable atten-
tion as candidates for next-generation flexible electronics materials. It is believed
that organic semiconductor electronics will be competitive against inorganic semi-
conductors for applications to mechanically flexible, large-area, and low-cost
electronics [1]. Some organic-based electronic devices such as organic light-
emitting diodes (OLED) are on the market, while other electronics materials such
as organic field-effect transistors (OFET) and organic photovoltaics (OPV) are at
the stage of a fundamental research. However, there is much room for investigation
on the electronic properties of the organic materials, for instance, carrier transport
property. Poor knowledge of the transport property in organic solids is contrast to
the situation in inorganic semiconductors [2]. More understanding of their basic
electronic properties is urgent, which may accelerate development of the next-
generation flexible electronics.

Here, we review recent theoretical works with the first-principles electronic struc-
ture calculation, i.e., (i) those on the intermolecular van der Waals (vdW) interaction
dominating the structural and electronic properties of the organic semiconductor
materials and (ii) the effect of the many-body electrons (or the quasiparticle effect)
upon the injected charge in the bulk of the organic semiconductors or at the organic-
metal interface.

We demonstrate the roles of the first-principles electronic structure calculations
which could clarify a relation between the electronic structure and the geometrical
configurations. As an example, the impact of the atomic-scale geometric structures
on the electronic states is discussed. It was not possible to predict the crystal
geometry or the molecular configuration in the unit cell of the organic semicon-
ductor crystals with the density functional theory (DFT) within the local density
(LDA) or generalized gradient approximation (GGA), because of the failure of the
methodology to describe the intermolecular vdW interaction, which is nonlocal
and long-ranged in nature. However, there are more and more methodologies
being developed capable of describing the vdW interaction between the constituent
organic molecules [3–11].

The quasiparticle energy is essentially related to the barrier for charge injection,
i.e., the electronic energy upon charged excitation, and also the interaction between
the electron-hole pair upon optical excitation, dominating the optical gap. Funda-
mental gap and band dispersion of organic molecular solids are becoming accurately



4 Nanoscale First-Principles Electronic Structure Simulations of Materials. . . 91

predictable by the first-principles theoretical methods describing the quasiparticle
self-energy such as the GW approximation [12].

In this article, we review first-principles electronic structure calculations on

1. Structures of organic semiconductor crystals with the van der Waals (vdW)-
inclusive methods

2. Electronic properties of organic-metal interfaces: electronic properties such as
energy level alignment and the image potential states

3. Electronic charge (electron or hole) injection level depending on the molecular
orientation at the organic crystal surface

In the first topic, we focus on our first-principles study on prediction of the lattice
constants and the intermolecular configuration in oligoacene crystals, along with
analysis of the band structure and the intermolecular transfer integral [13]. Here, the
Wannier functions [14, 15] were derived, allowing us to estimate intermolecular
transfer integrals depending crucially on the cell volume or the intermolecular
configurations in the crystal. The Wannier functions in organic crystals could be
mapped on the crystal Hamiltonian such as the tight-binding Hamiltonian, thus
leading to multi-scale real-time simulations of charge carrier transport in organic
crystals [16]. In addition to the previous work on naphthalene, anthracene, and
tetracene [13], calculation of pentacene and hexacene crystals is demonstrated in
this article.

Secondly, the electronic properties induced at the organic-metal interface are
discussed. The energy level alignment at the organic-metal interface originating
from the rearrangement of the electronic clouds at the interface has attracted
considerable attention [17], because of its relevance to barrier for charge injection
into an organic layer. To elucidate the experimental measurements using techniques
such as photoemission spectroscopy proving the energy levels of the injected hole
or electron right at the interface, aid of a reliable theoretical method treating
charged excitations (quasiparticles) is necessary. Here, we focus on highly accurate
theoretical approaches beyond DFT within the LDA or GGA, such as the many-
body perturbation theory within the GW approximation [12, 18]. In addition, we
demonstrate our recent theoretical investigation [19] to clarify the electronic nature
of the recently reported image potential state of graphite in the presence of an
organic overlayer [20].

In the third place, we discuss determination of charge injection levels in organic
semiconductor crystals or thin films, mainly based on the GW approximation.
The charge injection level relative to the vacuum level, i.e., ionization energy (IE)
or electron affinity (EA) of organic semiconductors, crucially affects the charged
carrier transport properties. It was practically difficult to predict IE and EA of
organic semiconductors using periodic slab models at the GW level of theory,
because of the computational cost to meet convergence criteria. Recently, there are
theoretical studies at the same level of theory handling the problem [21–23].

Finally, we demonstrate the future aspects of the theoretical methods, both in
terms of contribution to elucidation of the novel experimental measurements and
room for development of the theoretical methodologies.
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4.2 Theoretical Investigations on Electronic Properties
of Organic Molecular Materials

4.2.1 Structural Properties: Crystal Geometry and
Intermolecular Configuration

4.2.1.1 Crystal Structures Optimized with a Variant of Van der Waal
Density Functionals

Geometrical configurations in bulk systems of organic molecular crystals or het-
erojunctions such as organic-metal electrode and organic-organic interfaces are of
importance, in which the atomistic- or molecular-scale geometrical arrangements
significantly alter the electronic properties.

The structural properties of organic crystals such as crystal structures and
intermolecular geometrical configurations are one of the central issues dominating
the electronic properties such as charge transport [24, 25]. Subtle interplay among
the intermolecular van der Waals (vdW) forces, the exchange repulsion, and the
orbital hybridization leads to a rich variety of polymorphs with different electronic
properties. The stability of the polymorphs depends on temperature, and thus
attempts are going on to predict (meta-)stable polymorphs of the organic crystals
[26]. Nevertheless, first-principles theoretical investigations on electronic structure
of the most stable polymorph at 0 K may give us insights into the properties of the
materials at not only low temperature but also at room temperature.

Recently proposed vdW-inclusive methods have played roles in prediction of
stable crystal structure and molecular configurations, which allows us to discuss the
effects of the intermolecular interaction on electronic properties.

Here, we focus on the first-principles theoretical methods that have been success-
fully applied to organic semiconductor crystals (for a variety of the applications to
other molecular aggregates and complexes, see a recent comprehensive review such
as Ref. [27]).

The structure and the energetics of an organic crystal could be quite accurately
predicted with first-principles methods such as the adiabatic-connection fluctuation-
dissipation theorem within the random-phase approximation (RPA) [4, 28, 29], the
quantum Monte Carlo [30, 31], and the wave function-based quantum chemistry
[32, 33] methods. However, the computational cost involved at present prevents
application of the highly accurate methods to organic crystals that are of practical
or experimental interest. The vdW-inclusive density functional method, such as
the van der Waals density functional (vdW-DF) and its variants [10, 34–39], may
be a method of choice, because of its moderate computational cost [40] and its
reliability in prediction of structural properties of organic crystals. We employed the
revised vdW-DF2 (rev-vdW-DF2), with its reliable prediction of crystal geometries
of organic crystals such as rubrene [10] and metal phthalocyanine [41].

We first performed the structural optimizations and determined the stable
structures for naphthalene, anthracene, and tetracene crystals (Fig. 4.1) by using
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Fig. 4.1 Crystal structures of the single crystals of (a), (b): naphthalene, (c), (d): anthracene,
(e), (f): tetracene, (g), (h): pentacene, and (j), (k): hexacene [42]. The unit cell consists of the
two nonequivalent molecules placed at the corner and center of the cell, which are arranged in a
herringbone fashion. For tetracene, the Niggli cell parameters are displayed, for ease of comparison
between the crystal geometry obtained in this study and the experimental data (see Table 4.1).
(Figure 1(a)–(f): Reprinted from [13], with the permission of AIP Publishing)
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vdW-DF. As the initial structures for the structural optimization, we used the X-
ray diffraction data of naphthalene [43] and anthracene [44] with the space group
of P 21/a measured at 295 K and those of tetracene with the P 1 symmetry reported
by Robertson [45, 46]. For additional calculations in this work, we used the X-
ray diffraction data of the pentacene crystalline phase obtained by vapor deposition
[47]. The crystalline phase has spacing for the ac planes [(001)d spacing] of
1.45 nm [47], and similar spacing has been reported in other experiments of the
single crystals [48–50]. Recent theoretical studies [51, 52] showed that with the
recent vdW-inclusive method, similar polymorph is more stable than the other
experimentally reported polymorphs such as the bulk phase reported by Campbell
et al. [53] and the thin film phases [54, 55]. The initial crystal structure of hexacene
came from the diffraction data at 123 K of the crystalline phase fabricated with
physical vapor transport method [56]. For the total energy calculation, we used
the projector augmented-wave (PAW) method [57] as implemented in the Vienna
ab initio simulation package (VASP) [58, 59]. The vdW-DF calculations were
performed using the Román-Pérez-Soler algorithm [40] implemented by Klimeš
et al. [39]. We used the revised vdW-DF2 (rev-vdW-DF2) [10], which uses the
revised Becke’s exchange functional [60] and the nonlocal correlation for the second
version of vdW-DF [37].

We used the kinetic energy cutoff of 1000 eV to expand the wave functions in
terms of a plane-wave basis set, along with hardest PAW potentials supplied with
the VASP code [61]. The Brillouin zone integration was performed using a 4 × 4 × 4
Monkhorst-Pack (MP) [62] k-point set for naphthalene and anthracene, a 4 × 4 × 2
MP k-point set for tetracene. In the calculations of pentacene and hexacene in this
work, we used a 4 × 3 × 2 and 4 × 4 × 2 k-point set, respectively. Cell parameters
and internal degrees of freedom were optimized until the forces acting on atoms
became smaller than the threshold value of 1.0 × 10−3 eV Å−1. With this setting
the cell parameters and lattice energy are estimated to converge within 0.039 Å,
0.49◦, and 2.37 Å3 and 1 meV, respectively. The lattice energy was calculated by
subtracting the sum of the total energies of the constituent molecules from that of
the molecular crystal.

We also investigated the effect of the zero-point vibrational energy (ZPE)
to the equilibrium volume for selected crystals as follows. Starting from the
equilibrium crystal structure, the cell volume was varied by ±2% up to ±10%, and
at each volume, we performed the fixed volume structural optimization followed
by the normal mode analysis at the � point to calculate the ZPE contribution
to the total energy. We then calculated the total energy with ZPE and fitted it
to the Murnaghan [63] equation of state to get the ZPE corrected equilibrium
volume.

Table 4.1 displays the resulting lattice constants. Overall, the cell parameters
and equilibrium volumes are in reasonable agreement with experimental values
in the literature, which were measured at 5−296 K [47, 48, 50, 56, 66, 67]. They
are also comparable to other vdW-inclusive methods such as vdW-DF-cx [35],
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more elaborated ones such as Tkatchenko-Scheffler vdW correction (TS-vdW)
[5], that with the many-body dispersion (MBD) [8], and the exchange-hole dipole
moment model with B86b exchange (B86b-XDM) [69, 70]. As for comparison to
experiments, the average absolute relative deviations from the experimental values
[50, 66, 67] are 0.6% (length) and 0.7% (angle) for naphthalene, 0.5% (length) and
0.02% (angle) for anthracene, and 1.0% (length) and 0.3% (angle) for tetracene.
Among the three oligoacene crystals, the maximum absolute relative deviation of
the lattice constants of 1.93% was found for b of tetracene crystal, the experimental
value of which was measured at 175 K [50].

For pentacene, the absolute relative error from the experimental value measured
at 295.5 K [47] is 1.5% (length) and 0.9% (angle) on average, and the maximum
absolute relative deviation from experiments is found for b (2.98%). However, if
the calculated values are compared to the measurement of the same polymorph at
90 K [48], the maximum absolute relative deviation decreases to 1.07% (b), and the
average absolute relative deviations are 0.6% and 0.5% for the cell length and cell
angle, respectively. The calculated lattice constants and equilibrium volume are also
in good agreement with those predicted with vdW-DF-cx for the same polymorph
[52]. In the case of hexacene, the absolute relative deviation from experiments is
found to be largest of all the oligoacene crystals, i.e., the averaged deviation of 3.8%
and 1.0% for length and angle, respectively, and the maximum deviation of 6.15%
is found for length b, in comparison to the experimental values measured at 123 K
[56]. The deviation might be diminished if the theoretical result was compared
to experiments measured at lower temperature, as demonstrated for pentacene. In
addition to that, one should take into account the thermal expansion of the volume
at finite temperature, i.e., the vibrational effect of the crystal.

The effect of ZPE to the equilibrium volume was investigated by the fixed volume
structural optimization, followed by the normal mode analysis at the � point. The
ZPE effect was taken into account, while the volume was incrementally varied. The
resulting volume of naphthalene and anthracene was reasonably larger than that
determined without including ZPE (see Table 4.1). Here, the phonon frequency was
calculated by sampling only the �-point. The deviation from experiments might
decrease if the phonon frequencies in the entire Brillouin zone were taken into
account.

The theoretical lattice energies per molecule of the oligoacene crystals, slightly
underestimated, are in reasonable agreement with experiments, with the absolute
relative deviations (deviations) being 5.2% (0.044 eV) and 8.6% (0.087 eV) for
naphthalene and anthracene, respectively. Notice that they are in good agreement
with those at the level of RPA with single excitations [29]. Taking into account
the calculated lattice energy of the tetracene crystal (−1.383 eV), along with the
theoretical vibrational contribution to the sublimation enthalpy of organic crystals
(0.07−0.11 eV) [64], we estimate the theoretical sublimation enthalpy would be in
agreement with the experimental value (−1.409 eV) [68] within 0.14 eV.



96 S. Yanagisawa and I. Hamada

Ta
bl

e
4.

1
O

pt
im

iz
ed

la
tti

ce
pa

ra
m

et
er

s
(a

,
b

,
c
,

α
,

β
,

an
d

γ
),

eq
ui

lib
ri

um
vo

lu
m

e
(V

0
),

an
d

la
tti

ce
en

er
gi

es
pe

r
m

ol
ec

ul
e

(E
b
)

of
th

e
na

ph
th

al
en

e
an

d
an

th
ra

ce
ne

cr
ys

ta
ls

in
th

e
P

2 1
/
a

sy
m

m
et

ry
,

te
tr

ac
en

e
in

th
e

P
1

sy
m

m
et

ry
,

an
d

pe
nt

ac
en

e
si

ng
le

cr
ys

ta
l

in
th

e
P

1̄
sy

m
m

et
ry

ob
ta

in
ed

w
ith

re
v-

vd
W

-D
F2

,
al

on
g

w
ith

ex
pe

ri
m

en
ta

lv
al

ue
s.

T
he

N
ig

gl
ic

el
lp

ar
am

et
er

s
ar

e
us

ed
fo

r
te

tr
ac

en
e.

(R
ep

ri
nt

ed
fr

om
[1

3]
,w

ith
th

e
pe

rm
is

si
on

of
A

IP
Pu

bl
is

hi
ng

)

N
ap

ht
ha

le
ne

a
b

c
α

β
γ

V
0

E
b

(Å
)

(Å
)

(Å
)

(d
eg

)
(d

eg
)

(d
eg

)
(Å

3
)

(e
V

)

re
v-

vd
W

-D
F2

1
8.

01
2

5.
89

8
8.

60
9

90
.0

0
12

4.
12

90
.0

0
33

6.
8

−0
.8

03

re
v-

vd
W

-D
F2

(Z
PE

)2
—

—
—

—
—

—
34

7.
2

—

PB
E

+
T

S-
vd

W
3

8.
10

9
5.

88
4

8.
66

0
90

.0
0

12
4.

05
90

.0
0

34
2.

32
−1

.0
35

PB
E

+
M

B
D

3
7.

97
0

5.
86

8
8.

57
0

90
.0

0
12

3.
11

90
.0

0
33

5.
70

−0
.9

05

PB
E

0+
M

B
D

3
—

—
—

—
—

—
—

−0
.8

85

B
86

b-
X

D
M

4
8.

13
4

5.
93

8
8.

69
9

90
.0

0
12

4.
35

90
.0

0
34

6.
89

−0
.7

84

B
86

b-
X

D
M

5
—

—
—

—
—

—
33

5.
8

−0
.7

90

vd
W

-D
F-

cx
6

8.
06

5.
91

8.
75

90
.0

0
12

4.
4

90
.0

0
34

4.
4

−0
.9

2

E
xp

t.
8.

08
07

5.
93

37
8.

63
27

90
.0

0
12

4.
65

7
90

.0
0

34
0.

47
−0

.8
47

8

A
nt

hr
ac

en
e

a
b

c
α

β
γ

V
0

E
b

(Å
)

(Å
)

(Å
)

(d
eg

)
(d

eg
)

(d
eg

)
(Å

3
)

(e
V

)

re
v-

vd
W

-D
F2

1
8.

33
9

5.
94

8
11

.0
87

90
.0

0
12

5.
37

90
.0

0
44

8.
40

−1
.0

81

re
v-

vd
W

-D
F2

(Z
PE

)2
—

—
—

—
—

—
46

0.
8

—

PB
E

+
T

S-
vd

W
3

8.
39

9
5.

94
3

11
.1

20
90

.0
0

12
5.

21
90

.0
0

45
3.

5
−1

.3
92

PB
E

+
M

B
D

3
—

—
—

—
—

—
—

−1
.2

62

PB
E

0+
M

B
D

3
—

—
—

—
—

—
—

−1
.2

34

B
86

b-
X

D
M

4
8.

45
2

5.
98

5
11

.1
68

90
.0

0
12

5.
43

90
.0

0
46

0.
32

−1
.0

49

B
86

b-
X

D
M

5
—

—
—

—
—

—
44

8.
4

−1
.0

54

vd
W

-D
F-

cx
6

8.
38

5.
96

11
.2

3
90

.0
0

12
5.

6
90

.0
0

45
6.

5
−1

.2
3

E
xp

t.
8.

37
9

6.
00

9
11

.1
29

90
.0

0
12

5.
49

90
.0

0
45

5.
20

59
−1

.1
68

8



4 Nanoscale First-Principles Electronic Structure Simulations of Materials. . . 97

Te
tr

ac
en

e

a
b

c
α

β
γ

V
0

E
b

(Å
)

(Å
)

(Å
)

(d
eg

)
(d

eg
)

(d
eg

)
(Å

3
)

(e
V

)

re
v-

vd
W

-D
F2

1
6.

01
9

7.
68

6
12

.4
89

10
0.

83
99

.6
2

94
.3

6
55

6.
00

−1
.3

83

vd
W

-D
F-

cx
6

6.
05

7.
69

12
.5

3
10

0.
2

10
0.

1
94

.5
56

1.
3

−1
.5

6

PB
E

+
T

S-
vd

W
6

6.
05

7.
71

12
.5

3
10

0.
7

99
.2

94
.3

56
4.

1
—

E
xp

t.
6.

05
65

10
7.

83
76

10
12

.5
52

310
10

1.
27

49
10

99
.4

52
910

94
.2

08
010

57
2.

96
810

−1
.4

09
11

Pe
nt

ac
en

e

a
b

c
α

β
γ

V
0

E
b

(Å
)

(Å
)

(Å
)

(d
eg

)
(d

eg
)

(d
eg

)
(Å

3
)

(e
V

)

re
v-

vd
W

-D
F2

1
6.

26
8

7.
55

4
14

.2
97

77
.5

1
88

.4
6

84
.2

1
65

7.
56

−1
.7

0

vd
W

-D
F-

cx
6

6.
29

7.
52

14
.3

5
77

.8
88

.7
84

.1
66

0.
3

−1
.9

2

E
xp

t.12
6.

26
5

7.
78

6
14

.5
11

76
.6

5
87

.5
0

84
.6

1
68

5.
49

—

E
xp

t.13
6.

23
9

7.
63

6
14

.3
30

76
.9

78
88

.1
36

84
.4

15
66

1.
94

—

(c
on

tin
ue

d)



98 S. Yanagisawa and I. Hamada

Ta
bl

e
4.

1
(c

on
tin

ue
d)

H
ex

ac
en

e

a
b

c
α

β
γ

V
0

E
b

(Å
)

(Å
)

(Å
)

(d
eg

)
(d

eg
)

(d
eg

)
(Å

3
)

(e
V

)

re
v-

vd
W

-D
F2

1
6.

51
2

7.
22

3
16

.1
40

96
.6

0
91

.4
2

96
.4

2
74

8.
91

−2
.0

2

vd
W

-D
F-

cx
6

6.
61

7.
05

16
.1

4
95

.8
91

.5
96

.8
74

3.
3

−2
.3

0

E
xp

t.14
6.

30
6

7.
69

7
16

.4
80

98
.7

7
91

.2
5

95
.8

1
78

5.
92

—

1
T

hi
s

w
or

k.
Z

PE
is

no
tt

ak
en

in
to

ac
co

un
t

2
T

hi
s

w
or

k.
Z

PE
is

in
cl

ud
ed

3
R

ef
.[

64
]

4
R

ef
.[

7]
L

at
tic

e
en

er
gy

w
ith

Z
PE

5
R

ef
.[

65
]

6
R

ef
.[

52
]

7
R

ef
.[

66
]

(5
K

)
8
R

ef
.[

64
]

E
xp

er
im

en
ta

ls
ub

lim
at

io
n

en
th

al
py

w
ith

th
e

th
eo

re
tic

al
Z

PE
su

bt
ra

ct
ed

.
9
R

ef
.[

67
]

(1
6

K
)

10
R

ef
.[

50
]

(1
75

K
)

11
R

ef
.[

68
]

E
xp

er
im

en
ta

ls
ub

lim
at

io
n

en
th

al
py

12
R

ef
.[

47
]

(2
95

.5
K

)
13

R
ef

.[
48

]
(9

0
K

)
14

R
ef

.[
56

]
(1

23
K

)



4 Nanoscale First-Principles Electronic Structure Simulations of Materials. . . 99

4.2.1.2 Electronic Structures with the GW Approximation

To confirm reliability of the theoretical crystal geometries of the oligoacenes
predicted with the vdW-DF method, we investigated the electronic structures for the
optimized crystal geometries using the many-body perturbation theory within the
GW approximation [13]. Here, we considered naphthalene, anthracene, tetracene,
and pentacene crystals, of which the experimental fundamental gap or the density
of states (DOS) were reported [71–81].

The quasiparticle energy in solids within the GW approximation is calculated
with [18]

E
qp
nk = εDFT

nk − 〈φDFT
nk |V DFT

xc |φDFT
nk 〉 + 〈φDFT

nk |�(E
qp
nk)|φDFT

nk 〉 , (4.1)

where εDFT
nk and φDFT

nk are starting eigenvalues and wave functions, respectively
(in general DFT-LDA or DFT-GGA), i.e., a starting mean-field approximation
which is to be perturbed by the many-body effect. VDFT

xc is the corresponding
exchange-correlation potential of the mean field, and the self-energy operator
�(E

qp
nk) describes all the ingredients of the many-body effect. The self-energy

operator, formally obtained as expansion of the self-energy in the Hedin equation
to first-order in the screened Coulomb potential W [12], results in formulations
computed on numerical grids. For instance, in the GW space-time formalism, the
self-energy operator is calculated in real space (r, r′) and imaginary time (iτ )
[82–84],

�(r, r′; iτ ) = iG(r, r′; iτ )W(r, r′; iτ ), (4.2)

and its diagonal matrix elements are computed, followed by the analytic continua-
tion of the matrix elements to the real frequency axis [82, 83]. G (r, r′; iτ ) is the
noninteracting Green’s function in real space and in imaginary time for propagation
of the hole (τ > 0) and the electron (τ < 0), respectively,

G(r, r′; iτ ) =
⎧
⎨

⎩

i�occ
nk φnk(r)φ∗

nk(r′)exp(εnkτ) (τ > 0),

−i�unocc
nk φnk(r)φ∗

nk(r′)exp(εnkτ) (τ < 0),
(4.3)

constructed from the Kohn-Sham eigenfunctions and eigenvalues, and k vec-
tors denote those in the first Brillouin zone. The irreducible polarization P

within the random-phase approximation is calculated in real space and imaginary
time,

P(r, r′; iτ ) = −2iG(r, r′; iτ )G(r′, r;−iτ ), (4.4)
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which is Fourier transformed to PGG′(k; iω) in reciprocal space. The sym-
metrized dielectric matrix in reciprocal space ε̃GG′(k; iω) is constructed as

ε̃GG′(k; iω) = δGG′ − 4π

|k + G||k + G′|PGG′(k; iω). (4.5)

Then, W(r, r′; iτ ) is obtained by Fourier transforming to real space and imaginary
time the screened Coulomb potential in reciprocal space and imaginary frequency,

WGG′(k; iω) = 4π

|k + G||k + G′| ε̃
−1
GG′(k; iω). (4.6)

The quantities defined in Eqs. 4.1, 4.2, 4.3, and 4.6 are, practically, calculated
only once with the starting eigenvalues and wave functions, i.e., one-shot G0W0
calculations.

We performed the electronic structure calculations using the modified version
of the GW space-time code [82–84], which enables highly parallelized calculations
with thousands of CPU cores. Our perturbative G0W0 calculations were based on the
norm-conserving pseudopotentials [85] and plane-wave basis set, and the starting
wave functions were generated with the Perdew-Burke-Ernzerhof (PBE) [86]
functional using the STATE code [87]. To calculate the correlation part of the GW

self-energy, we evaluated the full frequency dependence of the dielectric function
numerically, and the use of the plasmon-pole model is avoided. On the imaginary
frequency/time axis, polarizability, dielectric function, screened Coulomb potential,
and self-energy have smoothly decaying tails, which are fitted to simple model
functions. The remaining energy/time region around zero is treated numerically. The
matrix elements of the correlation self-energy on the imaginary time axis are fitted
to a model function, followed by the fast Fourier transform to those on the imaginary
frequency axis. Then, they are analytically continued onto the real energy axis [83].

In addition to the G0W0 calculation based on the PBE wave functions, we
performed the eigenvalue-only self-consistent GW calculations (evGW ) [88, 89],
to check the starting point dependence [90–95] of the G0W0 calculations. In the
evGW calculations, we considered only the diagonal part of the self-energy, and
only the eigenvalues were updated in constructing the Green’s function and the
screened Coulomb potential, while we retained the wave functions unchanged (see
Eqs. 4.2, 4.3, 4.4, 4.5, and 4.6), assuming that the starting DFT wave functions are
close to the true quasiparticle wave functions [18, 96]. We updated the quasiparticle
energies of up to the second lowest unoccupied band. To avoid explicitly calculating
the quasiparticle energies of the bands whose number exceeds 1000 (see the number
of empty states used in the calculation of the Green’s function Eq. 4.3, as mentioned
below) while retaining the accuracy of the calculated band energies around the
conduction band edge, the energies of the higher bands outside the preset energy
window were corrected by a scissors-like operation, that is, they were shifted rigidly
by � = Emk − εDFT

mk , where Emk, εDFT
mk are, respectively, the quasiparticle energy

and the DFT eigenvalue in the highest band m in the preset energy window. Here,
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we chose second lowest unoccupied band. We found that five or six iterations were
necessary to converge the fundamental gap within 0.01 eV.

For the GW calculations, we transformed the lattice vectors to employ the
symmetry points and lines in the Brillouin zone defined in Ref. [97]. We used a
4 × 3 × 2 (naphthalene, anthracene, and pentacene) or a 3 × 2 × 4 (tetracene) �-
centered k-point set, corresponding to the k-space mesh sizes of 0.19–0.43 Å−1.
For naphthalene, anthracene, and tetracene crystal, plane-wave cutoffs of 60 Ry and
24 Ry for the wave function and the dielectric matrix, respectively, were used [13].
For pentacene, we employed plane-wave cutoff of 40 Ry throughout the calculation,
that is, for both the wave function and the dielectric matrix. We have found that the
convergence of the calculated band gap or band width for the new set of cutoff is
similar to that of the cutoff used in Ref. [13]. The number of empty states used in
the calculation of the Green’s function was 6006 (naphthalene), 5372 (anthracene),
6584 (tetracene), and 5200 (pentacene) bands, which encompass more than 240 eV
above the center of the band gap. The convergence of the calculated band gap (band
width) with respect to the number of empty states, k-point sampling, and plane-wave
cutoff is estimated to be within 0.05 (0.01) eV.

Table 4.2 displays the calculated fundamental gap of oligoacene crystals within
rev-vdW-DF2 and GW approximations. Figures 4.2a, 4.3a, 4.4a, and 4.5a show
the calculated dispersions of the highest occupied (HOMO) and lowest unoccupied
molecular orbital (LUMO)-derived bands of the oligoacene single crystals within
GW . Because of the self-energy correction, the fundamental gap obtained with the
one-shot GW (G0W0) was larger than the DFT values by 1.1–1.8 eV. The valence
and conduction band widths became larger by the G0W0 self-energy correction by
0.05–0.15 eV and 0.04–0.12 eV, respectively [13]. The appreciable increase in band

Table 4.2 Calculated fundamental band gap (Eg) and band width for the HOMO-derived band
(WH) and that for the LUMO-derived band (WL) of the oligoacene crystals obtained with rev-vdW-
DF2 and GW based on the rev-vdW-DF2 optimized structures. The band gap average over the
k-points in the Brillouin zone is shown in the parenthesis. The unit is eV. (Reprinted from [13],
with the permission of AIP Publishing)

Naphthalene Anthracene Tetracene Pentacene

Eg(rev-vdW-DF2) 2.97 1.89 1.08 1.03

Eg(G0W0) 4.72 (5.01) 3.37 (3.67) 2.40 (2.75) 2.09 (2.38)

Eg(evGW ) 5.70 4.17 3.09 2.68

Eg(Exp.1) 5.0–5.5 3.9–4.2 2.9–3.4 2.2–2.4

WH(rev-vdW-DF2) 0.44 0.40 0.44 0.74

WH(G0W0) 0.51 0.46 0.49 0.89

WH(evGW ) 0.56 0.50 0.54 0.96

WL(rev-vdW-DF2) 0.35 0.63 0.65 0.70

WL(G0W0) 0.39 0.75 0.73 0.82

WL(evGW ) 0.41 0.78 0.75 0.86

1Refs. [71–80]
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Fig. 4.2 (a) The band structure of the naphthalene crystal calculated within the G0W0 approxima-
tion. The energy zero is set to the top of the highest occupied band. The atomic configurations and
the lattice constants are optimized with the rev-vdW-DF2 functional (Table 4.1). We transformed
the lattice parameters to adopt the symmetry points and lines in the Brillouin zone defined in
Ref. [97], to obtain a′ =5.898 Å, b′ =7.806 Å, c′ =8.012 Å, α′ =65.93◦, and β ′ = γ ′ =90.0◦.
The high-symmetry points in the BZ are � (0,0,0), Y(0,0,0.5), H(0, 0.361, 0.651), C(0, 0.5, 0.5),
E(0.5, 0.5, 0.5), M1(0.5, 0.639, 0.349), A(0.5, 0.5, 0), X(0, 0.5, 0), Z(0.5, 0, 0) in the unit of
the basic reciprocal lattice vectors. (b) The density of states (DOS) based on the G0W0 band
structure. The Gaussian broadening is set to the imaginary part of the self-energy obtained with the
G0W0 calculation. The symbols such as H, H−1, L, and L+1 denote the molecular orbitals of the
constituent molecules such as HOMO, next HOMO, LUMO, and the next LUMO, respectively,
which forms the bands. For comparison, the experimental photoemission data (Ref. [81]) is
displayed in the upper panel. The theoretical highest peak of the valence band maximum is aligned
with that of the experimental photoemission peak by a rigid shift of the band energies. The band
widths (WH and WL) and band gap (Eg) are indicated by the double-headed arrows for guides to
the eyes. (Reprinted from [13], with the permission of AIP Publishing)



4 Nanoscale First-Principles Electronic Structure Simulations of Materials. . . 103

 -2.0

  0.0

  2.0

  4.0

 Y HC E A X  Z

(a)

(b)

H

H−1
H−2
H−3

L

L+1

M1

En
er

gy
 (e

V
)

Energy (eV)

H
H−1

H−2
H−3

L
L+1

Exp.

D
O

S 
(s

ta
te

s·
eV

−1
)

  0.0
  2.0
  4.0
  6.0
  8.0
 10.0
 12.0

 -6.0  -5.0  -4.0  -3.0  -2.0  -1.0   0.0   1.0   2.0

D
O

S 
(a

rb
. u

ni
t)

WH
WLEg

Fig. 4.3 (a) The band structure of the anthracene crystal calculated within the G0W0 approxima-
tion. The energy zero is set to the top of the highest occupied band. The atomic configurations and
the lattice constants are optimized with the rev-vdW-DF2 functional (Table 4.1). We transformed
the lattice parameters to adopt the symmetry points and lines in the Brillouin zone defined in Ref.
[97], to obtain a′ =5.948 Å, b′ =8.339 Å, c′ =9.242 Å, α′ =78.00◦, and β ′ = γ ′ =90.0◦. The
high-symmetry points in the BZ are: �(0,0,0), Y(0,0, 0.5), H(0, 0.425, 0.598), C(0, 0.5, 0.5), E(0.5,
0.5, 0.5), M1(0.5, 0.575, 0.402), A(0.5, 0.5, 0), X(0, 0.5, 0), Z(0.5, 0, 0) in the unit of the basic
reciprocal lattice vectors. (b) The density of states (DOS) based on the G0W0 band structure. The
experimental photoemission data (Ref. [81]) is displayed. The convention is the same as that in
Fig. 4.2. The band widths (WH and WL) and band gap (Eg) are indicated by the double-headed
arrows for guides to the eyes. (Reprinted from [13], with the permission of AIP Publishing)
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Fig. 4.4 (a) The band structure of the tetracene crystal calculated within the G0W0 approximation.
The energy zero is set at the top of the highest occupied band. The atomic configurations and the
lattice constants are optimized with the rev-vdW-DF2 functional (Table 4.1). We transformed the
lattice parameters to adopt the symmetry points and lines in the Brillouin zone defined in Ref. [97],
to obtain a′ =7.686 Å, b′ =12.489 Å, c′ =6.019 Å, α′ =99.62◦, β ′ =94.36◦, γ ′ =100.83◦. The
high-symmetry points in the BZ are X(0.5, 0, 0), �(0,0,0), Y(0, 0.5, 0), L(0.5, 0.5, 0), Z(0, 0, 0.5),
N(0.5, 0, 0.5), M(0, 0.5, 0.5), R(0.5, 0.5, 0.5) in the unit of the basic reciprocal lattice vectors. (b)
The density of states (DOS) based on the G0W0 band structure. The experimental photoemission
data (Ref. [81]) is displayed. The convention is the same as that in Fig. 4.2. The band widths (WH
and WL) and band gap (Eg) are indicated by the double-headed arrows for guides to the eyes.
(Reprinted from [13], with the permission of AIP Publishing)
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Fig. 4.5 (a) The band structure of the pentacene crystal calculated within the G0W0 approxima-
tion. The energy zero is set at the top of the highest occupied band. The atomic configurations
and the lattice constants are optimized with the rev-vdW-DF2 functional (Table 4.1). The lattice
parameters to adopt the symmetry points and lines in the Brillouin zone defined in Ref. [97] are
the same as those in Table 4.1. The high-symmetry points in the BZ are X(0.5, 0, 0), �(0,0,0), Y(0,
0.5, 0), L(0.5, 0.5, 0), Z(0, 0, 0.5), N(0.5, 0, 0.5), M(0, 0.5, 0.5), R(0.5, 0.5, 0.5) in the unit of the
basic reciprocal lattice vectors. (b) The density of states (DOS) based on the G0W0 band structure.
The experimental photoemission data (Ref. [81]) is displayed. The convention is the same as that
in Fig. 4.2. The band widths (WH and WL) and band gap (Eg) are indicated by the double-headed
arrows for guides to the eyes
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width suggests distribution of the electronic charge density at the intermolecular
site, as indicated in Refs. [98–100].

Compared to the fundamental gap estimated with the experimental technique
such as photoconductivity, optical absorption, and inverse photoemission mea-
surements [71–80], the theoretical band gap within G0W0 is underestimated. The
band gap averaged over the k-points in the Brillouin zone was also slightly
underestimated, which is in line with Ref. [52]. To remove the starting point
dependence of the G0W0 calculation [90–95], we took partially into account the
effect of self-consistency within the eigenvalue-only self-consistent GW (evGW )
treatment [88, 89]. As a result, the fundamental gap becomes slightly overestimated,
becoming closer to experiments (see Table 4.2) [13]. For pentacene, the gap is in
agreement with the recent experimental value measured with the low-energy inverse
photoemission spectroscopy (LEIPS) [80]. The band widths slightly increased by
the evGW calculation by at most 0.07 eV, independently of the k-point.

Figures 4.2b, 4.3b, 4.4b, and 4.5b display the calculated density of states
(DOS) in comparison to the experimental photoemission measurement, in which
the substrate temperature was kept at 150 K [81]. We calculated the DOS with
the Gaussian smearing with the width set to the imaginary part of the self-energy
obtained with the G0W0 calculation, rather than a uniform broadening. The width or
the satellite peak structure of photoemission spectra is, in principle, the imaginary
part of the self-energy, i.e., spectral function. Notice that according to Ref. [101],
the structures of the organic thin films are similar to those of the single crystal
investigated in this study, implying that comparison of the theoretical electronic
structures of bulk organic crystals with the experimental photoemission spectra of
organic thin films is meaningful. The calculated peak positions of the valence bands
derived from HOMO, the next HOMO, the second next HOMO, and so forth, of the
constituent molecule, are in agreement with the experimental photoemission spectra
of the thin films on Ag(111) [81]. Some shoulder structures are found in the vicinity
of the valence band, for instance, H-1 and H-3 DOS peaks in tetracene, which are not
resolved in the experimental photoemission spectra. Although there is agreement
found between the theoretical DOS and the experiment, factors affecting the
experimental photoemission spectra of organic semiconductors such as broadening
by temperature effects, instrumental resolution, and other factors causing structural
disorder [102] should be taken into account. The incomplete charge screening at the
surface was taken into account, when the G0W0 DOS of oligoacenes were compared
with the experimental data [52]. Furthermore, it was proposed that the electron-
phonon coupling and structural disorder should be taken into account to describe
the electronic structure of organic semiconductors at finite temperature [103].

As far as the DOS of the unoccupied states are concerned, the inverse pho-
toemission data of 2–3 monolayers of the oligoacenes on Ag(111) were reported
[104]. The measured energy difference between the lowest and the second lowest
unoccupied π∗-derived peaks was 0.8, 1.1, and 1.7 eV for naphthalene, anthracene,
and tetracene, respectively [104]. The theoretical energy difference between the
corresponding DOS peaks with G0W0 were 0.90, 1.39, and 1.73 eV, respectively,
in fair agreement with the experiment.
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4.2.1.3 Effects of the Crystal Geometry and the Molecular Configuration

Here, we investigated the impact of the different crystal structures on the electronic
structure. For tetracene, theoretical DOS was obtained for the three crystal structures
with different lattice constants (Table 4.3). Figure 4.6 displays the theoretical
DOS of HOMO- and LUMO-derived bands for the different lattice constants.
The calculated band gap and the band widths are summarized in Table 4.4. The
experimental crystal geometry determined by the X-ray diffraction measurement
[45, 46] and more recent diffraction data measured at 175 K [50] were used. We
optimized their internal degrees of freedom with rev-vdW-DF2, while we fixed the

Table 4.3 Lattice constants of the tetracene crystals (Structures I–III) investigated. Structure III
corresponds to the fully optimized crystal geometry, whose lattice constants were transformed, as
described in the caption of Fig. 4.4. (Reprinted from [13], with the permission of AIP Publishing)

a(Å) b(Å) c(Å) α(◦) β(◦) γ (◦)

Structure I1 7.980 12.747 6.140 100.44 92.5 101.92

Structure II2 7.837 12.552 6.056 99.45 94.20 101.27

Structure III3 7.686 12.489 6.019 99.62 94.36 100.83

1Ref. [45, 46, 53]. X-ray diffraction data whose temperature is presumed to be room temperature
or higher
2Ref. [50]. X-ray diffraction data measured at 175 K
3This work

Struct. III
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Fig. 4.6 The G0W0 densities of states (DOS) of tetracene obtained using different geometries.
Structures I and II correspond to those obtained by the X-ray diffraction measurements (Refs.
[45] and [50], respectively), where the internal atomic configurations were optimized with rev-
vdW-DF2. Structure III was the fully optimized rev-vdW-DF2 structure reported in Table 4.1. The
theoretical highest peaks of the valence band maximum in Structures I and II are aligned with that
in Structure III. For the ease of comparison, we draw the solid vertical lines for the main peaks in
the G0W0 DOS, and the states derived from similar molecular orbitals are connected by dashed
lines. (Reprinted from [13], with the permission of AIP Publishing)
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Table 4.4 Calculated band gap (Eg) and the band width for the HOMO-derived band (WH) and
that for the LUMO-derived band (WL) of the tetracene crystal obtained with G0W0 and evGW

for different structures. I and II denote the structures obtained by the X-ray diffraction experiment
in Refs. [45] and [50], respectively, and their internal atomic coordinates were relaxed with their
lattice constants fixed. Structure III denotes the one obtained by fully optimizing the cell and
internal degrees of freedom, corresponding to the crystal geometry displayed in Table 4.1. E′

g is the
molecular fundamental gap plus the polarization effect (see the main text). Unit is eV. (Reprinted
from [13], with the permission of AIP Publishing)

Structure I II III

Eg(G0W0) 2.63 2.50 2.40

Eg(evGW ) 3.31 3.19 3.09

WH(G0W0) 0.39 0.45 0.49

WH(evGW ) 0.44 0.48 0.54

WL(G0W0) 0.60 0.66 0.73

WL(evGW ) 0.64 0.71 0.75

E′
g(G0W0) 3.12 3.06 3.01

E′
g(evGW ) 3.85 3.79 3.74

lattice constants displayed in Table 4.3. We denote their structures by Structures I
and II, for the former and the latter, respectively, and the structure fully optimized
with rev-vdW-DF2 is denoted by Structure III.

It is found that the decrease in equilibrium volume from Structure I to III causes
the band width to increase: The band width for the HOMO-derived band increases
from 0.39 eV for Structure I (598.9 Å3) to 0.49 eV for Structure III (556.0 Å3). This
is because the overlap between HOMOs of the neighboring molecular sites increases
as the cell volume decreases. The result is similar to the change in the theoretical
band widths, depending on the lattice constants of a variety of the experimental
crystal structures of the organic semiconductors [105].

The fundamental gap also depends on the equilibrium volume. Table 4.4 shows
that the band gap is narrowed as the volume decreases from Structure I to III. This is
because of the dielectric screening stabilizing the electron or the hole injected into
the bulk, which is induced by the surrounding polarization clouds. There is similar
trend found in the result obtained at the evGW level of theory, in which the band
energies are shifted almost independently of the k-points. The different polarization
effect could be shown by the fundamental gap plus the polarization effect [80]. That
was estimated by adding the halves of the band widths to the fundamental gap:
E′

g = Eg + (WH + WL)/2, to remove the effect of the change in the band width.
As shown in Table 4.4, the calculated E′

g reasonably decreases as the cell volume
increases.

To gain more insights into the effects of the molecular configuration on the
electronic structure, we examined the electronic structures in terms of the interaction
between the orbitals centered at the molecular sites. We obtained the maximally
localized Wannier functions (MLWF) [14, 15] based on the PBE wave function for
Structures I–III. We calculated the nearest-neighbor transfer integrals between the
HOMOs or between the LUMOs arranged along the unit cell vectors (ta1 − tc1 and
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Fig. 4.7 Schematic views of
the transfer integral between
molecules projected on (a)
a′b′ plane and (b) a′c′ plane.
Conventional unit cell is
shown. The unit cell vectors
are the same as those defined
in Fig. 4.4. (Reprinted
from [13], with the
permission of AIP
Publishing)
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ta2 − tc2) and those along the diagonal directions between the two nonequivalent
herringbone-stacked molecules in the cell (t1 and t2), which are depicted in Figs. 4.7
and 4.8. In Table 4.5, the transfer integrals for Structures I–III are shown, along with
the HOMO- and the LUMO-derived band width determined with the tight-binding
approximation. The tight-binding band structure for Structures I–III based on the
calculated transfer integrals is displayed in Fig. 4.9.

It is found that the tight-binding band structure is in fair agreement with the
first-principles band structure obtained with DFT-PBE. The result is in line with the
previous works of oligoacene crystals [106–108]. The transfer integrals along the
diagonal paths between the two nonequivalent molecules in the cell (t1 and t2) are
largest in amplitude, crucially determining the band widths. The magnitudes of t1
and t2 for HOMO and LUMO and thus the band width increase from Structures I to
III.

The isosurfaces of the MLWF for the two HOMOs and the two LUMOs of
the two nonequivalent molecules in the unit cell are displayed in Fig. 4.8. The
transfer integral t1 for HOMO is dominated by the closest antibonding contribution
to the interaction between the two HOMOs, resulting in largely positive values (see
Table 4.5). On the other hand, t2 for HOMO is negative, which originates from
the closest in-phase bonding interaction. The distance between the molecules is an
important factor dominating the transfer integrals and thus the HOMO-derived band
widths. Actually, Structure III, with the smallest cell volume, displays the largest
band width. In case of the LUMO band, the situations are similar.

However, with their nodal structures as shown in Fig. 4.8, there are competing
bonding and antibonding contributions to the transfer integrals. Depending on the
intermolecular distance or the molecular orientation angle, the signs of the transfer
integrals can switch. The signs of t1 and t2 for HOMO switch even when the
experimental crystal structures reported in Refs. [45] and [50] are, respectively,
relaxed into Structures I and II, with only a minor change in the intermolecular
distance or the molecular orientation angle [13]. We also found that the signs of
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Fig. 4.8 (a) Isosurfaces of the maximally localized Wannier functions (MLWFs) corresponding
to the HOMO and the LUMO located at one of the two nonequivalent molecules in the unit cell.
Different colors (brightness) indicate signs of the orbitals. Views from the shortest cell vector c′
(upper) and those from the longer molecular axis (lower) are shown. (b) Schematics of the transfer
integrals t1 and t2 between the MLWFs of the HOMO (left) or the LUMO (right). The lattice
vectors are the same as those defined in Fig. 4.4. (Reprinted from [13], with the permission of AIP
Publishing)

the transfer integrals depend on the approximations in the first-principles DFT
calculations (PBE or rev-vdW-DF2, in this case). The role of the molecular
displacement along the slip direction determining the transfer integral was discussed
[109]. In classifying the sign of the transfer integral between the herringbone-like
arranged molecules of the pentacene polymorphs, the distance of the molecular slip
stepping over the nodes of the molecular orbitals was taken into account [108].
In the present case, the switch of the signs of the transfer integrals t1 and t2 does
not affect the band structure within the tight-binding approximation [13, 106–108].
Nevertheless, in general, a subtle interplay between the molecular configurations
such as distance and angle, and their displacement, and, therefore, the accurate
determination of the crystal geometry of organic crystals is crucial for predicting
the electronic structure precisely.
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Table 4.5 Calculated nearest-neighbor transfer integrals for the HOMO and those for the LUMO
of the tetracene crystal obtained with the maximally localized Wannier functions [14, 15] based
on the DFT-PBE orbitals. tc1 and tc2 correspond to the transfer integrals along the shortest unit
cell vector, ta1 and ta2 to those along the second shortest unit cell vector, and t1 and t2 to those
between the two nonequivalent tetracene molecules as depicted in Figs. 4.7 and 4.8 (tb1 and tb2
along the longest cell vector are found to be essentially zero). W TB

H (W TB
L ) and W PBE

H (W PBE
L )

denote the HOMO (LUMO)-derived band width within the tight-binding approximation and the
first-principles calculation with DFT-PBE, respectively. I and II denote the structures obtained
by the X-ray diffraction experiment in Refs. [45] and [50], respectively, and their internal atomic
coordinates were relaxed with their lattice constants fixed. Structure III denotes the one obtained by
full optimization of the cell and internal degrees of freedom, corresponding to the crystal geometry
displayed in Table 4.1. Unit is meV. (Reprinted from [13], with the permission of AIP Publishing)

Structure I II III

HOMO

tc1 12.39 11.37 12.15

tc2 −4.72 −6.95 −6.48

ta1 −2.74 −4.33 −5.19

ta2 −2.23 −3.08 −3.22

t1 16.56 20.45 22.79

t2 −60.43 −66.54 −78.39

W TB
H 313.35 355.34 411.43

W PBE
H 322.17 370.68 417.33

LUMO

tc1 −31.01 −31.10 −33.04

tc2 −11.13 −10.76 −12.10

ta1 −1.55 −1.74 −2.09

ta2 −3.43 −4.09 −4.74
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Fig. 4.9 Band structure of the tetracene crystals (Structures I–III). HOMO- and LUMO-derived
bands are displayed. Solid lines indicate the band structure within the tight-binding approximation
based on the transfer integrals calculated with the maximally localized Wannier functions
(see Table 4.5). Dots indicate the band structures obtained with the first-principles DFT-PBE
calculation. (Reprinted from [13], with the permission of AIP Publishing)
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4.2.2 Electronic Properties at Organic-Metal Interfaces:
Energy Level Alignment and Emergence of the Image
Potential-Like States

The important physical phenomenon crucially affecting the energy level alignment
at the interface and thus the charge transport properties [110] is the renormalization
of the HOMO-LUMO energy gap induced by the metal surface [111–113]. When a
molecule is close to the metal surface, electrons in the metal respond to and screen
charged excitations of the molecule. The molecular energy levels at the interface
are thus quasiparticle energy levels. As a result, when the molecule is located close
to the metal surface, the molecular HOMO and LUMO levels shift closer to the
metal Fermi level, and the HOMO-LUMO fundamental gap is narrowed [111–
113]. A rigorous theoretical treatment is the many-body perturbation theory within
the GW approximation for accurate treatment of the quasiparticle energies at the
organic-metal interface [112, 113]. However, the computationally demanding GW

treatment hampers its application to periodic systems with hundreds of atoms even
with present-day computational resources. That is also the case in treatment of an
organic-metal interface by employing a periodic slab model with a vacuum layer
along the direction normal to the slab [114]. In addition to the system size tractable,
the numerical convergence of the molecular quasiparticle energies and the metal
work function can be a problem [114, 115]. The DFT wave functions can be poor
approximations to the quasiparticle wave functions for hybridized interfaces, which
necessitate diagonalization of the self-energy matrix �(E) for a better new starting
point for the perturbation beyond G0W0 or another computational strategy such as
evaluation of the self-energy in the basis of the molecular orbitals, which is expected
to be diagonal [114].

To avoid the technical issues involved in the GW calculation of the overall
interface system, some efforts have been made, for instance, the DFT+� approach
[112, 116]. For physisorbed systems, with the assumption of weak coupling between
the molecule and the metal, the PDOS peaks of an isolated molecule could be
shifted by the quasiparticle self-energy correction to HOMO and LUMO energies,
along with the gap renormalization upon adsorption on the metal. With DFT+�,
one adds two corrections denoted by � to HOMO-/LUMO-derived levels obtained
with DFT within LDA or GGA. First, a difference between HOMO or LUMO
energy of an isolated molecule with DFT-LDA or DFT-GGA and that obtained at a
highly accurate level of theory such as GW is estimated. Second, the polarization
at the surface inducing gap renormalization is corrected based on the classical
image charge model 1/4[z − z0], where z is the average height of the molecule
on the surface and z0 is the image plane position. The DFT+� method has been
successfully employed to predict or elucidate the energy level alignment at organic-
metal interfaces with physisorption [112, 117] and to explain the charge transport in
molecular junctions where the assumption of weak coupling is reasonable [116].

Overall, however, the representative theoretical works calculating the energy
level alignment at organic-metal interfaces within GW or DFT+�, despite its
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rigorous theoretical background, have been limited to the abovementioned works
[112–117]. The computational or numerical difficulty involved, as mentioned above,
seems to be a critical limiting factor. Furthermore, determination of the quasiparticle
wave functions in a self-consistent manner is necessary in case of a hybridized
interface involving appreciable charge transfer at the interface. In terms of the
modification of the electronic charge density at a hybridized organic-metal interface
in a self-consistent manner, a theoretical methodology within the framework of DFT,
such as the optimally tuned range-separated hybrid (OT-RSH), might be a method
of choice [118–120].

Unoccupied electronic states at surfaces and interfaces are important as they
are relevant to the charge carrier transport in the electronic devices. As such, the
image potential state (IPS) is a fundamental electronic state emerging at metal
surfaces, which is characterized by a set of Rydberg-like series induced by the
Coulombic tail of the potential [121, 122]. Image potential has a form of Vim =
−e2/4(z − z0), where z0 is the position of the so-called image plane, the effective
position of the surface plane, and the energy levels in the image potential is given
by En = −0.85 eV/(n + a)2 with n and a being the quantum number and the so-
called quantum defect, respectively. The IPSs have been shown to exist even for
graphitic materials including single-crystal graphite [123], highly oriented pyrolytic
graphite [124], carbon nanotube [125], fullerene [126], and fullerite [127]. Double
Rydberg states of IPSs are also predicted for freestanding graphene [128] by using
the LDA augmented by the image potential tail (“LDA+image tail”), and it was
suggested that the IPS is the origin of the interlayer state [nearly free electron
(NFE) state] of graphite [129–131]. The double Rydberg states were confirmed for
graphene and bilayer graphene on SiC by using the scanning tunneling spectroscopy
[132]. Computationally however, it is well-known that the semilocal approximation
to the exchange-correlation functional fails to reproduce the image potential, and
the dynamic and nonlocal correlation is necessary to describe it accurately. Indeed
it has been shown that by using the GW method to evaluate the energy-dependent
electron self-energy, an image potential for a metal surface is reproduced [133].
As an alternative, vdW-DF has been used to study graphene and some graphite
materials [134], as it contains a dynamical and nonlocal piece of correlation in an
approximate manner. In the following, electronic structures of graphitic materials
obtained by using vdW-DF are discussed with the emphasis on the IPSs.

In Fig. 4.10, the band structure of graphene obtained by using the rev-vdW-DF2
[10] functional is shown [134]. It is in good agreement with that obtained with the
LDA+image tail potential of Ref. [128]. In particular, the low-lying IPS levels agree
well (Table 4.6), suggesting that vdW-DF improves the description of graphene’s
IPS. In order to clarify the role of the nonlocal correlation, calculations without
the nonlocal correlation [B86R exchange plus PBE correlation (B86Rx+PBEc) and
B86R exchange plus PBEsol correlation (B86Rx+PBEsolc)] were performed. It
was found that the IPS levels obtained with B86Rx+PBEc and B86Rx+PBEsolc
are similar to those with PBE and underestimated, suggesting that the nonlocal
correlation plays an important role in describing IPSs accurately. By further ana-
lyzing the exchange-correlation potential, it was found that the vdW-DF generates
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Fig. 4.10 Band structure of graphene obtained by using the rev-vdW-DF2 functional. The origin
of energy is the Fermi level (EF). The symmetry points are � = (0, 0), M = (1/2, 0), and K =
(1/3, 1/3) in the unit of the basic reciprocal lattice vectors. The horizontal dashed line indicates
the vacuum level (Evac). The low-lying IPSs corresponding the symmetric (1+) and antisymmetric
(1−) are indicated by the arrows. (Reprinted from [134], with the permission of AIP Publishing)

Table 4.6 IPS levels of graphene with respect to the Fermi level calculated with rev-dW-DF2
along with those with LDA, PBE, and LDA+image tail (zo = 3.0 Bohr). For comparison those
obtained with B86Rx+PBEc and B86Rx+PBEsolc are also shown. IPS levels with respect to the
vacuum level are shown in parentheses. The rev-vdW-DF2 lattice constant was used for all the
calculations. The unit of the energy level is eV. (Reprinted from [134], with the permission of AIP
Publishing)

Method 1+ 1− 2+ 2−

rev-vdW-DF2 2.85 3.70 4.31 4.35

(−1.54) (−0.69) (−0.07) (−0.04)

LDA 3.31 4.25 4.41 4.46

(−1.16) (−0.23) (−0.07) (−0.02)

PBE 3.27 4.03 4.24 4.29

(−0.98) (−0.22) (−0.01) (+0.04)

B86Rx+PBEc 3.42 4.00 4.18 4.23

(−0.82) (−0.24) (−0.06) (−0.01)

B86Rx+PBEsolc 3.42 4.05 4.25 4.30

(−0.89) (−0.25) (−0.05) (+0.02)

LDA+image taila 2.94 3.69 4.16 4.22

(−1.47) (−0.72) (−0.25) (−0.19)
aRef. [128]

more attractive and longer-range potential than PBE one. It was also found that
the exchange potentials used in the improved vdW-DFs such as optB86b-vdW,
vdW-DF-cx, and rev-vdW-DF2 are more attractive and longer ranged than PBE
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Fig. 4.11 Band structure of the graphite (0001) surface calculated by using rev-vdW-DF2. The
origin of energy is EF. The horizontal dashed line indicates Evac. The lowest IPS is indicated by
the arrow. (Reprinted from [134], with the permission of AIP Publishing)

exchange-correlation potential, and the attractive nonlocal correlation further gives
more attractive exchange-correlation potential, resulting in the improved description
of IPSs.

The band structure of the graphite (0001) surface was also calculated (Fig. 4.11),
and the lowest IPS was obtained in the bulk band gap. The position of the lowest
(n = 1) IPS obtained with rev-vdW-DF2 is 3.18 (−1.28) eV with respect to the
Fermi level (vacuum level) and the second lowest (n = 2) IPS, 4.18 (−0.28) eV,
while the lowest IPS obtained with PBE is 3.61 (−0.69) eV and the second IPS,
4.18 (−0.28) eV. Calculated IPSs with rev-vdW-DF2 are lower (deeper) than the
energy of a Rydberg-like series En = −0.85 eV/(n+a)2 with small quantum defect
a reported experimentally, and apparently those with PBE are in better agreement
with the experiments. This is presumably because of the error cancellation between
the derivative discontinuity and the image potential in PBE. vdW-DF also lacks
the derivative discontinuity but gives more attractive nonlocal correlation energy
and potential, thereby overestimating the magnitude of the IPS levels. Nevertheless,
although the bulk energy gap and the energy levels of the unoccupied orbitals of
gas-phase molecules are underestimated, they are described reasonably well on
metal surfaces even with semilocal and vdW-DF functionals, and thus we expect
the interaction between IPSs and unoccupied molecular orbitals on a metal surface
is described fairly well with vdW-DF.

Here it is worth mentioning that there is also a considerable difference in the work
function obtained with GGA and vdW-DF: Calculated work functions of graphene
are 4.39 eV with rev-vdW-DF2 and 4.25 eV with PBE. Those of graphite are 4.46 eV
with rev-vdW-DF2 and 4.30 eV with PBE at the rev-vdW-DF2 optimized geometry,
and the former is in better agreement with the experimental value of 4.5–4.7 eV
than the latter. Work function predicted by rev-vdW-DF2 is also in good agreement
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with that obtained with optPBE-vdW [135]. These results indicate that the nonlocal
correlation also affects the electronic structure, although its effect has been thought
to be minor [136]. This is in line with the recent work by Ferri et al. [137] using the
fully self-consistent Tkatchenko-Scheffler vdW correction [138].

IPSs of metal surfaces functionalized with molecular overlayers have also been
investigated [132, 139–142]. Naphthalene on highly oriented pyrolytic graphite
(HOPG) is one of prototypical systems for aromatic hydrocarbons physisorbed on
a metal surface, and there have been several studies investigating its electronic
properties [20, 143–146]. The scanning tunneling microscopy (STM) measurement
revealed that the naphthalene overlayer on HOPG forms a superstructure with a
tilted adsorption configuration [145]. Furthermore, based on the angle-resolved
two-photon photoemission spectroscopy measurement, the authors of Ref. [145]
suggested that the lowest IPS behaves almost like a free electron, despite the
presence of the molecular overlayer [20].

To gain insights into the nature on the IPS at organic-metal interfaces, DFT
calculations were conducted for naphthalene adsorbed on graphene [19]. The rev-
vdW-DF2 functional [10] was used to correctly describe the molecule-substrate and
the intermolecular interactions, which are typically of the vdW interaction nature. It
was found that the naphthalene molecules are stabilized as a superstructure with
a periodicity of (2

√
3 × 2

√
3) with a tilted molecular adsorption geometry, in

good agreement with the STM measurement [145]. The band structure of the naph-
thalene/graphene was calculated (Fig. 4.12), and IPS-like states are found at 2.77
and 3.80 eV with respect to the Fermi level at the � point, which are characterized
by anisotropic effective mass due to the anisotropic molecular configuration of the
naphthalene overlayer. Further, by analyzing the corresponding charge densities of
these states as shown in Fig. 4.13, it was found that these IPS-like states are formed

Fig. 4.12 Band structures for
the unoccupied states for the
naphthalene overlayer on
graphene with (

√
3 × √

3)
periodicity. Energy zero is set
to the Fermi level (EF). The
surface Brillouin zone is
displayed in the inset



4 Nanoscale First-Principles Electronic Structure Simulations of Materials. . . 117

 0

 20

 40

 60

 80

 100

−10 −5  0  5  10

(c)

|Ψ
|2  / 

Å
−3

z / Å

U1
U2
U3
U4

 0

 20

 40

 60

 80

 100

−10 −5  0  5  10

(b)

|Ψ
|2  / 

Å
−3

z / Å

I1
I2

 0

 20

 40

 60

 80

 100

−10 −5  0  5  10

(a)
|Ψ

|2  / 
Å
−3

z / Å

1+

1−

Fig. 4.13 Planer average of charge densities for (a) the graphene IPSs with even (1+) and odd
(1−) parities, (b) the IPS-like states of naphthalene with even (I1) and odd (I2) parities, and (c) the
unoccupied states of naphthalene on graphene

by the hybridization of the IPS of graphene and that of naphthalene, which originates
from the Rydberg state of naphthalene molecule. In particular, the IPS-like state at
2.77 eV is the bonding state of the lowest IPS of graphene with the even parity and
the IPS of naphthalene overlayer, and it was suggested that what is observed in the
STM image [20] is this IPS-like state, not the molecular orbital-derived state as
suggested before [20]. The results indicate that such “hybrid IPS” can be observed
in a variety of systems, as IPS-like states, also known as nearly free electron states,
are predicted not only for metal surfaces but also for semiconductors [147, 148],
insulators [149, 150], and carbon-based nanostructures [126, 127, 151–157], and
further experimental investigation on the IPS of different interfaces is anticipated.
Here we stress that to predict the interface IPSs precisely, it is very important to
describe the interface structures very accurately, and the use of vdW-DF is decisively
important.
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4.2.3 Theoretical Determination of the Ionization Energy
and Electron Affinity

Energies of the valence and conduction band edges relative to the vacuum level
of an organic molecular solid give the ionization energy (IE) and electron affinity
(EA), quantities of primary importance leading to the energy levels of the injected
or transported electron/hole at the organic-(in)organic heterojunction or inside the
organic layer. Essentially, IE and EA are defined as follows:

IE = εvac − εH, EA = εvac − εL, (4.7)

where εvac is the vacuum level and εH (εL) is the edge of the highest (lowest)
occupied (unoccupied) energy level. Although the definition is straightforward for
a molecule in a gas phase, there are physical effects to take into account in case of a
molecular solid. The energy of the charge injected into the solid is renormalized: the
particle is stabilized by the surrounding polarization clouds with opposite charge.
The reduction in energy relative to the gas phase is referred to as polarization energy
[158]. The polarization energy is formally described as

P + = IEg − IEs, P − = EAs − EAg, (4.8)

where subscripts s and g denote solid and gas phases, respectively, and P + (P −)
is the polarization energy upon injection of hole (electron). P + corresponds to
increase in energy of the electron in a solid, leading to reduction in IE relative
to that in a gas phase, and vice versa in case of the polarization energy upon
electron (P −), resulting in the increased EA. Measurement or quantification of the
polarization energy in organic solids dates back to the paper published by Sato, Seki,
and Inokuchi in 1981, which was based on the comparison of the photoelectron
spectroscopy data between the solid phase and the gas phase [158]. The measured
polarization energies upon the injected hole in the solids (P +) were reported to
be in the range 0.9–3.0 eV [158]. The sum of the polarization energies P + + P −,
corresponding to renormalization of the fundamental gap, becomes significant.

The reduced gap in the solid, inherently dielectric response event, may be
captured with the theoretical methodologies such as the GW approximation,
which describes the screened Coulomb potential based on the frequency-dependent
microscopic dielectric function [112, 159]. The weak intermolecular interaction in
organic solids may lead us to insights into the electronic nature described by a
single molecule surrounded by a dielectric medium of the other molecules. Actually,
treatment of a single molecule in the polarizable continuum model (PCM) or the
quantum mechanics (QM)/molecular mechanics (MM) treatment gave reasonable
estimation of IE and EA as total energy difference between neutral and charged
systems obtained at the DFT-GGA level of theory [160, 161].

In photoemission measurements, the energy of the particles injected or extracted
at the surface is measured, which is affected by the morphology or the molecular
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orientation at the surface. As mentioned in the previous subsection, a rigorous the-
oretical method describing quasiparticle energy, for instance, GW approximation,
requires fairly large computational resources, thus rendering difficult the application
of the methodologies to a surface or an interface represented by a periodic slab
model with a sufficiently thick vacuum layer.

To circumvent the computational difficulty, it was proposed recently that the
electrostatic potential represented by a slab model within DFT-GGA approximation
could be aligned to the electrostatic potential determined for a bulk system within
the GW approximation [21]. The valence and conduction band edge energies (or
HOMO- and LUMO-derived energies) of the bulk determined at the GW level of
theory could be shifted according to the electrostatic potential of the surface slab
model, for which a well-defined vacuum level could be determined. Overall, the
resulting IE and EA are in fair agreement with experiments. The slightly smaller
band gap than the experimental values may be ascribed to the different polarization
effects in bulk and surface.

According to Ref. [80], IEs and EAs measured in photoemission or inverse
photoemission experiments can be defined as

IEs = IEg − P + − �+, EAs = EAg + P − + �−, (4.9)

P + = E+
p + W+, P − = E−

p + W−, (4.10)

where the terms �+ and �− correspond to the width of the valence and the
conduction band edges, respectively, which are theoretically estimated with the first-
principles band structure calculation. E+

p and E−
p describe the induced polarization

upon the injected hole and electron, respectively, which are approximately the
same, because they are proportional to the square of the injected charge. On the
other hand, W+ and W− denote the electrostatic interaction upon the injected
hole and electron, respectively, which are different in sign but approximately the
same in magnitude, because they are linear functions of the excess charge [162].
The electrostatic interaction W induced upon two-dimensional (2D) periodical
arrangement of the molecules could be estimated by the difference in energy
level between the isolated gas-phase molecule and the 2D periodically arranged
molecules calculated within DFT-LDA or DFT-GGA, given the “nearsightedness”
of the local chemical environment of the molecule [163, 164].

The IE and EA of the organic semiconductor thin films were theoretically
obtained by adding to the gas-phase IE and EA the electrostatic terms W+ and
W−, respectively, which are dominated by the long-range electrostatic interaction
such as the charge-quadrupole interaction and depend on the surface molecular
orientation [165], and the polarization-induced term Ep, which was assumed to
be common for the injected hole and charge and thus was estimated as half the
fundamental gap difference between the gas phase and the bulk [22]. The result for
pentacenequinone, a pentacene derivative, is in agreement with the experimental
measurement, demonstrating the molecular orientation crucially affecting the IE
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Fig. 4.14 Schematics on theoretical determination of the polarization energies P + and P − (right
panel) of pentacenequinone, in comparison to the low-energy inverse photoemission spectroscopy
(LEIPS) measurement (left panel) in Ref. [22]. In the right panel, the solid one-headed arrows
indicate the electrostatic term W+ and W−, and the double-headed arrows indicate the fundamental
gap obtained within GW or the resulting induced polarization effect Ep. (Reprinted figure with
permission from [22] Copyright 2018 by the American Physical Society)

and EA of the organic semiconductor [22] (see Fig. 4.14). The theoretical approach
might play a role in prediction and tuning of the charge injection levels of organic
semiconductors.

The theoretical approaches based on the periodic implementation of the GW

approximation give important information on the impacts of the morphology or the
molecular orientation at the surface on the charge injection levels. Nevertheless, the
screening effect reduced at the surface should be taken into account. The QM/MM-
based GW approach was proposed to treat quasiparticle energy of a molecular
crystal, with the QM part treating the quasiparticle energy of a single molecule
within GW , along with the MM part describing the effect of the surrounding
molecules treated with the discrete polarizable model [23]. Based on a Gaussian
atomic orbital-based implementation of GW [91] for the QM part, the response of
the surrounding medium to the charged excitation of the molecule was described
by the charge response model [166]. In addition to the many-body correlation and
the polarization effects as taken into account within GW , crystal field effects were
included at the stage of the starting DFT calculation, thus leading to the estimation
of the charge injection levels relative to the vacuum level [23]. The resulting
fundamental gaps of the crystals of pentacene and perfluoropentacene demonstrated
the reduced polarization effect at the surface, i.e., the gap enlarged by ≈ 0.2 eV
relative to the bulk. The crystal field effect induced rigid positive (negative) shift
of the HOMO and LUMO levels for pentacene (perfluoropentacene), which the
authors ascribed to the different charge-quadrupole interaction depending on the
macroscopic shape of the surfaces [23, 167].

The results as mentioned above demonstrate that it is becoming possible to
extract the physical ingredients dominating the charge injection barrier at an organic
semiconductor surface in a quantitative manner.
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4.3 Conclusions and Outlook

In this review, we have outlined recent theoretical works on basic electronic
properties of organic semiconductors relevant to organic electronic devices with
first-principles electronic structure methods. Firstly, we have demonstrated the
performances of recently proposed van der Waals (vdW)-inclusive methods in pre-
diction of crystal structures of the oligoacene crystals. It was found that a variant of
the vdW density functional (vdW-DF) [10], with its reasonable computational cost
being comparative to that of DFT-LDA or DFT-GGA, predicted the lattice constants
in good agreement with the experimental values obtained with the diffraction data
measured at low temperatures [13]. For the optimized crystal geometries, the many-
body perturbation theory within the GW approximation [12, 18] predicted the
fundamental band gap and the density of states in agreement with experiments.
More importantly, different polarization energies were obtained for the different
cell volumes measured at different temperatures, corresponding to the different
molecular packing densities and thus the different screenings. Furthermore, based
on the maximally localized Wannier functions (MLWF) [14, 15], the impact of
the molecular configurations in the unit cell on the transfer integrals between
molecules at the neighboring sites was discussed. The result demonstrates the
subtle interplay between the intermolecular configurations such as distance and
angle, and their displacement, and, therefore, the importance of predicting accurate
geometry of organic semiconductor crystals is underscored [13]. Prediction of the
crystal geometry of organic semiconductors and calculation of the MLWF, and
thus the resulting intermolecular transfer integrals, may lead to multi-scale real-
time simulation of the carrier transport in organic crystals [16]. With the aid
of the present-day machine learning and artificial intelligence, a theoretical tool
for automatic and efficient high-throughput screening of organic semiconductor
materials might be realized in the near future.

Secondly, we discussed theoretical treatment of electronic phenomena in organic-
metal interfaces. As an example of theoretical study on the interface energy
level alignment, we summarized the works based on the GW approximation.
GW approximation allows rigorous theoretical treatment of the charged excitation
(quasiparticle) at the interface. Actually, there have been works successfully
applying the same methodology to the energy level alignment at the physisorbed
or hybridized interface. In consideration of the molecular gap renormalization at
physisorbed interfaces dominated by the image potential, an approximated approach
of adding the image potential effect 1/4z to the fundamental gap of an isolated
molecule is found to be valid (DFT+�) [112, 116, 117]. However, the large
computational cost which formally scales as N4

PW [168], where NPW is the number
of plane-wave basis set, the poor convergence of the quasiparticle energies including
the work function of the metal, and the effect of self-consistency required [114, 115]
critically prohibit one from applying the methodology to organic-metal interfaces
in general. In terms of the effect of self-consistency, another formalism within the
framework of DFT such as the optimally tuned screened range-separated hybrid
(OT-SRSH) can be a method of choice [118–120].
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Understanding of unoccupied states including image potential state (IPS) at
organic-metal interfaces is of importance, and experimental or theoretical insight
into prototype systems such as physisorption of a typical aromatic hydrocarbon on
a graphite surface is required. Theoretically, GW approximation is one of the most
promising electronic structure methods [169], because of its rigorous description
of the long-ranged tail of the (screened) Coulomb potential. However, as far as
the authors know, there is no report at present successfully investigating the IPS
at organic-metal interfaces based on the same methodology, possibly because of
the numerical or technical difficulty, as mentioned above. The approach based on
a variant of vdW-DF may be a method of choice at present to gain insights into
the IPS at organic-metal interfaces, with its long-range nature of the potential and
accuracy in prediction of the interface geometry, along with its reasonable cost
almost comparable to DFT-LDA or DFT-GGA [19, 134].

Thirdly, we have outlined recent theoretical approaches for determination of
energy levels for charge injection, i.e., ionization energy (IE) and electron affinity
(EA), at an organic semiconductor surface, which essentially determines barrier for
charge injection. As with the previous topics, GW approximation is promising also
for this problem. However, to avoid the numerical or technical difficulties involved
in treatment of surfaces and interfaces with the periodic slab, there are some
treatments proposed [21, 22], in which the vacuum level is determined based on
the calculation of the slab model within DFT-GGA. The approach proposed in Ref.
[22] successfully elucidated the dependence of the ionization energy and electron
affinity on the surface morphology or the molecular orientation at the surface as
measured by the LEIPS technique [170–172]. Nevertheless, in these approaches,
the induced polarization effect in the bulk was treated. To be more quantitative
in comparison to experimental measurements, the polarization effect on a surface
should be taken into account, which is weaker than that in the bulk. A recently
proposed approach based on QM/MM, in which IE and EA of a single molecule
are treated at the GW level of theory, while the surrounding molecules are treated
as continuum of dielectric medium, and thus the macroscopic shape of the surface
can be treated within MM [23]. The result demonstrates quantitative treatment of IE
and EA taking into account the presence of the organic crystal surface [23]. As far
as the theoretical treatment of IE and EA of organic single crystals or thin films is
concerned, this treatment may be a method of choice at present.

The first-principles theoretical methods, as outlined in this article, have allowed
precise determination or prediction of the intrinsic basic electronic properties
of organic semiconductor materials measured or observed in recent well-defined
experimental measurements. Compared to the vast amount of database available and
the understanding on the electronic properties of inorganic semiconductor materials,
there is much room for understanding the basic electronic origin of the materials
properties, and there is much need for constructing database for organic semicon-
ductor materials. The roles of the first-principles electronic structure methods as
described here, aided by future increase in computational resources and technical
development in program codes, will become more and more important for more
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understanding on the basic electronic properties and the following construction of
a large material database and automatic high-throughput materials screening in the
near future.

Acknowledgements This work was supported by Grants-in-Aid for Scientific Research (C) (No.
18K03458), on Innovative Areas “3D Active-Site Science” (No. 26105011) and “Hydrogenomics”
(No. 18H05519), and for Fund for the Promotion of Joint International Research (Fostering Joint
International Research) (No. 16KK0115) from the Japan Society for the Promotion of Science
(JSPS), by “Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastruc-
tures” and “High Performance Computing Infrastructure” in Japan (Project ID: jh180069-NAH),
and by the Cooperative Research Program of Network Joint Research Center for Materials and
Devices in ISIR, Osaka University. We acknowledge the Supercomputer Center, the Institute for
Solid State Physics, the University of Tokyo, and the Cyberscience Center, Tohoku University, for
the use of their facilities.

References

1. J.R. Sheats, Manufacturing and commercialization issues in organic electronics. J. Mater. Res.
19(7), 1974 (2004). https://doi.org/10.1557/JMR.2004.0275

2. M.E. Gershenson, V. Podzorov, A.F. Morpurgo, Colloquium: electronic transport in single-
crystal organic transistors. Rev. Mod. Phys. 78, 973 (2006). https://doi.org/10.1103/
RevModPhys.78.973

3. J. Kleis, B.I. Lundqvist, D.C. Langreth, E. Schröder, Towards a working density-functional
theory for polymers: first-principles determination of the polyethylene crystal structure. Phys.
Rev. B 76, 100201 (2007)

4. D. Lu, Y. Li, D. Rocca, G. Galli, Ab initio calculation of van der waals bonded molecular
crystals. Phys. Rev. Lett. 102, 206411 (2009)

5. A. Tkatchenko, M. Scheffler, Accurate molecular van der waals interactions from ground-
state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009)

6. A. Otero-de-la-Roza, E.R. Johnson, Van der waals interactions in solids using the exchange-
hole dipole moment model. J. Chem. Phys. 136, 174109 (2012)

7. A. Otero-de-la-Roza, E.R. Johnson, Application of the exchange-hole dipole moment (XDM)
model to molecular solids. J. Chem. Phys. 137, 054103 (2012)

8. A. Tkatchenko, J.R.A. DiStasio, R. Car, M. Scheffler, Accurate and efficient method for
many-body van der waals interactions. Phys. Rev. Lett. 108, 236402 (2012)

9. J. Klimeš, A. Michaelides, Perspective: advances and challenges in treating van der waals
dispersion forces in density functional theory. J. Chem. Phys. 137, 120901 (2012)

10. I. Hamada, van der waals density functional made accurate. Phys. Rev. B 89, 121103(R)
(2014)

11. A.M. Reilly, A. Tkatchenko, Role of dispersion interactions in the polymorphism and entropic
stabilization of the aspirin crystal. Phys. Rev. Lett. 113, 055701 (2014)

12. L. Hedin, New method for calculating the one-particle green’s function with application to
the electron-gas problem. Phys. Rev. 139, A796 (1965). https://doi.org/10.1103/PhysRev.139.
A796

13. S. Yanagisawa, I. Hamada, Determination of geometric and electronic structures of organic
crystals from first principles: role of the molecular configuration on the electronic structure.
J. Appl. Phys. 121(4), 045501 (2017). https://doi.org/10.1063/1.4974844

14. N. Marzari, A.A. Mostofi, J.R. Yates, I. Souza, D. Vanderbilt, Maximally localized wannier
functions: theory and applications. Rev. Mod. Phys. 84, 1419 (2012)

https://doi.org/10.1557/JMR.2004.0275
https://doi.org/10.1103/RevModPhys.78.973
https://doi.org/10.1103/RevModPhys.78.973
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1063/1.4974844


124 S. Yanagisawa and I. Hamada

15. A.A. Mostofi, J.R. Yates, Y.S. Lee, I. Souza, D. Vanderbilt, N. Marzari, wannier90: a tool
for obtaining maximally-localised wannier functions. Comput. Phys. Commun. 178(9), 685
(2008)

16. C. Motta, S. Sanvito, Charge transport properties of durene crystals from first-principles. J.
Chem. Theor. Comput. 10, 4624 (2014)

17. H. Ishii, K. Sugiyama, E. Ito, K. Seki, Energy level alignment and interfacial electronic
structures at organic/metal and organic/organic interfaces. Adv. Mater. 11, 605 (1999)

18. M.S. Hybertsen, S.G. Louie, Electron correlation in semiconductors and insulators: band gaps
and quasiparticle energies. Phys. Rev. B 34, 5390 (1986). https://doi.org/10.1103/PhysRevB.
34.5390

19. S.A. Wella, H. Sawada, N. Kawaguchi, F. Muttaqien, K. Inagaki, I. Hamada, Y. Morikawa,
Y. Hamamoto, Hybrid image potential states in molecular overlayers on graphene. Phys. Rev.
Mater. 1(6), 061001 (2017). https://doi.org/10.1103/PhysRevMaterials.1.061001

20. T. Yamada, M. Isobe, M. Shibuta, H.S. Kato, T. Munakata, Spectroscopic investigation of
unoccupied states in nano- and macroscopic scale: naphthalene overlayers on highly oriented
pyrolytic graphite studied by combination of scanning tunneling microscopy and two-photon
photoemission. J. Phys. Chem. C 118(2), 1035 (2014). https://doi.org/10.1021/jp4097875

21. Y. Kang, S.H. Jeon, Y. Cho, S. Han, Ab initio calculation of ionization potential and electron
affinity in solid-state organic semiconductors. Phys. Rev. B 93, 035131 (2016). https://doi.
org/10.1103/PhysRevB.93.035131

22. K. Yamada, S. Yanagisawa, T. Koganezawa, K. Mase, N. Sato, H. Yoshida, Impact of the
molecular quadrupole moment on ionization energy and electron affinity of organic thin films:
experimental determination of electrostatic potential and electronic polarization energies.
Phys. Rev. B 97, 245206 (2018). https://doi.org/10.1103/PhysRevB.97.245206

23. J. Li, G. D’Avino, I. Duchemin, D. Beljonne, X. Blase, Combining the many-body GW
formalism with classical polarizable models: insights on the electronic structure of molecular
solids. J. Phys. Chem. Lett. 7(14), 2814 (2016). https://doi.org/10.1021/acs.jpclett.6b01302

24. J.L. Brédas, J.P. Calbert, D.A. da Silva Filho, J. Cornil, Organic semiconductors: a theoretical
characterization of the basic parameters governing charge transport. Proc. Natl. Acad. Sci. U.
S. A. 99, 5804 (2002)

25. V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, J.L. Brédas, Charge
transport in organic semiconductors. Chem. Rev. 107, 926 (2007)

26. A.M. Reilly, R.I. Cooper, C.S. Adjiman, S. Bhattacharya, A.D. Boese, J.G. Brandenburg, P.J.
Bygrave, R. Bylsma, J.E. Campbell, R. Car, D.H. Case, R. Chadha, J.C. Cole, K. Cosburn,
H.M. Cuppen, F. Curtis, G.M. Day, R.A. DiStasio Jr, A. Dzyabchenko, B.P. van Eijck, D.M.
Elking, J.A. van den Ende, J.C. Facelli, M.B. Ferraro, L. Fusti-Molnar, C.A. Gatsiou, T.S.
Gee, R. de Gelder, L.M. Ghiringhelli, H. Goto, S. Grimme, R. Guo, D.W.M. Hofmann,
J. Hoja, R.K. Hylton, L. Iuzzolino, W. Jankiewicz, D.T. de Jong, J. Kendrick, N.J.J. de Klerk,
H.Y. Ko, L.N. Kuleshova, X. Li, S. Lohani, F.J.J. Leusen, A.M. Lund, J. Lv, Y. Ma,
N. Marom, A.E. Masunov, P. McCabe, D.P. McMahon, H. Meekes, M.P. Metz, A.J. Misquitta,
S. Mohamed, B. Monserrat, R.J. Needs, M.A. Neumann, J. Nyman, S. Obata, H. Oberhofer,
A.R. Oganov, A.M. Orendt, G.I. Pagola, C.C. Pantelides, C.J. Pickard, R. Podeszwa,
L.S. Price, S.L. Price, A. Pulido, M.G. Read, K. Reuter, E. Schneider, C. Schober, G.P.
Shields, P. Singh, I.J. Sugden, K. Szalewicz, C.R. Taylor, A. Tkatchenko, M.E. Tuckerman,
F. Vacarro, M. Vasileiadis, A. Vazquez-Mayagoitia, L. Vogt, Y. Wang, R.E. Watson, G.A.
de Wijs, J. Yang, Q. Zhu, C.R. Groom, Report on the sixth blind test of organic crystal
structure prediction methods. Acta Crystallogr. B 72(4), 439 (2016). https://doi.org/10.1107/
S2052520616007447

27. J. Hermann, R.A. DiStasio, A. Tkatchenko, First-principles models for van der waals
interactions in molecules and materials: concepts, theory, and applications. Chem. Rev.
117(6), 4714 (2017). https://doi.org/10.1021/acs.chemrev.6b00446. PMID: 28272886

28. J. Klimeš, M. Kaltak, E. Maggio, G. Kresse, Singles correlation energy contributions in solids.
J. Chem. Phys. 143(10), 102816 (2015)

https://doi.org/10.1103/PhysRevB.34.5390
https://doi.org/10.1103/PhysRevB.34.5390
https://doi.org/10.1103/PhysRevMaterials.1.061001
https://doi.org/10.1021/jp4097875
https://doi.org/10.1103/PhysRevB.93.035131
https://doi.org/10.1103/PhysRevB.93.035131
https://doi.org/10.1103/PhysRevB.97.245206
https://doi.org/10.1021/acs.jpclett.6b01302
https://doi.org/10.1107/S2052520616007447
https://doi.org/10.1107/S2052520616007447
https://doi.org/10.1021/acs.chemrev.6b00446


4 Nanoscale First-Principles Electronic Structure Simulations of Materials. . . 125

29. J. Klimeš, Lattice energies of molecular solids from the random phase approximation
with singles corrections. J. Chem. Phys. 145(9), 094506 (2016). https://doi.org/10.1063/1.
4962188. http://scitation.aip.org/content/aip/journal/jcp/145/9/10.1063/1.4962188

30. K. Hongo, M.A. Watson, R.S. Sánchez-Carrera, T. Iitaka, A. Aspuru-Guzik, Failure of
conventional density functionals for the prediction of molecular crystal polymorphism: a
quantum monte carlo study. J. Phys. Chem. Lett. 1(12), 1789 (2010)

31. A. Zen, J.G. Brandenburg, J. Klimeš, A. Tkatchenko, D. Alfè, A. Michaelides, Fast and
accurate quantum monte carlo for molecular crystals. Proc. Natl. Acad. Sci. U. S. A. 115(8),
1724 (2018). https://doi.org/10.1073/pnas.1715434115. http://www.pnas.org/content/115/8/
1724

32. J. Yang, W. Hu, D. Usvyat, D. Matthews, M. Schütz, G.K.L. Chan, Ab initio determination
of the crystalline benzene lattice energy to sub-kilojoule/mole accuracy. Science 345(6197),
640 (2014)

33. M. Del Ben, J. Hutter, J. VandeVondele, Forces and stress in second order møller-plesset
perturbation theory for condensed phase systems within the resolution-of-identity gaussian
and plane waves approach. J. Chem. Phys. 143(10), 102803 (2015)

34. M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Van der waals density
functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004)

35. K. Berland, P. Hyldgaard, Exchange functional that tests the robustness of the plasmon
description of the van der waals density functional. Phys. Rev. B 89, 035412 (2014)

36. J. Kilmeš, D.R. Bowler, A. Michaelides, Chemical accuracy for the van der waals density
functional. J. Phys. Condens. Matter 22, 022201 (2010)

37. K. Lee, É.D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Higher-accuracy van der waals
density functional. Phys. Rev. B 82, 081101(R) (2010)

38. V.R. Cooper, Van der waals density functional: an appropriate exchange functional. Phys.
Rev. B 81, 161104(R) (2010)

39. J. Kilmeš, D.R. Bowler, A. Michaelides, Van derwaals density functionals applied to solids.
Phys. Rev. B 83, 195131 (2011)

40. G. Román-Pérez, J.M. Soler, Efficient implementation of a van der waals density functional:
application to double-wall carbon nanotubes. Phys. Rev. Lett. 103, 096102 (2009). https://
doi.org/10.1103/PhysRevLett.103.096102

41. S. Yanagisawa, K. Yamauchi, T. Inaoka, T. Oguchi, I. Hamada, Origin of the band dispersion
in a metal phthalocyanine crystal. Phys. Rev. B 90, 245141 (2014)

42. The crystal structure for the naphthalene at 5 K was taken from NAPHTA31 in Cambridge
Crystallographic database. The structure of anthracene was taken from Ref. [68]. The crystal
structure of the tetracene crystal was generated using the atomic coordinates given in
Ref. [46]. The pentacene crystalline phase obtained by vapor deposition [48] was taken. The
diffraction data measured at 123 K [57] was used for hexacene crystal

43. H.C. Alt, J. Kalus, X-ray powder diffraction investigation of naphthalene up to 0.5 gpa. Acta
Crystallogr. B Struct. Crystallogr. Cryst. Chem. 38, 2595 (1982)

44. R. Mason, The crystallography of anthracene at 95 ◦K and 290 ◦K. Acta Cryst. 17, 547 (1964)
45. J.M. Robertson, V.C. Sinclair, J. Trotter, The crystal and molecular structure of tetracene.

Acta Cryst. 14, 697 (1961)
46. The temperature at which the X-ray diffraction measurement is performed is not clear in

Ref. [46]. The cell lengths and the volume of the tetracene crystal (P 1 symmetry) measured
at 295 K [54] were slightly smaller. Therefore we presume that the temperature of the
measurement in Ref. [46] is 295 K or higher

47. T. Siegrist, C. Kloc, J.H. Schön, B. Batlogg, R.C. Haddon, S. Berg, G.A. Thomas, Enhanced
physical properties in a pentacene polymorph. Angew. Chem. Int. Ed. Engl. 40, 1732 (2001)

48. C.C. Mattheus, A.B. Dros, J. Baas, A. Meetsma, J.L. de Boer, T.T.M. Palstra, Polymorphism
in pentacene. Acta Crystallogr. C Cryst. Struct. Commun. C57, 939 (2001)

49. C.C. Mattheus, A.B. Dros, J. Baas, G.T. Oostergetel, A. Meetsma, J.L. de Boer, T.T.M.
Palstra, Identification of polymorphs of pentacene. Synth. Met. 138, 475 (2003)

https://doi.org/10.1063/1.4962188
https://doi.org/10.1063/1.4962188
http://scitation.aip.org/content/aip/journal/jcp/145/9/10.1063/1.4962188
https://doi.org/10.1073/pnas.1715434115
http://www.pnas.org/content/115/8/1724
http://www.pnas.org/content/115/8/1724
https://doi.org/10.1103/PhysRevLett.103.096102
https://doi.org/10.1103/PhysRevLett.103.096102


126 S. Yanagisawa and I. Hamada

50. D. Holmes, S. Kumaraswamy, A. Matzeger, K.P.C. Vollhardt, On the nature of nonplanarity
in the [n]phenylenes. Chem.-Eur. J. 5, 3399 (1999)

51. S. Yanagisawa, K. Okuma, T. Inaoka, I. Hamada, Recent progress in predicting structural and
electronic properties of organic solids with the van der waals density functional. J. Electron
Spectros. Relat. Phenomena 204, 159 (2015). https://doi.org/10.1016/j.elspec.2015.04.007.
http://www.sciencedirect.com/science/article/pii/S0368204815000754

52. T. Rangel, K. Berland, S. Sharifzadeh, F. Brown-Altvater, K. Lee, P. Hyldgaard, L. Kronik,
J.B. Neaton, Structural and excited-state properties of oligoacene crystals from first princi-
ples. Phys. Rev. B 93(11), 115206 (2016)

53. R.B. Campbell, J.M. Robertson, J. Trotter, The crystal structure of hexacene, and a revision
of the crystallographic data for tetracene. Acta Cryst. 15, 289 (1962)

54. H. Yoshida, N. Sato, Grazing-incidence x-ray diffraction study of pentacene thin films with
the bulk phase structure. Appl. Phys. Lett. 89(10), 101919 (2006). https://doi.org/10.1063/1.
2349307

55. S. Schiefer, M. Huth, A. Dobrinevski, B. Nickel, Determination of the crystal structure of
substrate-induced pentacene polymorphs in fiber structured thin films. J. Am. Chem. Soc.
129(34), 10316 (2007). https://doi.org/10.1021/ja0730516

56. M. Watanabe, Y.J. Chang, S.W. Liu, T.H. Chao, K. Goto, M.M. Islam, C.H. Yuan, Y.T. Tao,
T. Shinmyozu, T.J. Chow, The synthesis, crystal structure and charge-transport properties of
hexacene. Nat. Chem. 4, 574 (2012). https://doi.org/10.1038/nchem.1381

57. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)
58. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and

semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996)
59. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave

method. Phys. Rev. B 59, 1758 (1999)
60. A.D. Becke, On the large-gradient behavior of the density functional exchange energy. J.

Chem. Phys. 85, 7184 (1986)
61. We used C_h and H_h for our vdW-DF calculations
62. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13,

5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188
63. F. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci.

U. S. A. 30(9), 244 (1944)
64. A.M. Reilly, A. Tkatchenko, Understanding the role of vibrations, exact exchange, and many-

body van der waals interactions in the cohesive properties of molecular crystals. J. Chem.
Phys. 139, 024705 (2013)

65. D.J. Carter, A.L. Rohl, Benchmarking calculated lattice parameters and energies of molecular
crystals using van der waals density functionals. J. Chem. Theory Comput. 10(8), 3423 (2014)

66. S.C. Capelli, A. Albinati, S.A. Mason, B.T.M. Willis, Molecular motion in crystalline
naphthalene: analysis of multi-temperature x-ray and neutron diffraction data. J. Phys. Chem.
A 110(41), 11695 (2006). https://doi.org/10.1021/jp062953a

67. S.L. Chaplot, N. Lehner, G.S. Pawley, The structure of anthracene-d10 at 16 K using
neutron diffraction. Acta Crystallogr. B 38(2), 483 (1982). https://doi.org/10.1107/
S0567740882003239

68. M.V. Roux, M. Temprado, J.S. Chickos, Y. Nagano, Critically evaluated thermochemical
properties of polycyclic aromatic hydrocarbons. J. Phys. Chem. Ref. Data 37(4), 1855 (2008).
https://doi.org/10.1063/1.2955570

69. A.D. Becke, E.R. Johnson, Exchange-hole dipole moment and the dispersion interaction
revisited. J. Chem. Phys. 127, 154108 (2007)

70. A.D. Becke, E.R. Johnson, A unified density-functional treatment of dynamical, nondynami-
cal, and dispersion correlations. J. Chem. Phys. 127, 124108 (2007)

71. N. Geacintov, M. Pope, Low-lying valence band states and intrinsic photoconductivity in
crystalline anthracene and tetracene. J. Chem. Phys. 50(2), 814 (1969)

72. C.L. Braun, G.M. Dobbs, Intrinsic photoconductivity in naphthalene single crystals. J. Chem.
Phys. 53(7), 2718 (1970)

https://doi.org/10.1016/j.elspec.2015.04.007
http://www.sciencedirect.com/science/article/pii/S0368204815000754
https://doi.org/10.1063/1.2349307
https://doi.org/10.1063/1.2349307
https://doi.org/10.1021/ja0730516
https://doi.org/10.1038/nchem.1381
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1021/jp062953a
https://doi.org/10.1107/S0567740882003239
https://doi.org/10.1107/S0567740882003239
https://doi.org/10.1063/1.2955570


4 Nanoscale First-Principles Electronic Structure Simulations of Materials. . . 127

73. H. Baessler, H. Killesreiter, Hot carrier injection into molecular crystals and its relevance to
the field dependence of photocurrents. Phys. Status Solidi B 53(1), 183 (1972)

74. H. Baessler, H. Killesreiter, Bandgap-determination from autoionization data in molecular
crystals. Mol. Cryst. Liq. Cryst. 24(1–2), 21 (1973)

75. A.I. Belkind, V.V. Grechov, Energy levels of polyacene crystals. Phys. Status Solidi A 26(1),
377 (1974)

76. L. Sebastian, G. Weiser, H. Bässler, Charge transfer transitions in solid tetracene and
pentacene studied by electroabsorption. Chem. Phys. 61, 125 (1981)

77. E.A. Silinsh, V.A. Kolesnikov, I.J. Muzikante, D.R. Balode, On charge carrier photogenera-
tion mechanisms in organic molecular crystals. Phys. Status Solidi B 113(1), 379 (1982)

78. L. Sebastian, G. Weiser, G. Peter, H. Bässler, Charge-transfer transitions in crystalline
anthracene and their role in photoconductivity. Chem. Phys. 75, 103 (1983)

79. Y. Isono, E. Morikawa, M. Kotani, Two-color pulsed photoconductivity study of naphthalene
single crystal: photoionization of singlet exciton. Chem. Phys. Lett. 125, 344 (1986)

80. H. Yoshida, K. Yamada, J. Tsutsumi, N. Sato, Complete description of ionization energy
and electron affinity in organic solids: determining contributions from electronic polarization,
energy band dispersion, and molecular orientation. Phys. Rev. B 92, 075145 (2015). https://
doi.org/10.1103/PhysRevB.92.075145

81. M.L.M. Rocco, M. Haeming, D.R. Batchelor, R. Fink, A. Schöll, E. Umbach, Electronic
relaxation effects in condensed polyacenes: a high-resolution photoemission study. J. Chem.
Phys. 129(7), 074702 (2008). https://doi.org/10.1063/1.2966356

82. M.M. Rieger, L. Steinbeck, I.D. White, H.N. Rojas, R.W. Godby, The GW space-time method
for the self-energy of large systems. Comput. Phys. Commun. 117, 211 (1999)

83. L. Steinbeck, A. Rubio, L. Reining, M. Torrent, I.D. White, R.W. Godby, Enhancements to
the GW space-time method. Comput. Phys. Commun. 125, 105 (2000)

84. C. Freysoldt, P. Eggert, P. Rinke, A. Schindlmayr, R.W. Godby, M. Scheffler, Dielectric
anisotropy in the GW space-time method. Comput. Phys. Commun. 176, 1 (2007)

85. N. Troullier, J.L. Martins, Efficient pseudopotentials for place-wave calculations. Phys. Rev.
B 43, 1993 (1991)

86. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys.
Rev. Lett. 77(18), 3865 (1996)

87. Y. Morikawa, H. Ishii, K. Seki, Theoretical study of n-alkane adsorption on metal surfaces.
Phys. Rev. B 69, 041403(R) (2004)

88. C. Faber, P. Boulanger, C. Attaccalite, I. Duchemin, X. Blase, Excited states properties of
organic molecules: from density functional theory to the GW and bethe–salpeter green’s
function formalisms. Phil. Trans. R. Soc. A 372(2011) (2014)

89. S. Körbel, P. Boulanger, I. Duchemin, X. Blase, M.A.L. Marques, S. Botti, Benchmark many-
body GW and bethe-salpeter calculations for small transition metal molecules. J. Chem.
Theory Comput. 10(9), 3934 (2014)

90. C. Rostgaard, K.W. Jacobsen, K.S. Thygesen, Fully self-consistent GW calculations for
molecules. Phys. Rev. B 81, 085103 (2010)

91. X. Blase, C. Attaccalite, V. Olevano, First-principles GW calculations for fullerenes, por-
phyrins, phtalocyanine, and other molecules of interest for organic photovoltaic applications.
Phys. Rev. B 83, 115103 (2011)

92. S. Sharifzadeh, A. Biller, L. Kronik, J.B. Neaton, Quasiparticle and optical spectroscopy
of the organic semiconductors pentacene and ptcda from first principles. Phys. Rev. B 85,
125307 (2012)

93. F. Caruso, P. Rinke, X. Ren, M. Scheffler, A. Rubio, Unified description of ground and excited
states of finite systems: the self-consistent GW approach. Phys. Rev. B 86, 081102 (2012)

94. F. Bruneval, M.A.L. Marques, Benchmarking the starting points of the GW approximation
for molecules. J. Chem. Theory Comput. 9(1), 324 (2013)

95. M. Govoni, G. Galli, Large scale GW calculations. J. Chem. Theory Comput. 11(6), 2680
(2015)

https://doi.org/10.1103/PhysRevB.92.075145
https://doi.org/10.1103/PhysRevB.92.075145
https://doi.org/10.1063/1.2966356


128 S. Yanagisawa and I. Hamada

96. W. Luo, S. Ismail-Beigi, M.L. Cohen, S.G. Louie, Quasiparticle band structure of zns and
znse. Phys. Rev. B 66, 195215 (2002)

97. W. Setyawan, S. Curtarolo, High-throughput electronic band structure calculations: chal-
lenges and tools. Comput. Mater. Sci. 49, 299 (2010)

98. S. Yanagisawa, Y. Morikawa, A. Schindlmayr, Homo band dispersion of crystalline rubrene:
effects of self-energy corrections within the GW approximation. Phys. Rev. B 88, 115438
(2013)

99. S. Yanagisawa, Y. Morikawa, A. Schindlmayr, Theoretical investigation of the band structure
of picene single crystals within the GW approximation. Jpn. J. Appl. Phys. 53, 05FY02 (2014)

100. E.L. Shirley, Many-body effects on bandwidths in ionic, noble gas, and molecular solids.
Phys. Rev. B 58, 9579 (1998)

101. E. Kwon, H. Oikawa, H. Kasai, H. Nakanishi, A fabrication method of organic nanocrystals
using stabilizer-free emulsion. Cryst. Growth Des. 7(4), 600 (2007)

102. N. Ueno, S. Kera, Electron spectroscopy of functional organic thin films: deep insights into
valence electronic structure in relation to charge transport property. Prog. Surf. Sci. 83(10–
12), 490 (2008)

103. S. Ciuchi, R.C. Hatch, H. Höchst, C. Faber, X. Blase, S. Fratini, Molecular fingerprints in the
electronic properties of crystalline organic semiconductors: from experiments to theory. Phys.
Rev. Lett. 108, 256401 (2012)

104. K.H. Frank, P. Yannoulis, R. Dudde, E.E. Koch, Unoccupied molecular orbitals of aromatic
hydrocarbons adsorbed on ag(111). J. Chem. Phys. 89(12), 7569 (1988). https://doi.org/10.
1063/1.455720

105. Y. Li, V. Coropceanu, J.L. Brédas, Thermal narrowing of the electronic bandwidths in organic
molecular semiconductors: impact of the crystal thermal expansion. J. Phys. Chem. Lett.
3(22), 3325 (2012). https://doi.org/10.1021/jz301575u

106. Y.C. Cheng, R.J. Silbey, D.A. da Silva Filho, J.P. Calbert, J. Cornil, J.L. Brédas, Three-
dimensional band structure and bandlike mobility in oligoacene single crystals: a theoretical
investigation. J. Chem. Phys. 118(8), 3764 (2003)

107. G.A. de Wijs, C.C. Mattheus, R.A. de Groot, T.T. Palstra, Anisotropy of the mobility of
pentacene from frustration. Synth. Met. 139(1), 109 (2003)

108. H. Yoshida, N. Sato, Crystallographic and electronic structures of three different polymorphs
of pentacene. Phys. Rev. B 77, 235205 (2008)

109. D.A. da Silva Filho, E.G. Kim, J.L. Brédas, Transport properties in the rubrene crystal:
electronic coupling and vibrational reorganization energy. Adv. Mater. 17, 1072 (2005)

110. S.Y. Quek, M. Kamenetska, M.L. Steigerwald, H.J. Choi, S.G. Louie, M.S. Hybertsen, J.B.
Neaton, L. Venkataraman, Mechanically controlled binary conductance switching of a single-
molecule junction. Nat. Nanotechnol. 4, 230 EP (2009). https://doi.org/10.1038/nnano.2009.
10

111. J.C. Inkson, Many-body effect at metal-semiconductor junctions. II. The self energy and band
structure distortion. J. Phys. C Solid State Phys. 6(8), 1350 (1973). http://stacks.iop.org/0022-
3719/6/i=8/a=004

112. J.B. Neaton, M.S. Hybertsen, S.G. Louie, Renormalization of molecular electronic levels
at metal-molecule interfaces. Phys. Rev. Lett. 97, 216405 (2006). https://doi.org/10.1103/
PhysRevLett.97.216405

113. J.M. Garcia-Lastra, C. Rostgaard, A. Rubio, K.S. Thygesen, Polarization-induced renormal-
ization of molecular levels at metallic and semiconducting surfaces. Phys. Rev. B 80(24),
245427 (2009). https://doi.org/10.1103/PhysRevB.80.245427

114. Y. Chen, I. Tamblyn, S.Y. Quek, Energy level alignment at hybridized organic–metal
interfaces: the role of many-electron effects. J. Phys. Chem. C 121(24), 13125 (2017). https://
doi.org/10.1021/acs.jpcc.7b00715

115. I. Tamblyn, P. Darancet, S.Y. Quek, S.A. Bonev, J.B. Neaton, Electronic energy level
alignment at metal-molecule interfaces with a GW approach. Phys. Rev. B 84(20), 201402
(2011). https://doi.org/10.1103/PhysRevB.84.201402

https://doi.org/10.1063/1.455720
https://doi.org/10.1063/1.455720
https://doi.org/10.1021/jz301575u
https://doi.org/10.1038/nnano.2009.10
https://doi.org/10.1038/nnano.2009.10
http://stacks.iop.org/0022-3719/6/i=8/a=004
http://stacks.iop.org/0022-3719/6/i=8/a=004
https://doi.org/10.1103/PhysRevLett.97.216405
https://doi.org/10.1103/PhysRevLett.97.216405
https://doi.org/10.1103/PhysRevB.80.245427
https://doi.org/10.1021/acs.jpcc.7b00715
https://doi.org/10.1021/acs.jpcc.7b00715
https://doi.org/10.1103/PhysRevB.84.201402


4 Nanoscale First-Principles Electronic Structure Simulations of Materials. . . 129

116. S.Y. Quek, L. Venkataraman, H.J. Choi, S.G. Louie, M.S. Hybertsen, J.B. Neaton, Amine-
gold linked single-molecule circuits: experiment and theory. Nano Lett. 7(11), 3477 (2007).
https://doi.org/10.1021/nl072058i

117. D.A. Egger, Z.F. Liu, J.B. Neaton, L. Kronik, Reliable energy level alignment at physisorbed
molecule–metal interfaces from density functional theory. Nano Lett. 15(4), 2448 (2015).
https://doi.org/10.1021/nl504863r

118. L. Kronik, T. Stein, S. Refaely-Abramson, R. Baer, Excitation gaps of finite-sized systems
from optimally tuned range-separated hybrid functionals. J. Chem. Theory Comput. 8(5),
1515 (2012). https://doi.org/10.1021/ct2009363

119. R. Baer, E. Livshits, U. Salzner, Tuned range-separated hybrids in density functional theory.
Annu. Rev. Phys. Chem. 61(1), 85 (2010). https://doi.org/10.1146/annurev.physchem.012809.
103321

120. Z.F. Liu, D.A. Egger, S. Refaely-Abramson, L. Kronik, J.B. Neaton, Energy level alignment
at molecule-metal interfaces from an optimally tuned range-separated hybrid functional. J.
Chem. Phys. 146(9), 092326 (2017). https://doi.org/10.1063/1.4975321

121. P.M. Echenique, J.B. Pendry, The existence and detection of Rydberg states at surfaces. J.
Phys. C Solid State Phys. 11(10), 2065 (1978). http://stacks.iop.org/0022-3719/11/i=10/a=
017

122. P.M. Echenique, J.B. Pendry, Theory of image states at metal surfaces. Prog. Surf. Sci.
32(2), 111 (1989). https://doi.org/10.1016/0079-6816(89)90015-4. http://www.sciencedirect.
com/science/article/pii/0079681689900154

123. I.R. Collins, P.T. Andrews, A.R. Law, Unoccupied electronic states of single-crystal graphite
by angle-resolved ultraviolet inverse photoemission. Phys. Rev. B 38, 13348 (1988). https://
doi.org/10.1103/PhysRevB.38.13348

124. J. Lehmann, M. Merschdorf, A. Thon, S. Voll, W. Pfeiffer, Properties and dynamics of the
image potential states on graphite investigated by multiphoton photoemission spectroscopy.
Phys. Rev. B 60(24), 17037 (1999). https://doi.org/10.1103/PhysRevB.60.17037

125. M. Zamkov, N. Woody, S. Bing, H.S. Chakraborty, Z. Chang, U. Thumm, P. Richard, Time-
resolved photoimaging of image-potential states in carbon nanotubes. Phys. Rev. Lett. 93,
156803 (2004). https://doi.org/10.1103/PhysRevLett.93.156803

126. M. Feng, J. Zhao, H. Petek, Atomlike, hollow-core–bound molecular orbitals of c60. Science
320(5874), 359 (2008). https://doi.org/10.1126/science.1155866. http://science.sciencemag.
org/content/320/5874/359

127. J. Zhao, M. Feng, J. Yang, H. Petek, The superatom states of fullerenes and their hybridization
into the nearly free electron bands of fullerites. ACS Nano 3(4), 853 (2009). https://doi.org/
10.1021/nn800834k

128. V.M. Silkin, J. Zhao, F. Guinea, E.V. Chulkov, P.M. Echenique, H. Petek, Image potential
states in graphene. Phys. Rev. B 80(12), 121408 (2009). https://doi.org/10.1103/PhysRevB.
80.121408

129. M. Posternak, A. Baldereschi, A.J. Freeman, E. Wimmer, Prediction of electronic surface
states in layered materials: graphite. Phys. Rev. Lett. 52, 863 (1984). https://doi.org/10.1103/
PhysRevLett.52.863

130. N.A.W. Holzwarth, S.G. Louie, S. Rabii, X-ray form factors and the electronic structure of
graphite. Phys. Rev. B 26, 5382 (1982). https://doi.org/10.1103/PhysRevB.26.5382

131. T. Fauster, F.J. Himpsel, J.E. Fischer, E.W. Plummer, Three-dimensional energy band in
graphite and lithium-intercalated graphite. Phys. Rev. Lett. 51, 430 (1983). https://doi.org/
10.1103/PhysRevLett.51.430

132. S. Bose, V.M. Silkin, R. Ohmann, I. Brihuega, L. Vitali, C.H. Michaelis, P. Mallet, J.Y.
Veuillen, M.A. Schneider, E.V. Chulkov, P.M. Echenique, K. Kern, Image potential states
as a quantum probe of graphene interfaces. New J. Phys. 12(2), 023028 (2010)

133. I.D. White, R.W. Godby, M.M. Rieger, R.J. Needs, Dynamic image potential at an al(111)
surface. Phys. Rev. Lett. 80, 4265 (1998). https://doi.org/10.1103/PhysRevLett.80.4265

134. I. Hamada, Y. Hamamoto, Y. Morikawa, Image potential states from the van der waals density
functional. J. Chem. Phys. 147(4), 044708 (2017). https://doi.org/10.1063/1.4995441

https://doi.org/10.1021/nl072058i
https://doi.org/10.1021/nl504863r
https://doi.org/10.1021/ct2009363
https://doi.org/10.1146/annurev.physchem.012809.103321
https://doi.org/10.1146/annurev.physchem.012809.103321
https://doi.org/10.1063/1.4975321
http://stacks.iop.org/0022-3719/11/i=10/a=017
http://stacks.iop.org/0022-3719/11/i=10/a=017
https://doi.org/10.1016/0079-6816(89)90015-4
http://www.sciencedirect.com/science/article/pii/0079681689900154
http://www.sciencedirect.com/science/article/pii/0079681689900154
https://doi.org/10.1103/PhysRevB.38.13348
https://doi.org/10.1103/PhysRevB.38.13348
https://doi.org/10.1103/PhysRevB.60.17037
https://doi.org/10.1103/PhysRevLett.93.156803
https://doi.org/10.1126/science.1155866
http://science.sciencemag.org/content/320/5874/359
http://science.sciencemag.org/content/320/5874/359
https://doi.org/10.1021/nn800834k
https://doi.org/10.1021/nn800834k
https://doi.org/10.1103/PhysRevB.80.121408
https://doi.org/10.1103/PhysRevB.80.121408
https://doi.org/10.1103/PhysRevLett.52.863
https://doi.org/10.1103/PhysRevLett.52.863
https://doi.org/10.1103/PhysRevB.26.5382
https://doi.org/10.1103/PhysRevLett.51.430
https://doi.org/10.1103/PhysRevLett.51.430
https://doi.org/10.1103/PhysRevLett.80.4265
https://doi.org/10.1063/1.4995441


130 S. Yanagisawa and I. Hamada

135. O. Leenaerts, B. Partoens, F.M. Peeters, A. Volodin, C.V. Haesendonck, The work function
of few-layer graphene. J. Phys. Condens. Matter 29(3), 035003 (2017). http://stacks.iop.org/
0953-8984/29/i=3/a=035003

136. I. Hamada, S. Yanagisawa, Pseudopotential approximation in van der waals density functional
calculations. Phys. Rev. B 84, 153104 (2011). https://doi.org/10.1103/PhysRevB.84.153104

137. N. Ferri, A. Ambrosetti, A. Tkatchenko, Electronic charge rearrangement at metal/organic
interfaces induced by weak van der waals interactions. Phys. Rev. Mater. 1, 026003 (2017).
https://doi.org/10.1103/PhysRevMaterials.1.026003

138. N. Ferri, R.A. DiStasio, A. Ambrosetti, R. Car, A. Tkatchenko, Electronic properties of
molecules and surfaces with a self-consistent interatomic van der waals density functional.
Phys. Rev. Lett. 114, 176802 (2015). https://doi.org/10.1103/PhysRevLett.114.176802

139. M. Shibuta, N. Hirata, T. Eguchi, A. Nakajima, Probing of an adsorbate-specific excited state
on an organic insulating surface by two-photon photoemission spectroscopy. J. Am. Chem.
Soc. 136(5), 1825 (2014)

140. M. Shibuta, N. Hirata, R. Matsui, M. Nakaya, T. Eguchi, A. Nakajima, Excitation and relax-
ation dynamics of two-dimensional photoexcited electrons on alkanethiolate self-assembled
monolayers. J. Phys. Chem. C 119(40), 22945 (2015)

141. M. Shibuta, N. Hirata, T. Eguchi, A. Nakajima, Photoexcited state confinement in two-
dimensional crystalline anthracene monolayer at room temperature. ACS Nano 11(4), 4307
(2017)

142. T. Yamada, M. Shibuta, Y. Ami, Y. Takano, A. Nonaka, K. Miyakubo, T. Munakata, Novel
growth of naphthalene overlayer on Cu(111) studied by STM, LEED, and 2PPE. J. Phys.
Chem. C 114(31), 13334 (2010)

143. C. Bondi, P. Baglioni, G. Taddei, Structure of the monolayers of aromatic molecules adsorbed
on graphite. Chem. Phys. 96(2), 277 (1985). https://doi.org/10.1016/0301-0104(85)85091-6.
http://www.sciencedirect.com/science/article/pii/0301010485850916

144. U. Bardi, S. Magnanelli, G. Rovida, Leed study of benzene and naphthalene monolayers
adsorbed on the basal plane of graphite. Langmuir 3(2), 159 (1987). https://doi.org/10.1021/
la00074a003

145. T. Yamada, Y. Takano, M. Isobe, K. Miyakubo, T. Munakata, Growth and adsorption
geometry of naphthalene overlayers on HOPG studied by low-temperature scanning tunneling
microscopy. Chem. Phys. Lett. 546, 136 (2012). https://doi.org/10.1016/j.cplett.2012.08.011.
http://www.sciencedirect.com/science/article/pii/S0009261412009128

146. F. Sojka, M. Meissner, T. Yamada, T. Munakata, R. Forker, T. Fritz, Naphthalene’s six shades
on graphite: a detailed study on the polymorphism of an apparently simple system. J. Phys.
Chem. C 120(40), 22972 (2016). https://doi.org/10.1021/acs.jpcc.6b06702

147. S. Okada, Y. Enomoto, K. Shiraishi, A. Oshiyama, New electron states that float on
semiconductor and metal surfaces. Surf. Sci. 585(3), L177 (2005)

148. M. Kutschera, M. Weinelt, M. Rohlfing, T. Fauster, Image-potential-induced surface state at
si (100). Appl. Phys. A 88(3), 519 (2007)

149. M. Rohlfing, N.P. Wang, P. Krüger, J. Pollmann, Image states and excitons at insulator
surfaces with negative electron affinity. Phys. Rev. Lett. 91(25), 256802 (2003)

150. B. Baumeier, P. Krüger, J. Pollmann, Bulk and surface electronic structures of alkaline-earth
metal oxides: bound surface and image-potential states from first principles. Phys. Rev. B
76(20), 205404 (2007)

151. S. Saito, A. Oshiyama, Cohesive mechanism and energy bands of solid c60. Phys. Rev. Lett.
66, 2637 (1991). https://doi.org/10.1103/PhysRevLett.66.2637

152. S. Okada, A. Oshiyama, S. Saito, Nearly free electron states in carbon nanotube bundles.
Phys. Rev. B 62, 7634 (2000). https://doi.org/10.1103/PhysRevB.62.7634

153. S. Okada, S. Saito, A. Oshiyama, Energetics and electronic structures of encapsulated C60 in
a carbon nanotube. Phys. Rev. Lett. 86, 3835 (2001). https://doi.org/10.1103/PhysRevLett.86.
3835

154. T. Miyake, S. Saito, Electronic structure of potassium-doped carbon nanotubes. Phys. Rev. B
65, 165419 (2002). https://doi.org/10.1103/PhysRevB.65.165419

http://stacks.iop.org/0953-8984/29/i=3/a=035003
http://stacks.iop.org/0953-8984/29/i=3/a=035003
https://doi.org/10.1103/PhysRevB.84.153104
https://doi.org/10.1103/PhysRevMaterials.1.026003
https://doi.org/10.1103/PhysRevLett.114.176802
https://doi.org/10.1016/0301-0104(85)85091-6
http://www.sciencedirect.com/science/article/pii/0301010485850916
https://doi.org/10.1021/la00074a003
https://doi.org/10.1021/la00074a003
https://doi.org/10.1016/j.cplett.2012.08.011
http://www.sciencedirect.com/science/article/pii/S0009261412009128
https://doi.org/10.1021/acs.jpcc.6b06702
https://doi.org/10.1103/PhysRevLett.66.2637
https://doi.org/10.1103/PhysRevB.62.7634
https://doi.org/10.1103/PhysRevLett.86.3835
https://doi.org/10.1103/PhysRevLett.86.3835
https://doi.org/10.1103/PhysRevB.65.165419


4 Nanoscale First-Principles Electronic Structure Simulations of Materials. . . 131

155. T. Miyake, S. Saito, Quasiparticle band structure of carbon nanotubes. Phys. Rev. B 68(15),
155424 (2003)

156. E.R. Margine, V.H. Crespi, Universal behavior of nearly free electron states in carbon
nanotubes. Phys. Rev. Lett. 96, 196803 (2006). https://doi.org/10.1103/PhysRevLett.96.
196803

157. S. Hu, J. Zhao, Y. Jin, J. Yang, H. Petek, J. Hou, Nearly free electron superatom states of
carbon and boron nitride nanotubes. Nano Lett. 10(12), 4830 (2010)

158. N. Sato, K. Seki, H. Inokuchi, Polarization energies of organic solids determined by
ultraviolet photoelectron spectroscopy. J. Chem. Soc. Faraday Trans. 2, 1621 (1981)

159. S. Refaely-Abramson, S. Sharifzadeh, M. Jain, R. Baer, J.B. Neaton, L. Kronik, Gap
renormalization of molecular crystals from density-functional theory. Phys. Rev. B 88,
081204 (2013). https://doi.org/10.1103/PhysRevB.88.081204

160. J.E. Norton, J.L. Brédas, Polarization energies in oligoacene semiconductor crystals. J. Am.
Chem. Soc. 130(37), 12377 (2008). https://doi.org/10.1021/ja8017797. PMID: 18715006

161. P.K. Nayak, N. Periasamy, Calculation of electron affinity, ionization potential, transport gap,
optical band gap and exciton binding energy of organic solids using ‘solvation’ model and
DFT. Org. Electron. 10(7), 1396 (2009). https://doi.org/10.1016/j.orgel.2009.06.011. http://
www.sciencedirect.com/science/article/pii/S1566119909001815

162. N. Sato, H. Inokuchi, E.A. Silinsh, Reevaluation of electronic polarization energies in
organic molecular crystals. Chem. Phys. 115(2), 269 (1987). https://doi.org/10.1016/0301-
0104(87)80041-1. http://www.sciencedirect.com/science/article/pii/0301010487800411

163. W. Kohn, Density functional and density matrix method scaling linearly with the number of
atoms. Phys. Rev. Lett. 76, 3168 (1996). https://doi.org/10.1103/PhysRevLett.76.3168

164. D. Deutsch, A. Natan, Y. Shapira, L. Kronik, Electrostatic properties of adsorbed polar
molecules: opposite behavior of a single molecule and a molecular monolayer. J. Am. Chem.
Soc. 129(10), 2989 (2007)

165. B.J. Topham, Z.G. Soos, Ionization in organic thin films: electrostatic potential, electronic
polarization, and dopants in pentacene films. Phys. Rev. B 84, 165405 (2011). https://doi.org/
10.1103/PhysRevB.84.165405

166. E.V. Tsiper, Z.G. Soos, Charge redistribution and polarization energy of organic molecular
crystals. Phys. Rev. B 64, 195124 (2001). https://doi.org/10.1103/PhysRevB.64.195124

167. J. Li, G. D’Avino, I. Duchemin, D. Beljonne, X. Blase, Accurate description of charged
excitations in molecular solids from embedded many-body perturbation theory. Phys. Rev.
B 97, 035108 (2018). https://doi.org/10.1103/PhysRevB.97.035108

168. W.G. Aulbur, L. Jönsson, J.W. Wilkins, in Quasiparticle Calculations in Solids, ed. by
H. Ehrenreich, F. Spaepen. Solid State Physics, vol. 54 (Academic, 2000), pp. 1–218. https://
doi.org/10.1016/S0081-1947(08)60248-9. http://www.sciencedirect.com/science/article/pii/
S0081194708602489

169. I.D. White, R.W. Godby, M.M. Rieger, R.J. Needs, Dynamic image potential at an al(111)
surface. Phys. Rev. Lett. 80(19), 4265 (1998). https://doi.org/10.1103/PhysRevLett.80.4265

170. H. Yoshida, Near-ultraviolet inverse photoemission spectroscopy using ultra-low energy
electrons. Chem. Phys. Lett. 539–540, 180 (2012). https://doi.org/10.1016/j.cplett.2012.04.
058. http://www.sciencedirect.com/science/article/pii/S000926141200557X

171. H. Yoshida, Measuring the electron affinity of organic solids: an indispensable new tool
for organic electronics. Anal. Bioanal. Chem. 406(9), 2231 (2014). https://doi.org/10.1007/
s00216-014-7659-1

172. H. Yoshida, Principle and application of low energy inverse photoemission spectroscopy: a
new method for measuring unoccupied states of organic semiconductors. J. Electron Spectros.
Relat. Phenomena 204, 116 (2015). https://doi.org/10.1016/j.elspec.2015.07.003. http://www.
sciencedirect.com/science/article/pii/S0368204815001486

https://doi.org/10.1103/PhysRevLett.96.196803
https://doi.org/10.1103/PhysRevLett.96.196803
https://doi.org/10.1103/PhysRevB.88.081204
https://doi.org/10.1021/ja8017797
https://doi.org/10.1016/j.orgel.2009.06.011
http://www.sciencedirect.com/science/article/pii/S1566119909001815
http://www.sciencedirect.com/science/article/pii/S1566119909001815
https://doi.org/10.1016/0301-0104(87)80041-1
https://doi.org/10.1016/0301-0104(87)80041-1
http://www.sciencedirect.com/science/article/pii/0301010487800411
https://doi.org/10.1103/PhysRevLett.76.3168
https://doi.org/10.1103/PhysRevB.84.165405
https://doi.org/10.1103/PhysRevB.84.165405
https://doi.org/10.1103/PhysRevB.64.195124
https://doi.org/10.1103/PhysRevB.97.035108
https://doi.org/10.1016/S0081-1947(08)60248-9
https://doi.org/10.1016/S0081-1947(08)60248-9
http://www.sciencedirect.com/science/article/pii/S0081194708602489
http://www.sciencedirect.com/science/article/pii/S0081194708602489
https://doi.org/10.1103/PhysRevLett.80.4265
https://doi.org/10.1016/j.cplett.2012.04.058
https://doi.org/10.1016/j.cplett.2012.04.058
http://www.sciencedirect.com/science/article/pii/S000926141200557X
https://doi.org/10.1007/s00216-014-7659-1
https://doi.org/10.1007/s00216-014-7659-1
https://doi.org/10.1016/j.elspec.2015.07.003
http://www.sciencedirect.com/science/article/pii/S0368204815001486
http://www.sciencedirect.com/science/article/pii/S0368204815001486


Part III
Interplay Between Computational

and Experimental Approaches



Chapter 5
Enabling Materials By Dimensionality:
From 0D to 3D Carbon-Based
Nanostructures

Simone Taioli

Abstract This chapter is aimed at analysing the influence that dimensional scaling
exerts on the electronic, optical, transport and mechanical properties of materials
using both experiments and computer simulations. In particular, to climb the
“dimensional ladder” from 0D to 3D, we analyse a specific set of all-carbon
allotropes, making the best use of the versatility of this element to combine in
different bonding schemes, such as sp2 and sp3, resulting in architectures as
diverse as fullerenes, nanotubes, graphene, and diamond. Owing to the central
role of carbon in future emerging technologies, we will discuss a variety of
physical observables to show how novel characteristics emerge by increasing or
decreasing the dimensional space in which particles can move, ranging from the
charge transport in semiconductor (diamond) and semimetallic (graphite) samples
to the stress-strain characteristics of several 2D carbon-based materials, to the gas
absorption and selectivity in pillared structures and to the thermal diffusion in
foams. In this respect, our analysis uses ab initio, multiscale and Monte Carlo (MC)
methods to deal with the complexity of physical phenomena at different scales. In
particular, the response of the systems to external electromagnetic fields is described
using the effective dielectric model of the plasma losses within a Monte Carlo
framework, while pressure fields are dealt with the ab initio simulation of the stress-
strain relationships. Moreover, in this chapter we present recent theoretical and
experimental investigations aimed at producing graphene and other carbon-based
materials using supersonic molecular beam epitaxy on inorganic surfaces, starting
from fullerene precursors. We mostly focus on the computational techniques used
to model various stages of the process on multiple length and time scales, from
the breaking of the fullerene cage upon impact to the rearrangement of atoms on
the metal surface used to catalyse graphene formation. The insights obtained by
our computational modelling of the impact and of the following chemical-physical
processes underlying the materials growth have been successfully used to set up an
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experimental procedure that ended up in the production of graphene flakes by C60
impact on copper surfaces.

Keywords Dimensionality · Carbon-based materials ·
Optical, electronic, andmechanicalproperties ·
Multiscalesimulations, synthesis, characterization

5.1 Introduction: The Course of Dimensionality

Dimensionality affects dramatically the physical properties of materials owing to the
different way that Coulomb repulsion acts upon the electrons in three-dimensional
(3D), two-dimensional (2D), one-dimensional (1D), and molecular (0D) structures.
Indeed, the presence of constraints on the particle’s motion in one or more degrees
of freedom leads to remarkable consequences, such as quantum confinement,
anisotropic characteristics and new phases. These effects can completely modify
the properties that low-dimensional physical systems exhibit with respect to their
bulk counterparts.

Additionally, quantum objects do interfere with one another, so that the quantum
state of a many-body system is the result of the interaction between its constituent
particles. This many-body potential depends on dimensionality and confinement
and thus is much more than the simple sum of the interaction between its building
blocks. This concept was masterly described by Philip W. Anderson in his article
“More is different” [1], where he argues that “the behaviour of large and complex
aggregations of elementary particles, it turns out, is not to be understood in terms
of a simple extrapolation of the properties of a few particles. Instead at each level
of complexity entirely new properties appear. . . ”. In this regard, for example, while
at angstrom scale it is hard to differentiate between 0D point-like atomic species,
such as tantalum or niobium, at 3D macroscale the former is a lustrous transition
metal, and the latter undergoes a phase transition to a BCS-type II superconductor
at 9.26 K. This means that at the time we reach the microscale, electrons of Nb pair
up in Cooper pairs and condensate, transforming the material in a superconductor
characterized by zero-resistance conductivity.

While intuitively one may think that increasing the number of degrees of freedom
generally results in higher levels of complexity, at odds in physics and chemistry,
the curse of dimensionality can act in one or another direction. In this book chapter,
we will analyse quite a few examples of this “unconventional” scaling.

For instance, a relative simple approach to describe magnetic materials is
provided by the Ising model [2]. This simplified mathematical model of solids
represents real systems as made of atomic spins interacting with their neighbours on
a lattice and can be used to identify phase transitions. According to the traditional
solutions, there is no magnetization in the one-dimensional Ising model in the
absence of external magnetic fields, while the two-dimensional square lattice is the
simplest statistical problem to show a phase transition. In this respect, while the
one-dimensional Ising lattice represents a relatively simple toy model in statistical
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mechanics to be solved, the two-dimensional one is highly nontrivial. To date
furthermore, the three- or higher-dimensional Ising problems remain unsolved
although there exist different approaches related to quantum field theory to tackle
this issue.

In more realistic systems, one needs to look no further than studies of the 2D
electron gas in semiconductor heterostructures [3] or to the rich physics of graphene
[4] and of layered hybrid materials [5] to find examples of remarkable as well often
unexpected behaviour of low-dimensional systems. Indeed monolayers, which can
be obtained by mechanical exfoliation of bulk crystals, have generally distinctive
properties from their bulk counterpart. For example, while bulk MoS2 in the 2H
phase is an indirect band gap semiconductor, MoS2 monolayer shows a direct band
gap.

Moreover, the synthesis of stable cylindrical shapes in several material families,
such as nanotubes and nanowires [6], has driven the discovery of completely
novel extraordinary thermal, mechanical and electrical properties. Owing to their
monodimensional shape, nanotubes and nanowires can be easily integrated in
nanoscale devices and used efficiently in electron charge transport and optical exci-
tations with potential applications in nanoelectronics, in composites and functional
nanomaterials to enhance their mechanical properties, as well as drug delivers or in
photodynamic therapy for cancer cure [7]. Carbon nanotubes in particular [8], owing
to the material’s exceptional strength and stiffness, have been synthesized with a
length-to-diameter ratio of up to 132 ×106 : 1 [9]. Their electronic and optical
properties are determined by the tube’s chirality, which is a feature emerging from
the 1D geometry inducing an exceptionally high excitonic binding energy [10–12].

By further miniaturizing a device, so to obtain quantum dots (0D) [13], one
can observe several phenomena such as the Coulomb blockade due to the strong
Coulomb repulsion in charge confinement and the electron tunneling which led
to the concept of single-electron transistors [14]. Quantum dots have also been
suggested as a possible mean of implementations of qubits for quantum information
processing [15].

Another feature of low-dimensional systems is to show energetically discrete
molecular-like bands due to confinement and, thus, a sharper density of states
(DOS) with respect to higher-dimensional structures. In particular, they exhibit DOS
singularities, thus having the potential for superior transport and optical properties
with respect to their higher-dimensional counterparts [16]. For example, we sketch
the typical DOS of 0D (dots), 1D (wires), 2D (wells) and 3D crystals in left panel of
Fig. 5.1, where spikes emerge in the spectrum descending the dimensional ladder.

The fingerprint of dimensionality can be also found in the optical properties
of solids. In particular, limiting the discussion to the interband transitions in a
semiconductor at zero temperature, a radiation field impinging on a crystal can be
absorbed at energies equal to the difference between valence and conduction bands,
whereby an electron is excited to a higher energetic level with respect to its ground
state. This information is encoded in the energy-dependent absorption coefficient,
which in turn is proportional to the imaginary part of the energy-dependent dielectric
function ε(ω) [17]:
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Fig. 5.1 Left panel: bulk 3D material (purple) shows typically continuous DOS, while 1D wires
(blue) show van Hove singularities. Right panel: imaginary part of the graphite dielectric function
vs. energy (eV) for different momentum transfer q (Å−1) along the �L direction, obtained from
ab initio simulations. (Reprinted from Ref. [18], Copyright 2017, with permission from Elsevier)

α(ω) = ω

nc
(ε) (5.1)

where n is the ordinary refraction index and c is the speed of light in vacuum.
The dielectric function is thus a fundamental quantity connecting microscopic
observables, such as the band structure of the solid, with macroscopic features,
such as the optical properties. The dielectric function is in particular related to the
transition probability between a couple of valence and conduction bands, which is
proportional to the joint density of states (JDOS) for slowly varying dipole matrix
elements [17]. The JDOS provides a measure of the number of allowed optical
transitions between the occupied valence and the unoccupied conduction bands
separated by photon energy h̄ω. This is why the JDOS is usually related to the
energy-dependent absorption coefficient of Eq. 5.1. Thus, while the DOS counts the
number of electronic states at a given energy, the JDOS encloses information on the
optical properties, and it is defined as the convolution of the valence and conduction
band DOS which are linked by optical transitions. In 3D crystals the JDOS shows
four different critical points (maximum, minimum and two saddle points), which
tend to have square root singularities. The JDOS in 1D is not a continuous function
of energy but presents sharp discontinuous spikes in contrast to three-dimensional
materials, showing singularities near the critical points with a behaviour equal to
the square root inverse of the energy. At odds, in the two-dimensional case, one
identifies three critical points of the JDOS (maximum, minimum and one saddle
point), and at the saddle point, the latter is logarithmically divergent, so more easily
detectable in experiments where of course these divergences are smoothed out by
the electron-electron interactions. In the right panel of Fig. 5.1, we report the optical
excitation spectrum for different transferred momenta (proportional to (ε) as by
Eq. 5.1) of graphite, which is a quasi-2D materials, where the van Hove singularities
are clearly visible.

Dimensionality leaves its signature also in several other observables, such as in
plasmon excitations and in the quantum Hall effect in low-dimensional systems.
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The former represents a tool for coupling and transferring energy. This mechanism
depends on the dimensional scale. Indeed, contrary to ordinary surface plasmons
of bulk materials, in low-dimensional structures, plasmon dispersion goes to zero
in the long wavelength limit, covering an energy range from terahertz to near
infrared. Moreover, in layered materials their in-plane dispersion, such as in the
case of transition metal dichalcogenides, can show a negative in-plane plasmon
dispersion [19]. Quantum Hall effect in low-dimensional materials, e.g. in graphene,
is different from the spin Hall effect found in 3D systems, as it leads to a phase which
is topologically distinct from a band insulator [20].

So far, according to the abovementioned Anderson’s conjecture, we have shown
examples in which the dependence on dimensionality of the particle-particle
correlation plays a crucial role. Nevertheless, in some occasions a dimensional
change can be enough to modify dramatically the behaviour of physical systems,
despite correlation among constituents is switched off.

For example, let us analyse the effect that a dimensional change has on the
electronic properties of a system of free (noninteracting) electrons. This model,
which is called Fermi gas, is appropriate to study the conduction in simple systems,
such as alkali and noble metals, even though rigorously the electron motion is also
influenced by the periodic potential created by the ions in the lattice. By solving the
Schrödinger equation for one electron in a box of edge L where periodic boundary

conditions are introduced, a set of discrete energy levels En = h̄2

2m
(

2πnx,y,z

L
)2 =

h̄2

2m
(kx,y,z)

2 emerge, where nx,y,z is an integer number, m is the electron mass, h̄

is the reduced Plank constant, and kx,y,z is the corresponding wavevector along the
three Cartesian directions x, y, z. By neglecting the electron-electron interactions,
we can build up the N -electron ground state of the system by accommodating the
charges into the allowed one-electron levels starting from the bottom, provided that
the same state cannot be occupied by more than two electrons, one with spin up and
one with spin down orientation. Indeed, electrons are fermions, following the Fermi-
Dirac statistics, and obey the Pauli’s exclusion principle. The occupied orbitals are

represented by a point in the k-space inside a sphere of radius kF =
√

2mεF/h̄2,
which is the highest momentum an electron can have within the box. εF is the
Fermi energy, which defines the so-called Fermi sphere, within which all occupied
one-electron levels lay. The number of electronic states per unit energy range
(DOS, D(ε)) in the solid is a quantum observable: for Al, for example, one has
εF = 11.6 eV and D(εF) = 0.39 (eV atom)−1.

Furthermore, the kinetic energy of the electron gas increases with temperature,
and some energy levels, which were vacant at 0 K, start to be populated. The
distribution of electrons among the levels is described by the Fermi distribution
function, f (E) = 1/(exp(ε−μ)/kBT +1), which gives the probability that the energy
level E is occupied by fermions. Multiplying the DOS by the latter function, one
can obtain the DOS analytic expressions for electrons at temperature T confined
in their motion by infinite barriers into (i) a cube box of side L (3D), (ii) a square
surface of side L (2D) and (iii) a wire of length L (1D), as follows:
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Fig. 5.2 DOS (y-axis) of a free Fermi gas at different temperatures T confined into (a) 1D, (b)
2D, and (c) 3D dimensions vs. energy (x-axis). The electronic levels are populated according to
the Fermi distribution function f (ε) = 1/(exp(ε−1)/T +1), where the chemical potential μ = 1
is assumed independent of temperature T , and kB = 1. The constant in front of the analytical
expression of D(ε) (Eq. 5.2) is assumed equal to 1

f (ε)D(ε) = f (ε)

⎧
⎪⎪⎨

⎪⎪⎩
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π
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(5.2)

In Fig. 5.2a–c, we report the plots of the DOS for 1D-, 2D- and 3D-confined free
Fermi gas at several finite temperatures. Of course, also other quantities derived
from the DOS, such as the chemical potential μ, are affected by dimensionality.

While the potential for quantum matter to develop emergent properties is far
more striking, nevertheless also classical objects, such as the natural systems,
can feel the course of dimensionality and exhibit new classes of behaviour upon
dimensional scaling. In particular, the principle that drives the action of systems
in nature is the same of quantum objects: behaviour cannot be rationalized as
the simple sum of their building block’s activity. Nature’s great lesson in this
regard is that structural solutions of biomaterials at different length scales and
dimensions, from nano- to micro- and macro-architectures, are optimized according
to hierarchies, in which the building blocks are organized so to “do more with less”.
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Fig. 5.3 Hierarchical structures of bones and tendons. (Adapted from Refs. [21–24] with
permission)

Complex behaviour and functionalities can emerge from the way constituents are
assembled or interact with one another, in such a way that the optical or mechanical
response of biomaterials to external electromagnetic or force fields is dramatically
influenced, or even completely modified, by the presence of these hierarchical levels
(see Fig. 5.3 reporting the hierarchical levels present in human tendons). This is
of course the result of the basic mechanisms of evolution that nature developed
over the years in order to have robust and flaw-tolerant structures for survival. This
hierarchical (or dimensional) effect can be seen in many natural systems, e.g. spider
silk, gecko feet, lotus flower, bones, tendons (see Fig. 5.3 [21–24]) or butterfly wings
to cite a few.

On the other side, even in the realm of real-world technological materials, the
electronic, optical and mechanical properties are also affected by dimensionality.
One of the most striking examples in this regard is provided by the large family
of carbon-based materials. Indeed, carbon is one of the most versatile chemical
elements: its relatively small atomic radius and the tetravalent character mean that
carbon can easily form covalent bonds with several chemical elements, including
itself, also at room conditions. This is the very reason why the number of known
chemical compounds constituted of carbon – which is only the 4th most abundant
element in the universe by mass after hydrogen, helium and oxygen and only the
15th most abundant in the Earth’s crust – is by far higher than the sum of all the
others (in excess of 10 million). For example, at odds, silicon is another element in
group 14 of the periodic table having also four valence electrons which can bind
into both molecular and crystalline compounds. However, due to its atomic radius,
1.5 times larger than that of carbon is too big to fit together into as great a variety of
molecules as carbon atoms can.
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This remarkable ability of carbon to bind in different ways by sharing from one
single to four electrons may lead to the formation of single to triple bonds. This
makes for an enormous number of possible bond combinations forming straight
chains, such as polymers; rings, such as aromatic hydrocarbons; crystals, such as
silicon carbide; and also amorphous phases. The all-carbon materials that carbon can
form by binding in different ways are called allotropes of carbon, be those naturally
available or man-made. The most common are graphite, diamond, fullerene and
amorphous carbon. In this chapter, we will focus on the description of the physical
properties of carbon allotropes with the aim to show how the dimensionality leaves
its signature on the electronic, optical and mechanical properties of these carbon-
based materials. For example, on the one side, graphite is a quasi-two-dimensional
material whose distinctive treats are to be opaque, black and sufficiently soft to be
used in pencils. Furthermore, graphite is a good electrical conductor. On the other
side, diamond is a 3D transparent, hard solid showing low electrical conductivity.
Nevertheless, at room conditions, 3D diamond, 1D carbon nanotubes, and 2D
graphene have all large thermal conductivities.

In the discussion of these topics, we have made the disputable choice of focussing
on the description of structures which grown out of our research activity over the
last decade. This includes the fullerenes’ family (0D), carbon nanotubes (1D),
graphene sheets (2D) and other two-dimensional allotropes, graphite (quasi-2D)
as well as diamond and foams (3D) (see Fig. 5.4). This thorough analysis will
also show how the investigation of these structures stimulated the development of
new computational tools with the ambition to connect first-principles, atomistic,

Fig. 5.4 Allotropes of carbon. From left to right: diamond (3D); graphene (2D); nanotubes (1D);
and buckyballs (0D)
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mesoscopic and continuum models to integrate different levels of simulation
for climbing the “dimensional ladder”. This approach is not surprisingly called
multiscale analysis.

5.2 0D Carbon Materials: The Fullerenes

Pristine C60 or buckminsterfullerene is a 0D all-carbon structure (molecule) made
of 20 hexagonal and 12 pentagonal faces, with a carbon atom at the vertices of each
polygon interconnected by bonds along each edge [25]. This amounts to 60 carbon
atom vertices, connected via 90 covalent bonds among single (60) and double (30)
bonds. C60 resembles a soccer ball (see bottom right panel of Fig. 5.4) and is
shaped as a truncated icosahedron. Carbon atoms in C60 fullerene are equivalent,
and their s and p outer shells are sp2 hybridized (or almost like that if one refers
this hybridization to planar-only geometries). The p orbitals, which are orthogonal
to the hypothetical sphere inscribed in the fullerene, form π -type bonds.

While theoretical predictions [26] of the existence and stability of buckminster-
fullerene were already put forward, the first isolated and characterized structure
belonging to the fullerines’ family was synthesized in 1985 by R.F. Curl, H.W. Kroto
and R.E. Smalley [27]. Fullerene is the by-product of two synthesis methods, that
is, the arc and the combustion methods, and sublimates below 800 ◦C. They own
their name to Buckminster Fuller, an American architect universally known for his
innovative design of the geodesic domes shaped as buckyballs.

Nevertheless, some evidence can be found that its geometrical shape was already
postulated by Archimedes among his thirteen solids. To the best of author’s
knowledge, the oldest picture of the fullerene’s structure dates back to the Italian
renaissance painter and mathematician Piero della Francesca, who drew the shape
of C60 in his book Libellus de quinque corporibus regularibus (see Fig. 5.5a). A
further rendition of the truncated icosahedron, ascribed to Leonardo da Vinci, can
be found in the book De Divina Proportione, written by Luca Pacioli around the end
of the fifteenth century (see Fig. 5.5b).

The existence and stability of C60 are confirmed by mass spectrometry exper-
iments, which show discrete peaks corresponding to molecules with the exact
mass of 30 to 90 carbon atoms (see Fig. 5.6a [28]), making buckminsterfullerene
one the most abundant molecules among the fullerenes’ family. Furthermore, we
report in Fig. 5.6c the relative cohesive energies of carbon architectures at different
dimensionality, including linear chains, rings, 2D flakes and fullerenes, which are
sketched in Fig. 5.6b. We notice that fullerenes are more stable than rings and planar
flakes for n > 20, due to the absence of edges with respect to other 2D and 1D
structures. Nevertheless, due to the constant positive curvature, which induces stress
into the structure, fullerenes are not totally unreactive at odds with the planar sp2

carbon net of graphene. They have been actually functionalized by several chemical
elements, such as hydrogen [31], fluorine, bromine and chlorine [32], both in the
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Fig. 5.5 (a) Rendition of a truncated icosahedron from the book Libellus de quinque corporibus
regularibus by Piero della Francesca. (b) Fullerene geometry drawn by Leonardo da Vinci found
in the De Divina Proportione by Luca Pacioli

outer and inner cage; C61Ph2 derivatives were prepared through cyclopropanation
for use in organic solar cells [33].

Due to their symmetry, not belonging to the group of the perfect sphere,
fullerenes are diamagnetic and display rather high electron affinity, and they do
not conduce. At room conditions C60 is a semiconductor, with a band gap of about
2.3 eV [34], well reproduced by GW simulations reporting a band gap equal to
2.15 eV [35, 36], showing aromaticity but not “super-aromaticity” (see Fig. 5.7 for
band structure and electron spectroscopy characterization). This means that for
symmetry reasons, the electrons are not delocalized overall in the molecule whereas
localized on the pentagons and the hexagons.

C60 usually is found in solid form, with buckyballs arranged in face-centred
cubic configurations (Fm3m symmetry group [37]) with lattice constant equal to
1.411 nm, kept together via van der Waals intermolecular forces (see Fig. 5.8).
Fullerenes are thus weakly interacting, and the valence bands are only slightly
deviated from those of the isolated icosahedral. In Fig. 5.7, we report the electronic
structure of the C60 cluster (top left panel) and of the fcc solid fullerite (top right
panel) [38], along with the photoelectron spectroscopy (PES) and the electron
energy-loss spectroscopy (EELS) experimental measurements of thin films of solid
C60 [39]. We notice that the unique electronic properties of fullerenes have been
used to produce molecular rectifiers and transistors that can operate with more
than two logical states [40]. Doping with alkali metals leads to compositions
such as M3C60 (M can be K, Rb or Cs), called fullerides, which display also
superconductive behaviour at low temperature [41].
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Fig. 5.6 (a) Time-of-flight mass spectrum of fullerenes. The mass of C60 is 720 amu; (b) linear
chains, rings, caps and fullerenes structural arrangements; (c) binding energy per atom Ecoh/n

in different structural arrangements of Cn. (Panel (a) is reproduced from Ref. [28] with the
permission of the European Physical Society, while panels (b)–(c) are reprinted with permission
from Refs. [29, 30] Copyright 1991, 1992 by the American Physical Society)
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Fig. 5.7 Top panels: electronic structure of the C60 molecule (left) and of the pristine fullerite
(solid fcc) within PBE-GGA+DFT-D3(vdW). Fermi levels of the two systems are aligned.
(Adapted by permission from Springer Nature: [35], COPYRIGHT (2016)). Bottom: photoemis-
sion spectrum (left-hand panel, hν = 21.22 eV) and C 1 s excitation spectrum (right-hand panel) of
a thin film of fullerenes. (Adapted from Ref. [39] with permission of UvA-DARE)

5.2.1 Using 0D Carbon Systems to Synthesize 2D Monolayers

The mechanical stability of fullerenes along with their massiveness, compactness
and fair reactivity can suggest their use as precursors to initiate the growth of carbon-
based materials. In this section we describe a novel experimental method able to
grow materials using a kinetically driven approach at temperatures lower than those
achieved so far by commonly adopted synthesis techniques.
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Fig. 5.8 FCC structure of solid C60

In particular, we present recent theoretical and experimental advances on the epi-
taxy of graphene, when the appropriate molecular bonds are severed by impacting
supersonic molecular beam of fullerenes on inorganic surfaces (SuMBE) [42–45].
Furthermore, we show how computational modelling can help our understanding of
the various stages of the process on multiple length and time scales, from the break-
ing of the fullerene cage upon impact to the rearrangement of atoms on the metal
surface used to catalyse graphene formation. We notice that the insights obtained
by our simulations of the impact and following chemical-physical processes have
been successfully used to set up an experimental procedure that ended up in the
production of graphene flakes by C60 impact on copper surfaces [46].

Graphene is typically synthesized by chemical vapour deposition (CVD) of
carbon-rich molecules (usually alkanes, such as propane) on metals [47, 48], such
as nickel or copper. On the latter the growth of graphene is known to proceed
by surface adsorption as carbon shows low solubility at high temperature [49].
Chemical reactions occurring on the surface are catalysed by the substrate, at
temperatures higher than �700 ◦C, and result in bond breaking and rearrangement
into a two-dimensional extended structure [49, 50]. Given the presence of hydrogen
atoms in the precursors and the relatively high working temperature, this process
generally leads to defected hydrogenated graphene. A subsequent thermal treatment
at about 1000 ◦C is finally used to desorb hydrogen, leaving graphene in a highly
polycrystalline form.
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Fig. 5.9 Fullerenes on the top of metallic substrate

At variance, our procedure uses supersonic beams of C60 to induce the catalysis.
Of course there is no way that by placing fullerenes on the top of a metallic substrate
graphene can be formed (see Fig. 5.9). Instead, C60 cage must be somehow broken to
trigger graphene growth. We remind that fullerenes have the shape of soccer balls,
so they can be easily accelerated at intermediate to high kinetic energies (from a
few to tens of eV) towards the substrate. On the one side, the high kinetic energy
impacts provide the activation energy necessary to initiate graphene sheet formation,
so one can avoid the typical shortcomings of CVD, such as the high-temperature
dehydrogenation process. On the other side, this kinetic energy regime allows one
to avoid crater formation, surface spreading and sputtering upon collision events.

Following this remarkably simple idea of bombarding a silicon substrate with
buckyballs travelling at supersonic speeds (C60 kinetic energy = 35 eV), we were
able to grow silicon carbide (3C-SiC) nanocrystalline islands (about 10 nm wide)
with a completely relaxed lattice at room temperature (RT) using H2 as carrier gas
[42–45]. SiC island formation was also obtained at 800 K for a C60 kinetic energy
(KE) of 20 eV using He as carrier gas. These experimental evidences show that (i)
the chemical-physical mechanisms underlying SiC synthesis are kinetically driven
and triggered by C60 cage disruption occurring above a KE threshold; (ii) SuMBE is
a promising technique able to reduce drastically the growth temperature and increase
the structural order.
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5.2.1.1 Experimental Results

The experimental activity was focussed on synthesizing nanostructured carbon-
based materials, such as silicon carbide (3C-SiC) [42–44] and graphene [46, 49, 50],
using C60 fullerene supersonic beams impinging on metallic or semiconductor
substrates aiming at room temperature (RT) growth conditions (see Fig. 5.10a).
SuMBE makes use of two types of devices: one for producing a highly energetic
beam of C60 molecules and the other for characterizing the growing film by in situ
electron spectroscopy techniques. The apparatus is self-contained within a UHV
chamber (base pressure = 7.0 × 10−11 mbar) and consists of a quartz tube in which
an inert carrier gas, usually He or H2, is seeded with highly diluted (below 0.1% in
number of the mixture) organic molecules sublimated by Joule heating. Figure 5.11a
shows a layout of the instrumentation under consideration.

In the case of graphene growth by SuMBE, the two major issues to take
into account are the substrate type and the fullerene KE able to trigger the cage

Fig. 5.10 (a) Representation of the system studied. A C60 molecule (cyan) and the Cu(111)
surface (brown). (b) Time-dependent populated electronic state vs. simulation time. In particular,
we report the first six electronic excited states (labelled from 1 to 6) above the ground state (labelled
by 0) visited during a simulation of fullerene impact onto the Cu(111) surface. (c) Early stage
investigations of graphene formation by metadynamics. (d) Kinetic Monte Carlo simulations of
graphene flakes formation and merging by carbon diffusion on the Cu(111) surface. (Adapted
from Refs. [46, 50])
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Fig. 5.11 (a) Schematic drawing of an apparatus for SuMBE deposition; (b) XPS and UPS
measured spectra. Left panel: C1s CL from C60 film deposited at RT by SuMBE on Cu poly at
KE = 15 eV (panels 1 and 2) and Cu(111) at KE = 35 eV (3, 4) with thickness: (1) 20 nm; (2)
1 ML; (3) 0.3 ML; (4) 0.6 ML.; C1s CL from C60 1 ML films deposited at RT for KE = 35 eV, after
thermal annealing at 425 ◦C (5), 645 ◦C (6), 795 ◦C (7). C1s emission from commercial single-
layer graphene on Cu foil is shown for comparison (8). Right panel: VB on Cu poly (1); VB
analysis of C60 films deposited by SuMBE on Cu poly at RT for KE=15 eV (2–3) and Cu(111) at
KE = 35 eV (4, 5) with thickness: (2) 20 nm; (3) 1 ML, after annealing a 20 nm film at 400 ◦C; (4)
0.3 ML; (5) 0.6 ML. VB on Cu(111) (6); VB from C60 1 ML film deposited at RT with KE = 35 eV,
after thermal annealing at 425 ◦C (7), 645 ◦C (8), 795 ◦C (9). VB from a commercial graphene
single layer on Cu foil (10) is shown for comparison. (c) STM analysis, showing few nm extended
graphene-like domains after annealing at 645 ◦C a C60 1 ML on Cu(111). (d) Raman analysis of
C60 1 ML on Cu(111) after annealing at 645 ◦C. A, B, C represent Raman spectra acquired in
different regions of the sample. (Adapted from Ref. [46])

disruption. The main steps generally undertaken for synthesizing graphene via
SuMBE (or also SiC thin films for which this technique was initially successfully
used) are the following:

– Surface preparation. Several (up to 40) argon ion sputtering (0.5 keV) cycles
and annealing of the copper substrate (T > 700 ◦C for obtaining optimal LEED
diffraction pattern) to expunge contaminants, such as oxygen, sulphur or adven-
titious carbons.

– Carrier gas choice. C60 KE can be tuned by changing the carrier gas from He
(lower KE) to H2 (higher KE), being the KE inverse proportional to the carrier
gas mass; furthermore, using noble gases a strong interaction with the substrate
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leading to adsorption of the carrier gas is avoided. C60 internal dynamics is frozen
unlike ordinary heating that dramatically increases the molecular vibrations.

– Aerodynamical acceleration. The highly diluted C60 plus carrier gas mixture
fluxes via isentropic expansion out of the injection cell into vacuum through
a nozzle (see Fig. 5.11a). Fullerene KE can be tuned not only by changing
the carrier gas but also modifying the seeding parameters, such as the source
temperature and the gas inlet pressure. In this way C60 KEs of 10–15 eV using
He carrier gas can be achieved, while up to 30–40 eV using H2.

– Collimation of the diluted mixture towards the copper reconstructed surface. The
substrate temperature can be increased as well from RT conditions.

– Thermal activated growth of graphene islands by increasing the substrate
temperature to 645 ◦C.

To our surprise, we found out that the substrate temperature must be raised to
synthesize graphene islands as C60 high-energy deposition on Cu, even at the highest
KE reachable by SuMBE, does not lead to immediate C60 cage rupture at variance
with SiC growth on silicon (as confirmed by our nonadiabatic molecular dynamics
simulations that find a KE cage breaking on copper higher than 40 eV). It seems
that the excess of energy made available by C60 supersonic impacts is spent for
rearranging fullerene positions in a very stable 4 × 4 pattern on the copper surface,
which eventually induces a tighter interaction characterized by charge transfer
between a number of carbon atoms of the organic molecule with the directly facing
copper adatoms [51]. This covalent interaction at the C60-Cu interface, following the
4 × 4 reconstruction, leaves its signature in our in situ core-level analysis, resulting
in a spectral shift of about −0.5 eV and in the emergence of a new feature with
respect to films deposited by standard MBE technique, at variance characterized
by C60 clustering. These spectral characteristics, present at all beam KEs, at any
surface coverage from 0.3 to 1 equivalent monolayers (ML), without remarkable
differences for temperatures up to 445 ◦C, have been interpreted as the proof of a
significant deformation, operated by the impinging C60 molecules, of the copper
superficial layers into a cup shape with removal of a number of copper adatoms and
formation of stable bonds with those surrounding the deformed or partially broken
cage.

Moreover, we did not find evidence of C60 cage rupture by SuMBE deposition
on single- or polycrystal copper in all range 10 to 40 eV, changing the carrier gas,
even increasing the substrate temperature during the C60-Cu collision up to 565 ◦C.
Nevertheless, the 4 × 4 rearrangement of fullerenes on the copper surface induced
by the collision creates favourable conditions for cage unzipping via thermally
activated processes.

In fact, high-energy 4 × 4 deposition on single- or polycrystal substrates kept at
RT, followed by a temperature increase to 550 ◦C (645 ◦C) when using He (H2) as
carrier gas, resulted in a dramatic change of the C60 typical spectral patterns (as
seen in Fig. 5.11b). In particular, the main peak in the C1s core-level spectrum, not
compatible with the presence of unbroken C60, shows the typical asymmetry of
defected graphene nano-islands, while the valence spectrum loses all the features
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reported for the MBE deposited C60 film. Finally, the KVV Auger signal intensity
from carbon is not depleted with respect to the copper one by increasing the
temperature up to 800 ◦C, meaning that the grown species is stable and not volatile.
Most importantly, evidence of fullerene cage disruption under these conditions has
been found independently of the carrier gas used and of copper surface coverage
from 0.3 to 1 ML.

The ultimate evidence of the presence of defected nanometric graphene islands
on the copper substrate is confirmed by both STM measurements and Raman
spectroscopy, reported in Fig. 5.11c, d, respectively.

These findings point towards a graphene growth model, in which the excess of
energy provided by the C60 translational KEs does not lead immediately to C60 cage
break and to the activation of kinetically driven chemical-physical mechanisms;
rather, at odds with the case of SiC synthesis, this energy is used to enhance surface
mobility and C60 diffusion, regardless of the carrier gas used for the expansion.
Moreover, after fullerenes find their optimal hosting sites by lattice distortion of
the copper surface owing to this increased mobility and tighten their interaction by
forming covalent bonds with the inorganic substrate, chemical-physical processes
that change the material topological and electronic properties can be thermally
activated by raising the substrate temperature, eventually leading to the C60 cage
break. The increase of temperature can of course enhance the catalytic action of
copper as well as contribute to activate nonlinear excitations of vibrational motion
and to desorb physisorbed species above the first C60 ML.

5.2.1.2 Computational Modelling: Breaking the Fullerene Cage

In this section, we report the principal computational results and modelling tools
that have been used to model the physical-chemical processes leading from C60
impacts onto metallic surfaces to the early stages of graphene formation. A very
similar theoretical and computational framework could be used to model the
interaction with other surfaces commonly used in graphene synthesis, such as
nickel, or to understand, and thus control, the growth of other carbon-based nano-
clusters. However, due to the possible formation of nickel carbide species, we
opted for single- or polycrystal copper substrates for which the chemical-physical
mechanisms underlying graphene growth turned out to be very similar.

Previous calculations based on empirical or semiempirical interaction potentials
[52, 53], aimed at investigating the stability of C60 molecules upon impact on silicon
surfaces, indicate that KEs of several hundred of eV are required to observe cage
rupture. However, this result was in sheer contrast with our experiments [42, 43],
showing SiC formation on the surface of silicon for impinging KEs of � 35 eV
at RT conditions. A detailed analysis of fullerene cage breaking conditions upon
impact on the silicon substrate at different levels of accuracy (and corresponding
different computational costs), using both classical and Born-Oppenheimer (BO)
ab initio molecular dynamics (AIMD), confirmed these previous findings. Indeed,
no cage breaking was observed for fullerene initial KEs lower than 300 eV, even
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using first-principles molecular dynamics based on density functional treatment of
the electronic motion [43].

While this conclusion is expected when using classical molecular dynamics,
whereby atoms are treated as hard spheres interacting through a pair-wise potential,
making this model not capable of treating out-of-equilibrium conditions where
bonds are breaking and forming, it is surprising when electronic motion is explicitly
treated from first-principles. However, a critical reassessment of the validity of
the BO approximation – that is the assumption that the electrons at every instant
collapse into their ground state configuration – suggests that the electronic and
nuclear motion are intimately intertwined, due to the short time scales involved in
the molecule-surface collision.

Indeed, computer simulations allowing electron hopping between several excited
states, calculated by time-dependent density functional theory (TDDFT), indicate
that C60 cage breaking can indeed occur for impact KEs of the order of 35 eV.
Figure 5.10b shows the progressively higher-energy surfaces visited by the electrons
during the simulation of a fullerene molecule approaching the silicon surface.
Due to the high-energy impact occurring in the timespan of a few femtoseconds,
electrons cannot relax fast enough to the ground state relative to the instantaneous
configuration of the nuclei. Thus, the forces acting on the nuclei during molecular
dynamics simulation must be calculated on the pure adiabatic surfaces populated at
the present time step. These gradients can be very different from the BO ground
state ones, leading to a highly dissociative path. Therefore, the cage disruption
cannot be accurately modelled at the measured KE if not by adopting a nonadiabatic
description of the impact. A similar behaviour was observed in the case of fullerene
molecules breaking upon impact on copper surfaces: we found out that one needs to
include excited-state dynamics in the description of the system in order to accurately
describe the processes involved in the collision and correctly estimate the cage
rupture energy threshold [46].

Similarly to what occurs with semiconducting silicon surfaces, even in the case
of collision with copper surface, C60 cage breaking is observed for KEs slightly
higher than 40 eV. Unfortunately, this KE is marginally too high for SuMBE. In
the experimental section, we have seen indeed that in order to synthesize graphene
islands, we need to raise the substrate temperature up to 645 ◦C after the impact.

It is worth noticing that the significant computational requirements of excited-
state simulations prevent following the system’s dynamics on time scales much
larger than several hundred femtoseconds in a reasonable time frame. Thus, one
needs to go beyond first-principles simulations and use multiscale approaches to
model the chemical-physical processes underlying graphene growth. Rearranging
the atoms to synthesize graphene, C60 high-energy impacts on Cu and cage breaking
are the first two steps towards graphene growth on the substrate. In particular,
the energy released in the impact is absorbed by the distortion of the surface and
dissipates via phonon excitations. The system quickly reaches a regime where
excited-state dynamics is quenched and its evolution, thus, can be followed by
methods based on the validity of the BO approximation, notably density functional
theory (DFT).
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Nevertheless, even if the computational cost of DFT calculations is much lower
with respect to nonadiabatic molecular dynamics, the comparatively large time scale
on which atomic rearrangement is expected to take place, typically of the order of
seconds, is still prohibitive for first-principles simulations. In order to speed up the
calculation, we thus use enhanced sampled techniques, such as metadynamics, or
multiscale approaches, such as kinetic Monte Carlo (KMC) [50, 54]. In particular,
we introduce a fictitious force coupled to a collective coordinate describing the
number of carbon-carbon bonds that drives the system towards the formation of a
carbon net, if clustering is energetically favourable. To carry out these calculations,
we used the Vienna Ab initio Simulation Package (VASP) [55, 56]. Long-time
metadynamics simulations provide a clear indication that the system, after cage
rupture, tends to rearrange towards the formation of graphene. Furthermore, we
were able to show that formation mechanisms are effective only above a critical
carbon atom density on the surface, as shown in Fig. 5.10c.

Still, the time scale of graphene growth is much longer than can be modelled by
metadynamics, in which electronic motion is explicitly included. Furthermore, by
adopting this approach, we lose information on the actual time frame, as common
in accelerated molecular dynamics methods. In this respect, the very long time
scale dynamics, of the order of seconds, leading to graphene island formation and
merging, is most effectively studied by means of KMC simulations [50]. Within
this approach, nudged-elastic band simulations (NEB) using BO ground state DFT
at RT are performed to calculate reaction activation energies and relevant transition
rates (assuming Boltzmann-distributed occupation of the states) for carbon atom
diffusion between adsorption sites on the copper surface, as well as the energy
variation upon carbon-carbon bond formation. Once the rates and energies of all
possible reactions and site jumps occurring on the copper surface are known, the
KMC method is capable to follow the various stages leading to graphene production.
Figure 5.10d shows the progressive creation and clustering of graphene flakes on
the Cu surface after diffusion and merging of initially separated carbon atoms. This
multiscale study pointed out the existence of a critical carbon density on the surface
for successful graphene growth, in good agreement with our BO-DFT simulations
of the early growth stages (see Fig. 5.10c) [50].

Finally, we notice that the kinetic energy threshold for projectile breaking can
in principle be estimated also by a continuum mechanical model (CM) [57]. The
kinetic energy threshold for projectile breaking in a CM is assumed proportional
to the object volume V , where the proportionality constant is the product of the
mechanical strength of the projectile and the ratio of the projectile and target
densities. The threshold velocity for breakup at temperature T would then be given
by:

1

2
Mv2 + 1

2
kBT nN = ρn

ρ
σf V (5.3)

where M is the mass of C60, σf is the mechanical strength of the fullerene, ρn

is its density, ρ = 8960 kg/m3 is the copper density, N = 60 is the number of
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atoms, n = 3 are the internal degrees of freedom per atom and kB is the Boltzmann
constant. Since in the SuMBE approach the rotational and vibrational degrees of
freedom of C60 result frozen, the second term in the left-hand side of Eq. 5.3 can be
neglected. Assuming σf of the order of the mechanical strength of carbon nanotubes
[58] (�50 GPa), the threshold kinetic energy of C60 breakup would be estimated
�40 eV. This value is in good agreement with our ab initio nonadiabatic simulations.

5.3 2D Carbon-Based Materials: Graphene and Its
Low-Density Allotropes

The large interest expressed over the last decade in graphene, the bi-dimensional
allotropic form of carbon, is largely determined by the honeycomb-shaped sp2

carbon net from which it derives its unique electronic and mechanical properties
[11, 12, 18, 47, 48, 59–65], such as unexpectedly high opacity for a thin atomic
monolayer, high electron mobility at room temperature, with reported values in
excess of 15,000 cm2 V−1 s−1, and breaking strength over 100 times bigger than
a hypothetical steel film of the same thickness [4]. Furthermore, pristine graphene
differs from most three-dimensional materials being a semimetal or a zero-gap
semiconductor, in which electrons and holes behave like Dirac fermions due to
the linear dispersion in the vicinity of the six corners of the Brillouin zone, where
valence and conduction bands touch upon.

Despite some concern raised about the stability of suspended monolayers owing
to the theoretical prediction that a 2D lattice is unstable upon thermal fluctuations
[66, 67], graphene was synthesized in 2004 by K. Novoselov and A. Geim [68],
who managed to cleave out single-atom-thick crystallites from bulk graphite. Due
to its properties, graphene finds application in a variety of fields, including electronic
devices (transistors, sensors, batteries, transparent conductive coatings for solar
cells, OLEDs, high frequency devices), nanocomposites (to make lighter aircraft,
or embedded in plastics to conduct electricity, or again in sports equipment) or
in medicine (such as in artificial cell membranes). Thus, despite the difficulties in
synthesizing high-quality large-area graphene sheets [46, 49, 50], its great promises
and achievements in the fields of materials science motivate the large scientific and
technological efforts that the scientific community is pursuing.

Nevertheless, the importance of graphene goes beyond its own specific charac-
teristics, as it represents the paradigm of a new class of bi-dimensional materials
obtained from layered structures, such as transition metal dichalcogenides (TMDs)
[69], silicene [70], germanene, the monolayer form of black phosphorous [71, 72]
and boron nitride.

In this section, due to the large amount of reviews [4] and books [73] on the
physics of graphene, we will only use graphene as a fundamental texture to deal
with some novel carbon allotropes at lower density. In particular, we discuss the
possibility to introduce interesting features in bi-dimensional all-carbon materials,
keeping the planar structure and the sp2-net of graphene. In this regard, one of the
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most striking properties of graphene is its Young’s modulus to density ratio, possibly
the highest achieved so far. We discuss here a systematic method for finding novel
energetically stable structures characterized by sp2-hybridized carbon atoms with
decreasing density but almost unchanged specific mechanical characteristics with
respect to graphene. In this way, lower structural weight could be achieved which is
an important request, e.g. in aerospace applications.

5.3.1 Structure Search Method

The geometry of graphene can be generated by using the two-dimensional packing
of congruent discs touching each other in three points under the following con-
straints (for further details, see [74]):

– No two discs overlap;
– Each disc is in contact with at least another disc;
– For any choice of two discs in the packing, there is always a path connecting

them through mutual contacts;
– Angles between the segments connecting two disc centres must be smaller than

π rad (local stability);

With these constraints in place, one can search for novel structures with specific
characteristics comparable to graphene and also for the least dense arrangement of
discs in the plane which is an important issue on its own.

5.3.1.1 Graphene and Graphene Daughter

The packing of graphene, reproduced in the left-hand side of Fig. 5.12a, has a
density equal to π/(3

√
3) ∼ 0.6046 and can be used to create the graphene net,

reported in the left panel of Fig. 5.12b, by positioning a carbon atom at the centre
of each disc. One can generate a novel architecture by replacing each disc in the
graphene packing with three discs having a radius 1

1+2/
√

3
smaller than that of

graphene, which leads to a less dense packing π(7
√

3) − 12 ∼ 0.390675, as shown
in the right panel of Fig. 5.12a. This process is known as “augmentation” [75], and
the “graphene daughter” obtained by applying this procedure is reported in the right
panel of Fig. 5.12b (called gr11 in [76]).

5.3.1.2 Tilene Parent and Tilene

By considering tilings with polygons having a number of sides larger than triangles,
one can obtain the packing associated with, e.g. the square-octagon tiling. In the
left panel of Fig. 5.13a, we show the tiling and in the left panel of Fig. 5.13b the
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Fig. 5.12 (a) Graphene (left) and graphene daughter (right) unit cells. The latter can be obtained
by using the two-dimensional packing of congruent discs, represented in the figure by red circles,
touching each other. The centres of the nearest neighbour red discs, where carbon atoms lay, are
connected by black lines representing the carbon bonds. (b) 4 × 4 supercells of graphene (left) and
graphene daughter (right)

Fig. 5.13 (a) Tilene parent (left) and tilene (right) unit cells. The latter can be obtained by using
the two-dimensional packing of congruent discs, represented in the figure by red circles, touching
each other. The centres of the nearest neighbour red discs, where carbon atoms lay, are connected
by black lines representing the carbon bonds. (b) 4 × 4 supercells of tilene parent (left) and tilene
(right)
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corresponding net of carbon atoms of “tilene parent” (octagraphene in [76]). Its
packing factor is lower than graphene and equal to π(3 − 2

√
2) ∼ 0.539012. Its

augmentation, carried out under the constraints discussed in Sect. 5.3.1, leads to the
lesser dense packing equal to 3π/(2 + √

2 + √
3)2 ∼ 0.355866 shown in the right

panel of Fig. 5.13a. The resulting structure, called “tilene”, is reported in the right
panel of Fig. 5.13b.

5.3.1.3 Flakene Parent and Flakene

In the left panel of Fig. 5.14a, we report the trihexagonal tiling of the plane, obtained
via regular polygons with the largest rings achieving a density equal to π(2/

√
3 −

1) ∼ 0.486006. The resulting geometry filled with carbon atoms, called “flakene
parent” (C64 graphenylene in [76]), is reported in the left panel of Fig. 5.14b. Its
augmentation, shown in the right-hand side of Fig. 5.14a, shows a 24-sided polygon
tiling with density equal to 3

√
3π/(20 + 3

√
3 + 6

√
7 + 2

√
21) ∼ 0.324951. The

corresponding allotropic form, obtained by filling the discs at their centres by carbon
atoms, is reported in the right panel of Fig. 5.14b, and we call it “flakene”. We claim
that the latter is one of the sp2 structures with lowest density ever studied which
agree to the locally jammed packing conditions.

Fig. 5.14 (a) Flakene parent (left) and flakene (right) unit cells. The latter can be obtained by
using the two-dimensional packing of congruent discs, represented in the figure by red circles,
touching each other. The centres of the nearest neighbour red discs, where carbon atoms lay, are
connected by black lines representing the carbon bonds. (b) 3×3 supercells of flakene parent (left)
and flakene (right)
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5.3.1.4 Liskene

Other carbon structures can be designed by relaxing the constraint of having only
three-coordinated carbon atoms. A first example is given in Fig. 5.15a, b where
we report the top and side views of pentagraphene [77], which has f our three-
coordinated and two four-coordinated vertices. At variance with previous tilings,
the plane is not filled using congruent discs, which reflects the fact that one
cannot tile the plane by congruent pentagons. The resulting structure is not planar
and is characterized by different bond lengths owing to the sp2-sp2 or sp2-sp3

hybridization. By applying the augmentation procedure to the pentagonal tiling, we
obtain a planar three-coordinated structure that we name “liskene”, which is shown
in Fig. 5.16a. This daughter architecture is again a three-coordinated system with a
density lower than the parent. In Fig. 5.16b we show the DFT optimized geometry
of this geometrical tiling.

Fig. 5.15 (a) Top view of a 3×3 pentagraphene super cell; (b) side view of a 3×3 pentagraphene
super cell. The sp3-hybridized carbon atoms are reported in green colour, while in grey scale, we
find the sp2-hybridized carbon centres

Fig. 5.16 (a) Augmentation of the Cairo pentagonal tiling. (b) 3 × 3 supercell of liskene after
performing DFT minimization
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5.3.2 Electronic Properties of 2D All-Carbon-Based Materials

Here we discuss the electronic band structure and the stress-strain characteristics of
the father and daughter structures obtained by the space tiling and augmentation
procedures previously introduced. Further details on computer simulations and
methods can be found in Ref. [74].

In Table 5.1 we report the energy per atom and the cohesive energies. Graphene
has a cohesive energy equal to 7.74 eV (experimental value is 7.6 eV [78, 79])
and still results the most energetically stable bi-dimensional allotrope of carbon.
In general, with the notable exception of pentagraphene for which the out-of-plane
geometry daughters into a planar sp2 net, we observe that daughter architectures are
characterized by lower stability along with lower density. While we notice that the
loss of stability is not significant, as the energy difference between the less stable
material (flakene) and graphene is of the order of 0.7%, the density is almost two
times lower than that one of graphene (see the first column of Table 5.1).

Furthermore, we present the band structures alongside the relevant DOSs for the
seven structural arrangements described in this section. Generally, we observe that
moving from father to daughter in the case of graphene (Figs. 5.17 and 5.18), tilene
(Figs. 5.19 and 5.20), flakene (Figs. 5.21 and 5.22) and pentagraphene (Figs. 5.23
and 5.24), a narrow band close to the Fermi level (reported as horizontal red lines
in the figures) appears, increasing the metallic character of the parent structures. We
argue that the appearance of an almost flat band can be the signature of geometrical
and, thus, orbital frustration, similarly to the kagome lattice. These frustrated
geometries pay the way also to the creation of strongly-correlated materials.

Table 5.1 First column: structure type. Second column: surface density. Third and fourth columns
report the total energy per atom with respect to graphene and the cohesive energy per atom obtained
upon structural optimization, respectively. With the exception of pentagraphene, all structures are
planar, and each carbon atom is three-coordinated. In the table the following abbreviations were
used: p. = parent, d. = daughter, dir. = direct gap, indir. = indirect gap

Density Energy Cohesive energy Bandgap

Structure (atoms/Å2) ([eV]/atom) ([eV]/atom) Type [eV]

Graphene 0.379 0 7.7404 Semi-met. 0 (dir.)

Graphene d. 0.256 0.9882 6.7523 Metal –

Tilene p. 0.336 0.5186 7.2219 Metal –

Tilene 0.233 1.0765 6.6640 Metal –

Flakene p. 0.301 0.6395 7.1009 Semi-met. 0.043 (dir.)

Flakene 0.212 1.1071 6.6334 Metal –

Pentagraphene 0.452 0.9044 6.8361 Semicond 2.23 (ind.)

Liskene 0.297 0.7789 6.9615 Semicond 0.36 (ind.)

Liskene d. 0.247 1.0506 6.6897 Semicond 0.46 (ind.)
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Fig. 5.17 Band structure (left) and DOS (right) of graphene. Fermi level is shifted to zero and
reported as an horizontal red line in the left-hand side (bands) and as a vertical red line in the
right-hand side (DOS) of the figure
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Fig. 5.18 Band structure and DOS of graphene daughter. Fermi level is shifted to zero and
reported as a horizontal red line in the left-hand side (bands) and as a vertical red line in the
right-hand side (DOS) of the figure
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Fig. 5.19 Band structure and DOS of tilene parent. Fermi level is shifted to zero and reported as
a horizontal red line in the left-hand side (bands) and as a vertical red line in the right-hand side
(DOS) of the figure
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Fig. 5.20 Band structure and DOS of tilene. Fermi level is shifted to zero and reported as a
horizontal red line in the left-hand side (bands) and as a vertical red line in the right-hand side
(DOS) of the figure
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Fig. 5.21 Band structure and DOS of flakene parent. Fermi level is shifted to zero and reported
as a horizontal red line in the left-hand side and as a vertical red line in the right-hand side of the
figure. In this case we report for the DOS only the zoom near the Fermi energy which is obtained
with a Fermi function smeared with a Gaussian of 0.0136 eV width in order to resolve the very low
energy band gap
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Fig. 5.22 Band structure and DOS of flakene. Fermi level is shifted to zero and reported as a
horizontal red line in the left-hand side (bands) and as a vertical red line in the right-hand side
(DOS) of the figure
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Fig. 5.23 Band structure and DOS of pentagraphene. Fermi level is shifted to zero and reported
as a horizontal red line in the left-hand side (bands) and as a vertical red line in the right-hand side
(DOS) of the figure

-4
-3
-2
-1
 0
 1
 2
 3
 4

 X M 

E
ne

rg
y 

[e
V

]

 0

 2

 4

 6

 8

 10

 12

-4 -3 -2 -1  0  1  2  3  4

D
O

S

Energy [eV]

Fig. 5.24 Band structure and DOS of liskene. Fermi level is shifted to zero and reported as a
horizontal red line in the left-hand side (bands) and as a vertical red line in the right-hand side
(DOS) of the figure

5.3.3 Mechanical Properties of Two-Dimensional All-Carbon
Materials

To assess the mechanical properties of the daughter and parent structures, one can
carry out the ab initio simulations of the elastic stiffness tensor C, which in linear
approximation represents the proportionality constants between stress and strain,
σ = εC, where ε is the six-component strain vector and σ is the stress tensor.
We remind in passing that the Hook’s law may be written in tensor notation as
σi = Cij εj where i, j = 1, . . . , 6 label the corresponding directions xx, yy, zz, yz,
zx and xy, respectively. The first subscript identifies the direction in which the stress
is measured, while the second one identifies the direction orthogonal to the plane on
which the stress is acting. Since σij = σji the independent stress components are
six.

The elastic constants Cij can be obtained as follows:
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Cij = ∂2F

∂εi∂εj

(5.4)

where in harmonic approximation (neglecting the thermal electronic contribution)
the density function F can be expressed as:

F = F0 + 1

2
F (2)ε2 + o(ε3) (5.5)

where F0 and 1/2F (2)ε2 are the static energy of the system and the lattice
vibrational contribution, respectively. From the knowledge of the elastic constants,
the Young’s modulus E, which measures the material stiffness, and the Poisson’s
ratio ν, which measures the material tendency to expand perpendicularly to the
direction of compression, can be computed as E = (C2

11 − C2
12)/C11 and ν =

C12/C11, respectively.
In Table 5.2 we report the Poisson’s ratio and the Young’s modulus of all the 2D

carbon allotropes discussed in this chapter with some other DFT values found in
the literature [76, 80]. We remind that here we deal with two-dimensional structures
where the specific mechanical properties should be referred to the area rather than
the volume, at odds with the usual approach in 3D solids. Thus, ρA is the area
density, and the quantities divided by ρA, such as EA/ρA, must be understood per
area density. The Young’s modulus E, in particular, is a measure of the response to
tensile or compressive loading and usually is measured in N/m2 because the load
is meant to be applied to an orthogonal cross section of the 3D solid. However,
in 2D materials, such as graphene, the load is applied to a thin, in principle,
monodimensional stripe because the orthogonal cross section of a two-dimensional
solid is a line. Thus, the Young’s modulus is measured as a force per unit length
(N/m) rather than per unit area, and in order to distinguish this case from the 3D

Table 5.2 The columns
report, respectively, the 1D
(EA) and 2D (E, thickness
t = 0.314 nm) Young’s
modulus, Poisson’s ratio (ν)
and area-specific Young’s
modulus (EA/ρA) of the
parent and daughter carbon
structures. To evaluate the
accuracy of our simulations,
we report a comparison with
data in the literature where
available. In the table the
following abbreviations were
used: p. = parent,
d. = daughter

EA E EA/ρA

(N/m) (TPa) ν (10−3 Nm kg−1)

Graphene 340 1.14 0.154 1.79

[76] 349 0.17

Graphene d. 89.6 0.30 0.631 0.70

[76] 92.6 0.64

Tilene p. 288 0.96 0.150 1.70

[80] 306 0.13

Tilene 78.6 0.26 0.607 0.67

Flakene p. 205 0.69 0.263 1.36

[76] 210 0.27

Flakene 38.6 0.13 0.746 0.36

Liskene 138 0.46 0.508 0.93

Liskene d. 93.1 0.31 0.517 0.75
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case, we call it EA. Of course one can define also the usual Young’s modulus E

by introducing a fictitious thickness t which for graphene is conventionally chosen
equal to the intra-planar distance in solid graphite (0.335 nm). We also remind that
at variance with a stable, isotropic, linear elastic 3D material where the bounds on
Poisson’s ratio are −1 < ν < 1/2, for 2D materials, one can have −1 < ν < 1
[81]. Furthermore, we notice that the Poisson’s ratio of tilene, flakene and liskene
shows that these materials are almost incompressible.

The most significant quantity to be compared with graphene is of course the
specific modulus, that is, the Young’s modulus divided by the mass density. In
particular, dealing with a bi-dimensional material one can assess the Young’s
modulus E per area density ρA, E/ρA. We report this quantity in the last column
of Table 5.2. We notice that graphene presents the biggest specific modulus among
the materials studied here. Flakene, in particular, displays the lowest density among
the investigated structures and shows a major drop in both the absolute and specific
elastic moduli, which are from eight to five times lower than graphene. Nevertheless,
while we do not find a material outperforming the specific properties of graphene
in this respect and, thus, we do observe that the augmentation is only partially an
advantageous route to follow in order to increase the specific modulus of graphene-
like materials, the difference in the specific Young’s modulus is less remarkable than
for the absolute values, with the exception of flakene.

In Fig. 5.25 we report the specific biaxial modulus (Ebi = C11 + C22) of the
low-density carbon allotropes versus area density. The drop of flakene mechanical
characteristics suggests that there is a threshold to the decrease of the density of
these carbon-based planar materials, below which the mechanical properties are
significantly depleted. Thus, the idea of decreasing the density, retaining the specific
mechanical characteristics, can be pursued only to some extent at least as far as the
Young’s modulus is concerned.
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Fig. 5.25 Specific biaxial elastic modulus versus area. (Adapted from Ref. [74])
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Further information on the mechanical properties of the graphene-based low-
density structures can be obtained by analysing the stress-strain curves from which
several quantities can be obtained, such as the absolute fracture strain, tensile
strength and toughness.

In Fig. 5.26 we plot the stress-strain curves of these parent and daughter
structures along the Cartesian directions x, y, which represent the zig-zag and
armchair directions of graphene ribbon, or along the 45◦ direction owing to the
unit cell symmetry of tilene and liskene. The stress-strain characteristics show (i)

Fig. 5.26 Stress-strain curves of parent and daughter structures along the x-direction (or zig-zag),
the y-direction (or armchair) and 45◦ (diagonal). The differently coloured lines represent the best
fits to the ab initio data. (Adapted from Ref. [74])
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the anisotropic response of these structures under uniaxial loading along different
directions, which results in a nonlinear, hyperelastic constitutive equation; (ii) the
significant depletion of the absolute mechanical response from parent to daughter
architectures, with a strong decrement in toughness, yield and ultimate strengths
(see also Table 5.3); and (iii) that the mechanical response is basically determined
by the reaction of triangular (tougher) or square (softer) shapes in the structures.

As a final remark, we point out that the picture so far described concerning the
absolute values slightly changes when we look at the specific properties reported
in the last two columns of Table 5.3. Indeed, the specific ultimate strength of our
novel 2D structures is comparable to graphene or even higher than the latter in
the case of the tilene parent. Nevertheless, the trend of the specific toughness,
which measures the ability of a material to absorb energy before fracture, is
overwhelmingly favourable to graphene with respect to the other structures.

Table 5.3 Fracture strain (first column), strength (second column), strength ×t (third column)
and toughness×t (fourth column) of the parent and daughter planar structures alongside the
specific strength and specific toughness (fifth and sixth columns). The conventional thickness of
the graphenic materials is considered to be t = 3.35 Å. In the table the following abbreviations
were used: p. = parent, d. = daughter

Fracture Strength Toughness Specific Specific

Loading strain Strength ×t ×t strength toughness

direction (%) (GPa) (N/m) (J m−2) (MNm kg−1) (MJ kg−1)

Graphene x >35 112 37.5 >9.83 49.7 > 13.0

y 26–28 102 34.2 6.51 45.2 8.61

Graphene d. x 18–20 29.3 9.81 0.83 19.2 1.62

y >30 67.7 22.6 >3.63 44.3 > 7.11

Tilene p. x,y 24–26 99.6 33.4 5.55 49.7 8.27

45◦ 32–34 79.1 26.5 5.68 39.5 8.47

Tilene x,y 20–22 44.8 15.0 1.66 32.3 3.57

45◦ 18–20 30.3 10.2 0.92 21.9 1.97

Flakene p. x 22–24 66.7 22.3 3.37 37.2 5.61

y 22–24 57.9 19.4 3.01 32.3 5.02

Flakene x 12–14 23.6 7.92 0.49 18.7 1.16

y 14–16 25.8 8.63 0.63 20.4 1.49

Liskene x,y 18–20 63.2 21.2 2.19 35.8 3.70

45◦ 14–16 43.8 14.7 1.27 24.7 2.14

Liskene d. x,y 12–14 27.8 9.32 0.59 18.5 1.20

45◦ 14–16 28.0 9.37 0.68 19.0 1.37
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5.4 Graphene Pseudospheres

Graphene is a versatile material, which can be arranged in the shape of stripes
(nanoribbons), rolled nanotubes or piled up in the direction orthogonal to its plane
(graphite). So, it is a legitimate thinking to search for other shapes.

In this respect, Beltrami’s pseudosphere, named after the Italian mathematician
Eugenio Beltrami who first devised this hyperbolic shape, is a surface of revolution
characterized by constant negative Gaussian curvature. Thus, it represents the
negative counterpart of the sphere which, at odds, is characterized by constant
positive curvature. A Beltrami’s pseudosphere can be realized by using carbon (see
Fig. 5.27) [82] and represents a portion of the Lobachevsky geometry on a real
surface. Its counterpart can be also realized using carbon and is represented by the
previously discussed fullerene shape.

Graphene pseudospheres are carbon-based energetically stable molecular struc-
tures, which (i) correspond to a non-Euclidean crystallographic group, namely, a
loxodromic subgroup of SL (2,Z), and (ii) have an unavoidable singular boundary,
where planar graphene meets the “trumpet” (see Fig. 5.27).

We devise that owing to its unique electronic properties, a graphene monolayer
arranged in a pseudosphere shape can be used to realize a realistic analogue of a
quantum field in a curved space-time and thus can be used to test certain scenarios
of the physics of curved space-times, e.g. the Hawking-Unruh effect [83]. The
latter states that the ground state of an inertial observer is seen in thermodynamic
equilibrium with a nonzero temperature by a uniformly accelerating observer. Thus,

Fig. 5.27 A graphene pseudosphere
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a quantum fields in a space-time with a horizon should exhibit a thermal character.
This effect is closely related to the local density of states (LDOS) of the graphene
pseudosphere, which could be possibly considered as a black hole analogue. Indeed,
one can show that by solving the Dirac equation in a continuum space-time, the
LDOS has the following analytic behaviour [83]:

ρ(E, u, r) = 1

(h̄vF )2

exp (−2u/r)

expE/(kBT0 expu/r ) −1
(5.6)

where T0 = (h̄vF )2 expu/r ρ(0, u, r) defines the Hawking temperature, u is the
hyperbolic coordinate along the pseudosphere axis, kB is the Boltzmann constant,
vF is the Fermi energy and r is the pseudosphere maximum radius (event horizon).
We remind that the Hawking temperature is the temperature to which black holes,
acting as perfect blackbodies, radiate. The electromagnetic radiation, owing to
quantum effects, is emitted at a temperature inversely proportional to the mass
of the black hole. Only electrons with an energy E = h̄vF /r , which represents
the intrinsic energy scale associated to the pseudosphere, have a long enough
wavelength to experience the whole curved surface; hence their contribution to
the LDOS is important. We notice that for a graphene pseudosphere with a radius
r = 0.1 μm, the Hawking temperature is about 13 K.

5.5 1D Carbon-Based Materials

Carbon nanotubes (CNTs) are graphitic sheets rolled in hollow cylinders with walls
made by hexagonal carbon rings (see Fig. 5.4). They often form large bundles and
are capped by domed structures at their termination. Two types of CNTs have been
synthesized: single-wall carbon nanotubes (SWCNTs or simply CNTs), consisting
of a single rolled layer of graphene, and multiwall carbon nanotubes (MWCNTs),
made by multiple graphene layers telescoped about one another. CNTs were first
isolated and characterized by Iijima in 1991 [8].

CNTs inherit from graphene some of its unique physical and chemical properties,
such as structural rigidity, flexibility, strength, and ideal thermal conductivity.
Owing to these intrinsic features, 1D all-carbon nanomaterials found a wide variety
of applications in molecular electronics and in semiconducting device technologies,
such as FET, electrodes, power cables, fibres, composites, actuators, sensors and
biosensors [6]. Furthermore, due to their small size and biocompatibility, CNTs
express great potential in the emerging field of nanomedicine, e.g. for implantable
applications for continuous monitoring of clinically relevant analytes, including
glucose, or in food industry and environmental sciences. Finally, due their hollow,
curved shape and the large surface/volume ratio, CNTs can be easily doped
and functionalized, e.g. using carboxyl (COOH) and/or hydroxyl (OH) groups,
to acquire the desired electronic, optical or adsorption properties. At odds with
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graphene, however, the electronic properties of single CNTs depend on their
chirality. The nanotube chirality is defined by the specific and discrete chiral angles
at which graphene sheets are rolled. In particular, the chirality is identified by a
couple of numbers (n, m), which define a vector (Ch = na1 + ma2) in an infinite
graphene sheet that describes how to “roll up” the graphene sheet to make the
nanotube. The nanotube diameter (d = (n2 + m2 + nm)1/2), its density, lattice
structure and the electronic characteristics, such as the conductance, depend only
on the chirality indexes (n, m). A SWNT is considered metallic, with conductivity
showing rectification or ohmic characteristics, if the fraction (n − m)/3 is an
integer value. Otherwise, the nanotube is semiconducting, with variable energy gaps
ranging from a few meV to a few tenths of an eV. In this section we will investigate
the electronic properties of small semiconductor CNTs using high-level accuracy
many-body perturbation theory. In particular, we use the GW approximation, which
assumes that the self-energy of a many-body electron system can be assessed by
keeping only the lowest order term in the expansion of the self-energy in powers of
the screened interaction W . By doing so the self-energy is written as the product of
G, the one-body Green’s function, and W , the screened Coulomb interaction [84].

5.5.1 The GW Method for CNTs

Recently, Umari and coworkers have developed a method for performing accurate
and well-converged GW calculations in large simulation cells based on reduced
basis sets for expressing the polarizability operators [85] and on Lanczos’s chains
for avoiding sums over unoccupied one-particle states [86]. This scheme, which will
be revised in this section, was used for investigating the dependence of electronic
band gaps with respect to the tube diameter for a number of semiconducting single-
wall zig-zag CNTs, with diameters ranging from 0.56 to 1.27 nm [11, 12].

Beyond the independent electron approximation, the electronic states in a
strongly interacting system can be described through a quasi-particle picture in
which the behaviour of the bare electron is strongly renormalized by the presence
of the other electrons of the system. On the experimental side, this quasi-particle
behaviour can be probed via direct and inverse photoelectron spectroscopy. On the
theoretical side, MBPT and, in particular, the G0W0 approximation [87] represent
a rather simple, though accurate approach for addressing quasi-particle calculations
on large systems. The G0W0 approach allows one to apply many-body perturbative
corrections to a starting DFT calculation. Within this method, the quasi-particle
energy level Ei for the i-th Kohn-Sham state is obtained from the solution of the
following self-consistent one-variable equation:

Ei = εi + 〈ψi | �c (Ei) |ψi〉 − 〈ψi | Vxc |ψi〉 + 〈ψi | �x |ψi〉 , (5.7)

where ψi is the i-th Kohn-Sham eigenstate, εi the eigenenergy, Vxc is the exchange
and correlation potential and �c and �x are the correlation and exchange parts
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of the self-energy operator, respectively. In this approach, �c is found from the
convolution of the one-body Green’s function G0, obtained from DFT calculations,
with the correlation part of the screened Coulomb potential W c

0 , obtained at random-
phase approximation level (RPA [84]):

�c
(
r, r′; ω

) = 1

2π

∫
dω′G0

(
r, r′; ω + ω′)W c

0

(
r, r′; ω′) . (5.8)

Despite the apparent simplicity of this approach, its application requires a con-
siderably larger effort than the starting DFT calculation. In fact, the evaluation
of operators, such as G0 and W c

0 , at many frequencies contains the sum over a
large (in principle infinite) number of unoccupied Kohn-Sham states, resulting in a
convergency very difficult to be achieved [88]. The approach developed by Umari
et al. overcomes these drawbacks by expanding the polarizability and the screened
Coulomb interaction operators through a reduced (optimal) basis set [85], which
allows us to obtain overall good accuracy. Furthermore, within this method we avoid
the sum over unoccupied states by a Lanczos’ chains approach [86].

5.5.2 Band Gap of Model CNTs

Here, we show the application of this method to the calculations of the electronic
band gap of a selected number of semiconducting single-wall zig-zag CNT with
chirality indices equal to (7,0), (8,0), (10,0), (11,0), (13,0) (14,0), (16,0). Com-
putational details can be found in Ref. [11], while here we summarize the main
results. DFT calculations were performed within the local-density approximation
(LDA) [89] using norm-conserving pseudopotentials with single-particle orbitals
and charge densities expanded in plane waves. The calculations of the electronic
band gaps of the selected CNTs neglect the excitonic effects due to the electron-
hole pair formation. Within this approximation, the electronic band gap, usually
indicated as E11, corresponds to the energy difference relative to the van Hove
singularities appearing in the density of electronic states below and above the Fermi
level. The energy difference relative to the gap between the second singularities
above and below the Fermi level is referred to as E22 (see top panel of Fig. 5.28).
However, we remember that experimental measurements of the band gap performed
through optical spectroscopies record fluorescence lines that include the correlated
motion of electrons and holes, which affects strongly the spectrum. Indeed, in
a semiconductor, where excitonic effects are not negligible, the exciton binding
energy Eb strongly renormalizes the “electronic or fundamental band gap” Eg ,
that is, Eopt = Eg − Eb. Thus, there is a distinction between the optical band
gap, which represents the threshold value for photons to be absorbed, and the
“electronic or fundamental band gap”, which represents the threshold value for
creating an electron-hole pair that is not bound together. Therefore, experimental
band gaps are dramatically renormalized by this effect and one rather measures
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Fig. 5.28 Top panel: scheme of the electronic transitions in semiconductor CNTs. Bottom:
electronic band gaps for semiconducting CNT of diameter dt , corresponding to optical transitions.
Full black circles: GW results for mod1 zig-zag CNT. White circles: GW results for mod2 zig-zag
CNT. The error bars refer to the total estimated accuracy of the GW energy levels with the dashed
black line guiding the eye. Black line: fit of GW results for large CNT (see text). Theoretical
estimates for semiconducting CNT as by: Eqs. 5.9 (green line), 5.10, and 5.11 for zig-zag CNT
of mod1 (purple line) and mod2 (brown line) species. The experimental STS measurement of
Ref. [91] is reported together with error bars (blue line). (Adapted from Ref. [11])

the energies of the lowest (E1A2 ) and of the second lowest (E2A1 ) optically active
exciton states and their difference. We remind that E1A2 , E2A1 label the excitonic
states by n�, where n − 1 is the number of nodes in the hydrogenic function that
represents the exciton and provides a physically grounded guess to the ordering
in which the different exciton states might appear (higher n corresponds to higher
excitonic states), and � labels its irreducible representation. For example A1 is the
totally symmetric representation of the symmetry group of the chiral nanotubes [90].
Moreover, in some specific zig-zag small diameter CNTs, such as the (7,0) and (8,0)
CNTs, the band gap corresponding to the optically active excitons may be even
energetically higher than the minimum energy semiconducting band gap. As such,
the experimental values of the electronic band gap do not match the calculated ones.
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In principle, scanning tunneling spectroscopy (STS) could give a direct measure of
electronic band gaps. However, in such a case screening effects arising from the
metal substrate on which the CNT is dispersed become important. A model of these
screening effects was tried, but the final error bars are quite large [91]. Therefore,
accessing to electronic band gaps usually relies both on optical measurement and
theoretical modelling.

The edges for fluorescence emission have been measured for several CNTs, and
the dependence on the tube diameter has been fitted with model functions [92, 93].
For example, Dukovic et al. [93] reports the following behaviour for the optical first
emission gap E11

op :

E11
op = 1.11

dt + 0.11
eV (5.9)

where the diameter dt is expressed in nm. A further formula relating the electronic
gap vs. CNT diameter is obtained by Weisman and Bachilo [92] as follows:

E11
op(mod1) = 1.241 ∗ 103 eV

157.5 + 1066.9dt

− 0.0957 [cos(3α)]1.374

d2.272
t

E11
op(mod2) = 1.241 ∗ 103 eV

157.5 + 1066.9dt

+ 0.04307 [cos(3α)]0.886

d2.129
t

(5.10)

where α is the chiral angle [94] and mod(n − m, 3) = 1 (mod1 species, such as the
(7,0), (10,0), (13,0) and (16,0) CNTs) or mod(n − m, 3) = 2 (mod2 species, such
as the (8,0), (11,0) and (14,0) CNTs). For zig-zag CNTs one has α = 0.

By solving a model electron-hole Hamiltonian [95], which delivers exciton
binding energies in agreement with accurate GW -Bethe-Salpeter calculations [96],
the semiconducting CNT binding energy Ebind

1A2
for the lowest 1A2 exciton can be

expressed as:

Ebind
1A2

≈
0.55

dt

eV (5.11)

The electronic band gap E11 can thus be obtained by Eqs. 5.10 and 5.11 as:

E11 = E11
op + Ebind

1A2
(5.12)

In Table 5.4 we report the calculated band gaps relative to optically allowed
electronic transitions for the CNTs under investigation. In the (7,0) and (8,0) CNTs,
the fundamental electronic band gap refers to transitions that are not optically
allowed. We note that our calculated value of the fundamental gap for the (8,0) CNT,
equal to 1.80 eV, is in good agreement with previous GW calculations from Spataru
and coworkers [10] giving 1.75 eV and from Kang et al. [97] giving 1.51 eV. The
calculated gap for the (8,0) CNT relative to optically allowed transitions (2.24 eV)
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Table 5.4 Electronic band gaps from LDA and GW calculations for the semiconducting zig-
zag CNTs under investigation with chirality indices (m,n) (first column). The gaps are relative
to optically allowed transitions. When the electronic band gap for optically allowed transitions
differs from the fundamental electronic band gap, we have reported also the latter in parenthesis

(m,n) LDA (eV) GW (eV)

(7,0) 0.16 1.98 (1.47)

(8,0) 0.5 2.24 (1.80)

(10,0) 0.80 1.72

(11,0) 0.95 1.66

(13,0) 0.65 1.52

(14,0) 0.74 1.36

(16,0) 0.56 1.21

is in good agreement with the value of 2.54 eV from Spataru et al. [10] and with the
value of 2.14 eV previously found by Taioli et al. with a preliminary version of the
method here used [12].

Furthermore, our calculated value of the fundamental electronic gap for the (7,0)
CNT is 1.47 eV, which is higher than the value of 0.60 eV reported in a previous
study by Miyake et al. [98] and the value of 1.22 eV obtained by Taioli et al. [12].
The latter values are reported for the case of zig-zag semiconducting CNT for both
mod1 and mod2 species. We note that a good agreement of our calculated GW

electronic gaps with the previous estimates is found for the investigated diameter
sizes, excluding the (7,0) CNT. In this case, curvature effects due to the small size of
the CNT become important and σ and π states mix into hybrids with partly sp2 and
sp3 character. It should be noted that LDA results, not reported in this figure, are far
from the theoretical/experimental lines as one can see in Table 5.4. The GW results
for the largest CNTs are also in excellent agreement with the STS measurement of
the electronic gap by Lin et al. [91] for the case of 1.4 nm diameter CNT.

Nevertheless, CNTs used in electronic devices have of course diameters larger
than those studied here. It is thus interesting to extrapolate our GW results to obtain
a model electronic gap-diameter function. To this goal, we fitted our GW results for
CNT larger than 1.0 nm with the simple relation E11 = a

dt
pointing towards a closed

gap in the large diameter limit as expected from zero-gap graphene. We find a value
a = 1.54 eV× nm.

5.6 3D Carbon-Based Structures

As a last step into the “dimensional ladder”, we finally discuss a number of
properties of all-carbon 3D architectures, notably the charge transport in diamond
and graphite, and the mechanical and thermal properties of carbon foams.
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5.6.1 Two Case Studies: Transport Properties of Diamond and
Graphite

First we consider the electron transport properties from reflection electron energy-
loss spectroscopy (REELS) measurements of diamond and graphite films. Indeed,
while graphene and other 2D materials are considered the most promising replace-
ments of silicon in future electronics [99], difficulties in finding scalable, cheap
and safe techniques to grow high-quality graphene sheets currently hamper the
hypothetical potential of this 2D material. Furthermore, in order to use graphene
in microelectronic applications, a band gap must be opened [47, 48]. In this regard,
other naturally occurring allotropic forms of carbon, such as diamond and graphite,
could be used as viable candidates for an all-carbon electronics.

For example, diamond, owing to several ideal characteristics, such as large ther-
mal conductivity, high charge mobility, wide band gap, optical isotropic structure
and robustness, can be considered also a competitor in the carbon-based revolution
for enhancing the performances of electronic devices. On the other side, graphite
is the most stable naturally occurring carbon allotrope, characterized by a layered
architecture with both strong in-plane sp2-bonds, comparable in cohesive energy
to those found in diamond, and weak interplanar bonds that make it soft and
malleable as well as anisotropic to external perturbations. Furthermore, graphite
shows optimal heat, large electrical conductivity and high strength and stiffness even
above 3000 ◦C.

5.6.1.1 The Dielectric Response of Materials

The study of charge transport in solids is of paramount importance in several
applications, ranging from materials characterization via electron microscopy and
spectroscopy to the production of optimally designed electronic devices by control-
ling the energy transfer scattering processes that occur in different energy ranges
[100–102].

In this regard, we notice that the analysis of the collision events taking place
within a solid is based on the accurate assessment of the frequency-dependent
dielectric function, which links microscopic properties, such as the band structure of
solids, to macroscopic features that are the direct outcome of spectroscopic exper-
iments, such as the absorption coefficient, the surface impedance or the electron
energy loss. Indeed, the dielectric function ε(W, q), where W is the energy loss
and q the transferred momentum, provides access to the full electronic excitation
spectrum of the material in both energy and momentum space. Furthermore, we
observe that the dielectric function is the only material property necessary to assess
the inelastic cross sections. In particular, the real part of the dielectric function �[ε]
describes the screening (i.e. the polarizability) of the medium, while the imaginary
part [ε] the absorption. In general, single-electron excitations, such as excitons,
interband excitations and core-hole ionizations, are connected to the maxima of
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ε(W, q), while collective many-electron excitations (plasmons), which are typical of
the condensed phase, are related to the minima of ε(W, q), which usually appear if
the two conditions [ε(W, q)] � 1 and �[ε(W, q)] = 0 occur. From the knowledge
of ε(W, q), one can calculate observables of paramount importance for designing
novel optical and electronic devices, such as inelastic mean free path, stopping
power, plasmons and secondary electron spectra.

To compute the dielectric function dependence on the energy and transferred
momentum, one can proceed along three different routes [18]. First, one may
use a semiclassical approach, whereby one assumes the knowledge of the long
wavelength or optical limit of the dielectric function (q → 0); this information
is usually provided by experimental measurements of optical absorption [103],
transmission electron energy-loss experiments [104, 105] or ab initio simulations
[106]. To go beyond the optical limit, one can extend the dielectric response
to finite momenta by using a Drude-Lotentz (DL) model. In this approach, the
dielectric function is approximated by a number of damped harmonic oscillators
with frequencies equal to the plasmon frequencies obtained by fitting experimental
data [107, 108] and a friction-type force to simulate general dissipative processes;
this extension of the dielectric response to finite momenta with the DL functions
represents the most accurate approach available [109]. The second viable approach
concerns the ab initio calculation of the dielectric response for vanishing momentum
transfer and then its extension to finite momenta by a DL model. Finally, one could
assess the dispersion law of the dielectric function at finite momentum q by using a
full ab initio (AI) approach, based on time-dependent density functional simulations
[110] in the linear-response regime (LR-TDDFT) [111–113].

The so-derived dielectric functions are used as input for a Monte Carlo descrip-
tion of the inelastic scattering probability to calculate the energy loss of electrons
along their path within the solid. The comparison between our simulated and
recorded REELS allows us to assess the impact that external tuneable parameters
and semiclassical assumptions might have on the accuracy of simulated spectral
line shapes for the characterization of 3D carbon-based materials.

Frequency- and Momentum-Dependent Dielectric Function

The microscopic representation of electromagnetic fields in interaction with peri-
odic crystals can be described in terms of the microscopic dielectric function
εG,G′(q, W) = ε(q + G, q + G′, W), where G and G′ are the lattice vectors
in the reciprocal space, while q is the transferred momentum contained in the
first Brillouin zone. The relation between the latter quantity, which is usually the
outcome of ab initio simulations, and the experimentally measurable macroscopic
dielectric function is the following [114, 115]:

ε(q, W) =
[
ε−1

G=0,G′=0(q, W)
]−1

(5.13)



5 Enabling Materials By Dimensionality: From 0D to 3D Carbon-Based. . . 177

where the G = G′ = 0 limit results in an average over the unit cell of the
corresponding microscopic quantity, which can exhibit rapid oscillations at the
atomic level.

The dielectric function provides access to the differential inelastic scattering
cross section σinel, since [116]:

dσinel

dW
= 1

ρπa0T

∫ q+

q−

dq

q
Im

[
− 1

ε(q, W)

]
(5.14)

where a0 is the Bohr radius, ρ the atomic density of the target material, q is the
transferred momentum and the integration limits are q− = √

2m(
√

T − √
T − W)

and q+ = √
2m(

√
T + √

T − W). Equation 5.14 states that at a given incident
electron energy and scattering angle, the negative inverse of the imaginary part of the
dielectric function is the electron energy loss in a transmission experiment, which is
defined as follows:

ELF = Im

[
− 1

ε(q, W)

]
(5.15)

This quantity is called the energy-loss function (ELF) and depends only on the
material specific properties. At variance, the inelastic scattering cross section is also
a function of the incident electron beam kinetic energy. Finally, the total electron
mean free path λ is given by [117]:

λ = 1

ρ(σel + σinel)
(5.16)

where σinel is the total inelastic mean free path, obtained by integrating Eq. 5.14
over the energy range, and σel is the elastic scattering cross section. In general, the
momentum transferred by electrons upon collision is neither negligible nor constant
in different energy ranges, and the material dispersion relation (E vs. q) shows
generally a non-flat behaviour. Thus, one needs to evaluate the dielectric function
also out of the optical limit before calculating the expression in Eq. 5.15.

First, we notice that Eq. 5.15 is obtained under the assumptions of validity of
the first-order Born approximation, which works for sufficiently fast, point-like,
particles weakly deflected by potential scattering. These requirements turn out to
be met when the incident particle kinetic energy is T (eV) � 13.6Z2 � 490 eV,
which is the typical situation of valence electrons [118]. Nevertheless, we will show
applications of Eq. 5.15 also to slow (up to a few tens of eV) secondary electron
emission.

Second, we observe that to invert the dielectric matrix in Eq. 5.15, one needs also
to assess the dependence on finite momentum transfer q. In this regard, we now
revise the two different approaches that have been devised to this purpose; these are
the DL and the full AI models.



178 S. Taioli

Drude-Lorentz Model

Within the DL model, the material response to an applied uniform external
electromagnetic field is approximated by considering the target screening electrons
as harmonic oscillators of frequency ωn = En

h̄
, where En is the plasmon energy.

Charge oscillations are damped via a damping term �n, which introduces friction-
like forces affecting the oscillatory harmonic motion.

Outside the optical domain, the ELF is extrapolated to nonvanishing momenta by
using a quadratic dispersion law [109, 118, 119], which basically assumes that the
valence electrons in the solid can be considered as a noninteracting homogeneous
gas. The plasmon energy is expanded to second order in q as follows:

En(q �= 0) = En(q = 0) + h̄2q2

2m
(5.17)

The ELF is finally expressed as a sum over all oscillators of q-dependent generalized
DL functions with a full-width-half-maximum �n [118, 120, 121]:

Im

[
− 1

ε(q, W)

]
=
∑

n

An�nW

(E2
n(q) − W 2)2 − (�nW)2 (5.18)

where An is the oscillator strength of the nth-oscillator which are obtained by fitting
procedures of optical data. We remind that the f -sum rule must be exactly satisfied
by the Drude dielectric function [122].

Ab Initio Simulations

The dielectric function of materials can be also obtained from ab initio simulations
using a TDDFT approach in the linear-response (LR-TDDFT) approximation [111].

In LR-TDDFT simulations, one aims at calculating the polarization function
χ(r, t, r′, t ′) relating the perturbation of the density δn at (r, t) due to a small change
of the external potential δvext at (r′, t ′):

δn(r, t) =
∫

dt ′
∫

d3r ′χ(r, t, r′, t ′)δvext(r′, t ′) (5.19)

The many-body response function χ(r, t, r′, t ′) can be obtained by the independent
particle polarizability χKS(r, t, x, τ ) via a Dyson-type equation as follows:
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χ(r, t, r′, t ′) = χKS(r, t, r′, t ′)
{ ∫

dτ

∫
d3x

∫
dτ ′
∫

d3x′

χKS(r, t, x, τ )
[δ(τ − τ ′)

|x − x′| + fxc(x, τ, x′, τ ′)
]

χ(x′, τ ′, r′, t ′)
}

(5.20)

where fxc(r, t, r′, t ′) = δvxc(r,t)
δn(r′,t ′)

∣∣∣
ngs(r,t)

is the energy-dependent exchange-

correlation kernel. The independent particle response function χKS is calculated
usually by solving the standard Kohn-Sham equations. As for static DFT, the
time-dependent exchange-correlation potential is unknown. Thus, calculations of
χ(r, t, r′, t ′) usually rely on the so-called adiabatic local-density approximation
(ALDA) in which the time dependence of the functional is neglected [110].
However, in systems where excitonic effects are expected to have a strong influence
on spectral features due to an ineffective electronic screening, e.g. in insulators such
as diamond, the use of a bootstrap kernel [125] that includes effects beyond the
RPA is necessary.

Assuming translational invariance, the ELF can be computed inserting Eq. 5.13
into Eq. (5.15). The inversion procedure can be cumbersome for large basis sets and
large k-point grids. Thus, wherever possible the most viable option is to assess the
microscopic dielectric matrix by inverting only the head of the matrix, which means
to neglect the off-diagonal elements (εG,G′(q, W), G, G′ �= 0) for all q [115]. These
off-diagonal terms include the fluctuations of the fields on atomic scale, called the
local field effects (LFE). Nevertheless, for highly inhomogeneous or strongly locally
polarizable systems, such as in the case of diamond and graphite, strong microscopic
local fields can exist, and thus LFE can play a significant role in the description
of the dielectric properties [126], particularly at small wavelengths, to the point of
invalidating even qualitative results. This is the case, for example, of our 3D carbon-
based materials, and, thus, we will include LFE in our analysis. With the inclusion
of the LFE, one can show that the dielectric function in reciprocal space is [127]:

ε−1
G,G′(q, W) = δG,G′ + νs

G,G′(q)χG,G′(q, W) (5.21)

where νs
G,G′(q) = 4πe2

|q+G||q+G′| is the Fourier transform of the Coulomb potential
and χG,G′(q, W) is the microscopic polarizability.

ELFs and Related Observables of Diamond and Graphite

While for computational details we refer to Ref. [64], using LR-TDDFT we
calculated the ELFs of diamond and graphite according to Eq. 5.15. In the top
panels of Fig. 5.29, we report the ELFs of diamond (left) and of graphite (right)
in comparison to the Drude-Lorentz approach (black lines).
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Fig. 5.29 Top panels: Comparison between the ELF of diamond (left) and graphite (right) in
the optical limit obtained from AI simulations (continuous red curve), experimental data from
Refs. [104] and [105] (black triangles) and fit obtained with the model of Garcia-Molina et al.
[123] (dashed black line). Bottom panels: ELF of graphite from AI simulations along the direction
q||c (left) and q ⊥ c (right). (Adapted from Refs. [18] and [64])

Nevertheless, in the case of graphite, one should also take into account the
anisotropic structure. This can be achieved by calculating the inverse of the total
inelastic mean free path �inel = λ−1

inel and the energy loss W as a linear combination
along the two directions, respectively, orthogonal (⊥) or parallel (||) to the vector c

pointing towards the direction orthogonal to the graphite plane, as follows [64]:

�inel = f cos2(θ)�|| + [(1 − f ) + f sin2(θ)]�⊥ (5.22)

W = f cos2(θ)W|| + [(1 − f ) + f sin2(θ)]W⊥ (5.23)

where f is an anisotropy parameter in the range [0 : 1] determined so to obtain
the best agreement between theoretical and experimental spectra and θ is the angle
between c and q. This parameter is put in place to favour the electron motion in the
planar direction (q ⊥ c).

In the bottom panels of Fig. 5.29, the contributions to the ELFs of graphite are
resolved in the direction parallel q||c (left) and perpendicular q ⊥ c (right) to the
graphite plane obtained from AI simulations (and relevant fits). Finally, in Fig. 5.30
we report the parallel (left panel) and orthogonal (right panel) contributions to the
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Fig. 5.30 Inelastic mean free path along the parallel (left panel) and orthogonal (right panel)
directions of the transferred momentum q in graphite. For q ⊥ c, the calculated values are
compared with the data by Tanuma et al. (dashed lines) [124]. (Adapted from Ref. [64])

inelastic mean free path in graphite. These quantities are then used as input to a
Monte Carlo approach of the charge transport within solids.

5.6.1.2 Theory of Monte Carlo Simulations

The transport of electrons within a material can be simulated by a classical MC
approach, assuming that the non-relativistic electron beam wavelength is small with
respect to interatomic separation [118] and that the scattering cross sections for the
different processes occurring within materials are known.

At this level the target is assumed to be semi-infinite, homogeneous and
amorphous, the latter conditions supporting the assumption of incoherent scattering
between different events. In our transport model, we consider a monoenergetic N -
electron beam impacting on the target with kinetic energy T and angle of incidence
θ with respect to the surface normal.

Electrons can undergo elastic and inelastic scattering. The scattering is usually
elastic when electrons scatter nuclei with far heavier mass, and only a trajectory
change by an angle θ is recorded. In this case, the elastic cross section σel is
calculated by using the Mott theory, which is based on the solution of the Dirac
equation in a central field [117]. In contrast, inelastic scattering processes resulting
in both an energy loss W and a directional change θ are mainly due to electron-
electron interactions.

Our MC algorithm proceeds by assuming that the path travelled by a test charge
between two subsequent collisions is Poisson-distributed, so that the cumulative
probability that the electron goes a distance �s before colliding is given by:

�s = −λ · ln(r1) (5.24)

The random numbers r1, as well as all random numbers employed in our MC
simulations, are sampled in the range [0,1] with a uniform distribution. A second
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random number r2 is compared with the elastic (pel = λel
λel+λinel ) and inelastic

(pinel = 1 − pel) scattering probabilities to determine whether the scattering is
elastic (r2 < pel) or inelastic (r2 ≥ pel). The algorithm to determine which move
is accepted or refused resembles the Bortz-Kalos-Lebowitz kinetic Monte Carlo
approach [128] rather than the typical Metropolis algorithm.

The outcome of an elastic interaction is given by the trajectory deflection of an
angle θ ′ with respect to the direction before the collision, which can be computed by
equalizing the following cumulative elastic probability with a third random number
r3:

Pel(θ
′, T ) = 1

σel
2π

∫ θ ′

0

dσel

dθ
dθ = r3 (5.25)

On the other hand, inelastic processes are dealt with by computing the inelastic
scattering probability as:

Pinel(W, T ) = 1

σinel

∫ W

0

dσinel

dW ′ dW ′ = r4 (5.26)

As customary in electronic transport MC calculations, the maximum energy loss
corresponds to half of the kinetic energy of the incident electron, to comply with the
indistinguishability principle of identical particles. To determine the energy loss W ,
we generate a database of Pinel values for different W and T , and we equalize the
integral in Eq. 5.26 to a random number r4.

Eventually, scattered electrons can be ejected from the target. This ejection can
be assessed by a quantity that is called the secondary emission yield (δ). The latter
is given by the ratio between the number of secondary electrons emitted from the
target material and the number of electrons of the primary beam. The assessment
of the secondary electron spectral features is particularly important in imaging
techniques [129, 130]. In their way out of the solid, the electrons lose further energy
to overcome the potential barrier EA (electron affinity or work function) at the
surface of the material. This process can be modelled as scattering by a potential
barrier. Thus, the transmission coefficient can be computed as follows:

t =
4
√

(1 − EA/(T · cos2θ ′
z))

(1 +
√

(1 − EA/(T · cos2θ ′
z)))

2
(5.27)

where t represents the probability that the electron leaves the sample’s surface and
θ ′
z is the incident angle with respect to the surface normal. Finally, by comparing

this transmission coefficient with a random number r5, electrons are (or are not)
emitted into the continuum with a kinetic energy lowered by the work function EA
whenever t ≥ r5 (t < r5). By definition, emitted electrons emerging with kinetic
energies below 50 eV are called secondary electrons. The Monte Carlo routines used
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for performing these simulations are embedded in the in-house developed code suite
SURPRISES [131–133].

5.6.1.3 Monte Carlo Simulations of Energy-Loss Spectra and Secondary
Electron Yield

Diamond

To compare our experimental REELS data of diamond with the three different
models of ELF presented above, we performed Monte Carlo (MC) simulations
following the scheme reported in Sect. 5.6.1.2. In our MC simulations, diamond
crystals are approximated by a homogeneous system with density 3.515 g/cm3

[123]. Thus, in our simulations we assume that the ELF is almost similar in all
directions, and thus we can retain our simulated ELF along the �L direction only
for calculating the energy-loss spectra. The band gap of diamond was set equal
to 4.16 eV. The electron beam direction is orthogonal to the target surface, and
the initial kinetic energy ranges from 250 to 2000 eV. The number of impinging
electrons is 109.

First, we notice that in our treatment we define more generally as backscattered
electrons those beam electrons that are reflected back out of the specimen after
both elastic and inelastic collisions. In Fig. 5.31 spectra of backscattered electrons
simulated in terms of the three different models of the ELF are compared with
our REELS experimental data. Simulated and experimental spectra present the σ

plasmon peak at ∼35 eV, related to the four valence electrons of the equivalent
covalently bonded carbon atoms. This finding is in agreement with the ELF function
in the top left panel of Fig. 5.29, showing a maximum at about the same energy.

Furthermore, the two-plasmon excitation at higher energy (∼70 eV) in the
experimental spectrum is also present in our MC simulations. We observe that while
the MC simulations carried out using the dispersion law of Eq. 5.17 show a blue shift
with respect to experimental data, the use of a full AI approach results in a better

Fig. 5.31 REELS of
diamond: experimental data
are reported in black, while
simulated results using the
three different dielectric
models are sketched in red
(AI), blue (DL-AI) and green
(DL-E). Electron beam
kinetic energy is 1000 eV.
Data are normalized with
respect to the σ plasmon
peak. (Adapted from
Ref. [18])
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agreement with experiments. We can conclude that at least in the case of insulators,
due to the strongly inhomogeneous electron density and, thus, to the complexity of
the dielectric response, the DL model is quantitatively less accurate than a full AI
approach in the prediction of the experimental REELS. This behaviour worsens at
higher transferred momenta, where particle-hole excitations, rather than collective
plasma excitation, come into play. Single-particle excitations generally cannot be
well described by a simple RPA or by the DL model of the ELF, while TDDFT AI
simulations are also able to take into account these spectral features.

Graphite

Highly oriented pyrolytic graphite (HOPG) crystals were considered to have a
density of 2.25 g/cm3 [123]. The band gap was set equal to 0.06 eV according to
our DFT calculations. MC simulations of REELS were carried out using the three
different approaches to the calculation of the ELF mentioned above, with a number
of electrons in the beam equal to 109. Initially, only the in-plane component of
the energy-loss function was dealt within the calculation (i.e. we considered the
component of the momentum transfer only along the graphite layers). In Fig. 5.32
we report the MC REELS simulations compared to our experimental measurements
(black line).

We notice that our MC simulations reproduce both the π (due to the collective
excitation of valence electrons in the π band) and the π + σ (due to collective
excitation of all valence electrons) plasmon peaks. These findings are in agreement
with the ELF function in the top right panel of Fig. 5.29, showing maxima at about
the same energies. While the results of the simulations show good agreement with
experimental data independently of the ELF model, nevertheless, using the ab initio
calculated ELF at finite momentum transfer, a third peak around 60 eV can be
found. This peak corresponds to two-plasmon excitation, and its presence is less

Fig. 5.32 REEL of graphite:
experimental data are
reported in black, while
simulations using the three
different models are sketched
in red (AI), blue (DL-AI) and
green (DL-E). Electron beam
kinetic energy is 1000 eV.
Data are normalized with
respect to the π + σ plasmon
peak. (Adapted from
Ref. [18])
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Fig. 5.33 REELs of HOPG for several primary beam kinetic energies. Red lines show simulated
spectra, while black curves report our experimental data [18]. The results are normalized at a
common area of the elastic peak. (Adapted from Ref. [64])

apparent by adopting DL models. Indeed, in DL models the RPA approximation
describes the system as composed of free electrons; in the case of graphite, the
electrons populating the π bands are delocalized, and they behave as almost-free
electrons. For this reason, the π plasmon peak is prominent in all three spectra. The
discrepancies found in the energy-loss spectral features recommend the use of AI
approaches for the extension of the ELF out of the optical region, in order to deal
accurately with the electronic motion inside the material.

Furthermore, we performed REEL spectra MC simulations at several primary
beam kinetic energies for a value of the anisotropy parameter f = 0.6, which
provides the best agreement between experimental and calculated REELS (see
Fig. 5.33). This anisotropic model is consistent with the higher tendency of the
electrons to move along the graphite planes rather than across the planes.

Finally, the assessment of secondary electron (SE) spectra and yield is crucial
in imaging techniques. SE emission from graphite was thus assessed by MC
simulations, using a kinetic energy of the incident beam (N = 106) equal to 1000 eV.
In Fig. 5.34 we compare our MC calculations with the acquired experimental
spectra.
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Fig. 5.34 Secondary electron
spectra of HOPG. Black line
represents experimental data,
while in red we report the
theoretical spectrum. The data
are normalized to a common
height of the secondary
electron emission peak.
(Adapted from Ref. [64])

5.6.2 Graphite for Armour Technologies

The study of ballistic properties of layered two-dimensional materials upon the
hypervelocity impacts is an important topic for the protection of structures and
devices from the penetration of highly energetic projectiles [61]. In particular, in
this section we describe the impact of C60 molecules on graphite.

While the critical penetration energy of monolayer membranes can be deter-
mined using monolayers, the synergistic behaviour of multilayered structures, such
as graphite, depends dramatically on the interface characteristics (e.g. adhesive
strength). Indeed, in some occasions, the layer coupling may not be effective. This
effect can be expressed using the following energy absorption scaling law:

Kabs(N)

N
= K × Nα (5.28)

where K is a constant. A scaling exponent α > 0 indicates a synergistic behaviour
in which single layers interact to mutually enhance their specific contribution. On
the other hand, for α = 0, the total absorbed energy is the mere sum of single-layer
contributions, whereas for α < 0 a suboptimal behaviour is identified in which
increasing the number of layers leads to worse or inefficient interlayer coupling.

At the nanolevel, we find by impinging C60 fullerene on graphite samples
that a synergistic interaction between the graphene layers emerges, whereby an
optimal number of layers, between 5 and 10, can be identified demonstrating
that few-layered 2D material armours possess impact strength even higher than
their monolayer counterparts. In Fig. 5.35 we report the representation of the
optimal number of layers, which corresponds to both the maximum specific energy
absorption by strain and the inversion in the sign of the scaling exponent of Eq. 5.28.

These results provide fundamental understanding for the design of ultralight
weight multilayer armours using enhanced 2D material-based nanocomposites.



5 Enabling Materials By Dimensionality: From 0D to 3D Carbon-Based. . . 187

Number of layers
N opt 5÷≈ 101 100

1

2

N
or

m
al

iz
ed

 a
bs

or
be

d
en

er
gy

 p
er

 l
ay

er

Fig. 5.35 Representation of the optimal number of layers, which corresponds to both the
maximum specific energy absorption by strain and the inversion in the sign of the scaling exponent
of Eq. 5.28. (Adapted from Ref. [61])

5.6.3 Other 3D Carbon Materials: Foams and Graphene
Frameworks

5.6.3.1 Graphene Foams

Graphene foams are all-carbon 3D structures made by big fullerenes connected
through carbon nanotubes (see top panels of Fig. 5.36), so they possibly represent
relics of the mechanical and thermal properties of graphene. Recently, they have
attracted interest for their possible use as electrochemical storage devices, in
wearable electronics, in chemical sensing and as impact energy absorbers [63, 65].

In particular, one can assess the mechanical and thermal performances of
foams characterized by increasing mass density and decreasing average pore size.
In the bottom panels of Fig. 5.36, we show the mechanical performances under
compression for regular (bottom left) and random (bottom right) foams. Regular
foams are nanotruss networks characterized by some degree of crystallinity with
face-centred cubic geometry (these are shown in the top left panel of Fig. 5.36).
It is worthwhile noticing that the mechanical response of regular foams to loading
depends on the ratio between the nanotube and the sphere diameters (see bottom
left panel of Fig. 5.36). In the case of random foams, where pore positions and
dimensions are random (see top right panel of Fig. 5.36), the higher-density foams
show the typical slope change in the stress-strain curve at 5–10% strain, moving
from linear elasticity to bending stress plateau, and lower density foams display
a quasilinear behaviour up to 35% strain (see bottom right panel of Fig. 5.36).
We conclude that in both crystalline and random foams, we observe the typical
elastic deformation regime under compression, with a specific Young’s modulus
significantly increasing with a decreasing average pore size. Nevertheless, some of
these nanotruss networks present a negative Poisson’s ratio in compression, like
re-entrant foams. Furthermore, for nanotruss network, at 5–8% strain, the stress is
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Fig. 5.36 Top panels: crystalline and random graphene-like foams. Bottom panels: stress-strain
curves of crystalline (left) and random (right) foams with different sphere (ds ) and tube (dn)
diameters in compressive regime. Middle: electron microscopy image of a graphene random foam
(courtesy of CNR-IMM Bologna, Italy). (Adapted from Refs. [63, 65])

in the range 90–130 MNm kg−1, while for random foams at the same strain, the
values are in the range 3.9–36.6 MNm kg−1. This makes clear that regular foams
are mechanically stiffer than the random ones.

Finally, owing to the interest of using foams as a mean for achieving thermal
resistance, we assess the thermal conductivity of the random foams using the
equilibrium Green-Kubo approach [134, 135]. According to this formalism, the
equilibrium thermal conductivity k can be calculated as follows:

k = V

3KBT 2

∫ ∞

0
〈J (0) · J (t)〉dt (5.29)

where V is the volume of the simulation cell, t is the correlation time, KB is
the Boltzmann constant and r identifies the particle positions. The heat current J ,
appearing in Eq. 5.29, is defined by:

J = 1

V

(∑

i

Eivi + 1

2

∑

i<j

(F ij · (vi + vj )r ij )
)

(5.30)

where v is the velocity of a particle, r ij and F ij are the distance and force between
the particles i and j and Ei is the total energy per atom. The first term in the
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Fig. 5.37 Time averaged vs. simulation time of the four random foam families calculated as by
Eq. 5.29. The asymptotic values after 300 ps provide the thermal conductivity of the samples.
The shaded area for each relevant curve represents half of the standard deviation. (Adapted from
Ref. [63])

right-hand side of Eq. 5.30 corresponds to convection while the second term to
conduction. The integrand in the expression 5.29 of the thermal conductivity is the
heat current autocorrelation function (HCACF). While foam thermal conductivity
is affected by both connectivity and defects, nevertheless we obtain similar values
for all the investigated families. The thermal conductivity, reported in Fig. 5.37, is
comparable to that of glass, thus higher than materials typically used as thermal
insulators, such as polyurethane rigid foams.

5.6.3.2 Pillared Graphene

Pillared Graphene Frameworks (PGF) are a novel class of microporous materials
made by graphene sheets separated by organic spacers [136, 137]. One of their main
features is that the pillar type and density can be chosen to tune the capacity of the
material to, e.g. adsorb gases or separate gas mixtures. Pillars are typically made
by organic rigid molecules, containing carbon and/or nitrogen (see top panels of
Fig. 5.38). In general, the pillar density plays the most important role in determining
gas adsorption rather than the chemical typology of the spacers. In the low-
pressure regime (�10 bar), the amount of gas adsorbed is an increasing function
of pillar density. At higher pressures the opposite trend is observed. This effect is
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Fig. 5.38 Top: typical PGFs with nitrogen and organic based pillars. Bottom left: Volumetric
adsorption isotherms of CH4 at T = 298 K in PGF. Bottom right: Selectivity for gas mixtures
at T = 298 K, normalized with respect to the zero-pressure limit value of selectivity (S0).
(Reproduced by adapting figures from Ref. [136])

clearly visible in the bottom left panel of Fig. 5.38, where the volumetric uptake
of CH4 vs. pressure is plotted. Other than adsorption, PGF can be used to sieve
gas binary mixture, such as CH4/H2, CO2/H2 and CO2/N2. The dynamic of the
mixture passing through the pillared structures can be simulated by assessing the
diffusion coefficients taking into account the framework flexibility that is essential
in assessing the dynamical properties of the adsorbed gases. Good performance for
the gas separation in mixtures was found with values comparable to those of metal-
organic frameworks (MOFs) and zeolites (ZIFs) [138, 139]; see bottom right panel
of Fig. 5.38.

5.7 Conclusions and Future Outlook

The first goal of this chapter was to demonstrate the impact that dimensionality
has in the emergence of novel properties at nanoscale. Climbing up the “ladder of
dimensionality”, from 0D to 3D, we discussed a variety of systems using several
all-carbon-based materials as role models of our analysis.

In particular, we used fullerene, the spherically shaped 0D carbon allotrope,
accelerated to supersonic velocities to demonstrate the factual possibility to synthe-
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size graphene sheets at low temperature via our in-house SuMBE growth technique.
While we did not succeed for technological limitations to lower the working
temperature down to room conditions at variance with the case of SiC growth,
however SuMBE was capable of synthesizing a fairly even coating of graphene-
like material in a single layer at 645 ◦C using H2 as carrier gas. This temperature
is remarkably smaller than that of other widely used approaches, such as CVD (in
excess of 900 ◦C), MBE of C60 on Ru(0001) (725 K for the cage thermal break
and 1200 K for complete monolayer formation) [140] or on noble metals (1050 K)
[141]. Graphene nano-islands, even according to our metadynamics simulations, are
not made of regular hexagons, like in pristine graphene, but also contain pentagons,
which come from the original buckyball structures. We notice that this characteristic
is potentially useful, because the pentagonal defects introduce a band gap into the
material, something materials scientists have longed hoped to create in graphene.
Although at this stage we believe that our results represent a proof of principle,
the technique looks interesting, not least because it produces relatively high-quality
films and could also be applied using a wide range of materials as a substrate, such as
semiconductors and insulators avoiding the graphene layer transfer from the growth
substrate to different substrates for producing high-end electronic devices.

We then discussed a systematic approach for generating bi-dimensional all-sp2

carbon allotropes, aiming at decreasing the density of graphene without depleting
its unique mechanical properties. This method proceeds by augmenting the number
of congruent discs under the constraint of local stability. The daughter structures
share the common drawbacks of having lower stability and smaller cohesive energy
than graphene, while their density is reduced by 45% with respect to graphene.
In particular, we conclude that (i) flakene may represent the least dense possible
architecture among the families of bi-dimensional all-sp2 carbon allotropic forms
under the local stability constraints; (ii) the augmentation increases the metallicity
character of the daughter structures with respect to parent ones; (iii) while the
absolute stress-strain characteristics are definitely depleted by augmentation, also
a threshold exists below which one cannot reduce further the density without a
considerable performance loss of the specific mechanical properties; (iv) tilene
parent displays a specific strength higher than graphene; and (v) finally, graphene
presents one of the highest specific modulus ever found, and the quest for finding a
better replacement in mechanical engineering applications is still open.

Graphene can be also rolled in the shape of nanotubes, and we have showed,
using a GW approach based on the expansion of the polarizability operator in
an optimal basis, how the electronic band gap of semiconducting CNTs evolves
by increasing the tube size. This approach allows one to avoid the explicit sum
over the unoccupied states while allowing for good accuracy. We showed that an
accurate estimate of the excitation binding energies can be achieved by coupling
optical measurements with theoretical modelling [93, 95]. We extrapolated the gap
vs. diameter function for large dimensions showing that this dependence can be
modelled by Egap = 1.54 eV× nm. This relation is found to be in good agreement
with a recent direct measurement of the electronic gap performed via STS for the
case of 1.4 nm diameter CNT [91].
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In the 3D case of study, we assessed the frequency-dependent dielectric response
and energy-loss functions of diamond and graphite in two ways: a full ab initio
approach, in which we carry out time-dependent density functional simulations in
linear response for different momentum transfers, and a semiclassical model, based
on the Drude-Lorentz extension to finite momenta of the optical dielectric function.
We conclude that ab initio calculated dielectric functions lead to better agreement
with measured energy-loss spectra compared to the widely used Drude-Lorentz
model. This discrepancy is particularly evident for insulators and semiconductors
beyond the optical limit (q �= 0), where single-particle excitations become relevant.
Furthermore, we show that the behaviour of the energy-loss function obtained at
different accuracy levels has a dramatic effect on other physical observables, such
as the inelastic mean free path and the stopping power in the low energy (<100 eV)
regime and thus on the accuracy of MC simulations of REEL spectra. Thus, the
major point of this work is to show that an accurate treatment of the electron-
electron correlations beyond the random-phase approximation of the homogeneous
Fermi gas is necessary to increase the overall accuracy of the simulations to be
compared with REEL experiments. We also discuss a theoretical approach for taking
into account the anisotropic structure of HOPG in the Monte Carlo simulations of
charge transport. The anisotropic description of the dielectric response is achieved
by linearly combining the contributions to the inverse inelastic mean free path
and energy losses along the two main orthogonal directions identifying the layered
crystalline structure of graphite. Monte Carlo simulated spectra, obtained with our
anisotropic approach, are compared with acquired experimental data of reflection
electron energy loss and secondary electron spectra, showing a good agreement.
These findings validate the idea of the importance of considering properly weighted
interplanar and intra-planar interactions in the simulation of electron transport in
layered materials.

Furthermore, we discussed the mechanical behaviour of single and multilayer
graphene armours subjected to hypervelocity impacts of fullerene molecules, due to
their outstanding mechanical stability. The investigation of the interlayer synergy
between adjacent layers at the nanoscale determines that an optimal number
of layers, between 5 and 10, emerges that maximizes also the specific energy
dissipation under impact. These results suggest that multilayer 2D material-based
armours should be structured and optimized at the nanolevel, not relying on the
mere high-specific mechanical properties of the constituent materials.

Finally, we studied the mechanical properties of nanotruss networks and of
random foams, as a further example of 3D materials based on carbon. In this respect,
we conclude that nanotruss networks and random foams may represent exceptional
candidates for porous, flexible and high-strength materials. Basically they inherit
the marvellous mechanical properties of the parent material, graphene, adding a
third bearing stress dimension. In applications to gas adsorption and sieving, other
convenient 3D architectures are represented by the PGFs. Our results show that
the density of pillars dramatically affects the adsorption rather than the pillar type
as, under saturation conditions, the increase of pillar density results in a sensible
decrease of the amount of gas adsorbed.
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After having discussed the marvellous properties that carbon nanomaterials
acquire by moving up the dimensionality ladder, we believe meaningful to provide
an outlook about the foreseeable impact that over the next decades carbon-based
materials can have in defining the reach and applications of nanotechnology. Indeed,
the versatility of carbon to make bonds with itself and also other chemical elements
with different hybridization levels represents the most striking feature which allows
to use it in different technological scenarios. In the last three decades, starting
from the discovery of fullerenes, carbon nanotube (CNT), graphene and other 2D
materials, we have been flush with novel ideas and innumerable attempts to find
the killer applications for these remarkable nanostructures. For example, nearly
two decades of research in graphene fundamental properties have landed potential
influence on longer-lasting batteries, more efficient solar cells, transparent and
wearable faster electronics, novel LCD and OLED display panels, data storage
devices as well as novel approaches to electrochemical sensing in medicinal
technologies or to reinforcing composite matrices to enhance their mechanical
properties. Significant breakthrough in our everyday life can also come from
the revival of CNT-based technologies, such as in the production of transparent
electrodes due to their high conductivity, which allows the construction of ultra-thin
films (1–100 nm). Additionally, one can exploit CNTs for solving environmental
issues due to their promising catalytic properties, such as in pollution remediation,
and energy-related problems, such as in the search for alternative energy sources to
replace the use of fossil fuels or the production of H2 via water splitting due to the
large number of active adsorption sites.

Nevertheless, we notice that so far, despite the many worldwide efforts to
advance carbon-based technology by using CNT or graphene, very few real-world
applications benefit from the potential that these materials display. This still missing
carbon revolution to replace silicon as the material of the future electronics seems
to be due to factors such as mass production and sample quality. For example,
the requirement of large-area, defect-free, grain boundary-free, monocrystalline
graphene to date has not been yet achieved. Furthermore, the question of whether
CNTs and graphene are the right choices for mechanical reinforcement still remains
largely unanswered, basically due to adhesion issues at the interface. Nevertheless,
with the great deal of interest in carbon-based technologies, it would not be
surprising if the first commercially available applications could be already found in
the next decade timeframe. Still, we believe that what makes CNTs and graphene so
special is beyond their technological applications, as they represent a paradigm of a
new class of mono- and bi-dimensional materials, whose discovery and study clearly
date from its synthesis. Furthermore, the electrical conductivity, the electronic
structure and the optical properties of carbon-based materials can be easily tuned by
heteroatom doping in order to adjust their electron mobility, charge transfer capacity
and optical response. For example, due to the potential applications as a basic unit
of a quantum computer, in quantum cryptography, spintronics and masers, recently
nitrogen-vacancy centre (N-V centre) in diamond gained a lot of attention in the
scientific community. Indeed, its most investigated and potentially useful property
is photoluminescence, which can be easily detected from an individual N-V centre.
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Electron spins localized at N-V centres can be manipulated at room temperature by
applying magnetic or electric fields, resulting in sharp resonances in the intensity
and wavelength of the photoluminescence. These resonances can be rationalized
in terms of quantum entanglement, spin-orbit interaction and Rabi oscillations and
analysed using advanced quantum optics theory.

As a final remark, we strongly believe that there is a great need for research and
development of new technologies involving the reduction of environmental impacts,
seeking the use of renewable raw and low-cost materials. In this regard, carbon-
based nanomaterials, such as ultra-thin carbon films, can play a major role [142].
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Chapter 6
Group 13–15 Needle-Shaped Oligomers
and Nanorods: Structures and Electronic
Properties

Anna V. Pomogaeva and Alexey Y. Timoshkin

Abstract Synthetic approaches, structures, and reactivity of group 13–15 needle-
shaped oligomers have been reviewed. Computational studies reveal that needle-
shaped oligomers are more stable than fullerene-like isomers for all 13–15 pairs.
Formation of such oligomers in the gas phase is energetically favorable and feasible
from the thermodynamic point of view. However, many competitive reaction
pathways are kinetically possible which leads to cascade of reactions and different
reaction products. A systematic study of the various effects of structural variations
on the electronic properties of Ga-N-based nanorods has been performed. On the
basis of DFT computations, we demonstrate that terminal groups have a crucial
impact on the electronic properties of the rod-shaped [RGaNH]3n (R=H, CH3)
oligomers. Oligomers capped with GaR and NH groups adopt almost periodic
structure in which terminal groups affect only the very edges of the oligomer.
The band gap energy of the [HGaNH]3n+1 is defined by states localized at the
different ends of the oligomer. The value of the band gap is converging fast
with increase of n, and for n = 38 it is about 93% of the value of the band
gap of the [HGaNH]3∞ polymer. In contrast, termination of the [HGaNH]3n rod-
shaped oligomer by saturation of dangling bonds with H or CH3 groups destroys
the periodic pattern and increases the number of states, localized at the ends of
the oligomer. This way of termination is characterized by systematic change in
structural parameters of the oligomer and near exponential decrease of the band gap
energy with the oligomer length. The band gap energy for the rod-shaped oligomer
of 10 nm of length (n = 38) amounts to only 27% of the value for the band gap of
the [HGaNH]3∞ polymer. Substitution of Ga atoms by Al and In has also been
considered. Absorption spectra undergo a red shift if Ga atoms are replaced by
In atoms and a small blue shift if Ga atoms are replaced by Al atoms. The effect
of electron-donating and electron-withdrawing terminal groups (H, CH3, F, CF3)
on a dipole moment and energy gap values is found to be significant. The band
gap energy of long tube-shaped Ga-N-based oligomers can be tuned within 2 eV
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by changing the substituents at the ends of the oligomer. A combined effect of
all considered factors, substituent groups variations, rod’s elongation, and the way
of ends’ termination, can help to vary energy gap of the [HGaNH]3n rod-shaped
oligomer within the range 1–7 eV. Potential applications and further directions are
also discussed.

Keywords 13–15 compounds · Ga-N · Oligomers · Reaction mechanisms ·
DFT · Electronic properties

6.1 Introduction

In past decades, chemistry of oligomeric group 13–15 compounds has grown
dramatically due to their importance as precursors for semiconductor materials.
Group 13–15 binary compounds are prospective materials for microelectronics,
solar cell elements, light-emitting diodes, UV photodetectors, high electron mobility
transistors, and ceramic materials [1–3]. Among 13–15 binary compounds, the
gallium nitride stands out due to its unique properties and applications [4–6].
The simplest architectures of interest here are one-dimensional (1D) nanorods or
whiskers. One-dimensional nanopatterning of Ga-N surface results in significant
enhancement (by 40–60%) of the light output of Ga-N-based LEDs [7]. Production
of one-dimensional 13–15 architectures is an important task. Oligomer and 1D
polymer compounds are excellent precursors for the 13–15 materials. In 1990
only several 13–15 oligomer compounds have been experimentally known, mostly
amido- and iminoalanes [8]. Since then, the rapid developments in oligomer 13–15
chemistry have been the topic of numerous books and reviews [9–22].

Among the many possible structures of 13–15 oligomers, the needle-shaped or
rod-like compounds attracted special attention. These compounds can be considered
as a product of subsequent oligomerization of [RMYR’]3 trimeric rings, which
can be either saturated with R,R’ substituents or capped by MR and YR’ groups,
resulting in open and closed oligomers, respectively (M = Al, Ga, In; Y = N, P,
As; R,R’ = H, halogens, or organic substituents). Their structures are schematically
shown in Fig. 6.1 on the example of [MeGaNH]3n+1.

It was computationally predicted that with the increase of the oligomerization
degree, these compounds become more stable than fullerene-like clusters for all
13–15 pairs [23, 24].

The key oligomerization degrees of closed [RMYR’]m oligomers are 4, 7, 10,
13, 16, etc., and they can be written as [RMYR’]3n+1, where n – number of trimeric
[RMYR’]3 rings. The drum-type hexamer [RMYR’]6 is a product of dimerization
of two trimeric [RMYR’]3 rings.

Formation of oligomeric compounds in the gas phase at high temperatures
was proposed on the basis of the computational study of AlCl3-NH3 system in
1997 [25] based on experimental observations of 13–15 nanoparticle formation in
CVD processes [26–30]. Experimental in situ mass spectrometry (MS) monitoring
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Fig. 6.1 Structures of (a) open Me3[MeGaNH]3nH3 and (b) corresponding closed
[MeGaNH]3n+1 needle-shaped oligomers with one, two, three, and four [MeGaNH]3 rings

of Ga-N MOCVD from trimethylgallium and ammonia suggested formation of
[Me2GaNH2]n oligomers, most probably with n = 3 [31]. Dimeric [Me2GaNH2]2
species have also been observed [32, 33]. Laser-assisted reactivity studies between
trimethylgallium or trimethylaluminum and ammonia at low temperatures by
Demchuk and Koplitz [34–37] provided mass spectrometry evidence of formation
of larger oligomeric molecules, containing up to 6 aluminum and gallium atoms.
Indirect measurements pointed out the formation of species containing as many as
80 gallium atoms [38]. These experimental findings confirmed our 1997 hypothesis
[25] concerning the gas phase oligomer formation and opened the field for the
extensive computational studies of 13–15 amido [39–41] and imino [42–50]
compounds, as well case studies for G-aN CVD from organometallic Ga(CH3)3NH3
[51–53] and inorganic GaCl3NH3 [54, 55] precursors.

In this review, in Sect. 6.2 we will discuss synthetic approaches to 13–15 needle-
shaped oligomers, review their experimental structures, and briefly present results
of computational studies of reaction mechanisms for generation of 13–15 needle-
shaped compounds.

In Sect. 6.3, structures and electronic properties of Ga-N-based rod-like
oligomers and related compounds will be discussed in detail based on results
of our recent comprehensive computational studies [56–59]. Possible directions for
future research are also outlined.
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The following abbreviations are used: Me, methyl; Et, ethyl; Pr, propyl; Bu,
butyl; Hx, hexyl; Ph, phenyl; Xyl, -C6H3-2,6-Me2; Cp, cyclopentadienyl; py,
pyridine; Mes, mesityl (2,4,6-trimethylphenyl or –C6H2-2,4,6-Me3); Mes*, 2,4,6-
tri-tert-butylphenyl (–C6H2-2,4,6-tBu3); Dipp, 2,6-diisopropylphenyl (-C6H3-2,6-
iPr2); Ad, adamantyl; THF, tetrahydrofuran; r.t., room temperature; ALD, atomic
layer deposition; CVD, chemical vapor deposition; MOCVD, metal organic CVD;
LED, light-emitting diode; UV, ultraviolet; MO, molecular orbital; CO, crystal
orbital; AO, atomic orbital; PBC, periodic boundary condition; BZ, Brillouin zone;
HOMO, highest occupied MO; LUMO, lowest unoccupied MO; (TD)DFT, (time-
dependent) density functional theory; GGA, generalized gradient approximation;
TS, transition state; and PDOS, partial density of states.

6.2 13–15 Needle-Shaped Oligomers: Experimental
and Computational Studies

6.2.1 Synthetic Methods of Production of Needle-Shaped
13–15 Compounds

Thermal activation is the first method employed for the synthesis of imino com-
pounds [60–62], and it remains one of the major synthetic methods for their
generation. Wiberg [60] demonstrated that thermolysis of group 13 alkyls MR3 with
ammonia results in the stepwise elimination of RH and formation of amido and
imino compounds and finally the bulk group 13 metal nitride (MN). These reactions
in case of AlMe3 are given in Scheme 6.1.

Decomposition of Me3AlNH3 in the condensed phase (Scheme 6.1) proceeds
slowly at 60–70 ◦C with evolution of one mole of methane per mole of adduct
and formation of oligomeric amido compounds [62]. Further heating results in
formation of imino polymers (ca 150–200 ◦C) and finally amorphous AlN at ca
500 ◦C [62]. Prolonged heating at elevated temperatures increases crystallinity
of the material. However, in the original works of Wiberg [60], oligomer imino
compounds [RMNR′]n have not been isolated and identified due to their insolubility
in common organic solvents.

For the controlled synthesis of well-defined imino compounds, use of primary
amines NH2R′ instead of ammonia is necessary to prevent the last RH elimination

 Me3Al.NH3(s)
1/3[Me2AlNH2]3(s)-CH4 -CH4

1/n[MeAlNH]n(s) AlN(s)
70 oC 200 oC

m.p. 56.7 oC m.p. 134.2 oC

DA complex amido imino nitride

-CH4

500 oC
AlMe3(g)

 + NH3(g)

Scheme 6.1 Reaction sequence for the thermal decomposition of the trimethylaluminum-
ammonia adduct in the condensed phase
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 R3M.NH2R' [R2MNHR']2,3-RH
[RMNR']m

DA complex amido imino

MR3 + NH2R'
-RH

Scheme 6.2 Synthetic approach to imino compounds by thermal decomposition of DA com-
plexes

step. Reaction between R3M and NH2R′ initially produces the donor-acceptor
complex R3M·NH2R′, which upon thermolysis produces amido and afterwards
imino compounds (Scheme 6.2). The oligomerization degree m for the generated
compounds strongly depends on the bulkiness of the substituents R and R′ [12, 13,
15]. More bulky substituents yield lower oligomerization degree.

Since thermal activation requires elevated temperatures, undesirable side reac-
tions may accompany the desired reaction pathway yielding by-products, generally
due to the activation of C-H bonds [63]. For example, reaction between AlMe3
and NH2Mes* results in metallation of tBu group of the Mes* [63–65], while
reaction between AlCp3 and NH2Dipp yields [CpAlNDipp]2 ring [66]. Analogous
metallation of tBu group of Mes* was observed upon thermal decomposition of
Et2GaNHMes* [67]. Reaction between GaMe3 and NH(CH2Ph)2 also resulted in
orthometallated compound with 65% yield [68]. In order to reduce by-side reac-
tions, low pressures are often used. Thus, thermolysis of solid amido compounds
was carried out at mild conditions (130 ◦C, 10−2 Torr) for 12–36 days to afford
desirable cubanes [69].

The reaction pathway presented in Scheme 6.1 may be generalized to all group
13–15 element derivatives, as was shown by Beachley and Coates [70]. Reactions
of Me3M with YH2R (M = Al,Ga,In; Y = P,As; R = Me,Ph) results in evolution
of circa two moles of methane (1.86–2.02) and formation of the colored involatile
polymeric materials [MeMYR]n [70]. In the case of Ga derivatives, elimination
of methane was not complete; it varied from 1.41 to 1.94 even at elevated (circa
200

◦
C) temperatures. This result is in agreement with observation of P-H and

As-H stretching vibrations in all IR spectra of gallium-containing polymers. No
such absorptions were present in the spectra of Al and In polymers. Unfortunately,
no further characterization and isolation of the [MeMYR]n compounds were
performed.

Despite of this example, the general use of thermal activation methods for
phosphorus- and arsenic-containing compounds is limited due to their low thermal
stability and formation of by-products. In such a case, methathesis reactions can be
used instead. Thus, reaction between organometallic group 13 halides RMX2 and
doubly lithiated group 15 species Li2YR′ yields desired oligomer species [RMYR′]n

(R′=SiR′′
3) [71–73]:

2X2MR + 2Li2YSiR′′
3 = 4LiX + [RMYSiR′′

3

]
2
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Scheme 6.3 Synthetic approach to donor-acceptor stabilized Al-P oligomer compounds. From
[74] Copyright © 2009 by John Wiley Sons, Inc. (Reprinted by permission of John Wiley & Sons,
Inc.)

Use of the Lewis acid/base stabilization concept allowed to produce cyclic
trimer {W(CO)5}3[HAlPH]3{NMe3}3 by H2 elimination from the monomeric
W(CO)5·H2AlPH2·NMe3. The elimination is controlled by fine tuning the
temperature and solvent conditions. Elimination of one mole of H2 from
{W(CO)5}3[HAlPH]3{NMe3}3 results in the ladder compound 5 (Scheme 6.3)
[74].

Instead of primary amines, tertiary amines, phosphines, and arsines, containing
easily removable functional groups can be also utilized in elimination reactions.
For example, such substituents as SiMe3 [73] and SnMe3 [75] are easy leaving
groups. Thus, thermolysis of [(Me2GaN(iBu)SnMe3)]2 at 160oC resulted in SnMe4
elimination with formation of hexamer [MeGaNiBu]6 [75]. Reaction between
GaCl3 and As(SiMe3)3 in the presence of the Lewis acid PtBu2Me leads to
the donor-acceptor stabilized dimeric compound [ClGaAsSiMe3]2·2PtBu2Me with
liberation of ClSiMe3 [73].

Instead of MR3 derivatives, hydridic derivatives LiAlH4 or NaAlH4 can be
used as starting compounds in reaction with NH2R in hydrocarbon solvents [76].
Such reaction pathway allows to obtain soluble hydridic polyiminoalanes [HAlNR]n

which were characterized by NMR spectroscopy [77, 78]. These hydridic [HAlNR]n

compounds can be further functionalized by substitution of the H atoms to other
groups. Thus, substitution by Cl [79], Br [80, 81], F [82], Me [83], Et [83],
-C≡CR [80, 81], and CpFeC5H4C≡C- [84] groups has been carried out. It should
be noted that this route provides access to compounds with oligomerization degrees,
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not accessible by the elimination route. As an example, reactions of [HAlNiPr]6
with AlMe3 and AlEt3 produce methyl- and ethyl-substituted hexamer species
[MeAlNiPr]6 and [EtAlNiPr]6, respectively. In contrast, direct reaction between
AlMe3 or AlEt3 and NH2

iPr resulted in tetramers [MeAlNiPr]4 and [EtAlNiPr]4
[85].

HCl, HgCl2, and TiCl4 were used to obtain partially or fully chlorinated poly(N-
alkyliminoalanes), starting from the corresponding hydride derivatives [79].

[HAlNR]n + n HCl
Et2O−→ [ClAlNR]n + nH2

[HAlNR]n+n/2HgCl2
Et2O−→ [ClAlNR]n+n/2Hg+n/2H2

[HAlNR]n + n TiCl4
n−heptane−→ [ClAlNR]n + n TiCl3+n/2H2

A series of Cl- and Br-substituted compounds was obtained by substitution
from [HAlNCH2Ph]6 [80, 81, 84]. Roesky was able to introduce six ferrocene
units CpFeC5H4C≡C as substituents to form very bulky hexamer compound
[CpFeC5H4C≡CAlNCH2Ph]6 [84]. One of the drawbacks of such an approach
is incompleteness of the substitution reaction. Thus, only partial substitution of
H by F atoms was achieved by treating heptamer compound [HAlNCH2(1-Ad)]7
with Me3SnF. Resulting product has an empiric formulae [F0.32H0.68AlNCH2(1-
Ad)]7 [82]. Reaction of [HAlNR]4 with ZpCp2Me2 leads to stepwise substitution
of H into Me groups, forming [Me0.22H0.78AlNR]4, [Me0.5H0.5AlNR]4, and finally
[MeAlNR]4 [83].

Series of substitution reactions have been performed for the [HAlNR]n com-
pounds (n=4,6,8) by Nöth and Wolfgardt, resulting in full or partially sub-
stituted compounds XmHn-m[AlNR]n (X=D,Cl,Br,I) [86, 87]. Mechanism of a
hydrogen/deuterium exchange via formation of intermediates with pentacoordinate
aluminum was discussed in work [87].

Despite numerous successful examples, the application of substitution reactions
is limited due to undesired side processes, one of which is a cage degrada-
tion to form amido compounds [79]. Cage degradation reaction was observed
upon interaction of PhSH with [HAlNCH2(C4H3S)]6, producing amido compound
[(PhS)2AlNHCH2(C4H3S)]2 instead of the desired [PhSAlNCH2(C4H3S)]6 [81].
Computational studies suggest that both substitution reactions of [HAlNR]n and
cage degradation reactions with formation of amido compounds [H2AlNR2]m are
thermodynamically favorable and therefore can proceed concurrently [47].

Polyalkyliminoalanes can be also produced in one-pot reaction between alu-
minum and primary amines in hydrogen atmosphere [88]:

Al + RNH2=1/n[HAlNR]n + 1

2
H2
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This reaction is activated by metallic sodium, NaAlH4, or [HAlNR]6. Since such
reaction requires excess of molecular hydrogen, it was assumed that the first step is
in situ generation of AlH3. Reaction of LiAlH4 with NH3RCl has also been used to
generate iminoalanes [89]:

LiAlH4 + NH3RCl=1/n[HAlNR]n + 3 H2 + LiCl

Direct reduction of nitriles RCN by AlH3·NMe3 also results in the formation of
iminoalanes [89]:

AlH3· NMe3 + RCN+1/n[HAlNCH2R]n + NMe3

Similar approach was used by Roesky for the synthesis of various hexamer
compounds [80], which were used as a starting materials for the functionalization
by substitution reactions [80, 81, 84].

It should be also noted that reaction between MR3 and YH3 is one of the major
methods in production of 13–15 binary materials in CVD processes [90–92], which
occurs at high temperatures. In the condensed phase chemistry, it has been mostly
used for the production of iminoalanes.

6.2.2 Structural Features and Reactivity of Needle-Shaped
Oligomers

6.2.2.1 Tetramers

Formally, several isomers are possible for the [RMYR′]4 composition, but the
cubane-type structures in which both metal and pnictogen centers adopt coordina-
tion number 4 (Fig. 6.2a) are the most stable [50]. The metal-metal bonded isomer
with Al4 tetrahedral core Al4(NRR′)4 (Fig. 6.2b) is also structurally characterized
[93]. Structural properties of the experimentally known more than forty 13–15
cubanes have been discussed in [20]. Uhl [11] reviewed the hydrazine-based
compounds, which possess M4N8 core with five-membered rings, which formally
corresponds to the [RMYR′]4 composition.

Coordination number 4 both on metal and pnictogen centers makes cubanes
relatively stable species. Thus, [iPrInPSiPh3]4 is relatively stable toward alcoholysis
but unstable with respect to photolysis and electrochemical oxidation [95]. Many of
cubane clusters are volatile compounds and can be purified by vacuum sublimation.
Structures of cubane-type clusters are usually highly symmetric with equal M-Y
bond distances in the M4Y4 cube.

Despite coordination number 4 on metal center, metal atoms in cubanes are
able to participate in donor-acceptor interactions. Thus, each In atom in [MeIn
(THF)N(4-C6H4F)]4 is coordinated to THF molecule [96], which may result
from the larger atomic radius of indium. [HAlNiPr]4 forms solid adduct with
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Fig. 6.2 Structures of [RMYR′]4 tetramers on the example of (a) cubane-type [HAlNiPr]4
cluster tetrakis(μ3-isopropylimido)-tetrahydrido-tetra-aluminium [94] and (b) tetrahedral cluster
tetrakis((N-(2,6-Di-isopropylphenyl)trimethylsilylamino)-aluminium(I)) Al4(NRR′)4 [93]. Alu-
minum atoms are colored in pink, nitrogen in blue, silicon in yellow, and carbon in gray. Hydrogen
atoms are omitted for clarity

1,2-diisopropyldiazene molecule iPrN=NiPr, but this adduct decomposes upon
sublimation to give pure [HAlNiPr]4 cubane (Fig. 6.2a) [94].

It was supposed that interaction of weakly M-Y bonded cubanes with strong
Lewis bases will result in opening of the M4Y4 cage, yielding ladder-type structures.
Tensimetry study of interaction of phosphorus-containing cubane-type clusters
[RMPR′]4 (M = Ga, In) toward pyridine showed that M4P4 core is stable and
does not react with Py, although computations show that process is energetically
favorable at low temperatures [97].

Nevertheless, several group 13–15 ladder compounds of [ClMYR]4D2 compo-
sition are known and structurally characterized [98–100]. They are formed when
donor-acceptor interactions with Lewis base D prevent formation of [ClMYR]n

cages due to much lower M-Y bond energies in P-, As-, and Sb-containing cubanes
[43]. Upon the removal of donor molecules, closure of ladder structure to tetramer
or hexamer is expected. Indeed, when synthesis of [ClAlPSiiPr3]4·2OEt2 (Fig.
6.3) was carried out in absence of OEt2, hexameric compound [ClAlPSiiPr3]6 was
formed [98].

Mixed metal ladder compounds are also known. Molecular structure of
[(ClGa)2(BPh)2(NtBu)4] with Ga2B2N4 core (Fig. 6.3c) was reported in work
[101]. Analogous indium compound with In2B2N4 core incorporates bissolvated
lithium chloride molecule in the indium complex, resulting in coordination number
5 on In center.

Mixed group 13 element and mixed pnictogen tetramers are not yet
experimentally realized. [(MxM′

yM′′z)Y4]H8 and [M4(YxYyYz)]H8 (x+y+z=4;
M,M′,M′′=Al,Ga,In; Y,Y′,Y′′=N,P,As) compounds were computationally studied
in [44]. Their structural parameters resemble those of individual cubanes. The
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Fig. 6.3 Structures of ladder compounds on the example: [ClAlPSiiPr3]4·2OEt2 (a) front view;
(b) side view; (c) mixed element ladder [(ClGa)2(BPh)2(NtBu)4]. Group 13 element atoms are
colored in pink, phosphorus in orange, nitrogen in blue, silicon in yellow, chlorine in green, and
carbon in gray. Hydrogen atoms are omitted for clarity

process of generation of mixed cubanes is predicted to be thermodynamically
favorable at higher temperatures [44].

Computational studies also suggest that existence of donor-acceptor stabilized
“naked” cubanes D4[MY]4A4 (D-Lewis base; A-Lewis acid, M=B-Ga; Y=N-As)
is thermodynamically feasible [48].

In these compounds (Scheme 6.4, upper right corner), the functional groups R
are substituted by donor and acceptor molecules. The proposed reaction pathway
to these compounds from the donor and acceptor stabilized hydrides is shown
on Scheme 6.4. Computations predict that Al-N- and Al-P-based cubanes are the
most stable [48]. Indeed, use of this synthetic approach allowed Bodensteiner et al.
[74] to produce dimeric, trimeric, and ladder-type Al-P compounds (Scheme 6.3,
vide supra). In the structure of the ladder compound, middle aluminum (Al3) and
phosphorus (P2) atoms lost hydrogens and remain stabilized by donor NMe3 and
acceptor W(CO)5 molecules (Fig. 6.4).

It should be noted that in case of amines as Lewis bases instead of lad-
der compounds of [XAlNMe]4·2NMe3 composition, their formal isomers and
adamantane-type cages are realized. Reaction of primary amine NH2Me with ami-
doalanes HXAlNMe2 (X=H,Cl,Br,I) results in hydrogen evolution and formation of
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Scheme 6.4 Reaction pathways, leading to DA stabilized cubanes and higher oligomers accord-
ing to [48]. (Reprinted with permission from [48]. Copyright 2009 American Chemical Society)

Fig. 6.4 Molecular structure
of donor-acceptor stabilized
ladder
(NMe3)3[(HAl)2AlP(PH)2]
{W(CO)5}3 compound.
(From [74] Copyright © 2009
by John Wiley Sons, Inc.
Reprinted by permission of
John Wiley & Sons, Inc.)

adamantane-type [(AlX)4(NMe2)4(NMe)2] cages [102, 103]. In these compounds
the Me groups of amine nitrogen are transferred to the nitrogen atoms of the cluster
core (Fig. 6.5).

Analogous gallium compound [(GaPh)4(NHiBu)4(NiBu)2] which also features
adamantane-type structure has been prepared by reaction of [PhGa(NMe2)2]2 with
NH2

iBu [104]. Noteworthy, that in the chemical ionization mass spectrum at ca
310 ◦C, the base peak was assigned to [PhGaNiBu]4, suggesting that conversion
of adamantane-type to cubane-type structure occurs at elevated temperatures.
Formation of Ga4-containing species was also evidenced in chemical ionization
mass spectrum of [nHxGa(NMe2)2]2 at 300 ◦C [105].

Computational studies of the products of interaction of [HGaNH]4 with
one and two ammonia molecules suggest that formation of adamantane-type
[(GaH)4(NH2)4(NH)2] cage is energetically very favorable at low temperatures.
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Fig. 6.5 Molecular structure
of [(AlCl)4(NMe2)4(NMe)2]
compound with adamantane
core [103]. Aluminum atoms
are colored in pink, nitrogen
in blue, chlorine in green, and
carbon in gray. Hydrogen
atoms are omitted for clarity
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Scheme 6.5 Relationship between the ladder, cubane, and adamantine-type structures. (Reprinted
from [20], Copyright (2005), with permission from Elsevier)

At temperatures higher than 440 ◦C, liberation of extra ammonia and conversion to
cubane structure is predicted to be thermodynamically favorable [53].

The relationship between the cubane, ladder, and adamantine-type structures is
summarized on the Scheme 6.5 [20].

Formation of tetramer cubic imino compounds from amido compounds sup-
posedly proceeds with formation of open or “broken cube” compounds as inter-
mediates. NMR studies of iminoalanes evidence the existence of the amido-imino
broken cube intermediate [(AlH2)(NHR)(AlH)3(NR)3] [77, 78, 89]. The optically
active amido-imino compound was prepared with R=-CH(Ph)Me, and its catalytical
properties have been discussed [106]. “Broken cube” [In3Br4(NtBu(NHtBu)3]
compound was isolated as a by-product of synthesis of cubane [BrInNtBu]4 [107].

6.2.2.2 Heptamers and Decamers

Compared to cubanes, structurally characterized heptamers are rare [20]. The
cage of the heptamer can be viewed as an insertion of additional M3Y3 ring in
M4Y4 cubane cluster. Heptamer [HAlPSiMe2(CiPrMe2)]7 [108] (Fig. 6.6) was
crystallized and structurally characterized from the solution, which contained
mostly hexamers. Attempt to produce [FAlNCH2(1-Ad)]7 by substitution route from



6 Group 13–15 Needle-Shaped Oligomers and Nanorods: Structures. . . 213

Fig. 6.6 Structure of needle-shaped heptamer on the example [HAlPSiMe2(CiPrMe2)]7 [108]
(a) side view and (b) top view and (c) structure of the oxidized decamer [ClAlPO3Me]10 [109].
Aluminum atoms are colored in pink, phosphorus in orange, silicon in yellow, chlorine in green,
oxygen in red, and carbon in gray. Hydrogen atoms are omitted for clarity

[HAlNCH2(1-Ad)]7 was unsuccessful. Full substitution was not achieved, resulting
in compound [F0.32H0.68AlNCH2(1-Ad)]7 [82].

The needle-shaped structure of oxidized decamer [ClAlPO3Me]10 (Fig. 6.6c)
is also noteworthy [109], since it reflects the stability of needle-shaped structural
motif.

Needle-shaped heptamer with Ga7N7 core [PhGaNMe]7 was synthesized by
thermolysis of [Ph2GaNHMe]2 and structurally characterized [110]. The reactivity
leading to tetrameric and heptameric Ga-N-based compounds with adamantane-
type cores is presented in Scheme 6.6 [104]. Decomposition of adamantane-type
amido-imino compound [(GaPh)7(NHMe)4(NMe)5] at 340 ◦C leads to heptamer
[PhGaNMe]7, as indicated by chemical ionization mass spectrometry studies [104].

Computational studies of heptamer compounds [HAlNH]7 and [RGaNH]7
(R=H,Me) were performed in works [53, 111, 112]. Mixed element heptamer
clusters [(HM)k(HM′)l(NH)7] (M, M′ = B, Al, Ga and k + l = 7) and
[(HGa)7(YH)m (Y′H)n] (Y,Y′ = N, P, As and m + n = 7) have been computationally
studied by Mohajeri and Ebadi [113].
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Scheme 6.6 Reactions leading to Ga-N-based needle-shaped compounds with adamantane-type
cores. (Reprinted with permission from [104]. Copyright 2002 American Chemical Society)

6.2.2.3 Higher Oligomers and Polymers

It is well known that less bulky substituents favor formation of high oligomers
and polymers. In fact, polymeric species were predominant in first synthetic works
but were poorly characterized. Formation of polymeric compound [ClAlNMe]n

from AlEt2Cl and NH2Me was observed in 1961 [61]. It was noted that in rapid
pyrolysis of [AlEt2Cl(NH2Me)] at 160 ◦C, the solid product had intermediate,
“amido-imino” composition [(EtClAlNMeH)(ClAlNMe)]x. Prolonged heating at
210–220 ◦C resulted in white, nonvolatile highly polymeric solid material [ClAl-
NMe]n insoluble in benzene, carbon tetrachloride, pentane, and heptane. Two-
and three-dimensional network structures were suggested for the structure of
[ClAlNMe]n [61].

Reaction of LiAlH4 with NH4X resulted in polymeric [HAlNH]n, which was
converted to microcrystalline AlN at 950 ◦C [114]. Slightly off-white [HGaNH]n

solid with m.p. >270 ◦C was produced by the reaction of cyclotrigallazane
[H2GaNH2]3 with ammonia at 150 ◦C [115, 116] or, alternatively, by the reaction
of [HGa(NMe2)2]2 with excess of ammonia at room temperature [117]. Analo-
gous reaction of [HGa(NMe2)2]2 with excess of NH2Me resulted in [HGaNMe]n

polymers [117]. It was proposed that gallazane-based adducts [H2GaNH2(NH3)]
equilibrate via a ligand redistribution reaction and that the formation of [HGaNH]n

results from NH3 elimination from a diaminogalliumhydride [HGa(NH2)2] [115].
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In earlier study [118], cyclotrigallazane [H2GaNH2]3 was found to decompose
with evolution of H2 and ammonia and formation of the polymeric product,
insoluble in Et2O. Pyrolysis of this product at 300–600 ◦C yields Ga-N. Several
possible structures were proposed for [HGaNH]n imino gallanes; authors [115]
concluded that the best candidate is the planar hexagonal network. Considered
alternatives included a molecular cluster that is large enough to be insoluble, or
more complex (perhaps microporous) solid-state structure [115].

In 2005, synthesis and characterization of series of [(RGaNH)3]n oligomers have
been performed by Kormos et al. using reactions of [RGa(NMe2)]2 with ammonia at
high pressures at 150 ◦C (R=Me,Et,Bu,Hx) [119]. X-ray powder diffraction results
are in agreement with needle-shaped arrangement of Ga3N3 rings (Fig. 6.7).

Fig. 6.7 Packing of H3[(HxGaNH)3]12H3 along c axis (top view on the rod, which is aligned to c
axis). (Reprinted with permission from [119]. Copyright 2005 American Chemical Society)
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Formation of incomplete needle-shaped decamer structure [(InMe)9(AstBu)8
(OH)2]2.5THF was reported by Neumüller [120]. Intermediate formation of zinc-
blende InP cluster fragments, with external faces terminated by residual In-tBu and
P-H groups, was discussed in [96]. Formation of polymeric material [ClInPSiMe3]n

was observed in reaction of InCl3 with P(SiMe3)3 at 150 ◦C [121]. On further
heating (650 ◦C), polymeric material was converted to InP. Insoluble residues of
[tBuGaYH]n (Y=P,As) have been produced by reaction of GatBu3 and YH3 [122].
No further characterization of oligomers/polymers has been made.

Computational studies indicate that formation of gas phase needle-shaped clus-
ters from the corresponding hydrides

MH3 + YH3=1/n[HMYH]n + 2H2

is favorable thermodynamically for all 13–15 pairs even at high temperatures
[45, 53].

Stability of the needle-shaped (Fig. 6.8a, c, e) versus fullerene-like (Fig. 6.8b, d,
e) isomers of [HGaNH]n (n=10,13,16) was discussed in [53]. Needle-like isomers
are predicted to be more stable compared to fullerene-like cage structures, and
their stability increases with the increase of the oligomerization degree n [53].
This result has been generalized for all [HMYH]n compounds (M=Al,Ga,In;

Fig. 6.8 Structures of needle-shaped and fullerene-like [HMYH]n isomers. (Reprinted with
permission from [23]. Copyright 2005 American Chemical Society)
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Scheme 6.7 Relationship between Ga-N-based compounds with Ga3N3 unit: hexamer imino
compound (a); needle-shaped imino compounds (b–d); hexagonal Ga-N (e); adamantane-type
amido-imino compounds (f–h). (Reprinted with permission from [104]. Copyright 2002 American
Chemical Society)

Y=N,P,As) [23, 24]. High stability of needle-shaped oligomers allowed to propose
a mechanistic pathway for their formation, which involves subsequent condensation
of [H2MYH2]3 amido trimers [20]. Relationship between compounds of different
structural types, based on Ga3N3 cycles, is shown in Scheme 6.7 [104].

6.2.3 Reaction Pathways to 13–15 Needle-Shaped Compounds

Possible reaction pathways leading to needle-shaped oligomers will be considered
on the example of reaction between trimethylalane and ammonia. Leitner, Steiskal,
and Sofer note that “Lewis acid–base adduct Me3Al·NH3 formation and the
subsequent methane elimination leading to the trimeric amide [Me3AlNH2]3 is
the dominant reaction pathway for Al-containing species at low temperatures and
atmospheric pressure” [123]. However, gas phase chemistry involved in needle-
shaped oligomer formation is not well understood at present time. Initial methane
elimination reactions from AlMe3NH3 adduct have been considered by Tachibana
and co-workers [124, 125]. In more detail, initial reactivity between AlMe3 and NH3
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as well as reactions of monomeric Me2AlNH2 with excess of AlMe3 and ammonia
has been computationally studied by Lisovenko et al. [126]. It was shown that the
TS for the first methane elimination from the Me3AlNH3 complex is the highest
point on the reaction pathway and the only one lying above the isolated AlMe3 and
NH3. Subsequent stepwise substitution of methyl groups in AlMe3 by amido groups
NH2 is exothermic, and despite the sizable activation energies of the intermediate
steps, the overall reaction profile is essentially downhill. It was also shown [126]
that formation of [Me2AlNH2]2 dimer is very favorable thermodynamically and
affordable kinetically. This dimer can rearrange to the trimer [Me2AlNH2]3, which
is a smallest open needle cluster and a potential candidate for the growth of needle-
shaped Me3[MeAlNH]3nH3 oligomers.

Enthalpy of the dimer-trimer equilibrium reaction [Me2AlNH2]2 = 2[Me2Al
NH2]3 is −38 kJ mol−1 according to temperature-dependent NMR studies
in benzene-d6 solution [127]. Since rearrangement of [Me2AlNH2]2 dimer to
[Me2AlNH2]3 trimer is exothermic in solution, formation of trimeric species is also
expected. Indeed, trimeric [Me2AlNH2]3 has been synthesized and characterized
by Interrante et al. [128] and successfully used as single source precursor to AlN.
Numerical simulations of processes in MOCVD reactors [129] and thermodynamic
analysis of gas phase reactions [123] underline the importance of oligomeric species
in the chemical reactivity model. In 2003, trimeric [Me2AlNH2]3 was identified as
one of the important intermediates in AlN formation by X-ray powder diffraction
[130]. Vaporization and gas phase thermal decomposition of the deuterated
analog [Me2AlND2]3 were monitored by time-of-flight mass spectrometry [131,
132]. Dimeric and trimeric molecules [Me2AlND2]2,3, deuterated methane
CH3D, and oligomers with a pentameric structure were detected in the vapor
[132]. Experimental mass spectrometry observations reveal formation of cluster
compounds in the gas phase upon laser irradiation of AlMe3–NH3 mixtures at low
(below room) temperatures [34–36].

Reaction energy profiles starting from trimers [Me2AlNH2]3 and leading to
hexamer amido-imino [Me9Al6N6H9] and imino [MeAlNH]6 compounds have been
computationally explored by Davydova et al. at B3LYP/def2-SVP, B3LYP-D3/def2-
TZVPP//B3LYP/def2-SVP, and M06-2X/def2-TZVPP//B3LYP/def2-SVP levels of
theory [133]. Three alternative reaction pathways of transformations of cyclic
[Me2AlNH2]3 have been explored (Figs. 6.9, 6.10, and 6.11). Activation energies for
the first methane elimination are very close both for mono- and bimolecular reaction
pathways (Figs. 6.9 and 6.10). Intermolecular methane elimination is always
exothermic, while intramolecular methane elimination steps are endothermic. Thus,
generation of [MeAlNH]6 from [Me2AlNH2]3 at low temperatures is expected
to proceed via a bimolecular pathway. Formation of [Me9Al6N6H9] from two
[Me2AlNH2]3 trimers is expected to be less favorable, as it involves higher barriers
and lower endothermicity.

Alternative Al-N bond breaking pathway was also considered. Obtained results
show that the energy required for Al-N bond breaking in cyclic [Me2AlNH2]3
(185 kJ mol−1) is of the same order as the activation energy (183 kJ mol−1) for
the first (limiting) step of methane elimination (both for mono- and bimolecular
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Fig. 6.9 Reaction profile for monomolecular reaction of [Me2AlNH2]3 to [MeAlNH]3 with
its subsequent dimerization to [MeAlNH]6. Relative energies (in kJ mol−1) with respect to
[Me2AlNH2]3. B3LYP/def2-SVP (normal text), B3LYP-D3/def2-TZVPP//B3LYP/def2-SVP (in
italics), and M06-2X/def2-TZVPP//B3LYP/def2-SVP (in bold) levels of theory. Aluminum atoms
are in green, nitrogen in yellow, carbon in blue, hydrogen in cyan. (From [133] Copyright © 2014
by John Wiley Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.)

mechanisms) [133]. Thus, dissociative and associative reaction pathways are com-
petitive. Low-temperature/high-pressure conditions will favor bimolecular pathway,
while at high temperatures either intramolecular methane elimination or Al-N bond
breaking dissociative pathways will be operational. Gibbs energy diagram (Fig.
6.12) indicates that transition states for all three considered pathways have similar
energy and thus the pathways may operate concurrently.

Thus, formation of larger needle-shaped oligomers via interaction of
[Me2AlNH2]3 trimers appears to be feasible. The obtained quantitative results
can be used to facilitate gas phase chemical reactivity modeling in 13–15 MOCVD
processes.

In conclusion, needle-shaped [RMYH]n oligomers are known laboratory species,
which are used as precursors to 13–15 binary materials. However, these compounds
also may have their own applications. The electronic properties of open and closed
needle-shaped oligomers will be considered in detail in the third section of the
present chapter.
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6.3 Electronic Properties of Ga-N-Based Needle-Shaped
Oligomers

6.3.1 Background of Ga-N-Based Needle-Shaped Oligomers

Confinement effect of nanÑscaled semiconducting systems provides a link between
properties of bulk semiconductors and those of discrete molecules. It makes
nanoparticles attractive as fundamental building blocks for extremely small circuits.
Polarization properties of semiconducting quantum dots [134], generation of entan-
gled photons [135, 136], and decoupling of quantum effects on excitation make
nanoparticles widely applicable in physical, chemical, and medical nanoengineering
[137].

One-dimensional nanostructures, like nanowires and nanotubes, have their own
unique properties [138]. Ga-N-based nanosystems are among the most popular
for nanoengineering due to their high chemical and temperature stability. Ga-N-
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permission of John Wiley & Sons, Inc.)

based semiconducting nanorods can serve as channels for charge carriers with
polarization-dependent conductivity [139] with variety of applications as light-
emitting diodes [140], transistors, UV sensors, lasers [141], and piezotronic devices
[142].

Chemical vapor deposition technique is one of the most popular ways for the
production of high-purity semiconducting materials [92, 143]. Experimental studies
show possibilities for obtaining nanoparticles directly in the gas phase [144]. It
opens inexpensive way for the manufacture of one-, two-, and three-dimensional
13–15 nanoarchitectures. Energetics of the gas phase chemical reactions leading to
the formation of 13–15 nanorods is summarized in the review [22]. Spontaneous
needle-shaped cluster formation has been reported in gas phase during the chemical
vapor deposition of group 13–15 materials [145].

Size dependence of properties of nanorods and sensibility of the properties to
subtle structural variations leads to immense design freedom for creating functional
elements of nanÑscaled devices. However, experimentally obtained nanoparticles
typically are different in size and/or structure. Thus, understanding of properties of
particular types of nanoobjects in a great extend relies on theoretical investigation
and computer simulation.
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A potentially interesting subclass of Ga-N-based nanostructures is oligomeric
clusters composed of [HGaNH]3 rings with the wurtzitic arrangement of the Ga-
N backbone. The rod-shaped oligomers are energetically more favorable than
cage-like isomers or three-dimensional structures [21, 23, 24, 45, 146–148]. High
polarizability of the rod-shaped oligomers along with tunable band gap makes
them promising charge carriers under an external electric field or under strength.
Such oligomer compounds were theoretically predicted [53], and, soon, family of
[RGaNH]n (R= H, CH3, C2H5, C4H9, C6H13) rod-like compounds was synthesized
in ammonia solution [119].

Possible pathways for adjusting the band gap in such compounds include
variations in size, shape, substituents, dopant effects, and terminal effects. In the
present review, we summarize results of comprehensive computational studies of
how different factors affect structural and electronic properties of Ga-N-based rod-
like oligomers. Schematic view of the considered rod-like oligomers is shown in Fig.
6.13. The building block of oligomers is the chair-shaped [RGaNH]3 ring, where R
is hydrogen atom or methyl group.

In the present chapter, we will summarize results of computational studies of
electronic properties of rod-like [RMNH]3n clusters of group 13 metals M=Al, Ga,
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Fig. 6.13 Schematic representation of open oligomer X3[RMNH]3nY3 (a) and closed oligomer
XM[RMNH]3nNY (b) Perspective views (right side) are given for the longest considered rods on
the example of hydrogen-substituted derivatives (R=X=Y=H)

and In. Two types of rod termination have been considered. Tube-like structures will
be referred below as open oligomers (Fig. 6.13a). In open oligomers three dangling
bonds at the each end are terminated by 3X/3Y functional groups. Needle-shaped
structures, where the three dangling bonds at the ends are capped by addition of
GaX and NY groups, will be called closed oligomers (Fig. 6.13b). The terminal
groups considered are X=H, CH3 and Y=H in parts 3.3–3.4 of the present review
and X,Y=CH3, H, F, CF3 in the part 3.5.

We will test the performance of computational methods, explore the influence
of the length of the rod-like oligomer on the example of clusters with Ga-N
backbone, and reveal the influence of terminal groups on the electronic properties of
oligomers.
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6.3.2 Analysis of Computational Approaches

6.3.2.1 ´hoice of the Level of the Theory of the Computational Method

Nowadays, DFT is a common approach for theoretical studies of molecular
systems. Many exchange-correlation functionals are available, and the choice of
the functional for the particular application must be justified. Computations [47] on
cubane cluster [HAlNH]4 that could be considered as the smallest closed oligomer
[HAlNH]3n+1 with n = 1 showed the reliability of B3LYP/TZVP approach com-
pared to the results obtained at CCSD(T)/cc-PVTZ level of theory. However, results
of a systematic study [149] of several exchange-correlation functionals indicate
that for extended metal-containing systems, including 13–15 semiconductor mate-
rials, B3LYP [150, 151] optimized lattice constants for Ga-containing compounds
are overestimated by 0.6–2.2% with respect to experimental values, while those
obtained with nonempirical hybrid PBE0 [152] or HSSE [153] functionals provide
the lattice constants within 0.9% from the experimental values. Test computations
have been performed to compare the performance of different DFT methods against
the CCSD [154] method for geometry optimization on the example of [RGaNH]4
cubanes with R=H, CH3. The LDA correlation functional VWN5 [155] and hybrid
GGA, B3LYP, PBE0, and HSSE methods, were considered.

A series of def-2 basis sets developed for all elements by Weigend and Ahlrichs
[156], equally efficient for DFT, HF, and post-HF computational levels, were
chosen. In the following, we will omit def-2 when indicating the used basis set.
Split-valence basis plus set of polarization functions (SVP), triple-zeta (TZV),
corresponding basis with additional polarization functions (TZVP), and quadruple
zeta (QZVP) valence quality basis sets (for the [HGaNH]4 compound only) were
tested.

Selected structural parameters obtained using these various methods are shown
in Table 6.1. The influence of basis set on Ga-N distances is rather small, Ga-N
bond lengths agree with each other within 0.004 Å for each DFT method and within
0.008 Å for CCSD method. N-Ga-N angle varies within maximum 0.29◦ in all cases.
Moreover, the cancelation of errors results in good agreement between the results
obtained with relatively small SVP basis set and nearly complete QZVP basis set
for all DFT methods.

The difference in performance of different DFT methods is more profound.
While PBE0 and HSSE optimized geometries are very similar, optimized distances
at VWN5 level of theory are shorter by about 0.015 Å, and distances at B3LYP level
are longer by about 0.016 Å, compared to values obtained using PBE0 and HSSE
methods. Optimized valence angles at VWN5, PBE0, and HSSE levels of theory are
similar and smaller by more than 0.3◦ compared to B3LYP values. Substitution of
H atoms by CH3 groups on Ga atoms increases Ga-N distances by about 0.005 Å
and only slightly affects N-Ga-N angles. CCSD geometry optimization yields
results somewhat intermediate between those obtained with B3LYP and PBE0
methods. B3LYP/SVP Ga-N bond length in [HGaNH]4 is 2.001Å, and it is less
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Table 6.1 Distances (Å) and
angles (degrees) of
[RGaNH]4 cubane clusters
optimized at different levels
of theory

Method Basis set [HGaNH]4 [CH3GaNH]4

Ga-N N-Ga-N Ga-N N-Ga-N

CCSD TZVP 1.989 87.49 1.994 87.50
QZVP 1.997 87.76 – –

B3LYP SVP 2.001 87.64 2.005 87.60
TZV 2.003 87.46 2.008 87.46
TZVP 2.004 87.52 2.009 87.52
QZVP 2.003 87.61 2.008 87.59

VWN5 SVP 1.969 88.10 1.972 88.09
TZV 1.972 87.81 1.977 87.85
TZVP 1.973 87.94 1.976 87.88
QZVP 1.971 88.00 1.975 87.95

PBE0 SVP 1.986 87.97 1.989 87.94
TZV 1.987 87.76 1.992 87.81
TZVP 1.988 87.88 1.992 87.82
QZVP 1.987 87.98 1.991 87.92

HSSE SVP 1.987 87.91 1.990 87.88
TZV 1.989 87.73 1.993 87.76
TZVP 1.989 87.83 1.993 87.77
QZVP 1.988 87.92 1.992 87.88

overestimated with respect to 1.997 Å at CCSD/QZVP level than Ga-N distances
obtained with other DFT functionals. Similarly, N-Ga-N angles at B3LYP/SVP level
differ from CCSD/QZVP by only about 0.12◦ that is slightly smaller compared to
other DFT methods. Overall, the computations show that bond lengths and bond
angles optimized at the B3LYP/SVP level of theory have smaller deviation from the
benchmark CCSD/QZVP results than other considered functionals (probably due
to fortunes cancelation of errors between incompleteness of the basis set and the
electron correlation treatment).

Additionally, computations for selected long oligomers were performed at
PBE0/SVP, B3LYP/SVP, and B3LYP/TZVP levels of theory in order to ensure
that the reliability of the chosen B3LYP/SVP computational approach remains valid
with the elongation of the oligomer. It was found that PBE0 functional reproduces
elongation effects qualitatively similar to B3LYP method. For example, in case of
geometry optimization of H3[HGaNH]30H3, Ga-N bond lengths at PBE0 level are
shorter than at B3LYP level by about 0.015−0.019 Å. The values of the band gap
energy computed at PBE0 level are by circa 0.6 eV larger than computed at B3LYP
level for a wide range of the oligomers of different lengths.

The average difference in Ga-N bond lengths computed using TZVP and SVP
basis sets (circa 0.002 Å) is the same for H3[HGaNH]9H3 and H3[HGaNH]30H3
compounds. Thus, we conclude that the error does not increase notably with the
elongation of the oligomer. A difference in the reaction energies of formation of
H3[HGaNH]3nH3 from GaH3 and NH3 calculated using TZVP and SVP basis sets
is about 1% of the value obtained using the TZVP basis set, irrespective of the
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oligomerization degree. In absolute value the difference is 10.2 kcal mol−1 for
n = 10. The HOMO-LUMO gaps of H3[HGaNH]3nH3 obtained using the TZVP
basis set are by 0.27 eV (n = 3) and by 0.20 eV (n = 10) smaller than the values
obtained using the SVP basis set. In general, HOMO-LUMO energies are sensitive
to the particular choice of DFT method. It was found that a choice of PBE0 instead
of B3LYP causes an increase of the HOMO-LUMO gap value of about 0.55 eV,
while the overall tendencies in the changes in the HOMO-LUMO gap upon the rod
elongation are qualitatively similar.

Thus, in the following discussion, geometries of all compounds were fully
optimized at the B3LYP/SVP level of theory. All electron basis sets were applied
for all atoms except for In, where effective core potential (ECP-28 core AOs 1s
to 3d) [157] is used to reflect the varying degree of separation between core and
outer shells. The vibrational frequency computations were performed to verify that
obtained structures are true minima on their respective potential energy surfaces.
The same level of theory was used to evaluate the characteristic features of the
ground state electronic structure.

Computations of excitation spectra required additional testing on the reliability
of computational methods. TDDFT method is highly popular tool to estimate
excitation energies of rather complicated systems [158]. Time-dependent response
theory is used to reduce electronic excitations to ground state properties. It considers
a molecule in its ground state to be a subject of a periodic perturbation by
uniform electric field. The perturbation theory in this case operates with frequency-
dependent one-particle density matrix. The excitation energies are obtained as
eigenvalues of an electronic Hessian which may be imagined as the matrix of second
derivatives of the electron energy with respect to the electronic degrees of freedom.

Efficiency of TDDFT calculations with B3LYP, PBE0, M06 [159], and HSSE
functionals was tested against the benchmark EOM-CCSD [160, 161] calculations
on the example of [HGaNH]4. Effect of diffusion functions extension to TZVP and
QZVP basis sets was studied by considering augmented TZVPD and QZVPD basis
sets developed by Rappoport and Furche [162]. Energies of several low-lying singlet
states calculated at different levels of theory are provided in Table 6.2.

The results show that all TDDFT methods underestimate excited state values
with respect to the values obtained at EOM-CCSD level. An underestimation of
valence excitation energies by TDDFT methods is often attributed to so-called self-
interaction problem of semi-local DFT functional [163]. The larger the basis set,
the greater is the underestimation in the obtained values of energy for the tested
compound. Thus, the smallest tested basis set, TZVP, provides the best agreement
with the benchmark EOM-CCSD/TZVPD computations for any of the considered
DFT functional.

It was found that excitation energies computed with PBE0 functional are in better
agreement with EOM-CCSD/TZVPD results. In case of PBE0/TZVP level, the
correct order of three- and twofold degenerate levels is preserved (see Table 6.2).
The error is less than 0.01 eV for the lowest triply degenerate spin-singlet state and
is smaller than 0.06 eV for higher singlet states.
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Table 6.2 Excitation energies (in eV) to low-lying excited (singlet) states of [HGaNH]4 at
different levels of theory

Electronic state
Method Basis set 1 2 3 4 5 6 7 8

EOM-CCSD TZVPD 6.318 6.318 6.318 6.368 6.368 6.506 6.506 6.506
PBE0 TZVP 6.314 6.314 6.316 6.316 6.316 6.447 6.447 6.447

QZVP 6.193 6.193 6.199 6.199 6.199 6.301 6.301 6.301
TZVPD 6.120 6.120 6.128 6.128 6.128 6.227 6.227 6.227
QZVPD 6.095 6.095 6.103 6.103 6.103 6.197 6.197 6.197

HSSE TZVP 6.258 6.258 6.259 6.259 6.259 6.383 6.383 6.383
QZVP 6.143 6.143 6.147 6.147 6.147 6.245 6.245 6.245
TZVPD 6.075 6.075 6.082 6.082 6.082 6.176 6.176 6.176
QZVPD 6.052 6.052 6.058 6.058 6.058 6.148 6.148 6.148

M06 TZVP 6.177 6.177 6.179 6.179 6.179 6.301 6.301 6.301
QZVP 5.779 5.779 5.809 5.809 5.809 5.855 5.855 5.855
TZVPD 5.618 5.618 5.625 5.625 5.625 5.678 5.678 5.678
QZVPD 5.554 5.554 5.563 5.563 5.563 5.614 5.614 5.614

B3LYP TZVP 6.101 6.101 6.112 6.112 6.112 6.218 6.218 6.218
QZVP 5.976 5.976 5.989 5.989 5.989 6.070 6.070 6.070
TZVPD 5.903 5.903 5.919 5.919 5.919 5.997 5.997 5.997
QZVPD 5.874 5.874 5.889 5.889 5.889 5.963 5.963 5.963

All computations discussed in this chapter were performed using Gaussian
09 program package [164]. PDOS for a chosen fragment was computed using
GaussSum code [165].

6.3.2.2 Band Structure Computation Method

Periodicity is an essential property of bulk semiconductors, and band structure is an
important characteristic of their electronic properties. Being intermediates between
molecules and bulk crystals, semiconducting nanoparticles also exhibit periodic
properties in structural as well as in electronic features. It is a common approach
treating nanorods within PBC [166–169]. PBC approximation allows to study the
effect of surface dangling bonds [167, 170]. It was found that the band gaps of
Ga-N [167] or GaAs [171] nanorods are ruled by surface states and do not change
with the diameter of the nanorods according to the trend dictated by the quantum
confinement effect. However, the PBC approach is difficult to be used for studying
structures with local defects and substituents, and it is not applicable for studying
the effect of dangling bonds at the terminal edges of nanorods.

On the other hand, the edge effects for rather short nanorods can be studied using
ab initio methods. Investigation of finite size carbon nanotubes shows that terminal
effects have strong impacts on the vibrational frequencies [172], and the study of
finite graphene nanoribbons shows that the gap defined by the end-localized states
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decreases exponentially as a function of the ribbon length [173]. It is expected
that terminal effects should be profound in the case of 13−15 nanorods grown in
[0001] direction, where alternation of atoms of group 13 and 15 sublayers provides
polarization of the nanorods along the main axis and produces high interface charge
densities.

The good choice of simultaneous study of edge effects and periodic properties
of oligomer at the same level of theory is a method of extracting a band structure
from the conventional computations of long but finite size oligomer of more or
less regular structure [174, 175]. It is a method of mapping of MOs on reciprocal
space which allows building of the band structure of the polymer without applying
PBC during computations. The extracting of the [HGaNH]3∞ polymer properties
from B3LYP/SVP computation of the finite GaX[HGaNH]3nNY oligomers allows
a direct comparison of their electronic structures. It gives a unique ability to track
edge effects provided by different types of termination of the finite oligomers. All
details of the method one can find elsewhere [174, 175] and here we provide only
the core idea of it.

MO of an oligomer built by periodically repeated molecular units could be
written as a linear combination of AOs:

ψMO =
∑

j,r

CMO
jr χr

j (6.1)

where χr
j is the rth atomic function of the jth unit. If the oligomer is long enough

and MO is periodically delocalized along the chain, it is similar to the CO of the
corresponding polymer. Thus, for such MOs wave vectors k of the related Bloch
functions are to be mapped. In order to identify k for the MO, it is projected onto
real linear combinations of AOs that correspond to model Bloch functions:

Xr
q =∑

j
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jr

∑
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χr

j |χr
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〉

Y r
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j

CMO
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∑

j ′
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j |χr
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〉 (6.2)

The integer q is related to the wave vector in the first BZ through:

k = q

M + 1

π

a
, q = 1, 2, . . . M, 0 < k <

π

a
(6.3)

where a is the length of the unit cell and M is the number of repeated units in the
oligomer. k value is assigned for each delocalized MO by looking for the maximum
of the quantity:

Rq =
√(

Xr
q

)2 +
(
Y r

q

)2
(6.4)

as a function of q.
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Fig. 6.14 Schematic representation of mapping of MOs of an oligomer on reciprocal space of the
first BZ of the polymer

The overall procedure is schematically shown in Fig. 6.14. For any MO of long
but finite oligomers, including HOMO and LUMO, one can find a value q, at which
the value Rq (Eq. 6.4) will be maximal. Thus, the energy of the MO can be associated
with the value of wave vector k. MOs of the same nature (e.g., σ or π states of
the same point group symmetry) belong to the same crystal band n. The longer
the oligomer, that is, the more periodic cells it contains, the more k values will
correspond to the same band n, the more smoothly the k values will change from 0
to π /a. Since k cannot be 0 or π /a if M is a finite number (Eq. 6.3), the band gap
can be obtained by extrapolation to the edges of the BZ of bands containing HOMO
and LUMO, respectively.

It should be stressed that this procedure is meaningful only for MOs well
delocalized along the chain. MOs localized at the ends of the oligomer are not
localized in BZ. The degree of localization of a MO could be estimated considering
distribution along the chain of the electronic density for the particular unit cell:

QMO
l =

∑

r,r ′
CMO

r,l

〈
χr

i |χr ′
i

〉
CMO

r ′,l (6.5)

where l refers to the number of the unit cell and the particular MO is considered to
be edge-localized if the average number of the Q value over three central units is
vanishing.

The efficiency of the method was demonstrated in previous works both for
simple organic polymeric systems, like polyacetylene, poly-paraphenylene [174],
and polybutatriene [176], and for complex systems like single wall (4,4) carbon,
boron nitride, and mixed nanotubes [175, 177, 178], one-dimensional periodic
associations of benzo-2,1,3-chalcogendiazoles [179], and organometallic polymers
like meso-meso-linked metalloporphyrins of Mg, Zn, and Ni [180].
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In the following discussion, we will distinguish between the HOMO-LUMO gap
and the bandgap, which is obtained by extrapolation to the edges of BZ of bands,
obtained by mapping of MOs on reciprocal space. We should note that in case of
long periodic oligomer in which HOMO and LUMO are well delocalized, HOMO-
LUMO gap and bandgap could be close numerically but are not the same.

6.3.3 Small Open (CH3)3[CH3MNH]9H3 and Closed
[CH3MNH]10 Mixed Metal Oligomers (M = Al, Ga, In)

It is natural to start the consideration from clusters of relatively small size. On
the one hand, cluster of three trimeric [RMNH]3 rings is a minimal unit for
which the term “nanorod” is appropriate; on the other hand, these oligomers are
small enough to be studied comprehensively in detail with R=CH3 and differ-
ent metal atom. Methyl substituents are interesting because the alkyl-substituted
derivatives of the needle-shaped Ga-N clusters are experimentally known [119].
In this section we provide a direct comparison of electronic properties of open
(CH3)3[CH3MNH]3nH3 and closed [CH3MNH]3n+1 mixed metal oligomers with
n = 3 (M = Al, Ga, In) [56, 57].

6.3.3.1 Structures of Mixed Metal Oligomers

Table 6.3 provides selected structural parameters for [CH3MNH]10 and
(CH3)3[CH3MNH]9H3 (M = Al, Ga, In) oligomers. The specified bond lengths
and angles are indicated in Fig. 6.15.

Binary closed oligomers possess C3v point group, while open ones are C3
symmetric. Three terminal methyl groups in open oligomers are almost free rotors;
thus, the global minimum is shallow with respect to the mutual orientation of
the hydrogen atoms of the methyl groups. Terminal CH3 groups are rotated by
8.8◦, 17.6◦, and 23.6◦ for M = Al, Ga, and In, respectively. For the mixed metal
oligomers, it was found that the rotation angle θMe of the terminal methyl groups
depends only on the type of the closest metal atom.

M-N bond lengths vary significantly over the oligomer core for both closed and
open oligomers. M-N distances in the middle of M3N3 rings are by 0.01–0.02 Å
shorter than those in the outmost rings. Considering the middle M3N3 rings, one
can notice that M-N bond lengths are slightly shorter and both M-N-M and N-M-
N angles are slightly larger for closed oligomers than for open ones. M-N bond
lengths between M3N3 rings are generally shorter than ones within rings. M-N
bonds connecting the end’s MCH3 group with the first ring are among the longest.

Al-N bond lengths are about 3% shorter, and In-N bond lengths are about 10%
longer than respective Ga-N distances. Similar trends in bond lengths are observed
for bulk wurtzitic Al/Ga/In nitride structures [181]. Our computations indicate that
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Table 6.3 Selected M-N bond lengths (Å) and bond angles (deg) of binary oligomers

Parameter (ring number) [CH3MNH]10 (CH3)3[CH3MNH]9H3

M=Al M=Ga M=In M=Al M=Ga M=In

RM–N 1.939 2.004 2.216
d⊥(1) 1.938 1.998 v2.212 1.968 2.030 2.246
d‖ (1–2) 1.932 1.990 2.203 1.896 1.945 2.15
d⊥(2) 1.933 1.987 2.200 1.951 2.013 2.232
d‖ (2–3) 1.922 1.983 2.193 1.881 1.931 2.13
d⊥(3) 1.943 2.001 2.216 1.968 2.028 2.252
M–NH 1.937 2.001 2.210
φM (1) 88.1 87.0 90.1 98.9 98.5 97.6
φM (2) 102.1 102.0 102.0 99.5 99.6 98.8
φM (3) 103.0 102.8 102.7 99.3 98.5 97.0
φN (1) 118.6 119.2 121.0 116.6 116.8 117.0
φN (2) 115.0 115.8 117.8 113.0 113.8 115.6
φN (3) 89.2 91.0 93.8 117.7 118.5 121.3
θNMNM (1) 74.5 75.3 76.8 64.6 65.1 65.7
θNMNM (2) 62.6 61.8 60.8 67.5 66.6 65.7
θNMNM (3) 83.6 82.5 80.8 63.0 63.0 61.9
θMe

a 180.0 180.0 180.0 171.2 162.4 156.4

Adapted by permission from Springer Nature: Springer [56], COPYRIGHT (2014)
aθMe dihedral angle shows rotation of CH3 group relative to the first ring (see Fig. 6.15), value of
180◦ corresponds to C3v point group

Fig. 6.15 Ring numbering and designation of structural parameters of oligomers. (a)
[CH3MNH]10; (b) (CH3)3[CH3MNH]9H3

this trend holds both for binary and mixed oligomers and it does not depend on the
position of substituted atom.

Overall, we conclude that unlike similar nitrogen clusters [182], optimized
geometry of the Ga-N-based oligomer rod is strongly affected by a type of terminal
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groups. Irrespective to the group 13 metal M, the middle M3N3 ring in closed
oligomers is rather “flat” compared with a bent chair shape in the open oligomer.

Middle M3N3 rings of the closed oligomers have larger N-M-N and M-N-M
angles and shorter M-N bonds.

Since both types of oligomers can be simultaneously generated at the exper-
imental conditions, it is of interest if they can be distinguished by IR spec-
troscopy. Computed gas phase IR spectra of closed [CH3MNH]10 and open
(CH3)3[CH3MNH]9H3 (M=Al, Ga, In) oligomers are shown in Fig. 6.16. The
spectra are qualitatively similar for compounds with different metal atoms, but there
are some specific features that are helpful to distinguish between closed and open
structures. The open oligomer has two neighboring fingerprint bands associated with

Fig. 6.16 Computed IR spectra of [CH3MNH]10 (dashed line) and (CH3)3[CH3MNH]9H3 (solid
line)
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H-N-H scissoring in the terminal ring. The characteristic frequencies are similar
for M=Al, Ga, and In. The values are 1556 and 1575 cm−1 for M=Al, 1554
and 1571 cm−1 for M=Ga, and 1546 and 1559 cm−1 for M=In. On the other
hand, NH-M deformation frequencies on the end’s rings of closed oligomer give
intensive bands at 845 and 880 cm−1 for M=Al; 814 and 856 cm−1 for M=Ga;
803, 863, and 880 cm−1 for M=In. IR spectrum of the open oligomer has a
clear gap in this region. Additional difference is observed in the highest frequency
modes. Stretching of NH bonds of the middle ring of the open oligomer makes
contributions to the intense modes near 3420, 3465, and 3453 cm−1 for M=Al,
Ga, and In, respectively. The intensive peaks near 1200–1500 cm−1 and 2800–
3300 cm−1 are similar for closed and open oligomers and related to the different
methyl group vibrations (stretching and bending). Similar differences in IR spectra
of open and closed oligomers are observed for the other related binary and mixed
metal compounds. Thus, computations suggest the IR spectroscopy may be useful
to distinguish between open and closed oligomers.

6.3.3.2 Effect of Group 13 Metal on the Electronic Structure of Mixed
Metal Oligomers

Group 13 nitride bulk semiconductors have direct band gaps, ranging from 0.7 eV
(InN) to 6.2 eV (AlN) with 3.4 eV for Ga-N. Our computations reveal that closed
oligomer compounds [CH3MNH]10 have HOMO-LUMO gaps of 6.79, 6.30, and
4.95 eV for Al, Ga, and In, respectively. These results are in line with earlier results
obtained for the heptamer clusters [113] at B3LYP/6−311+G* level of theory. Open
oligomers exhibit significantly narrow gaps: 5.19, 5.00, and 4.12 eV or Al, Ga, and
In, respectively. Effect of subsequent substitution of Ga by Al and In atoms on the
electronic properties was also studied. In Table 6.4, energy gaps of Ga binary and
mixed oligomers are presented. The substituted Al3N3/In3N3 rings are located in
different positions with ring numbering in accordance with the order given in Fig.
6.15.

Table 6.4 HOMO-LUMO gap, �E (eV) and dipole moments, μ (D) of mixed metal oligomers

Substituted ring [CH3MNH]10 (CH3)3[CH3GaNH]9H3

Ga→In Ga→Al Ga→In Ga→Al
�E μ �E μ �E μ �E μ

0 6.30 1.78 6.30 1.78 5.00 14.45 5.00 14.45
1 5.76 1.55 6.38 2.28 4.94 13.11 4.99 15.94
2 5.69 1.56 6.45 2.02 4.74 14.19 5.04 14.26
3 5.47 3.13 6.49 0.77 4.23 15.64 5.12 13.55

Adapted by permission from Springer Nature: Springer [56], COPYRIGHT (2014)
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It was found that the closer the In atoms are located to the NH/H3-capped end,
the greater is the reduction of the energy gap. The closer the Al atoms are located to
the NH/H3-capped end, the bigger is the HOMO-LUMO difference.

The importance of electrostatic interaction in open rods has been noticed in
early study [167]. Dipole moments μ of studied compounds are given in Table 6.4.
The direction of the vector is from the GaR/R3-capped end of the oligomer to the
NH/H3-capped end. There is almost linear dependence of the dipole moments on
the position of substituted rings for open oligomers. Replacement of Ga atoms by
Al or In atoms in the middle rings of the open oligomer has very minor effect on the
dipole moment. For closed oligomers, the position of the substituent in the vicinity
of the N-capped end plays a predominant role in the value of the dipole moment.
Dipole moments of the open oligomers are more than an order of magnitude larger
than that of closed ones. Values of dipole moments for closed oligomers are 2.66,
1.78, and 1.50 D for Al, Ga, and In, respectively. For open oligomers, respective
values are 14.75, 14.45, and 14.07 D. However, there is no simple linear correlation
between the value of dipole moment and the decrease of the HOMO-LUMO gap
energy.

The dependences of energies of HOMO, LUMO, and energy gap values from the
number of the Al/In atoms in mixed metal oligomers are shown in Fig. 6.17. N is
a number of Ga atoms substituted by Al (shown by black marks) or In (shown by
empty marks) atoms. The leftmost side of the figures (N = 0) corresponds to the
binary [CH3GaNH]10 (triangles) and (CH3)3[CH3GaNH]9H3 (circles) compounds.
Gallium atoms are one by one substituted by Al or In atoms, starting from the
capping CH3Ga group of the closed oligomer and followed by the gallium atoms

Fig. 6.17 The HOMO-LUMO gap energy (a), energies of HOMO (b), energies of LUMO (c) of
closed (triangles) and open (circles) mixed metal oligomers. N is a number of Ga atoms, substituted
by Al (black markers) or In (empty markers) atoms. Lines drawn are to guide the eye only. (Adapted
by permission from Springer Nature: Springer [56], COPYRIGHT (2014))



6 Group 13–15 Needle-Shaped Oligomers and Nanorods: Structures. . . 235

of the first, second, and third Ga3N3 rings. The rightmost side (N = 10) represents
energy values of closed and open binary Al and In oligomers. There is a monotonous
increase of the HOMO-LUMO gap with increasing the number of Al atoms and
rather sharp reduction of energy gap upon introduction of In atoms. The energies of
HOMOs increase almost linearly with increasing a number of In atoms; the effect
is more pronounced for the closed oligomers. The LUMO energies are only slightly
affected by introduction of Al atoms but significantly decrease when the Ga atoms
are replaced by In atoms.

To get insight into this behavior, let us consider the nature of the HOMOs
and LUMOs in more detail (see MOs in Fig. 6.18). HOMOs and LUMOs of
M=Al, Ga, and In are qualitatively similar. For C3v and C3 symmetric structures,
HOMO is a degenerate state of E irreducible representation of these point groups.

Fig. 6.18 Electronic states (vertical lines) and PDOS of binary closed [CH3MNH]10 (left) and
open (CH3)3[CH3MNH]9H3 (right) [M = Al, Ga, and In] oligomers. PDOS lines represent
contributions of p (black) and s (gray) states of metal elements. Black dotted lines represent d
states of metal atoms. Contributions from methyl groups p (black) and s states (gray) are shown by
dashed line, from nitrogen by blue dot-dashed and from N-bonded hydrogens by red short-dashed
lines. HOMO and LUMO are shown for the each oligomer. (Adapted by permission from Springer
Nature: Springer [56], COPYRIGHT (2014))
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LUMO belongs to totally symmetric irreducible representation. Note that in case of
open oligomers, HOMO and LUMO are strongly localized on the different ends
of the rod. The orbitals are more delocalized in case of closed oligomers. We
should note also that besides HOMO/HOMO−1 (for open rods) and LUMO (for
all rods), HOMO−2, HOMO−3, HOMO−4, LUMO+1, and LUMO+2 are also
end localized in open oligomers, while HOMO−2, HOMO−3, and LUMO+3 are
localized at the end of the rod for closed oligomers.

Figure 6.18 presents electronic states and PDOS analysis for the energy states
in vicinity of HOMO-LUMO gaps. The highest occupied states of the oligomers
are predominantly p orbitals, and the lowest unoccupied states are predominantly s
orbitals. For highest occupied states of the closed oligomers, the largest contribution
comes from the p states of nitrogen atoms, and it increases with increasing of atomic
radius of metal element. In contrast, HOMOs of the open oligomers have larger
contribution from p states of metal atoms, and major contribution comes from p
states of carbon atoms of terminal methyl groups. There is some contribution from
metal d states to the highest occupied states. Unlike closed oligomers, in the open
ones, HOMO is localized and easily distinguished in PDOS. Note a difference in the
nature of the lowest unoccupied state. For both open and closed oligomers, LUMO
consists of s states of metal atoms and N-bonded hydrogens with the portion of metal
contribution increasing in order Al < Ga < In. However, in case of open oligomers,
the hydrogen atoms at the ends of the rod play the major role in electronic structure
of LUMO. s states of LUMO of closed oligomers are delocalized over the whole
molecule. In case of indium compounds, s orbitals of In have the major contribution
to LUMO.

It is worth to mention that research on three-dimensional Ga-N nanodots and Ga-
N nanowires [183] suggests valence band to be predominantly of nitrogen p orbitals
and the lowest unoccupied states are of Ga p (nanowires) and Ga s and p orbitals
(nanodots).

From the observations above, it is understandable that substitution of gallium
atoms at the end where the LUMO is localized should have a more profound effect
on the electronic structure than substitution at the opposite, (CH3)3 capped side. It is
more important in case of replacement of Ga with In atoms because of predominant
role of indium s orbitals on the LUMO.

From the results obtained for the small rod-shaped clusters (n = 3), it is expected
that change in the nature of the terminal groups on the ends of the oligomer will
significantly influence the electronic structure of open oligomer.

6.3.3.3 Excitation Spectra

Absorption spectra of closed and open oligomers with n = 3 generated from
vertical excitation energies with transition dipole moment are presented in Fig. 6.19.
Test computations indicate that PBE0 hybrid DFT functional is better suited for
excitation spectra treatment than B3LYP (see Table 6.2). Thus, in further discussion
we will refer to the results of PBE0/TZVP TDDFT computations. However, please
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Fig. 6.19 UV excitation spectra of [CH3MNH]10 (a) and (CH3)3[CH3MNH]9H3 (b) for M = Al
(blue), Ga (black), and In (red) calculated with PBE0/TZVP (lines) and B3LYP/TZVP (dotted
lines) levels. Straight lines denote vertical excitations, and their height corresponds to the oscillator
strength. (Adapted by permission from Springer Nature: Springer [56], COPYRIGHT (2014))

note that B3LYP/TZVP results are qualitatively similar. As can be seen from Fig.
6.19, at B3LYP level of theory, all spectra are shifted toward the lower energies but
have shapes and relative intensities similar to the spectra at PBE0 level.

It was found that spin-triplet states do not contribute to the low-lying optical
transitions; thus, only data for the spin-singlet states are presented. Changes in
excitation energies upon the structural changes are similar to the ones found for the
energy gaps. There is a red shift in absorption spectra for binary compounds from
Al to Ga and from Ga to In, and there is a red shift from closed to open oligomers.
In the latter case, the shift of peak’s maxima is about 66 nm for Al, 57 nm for Ga,
and 8 nm for In binary compounds. Energies of absorption maxima for the closed
oligomers are 6.6 eV (Al), 6.0 eV (Ga), and 4.6 eV (In); respective values for the
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open oligomers are 4.8, 4.7, and 4.5 eV. Energies of the lowest singlet states are 6.1,
5.7, and 4.3 eV for the closed Al, Ga, and In binary compounds, respectively. The
corresponding values for the open oligomers are 4.8, 4.7, and 3.8 eV. These values
are larger than the corresponding B3LYP data by about 0.2–0.3 eV.

The intensity of the absorption for the open rods is significantly smaller than the
one for the closed rods. Two absorption peaks are distinguished in the spectra. These
two intensive peaks are separated by about 40 nm for Ga and Al and by about 50 nm
for In in case of open oligomers and only by 13–18 nm in case of closed oligomers.
In case of [CH3InNH]10, these two peaks are essentially merged into a single, wide
absorption band.

For all binary compounds, HOMO/HOMO−1 → LUMO transition makes the
greatest contribution (more than 90%) to the lowest spin-singlet state S1. For open
(CH3)3[CH3MNH]9H3 oligomers, oscillator strengths of excitation into the S1
state are very small: 0.012, 0.004, and 0.001 for M=In, Ga, and Al, respectively.
Open oligomers have also low-lying S2 state in the immediate vicinity of S1
state (it differs by about 1–4 nm from the S1 state). For all oligomers, S2 state
is predominantly (~99%) the HOMO−2 → LUMO transition; the S2 oscillator
strengths are 0.048, 0.013, and 0.003 for In, Ga, and Al open oligomers, respectively.

The absorption band with the largest intensity for the each compound is
associated with a group of states which have more complex composition. Spin-
singlet states with the largest oscillator strength for the closed oligomers are
fully symmetric (A1) and for Ga and In binary compounds correspond mostly to
HOMO−4 → LUMO excitation (more than 90%). In case of [CH3AlNH]10, main
contribution to the state is HOMO−7 → LUMO (50%) and HOMO−6 → LUMO
(19%). These transitions occur from the delocalized MOs to the end-localized
LUMO.

For open oligomers, two adjacent states, which are very close in energy (they are
indistinguishable in Fig. 6.19), have the largest oscillator strengths: 0.067 and 0.063
for In, 0.052 and 0.038 for Ga, and 0.030 and 0.017 for Al. One of these states has
the largest contributions from HOMO−2 → LUMO+3, HOMO−1 → LUMO+1,
and HOMO → LUMO+2 transitions. The composition of the other adjacent state
is more complex, and it is different for Al, Ga, and In oligomers.

Experimental spectra obtained for solid powder [RGaNH]n compounds R=H
(Fig. 6.20a) and R=CH3 (Fig. 6.20b) also reveal absorption in the ultraviolet range
[119]. The absorption maximum for [CH3GaNH]n powder is about 280 nm, i.e.,
red-shifted compared with our calculated spectra (Fig. 6.19). It is not clear what
kinds of oligomers, open or closed, are dominant in the powder samples studied
experimentally [119]. The range of lengths of oligomers in experimental samples is
also unknown. Taking into account red shift in excitation energies for the oligomers
upon elongation, it was suggested [119] that oligomers of intermediate length
(n=10–12) are prevail in the experimentally studied samples.
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Fig. 6.20 Experimental photoluminescence spectra of [RGaNH]n powder, R=H (a), R=CH3 (b);
(�) emission spectrum with λex = 320 nm (R=H) and λex = 275 nm (R=CH3); (+) emission
spectrum with λex = 320 nm (sample exposed to air for 1 week) (R=H) and λex = 345 nm
(R=CH3); (�) excitation spectrum with λobs = 390 nm (R=CH3); (◦) excitation spectrum with
λobs = 430 nm (R=H) and λobs = 425 nm (R=CH3). (Reprinted with permission from [119].
Copyright 2005 American Chemical Society)

6.3.4 Size Effect: The Elongation of the [RGaNH]n Oligomers

In this section we demonstrate that the type of termination of rod-shaped
[RGaNH]3n oligomers [open (Fig. 6.13a) versus closed (Fig. 6.13b)] significantly
affects structural and electronic properties of not only short but even long oligomers.

The existence of edges violates a periodic pattern of the rod-shaped oligomeric
structure and changes its properties compared to the properties of the ideal
polymeric rod. All edge effects are expected to disappear in the center of the
long oligomer. Thus, the comparison of different ways of oligomer’s termination
necessary involves an investigation of how extended is the impact of the terminal
groups. First, we will discuss how intense are structural changes caused by
termination of open and closed oligomers of different length. After that we will
compare the electronic structure of the infinite [HGaNH]3∞ polymer with those
of long (circa 10 nm of length) open and closed hydrogen-containing oligomers.
Finally, we will discuss thermodynamic aspects of the elongation of open and closed
rod-shaped oligomers [58].

6.3.4.1 The Effect of the Rod Termination on the Structural Properties

All considered oligomers remain rod-shaped upon geometry optimization. There
is a profound difference in structural parameters of open and closed oligomers.
Figure 6.21 shows distribution of Ga-N bond lengths along the main axis for
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Fig. 6.21 Distribution of Ga-N bond lengths in [HGaNH]3n+1 oligomers of different lengths
(n = 3, 5, 10, 18, 38). Intra-ring (a) and interring (b) Ga-N bond’s lengths of closed (filled
circles) and open (empty circles) oligomers. Lines are drawn to guide the eye only. (Reprinted
with permission from [58]. Copyright 2015 American Chemical Society)

the selected compounds. Hydrogen-containing open H3[CH3MNH]9H3 and closed
[HGaNH]3n+1 oligomers with n = 2, 5, 10, 18, and 38 are chosen for comparison.
The [HGaNH]3 rings are numbered in the figure starting from the N-terminated
end of the oligomer. Ga-N bond lengths within [HGaNH]3 rings are shown on Fig.
6.21a. The Ga-N axial bonds, connecting the neighboring rings, are aligned with the
main axis of the oligomer; their lengths are given in Fig. 6.21b.

For closed oligomers, Ga-N bond lengths are essentially constant along the rod.
The difference in the Ga-N bond lengths of oligomers with n = 10, 18, and 38
is small (below 0.001 Å at the center of the rod). Capping by terminal GaH and
NH groups affects Ga-N bond lengths near the very edges of the oligomer, while
the internal structure is almost undisturbed. Except for the outmost units, the Ga-N
bond lengths in [HGaNH]3n+1 are constants within 0.007 Å starting with n = 10.
Thus, closed oligomers of length longer than ~3 nm (n ≥ 10) may legitimately be
regarded as periodic with a unit cell of a constant length. The value of the unit cell
obtained for the longest closed oligomer is 5.34 Å.

For open oligomers the effect of the terminal groups is more pronounced. The
Ga-N bond lengths gradually vary from ring to ring along the oligomer. For open
oligomers with n ≥ 10, the Ga-N bond lengths distribution is almost symmetric
with respect to the central unit of the oligomer. Both open and closed oligomers
are supposed to have identical geometry in the infinite limit. Nevertheless, even
for [HGaNH]3n oligomers of about 10 nm of length (n = 38), the different
terminal groups cause a notable difference in respective Ga-N bond lengths even
in the central part of the oligomer. Obviously, in case of open oligomers, periodic
approximation is not appropriate even for the relatively long oligomers. Similar
tendencies are found for other structural parameters as well. Intra-ring Ga-N-Ga
and N-Ga-N angles as well as N-Ga-N-Ga dihedral angles also gradually change
along the rod (Fig. 6.22). There are sharp changes in these parameters near the very
edges of the closed oligomers. Except for the outmost units, in closed oligomers
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Fig. 6.22 Distribution of valence N-Ga-N (a) and dihedral N-Ga-N-Ga (b) interring angles in
[HGaNH]3n+1closed (filled circles) and open H3[HGaNH]3nH3 (empty circles) oligomers of
different lengths (n = 10, 18, 38). Lines are drawn to guide the eye only

the angles vary within 0.3◦ along the oligomer. In the middle rings of the longest
closed oligomer, Ga-N-Ga is 115.3◦, N-Ga-N is 101.7◦, and N-Ga-N-Ga is 62.6◦.
Corresponding values for the longest open oligomer are 115.2◦, 101.6◦, and 62.8◦.
In the case of the open oligomers, except for rather sharp deformations near the
very edges of the rods, the Ga-N-Ga and N-Ga-N angles monotonically decrease
from the center toward the edges by about 1.5◦ (see Fig. 6.22a), and N-Ga-N-Ga
dihedral angles smoothly increase from the center toward the edges by about 2.5◦
(Fig. 6.22b). In general, open structures in the center have flatter and smaller Ga3N3
rings than at the edges. The closer to the edges, the tighter the Ga3N3 rings are
joined. With the exception of the very edge and with a good approximation, it can
be said that all Ga3N3 rings in long closed oligomers are essentially the same and
they are evenly distributed with respect to the center of oligomer.

Systematic changes in structural parameters were also reported for the short
H3[BN]3nH3 rod-shaped oligomers (n ≤ 10) [184], where authors pointed out
monotonic changes in interring B-N bond lengths.

Comparison of inter- and intra-ring Ga-N bond lengths reveals that for all closed
oligomers, interring Ga-N bonds, except those in the outmost rings, are longer than
intra-ring bonds. The former converge to the value of 1.993 Å and the later converge
to the value of 1.981 Å. In the open oligomers, interring bonds are always shorter,
and intra-ring bonds are always longer than those in closed oligomers. In contrast to
closed oligomers, for the open oligomers, there is a qualitative change in trends
of inter- and intra-rings Ga-N bond lengths upon oligomer elongation. In open
oligomers with n < 25, all interring Ga-N bonds are shorter than intra-ring bonds.
Starting from n = 25, the Ga-N bond lengths between the central rings become
longer than the Ga-N bond lengths within the rings. For about half of [HGaNH]3
units in the central part of the longest considered open H3[HGaNH]3nH3 oligomer
(n = 38), the interring bond lengths are longer than the intra-ring Ga-N bond lengths.
For the rest of the oligomer, the opposite situation is observed: the interring Ga-N
bonds are shorter than the intra-ring Ga-N bonds.
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For both closed and open oligomers, there is a contraction of interring Ga-N
bond lengths (Fig. 6.21b) as well as expansion of the intra-ring Ga-N bond lengths
(Fig. 6.21a) toward the edges of the rod. For closed oligomers of all lengths,
the contraction near the Ga-capped edge of the rod is 0.007 Å (~0.3%) from
the interring Ga-N bond lengths of 1.993 Å at the center of the oligomer. The
contraction near the N-capped edge of the oligomer is 0.02 Å (~1.0%). In open
oligomers, the contraction of the interring Ga-N bond lengths is somewhat larger
(up to 0.04 Å, 2%) and depends on the length of the oligomer. These structural
changes are quantitatively similar to those predicted for the contraction of surface
Ga-N bond lengths in hydrogen-substituted Ga-N nanorods with diameters up to
3.5 nm studied at PBC level [183]. The expansion of intra-ring Ga-N bond lengths in
closed nanorods near the Ga-capped edge is 0.011 Å ~ 0.6%, and near the N-capped
edge is 0.019 Å (~1.0% relative the bond lengths at the center of the rod). For open
oligomers, the expansion is also length-dependent and amounts up to 0.04 Å (2%
relative to the bond lengths at the center of the oligomer).

Methyl-substituted oligomers within considered lengths with n ≤ 9 demonstrate
the same tendencies as hydrogen-substituted analogs. All structural parameters of
the methyl-substituted oligomers are very similar, with Ga-N bond lengths being
slightly longer (within 0.005 Å) and N-Ga-N angles being slightly smaller (within
1◦) than related parameters in the hydrogen-substituted oligomers of the same length
and the same type of termination.

Overall, the impact of the terminal groups is found to be surprisingly large.
Quite large oligomers, with 19 equivalent structural units (38 [HGaNH]3 rings) and
differences only in the terminal groups, coincide in their geometrical parameters
only in a small section (about 10 [HGaNH]3 rings) in the central part of the rod.
Moreover, the needle-shaped (closed) oligomers exhibit comparative regularity in
the geometric parameters of the [HGaNH]3 units, with the exception of those closest
to the edges. The tube-like (open) oligomers are monotonically compressed from the
center to the edges. Such significant difference in structural characteristics of open
and closed oligomers results in pronounced differences in their electronic properties.

6.3.4.2 Band Structure of [RGaNH]n Polymer and Electronic Structure
of Finite Size Oligomers

It was stressed above (Sect. 6.3.4.1) that oligomers with a closed type of termination
maintain periodicity, that is, all structural parameters of neighboring [HGaNH]3
repeating units are almost equivalent. The exception is the outmost GaH and NH
units whose influence on the electronic structure is supposed to be rather local. The
[HGaNH]115 oligomer has 19 repeating units [HGaNH]6 and capping GaH and NH
groups. More than 15 equivalent unit cells of an oligomer are generally enough to
extract band structure of the related polymer from the finite oligomer calculation
[174]. Indeed, except for a limited number of localized states, MOs of the closed
oligomer with n = 38 are found to be properly delocalized along the chain. In Fig.
6.23a circles show positions of these delocalized MOs in the first BZ of [HGaNH]3∞
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Fig. 6.23 MOs (circles) of closed [HGaNH]115 (a) and open H3[HGaNH]114H3 (b) oligomers
projected on reciprocal space. Lines indicate the band structure of [HGaNH]3∞ polymer obtained
from [HGaNH]115 oligomer calculations. Dotted lines show energies of localized MOs. Black,
red, and green colors refer to A1, E, and A2 symmetries. Purple color is used to show results for
the open oligomer. (Reprinted (adapted) with permission from [58]. Copyright 2015 American
Chemical Society)

polymer. The pattern obtained by projection of the MOs on the reciprocal space
allows to draw the polymer’s bands easily. The lines in Fig. 6.23 present the band
structure of the [HGaNH]3∞ polymer. Particular bands of the polymer, εn(k), are
obtained by interpolation/extrapolation to the edges of BZ by the quadratic fit of
the MOs in the first BZ. The question of crossing versus avoiding crossing of bands
is resolved based on the shape of the curve obtained for εn(k) versus k [175]. Few
unphysical bands crossing near the very edges of the BZ seen in Fig. 6.23 are caused
by the inaccuracy of the extrapolation associated with a relatively small number of
unit cells in the oligomer.

If all MOs of the [HGaNH]115 oligomer were properly delocalized, each
band εn(k) would have exactly 19 circles arranged strictly along the line. Some
displacements in positions of MOs within a band εn(k) as well as “missed” circles
are caused by the deviation in phase and energies of the real MOs of the finite
oligomer with relaxed structure compared to the orbitals of perfectly periodic
polymer. One can see in Fig. 6.23a that some bands have more “missed” circles
than the others, that is, these bands are more affected by the type of termination,
reflecting violation of the periodicity in the relaxed structure. For example, A2 bands
are affected less than A1 or E bands within the shown range of energies. The highest
valence band and the lowest conduction band are the most affected. Both of them
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belong to E symmetry of C3v point group and have p-nature. States of the valence
band have the main contribution from N atoms, and states of the conduction band
have the main contribution from Ga atoms. Similar conclusions about the nature of
valence and conductive bands were made on the basis of PBC computations of the
band structure of Ga-N nanowires with diameters of 0.9−2.8 nm [167].

It is interesting that the band gap of the [HGaNH]3∞ polymer is clearly indirect,
with the bottom of the conduction band laying near (but not exactly at) the edge
of BZ with k = π/a. Contributions of individual atomic orbitals to the lowest
unoccupied delocalized MO of [HGaNH]115 consistently change sign from one unit
cell to another. The bulk Ga-N is a direct band gap semiconductor. However, it
is known that stress applied to a unit cell of a bulk material via doping or strain
applied to the one-dimensional nanostructures [185, 186] can cause a switching
from direct to indirect band gap. Recent research of GaAs nanowires grown in the
[0001] direction [187] demonstrated the phenomenon of transition from direct to
indirect band gap when the diameter of the GaAs nanowire becomes smaller than
~28 Å. Obviously, the same effect takes place in the case of Ga-N nanowires. While
wider Ga-N nanowires have the direct band gap [167], the thinnest [HGaNH]3n+1
rod-shaped polymer has a conduction band with minimum shifted from the � point
toward the edge of BZ with k = π/a.

The band gap of the [HGaNH]3∞ polymer is found to be about 7.0 eV, that
is, significantly larger than 3.4 eV of the band gap of bulk Ga-N or the band
gaps 3–4 eV, obtained for Ga-N nanowires with diameters of 0.9−2.8 nm by
pseudopotential DFT computations with PBC [167]. However, the actual energy
gap of the finite [HGaNH]3n+1 oligomer is defined by localized states situated in the
band gap rather than in the top of valence and in the bottom of conductive bands. It
is interesting that elongation of the [HGaNH]3n+1 does not lead to delocalization of
HOMOs and LUMOs over the oligomer. Thus, [HGaNH]3n+1 oligomers differ from
the similar rods of group 14 elements [119, 188], unsaturated (BN)3n rods [184], and
model nitrogen nanoneedles [182]. In Fig. 6.24, HOMOs and LUMOs are shown
for closed and open oligomers. The structure with n = 9 is chosen to compare the
orbitals of hydrogen- and methyl-substituted oligomers that will be discussed later.
Elongation up to n = 38 of the hydrogen-substituted oligomers does not reduce
the degree of localization of the MOs. In case of the closed [HGaNH]115 oligomer,
about 92% of the electronic density of HOMO is distributed over the two unit cells
of the oligomer near the Ga-capped edge (Fig. 6.24a). LUMO of this oligomer is
about 91% localized on the unit cell near the N-capped edge (Fig. 6.24b).

MOs which are localized in the real space cannot be localized in the reciprocal
space of the BZ. Thus, energy positions of HOMO, LUMO, and other edge-
localized MOs of the [HGaNH]115 oligomer are shown by the dashed lines in Fig.
6.23a. Most of these states are located in the band gap near the top of valence band
and near the bottom of the conduction band. Similar to states of valence band of the
[HGaNH]3∞ polymer, HOMO of the [HGaNH]115 oligomer is doubly degenerate,
with a major contribution of p orbitals of N atoms, with some contributions from
s orbitals of H atoms. LUMO is formed mainly by s orbitals of Ga atoms. The
presence of the localized states in the spectrum of the finite oligomer reduces the
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Fig. 6.24 MOs of closed [RGaNH]3n+1 (a, b, e, f) and open R3[RGaNH]3nH3 (c, d, g, h)
oligomers with n = 9; R=H (a–d), or R=CH3 (e–h). HOMOs are shown on the left side; LUMOs
are on the right side. (Reprinted (adapted) with permission from [58]. Copyright 2015 American
Chemical Society)

energy gap from 7.0 to 6.54 eV. Moreover, the LUMO of the polymer belongs to
the fully symmetric representation of the C3v point group. Thus, HOMO-LUMO
transition in the finite oligomer means E−A1 symmetry transition rather than E−E
transition, like in [HGaNH]3∞ polymer, and should involve the intramolecular
charge transfer from the Ga-capped to the N-capped edge.

In contrast to closed oligomers, the electronic structure of the open oligomers is
drastically different. It is impossible to extract the band structure of [HGaNH]3∞
polymer form MOs of the open oligomer with n = 38. In Fig. 6.23b, we provide
results of projecting of MOs on the reciprocal space and comparison of these results
with the results for the closed oligomer with the same number of [HGaNH]3 rings.
The lack of periodicity, that is, the significant difference in structural parameters of
neighboring repeated units in the open oligomer, leads to significant localization of
MOs; thus, in most of the cases, it is impossible to assign a proper k value for a
particular MO. Many MOs are localized at the very edges of the oligomer as well as
at different [HGaNH]3 rings at some distance from the edges. These localized MOs
of the H3[HGaNH]114H3 have energies deep inside the band gap of the [HGaNH]3∞
polymer. HOMO and LUMO of the oligomer are similar to those of open oligomers
with n = 9 presented in Fig. 6.24c, d. The nature of the orbitals is similar to HOMOs
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Fig. 6.25 HOMO-LUMO
gaps of closed [RGaNH]3n+1
(black marks) and open
R3[RGaNH]3nH3 (empty
marks) oligomers of different
lengths (n = number of
[RGaNH]3 rings). Circles
refer to R=H and rhombs
refer to R=CH3. Lines are
drawn to guide the eye only.
(Reprinted (adapted) with
permission from [58].
Copyright 2015 American
Chemical Society)

and LUMOs of the closed oligomers, but the energies of the states are significantly
different. HOMO has much higher, and LUMO has much lower energy than the
states of the closed oligomer with the same n = 38. The HOMO-LUMO gap of the
H3[HGaNH]114H3 oligomer is only 1.91 eV.

Now let us consider the confinement effect for the open and closed oligomers.
Figure 6.25 presents the HOMO-LUMO energy gap for [RGaNH]3n oligomers as
a function of number of [HGaNH]3 rings n. One can see that for open oligomers
the HOMO-LUMO energy gap is much stronger dependent on n. The value of the
HOMO-LUMO gap for closed [HGaNH]3n oligomers slightly decreases for small
n but reaches some plateau with the oligomer elongation. The value of HOMO-
LUMO gap could be considered converged for closed oligomers with n ≥ 10. The
difference in the HOMO-LUMO gap values between closed oligomers with n = 10
and 38 is only about 0.18 eV.

The energy gap in open oligomers monotonically decreases with the increasing
of the length of the oligomer. Up to n = 10, the decrease is exponential. For longer
oligomers there is a tendency to saturate the value of the HOMO-LUMO gap.
However, even for the longest considered oligomer (n = 38, ~10 nm of length),
the value of HOMO-LUMO gap is not yet converged. Thus, it is expected that,
for longer open oligomers, the HOMO-LUMO gap could be significantly less than
1.9 eV obtained for the oligomer with n = 38.

The decrease of the gap in open oligomers is equally provided by monotonic
decrease of the LUMO energies and monotonic increase of the HOMO energies,
while the decrease of the gap in closed oligomers is mainly (~94%) provided by the
lowering of the LUMO energies.

Figure 6.25 demonstrates that for methyl-substituted oligomers, there is a nearly
constant decrease (the average values are 0.69 and 0.62 eV for open and closed
oligomers, respectively) of the HOMO-LUMO gap compared to the hydrogen-
substituted oligomers of the same length. This allows to predict HOMO-LUMO
gaps of methyl-substituted oligomers based on the computations for the hydrogen-
substituted analogs. HOMO and LUMO of the open methyl-substituted oligomers
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(Fig. 6.24g, h) obviously have the same origin as the orbitals of open hydrogen-
substituted oligomers (Fig. 6.24c, d). The only difference is observed for the
HOMO, where in methyl-substituted oligomers p orbitals of C atoms make a signif-
icant contribution. However, HOMO and LUMO of the closed methyl-substituted
oligomers (Fig. 6.24e, f) are different from those of closed hydrogen-substituted
analogs (Fig. 6.24a, b). While LUMO is semilocalized near the N-capped edge of
the oligomer, the HOMO is delocalized along the oligomer. Thus, it is supposed
that for the long but finite methyl-substituted oligomers [CH3GaNH]3n+1, HOMO
energy will coincide with the top of the valence band of the [CH3GaNH]3∞
polymer, and LUMO will be located only slightly below the bottom of the
conduction band.

Taking into account that methyl-substituted oligomers exhibit the constant red
shift in the energy spectrum compared to hydrogen-substituted analogs, one can
estimate that open methyl-substituted oligomers with the length of about 10 nm
will have the energy gap less than 1.4 eV. Although numerical values of the energy
levels obtained with DFT approach are not totally reliable, the qualitative behavior
is expected to be valid. Values of band gap change drastically upon the change of
terminal groups; they are also strongly dependent on the length of the oligomer.

6.3.4.3 Thermodynamic Characteristics of the Oligomer Elongation

It is of interest to compare relative energetic favorability of open and closed
oligomers. It was found [53] that formal capping process, that is, termination of
the H3[HGaNH]3nH3 oligomer by reaction with NH3 and GaH3 with formation
of [HGaNH]3n+1 and release of five molecules of H2 is exothermic, and the
exothermicity increases with the increase of the oligomerization degree. One can
compare an energy associated with the attachment of each additional ring of open
and closed oligomers by considering energetic characteristics of formal reactions
leading to the oligomer of a particular length (processes 6.6 and 6.7).

3nGaR3 + 3nNH3 = R3[RGaNH]3nH3 + (6n − 3) RH (6.6)

(3n + 1) GaR3 + (3n + 1) NH3 = [RGaNH]3n+1 + (6n + 2) RH (6.7)

Both standard enthalpies and standard Gibbs energies of the reactions (6.6) and
(6.7), with R=H or CH3, are linear functions of the number of trimeric [HGaNH]3
rings n. These reactions are exothermic and exergonic, and favorability of cluster
formation increases with increase of n. Entropy change in these reactions is
unfavorable, but it remains approximately constant upon elongation of the rod.

Let us compare �H◦ and �G◦ of reactions of open (6.6) and closed (6.7)
oligomer formation with n ≤ 10. The differences between processes (6.7) and (6.6)
are the reaction (6.8) of formal capping of the open oligomers:

GaR3 + NH3 + R3[RGaNH]3nH3 = [RGaNH]3n+1 + 5 RH (6.8)
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Fig. 6.26 Difference in thermodynamic characteristics of reactions of formation of open and
closed [RGaNH]3n oligomers as a function of number of trimeric [RGaNH]3 rings n: standard
enthalpies �(6.8)H◦ (white marks), standard Gibbs energies �(6.8)G◦ (black marks), and total
energies �(6.8)E◦ (stars) in kJ mol−1; R=H (circles); and R=CH3 (triangles). Lines represent
an exponential fit. (Reprinted (adapted) with permission from [58]. Copyright 2015 American
Chemical Society)

The difference between the values of Gibbs energies of formation of closed and
open oligomers is always negative, indicating thermodynamic favorability of closed
oligomers. Both �(6.8)H◦ and �(6.8)G◦ are exponentially decreasing with addition
of each [RGaNH]3 ring both for hydrogen-substituted and methyl-substituted
oligomers (Fig. 6.26).

The �(6.8)E◦ for hydrogen-substituted closed and open oligomers of all con-
sidered lengths (n ≤ 38) is also presented in Fig. 6.26. It follows the same trend
as differences in enthalpies and free energies. Thus, for the long [HGaNH]3n+1
oligomers, the closed oligomers are expected to be preferable by about ~209 kJ/mol
compared to the open analogs.

On the other hand, the study of the open oligomers [119] indicates that the
electric dipole moment aligned exactly along the main axis is a driving force for
the new R3Ga3N3H3 ring attachment. Indeed, the dipole moment, directed from the
Ga to N edges of the oligomer, linearly increases with the number of rings n of the
[HGaNH]3n oligomers (Fig. 6.27). Linear fitting for the open oligomers results in
the equation: μ = (10.36 ± 0.14)n − (21.1 ± 1.9) (values in Debye, R2 = 0.995).

The capping of the oligomer by GaH and imino groups partly compensates the
axial electric field; thus, the value of the dipole moments of the closed oligomers
increases to much lesser extent: μ = (1.58 ± 0.01)n − 2.7 ± 0.2 (R2 = 0.997).

Dipole moments of methyl-substituted oligomers are similar to those of
hydrogen-substituted analogs: for open methyl-substituted oligomers
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Fig. 6.27 Dipole moments μ, Debye of closed (black circles) and open (blue circles) [HGaNH]3n
oligomers as a function of n. Lines drawn are linear fit. (Reprinted (adapted) with permission from
[58]. Copyright 2015 American Chemical Society)

μ = (8.54 ± 0.21) n − (9.8 ± 1.2)
(

R2 = 0.993
)

and for closed methyl-substituted oligomers

μ = (0.77 ± 0.01) n − (0.59 ± 0.06)
(

R2 = 0.998
)

.

Competition of the processes of oligomer formation, favorability of the growth
of open rod-shaped oligomers, and favorability of the capping reaction can lead
to the coexistence of open and closed oligomers of different lengths. It should be
taken into account that the high polarizability of the oligomers can also lead to a
formation of some supramolecular aggregates in the condensed phase. Knowledge
of actual distribution of different oligomers requests theoretical study of the kinetics
of the oligomerization processes in the gas phase as well as experimental studies.

6.3.5 The Effect of Terminal Substituents on the Electronic
Properties of Oligomers

The strong influence of the terminal groups at the oligomer ends on its electronic
properties opens a way for fine tuning of the HOMO-LUMO gap by the variation
of only terminal substituents. In this section, we demonstrate that the variation
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Table 6.5 Standard enthalpies �H0
298 (in kcal/mol) of the formal reactions of “capping”

X3[HGaNH]3nY3 oligomers with XGa and NY groups (process 6.8)

X H H H H CH3 CH3 CH3 CH3

Y H CH3 F CF3 H CH3 F CF3

n = 3 −26.2 −74.4 −150.1 −62.8 −49.5 −97.7 −173.1 −85.6
n = 10 −51.6 −99.6 −180.0 −93.7 −75.8 −123.8 −204.3 −118.1
X F F F F CF3 CF3 CF3 CF3

Y H CH3 F CF3 H CH3 F CF3

n = 3 34.1 −14.0 −91.2 −4.3 −37.7 −85.8 −163.0 −76.2
n=10 13.3 −34.7 −115.1 −28.6 −57.3 −105.6 −186.0 −99.8

of electron donor/electron acceptor properties of terminal substituents allows one
to adjust the HOMO-LUMO gap to cover a wide spectral range [59]. Closed
XGa[HGaNH]3nNY and open X3[HGaNH]3nY3 (X, Y=CH3, H, F, CF3) oligomers
(see Fig. 6.13) have been considered as the smallest oligomeric clusters (n = 3),
as well as rods of about 10 nm in length (n = 38) and also oligomers of some
intermediate length (n = 10). Several oligomers with n = 2, 4, and 6 have been
considered to evaluate the distribution of partial charges.

It was shown in Sect. 6.3.4.3 that the stability of [RGaNH]3n increases linearly
with the elongation of the oligomer. The introduction of the substituents on
the oligomer ends does not change this trend. Closed oligomers in general are
energetically more favorable than the open oligomers. Reactions of capping of open
rods are exothermic for all X and Y pairs with the exception of X=F and Y=H.

X3[HGaNH]3nY3 + GaH3 + NH3 = XGa[HGaNH]3nNY + 2HX + 2HY + H2
(6.9)

The standard enthalpies of the formal reaction for oligomers of two different
lengths are given in Table 6.5. The exothermicity of capping reactions increases
with the increase of the oligomerization degree.

As has been comprehensively shown by Kormos et al. [119], the relative
displacement of nitrogen N3 and gallium Ga3 planes provides a non-zero, 2.9 D,
dipole moment of the cyclotrigallazane ring H3[H2GaNH2]3H3 that increases up
to 69.3 D upon the elongation up to H3[H2GaNH2]27H3 due to the increase of
the distance between the oppositely charged ends. For the following analysis,
we calculated ESP charges [189] that are fitted to the electrostatic potential and
constrained them to reproduce the dipole moment μ. Results are given in Figs. 6.28
and 6.29.

The dipole moment in considered oligomers is usually directed from the negative
charge accumulated near the Ga-saturated end of the oligomer to the positive charge
accumulated near the N-saturated end. In Fig. 6.28 the ESP charge distribution
and dipole moments are shown for open oligomers with CH3/CH3 and CH3/CF3
terminal groups for comparison. In case of methyl substituents on both sides,
the dipole moment is always directed from Ga-saturated end toward N-saturated
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Fig. 6.28 Dipole moment vectors and ESP charge distribution over atoms in open
X3[HGaNH]3nY3 oligomers with n=2 (a, b), 3 (c, d), 6 (e, f), 10 (g, h) and with terminal groups
X=CH3, Y=CH3 (a,c,e,h) and X=CH3, Y=CF3 (b,d,f,g)

end, μ > 0 for all oligomers and dipole moment increases with the increase of
the length of the oligomer (Fig. 6.28 a, c, e, h). However, if CH3 groups are
replaced by the electron-withdrawing CF3 groups on N-saturated end (Fig. 6.28
b, d, f, g), it significantly reduces the dipole moment. For the smallest rod-shaped
(CH3)3[HGaNH]6(CF3)3 compound, electrophilicity of the CF3 groups overcomes
the charge separation caused by displacement of Ga3 and N3 planes, and the dipole
moment has small negative value, μ = −1.5 D (Fig. 6.28b).

The effect is more pronounced in case of closed XGa[HGaNH]9NY oligomers.
If X=H or CH3 and Y=F or CF3, the electron-withdrawing power of the F and
CF3 groups overcomes the electrostatic field provided by the spatial separation of
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Fig. 6.29 Dipole moment vectors and ESP charge distribution over atoms in closed
XGa[HGaNH]3nNY oligomers with n=2 (a, b), 3 (c, d), 6 (e, f), 10 (g, h ) and with terminal
groups X=CH3, Y=CH3 (a,c,e,h) and X=CH3, Y=CF3 (b,d,f,g)

gallium and nitrogen planes. This leads to the change in the direction of the dipole
moment for compounds with n ≤ 6. As an example, in Fig. 6.29, the ESP charge
distribution and dipole moments are shown for closed oligomers with CH3/CH3
and CH3/CF3 end substituents. In methyl substituent closed oligomers, one outmost
Ga-CH3 and N-CH3 groups (Fig. 6.29 a, c, e, h) cause significantly smaller dipole
moments, 0.4, 1.3, 2.5, and 10.8 D in closed oligomers against 6.2, 12.2, 36.0, and
74.3 D in open oligomers for n = 2, 3, 6, and 10, respectively. Consequently, the
replacement of N-CH3 with N-CF3 group (Fig. 6.29 b, d, f, g) has larger effect and
alters the dipole moment direction for the number of small closed oligomers. One



6 Group 13–15 Needle-Shaped Oligomers and Nanorods: Structures. . . 253

Fig. 6.30 Dipole moments of closed XGa[HGaNH]114NY (a) and open X3[HGaNH]114Y3
(b) oligomers. Reproduction of material from PCCP (Physical Chemistry Chemical Physics).
(Reproduced from Ref. [59] with permission from the PCCP Owner Societies)

can see that μ = −2.4D for n = 6 (Fig. 6.29f), μ = −3.3D for n = 3 (Fig. 6.29d),
and μ = −3.9 for n = 2 (Fig. 6.29b).

In general, the dipole moments of the oligomers increase linearly with the
increase of the oligomer lengths, although some small nonlinearity is noticeable
for open types of oligomers of shorter lengths. The dipole moment values of the
longest (3n = 114) oligomers are given in Fig. 6.30.

Capping of the H3[HGaNH]3nH3 oligomer by terminal XGa and NY groups
significantly (by 317–330 D) reduces the dipole moment (Fig. 6.30a) not only
because the Ga-terminated end has only one XGa group instead of three in open
oligomers but also due to the different chemical environment around the Ga atom.
In closed oligomers terminal Ga atom is bonded with one X group and three N
atoms, but in open oligomers each terminal Ga atom is bonded to one X group,
one H, and two N atoms. It leads to an overall decrease of the charge at the Ga-
terminated end in closed oligomers. For example, the ESP charge in the outermost
Ga atom of CH3Ga[HGaNH]6NCH3 is about 0.478, while the charge of each Ga
atom in the outermost plane in (CH3)3[HGaNH]6(CH3)3 is 0.515. Values of the
sum of partial charges in the vicinity of Ga- and N-terminated ends for several open
and closed oligomers are presented in Table 6.6. Partial charge accumulated on the
Ga-terminated end in open oligomers is more than three times larger than the one
on XGa groups in closed oligomers.

For the longest considered oligomers with n = 38, the dipole moment calculated
per monomeric HGaNH unit varies from 3.24 (X=CH3,Y=CF3) to 3.44 D (X=CF3,
Y=CH3) for open and from 0.44 (X=CH3, Y=CF3) to 0.54 D (X=CF3, Y=CH3)
for closed oligomers.
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Table 6.6 Group partial electrostatic charges in the vicinity of the opposite ends of oligomers
(CH3)3[HGaNH]3nY3 and CH3Ga[HGaNH]3nNY with Y=CH3 or CF3

(CH3)3[HGaNH]3nY3 CH3Ga[HGaNH]3nNY
n\group (CH3GaH)3 (NHCF3)3 (CH3GaH)3 (NHCH3)3 CH3Ga NCF3 CH3Ga NCH3

2 1.65 −1.34 1.58 −0.56 0.29 −0.37 0.30 −0.09
3 1.55 −1.10 1.43 −0.43 0.28 −0.35 0.27 −0.07
4 1.43 −0.94 1.38 −0.24 0.26 −0.32 0.24 −0.03
6 1.27 −0.84 1.16 −0.17 0.26 −0.29 0.23 0.01
10 1.21 −0.79 1.13 −0.07 0.25 −0.24 0.27 0.00
38 1.24 −0.68 1.23 −0.00 0.21 −0.29 0.21 0.03

Substituents X and Y change the dipole moment by donating/withdrawing the
electron density to/from the neighboring Ga or N atoms. The electron-withdrawing
ability decreases in row CF3 > F> H> CH3 [190]. Our results for the distribution
of dipole moment values over different combinations of terminal groups (Fig. 6.30)
are in accord with such a trend. The oligomer with a CF3 group on the gallium atom
(X) and a CH3 group on the nitrogen atom (Y) has the maximal dipole moment in
the case of both closed (Fig. 6.30a) and open (Fig. 6.30b) rods. F or CF3 terminal
groups on the gallium and H or CH3 groups on the nitrogen atoms result in similar
values of the dipole moments. In contrast, H or CH3 groups attached to terminal
Ga atoms along with F or CF3 groups attached to terminal N atoms provide small
dipole moments. The oligomer with X=CH3 and Y=CF3 has the smallest dipole
moment. Combinations of X=F/CF3 with Y=F/CF3 or X=H/CH3 with Y=H/CH3
provide intermediate values of the dipole moment.

Let us compare atomic charge distribution for the combination X=CH3 and
Y=CF3, which provides the smallest dipole moments for the fixed n (with the
reversal of the dipole moment vector in the case of the shortest oligomers), with
oligomers with methyl substituents on both ends. Partial charges accumulated at
opposite ends (the outermost Ga and N planes with the conjunct substituents)
are provided in Table 6.6. The CH3-substituted N-terminated end is essentially
neutral, while F atoms along with N atoms of the outermost plain accumulate
significant negative charge that counterpoises or even overcomes the negative charge
accumulated at CH3 groups of the Ga-terminated end. In all cases, the partial
charges on the negatively and positively charged ends decrease with the elongation
of the oligomer. The NCF3 group of closed oligomers loses about 0.09 ē when
the oligomerization degree increases from n = 2–38. For the open oligomers, three
N-CF3 groups lose altogether more than 0.5 ē when n increases from 2 to 6 in
(CH3)3[HGaNH]n(CF3)3. The respective change in the charge of three Ga-CH3
groups in (CH3)3[HGaNH]3n(CH3)3 is about 0.4 ē. Thus, notable charge transfer
between opposite ends occurs in short oligomers. It depends on the particular
substituents and affects oligomers with length up to about 14 Å (n < 6).

The HOMO and LUMO of the rod-shaped open oligomers are strictly localized
at the ends of the molecules. Figure 6.31a shows the HOMO and LUMO of
(CH3)3[HGaNH]30F3 as an example. The HOMO is almost entirely localized at
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(CH3)3[HGaNH]30F3(a)

(b)
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(d)

Fig. 6.31 MOs of selected oligomers. Blue color refers to N, pink to Ga, white to H, gray to C,
and light blue to F atoms

the gallium-terminated end in long oligomers, and the LUMO is almost entirely
localized at the nitrogen-terminated end. It should be noted that all other occupied
orbitals with energy within at least 2 eV below the HOMO are also localized at the
Ga-terminated end.

Likewise, all unoccupied orbitals with energy within at least 2 eV higher than the
LUMO are localized at the N-terminated end. It is expected that the HOMO energy
will be sensitive to the X substituent while the LUMO energy will depend on the Y
substituent.

In closed oligomers, the LUMO of A1 symmetry is strongly localized at the N-
terminated end (Fig. 6.31b), but the HOMO of E symmetry is more delocalized
and does not extend over the terminal group at the Ga-terminated end, having
major contribution from N atoms (see also Figs. 6.18 and 6.24). In the most of
the considered closed oligomers with n = 10, the HOMO is moderately localized
in the vicinity of Ga-terminated end as shown for CH3Ga[HGaNH]30NF3 in Fig.
6.31b. However, there are MOs in the vicinity of the HOMO which are localized
at the N-terminated end. For example, in Fig. 6.31c the p-type HOMO-2 of
CH3Ga[HGaNH]30NF3 is shown which is localized at the terminal F and adjacent
N atoms. The energy difference between HOMO and HOMO-2 is below 0.1 eV.
Thus, the HOMO-2-LUMO energy difference is similar to the HOMO-LUMO
energy difference, while HOMO-2-LUMO transition does not involve an end-to-
end intramolecular charge transfer. A similar situation is observed for other closed
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Fig. 6.32 Energies of LUMO (a, b) and HOMO (c, d) for open X3[HGaNH]3nY3 (a, c) and closed
XGa[HGaNH]3nNY (b, d) oligomers with n = 3 (dotted line), n = 10 (dashed line), and n = 38
(solid line) for different combinations of X/Y substituents. Reproduction of material from PCCP
(Physical Chemistry Chemical Physics). (Reproduced from Ref. [59] with permission from the
PCCP Owner Societies)

oligomers with intermediate length (n = 10). In some cases (X=CF3, Y=F; X=CF3,
Y=CH3; X=H, Y=CH3; X=F, Y=CH3; X=F, Y=F), the occupied molecular
orbital localized at the N-terminated end shifts to somewhat higher energy than the
one localized at the Ga-terminated end and becomes the HOMO (see Fig. 6.31d).

Figure 6.32a, b shows the energies of LUMOs for open and closed oligomers.
The estimation of electronegativities of functional groups based on core-ionization
energies [191] implies that the CF3 group is significantly less electronegative than F.
It correlates with the trend in the LUMO energies. The lowest energy of the LUMO
corresponds to Y=F for both closed and open oligomers with n = 10 or n = 38;
for open oligomers Y=CF3 yields much higher LUMO energies (Fig. 6.32a). The
difference in LUMO energies between Y=F and Y=CF3 is circa 0.9 eV in open
oligomers with n = 38 or n = 10. The difference in LUMO energies between
Y=CH3 and Y=H in open oligomers with n = 38 or n = 10 is circa 0.5 eV.

In the case of closed oligomers (Fig. 6.32b), if they are long enough to neglect the
influence of terminal groups at opposite ends (n = 10 or 38), there is no difference
between Y=F and Y=CF3, or Y=H and Y=CH3. The only factor lowering the
LUMO energy (by ~0.3 eV compared to Y=H or Y=CH3) is the presence of
fluorine atoms (Y=F or Y=CF3) in substituents at the nitrogen-terminated end.
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The HOMO energies of long oligomers (Fig. 6.32c, d) increase in the order
X = F < CF3 < H < CH3. The effect of terminal substituents on the HOMO
energies is less pronounced than on the LUMO energies. The largest difference in
the energies between long open oligomers (n = 10 or 38) with X = F and X = CH3
of is ~0.65 eV (Fig. 6.32c). For long needle-shaped oligomers (Fig. 6.32d), the
difference does not exceed 0.16 eV. It correlates with the observation that terminal
groups in the Ga-terminated end of long closed oligomers do not contribute to the
HOMO (see Fig. 6.31b). The elongation of open oligomers has a drastic effect on
the HOMO and LUMO energies (see Fig. 6.32). The average downshift of LUMO
energies of open rods is ~0.58 eV (Fig. 6.32a) with elongation from n = 10–38. The
respective upshift for the HOMO energies is ~0.62 eV (Fig. 6.31a).

As expected, X substituents do not influence the energy of LUMO, and Y
substituents do not influence the HOMO energies for oligomers with n = 10 or
38. However, the substituents play a significant role in molecules with n = 3 where
the opposite ends of the molecule are close enough to interact with each other. For
any particular substituents at the nitrogen atom, LUMO energies decrease in the
order of substituents at the gallium atom (X) as CH3 > H > CF3 > F for closed and
as CH3 > H > F > CF3 for open oligomers with n = 3. On the other hand, for any
particular substituent at the gallium atom, HOMO energies of oligomers with n = 3
increase with changing Y substituents in order CF3 < F < H < CH3 for open and
as CF3 < H < F < CH3 for closed oligomers. On the whole, for short oligomers the
substituents Y at the nitrogen-terminated end have a larger effect on the energies
of HOMO and LUMO and, consequently, the HOMO-LUMO gap values, than the
substituents X at the gallium-terminated end.

Electronic energies and partial density of states in the vicinity of HOMO-LUMO
gaps of F3[HGaNH]114F3 and (CH3)3[HGaNH]114(CH3)3 oligomers are given in
Fig. 6.33. At such a length (circa 10 nm), the terminal substituents do not affect the
opposite ends of the rod. Thus, the PDOS in the vicinity of the HOMO and LUMO
of the oligomers with the smallest (X=CH3 and Y=F) and the largest (X=F and
Y=CH3) energy gaps are expected to be the same as the respective local PDOS
shown in Fig. 6.33a, b.

The estimated band gap of the [HGaNH]∞ polymer, extrapolated from the
oligomer computations, is circa 7.0 eV. Finite open oligomers have a number of
localized states within the band gap of the parent polymer. These states are clearly
seen in the energy spectra shown in Fig. 6.33 as spatially separated levels in the
vicinity of the HOMO-LUMO gap in contrast to nearly continuous spectra in
valence and conductivity bands. Most of the HOMOs exhibit density distribution
over the N atoms near the Ga-terminated end, while lower unoccupied states
have the main contribution from the Ga atoms near the N-terminated end. The
contribution of terminal groups is noticeable not only in HOMO and LUMO states
but also deeper in the spectrum. F substituents produce a relatively sparse spectrum
of lower unoccupied localized states which results in the maximal downshift of the
LUMO energy (Fig. 6.33a). By withdrawing electrons from N atoms, F substituents
induce vacant orbitals of the lowest energy which result in lower LUMO energies.
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Fig. 6.33 PDOS of F3[HGaNH]114F3 (a) and (CH3)3[HGaNH]114(CH3)3 (b) Contributions from
Ga atoms are shown by black lines, from N atoms by blue dash-dotted lines, and from backbone
H atoms by green dashed lines, and contributions from terminal groups (F or CH3) are presented
by red lines. For drawing this figure, the middle of the energy gap is chosen as the zero energy.
Reproduction of material from PCCP (Physical Chemistry Chemical Physics). (Reproduced from
Ref. [59] with permission from the PCCP Owner Societies)

In contrast, methyl substituents produce a relatively sparse spectrum of the highest
occupied molecular orbitals (Fig. 6.33b).

The values of HOMO-LUMO gaps for all considered oligomers with n = 38
are shown in Fig. 6.34. In all cases, the smallest HOMO-LUMO gap corresponds
to the oligomer with a methyl group at the Ga atom and fluorine at the nitrogen
atom. The largest values of the HOMO-LUMO gap correspond to strong electron-
withdrawing substituents (F, CF3) at the terminal Ga atoms and electron-donating
groups (CH3) at the terminal N atoms. Thus, substituents which reduce the dipole
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Fig. 6.34 HOMO-LUMO gaps of closed XGa[HGaNH]114NY (a) and open X3[HGaNH]114Y3
(b) oligomers with different substituents X and Y. Reproduction of material from PCCP (Physical
Chemistry Chemical Physics). (Reproduced from Ref. [59] with permission from the PCCP Owner
Societies)

moment of the system (Fig. 6.30) reduce the energy gap as well (Fig. 6.34). The
HOMO-LUMO gap values of closed oligomers vary within circa 0.4 eV depending
on terminal groups (Fig. 6.34a). The change is much more pronounced in the case
of open oligomers (Fig. 6.34b); the HOMO-LUMO gap varies from 0.94 to 2.91 eV.
It should be noted that the change in the HOMO-LUMO gap value is smaller in
the case of shorter oligomers. Depending on substituents, the HOMO-LUMO gap
of open oligomers changes within 1.83 eV (from 2.22 to 4.05 eV) for n = 10 and
within 1.33 eV (from 5.23 to 6.56 eV) for n = 3.

6.4 Conclusions

Synthetic approaches, structures, and reactivity of group 13–15 needle-shaped
oligomers have been reviewed. It is demonstrated that such compounds exist both in
the condensed phase and may be formed in situ directly in the gas phase upon CVD
processes. Computational studies reveal that such needle-shaped oligomers are more
stable than fullerene-like isomers for all 13–15 pairs. Nitrogen-containing oligomers
are more stable compared to their heavier P- and As-containing analogs. Formation
of such oligomers in the gas phase is energetically favorable and feasible from
the thermodynamic point of view. However, many competitive reaction pathways
are kinetically possible which leads to cascade of reactions and different reaction
products. Electronic properties of the needle-shaped rods can be finely tuned in
broad range by variation of way of termination, substituents on terminal atoms, and
the length of the oligomer.
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From the results, presented and discussed above, it is clear that the way of
termination of nanorods plays an important role in the controlling of their electronic
properties. Electronic properties of the open (tube-like) and closed (needle-shaped)
Ga-N-based nanorods are completely different. This holds both for the short and
long (at least up to 10 nm of length) rod-like oligomers.

All the [RGaNH]3n+1 oligomeric rods have a charge polarization with a dipole
moment directed from the Ga-terminated end toward N-terminated end. The dipole
moment of open oligomers is much greater than for the closed ones. Since the dipole
moment is a driving force of oligomerization process [119], the growth of open rod-
shaped oligomers is energetically more favorable. On the other hand, the capping
reaction is energetically favorable as well. Thus, the coexistence of open and closed
oligomers of different lengths is possible from the thermodynamic point of view.

Our study of the finite [RGaNH]3n+1 oligomers, with n ≤ 38, showed that
saturation of dangling bonds at the polarized ends of the oligomers by H atoms
or methyl groups leads to monotonic changes in structural [RGaNH]3 units of the
oligomer. In the case of the open oligomers, Ga-N bond lengths along the main
axis monotonously decrease, and Ga-N bond lengths perpendicular to the main axis
monotonously increase from the center to the ends of the oligomer. In the case of
closed oligomers, polarization is partially compensated by capping of the rod ends
by GaR and NH groups; the structural differences are observed only for the outmost
[RGaNH]3 rings.

Band structure of the infinite polymer obtained from computations of closed
oligomers with length ∼10 nm demonstrates that majority of MOs are delocalized.
Band structure of the [HGaNH]3∞ polymer, extracted from the computations of
[HGaNH]115 oligomer, exhibits indirect band gap. However, the actual band gap
energy of the finite oligomer is formed by end-localized states where HOMO is
localized at GaH-capped end and LUMO is localized at the NH-capped end. The
polarized states can provide local attractors for holes and electrons [192]. These
localized MOs reduce the energy gap of the finite closed oligomer by ∼0.46 eV
compared to the band gap of the polymer (7.0 eV). The value of the HOMO-
LUMO gap moderately depends on the oligomer length, and it converges to 6.54 eV
for oligomers with n ≥ 10. Oligomers with open-type termination exhibit greater
changes in electronic structure with respect to the band structure of the infinite
polymer. Multiple localized MOs of the H3[HGaNH]114H3 oligomer have energies
within the band gap of the [HGaNH]3∞ polymer. HOMO and LUMO of open
oligomers are strongly localized at the opposite ends of the oligomer. The HOMO-
LUMO gap of the open oligomers (with the exception for the smallest oligomers)
is significantly narrower than the gap of the closed oligomers with the same n. The
gap decreases dramatically with elongation of the oligomer. For oligomers with a
length of about 10 nm, the band gap energy of the open oligomer is less than 30%
of the band gap of the closed oligomer, and the band gap value (1.9 eV) is not yet
converged in case of H3[HGaNH]114H3 oligomers.

Excited state calculations for small clusters (n = 3) predict a dominance of
HOMO → LUMO transition in the lowest excited states both for closed and open
rods. While the probability of the transition is higher for the closed oligomers, the
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lowest singlet states have lower energy values for the open rods, which lead to a
red shift in the absorption spectra of open oligomers comparing with closed one
oligomers.

The predicted profound difference in electronic properties between open and
closed rod-shaped oligomers can help to identify the type of termination of the
oligomeric rod in the experimental studies.

We also tracked the effects of changing the metal atom and substituents on ter-
minal groups on the electronic properties of the Ga-N-based nanorods. Substitution
of Ga atoms by Al moderately increases energy gaps for both closed and open
oligomers. Substitution of Ga by In atoms effectively reduces the energy gap in both
cases. However, for closed oligomers, the metal substitution is the most efficient in
positions closer to the metal-terminated end of the rod, while for open oligomers
the metal substitution near the amido-terminated end of the rod has a predominant
effect.

Substitution of H atoms by CH3 groups on metal centers does not lead to a
qualitative difference in electronic and structural properties of the [RGaNH]3n+1
oligomers but results in a constant shift in quantitative characteristics, such as
decrease of HOMO-LUMO gap by 0.6 eV for closed and by 0.7 eV for open
oligomers with respect to values for the hydrogen-substituted rods.

It was found that for the open oligomers, the molecular orbital energy values
of end-localized states are highly sensitive to a particular terminal group. This,
along with a variation of the length of the oligomer, allows adjusting the HOMO-
LUMO gap to cover a wide spectral range. For example, the elongation of
F3[HGaNH]3n(CH3)3 from n = 3–38 reduces the HOMO-LUMO gap from 6.5 to
2.9 eV, the elongation of (CH3)3[HGaNH]3nF3 from n = 3–38 reduces the HOMO–
LUMO gap from 5.2 to 0.9 eV, and the change from F3[HGaNH]3n(CH3)3 to
(CH3)3[HGaNH]3nF3 reduces the HOMO-LUMO gap from 2.9 to 0.9 eV in the
case of n = 38 and from 6.5 to 5.2 eV in the case of n = 3.

For the long oligomers, where the influence of the substituents at the opposite
end of the rod is negligible, HOMO-LUMO gap values decrease in the order
F > CF3 > H > Me for the substituents on the Ga atom. The order of substituents on
the nitrogen atom, which contributes to the corresponding reduction of the gap, is
as follows: F < CF3 < H < CH3. Qualitatively, this trend is observed both for open
and closed oligomers, but in the latter case, the influence of the substituents on band
gap energy values is much less pronounced.

The HOMO-LUMO transition in long open oligomers requires a relatively small
energy change (which could be as low as 0.9 eV for X=CH3, Y=F in oligomers of
circa 10 nm of length) but involves an intermolecular end-to-end charge transfer. In
contrast, in closed oligomers the transitions occur only at the nitrogen-terminated
end of the oligomer and require a large energy change (at least 6.3 eV for n = 38,
X=CH3, Y=F). Overall, we conclude that the type of termination (open or closed)
has the largest effect on the electronic properties of [HGaNH]3n oligomers. The
elongation and variation of substituents on the terminal groups have comparable
effects on the HOMO-LUMO gap and can be effectively combined for fine tuning
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of the energy gap to a desirable value within 1–7 eV range. These features make
these compounds promising targets for the practical applications.

6.5 Future Directions

Since the Ga-N-based rod-shaped compounds possess intriguing electronic proper-
ties for their practical use, the reliability of their synthesis and isolation becomes
the key issue for the future experimental works. It is highly desirable to selectively
synthesize arrays of pre-oriented Ga-N-based oligomers. One of the approaches to
achieve this goal may be the atomic layer deposition (ALD) technique. In contrast
to CVD, in ALD the deposition reaction is split in two steps, and the precursor
materials are introduced into the reaction volume separately, step by step [193,
194]. During each reaction step, one new layer of group 13 or group 15 atoms is
formed; the repetition of reaction cycles using subsequent introduction of GaMe3
and ammonia precursors leads to gallium nitride [195, 196]. After each cycle, the
reaction vessel is purged by inert gas to remove unreacted compounds and avoid the
stoichiometry loss.

To force the formation of needle-shaped oligomers in ALD process, a template
approach, based on organic cycles with three amido groups, which are connected
to the polymer backbone, is suggested. This approach is schematically shown on
Scheme 6.8. The functionalized polymer, having a cycle with three amido groups
NHR, reacts with GaMe3, forming an initial Ga3N3 ring, which can be expanded
only in one direction by subsequent reaction steps with ammonia and GaMe3. This
approach may allow to make the arrays of arranged Ga-N-based nanorods.

Moreover, this approach can be easily expanded in order to produce function-
alized or mixed metal rod-shaped oligomers. Thus, using primary amines NH2R
instead of ammonia on each reaction step will allow to introduce different functional
groups R to the backbone of the oligomer. Use of other group 13 precursors
instead of GaMe3 (e.g., AlMe3 or InMe3) will allow to controllably produce the
subsequent M3N3 rings with different group 13 metals. Thus, the template-based
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Scheme 6.8 Initial stages for proposed template synthesis of rod-shaped Ga-N-based oligomers
on the functionalized polymeric matrix
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ALD approach in our opinion is potentially very powerful tool to controllably
produce the functionalized rod-shaped 13–15 oligomers.

Another important issue which is of interest to both theoreticians and experi-
mentalists is to study how the functionalization of rod-shaped 13–15 oligomers
with photoactive, luminescent, red-ox, or other functional groups will affect the
properties of the constructed multipurpose composite functional materials. Thus,
we believe that expansion of chemistry of rod-shaped 13–15 oligomers will be
beneficial and highly rewarding both from fundamental and applied point of view.
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Chapter 7
Computational and Experimental
Analysis of Carbon Functional
Nanomaterials

Pitchaimani Veerakumar, Namasivayam Dhenadhayalan,
and King-Chuen Lin

Abstract Density functional theory (DFT) as one of molecular simulation tech-
niques has been widely used to become rapidly a powerful tool for research and
technology development for the past three decades. In particular, the DFT-based
theoretical and fundamental knowledge have shed light on our understanding of
the fundamental surface science, catalysis, sensors, materials science, and biology.
Oxygen, nitrogen, boron, phosphorus, and sulfur are the most common heteroatoms
introduced on the functional carbon nanomaterials surface with different surface
functionalities. This book chapter aims to provide a pedagogical narrative of the
DFT and relevant computational methods applied for surface chemistry, homoge-
neous/heterogeneous catalysis, and the fluorescence-based sensing properties of
carbon nanomaterials. We overview several representative case studies associated
with energy and chemicals production and discuss relevant principles of computa-
tionally driven carbon nanomaterials design.

Keywords Carbon nanomaterials · Density functional theory · Graphene ·
Catalysis · Sensors · Carbon dots

7.1 Introduction

In recent years, the computational techniques developed for studying the chemical
interactions, transformations, and mechanism of the reactions are often based
on density functional theory (DFT) [1]. Recent research into the heterogeneous
catalysis, a key pathway for the interaction of active metal catalysts in solid
supports involving the bond-formation or bond-cleavage reaction or decomposition
mechanism, is a subject of considerable debate [2]. This is because of selectivity of
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the reaction, tunability of the catalyst, and the choice of solvent toward reactivity
and selectivity, etc. which play vital roles in catalysis [3]. The electronic structure
calculations by DFT are useful for characterizing the chemical and physical
properties of bare and functionalized materials [4, 5]. As such, many graphene-
based nanomaterials and related catalysis have been explored and designed with
implementation of the classes.

Plane-wave density functional theory (DFT) is a powerful tool for gaining insight
into bulk and surface structures at accurate, atomic level. The delocalized nature of
the plane-wave basis set hinders the application of many powerful post-computation
analysis approaches, many of which rely on localized atom-centered basis sets [6].
Traditionally, this gap has been bridged via projection-based techniques from a
plane-wave to atom-centered basis. Many numerical methods have been developed
to solve plane-wave DFT. It has been popularly classified as three methods including
Gaussian basis set methods, linear-augmented-plane-wave (LAPW) methods, and
pseudopotential plane-wave (PSPW) methods. All three methods can be made very
accurate and have been capable of predicting structures, frequencies, and energetics
for a wide class of compounds [7]. However, the current consensus in the quantum
chemistry and condensed matter physics communities reflects that only the first two
of these three methods are straightforward to apply for first-row transition metals.
It would be beneficial for PSPW methods to work well for these systems, because
Gaussian basis set and LAPW methods lack certain capabilities. In particular, PSPW
methods can perform ab initio molecular dynamics extremely efficiently and treat
unit cells up to a few hundred atoms. Another advantage of PSPW methods is their
transferability from molecules to surfaces to solids. In contrast, Gaussian-based
methods have different basis set requirements for gas and solid phase applications,
complicating the transferability of these methods [8]. Plane-wave DFT calculations
were usually performed using commercially available programs such as VASP [9],
SIESTA [10], CASTEP [10], ABINIT [11], and Quantum ESPRESSO [12] program
packages.

Recently, the modern density functional theory is molecular orbital DFT (like
valence bond and molecular orbital theory) as a very efficient additional tool
in the arsenal of computational methods rather than a perfectly different theory,
which is used orthogonal to traditional approaches [13]. A wave function for a
single electron is called a molecular orbital (MO). The MO with spatial and spin
coordinates are called spin orbitals and are products of a spatial orbital and a spin
function. The lowest unoccupied molecular orbital (LUMO) in DFT has as much
meaning in describing electron addition as the highest occupied molecular orbital
(HOMO) in describing electron removal [14]. Molecular orbital DFT calculations
were performed using Gaussian [15], ADF [16], and TURBOMOLE [17] program
packages, to investigate important atomic and molecular properties as well as some
selected areas of application.

The DFT results over graphene-based catalysts have been widely used for
determining the rate-limiting step [18], active sites [19], adsorption and activation
mechanisms [20], activation energy [21], and catalytic pathways [22], which cover
almost all catalysis-related topics. Perhaps one of the most illustrious examples
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that showcase the development of DFT methodology is a direct non-oxidative
conversion of methane to ethylene, aromatics, and H2 [23]. Obtaining accurate
information on the energetics for these processes is challenging. Advanced quantum
chemical methods with faster computers are enabling the prediction of accurate
energetics of chemical transformations of the larger molecules involved in the
processes [24].

The chemical interactions and transformations at the gas-solid, liquid-solid, and
gas-liquid interfaces are facilitated by the solid or liquid surface form the basis of
the advanced functional catalysis that drives the production of many value-added
chemicals [25, 26]. Recently, one approach to circumventing ongoing challenges
is through the use of metal-free catalysts as substitutes. Although organocatalysts
have been effective in this role [27], carbon-based catalysts derived from graphite,
graphene (Gr), or graphene oxides (GO) and other similar materials may serve
as useful alternatives [28]. It has been reported that graphene-based catalysts can
also work in oxidation of aryl and alkyl alcohols [29, 30], hydrochlorination [31],
nitrobenzene reduction [32], and so on. In addition, other applications of graphene
materials in catalysis may contain hydrogenation (HYD), hydrodesulfurization
(HDS), hydrodenitrogenation (HDN), hydrocracking (HCR), hydrodeoxygenation
(HDO), and hydrodechlorination (HDCl). Beyond the exploration of its novel
fundamental reactivity, the use of GO as a catalyst is attractive from a practical
perspective, owing to the abundance of natural carbon sources, the catalyst’s low
density, extensive chemical functionalization, hydrophilicity, low cost, and ease for
preparation [33]. For deeply understanding the reaction processes, it is strongly
suggested to combine DFT computational results with experimental observation.
On the other hand, the graphene catalysts co-doped with two or three heteroatoms
were also extended [34]. For instance, Zhao et al. reported a universal strategy
to synthesize an N-P-O co-doped free-standing three-dimensional (3D) graphene
through a one-pot red phosphorus-assisted “cutting-thin” technique [35]. The DFT
calculations verified that the enhancement of charge delocalization should be
beneficial for the electrochemical applications [36, 37]. We will introduce the
DFT computations in this section to rationalize experimental results in graphene-
based catalysis, due to their extensive applications when combined with the related
characterization techniques [38, 39].

In this chapter, we comprehensively summarized the theoretical chemistry for
graphene-based nanomaterials by computation methods covering active surface
sites and surface defect structure analysis, binding ability determination, and
reaction mechanism investigation. We reviewed the advantages/disadvantages and
challenges and further provided key information to catalysis community on how to
adopt suitable computation methods for their research. In addition, the electronic
and sensing properties of fluorescent carbon nanomaterials are reviewed from a
theoretical perspective.
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7.2 Density Functional Theory

Density functional theory (DFT) is primarily a theory of the electronic structure of
atoms, molecules, and solids in their ground states, in which the electronic density
distribution n(r) plays the central role. It is one of the standard computational
tools in the condensed matter, chemistry, and biochemistry in both academia and
industry [40]. Up to now, the DFT is presently the most successful and also the most
promising approach to compute the electronic structure of materials. It provides
the description of electronic structure (i.e., structure prediction) and enables to
calculate the optical properties, total energies (thermodynamics and kinetics), and
forces of materials under very general conditions [41]. The theory was extensively
applicable for atoms, molecules, solids, nuclei, and quantum as well as classical
fluids [42]. In its original formulation, the DFT provides the electron density
which plays a key role in describing the ground state properties of a material.
Later on in the field of chemistry, the DFT is employed to predict a great variety
of molecular properties including molecular structures, vibrational frequencies,
atomization energies, ionization energies, electric and magnetic properties, reaction
paths, etc. [43]. The original DFT has been generalized to deal with many different
situations: spin-polarized systems, multicomponent systems such as nuclei and
electron-hole droplets, free energy at finite temperatures, superconductors with
electronic pairing mechanisms, relativistic electrons, time-dependent phenomena
and excited states, bosons, molecular dynamics, etc. [44]. For example, the energies
of the functional group and the interaction of carbon dioxide were investigated by
DFT calculations with the use of the DMol3 code [45] and selection of generalized
gradient approximation (GGA-PBE) by Perdew, Burke, and Ernzerhof (PBE) [46].
The atomic orbital was described using double numeric polarization (DNP) basis
set, which is comparable to 6-31G (d,p). The van der Waals correction was further
taken into account [47]. The type of core processing is set up using a DFT half-core
pseudopots (DSPP) specifically designed for DMol3 calculations [48]. The real-
space orbital global cutoff radius is 3.7 Å. The convergence threshold parameters
for the optimization are 10−5 Hartree (energy), 2 × 10−3 Hartree (gradient), and
5 × 10−3 Hartree (displacement) [49].

Since the 1960s, the DFT was introduced in two seminal papers by the authors
Hohenberg-Kohn and Kohn-Sham, and its citation is soon up to ∼4000 (1964)
∼9000 (1965). The annual paper collections dealing with the DFT application
are shown in Fig. 7.1 [50]. Note that the relatively small number of publications
before 1990 by no means implies that important work was not being carried out.
It was a very well-established computational technique, and “density functional”
or other designations are named in many applications. Remarkably, the number
of publications per year (1975–2014) on topics (“density functional” or “DFT”) is
listed, according to the Web of Science Core Collection (February 2015). The inset
shows data near 1990 on an expanded scale [51]. Obviously, it shows the dramatic
increase in the number of publications on the topics “density functional” and density
functional theory “(DFT)” in recent years. DFT was promptly incorporated into
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Fig. 7.1 Number of papers
that mention DFT as found by
the Web of Science.
(Reproduced with Ref. [51].
with permission from the
American Physical Society)

Pople’s widely used Gaussian computer program, and, with this endorsement, the
popularity of DFT calculations among chemists began to grow exponentially (see
Fig. 7.1). Accordingly, when the Nobel Chemistry Committee decided it was time
to honor quantum chemistry with a Prize, it was not difficult for them to split the
award between John Pople and Walter Kohn.

7.3 Graphene-Based Functional Nanomaterials

As reported, the pristine graphene (Gr) is a defect-free and stable material composed
of a single two-dimensional (2D) layered sheet of polycyclic, hexagonally arranged,
sp2-bonded aromatic carbon [52–54]. However, the production of monolayer
graphene may yield by-product of few-layer graphene (FLG) which contains a
number of stacked sheets of pristine Gr (usually less than 10). For effective catalytic
reactions, fabrication of irregularities and/or defects in the structure of pristine Gr is
required. The way to generate irregular structure of pristine Gr was by replacement
of some carbon atoms with either sulfur, nitrogen, or other dopants (e.g., phosphorus
and boron) [55]. Then, the activity of Gr catalysts was enhanced significantly after
dopants were doped on the surface. Figure 7.2a, b show the structures of pristine
Gr and heteroatom-doped Gr. As a highly oxidized form of pristine Gr, graphene
oxide (GO) is produced by the chemical oxidation of graphite, followed by the
exfoliation of single monolayer sheets, and its structure is shown in Fig. 7.2c [56].
The model chemical structural of GO has six-membered benzene rings along with
several functionalities such as hydroxyl, carboxyl, epoxy, and ketone, which are
represented in different color. Conversely, the aromaticity of the pristine Gr can
be partially reestablished by the reduction of GO to yield reduced graphene oxide
(RGO) which still contains some residual oxygen as well as the defects both on the
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Fig. 7.2 Pristine graphene and graphene-derived solids. (Reproduced from Ref. [52] with permis-
sion from the American Chemical Society)

basal plane and at the edges of sheets, as displayed in Fig. 7.2d. The heteroatom-
doped graphene or GOs act as catalyst support, in which both the irregularities and
residual O-containing groups play a vital role during reaction mechanism in organic
transformations and other reactions.

7.3.1 Active Sites of Graphene-Based Metal-Free Catalysts

Generally, graphene-based materials have been widely studied the field of metal-free
catalysis due to the outstanding electronic, thermal, and mechanical properties [57].
The unprecedented features of metal-free catalysts, which are believed to account
for their superior catalytic performance, have been studied by computation methods.
The perfect pure graphene essentially exhibits very low catalytic activities, because
of the low density of states around the Fermi level, but it is active at the defects
and edges [58]. An effective way is to reduce the lateral size in order to increase the
active edges. Nevertheless, in-plane structure of graphene bears a very low chemical
activity, which may be apparently enhanced by doping different heteroatoms such
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as O, N, B, S, P, and their corresponding functional groups [59]. Catalytic active
sites on graphene carbon nanomaterials may be generated by tuning electronic
structures. Several approaches are reported. First of all, introducing intrinsic defects
and the edge topological structures [60] may facilitate the electron transfer which
is beneficial to the conductivity and catalytic activity of carbon nanomaterials.
Therefore, to enhance the catalytic activities is probable by optimizing the topology
through the charge density analysis on these defective carbon materials by DFT
methods. Doping atoms in graphene-based nanomaterials is an alternative approach,
based on which carbon atoms are substituted by heteroatoms, such as N, P, and B,
or bonded with heteroatoms (O, S, Se, Cl, Br, and I) on carbon surfaces or edges
[61]. Such an atomic replacement results in distinct difference of electronegativity,
thus leading to localization of, the charge and spin densities and enhancement of
the catalytic activities. The active sites are located at the carbon atoms nearby the
dopant or at edges, or dopant atom itself. The DFT calculations verified that doping
heteroatom (N, O, B, S, Cl, P, Cl, Br, and I) in graphene remarkably changed
the charge density and spin density distributions on the doped carbon materials
and consequently enhanced their catalytic and electrocatalytic properties [62, 63].
Carboxyl (-COOH), carbonyl (-C=O), and hydroxyl (–C-OH) containing oxygen
functional group exhibited the synergistic effect of edge defects on graphene to
enhance catalytic activities [64]. The final approach is to physically adsorb organic
molecules on graphene or hybrid structure of N-doped graphene [62]. Defects on
carbon materials can induce the electron transfer between the organic molecule
and the graphene or between the graphitic carbon nitride (g-C3N4) and the doped
graphene [60]. However, the DFT calculation shows that an electron transfer occurs
from graphene sheets to the adsorbed tetracyanoethylene (TCNE) molecules. In
addition, the carbon atoms with higher charge density can generate the catalytic
active sites due to the electron transfer from the graphene to TCNE molecule [64].

The oxygen functionalities for GO can be introduced via chemical oxidation.
These oxygen functionalities with acidic and oxidative nature render GO to function
as a solid acid or green oxidant. Besides, the edges or defect sites in GO are found to
carry carboxylic acids, quinones, and aromatic CH, as well as the spin electrons. The
resulting quinone and diol redox sites play the role as active sites in carbon materials
for oxygen-activation reactions. In addition, the amphiphilic character of GO should
be advantageous for acting as a phase-transfer catalyst in oil-water biphasic systems
[65]. The potential different active sites of graphene scaffold are displayed in Fig.
7.3 [66].

In order to alter the identities of the N moieties, the content of graphitic N
species, pyridinic N centers, and pyrrolic N moieties could be tuned through
annealing of GO with various N-rich precursors such as ammonia, polyaniline, or
polypyrrole, thereby making this process more suitable for practical applications,
and the schematic diagram is shown in Fig. 7.4 [67].
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Fig. 7.3 Schematic representation of catalytic active graphene sites on the edges, defects,
heteroatoms, and groups. (Reproduced from Ref. [66] with permission of the American Chemical
Society)

Fig. 7.4 Schematic diagram for the preparation of N-graphene with different N states. (Repro-
duced from Ref. [67] with permission of the Royal Society Chemistry)

7.3.2 Oxidation Reactions

Currently, the GO with oxygen-containing functional groups is applied to efficiently
catalyze the oxidative reactions for value-added chemicals [33, 68]. Therefore, GO
can be considered as a green oxidant to oxidize substituted cis-stilbenes to their
corresponding diketones [69, 70]. On the other hand, a proton source is necessary
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Fig. 7.5 Optimized atomic structures for the (a) initial, (b) intermediate, and (c) final steps of
benzyl alcohol oxidation over GO with the initial coverage of epoxy and hydroxyl groups, in which
12.5% of the carbon atoms are on the material’s basal plane. The total energy of the reactions is
reported in eV. (Reproduced from Ref. [29] with permission of Wiley-VCH)

when GO and RGO are treated as supports for the preparation of bifunctional
catalysts. Gomez-Martínez et al. [56] demonstrated that a proton can be generated
by the dissociation of sulfonyl groups, i.e., (−SO3H → SO3− + H+). Although less
efficiently, proton can also be donated by carboxylic and hydroxyl groups present on
the surface of GO and RGO. The carboxylic acid functionalized GO (GO–CO2H)
few-layers are able to catalyze the pinacol rearrangement and the direct nucleophilic
substitution of allylic alcohols. In most cases, GO functionalization is the best
way to achieve the performance in oxidation reactions. According to the DFT and
experimental results, Boukhvalov et al. [29] have proposed that epoxide functional
group may play a role in the metal-free oxidation reactions (Fig. 7.5). For example,
benzyl alcohol oxidation (Fig. 7.5a) initiates the reaction, followed by hydrogen
transfer from -CH2 group of benzyl alcohol to GO surface as intermediate (Fig.
7.5b) and terminated with ring opening of epoxide group on the GO surface. This
process appears to be energetically favorable pathway. Moreover, the DFT model
calculations exhibit the relevant reactivity, mechanisms, and total energies for such
an oxidation reaction reported experimentally (Fig. 7.5c).

7.3.3 Oxidative Dehydrogenation

Metal-free graphene shows interesting catalytic properties also in oxidative dehy-
drogenation (ODH) [71–73], in particular, the selective gas-phase oxidation of
acrolein (C3H4O) to acrylic acid (C3H4O2) [74]. Figure 7.6 displays the reaction
mechanism proposed for the oxidation of C3H4O on the graphitic carbon surface.
Along a rectangular section of a planar graphene sheet with a hole defect illustrates
the sp2 carbon acting as a bifunctional catalyst in the active domain which is
terminated by arbitrarily positioned oxygen functionalities. Hence, O2 adsorbs
dissociatively at the (0001) surface to form mobile epoxy groups, feasibly migrating
to the prismatic edge sites [75]. The C3H4O adsorbed at the nucleophilic oxygen
sites, i.e., the ketones/quinones, initiates its oxygenation by epoxy oxygen atoms
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Fig. 7.6 Reaction pathway proposed for the oxidation of C3H4O at the graphitic carbon surface.
(Reproduced from Ref. [74] with permission of the Wiley-VCH)

to form acrylic acid. Ni et al. [76] showed that graphite-like nitrogen and Stone-
Wales defect nitrogen with higher concentration of nitrogen may decrease the
dissociation barrier by 0.2 eV more efficiently than pyridine-like nitrogen, due to
partial occupation of π∗ orbitals and change of work functions.

Tang and Cao [77] showed that the epoxy groups on the GO surface provided
active sites around which the -OH groups remarkably enhanced the C–H bond
activation of propane (Fig. 7.7). However, high catalyst loading is required for the
widespread application of GO in these oxidative reactions. The DFT calculations
were performed on the oxidative dehydrogenation of propane over GO. In Fig. 7.7,
the pathways denoted by the red and blue lines are associated with two different
GO structures including one epoxide group (GO10) and one added to neighboring
OH at the opposite side with respect to other oxygen groups on GO10 (GO20),
respectively. Figure 7.7 also shows all energies (kcal mol−1) with respect to propane
adsorbed onto GO and the optimized configurations (distances in Å) of the initial,
transition, and final states.

7.3.4 Friedel-Crafts Reaction

Very recently, a low GO loading has been demonstrated to promote effectively
site-selective allylic alkylation of thiophenes with alcohols under mild reaction
conditions (Fig. 7.8) [78].
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Fig. 7.7 Relative energy profiles for the first H abstraction from CH2 of propane on GO.
(Reproduced from Ref. [77] with permission from the Royal Society of Chemistry)

Fig. 7.8 GO-based Friedel-Crafts-type alkylation of alkenes. (Reproduced from Ref. [78] with
permission from the American Chemical Society)

The stoichiometric amounts of styrene oxides were carried out intentionally
as a control experiment to verify the potential role of the oxiranes moieties
present in the GO surface on the reaction mechanism. Such a mechanism justifies
the spectroscopic observation by XPS showing the overall increase of alcoholic
moieties versus the oxirane ones. The reaction mechanism contains a three-step
process, as depicted in Fig. 7.9a. In step 1 the allylic alcohol grafts to the GO
surface, followed by an SN

1 mechanism in which the epoxide ring on the GO surface
releases a proton to form an unstable oxonium unit that opens without overcoming
any barrier (Rx). The proton source could rely on the intrinsic Brønsted acidity
of GO. The next step undergoes a reactive α-carbocation in which a nucleophilic
attack occurs by the allylic alcohol (Ts1). From this picture, the GO π-system plays
a crucial role in stabilizing the carbocation generated by the epoxide ring opening
event. The compensation effect can be explained probably based on the transition
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Fig. 7.9 (a) Schematic representation of the reaction mechanism; (b) energy profiles for the three
steps; (c) 3D representation of the identified transition states. (Reproduced from Ref. [78] with
permission from the American Chemical Society)

state theory of chemical reactions, in which the energy levels are given in Fig. 7.9b.
The concerted reaction of the GO π-system and the functional groups present in the
2D-material are marked, consistent with experimental observations. The resulting
protonated allyl ether may undergo a Friedel-Crafts-type allylic alkylation yielding
the observed allyl-thiophene (Pd1). In step 2, a concerted mechanism is followed,
showing the α-carbon of the 2-methyl-thiophene attacks the allylic position (Ts2),
inducing a reorganization of the π-system (Fig. 7.9c). The leaving O−H group
remains grafted on the GO surface (Pd2). The deprotonation of the Wheland-like
intermediate (Ts3) is the final step which is a fast process with a calculated barrier
of only 2.9 kcal mol−1carried out by other epoxide groups on the GO surface.

7.3.5 Oxidative Coupling

In the chemical catalysis, Loh and coworkers demonstrated this mechanism by the
oxidative coupling of amines using porous ba-GO as a metal-free catalyst [79]. The
“ba-GO” was denoted, when the base reduction followed by acid reprotonation steps
were involved in the preparation of GO under reflux conditions. It was resulted from
a sequential base and acid treatment of GO prepared by Hummers’ method. Given
only 5.0 wt% loading of the carbocatalyst, the imine reached a 98% yield under
solvent-free, atmospheric conditions, which is as comparable or even superior to
that based on transition metal catalysts. The low catalyst loading is superior to most
of the catalysis reaction involving GO catalyst. The dramatically enhanced catalytic
activity was contributed to the synergistic effect of the unique functionalities along
the edge defects that were created during the base-acid treatment, specifically the
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Fig. 7.10 Proposed mechanism of ba-GO-catalyzed oxidative coupling of primary amines.
(Reproduced from Ref. [79] with permission of Springer Nature)

unpaired electrons and carboxylic acid (-COOH) groups (Fig. 7.10). The base
treatment may generate a large amount of nanoholes and their associated edge
defects on the basal planes of GO. These edge sites with unpaired electrons behave
as the active catalytic sites which enhance the kinetic rates for the trapping and
activating molecular oxygen by a sequence of electron transport and reduction steps
to superoxide radical (•O2), which acted as the oxidant in this catalytic reaction. The
following three designed experiments supported the proposed hypothesis. Firstly,
electron paramagnetic resonance (EPR) is employed to measure the localized
spins created at the edge of ba-GO. Secondly, comparable catalytic reaction is
carried out to inspect if the catalytic activity decreased upon selectively blocking
the unpaired electrons via a diazonium coupling reaction. Finally, in situ spin-
trapping EPR experiment is conducted to trap the in situ formed radicals. The
carboxyl anionic groups can be obtained by the acid treatment to position along
the edges to carboxylic acid groups, which produced a synergistic effect for the
coupling reaction. These carboxylic groups may act as hydrogen bonding sites
to the amines and facilitate proton transfer reactions due to acidic properties.
Further, the base reduction eliminated the hydroxyl groups from the GO and thus
changed the dynamics of water solvation layer around GO, allowing more amount
of reactants into the catalytic sites. The solvent-free and metal-free catalysis with
low catalyst loading is an ideal model for practical application such as industrial-
relevant carbocatalysts. The RGO as metal-free catalysts were also demonstrated in
oxidative desulfurization reactions using molecular oxygen as the terminal oxidant
[80].
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The RGO catalyst was demonstrated to be capable of effectively removing a
broad range of sulfur-containing compounds from fuels with excellent reusability.
The studies on X-ray photoelectron spectroscopy (XPS), chemical titration method,
and a series of comparative experiments revealed that carbonyl groups played
a crucial role during the oxidation process. The RGO with defects in such as
vacancies is beneficial to the catalytic performance because carbonyl groups could
be generated in situ on these defects under the reaction conditions. Although
the carbonyl groups were not directly involved in the generation of ROS, their
electron-withdrawing properties reduce the electron population of the carbon atoms
at their adjacent positions, which facilitates absorption and activation of molecular
oxygen. The strongly adsorbed oxygen molecules may then convert to super-oxygen
anion radicals (RGO–OO–•). Meanwhile, the sulfur-containing substrates turn into
sulfur-centered cation radicals, which react with the negative charged radicals of
RGO–OO–• to generate sulfones as the final products.

7.3.6 C–H Bond Activation

Transition metals and organometallic complexes were employed traditionally to
catalyze the C−H bond activation [81]. Recently, cheap metal-free catalysts have
emerged as promising candidates for this transformation. Gao and coworkers
reported that N-doped Gr plays a major role in the work on sp2 C−H activation
that covers the selectivity for the oxidation of arylalkanes in aqueous phase,
affording high value-added products for biomedical applications [82]. The N-
doped sp2 hybridized carbon was prepared through a chemical vapor deposition
(CVD) process with acetonitrile vapor as the N source with 8.9% N content. DFT
calculation suggested that the nitrogen atoms are not able to host the peroxide
species because of the high negative charge of nitrogen. Both the electronic charge
and spin density on the o-carbons are superior positions for the adsorption of
reactive oxygen species such as peroxide. Both C K-edge and N K-edge X-ray
absorption spectroscopy (XAS) were used to study N-doped carbon catalysts before
and after TBHP (t-BuOOH) and ethylbenzene treatment, clearly revealing that the
graphitic nitrogen dopant modulated the electronic structure of sp2 carbon material.
The intensities of density of states near the Fermi level for the adjacent ortho-carbon
are much stronger than those of undoped graphene carbon, which gives the nitrogen-
neighboring carbon a metal-like d-band electronic structure.

In 2016, an inexpensive, metal-free GO catalyst used for the C–H bond arylation
of benzene enables the formation of bi-aryl compounds in the presence of aryl
iodides [83]. The oxygen functional groups in these GO sheets and the addition
of KOtBu are essential for the observed catalytic activity. The DFT calculations on
reactions with various model compounds confirmed that these negatively charged
oxygen atoms promote the overall transformation by stabilizing and activating K+
ions, which in turn facilitate the activation of the C-I bond, [as benzyl alcohol was a
particularly active model system]. Based on DFT calculations, a GO nanopore was
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Fig. 7.11 Mechanism proposed for the GO-catalyzed arylation reaction. (Reproduced from Ref.
[83] with permission of the Wiley-VCH)

focused (the edge of graphene; Fig. 7.11). The interaction between KOtBu and Gr is
very weak without hydroxy groups. Instead, as shown in Fig. 7.11, K+ can strongly
interact with oxygen species at the edge of a Gr nanopore (I; the adsorption energy,
Ead, is −0.96 eV). The distance between a K+ ion and the oxygen atom of an ether
OtBu moiety is 2.53 Å, whereas the distance between K+ and a hydroxy oxygen
atom is 2.57 Å. At the same time, the π-π interactions between the π system of
Gr and that of iodobenzene (C6H5I) enable the adsorption of the latter on the same
graphene surface (II, Ead = −0.97 eV) [84]. The charge of the immobilized K+ ion
is 0.89 eV owing to the electron transfer between K and the oxygen group, which is
beneficial to the subsequent activation of C6H5I. Indeed, the iodine-carbon bond of
C6H5I can be easily activated by attack of a K+ ion, which leads to the formation
of a C6H5 radical. The benzene radical is stabilized by the π system of Gr and the
positively charged hydrogen atoms (III; Ead = −1.29 eV). This intermediate then
reacts with adsorbed benzene (IV; Ead = −0.76 eV) with a moderate activation
energy (0.64 eV). After proton transfer, biphenyl is formed (VI). In addition, the
Gr π system also greatly facilitates the overall reaction as the aromatic coupling
partners are adsorbed.
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7.3.7 Reduction of Nitro Compounds

Nitroaromatic compounds (NACs) are widely utilized as pesticides, explosives, and
synthesis intermediates, [85, 86] causing environmental pollution. The electron-
withdrawing effect of the nitro groups and the stability of the benzene ring lead
to the recalcitrance of the NACs through either chemical reduction [87] or oxidative
degradation [88]. Pal et al. found that 4-nitrophenol (Nip) may be reduced to 4-
aminophenol (Amp) by sodium borohydride (NaBH4) in the presence of N-doped
graphene (NG), in which the N-doping greatly enhanced catalytic activity [89]. The
activity was related to the surface area of the catalysts. Recently, Kong group [90]
reported the NG synthesis and its catalytic behavior in the reduction of Nip to Amp
(Fig. 7.12a). The catalytic procedure of this reaction was described in Fig. 7.12b.
Nip ions adsorb initially on the active sites of NG in solution, and then the adsorbed
Nip ions can desorb into water to reach equilibrium. There are a limited number
of active sites such that only the carbon atoms next to the doped N atoms can be
activated. The adsorption of Nip ions is much faster than its desorption (k1 >> k2),
so that the number of Nip ions absorbed on NG sheets is not determined by their
concentration, but by the number of active sites on NG, which will lead to the
pseudo-zero-order reaction. The desorption rate of Amp k4 is very fast during the
course of reaction. In contrast, the active sites in metallic catalysts are abundant,
and the adsorption rate and desorption rate are comparable so that the amount of
adsorbed Nip ions are highly dependent on their concentration, which could lead to
pseudo-first-order reaction.

The DFT calculations have also been performed to simulate the adsorption
configuration of Nip ion on this metal-free catalyst according to the XPS and in

Fig. 7.12 (a) Optical photos of the color change during the reaction, (b) catalytic process of the
reduction of Nip on the surface of NG, and (c) the optimized structures of Nip ions adsorbed on
NG: (i) top view and (ii) side view; Nip ions adsorbed at the (iii) pyridinic, (iv) pyrrolic, (v) amine,
and (vi) graphitic NG. The separated distances and the N–O bond length of nitro group for each
model have been marked directly in the corresponding figures. (Reproduced from Ref. [90] with
permission of the Royal Society of Chemistry)



7 Computational and Experimental Analysis of Carbon Functional Nanomaterials 285

situ FTIR results. Only the carbon atom near the doped N atom could be activated
to catch Nip ions owing to its weaker conjugation compared to the other carbon
atoms. It reflects that the number of active sites on the Gr surface was much smaller
than those of metallic nanoparticles. Therefore, the adsorption process of Nip ions
on the surface of NG, appearing a different reaction kinetics, was more pivotal
than in the cases of metals. Furthermore, the active sites of NG were positively
charged owing to the large electronegativity of doped N atoms, so that Nip ions
preferred to combine with Gr sheet via the hydroxyl group. Based on the Mulliken
analysis, it had a charge of −0.450 electrons, more negatively charged than the
−0.246 electrons of the -NO2 group. This was in agreement with the decrease of
O–H vibration of the in situ FTIR results. Interestingly, the XPS data show that
there are four kinds of N atoms with a ratio of 4 (pyridinic):2 (pyrrolic):2 (amine):1
(graphitic) acting as the catalytic active site as shown in Fig. 7.12c(i). The NG sheet
shows intense distortions, and the Nip ion could combine with the carbon atom (next
to the doped N atom) of the NG tightly, with the C–O bond distance at 1.497 Å
(Fig. 7.12c(ii)). Together with the strong adsorption energy as mentioned above, it
is concluded that the N-doping can indeed improve the adsorption ability of NG,
which will contribute to the catalytic properties. The graphitic N atom is at the
center of the surface while the others are at the edge. As such, the adsorption of Nip
ions both at the center and edge should be considered. Each kind of these doped N
atoms was calculated individually, and the results are illustrated in Fig. 7.12c(iii–
vi). As expected, every configuration induces strong adsorption of the Nip ions onto
NG, showing significantly enhanced adsorption energies with their small separated
distances at the interface ca. 1.5 Å. The N–O bond lengths of the nitro group have
also been calculated and marked in Fig. 7.12. Moreover, only the carbon atoms next
to the doped N atoms on NG surface can be activated, serving as the active sites. As
expected, all four kinds of the doped N atoms are beneficial to the adsorption and
activation of Nip, contributing to the catalytic reduction reaction.

Li et al. recently reported that reduced graphene oxide (RGO) mediates the
reductive transformation of biological NACs by electrochemically active bacteria,
such as Escherichia, Desulfovibrio, and Enterobacter, which had been detected in
both sludge and sludge-RGO systems [91]. The reduction of nitrobenzene (NB)
results shows that RGO could increase the rate by an approximate onefold by mixed
culture with glucose (electron donor). The influence of the surface properties of
RGO on biological NACs removal was further elucidated. When RGO was used
as metal-free catalyst with limited oxygen moieties on the surface of RGO such as
quinone groups, the NB transformation rate was decreased, whereas nitrogen-doped
RGO framework exhibited a positive effect as well as enhanced reduction rate.
Indeed, RGO can absorb NB and form π-π interactions with aromatic rings, which
resulted in the electron transfer to NB. Additionally, RGO could mediate direct
interspecies electron transfer (DIET) and activate NB molecules. In recent years, it
was suggested that DIET is an alternative mechanism for electron exchange through
biological electrical connections [92], in contrast to interspecies hydrogen/formate
electron transfer. Liu et al. reported that activated carbon promoted DIET [93]. RGO
was also expected to accelerate DIET between microbes, which might be favorable
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for nitroreductase to accept electrons. Here, RGO plays the role of “extended
nanowire.” The activation of NB by Gr has been proposed using DFT calculations,
and the unsaturated carbon atoms at the edges of Gr and defects on Gr might possess
catalytic activity [87].

7.4 Porous Carbon-Based Functional Nanomaterials

Porous carbon materials including traditional activated carbons (ACs), carbon
nanotubes (CNTs), ordered mesoporous carbon (OMCs), carbon black (CBs),
nanofibers (NFs), and recently emerged novel structured carbons synthesized by
hard and soft templating methods have been widely used in a variety of applications
[94]. Due to their high specific surface areas, micro−/mesoporous structure, tunable
pore size, electronic conductivity, excellent accessibility to active sites, enhanced
mass transport and diffusion. These properties make them a special and unique
choice for various applications in divergent fields such as energy storage, fuel cells,
adsorption/separation, heterogeneous catalysts, catalyst supports, photocatalysis,
CO2 capture, electrochemical sensors, and so forth [95–97]. However, to improve
their catalytic properties, surface modification, heteroatom doping, chemical acti-
vation, and defects on graphic layers are necessary and have been extensively
investigated [98–100]. It is well known that various surface groups, impurities
and surface irregularities (i.e., surface heterogeneity), as well as fine pores of
different sizes and shapes (i.e., structural heterogeneity) will contribute to the
reaction mechanisms. An uneven distribution of functional groups creates surface
heterogeneity. Another reason for heterogeneity is the presence of heteroatoms
(commonly O, N, and S). However, the emission resulting from graphene has been
attributed to C-oxygen-, C-nitrogen-, and/or C-sulfur-related localized states [101].
To induce ripples on the graphene surface can probably alter the local electrical
and optical properties of graphene; thus, modified ripple engineering can be used
for various applications [102]. Among the elements of complexity are the high
surface area resulting from an intricate pore structure, significant differences in the
physicochemical parameters among the heterogeneous surface sites, the occurrence
of partial delocalization of the π-electrons, and the ability of certain surface sites to
react with water and other solvents [103]. Some authors suggest that the distribution
of the functional groups on the surface of ACs depends on pore size. The surface
area is characterized among microporous materials (<2 nm), mesoporous materials
with pore diameter between 2 and 50 nm, and nonporous or macroporous materials
with pore diameter >50 nm [104]. The surface reactions of carbon nanomaterials are
generally initiated from reactions of C atoms at the edges of the layers or at other
lattice defects or reactions of functional groups that are bound to such C atoms.
Surface reactions based on carbon as metal-free catalysts are of particular interest.
The catalytic performance is significantly increased with an increase in the number
of surface oxygen groups present, which are responsible for the enhancement in
reaction rate, higher catalytic performance, and yield of the products [105]. Metal-
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organic frame work (MOF)-derived ACs, as the other major form of porous carbon,
are primarily made of graphitic sheets with regular order and possess extremely
high surface areas and large pore volumes which make them extremely promising
candidates for applications such as catalyst supports and adsorbents. Due to the
presence of favorable pore geometries and volumes, ACs have been used in the areas
of gas separation and storage, water purification, electrochemistry, and catalysis
[106].

The catalytic behavior of carbon materials depends on their surface properties
and unsaturated carbon atoms at the edges of the graphene layers and in basal plane
defects that can easily react with oxygen, water, or nitrogen compounds, originating
surface groups such as those represented schematically in Fig. 7.13 [107].

These functional groups can be used to metal-free catalysts or catalyst precursors
or for subsequent functionalization and so on. In addition, they may be active sites
for specific catalytic reactions [108]. Among the oxygenated groups, carboxylic
acids and anhydrides, lactones, lactols, and phenols are acidic, while carbonyl and
ether groups are neutral or may form basic structures (quinone, chromene, and
pyrone groups). The carbon π electrons in the basal planes also contribute to the
basicity of the carbon material, affecting its adsorption and catalytic properties
[109].

Fig. 7.13 Surface groups on carbon layers. (Reproduced from Ref. [107] with permission of
Elsevier)
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Recently, PCs have long been used as catalysts in organic transformations such as
oxidation phenol [110], ODH of ethylbenzene [111], and anaerobic biotransforma-
tion of nitroanilines [112]. But the considerable modification in the porous structure
of bare carbon materials, as well as the possibility of chemical and structural
changes, offers new opportunities to use the PC materials in many different chemical
reactions [113].

Carbon gels (CGs) are obtained by carbonization of organic gels produced
by the sol-gel polycondensation of organic monomers such as resorcinol and
formaldehyde, as first described by Pekala [114]. It exhibits high porosity and
surface area, narrow pore size distributions, and randomly oriented pores, which
have been reported as catalysts for quite a large variety of reactions. For instance,
CGs functionalized with sulfonic acid groups are active acid catalysts for the
esterification of acetic acid with ethanol [115]; N-doped carbon xerogels were used
for oxidation of NO [116] and in the degradation of organic pollutants by advanced
oxidation processes [117].

Black carbons (BCs) are carbonaceous materials composed of single and stacked
polyaromatic sheets in a highly disordered arrangement. These sheets can be
functionalized along the edges with hydroxyl (-OH), carboxyl (-COOH), keto
(>C=O), or other functional groups. The textural properties such as surface area,
pore volume, and pore size were dependent on the source material and conditions of
synthesis [118]. It consists of spherical graphite particles (less than 50 nm diameter)
with 0.35 nm interplanar spacing. The N2 gas adsorption measurements reveal high
surface area (typically, more than 50 m2 g−1), high porosity (0.1–0.2 cm3 g−1), and
small pore size, i.e., below approximately 20 Å, with small porosity in the range
4–10 Å. They are most commonly used catalyst support in various environmental
applications due to its high surface area (250 m2 g−1) and low cost [119].

Recent studies have demonstrated that black carbons (BCs) could significantly
accelerate the abiotic reduction of NACs in the presence of reductants, after
their strong sorption to the NACs [120, 121]. It is well known that the pathway
of NB reduction involves three successive two-electron transfer and protonation
steps [122].

In addition, the DFT method was applied to calculate the sequences of electron
and proton (H+) for the reduction of NB to aniline [123]. However, the reductions of
trifluralin (TF) and pendimethalin (PDM) seem to be more complex with competing
reduction pathways, because there are two nitro groups on the benzene rings. Gong
et al. reported the results combining the quantum-mechanical DFT calculation with
experimental findings to elucidate the abiotic reduction mechanism of two nitro
groups in TF and PDM [124]. They displayed the most plausible pathways and
calculated energy profiles for reduction of TF and PDM in Figs. 7.14a and 7.15a,
respectively.
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Fig. 7.14 Schematic representation (a) and calculated relative energy profiles (b) for abiotic
reduction of TF. (Reproduced from Ref. [123] with permission of Elsevier)

While inspecting the energy profiles, the reduction of TF and PDM to their
corresponding 2-NH2 products is thermodynamically favorable, because the �E
value of each step is negative (Figs.7.14b and 7.15b). The reduction intermediates
and end products were identified, and the mass spectrum matched the results of
detected species. It was noted that not all of the intermediates could be identified
probably due to their instability. However, we can find evidence from the calculated
quantum chemical properties of the reactants and transformation products. Thus,
BCs could promote the abiotic reduction of TF and PDM by sulfides in the anoxic
sediments, plausibly by accelerating the transfer of electron and atomic hydrogen
from sulfides to dinitroaniline herbicides [124].
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Fig. 7.15 Schematic representation (a) calculated relative energy profiles, and (b) for abiotic
reduction of PDM. (Reproduced from Ref. [123] with permission from of Elsevier)

7.5 DFT Analysis for Structural, Fluorescence, and Sensing
Properties of Fluorescent Carbon Nanomaterials

Carbon nanomaterials are one of the emergent advanced nanomaterials, due to
their unique physicochemical properties, thereby showing promising performance
in diverse applications [125–128]. These appeared in different structures including
carbon nanotubes (CNTs), carbon dots (C-dots), graphene, graphene quantum dots
(GQDs), graphene oxide (GO), fullerene, carbon nanohorns (CNHs), and carbon
nano-onions (CNOs) which have been explored for potential applications in the
field of chemistry and biology (Fig. 7.16) [125–128]. The carbon nanomaterials
are mainly classified based on their dimensions such as zero-dimensional (0D),
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Fig. 7.16 Schematic representation of carbon nanomaterials

one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) nanos-
tructures. The 0D materials have no dimensions with nanosize range which is
considered as a spherical in shape including C-dots, fullerene, and GQDs. The
1D materials (CNTs) have one dimension outside of nanomateric size range (1–
100 nm), whereas 2D materials (graphene and GO) possess two dimension lying
in a nanosize. Generally, the bulk materials are known to be 3D materials which
are composed of individual blocks with the size of nanometer scale (1–100 nm)
or more. The 3D materials such as diamond and graphite have all dimensions in
macroscale. This dimension-based classification is greatly dependent on the electron
movement along the dimensions in the nanomaterials. For instance, electrons in 0D
materials are entrapped in a dimensionless space, while electrons move along the
x-axis in 1D materials. Similarly, 2D and 3D materials have electron movement
along the x-y-axis and x-, y-, and z-axes, respectively. The 0D nanomaterials possess
well-defined and quantized energy levels compared to those of other dimensional
materials. Because the electron mobility is confined in 0D nanomaterials, the motion
of randomly moving electrons is restricted to specific energy levels resulting in the
increase of band gap of materials.
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Diamond consists of sp3-hybridized carbons, where the purely covalent chemical
bonds extend three-dimensionally. Diamond is known as an electrically insulator
due to lack of π electrons. On the other hand, the graphene is a 2D single
layer of graphite and known to be very strong conductive material, because the
graphene consists of sp2 bonds. Structurally, a graphene sheet is a single layer of
carbon atoms packed into 2D honeycomb lattice structure, whereas the CNTs are
considered as rolled-up graphene sheet and their edges of the sheet joint together
to form a seamless cylinder. In the case of 0D nanomaterials, GQDS are formed
by the cutting a graphene monolayer into the small spherical molecules with
the size of below 20 nm. These GQDS are mainly composed of sp2 hybridized
carbon atoms and crystalline in nature. In contrast, the C-dots composed of sp3

hybridized carbon atoms predominantly with the various combinations of graphitic
and turbostratic carbons. Moreover, the C-dots exhibit amorphous nature of their
carbogenic cores. Recently, the C-dots and GQDs are getting much popularity
among the 1D and 2D carbon nanomaterials. They can be synthesized from diverse
kind of carbon precursors including organic molecules (citric acid, carbohydrates
derivatives, etc.) and biomolecules (proteins, amino acids, etc.) with facile method
and in shorter time. Another important feature is that C-dots and GQDs have
photoluminescence property inherently as well as they can be tuned by chemical
surface functionalization.

The applications as fluorescence sensors have been extensively studied by using
these carbon nanomaterials due to their inherent fluorescence properties and non-
toxicity. Among these nanocarbons, the single- and two-dimensional (1D and 2D)
materials such as CNTs, graphene, and GO were served as sensing platform. The
zero-dimensional (0D) materials like GQDs and C-dots are emerging as promising
fluorescence sensing probe in consequence of several unique features including
strong fluorescence with tunability, high photostability, smaller in size, ease to
be functionalized, biocompatibility, and non-toxicity. Due to these advantages, the
GQDs and C-dots materials were widely utilized as a fluorescent sensing probe in
chemical and biosensors. The most important feature is that these materials exhibit
non/less-toxicity in nature which enhances the potential in their sensor application.

7.5.1 Structural and Fluorescence Analysis of Graphene
Quantum Dots and Carbon Dots

Firstly, Suda et al. have prepared the nanometer-size carbon particles on a Si
substrate using plasma-assisted pulsed laser deposition (PLD) method [129]. The
prepared carbon nanoparticles were in an amorphous state with sp3 and sp2 carbon
components. Then in 2006, Sun et al. reported the photoluminescence carbon
nanoparticles which were then named as “carbon dots” [130]. They observed
strong excitation wavelength-dependent fluorescence (Fig. 7.17) which is ascribed
to the emissive surface defects caused by the surface passivation of C-dots with
organic molecules such as diamine-terminated oligomeric poly-(ethylene glycol)
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Fig. 7.17 Aqueous solution of the PEG1500N-attached carbon dots (a) excited at 400 nm and
photographed through band-pass filters of various wavelengths and (b) excited at the indicated
wavelengths and photographed directly. (Reproduced from Ref. [130] with permission of the
American Chemical Society)

(PEG1500N) and poly(propionylethyleneimine-co-ethyleneimine) (PPEI-EI). On the
other hand, Pan et al. in 2010 first synthesized the fluorescent functionalized GQDs
from graphene sheets using hydrothermal method [131]. They have proposed that
the luminescence originates from free zigzag sites with a carbene-like triplet ground
state described as σ1π1. Recently, many research groups have extensively studied
the fluorescence properties of C-dots and GQDs and proposed the mechanisms
for multi-emissions by experimental observations [132–137]. However, the mech-
anisms are still not completely understood, because fluorescence properties are
highly sensitive to several factors including size and shape of particles, carbon
precursor, heteroatom doping, nature of the capping agent, experimental conditions,
defects sites, etc. With the aid of theoretical calculations and modelling which
provide precise details about the fluorescence properties of C-dots and GQDs, it
becomes possible to investigate the influence of each abovementioned factor on the
fluorescence properties of materials.

Time-dependent density functional theory (TDDFT) for response properties and
excited states, which is a prerequisite to compute electronic spectra and related
quantities like dispersion effects on polarizabilities and optical rotation [138–140].
Initially, SK et al. have demonstrated the systematic theoretical investigations of
tunable photoluminescence properties of GQDs by regulating its size, shape, edge
configuration, functional groups, and defects by using DFT and TDDFT calculations
(Gaussian 09 package, B3LYP/6-31G(d) level) [141]. As shown in Fig. 7.18a, the
emission wavelengths were linearly dependent on the increasing size of the GQDs,
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Fig. 7.18 (a) Calculated emission wavelength (nm) using TDDFT method in vacuum as a function
of the diameter of GQDs. The solid line is the linear fitting of zigzag-edged GQDs (G1–G6).
The indicated diameter is the average of the horizontal and vertical dimensions. (b) Emission
wavelength of oxidized GQD (G4) as a function of the coverage of –OH and –COOH groups.
(Reproduced from Ref. [141] with permission of the Royal Society Chemistry)

indicating that the entire visible light emissions (400–770 nm) may be covered
by the diameter of GQD while varying from 0.89 to 1.80 nm. The red shift of
the emission wavelength, as the size increases, is due to the decrease in band gap
resulting from π-electron delocalization [141]. Moreover, such a band gap reduction
may also be caused by the fabrication of functional groups (Fig. 7.18b). Graphene
with either zigzag or armchair edges may influence the fluorescence of GQDs;
for instance, the 1.27 and 2.06 nm armchair-edged GQDs emit at blue-shifted
wavelength of ∼450.5 and 678.2 nm, respectively, whereas the zigzag-edged GQDs
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emit at red-shifted wavelength of ∼551 and 872 nm, respectively. The observed
results are well related to experimental results reported by Kim et al. supporting
the observed blue- and red-shift emission based on the armchair- and zigzag-edged
configuration of GQDs [142]. Furthermore, the pyridinic and pyrrolic N-doping on
GQDs causes slight blue shift of emission wavelength in a concentration-dependent
behavior. Previously, Jin et al. reported the band gap tuning of GQDs through the
charge effect of functional groups using DFT analysis with the atomic orbital-based
Dmol3 software package [143]. The band gap was predicted to decrease for the
functionalization of GQD with one amine group, and further decrease with increase
of the number of amine groups (Fig. 7.19a), due to the increased electron density in
a GQD-(NH2)n. As shown in Fig. 7.19b, the energy levels for HOMO state of GQD

Fig. 7.19 (a) Band gap change of GQD-(NH2)n as function of the number of attached NH2 groups
(inset images are optimized configuration of GQD-(NH2)n), (gray, C; white, H and blue, N atom),
and (b) HOMO and LUMO energy levels of GQDs-(NH2)n. black and blue lines indicate HOMO
and LUMO levels of GQDs-(NH2)n, respectively. The dotted lines denote the HOMO and LUMO
energy level of NH2. Insets describe HOMO and LUMO isosurface of each system (the isovalue is
0.01 e/Å3). (Reproduced from Ref. [143] with permission of the American Chemical Society)



296 P. Veerakumar et al.

and the LUMO state of amine group are almost identical, though the energy level of
the GQD HOMO state becomes gradually higher than the amine LUMO state as a
result of increasing number of NH2 groups which leads to the difference in the band
gap of GQD [143].

Similar to GQDs, the fluorescence of C-dots is originated from the diverse factors
such as quantum confinement effect, carbon core effect, surface states, defect/trap
sites, and heteroatom/element doping [132–136]. Even so, it was verified that the
multi-emission of C-dots was predominated by the carbon core and surface states.
The shorter wavelength emissions are mainly due to the recombination of electron-
hole pairs in the carbon core, whereas the longer wavelength emissions originate
from the surface states [132]. The carbon core in C-dots is mainly composed
of sp2 carbon clusters in the amorphous state. To understand the fluorescing
mechanism originated from carbon core, Zhu et al. have analyzed the carbon core
structure where the Gaussian 09 package (B3LYP/6-31G(d)) was used to optimize
the electronic structures and calculate the energies of frontier molecular orbitals
[144]. They used two different model compounds of fused aromatic rings (FARs)
and cyclo-1,4-naphthylenes with different C-dots microstructure corresponding to
graphitized carbon core (class I) and disordered carbon core (class II), respectively.
The energy gaps between the HOMO and LUMO for the class I were calculated to
be 2.82 and 1.63 eV for FAR-19 (1.2 nm) and FAR-61 (2.2 nm), respectively. But
the inverse trend was calculated for the class II to be 2.80 and 3.46 eV for CN-8
(1.5 nm) and CN-16 (2.7 nm), respectively. From these calculation data regarding
the size-dependency of C-dots fluorescence, it can be concluded that for the C-dots
with a graphitized core, the smaller the size of the core, the higher the PL energy,
while an inverse trend is observed for C-dots with an amorphous core.

Apart from the carbon core, the fluorescence was controlled by the surface states
caused by the surface passivation with small organic molecules. The functional
groups possess different energy levels leading to the various emissive states on the
surface. Upon excitation of functionalized C-dots at certain excitation wavelength,
the domination of surface emissive states generally generates fluorescence at
the longer wavelength as compared to the fluorescence emitted by carbon core.
Dhenadhayalan et al. have studied the effect of surface functional groups (-COOH
and –NH2) on the fluorescence of C-dots using time-resolved fluorescence spec-
troscopy techniques [132]. The surface functional groups are capable of regulating
the multi-fluorescence behavior based on the electron-withdrawing and -donating
properties of functional groups. The electron transfer takes place from the carbon
core to surface domain by the presence of −COOH on the surface and vice
versa for the case of −NH2 present on the surface. Hola et al. have reported
the red-shifted emission for the carboxylic functionalized C-dots [145]. Further,
they have analyzed coronene derivatives as a model system to understand the
influence of functional groups using TDDFT computation. The maximum emission
of functionalized coronene (tricarboxylcoronene, ester of tricarboxylcoronene) was
calculated to red shift with respect to that of coronene, as a result of an extension of
π-conjugated electrons system. Moreover, upon the addition of carboxyl groups,
the electrostatic potential surfaces show a shift of charge toward the edge. This



7 Computational and Experimental Analysis of Carbon Functional Nanomaterials 297

significant contribution of electrostatic interactions of the surface carboxyl groups
greatly influences the role of C-dots acting as surface emissive traps. Similarly, the
fluorescence of para-substituted anilines functionalized C-dots was controlled to
emit at longer wavelength with very narrow spectral width by creating a new energy
levels [146].

Different from surface functionalization, the metal/element doping is another
important factor to influence the fluorescence properties of C-dots. For instance,
Hola et al. have reported graphitic nitrogen triggers red fluorescence in carbon
dots accompanied by the results of DFT and TDDFT calculations [147]. The five
different pyrene-based models were used for DFT studies which contained carboxyl
and hydroxyl groups on the surface and also two graphitic nitrogen inside the pyrene
structure as shown in Fig. 7.20. The absorption spectra were computed using the
TDDFT with the range-separated hybrid ωB97xD exchange-correlation functional

Fig. 7.20 (a) Calculated UV-vis absorption spectra for the N-doped models (NP1–NP4) and
nitrogen-free system (P0) of the same size: carbon (green), hydrogen (white), oxygen (red), and
nitrogen (blue). (b) Relative energy levels of the occupied (blue) and unoccupied (red) molecular
orbitals of the same structures. (c) Model fluorescence spectra of the nitrogen-doped systems
NP1 (red), NP2 (orange), NP3 (blue), and NP4 (green) and nitrogen-free system P0 (black).
(Reproduced from Ref. [147] with permission of the American Chemical Society)
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and 6-31+G(d) basis set. The DFT calculations suggested that the existence of
graphitic nitrogen into the carbon core resulted in red-shifted absorption with
respect to undoped system which is due to the transition into the second excited
singlet state (S0 → S2). Moreover, the differences between the HOMO and LUMO
band gap, as shown in Fig. 7.20b, clearly indicate narrowing of the HOMO-LUMO
gap in the nitrogen-doped systems and also create mid gap states within the original
gap of the undoped system. Consequently, the red-shift fluorescence (above 600 nm)
was observed for nitrogen-doped systems (Fig. 7.20c), and the red shift extent
gradually increases as increasing amount of graphitic nitrogen in carbon core.

Xu et al. reported the Zn-doped C-dots with a high fluorescence quantum yield
(32.3%). The ab initio studies were investigated to understand the involvement
of molecular orbitals in the fluorescence process [148]. They have employed two
well-established DFT-based ab initio methods including the plane-wave projector-
augmented wave method as implemented in the Vienna ab initio simulation package
(VASP) and the orthogonalized linear combination of atomic orbital (OLCAO)
method. The notable twist in the C-dots structure was observed due to incorporation
of Zn on the C-dots surface, as shown in Fig. 7.21a–c, and the Zn dopant may lift
up the C-dots surface to move the electronic wave function distribution to the lower
side (Fig. 7.21d–e). Moreover, the HOMO and LUMO are loading on the same
lower part of C-dots leading to feasible charge transfer from LUMO to HOMO as
a result of the binding of Zn with oxygen atoms on the C-dots surface. Then, they
have calculated the electronic density of states for Zn-doped C-dots as shown in

Fig. 7.21 The schematic structure and calculated frontier orbitals for Zn-doped C-dots, with C,
H, and O indicated as gray, white, and red spheres. (a) Top view of the unrelaxed structure; (b)
top view of the relaxed structure; (c) side view of the relaxed structure; (d) HOMO; (e) LUMO of
Zn-doped C-dots; and (f) total density of states of Zn-doped C-dots. (Reproduced from Ref. [148]
with permission of the Royal Society Chemistry)
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Fig. 7.21f. The Zn-induced state was observed in the middle of the band gap which
indicates that the dangling bonds of ionic Zn act as an energy gradient. Due to this
intermediate state, the electrons or holes can efficiently move to the surface of C-
dots which enhances the charge transfer, thereby resulting in the higher fluorescence
quantum yield.

7.5.2 Sensing Analysis of Graphene Quantum Dots
and Carbon Dots

The design and fabrication of new fluorescent chemosensors have been developed
enormously since successful synthesis of carbon nanomaterials last decade [149–
153]. There are two fundamental moieties which merged to obtain the fluorescent
chemosensor, composed of the recognition site and the fluorescence signaling
source. It is possible to develop a specific fluorescent sensor by switching these two
moieties, thereby yielding a strong stable fluorescence signal with high specificity
and enhancing the ability for detection of analyte. Generally, the fluorescent
sensor materials should have multiple features such as ease for preparation and
functionalization, high quantum yield with tunable absorption and fluorescence
properties, reliable photostability, non-toxicity, and capability of sensing an analyte
at lower detection limit. The GQDs and C-dots exhibit aforementioned unique
merits and deserve a wide attention for the application of prospective sensors.
To date, the GQDs and C-dots have been extensively utilized as a fluorescence
sensing probes to detect analytes including inorganic metal cations and anions, nitro
explosives, pesticides, drugs, toxic organic molecules, and important biomolecules
based on the fluorescence turn-on and/or turn-off mechanisms. A diverse form of
chemical functionalization of these nanomaterials is required in order that their
functional properties might be involved in the detection of analytes. Indeed, a variety
of analytes could be detected selectively by simply tuning the different functional
groups on the surface of nanomaterial. The process of surface functionalization
is of crucial importance to impart desired properties to nanomaterials for their
applications. The functionalization of nanomaterials can be achieved through either
covalent or noncovalent modification techniques. Rich functional groups including
carboxylic, amine, alcohol, and thiol groups and also functional small molecules
can attach on the surface of nanomaterials to improve their optical properties
by controlling the energy gap and electronic properties. Moreover, formation of
metal/element doping (N, S, transition metals, etc.) and composites/hybrids (with
noble nanoparticles, metal oxides, etc.) with nanomaterials were applied to enhance
their inherent properties to expand the application range.

For instance, the S-doped GQDs show the improved electronic properties and
surface chemical reactivities compared with that of GQDs, and thereby can be
used as an efficient fluorescent probe for highly selective and sensitive detection
of Fe3+, reported by Li et al. [153]. The DFT calculations (B3LYP/6-31G*) that the
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Fig. 7.22 The theoretical models of (a, c) GQDs and (b, d) S-GQDs. (e) Fluorescence quenching
mechanism of the S-GQDs in the presence of Fe3+ and (f) the electron transfer process from S-
GQDs to Fe3+. (Reproduced from Ref. [153] with permission of the American Chemical Society)

electronic density of GQDs was effectively modulated due to doping of S atoms into
the conjugated carbon skeleton of GQDs. As shown in Fig. 7.22a–d, four models of
GQDs (a, c) and S-GQDs (b, d) were implemented, and the charge density of the
representative atoms are shown in black numbers. The S atom directly bonded with
C(1) atom enhances the electron density significantly due to the electron-donating
ability of S atom, such that the electron densities of C(2) and C(3) atoms increased
(Fig. 7.22a, b) as compared with those of undoped GQDs. In contrast, the electron
densities of O atoms might increase while bonded to C(2) and C(3) atoms (Fig.
7.22c, d), due to its electron-withdrawing ability thereby enhancing surface electron
densities along with S atoms. Therefore, Fe3+ ions were efficiently coordinated with
phenolic hydroxyl groups on the edge of S-GQDs (Fig. 7.22e) and the electrons
transferred from the excited state of S-GQDs to the half-filled 3d orbits of Fe3+
(Fig. 7.22f), resulting in the fluorescence quenching of S-GQDs.

The detection of chemical explosives has become important issue due to their
impact on the environment pollution [154]. The explosives do not have fluorescent
properties, and thus the fluorescence-based explosive sensors still dominated over
other sensing techniques. The GQDs and C-dots have been used as fluorescence
probe to sensing the chemical explosives with high sensitivity and selectivity.
According to the experimental results, the sensing mechanism such as photo-
induced electron transfer, fluorescence resonance energy transfer, inner filter effect,
and intermolecular charge transfer for the fluorogenic detection of explosives
was proposed based on the change in the fluorescence properties [154]. Indeed,
to understand the accurate sensing mechanism, theoretical studies are needed
to integrate the electronic structures. Ju et al. have proved that there were two
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Fig. 7.23 HOMO and LUMO energy levels of C-dots and nitro explosives. (Reproduced from
Ref. [155] with permission of the Royal Society Chemistry)

kinds of electron transfer based detection of 2,4,6-trinitrophenol (TNP) using C-
dots as fluorescent probe through theoretical calculations along with spectroscopic
studies [155]. As shown in Fig. 7.23, the HOMO and LUMO energy levels were
calculated for C-dots and various nitro explosives using the B3LYP/6-31G-(d,p)
method (Gaussian 09). The obtained results show that the LUMO levels of C-
dots (ELUMO = −3.82 eV) are higher than that of TNP (ELUMO = −3.92 eV)
which facilitates the electron transfer from the LUMO of C-dots to the LUMO
of TNP resulting in the fluorescence quenching of C-dots. On the other hand, the
respective electron transfer is not feasible to other explosives due to a higher LUMO
energy level than that of C-dots. Thus, the high sensitivity and selectivity of CDs
toward TNP can be ascribed to their efficient ET. Moreover, the theoretical studies
confirmed that two kinds of electron transfer processes involve in the detection
of TNP such as proton transfer-assisted and hydrogen-bond interaction-assisted
electron transfer.

7.6 Conclusions

Since the rapid development in the number of studies related to the applications
of functionalized graphene-based metal-free heterogeneous catalysis, rather than
attempting to summarize all the progress achieved to date, we discuss the role of
metal-free graphene and its derivatives with particular emphasis on the influence of
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defects and functional groups on their interaction with catalytic phases, as well as
the advantages of structures in the electron/mass transfer process. Additionally, we
provide a comprehensive summary on the contribution of edges/defects, functional
groups, and doping structures to the intrinsic catalytic properties of graphene-based
metal-free catalysts.

Recently, the fluorescence mechanism of GQDs and C-dots has been extensively
resolved by experiments with some theoretical calculations. The fluorescence
properties of GQDs and C-dots turn out to be sensitive to their size, defects, edge
configuration, surface functional groups, heteroatom/element dopant, etc. The DFT
calculations are significantly helpful with the understanding about the fluorescence
properties of GQDs and C-dots. However, restricted to complicated involvement of
several factors, there is a room left for further investigation to gain better theoretical
understanding of fluorescence properties which could assist to design and develop
new advanced functional nanomaterials as well as enhance their applications.

7.7 Outlook

This book chapter highlights the important developments of functional carbon
nanomaterials for these most distinguished organic transformations by using DFT
methods. Notably, DFT is widely used in structure prediction, defects, phase
stability, property prediction, and screening for many industrially and biologically
important reactions. Thanks to the effective efforts of scientists and researchers
in DFT-related fields, much progress has been achieved in the direction of the
synthesis and characterization of these functional carbon nanomaterials and their
applications to various organic transformations. Among these materials, the porous
carbon materials have been the main choice for carbon nanomaterials in catalytic
applications, because of their special physiochemical properties, including large
surface area and pore volumes, active sites, low toxicity, and chemically modifiable
surfaces. The application of DFT in functional carbon nanomaterial-related chem-
istry helps design catalytically across a range of homogeneous and heterogeneous
catalysts. A variety of surface functional groups can be generated upon the bonding
or doping of heteroatoms such as N, O, P, S, B, etc., to defects in metal-free carbon
catalysts. Although focusing on electrostatic environmental effects may open new
routes toward the rational optimization of efficient catalysts, much more predictive
capacity is required with theoretical methods to have a transformative impact in
their computational design as well as fulfill the concept of sustainable chemistry
which should be the main objectives for future research and development (R&D).
Moreover, in that context significant stimulation and progress may also be expected
from virtual exploration and massive in DFT for the field of functional carbon
nanomaterials in near future.

Apart from the utilization of carbon nanomaterials in the fields of catalysis and
chemosensors, nowadays the usage of nanomaterials in biosensor has gained a great
importance and explored for point-of-care applications. The unique inherent prop-
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erties of carbon nanomaterials especially 0D of C-dots and GQDs, 1D of CNTs, and
2D of graphene have extensively employed toward the development of biosensors.
When applying carbon nanomaterials with biomolecules, a significant improvement
can be achieved in characteristics of biosensors such as high selectivity and sensi-
tivity, biocompatibility, non-toxicity, and fast response. The biomolecules including
proteins, DNA, antibody, and enzyme can be easily associated with functionalized
carbon nanomaterials through covalent and/or electrostatic interactions. Due to
the strong specificity of carbon nanomaterials with biomolecules, they provide an
excellent advantage for biosensors by detecting a specific target biomolecules with
higher sensitivity. The other important characteristics of carbon nanomaterials are
low toxicity, good biocompatibility, as well as superior resistance to photobleaching
which make them good candidates for the development of biosensors.

From the viewpoint of fluorescence experiments, the interaction between the
carbon nanomaterials (GQDs and C-dots) and biomolecules occurs via due to
the hydrophobic and/or electrostatic interaction, and the corresponding sensing
mechanism proposed is based on the fluorescence change. However, understanding
the precise role of carbon nanomaterials in interacting with the biomolecules still
need to be discovered. Thus there is a good reason for further development of
fluorescence carbon nanomaterial-based biosensors. As such a future trend is to
better understand the relation between the probe and analyte, and the sensing
mechanism. In addition to experiments, the theoretical simulation studies will
play a major role in future to potentially solve the issues related to fundamental
understanding about the fluorescence of carbon nanomaterials, sensing mechanism,
etc. To achieve this goal, the integrating theoretically the complete structure of
GQDs and C-dots is necessary in accordance with the core moiety, size, shape,
and functional groups, so that it can help to predict the accurate interaction between
the sensing materials and biomolecules from a theoretical perspective. The sensing
performance would be significantly improved by regulating the properties of sensing
materials including size, shape, functional groups, electronic structures, optical
absorption and emission, and redox properties. The information from the theoretical
aspects can be aid to design the new and unique materials to sensing the specific
biomolecules with higher selectivity and sensitivity. We believe that theoretical
simulation and modelling studies of fluorescence-based biosensors will have a
promising future.
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Chapter 8
Electronic Properties of Transition
Metal-Benzene Sandwich Clusters

Tsugunosuke Masubuchi and Atsushi Nakajima

Abstract Organometallic clusters composed of transition metal atoms and benzene
molecules have been topics of great interest from both fundamental and techno-
logical points of view. In this chapter, we review the progress in the physical
chemistry of transition metal-benzene clusters. The intrinsic properties of transition
metal-benzene clusters as a function of cluster size are investigated by gas-
phase experiments, often in combination with quantum chemical calculations. In
particular, vanadium-benzene clusters denoted VnBzm, showing magic numbers at
m = n + 1, n, and n – 1, are characterized to possess multiple-decker sandwich
structures, where vanadium atoms and benzene molecules are alternately piled up.
Moreover, the discovery of such multiple-decker formation is a cornerstone in
bottom-up approaches of molecular magnetism. The interplay of mass spectrometry,
laser spectroscopies, and density functional calculations reveals that multiple-decker
VnBzm clusters exhibit monotonic increase in magnetic moment with the number of
layers. Anion photoelectron spectroscopic studies allow direct observations of the
geometric and electronic structures of sandwich clusters and their anions. Major
progress in this direction includes the recent characterization of tilted multiple-
decker sandwich cluster anions composed of manganese atoms and benzene
molecules. The sandwich clusters with high-spin characteristics will hopefully be
exploited as building blocks in advanced electronic and magnetic nanomaterials via
controlled assembly.
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8.1 Introduction

It was 60 years ago that Feynman [1] delivered a famous lecture named “There’s
Plenty of Room at the Bottom,” where he proposed a concept of designing
functionalities by taking full advantage of the properties of things on a small scale.
In 1962, Kubo [2] theoretically inferred that physicochemical properties of such
small materials are different from those in bulk because of discrete energy levels of
electrons. Since then, nanoscale materials have been important subjects in both basic
and applied sciences. Among them, clusters consisting of up to about 1000 atoms
have been extensively studied as they exhibit unexpected geometric and electronic
properties that are scaled as a function of cluster size [3].

In recent decades, indeed, metal clusters and molecular clusters have attracted
great attention as novel nanoscale materials of finite multifunctional systems.
For metal clusters, spectroscopic and theoretic studies have revealed the size-
dependent electronic properties of metal-insulator transition [4] and the electron
shell structures based on jellium model [3, 5], the latter of which were discussed
also from the viewpoint of mimicking shell model of nucleus [5]. As well as physical
properties, chemical properties of size-specific reactivity of the metal clusters have
been greatly explored as cluster catalysts [6]. On the other hand, molecular clusters
have been extensively studied as the aggregates of weak van der Waals forces or
hydrogen bond network, revealing microscopic solvation dynamics [7], coexisting
phases [8], and electronic evolution of organic semiconductors [9].

However, studies on hybridized clusters between metal atoms and molecules,
organometallic clusters, are limited, although organometallic molecular complexes
such as an archetypal complex of ferrocene and ligated metal cluster compounds
have been well known [10]. In particular, organometallic cluster formation can
facilitate to control the dimensionality of the geometric structure through local
metal-ligand interaction [11]. Since a low-dimensional structure of organometal-
lic clusters synergistically exploits the chemical and physical features of metal
atoms and organic molecules, leading to a dramatic change in their confinement
behavior, functional properties such as charge transfer, conductivity, and electron
spin arrangement can be designed by selecting an appropriate organic ligand which
optimizes the characteristics of the metal atoms.

Sandwich clusters, consisting of metal atoms and planar ring ligands, are typical
organometallic clusters, whose metal-ligand interactions are of fundamental interest
due to their unique structures and electronic properties [11]. In this chapter, we focus
on transition metal-benzene sandwich clusters. Followed by a general introduction
on organometallic sandwich compounds, we explain gas-phase synthesis and
characterization studies to probe the structures of transition metal-benzene clusters.
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These studies are intended to understand how the structures of metal-benzene
clusters are governed by the constituent metal atoms or molecules as well as the
cluster size. Then, we refer to joint experimental and theoretical studies, including
our recent works, for vanadium-benzene and manganese-benzene clusters and their
anions. A special emphasis is put on their electronic and magnetic properties, which
are characterized and understood from a nanoscopic point of view.

8.2 Preparation and Structures of Transition Metal-Benzene
Sandwich Clusters

8.2.1 Early Studies on Sandwich Complexes

The discovery of ferrocene, a typical metallocene consisting of a Fe(II) atom and
two cyclopentadienyl (C5H5 = Cp) ligands [12], is counted as a milestone in
organometallic chemistry. Chemical, magnetic, and X-ray crystallographic char-
acterizations revealed the sandwich structure of ferrocene, where the iron atom is
η5-bound to both the Cp ligands [13–14]. From the viewpoint of molecular orbital
theory, the interaction of the Fe atom and the Cp ligands is shown in Fig. 8.1. In the
following way, Lauher and Hoffmann [15] described the kinetic and thermodynamic
stability of ferrocene. The p orbitals of the two Cp ligands produce three sets of
approximately degenerate orbitals: a low-lying filled pair of a1g and a2u symmetry,
a filled set of e1g and e1u symmetry, and an unoccupied pair of antibonding orbitals
of e2g and e2u symmetry. When these orbitals interact with the Fe 3d orbitals, the
resultant molecular energy levels of ferrocene are understood in terms of symmetry
matching. The e1g orbitals of the Cp ligands strongly interact with the Fe 3dyz and
3dzx orbitals, yielding a pair of bonding and antibonding orbitals, each of which is
doubly degenerate. The a1g, a2u, and e1u orbitals could interact but are much less
combined with the Fe 4s or 4p orbitals that are too high in energy. The 3dz

2, 3dxy,
and 3dx

2
–y

2 orbitals of the Fe atom thus remain essentially nonbonding. Ferrocene
thus fulfills the 18-electron rule by filling its bonding and nonbonding orbitals. In
fact, other metallocenes that do not satisfy the 18-electron rule, such as cobaltocene,
CoCp2 [16], are basically less stable than ferrocene.

Besides the metallocene family, bis(benzene)chromium, CrBz2 (Bz = C6H6)
[17], and bis(cyclooctatetraene)uranium, U(COT)2 (COT = C8H8), called ura-
nocene [18], are well-known sandwich compounds (Fig. 8.2). Their molecular
orbital interactions between the metal and ligands are described in the same manner
as that for ferrocene [19–20]. Bis(benzene)vanadium, VBz2, was also prepared by
the similar (Fischer-Hafner) method that was used for CrBz2, but it was much more
immediately oxidized in air than CrBz2 [21]. Likewise, sandwich complexes that do
not satisfy the 18-electron rule are difficult to be synthesized in the condensed phase.
Another interesting derivative is a triple-decker sandwich complex of Ni atoms
and Cp ligands, [Ni2Cp3]+ (Fig. 8.2) [22]. Chemical synthesis of multiple-decker
sandwich compounds, however, often requires appropriate ligands to stabilize such
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Fig. 8.1 (a) Symmetry matching of the molecular orbitals of the Cp ligands with the atomic
orbitals of the Fe atom in ferrocene. The e2u orbitals of the Cp ligands do not match with any
orbitals of Fe. (b) Schematic molecular orbital diagram for ferrocene. The unoccupied e∗1g orbitals
of ferrocene have antibonding character

Fig. 8.2 Sandwich structures
of CrBz2, U(COT)2, and
[Ni2Cp3]+

structures, as demonstrated in the early study that yielded up to hexa-decker
sandwich complexes by using boron heterocycles instead of Cp [23]. More synthetic
attempts on sandwich compounds have been detailed in the former reviews [24–25],
and then we do not intend to introduce such contributions in this chapter.
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8.2.2 Gas-Phase Synthesis of Organometallic Complexes

The development of vacuum techniques has enabled the direct synthesis of difficult-
to-form complexes from vaporized materials. Followed by the synthesis of C3
dicarbene from carbon vapor [27], Timms built the vacuum apparatus depicted
in Fig. 8.3 in order to produce a variety of organometallic complexes. In the
vacuum apparatus, transition metals were vaporized by the electric heating wire
and allowed to react with gaseous organic reagents sprayed from a burette [26,
28]. The early efforts include the synthesis of several sandwich complexes such
as bis(benzene)ruthenium, RuBz2 [29], and triple-decker Cr2(1,3,5-mesitylene)3
[30] in this way. In these studies, NMR spectroscopy was used for the structural
characterization. Importantly, this gas-phase synthesis of sandwich compounds
benefits from its oxygen- and solvent-free conditions that can avoid unwanted
dissociation of the reaction products.

The recent advent of the laser vaporization method combined with molecular
beam techniques has opened up a different aspect of organometallic chemistry. The
laser vaporization method enables atoms, dimers, and various clusters (consisting
of up to 1000 atoms) to be produced in considerably higher density in a short
period [31]. When the laser vaporization products adiabatically expand into a
vacuum with high-pressure carrier gas of helium (or other rare gases), they are
allowed to form well-collimated, thermalized cluster beams that are ideal for
studying their thermodynamic and kinetic properties [32–35]. Duncan and co-
workers [36] produced the clusters of silver and aluminum ions with benzene by

Fig. 8.3 Schematic view of a
vacuum apparatus for the
gas-phase synthesis of
organometallic complexes
presented by Timms.
(Reproduced from Ref. [26]
with permission from the
Royal Society of Chemistry)

Cooling water

Window

Ion gauge

Product
pump out

250 mm. Diam.
stainless steel
vacuum chamber

Cocondensate

Molten metalAlumina
coated
Mo wire
crucible

Liquid
nitrogen

To gate valve
and oil diffusion
pump

Cooling water and 
electricity

Trifluorophosphine



318 T. Masubuchi and A. Nakajima

Fig. 8.4 Schematic view of a
dual-laser vaporization
cluster source which has two
sample rods, two pulsed
valves, and a reaction room.
(Reproduced from Ref. [45]
with permission from the
Chemical Society of Japan)

means of laser vaporization and studied their photoinduced dissociation. Armentrout
and co-workers [37–38] examined collision-induced dissociation of silver-benzene
and first-row transition metal-benzene cluster ions. These works provided reliable
thermodynamic data of the vibrational modes and dissociation energies for the
clusters, which contributed to the understanding of the bonding nature between the
metal atom and the benzene ligands.

In the laser vaporization method, cluster size and composition are controllable
in a wide range, depending on the choice of the target material, laser fluence,
carrier gas pressure, and the volume of the reaction room (sometimes called “waiting
room”), where the metal vapor and the gaseous reactants are mixed in the presence
of the carrier gas [39–40]. Kaya, Nakajima, and co-workers [41–42] built a dual-
laser vaporization cluster source depicted in Fig. 8.4, equipped with a couple
of pulsed valves, which enabled the production of clusters containing multiple
elements and/or gaseous ligands. Using this cluster source, Hoshino et al. [43] syn-
thesized polynuclear clusters of multiple vanadium atoms and benzene molecules
denoted VnBzm and examined their structures with mass spectrometry. Interestingly,
the photoionization mass spectrum in Fig. 8.5 indicated that these V-Bz neutrals
were populated by magic number clusters with m = n + 1, each of which has one
Bz molecule in excess. The chemical probe experiment showed that VnBzn + 1 were
inert upon exposure to carbon monoxide (CO) while VnBzn and VnBzn–1 absorbed
3 and 6 CO molecules, respectively. Since CO is regarded as a two-electron donor,
three CO molecules are equivalent to one Bz ligand. Compared to VnBzn + 1, it was
thus thought that the addition of 3 and 6 CO molecules correspond to the lack of one
and two exterior Bz molecules in the structures of VnBzn and VnBzn–1, respectively.
These magic number behavior and reactivity suggested that VnBzn + 1 clusters
exhibit a multiple-decker sandwich structure in which V atoms and Bz molecules
are piled up alternately (see Fig. 8.5), while VnBzn and VnBzn–1 were deduced
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Fig. 8.5 Photoionization mass spectrum for VnBzm clusters. Each VnBzm is expressed as (n, m).
The predominant peaks have magic numbered compositions of (n, n + 1), and most of the minor
peaks are assigned to the (n, m) clusters. Proposed structures for (n, n + 1) clusters are also shown.
(Reproduced from Ref. [45] with permission from the Chemical Society of Japan)

to be one- and two-end open sandwich clusters, respectively. The multiple-decker
structures of cationic clusters of VnBzn + 1

+ have later been confirmed by Bowers
and co-workers with ion mobility measurements [44].

8.2.3 Mass Spectroscopic Characterization of Transition
Metal-Benzene Sandwich Clusters

To gain detailed insights into the bonding scheme of VnBzn + 1 clusters, it is a
good idea to address a question of how such multiple-decker sandwich formation
is dependent on metal elements and ligands. To answer this question, Kurikawa
et al. [46–48] synthesized a series of metal-benzene clusters, MnBzm, from first-
row transition metals M (= Sc to Cu), and the cluster formation of these clusters
was studied in the same manner as was employed for VnBzm clusters. For ConBzm

clusters, photoionization mass spectroscopy revealed that, in the series of the
abundant clusters, the number of Co atoms increased one by one, whereas the
number of Bz molecules did not necessarily increase with the cluster size (Fig.
8.6g). Namely, every n had a specific maximum number of Bz molecules adsorbed
(mmax). The magic number clusters such as (n, m) = (1, 2), (2, 3), (3, 3), (4, 4),
(5, 4), and (6, 4) did not react with ammonia molecules. However, most of these
clusters cannot be expressed as (n, n + 1) and thus are unlikely to take a sandwich
structure. It was deduced that they exhibit a so-called “rice-ball” structure, where
the Con core is surrounded by the Bz molecules, as depicted in Fig. 8.7b [46–47].
A similar mass spectral trend (in mmax) was seen for the Bz complexes of other late
transition metals of Fe and Ni, while ScnBzm and TinBzm were distributed over the
(n, n + 1) composition (see Fig. 8.6). Thus, the following two types of structures
are concerned with transition metals M: the multiple-decker sandwich structure is
characteristic of the complexes for early transition metals (M = Sc to V), whereas
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Fig. 8.6 Photoionization mass spectra for MnBzm clusters (M = 3d transition metals: (a) Sc, (b)
Ti, (c) V, (d) Cr, (e) Mn, (f) Fe, (g) Co, (h) Ni, and (i) Cu). Each MnBzm is expressed as (n, m).
The asterisks denote the contamination peak of oxide. (Reprinted with permission from Ref. [48].
Copyright 1999 American Chemical Society)

Fig. 8.7 (a) Proposed
structures for early transition
metals for Sc, Ti, and V;
multiple sandwich. (b)
Proposed structures for late
transition metals from Fe to
Ni; rice-ball. (Reprinted with
permission from Ref. [48].
Copyright 1999 American
Chemical Society)

the rice-ball structure is formed for late transition metals (M = Fe to Ni). Cr, Mn,
and Cu belong to neither of the two metal groups: they did not produce any larger
clusters than mononuclear MBz2 in the reaction with Bz (see Fig. 8.6d, e, i) [48].

To probe basic concepts underlying the metal-ligand interactions, transition
metal-fullerene (C60) cluster ions, Mn(C60)m

+ (M = Sc, Ti, V, Cr, Mn, Fe, Co,
and Ni), were prepared by means of laser vaporization and studied with mass
spectrometry [11, 49–53]. Among the transition metals studied, Nakajima et al.
[51, 53] found that Mn(C60)m

+ with M = Sc, Ti, and V were populated by (n,
n + 1) and (n, n) clusters, which did not form a carbonyl complex. It was proposed
that the structures of the predominant clusters are chain-like multiple dumbbell
or ring structures (Fig. 8.8), analogous to multiple-decker sandwich clusters. In
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Fig. 8.8 Left: typical photoionization mass spectra of (a) Vn(C60)m, (b) Tin(C60)m and (c)
Scn(C60)m. Right: (d) proposed dumbbell and ring structures for Mn(C60)m (M = Sc, Ti and V).
(Reprinted with permission from Ref. [11]. Copyright 2000 American Chemical Society)

contrast, Mn(C60)m
+ with the other metals exhibited a different mass feature.

Nagao et al. [52] proposed that Co4(C60)4
+ exhibit a face-centered tetrahedron

structure (Fig. 8.9) that is again analogous to the rice-ball structure of Co4Bz4.
Such face-centered structures are thought to be prevalent in Mn(C60)m

+ where
M = Cr, Fe, Co, and Ni [11, 53]. Metal-coronene (C24H12) clusters, Mn(C24H12)m,
have also attracted much interest, as their ions consisting of various metals were
investigated. Pozniak and Dunbar [54] studied the reactivity of more than 20 metal
ions toward coronene and classified these ions into 2 groups depending on whether
the reaction led to the (1, 2) formation. Many of the transition metals such as
Sc+, Ti+, Cr+, Mn+, Fe+, Ni+, and Cu+ allowed yielding M(C24H12)2

+ that was
deduced to be a sandwich complex. Duncan and co-workers [55–57] conducted
photodissociation measurements on Fen(C24H12)m

+ and Crn(C24H12)m
+ and evi-

denced possible sandwich structures for these cluster ions, including the multiple-
decker Cr2(C24H12)3

+ cluster. V(C24H12)2
− and Ti(C24H12)2

− anions were also
assigned to be sandwiches [58]. Nakajima, Kaya, and co-workers studied vanadium
complexes with substituted benzene, Vn(arene)m (arene = toluene, C6H5CH3, and
fluorobenzene, C6H5F) [59] and their mononuclear anions V(arene)m

− (m = 1, 2)
[60], as well as Sc(C6H5CH3)m

− (m = 1, 2) [61], and demonstrated that the arene’s
electron-donating or electron-withdrawing property shifts the energy levels of its
valence orbitals that affect the production efficiency of these clusters. Although
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Fig. 8.9 Proposed
face-centered structures for
Mn(C60)m (M = Cr, Fe, Co,
and Ni). (Reprinted with
permission from Ref. [11].
Copyright 2000 American
Chemical Society)

electrostatic interactions might partly contribute to the bonding of the ion-molecule
complexes, these studies reinforced that the orbital interactions between the metal d
and Bz π electrons are responsible for the M-Bz bonding in the MnBzm clusters.

It is then postulated that the stability of the M-Bz sandwich formation is balanced
by the antibonding character resulting from the orbital interactions. The simplest
examples are mononuclear MBz2 clusters, the structures of which are described
with the 18-electron rule in the same manner as those of metallocenes. While
CrBz2 satisfies the 18-electron rule by filling its bonding (e2g) and nonbonding (a1g)
orbitals, MBz2 clusters with the late transition metals of M = Mn to Ni violate the
rule due to the excess 3d electrons that should occupy the antibonding orbitals with
e*1g symmetry. It is known that such extra electrons in the e*1g orbitals induce a
Jahn-Teller instability which may distort the sandwich structure from the highest
(D6h or D6d in case of MBz2) symmetry to a lower one to remove the degeneracy
[20]. This effect lowers the M-Bz binding energy compared to that of a M-M bond
in case of multinuclear complexes, leading to the rice-ball formation for the late
transition metals rather than the multiple-decker sandwich formation. In the rice-ball
structures, mmax is governed not only by electronic but also by geometric factors,
and it is basically lower than the value expected from the total number of valence
electrons, as the steric hindrance between Bz molecules becomes more crucial at
large n [48].

In contrast, all the transition metals of M = Sc to Cr allow MBz2 complexes
which have no more than 18 valence electrons, but the production efficiency of
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the multiple-decker sandwich clusters is quite metal-dependent, as depicted in
Fig. 8.6. Yasuike et al. [62] demonstrated that the sandwich formation is affected
not only by a thermodynamic but also by a kinetic factor, where the formation
process governs the reactivity rather than the thermodynamic stability of the reaction
products does. In particular, the spin multiplicity of the system has been proven
to be an important guideline in understanding the reactivity of transition metal
ions [63]. They carried out quantum chemical calculations to determine the most
preferable spin states for reactant and product clusters in the cluster growth process
of MnBzn + 1 + M → Mn + 1Bzn + 1 (n = 1, 2), where M = Ti, V, and Cr.
According to the calculation results, both CrBz2 and Cr2Bz2 preferred a singlet
state, whereas the ground state of a Cr atom is septet [64]. This means that multiple-
step nonadiabatic (i.e., spin-flip) transitions are needed for the growth from CrBz2 to
Cr2Bz2 as the overall reactant system (CrBz2 + Cr) does not conserve its total spins
during the reaction. By contrast, the calculation results estimated the lowest-energy
state of V2Bz2 to be either a singlet or triplet, which is close in energy to each other.
VBz2 was determined to be a doublet while the ground state of a V atom is a quartet
[64]. Therefore, spin flipping is not required for the transition from VBz2 + V to
the triplet-state V2Bz2. The reaction barrier arising from the spin conservation rule
explains the absence of Cr2Bz2 and larger clusters, while the efficient production of
VnBzn + 1 is likely due to spin conservation in the cluster growth process.

8.3 Electronic and Magnetic Properties of Transition
Metal-Benzene Sandwich Clusters

8.3.1 Physical Properties of Low-Dimensional Materials

It has been known that properties of materials which have low-dimensional (i.e.,
zero-, one-, and two-dimensional, hereafter 0D, 1D, and 2D, respectively) structures
are different from those of three-dimensional (3D) materials such as bulk materials
[65]. For instance, fullerenes, carbon nanotubes, and graphene (Fig. 8.10) are
regarded as typical low-dimensional materials that are distinguished from graphite.
There has been tremendous interest in extraordinary electron motion and resulting
unique electronic properties originating from the low dimensionality of these
materials. In fact, conductivity of carbon nanotubes has been a stimulating subject,
since it was shown that nanotubes with a certain chirality (i.e., degree of twist)
exhibit dramatically high conductivity [66–67]. It is understood that electron
transport in the nanotubes is an anisotropic phenomenon in which different periodic
boundary conditions are applied depending on the chirality [68]. Likewise, low-
dimensional magnetism has gathered continuous attention since the discovery of
the first single-molecule magnet (SMM), which exhibited magnetic hysteresis of a
pure molecular origin [69]. Mn-containing SMMs have been studied for decades
because the high-spin (3d 54s2) configuration of a Mn atom is advantageous
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Fig. 8.10 Typical structures of (a) fullerene, (b) carbon nanotube, and (c) graphene as representa-
tives for 0D, 1D, and 2D materials, respectively. (Reproduced from Ref. [79] with permission from
the Royal Society of Chemistry)

for maximizing the spin multiplicity of SMMs. However, it is noted that better
performing SMMs, with a large energy barrier to magnetic relaxation, require not
only a high-spin ground state but also a large magnetic anisotropy. Such SMMs have
often been achieved by strategic choices of bridging ligands that induce effective
exchange interactions with a large anisotropy in the metal-ligand system [70–
73]. Recently, 1D polymer chains called single-chain magnets (SCMs) have been
demonstrated to show magnetic properties analogous to those of 0D SMMs [74–
75]. These electronic and magnetic properties of low-dimensional materials have
also motivated lots of studies aimed at their technological applications for molecule-
based semiconductors [76], spintronics devices [77–78], energy storage media [76],
high-density information storage devices [77], and so on.

8.3.2 Low Dimensionality of Transition Metal-Benzene
Sandwich Clusters

The design of functional nanomaterials benefits more and more from a bottom-
up approach that utilizes clusters as building blocks. Dimensionality plays an
important role in defining the properties of nanomaterials. The controlled assembly
of clusters facilitates the fabrication of materials with tailored dimensionality, that
is, with tailored functionality [45, 80–81]. In order to explore, identify, and tune
the functionality via the bottom-up approach, on the other hand, it is essential to
understand the intrinsic properties of clusters themselves.

At this point, transition metal-Bz sandwich clusters can be ideal building blocks
for low-dimensional functional nanomaterials. For instance, mononuclear MBz and
MBz2 clusters are regarded as motifs for organic surface-supported metal atoms,
the magnetic moments of which have been of great interest [82]. Pandey et al. [83–
84] calculated magnetic moments for MBz and MBz2 complexes (M = Sc-Ni) and
showed that the first and second Bz molecules differently interact with the electrons
of the M atom. According to the calculation result, some MBz complexes (M = Sc,
Ti, and V) have a high magnetic moment. The second Bz addition quenches the
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Fig. 8.11 A hypothesized chain-like arrangement of M(COT)2 monomers with uniaxial magnetic
anisotropy, illustrating the concept of modular design of SCMs. The axial anisotropy of each
monomer is depicted as blue vectors, and the vector addition of the monomeric axial anisotropies
yields the net axial anisotropy (purple). (Reproduced from Ref. [86] with permission from the
Royal Society of Chemistry)

electron spins of MBz, and one unpaired electron remains in the odd-electron
systems of ScBz2 and VBz2. Indeed, the electron paramagnetic resonance (EPR)
measurement by Elschenbroich et al. [85] confirmed that VBz2 derivatives which
have an interannular bridge are paramagnetic with a spin multiplicity of 2S + 1 = 2.
Moreover, multiple-decker sandwich clusters can be viewed as single atomic chains,
where an important question should be addressed how the electron spins of each
metal atom interact with those of each other. It is hypothesized that a modular
design of SCMs may be feasible if each M(COT)2 monomer with uniaxial magnetic
anisotropy is aligned along with the primary (z) axis (Fig. 8.11) [86]. The Stern-
Gerlach experiment [87] carried out by Miyajima et al. [88–90] provided direct
insights into magnetic properties of multiple-decker sandwich clusters. Importantly,
the experiment reported that the magnetic moments of VnBzn + 1 monotonically
increased with increasing cluster size (Fig. 8.12). In contrast, the magnetic moments
of ConBzm clusters, measured in the same manner, showed a quenching effect with
increasing n and m [91]. This difference somewhat illustrates that the multiple-
decker formation can stabilize the ferromagnetic ordering of the electron spins
contained on metal atoms.

Recent advances in theoretical chemistry and computer resources have allowed
computations of geometric and electronic structures of even large, multinuclear
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Fig. 8.12 Magnetic moments
μz for VnBzn + 1 clusters
measured by the
Stern-Gerlach experiment.
Those for ScnBzn + 1 are also
plotted. Open circles/squares
indicate the magnetic
moments determined at
∼150 K, whereas filled
diamonds indicate the
magnetic moments at room
temperature. (Reprinted with
permission from Ref. [90].
Copyright 2007 American
Chemical Society)

transition metal-Bz clusters. Kandalam et al. [92] employed density functional
theory (DFT) to optimize the structures for VnBzn + 1 clusters up to n = 3. Upon
comparison of the total energies between the sandwich and rice-ball V2Bz3 clusters,
they confirmed that the sandwich formation was lower in energy than the rice-ball
cluster at any possible spin multiplicity. In addition, the simulated spin multiplicities
of VnBzn + 1 (n = 1–3) exhibited a linear increase, in agreement with the experiment
described above. Shortly after this work, Wang et al. [93] extended calculations up
to V5Bz6 and confirmed the size evolution of magnetic moment in this size range.
They also reported that, regardless of cluster size and the position of the atom, each
V atom possesses a magnetic moment of slightly larger than 1 Bohr magneton
(μB). In contrast, each Bz molecule has a small negative magnetic moment. This
counterbalancing illustrates that not only VBz2 but also each VBz unit has a
magnetic moment of 1 μB, resulting in the size-dependent increase of the total
magnetic moment. On the other hand, rice-ball ConBzm clusters such as (n, m) = (3,
3) and (4, 4) have been calculated to have antiferromagnetic nature [94], which
does not contradict their small magnetic moments determined in the experiment
[91]. Furthermore, various infinite sandwich wires composed of metal atoms and
arene molecules have been theoretically investigated [95–105]. Particularly, early
works simulated the density of states in the V-Bz wire and proposed that the V-Bz
wire is a half-metallic ferromagnet [95–99], where only one spin channel is metallic
owing to the insulating band gap in the opposite spin channel (see Fig. 8.13). Such
half metallicity of the sandwich wires has made metal-organic sandwich complexes
promising candidates for organic spintronics, where the spin-polarized signal can
be mediated and controlled by organic molecules in a 1D wire form. It should
be noted that, in terms of their electronic and magnetic properties, organic half
metals are especially useful for organic spintronics, because 100% spin polarization
transportation is then available.

Despite the successes of these computational studies, it should be emphasized
that, for many theories including the widely used DFT, there is still room for
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Fig. 8.13 The calculated spin-resolved band structure (left plot) and the DOS (plot in the middle)
of the V-Bz wire in the ferromagnetic phase. The labels at the band structure refer to crystalline
orbitals of the wire calculated for the � point, which are depicted on the right of the plot. The right
panel shows values of the HOMO-LUMO gap in two spin channels for VnBzn + 1 as a function of
n. (Reproduced from Ref. [97] with permission from the American Physical Society)

improvement in the reliability of magnetic moments and other spin-dependent prop-
erties [106–108]. In fact, the DFT methods for even small organometallic systems
have the specific problem that the spin multiplicity of a global minimum structure
depends on the employed functional. Recently, the quantum Monte Carlo (QMC)
method has offered accurate calculations for spin-dependent properties of VBz
[106] and VnBzn + 1 (n = 1–3) [109] systems. Such higher-level theories, however,
are much computationally demanding and are not universally applicable when
compared to the DFT. Here, combining computational methods with experiments
is an effective approach. Quantum chemical calculations provide various kinds of
simulated action spectra that are structure- and electronic state-dependent. Through
the comparison between simulated and experimental spectra, the correctness of the
calculations can be verified within a reasonable level of theory. In this way, the
calculation results, which show the same fingerprints as the experiments do, give
information on plausible structures and electronic and magnetic properties.

For the electronic and magnetic characterization of transition metal-Bz sandwich
clusters, notable progress has indeed been made by joint experimental and theoreti-
cal studies. The details and outcomes of these studies are described in the following
subsections.

8.3.3 Laser Spectroscopic Studies of Transition Metal-Benzene
Sandwich Clusters

Among physical quantities that give direct insights into the valence electronic
structure of a molecule, ionization energy (IE) and electron affinity (EA) are
of particular importance. IE reflects the energy level of the highest occupied
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Fig. 8.14 Schemes of photoionization efficiency (PIE) spectroscopy and anion photoelectron
spectroscopy (PES). Filled circles represent electrons that occupy valence orbitals. The HOMO
and LUMO stand for those of the neutral state. For simplicity, the neutral is a singlet state with a
closed-shell configuration, and it is assumed that there is no significant relaxation of the electronic
structure during the electronic transitions

molecular orbital (HOMO), whereas EA is related to the energy level of the lowest
unoccupied molecular orbital (LUMO). Experimental IE and EA values for a cluster
are accessible by gas-phase laser spectroscopies. Photoionization efficiency (PIE)
spectroscopy measures PIE as a function of photon energy. The PIE curve exhibits
an onset whose energy gives the IE value for the neutral. Anion photoelectron
spectroscopy (PES) estimates the binding energy of the excess electron of an anion
by measuring the kinetic energy of the photoelectron (photodetached electron, PE).
Within the limits of Koopmans’ theorem, the observed photoelectron originates
from the LUMO of the neutrals, which is occupied for the corresponding anions,
so the EA of the neutral is obtained in this way. The energetic relationship between
IE and EA is depicted in Fig. 8.14, along with the schemes of PIE spectroscopy and
anion PES.

The PIE curves have been measured for VnBzn + 1 sandwich clusters with up to
n = 5, showing that the IE monotonically decreased with increasing cluster size, as
depicted in Fig. 8.15 [43, 110]. For larger clusters with n ≥ 4, the PIE measurements
also determined second lowest IEs that reflect the ionization from the next HOMO
(HOMO – 1). The second lowest IEs exhibited a similar decrease seen for the lowest
IEs [110]. Yasuike and Yabushita [111] employed the extended Hückel molecular
orbital method to compute electronic structures of VnBzn + 1 clusters. Like those
of ferrocene, the valence orbitals computed for VnBzn + 1 are classified into three
types in terms of symmetry matching. dδ orbitals, which are combinations of the
3dxy or 3dx

2
–y

2 orbitals of V atoms and their symmetry-matching π orbitals of Bz
molecules, form a quasi-band electronic structure as shown in Fig. 8.16, resulting
in a monotonic decrease in IE with an increasing number of n. Importantly, the
calculated IEs for VnBzn + 1 agreed well with the experimental values from the PIE
spectra, thus reinforcing the theory employed in the calculations. In a general sense,
such IE decrease has been known as a common phenomenon in multiple-decker
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Fig. 8.15 Photoionization efficiency (PIE) spectra of VnBzm for (n, m) = (1, 2) to (5, 6). The first
onset corresponds to the ionization energy (IE) for removing an electron from the HOMO. As well
as the first onset, a second ionization onset was observed as the change of slope in the PIE curves
of (3, 4), (4, 5), and (5, 6) to be 5.8 ± 0.1, 4.9 ± 0.1, and 4.7 ± 0.1 eV, respectively. The second
onsets represent second lowest IE that can be explained by ionization processes from the next
HOMO (HOMO – 1). The onsets predicted by the quasi-band electronic structure are also shown
in brackets. (Reproduced from Ref. [45] with permission from the Chemical Society of Japan)

structures of MnBzn + 1 (M = Sc, Ti, and V) [48], as it was not observed for other
species such as ConBzm that prefers a rice-ball structure at large n [46–48].

On the other hand, Judai et al. [60–61] conducted their pioneering works by
applying anion PES to transition metal-arene complex anions. A magnetic bottle-
type PE spectrometer was used in their experimental setup (shown in Fig. 8.17),
as PEs can be collected at high efficiency in this method. Their PE spectra for
mononuclear VBz− and derivatives, V(arene)− (arene = toluene, C6H5CH3, and
fluorobenzene, C6H5F), taken with 355 nm (3.49 eV) laser radiation, are shown
in Fig. 8.18. In the figure, the horizontal axis corresponds to electron binding
energy (EBE), which is defined as EBE = hν – EKE, where hν is a photon
energy of the detachment laser and EKE is an electron kinetic energy. Each arrow
indicates the threshold binding energy, which corresponds to the upper limit of
EA. The binding energy at each peak center represents a vertical detachment
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Fig. 8.16 Quasi-band electronic structure of valence orbitals of VnBzn + 1. Bold-faced num-
bers indicate experimental values in eV with uncertainties in parentheses; 5.75(3) represents
5.75 ± 0.03 eV. Calculated values obtained by the simple Hückel model are given in italics. Solid
and open arrows indicate the lowest and the second lowest ionization processes from each HOMO
and HOMO – 1, respectively. They also correspond to the ionization processes observed in the
PIE spectra of Fig. 8.15, respectively. (Reprinted with permission from Ref. [110]. Copyright 2002
American Chemical Society)

Fig. 8.17 An experimental setup for anion PES equipped with a time-of-flight mass spectrometer
for metal-organic cluster anions. Lasers, valves, and high-voltage electronic pulses are controlled
by a digital delay generator
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Fig. 8.18 Anion PE spectra
of (a) V(C6H5CH3)−, (b)
VBz−, and (c) V(C6H5F)−
taken with 355 nm (3.49 eV)
radiation. Vertical arrows
indicate onset energies. In (c),
the presumed structure for
V(C6H5F)− is shown.
(Reprinted from Ref. [60]
with permission from
Elsevier)

energy (VDE), at which the geometry of the cluster anion is unchanged during
the photodetachment process. The broadness of the peak reflects the Franck-
Condon overlap between the vibrational ground state of the anion and that of the
corresponding neutral. For example, the sharp and intense peaks in Fig. 8.18a, b
show that V(C6H5CH3)− and VBz−, respectively, do not significantly change their
structures upon photodetachment. This spectral feature is often ascribed to possible
photodetachment from a nonbonding orbital electron at the anionic state. Indeed,
the molecular orbital diagram of VBz− showed that the HOMO of the anion is a
nonbonding orbital with a1 symmetry [60]. By contrast, V(C6H5F)− exhibited a
broad feature in its PE spectrum (Fig. 8.18c). It is thus conceivable that its structure
(see the inset of Fig. 8.18c) may be somewhat different from the half-sandwich
structures of VBz− and V(C6H5CH3)−. Another interesting feature is the lack of
VBz2

− in the mass spectrum. The molecular orbital theory showed that both of the
HOMO and LUMO of VBz2 are nonbonding orbitals. The absence of VBz2

− is
thus ascribed to the negative EA of VBz2, meaning that the excess electron does not
lower the energy of VBz2

−.
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8.3.4 Joint Anion Photoelectron and Computational Studies
of Vanadium-Benzene Sandwich Clusters and Their
Anions

The interplay between anion PES and theory, as described in Sect. 8.3.3, is
especially powerful to study clusters both at anionic and neutral states. How-
ever, applications of this method for transition metal-Bz sandwich clusters were
somewhat limited due to difficulty in preparing anions of the transition metal-Bz
clusters. Despite their successful work on VBz−, Judai et al. did not investigate
multinuclear VnBzm

− anions. Their mass spectrum (Fig. 8.19a) showed some
dehydrogenation products with no presence of VnBzm

− with n ≥ 2 and m ≥ 2.

Fig. 8.19 Mass spectra of VnBzm
− cluster anions measured by (a) Judai et al. [60] and (b)

Masubuchi et al. [113] The maximum stagnation pressures of He carrier gas used for cluster
production were 10 bar and 50 bar for (a) and (b), respectively. (a) was reprinted from Ref. [60]
with permission from Elsevier and (b) from Ref. [113] with the permission of AIP Publishing
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The dehydrogenation channels may be characteristic of transition metal-Bz cluster
ions as they have also been found in the reaction of Vn

+ with deuterated benzene
(C6D6), where deuterium-poor clusters VnC6Dk

+ (k = 0, 2, 4) were detected [112].
Nevertheless, we recently succeeded in the gas-phase synthesis of VnBzm

− anions
without dehydrogenated species [113]. In the mass spectrum of Fig. 8.19b, the peaks
of VnBzm

− are denoted by the notation (n, m)−, and the number above each peak
indicates the number of V atoms, n. VnBzn + 1

− (n ≥ 2) and some other kinds of
anions such as VnBzn–1

− (n ≥ 2) and VnBzn
− (n ≥ 1) are the most abundant, though

the other peaks are assigned to VnBzm
− combined with oxygen or water molecules.

We adopted a high-pressure Even-Lavie pulsed valve [114] to load He carrier gas at
a stagnation pressure of 50 bar, which is approximately five times higher than that
in the former experiments (∼10 bar at maximum). The Even-Lavie valve is known
to generate cold molecules whose rotational temperature is even lower than 1 K
[114]. It is thus reasonable that such high pressure promotes further cooling down
of VnBzm

− anions to avoid unwanted dehydrogenation.
The joint anion PE and computational method was first employed for Bz-rich the

anionic series of VnBzn + 1
− (n ≥ 2), henceforth (n, n + 1)− [113]. The question

in this study was whether VnBzn + 1
− anions exhibit multiple-decker structures

with high-spin characteristics in common with the corresponding neutrals. The PE
spectra for (n, n + 1)− (n = 2–5), taken with various photon energies, are shown
in Fig. 8.20. The 532 nm spectra in Fig. 8.20a–d, having a better resolution at a
particular EBE than that with larger photon energy, exhibit a monotonic increase of
EA with increasing cluster size, as indicated by the vertical arrows. On the other
hand, the EAs of (n, n + 1) (n = 1–5) were calculated by means of the DFT,
where all the possible spin multiplicities of the neutrals and anions were assessed.
The EA of VBz2 was calculated to be negative, in agreement with the work by
Judai et al. [60] Moreover, the calculated EAs at n = 2–5, marked by the vertical
lines in Fig. 8.20a–d, showed the best matches with the experimental EAs when the
lowest-energy VnBzn + 1

− anions were featured by monotonically increasing spin
multiplicities denoted as 2S + 1 = n.

The DFT calculations also give optimized geometries, molecular orbital energy
levels, and HOMO and LUMO pictures of the neutrals and anions, as displayed in
Fig. 8.21a, b, respectively. For the neutrals, both the HOMOs and LUMOs belong
to the minority spin. At n = 1–3, the HOMOs are degenerate dδ orbitals, while the
LUMOs are nonbonding dσ orbitals that are mostly composed of the 3dz

2 orbitals
of the V atoms. At n = 4 and 5, on the other hand, the Jahn-Teller effect lowers the
D6h symmetry of the multiple-decker structure, as described previously by Wang
et al. [93] This also removes the degeneracy of the dδ orbitals. Because of their
close energies, the dδ and dσ orbitals are hybridized, making the orbital pictures a
bit complicated. However, this minor effect does not change the persistent multiple-
decker formation with the ferromagnetic spin ordering even at larger n. For the
anions, the comparison between Fig. 8.21a, b reveals that, except mononuclear
singlet (1, 2)−, the (n, n + 1)− anions have ferromagnetic multiple-decker sandwich
structures similarly to the corresponding (n, n + 1) neutrals. The excess electron
occupies a dσ orbital for n = 1–3, a hybridized orbital consisting of dδ and dσ for
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Fig. 8.20 Anion PE spectra of VnBzn + 1
− (n = 2–5) clusters taken with (a–d) 532 nm (2.33 eV),

(e–h) 355 nm (3.49 eV), and (i–l) 266 nm (4.66 eV) radiation. Vertical arrows indicate the onsets
of the spectra corresponding to the 532 nm spectra, while vertical lines indicate the calculated
adiabatic EA values of the neutral species. (Reprinted from Ref. [113], with the permission of AIP
Publishing)

n = 4, and again a dσ orbital for n = 5, all of which are delocalized along with
the V atoms one-dimensionally. Importantly, for both the neutrals and anions, both
the HOMOs and LUMOs belong to the minority spin, and the HOMO-LUMO gap
with the majority spin is much larger than that with the minority spin irrespective of
n, as plotted in the insets of Fig. 8.21. Our results not only are consistent with the
former studies which have theoretically discussed the neutral VnBzn + 1 system [93,
97–98] but also include new experimental insights into the anionic system that can
be produced during electron transport. Taken together, it can be expected that, when
carrying current through a VnBzn + 1 cluster coupled to two electrodes, only one
direction of spin will be transportable in the VnBzn + 1 system, hopefully leading to
future spintronic applications of these sandwich clusters.

The unique electronic characteristics of (n, n + 1)0/− (neutral and anion) clusters,
as described above, originate from their one-dimensional structures. Thus, it would
be interesting to determine whether eliminating Bz would change the multiple-
decker sandwich structures and, more importantly, the electronic properties of such
clusters. Therefore, we also acquired anion PE spectra of VnBzn

− (n = 1–5),
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Fig. 8.21 The molecular orbital energy levels and the HOMOs and LUMOs of the lowest-energy
geometries of (a) VnBzn + 1 neutrals and (b) VnBzn + 1

− anions (n = 1–5). The α (majority spin)-
MO (left) and β (minority spin)-MO (right) are separately depicted for each cluster. The values
of the HOMO-LUMO gaps in the two spin directions as a function of n is shown in the inset.
(Reprinted from Ref. [113], with the permission of AIP Publishing)

henceforth (n, n)−, and VnBzn–1
− (n = 2–5), denoted as (n, n – 1)−. The EA for

each cluster was obtained in the same manner as those for (n, n + 1) and plotted
against n in Fig. 8.22. It can clearly be seen from the figure that, in the range of
n ≥ 3, the EAs for (n, n) and (n, n − 1) monotonically increased with increasing
n and converged on the EA of (n, n + 1). Taken into account that the monotonic
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Fig. 8.22 Experimental EAs for VnBzm (n = 1–5, m = n − 1, n, and n + 1) as a function of n. The
threshold energies of the second peaks in the PE spectra for V2Bz2 and V3Bz3 were determined
by Gaussian fitting and are called the “second onset” and marked using open circles (◦) connected
with a dashed line. The connecting lines are provided to guide the eye. (Reprinted from Ref. [115],
with the permission of AIP Publishing)

increase in the EA for (n, n + 1) is attributable to the delocalized orbital along with
the V atoms formation, EA would only be a function of n if the same number of V
atoms were stacked alternately in a sandwich fashion. Indeed, similar AEAs were
found for the clusters with n = 4 and 5 and different m values, thus suggesting that
(n, n − 1)0/− and (n, n)0/− can also have one-dimensional sandwich structures with
similar electronic configurations.

At n = 1–3, on the other hand, EA is dependent on both n and m. The non-
monotonic variation in the EA between the (1, 1), (2, 2), and (3, 3) clusters was of
particular interest because it implied that there may be structural isomers of these
clusters. Figure 8.22 also indicates “second onsets” for (2, 2) and (3, 3), obtained by
deconvoluting the PE spectra (for (2, 2)− shown in Fig. 8.23a, b) through a Gaussian
fitting technique. Interestingly, the second onsets do not hint at possible excited
states but at the presence of higher-lying isomers of the anions, as they disappeared
under a different experimental (Bz-poor) condition (Fig. 8.23b). In fact, our DFT
calculations found three and two isomers for (2, 2) and its anion, respectively, as
displayed in Fig. 8.23c, d. The dimer sandwiches 1 and 4 have the lowest spin
states, while the alternating sandwiches 2, 3, and 5 favor high-spin multiplicities
that originate from the V atoms. Comparison between experimental and calculated
EAs and VDEs assigned the first and second peaks, labeled (i) and (ii) in the PE
spectrum of Fig. 8.23a, to 4 and 5, respectively, showing the coexistence of the
two isomers for (2, 2)−. It is conceivable that, due to their “packed” structures, the
non-alternating sandwich clusters such as 1 and 4 could limit their growth process,
making alternating sandwiches major at larger n. The multiple-decker sandwich
formation of VnBzm

0/− regardless of m = n + 1, n, and n – 1 could extend its
technological use because VnBzn + 1

0/− clusters do not lose their electronic and
magnetic character via elimination/modification of their terminal Bz molecules.
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Fig. 8.23 (a, b) show PE
spectra for V2Bz2

− acquired
using 532 nm radiation under
relatively benzene-poor and
benzene-rich conditions,
respectively. The EBEs at the
vertical arrows and the
dashed lines (labeled i–iii)
correspond with the
experimental EAs and VDEs,
respectively. The amount of
Bz introduced into our
apparatus could be
qualitatively controlled by
changing the pulse duration
(by controlling the pulsed
valve). (c, d) display
low-lying isomers of the
V2Bz2 and its anionic
clusters, respectively, with
their spin states, symmetries,
and relative energies.
(Reprinted from Ref. [115],
with the permission of AIP
Publishing)

8.3.5 Multiple-Decker and Ring Sandwich Formation
of Manganese-Benzene Cluster Anions

In Sects. 8.3.3 and 8.3.4, we described our research on the electronic and magnetic
characteristics of VnBzm

0/− (m = n – 1, n, and n + 1) multiple-decker sandwich
clusters. Our finding further motivates such characterization of multiple-decker
sandwich clusters containing different metal atoms. Indeed, several theoreticians
have predicted that an infinite Mn-Bz sandwich wire would have half metallicity that
surpasses that of a V-Bz wire [96, 100]. However, several transition metals (M = Cr,
Mn, and Cu) had never produced any larger clusters than mononuclear MBz2
in the reaction with benzene, as stated in Sect. 8.3.3. Nevertheless, we reported
a joint anion PES and theoretical study on MnnBzm

− cluster anions, hereafter
denoted (n, m)− [116]. In this subsection, we unveil unprecedented structures and
electromagnetic properties of (n, n)− cluster anions, which in turn are quite different
from those predicted in the former studies [96, 100].

In order to produce (n, m)− anions, we used the same laser vaporization source as
described in Sect. 8.3.4. Figure 8.24 shows the mass spectrum for produced anions,
indicating that various (n, m)− anions were generated without dehydrogenation. It is
understood that efficient cooling in clustering reactions led to the complete (n, m)−
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Fig. 8.24 Mass spectrum of
MnnBzm

−. The peak
assignments for (n, m)− = (n,
n – 1)−, (n, n)−, and (n,
n + 1)− are indicated with
vertical lines. Several
dominant (n, m)− clusters
with m ≤ n – 2 are also
labeled. Coexistent naked
Mnn

− clusters and
incomplete Mn-Bz cluster
anions are marked by � and
•, respectively. (Reproduced
from Ref. [116] with
permission from the Royal
Society of Chemistry)

formation, as we discussed for the case of VnBzm
− clusters. Anion PE spectra taken

for (n, n)− clusters (n = 1–5) are displayed in Fig. 8.25a. Our DFT calculations
revealed unprecedented tilted sandwich structures for all (n, n)− studied (see 1, 2a,
3a, 4, and 5 in Fig. 8.25b) in contrast to linear sandwich chains assumed in the
former studies [96, 100]. The PE spectra can be assigned to the tilted clusters though
isomers 2b and 3b could also contribute to the spectra for n = 2 and 3, as were
seen in the case of V2Bz2 and V3Bz3. Interestingly, the tilted form exhibits size
evolution of its spin multiplicity that is even higher than that of VnBzn + 1

0/−; for
example, Mn5Bz5

− (5) has a spin state of 2S + 1 = 17, while multiple-decker
V5Bz6

− is a quartet. Such high-spin states of MnnBzn
− are accounted for by three

unpair electrons (i.e., 1 dσ and 2 dπ electrons) in each Mn(η6-Bz) unit that is further
η2-bound to each other in the structures of 3a, 4, and 5.

The tilted sandwich structures of MnnBzn
− addressed another question whether

or not the size evolution of the MnnBzn
− is terminated at the finite number n, in

contrast to the linear V-Bz system. Indeed, a couple of ring-structured Mn18Bz18
−/0

were computationally anticipated as it was estimated from the extrapolation of
the structures 3a, 4, and 5 that cyclization of MnnBzn

− occurs at n = 18. Our
structure optimization of Mn18Bz18 starting from a C18h geometry obtained a neutral
structure with perfect C18h symmetry, as shown in Fig. 8.26a, when assuming a
spin state of 2S + 1 = 55. This structure has a pretty large negative spin density
(ρs = −0.52) for each Bz and the positive spin density of ρs = 3.52 per a Mn
atom. Likewise, the anionic Mn18Bz18

− was determined to be C2 symmetric with
a spin state of 2S + 1 = 54. In both cases, the calculations on the neighboring spin
states found higher energies or even met convergence problems within C18h or C2
symmetry. In fact, the spin state of the anionic Mn18Bz18

− is well consistent with
the extrapolation from those of MnnBzn

− (n = 1–5), as shown in Fig. 8.26b.
We further highlight the unique electromagnetic properties of Mn18Bz18 cluster.

The valence orbitals in the majority (α) spin part of the neutral Mn18Bz18 are
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Fig. 8.25 (a) Anion PE spectra for MnnBzn
− (n = 1–5) taken with 355 nm (3.49 eV) radiation.

The calculated VDEs of the plausible structures are indicated below the spectra with vertical
bars. Bold-faced labels right to the VDE bars are denoted to identify the structures. (b) The most
plausible structures for MnnBzn

− (n = 1–5) with their symmetries and electronic states. Typical
bond lengths are indicated in Å. (Reproduced from Ref. [116] with permission from the Royal
Society of Chemistry)

displayed in Fig. 8.27a. The α-HOMO has a delocalized bonding character and can
be divided into contributions from the α-HOMOs of each quartet-state MnBz unit
(inset of Fig. 8.27a). The degenerate α-HOMO – 1 and α-HOMO – 2, and other
orbitals (6 sets of degenerate and 1 nondegenerate) with the α spin are isomorphous
to the α-HOMO. Interestingly, each delocalized Mn18Bz18 orbital allows us to
define the number of its orbital nodes k, analogously to π conjugated hydrocarbon
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Fig. 8.26 (a) Top and side views of the optimized structures for Mn18Bz18
−/0 ring clusters with

their symmetries and electronics states. Typical bond length are indicated in Å (those of the neutral
are given in parentheses). (b) Side-dependent spin multiplicities of MnnBzn

− (n = 1–5 and 18).
The linear extrapolation of the spin multiplicities for tilted multiple-decker sandwich structures is
expressed by the red line. (Reproduced from Ref. [116] with permission from the Royal Society of
Chemistry)

systems. Compared to [18]annulene (C18H18), which has an 18-membered ring
structure with 18π electrons (Fig. 8.27b), particularly unusual for Mn18Bz18 is
that the smaller number of nodes is rather associated with the energetically higher
orbital.
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Fig. 8.27 (a) Valence orbital pictures in the majority (α) spin part of the neutral Mn18Bz18 cluster.
The number of nodes k is given for each delocalized orbital. Inset shows top and side views of the
partially magnified α-HOMO. The isosurface value of 0.01 was adopted unless otherwise noted.
(b) Orbital pictures of [18]annulene (C18H18) with an isosurface value = 0.01, having the same k
values as depicted in (a) for comparison. (c) Orbital energies plotted against k for the Mn18Bz18
α-HOMO and lower-lying isomorphous orbitals, and (d) those for the C18H18 orbitals composed
of delocalized π electrons. Blue curves are obtained by a curve-fitting analysis using Eq. (8.1).
(Reproduced from Ref. [116] with permission from the Royal Society of Chemistry)

For an intelligible explanation of such delocalized electron systems, we use a
simple Hückel model: for cyclic conjugated systems, each molecular orbital energy
εk is given as
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εk = α + 2β cos

(
2π

N
k

) (
0 ≤ k ≤ N

2

)
(8.1)

where the Hückel parameters α and β are employed. The number of basis functions
N is set to 18 in both cases of Mn18Bz18 and C18H18, in which fragment (or
atomic) orbitals of each MnBz and C are treated, respectively. To apply this model,
orbital energies were plotted against k and fit by Eq. (8.1); namely, the plots for
the Mn18Bz18 α-HOMO and lower-lying isomorphous orbitals are shown in Fig.
8.27c. The same analysis was done for the C18H18 orbitals as plotted in Fig. 8.27d.
From the figure, the simple Hückel model can describe the Mn18Bz18 plot but
claims a positive β which contrasts the conventional cases (with a negative β) as
demonstrated for C18H18. Taken into consideration that β in general is not signif-
icantly affected by two-electron repulsive interactions, the positive β of Mn18Bz18
may originate from its strong intra-atomic exchange interactions within the Mn
3d electrons. In fact, former studies [90, 111, 117] have explained that the intra-
atomic exchange interactions within the metal 3d orbitals induce localized positive
and negative spin densities on each metal atom and Bz molecule, respectively. The
ferromagnetic spin ordering of multiple-decker VnBzn + 1 is stabilized by this spin
localization, and that of Mn18Bzn18

−/0 may also be explained in the same manner.
Although to date it has not been characterized experimentally, Mn18Bz18, having
the planar (i.e., 2D) ring structure, could be exploited for applications in future
nanoscale electronics and spintronics.

8.4 Conclusions and Outlook

In this chapter, we first wrote a brief history of organometallic sandwich complexes
starting from the discovery of ferrocene. We then described enormous contributions
on the gas-phase synthesis and spectroscopic characterization for transition metal
sandwich complexes. Our particular focus among them was on the formation
and electromagnetic properties of transition metal-benzene sandwich clusters. In
the reaction with benzene, early transition metals (Sc, Ti, and V) form multiple-
decker metal-benzene sandwich clusters, where metal atoms and benzene molecules
are piled up alternately. This multiple-decker formation was confirmed by means
of laser spectroscopies and quantum chemical calculations. The multiple-decker
clusters of VnBzn + 1 exhibit a linear increase of their magnetic moment with
increasing the cluster size. The interplay between anion photoelectron spectroscopy
and theoretical calculations revealed that such magnetic behavior is attributed to
the ferromagnetic spin ordering of 3d electrons localized at each metal atom.
Interestingly, these unique structural and electronic features of VnBzn + 1 do not
change either upon electron attachment which generates the corresponding anions
(VnBzn + 1

−) or, in case of n ≥ 4, even upon elimination of a terminal benzene
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molecule that yields VnBzm
0/− (m = n – 1 and n). Furthermore, we described our

recent research that studied a new family of manganese-benzene cluster anions,
MnnBzn

−, which were found to exhibit unprecedented multiple-decker structures
with a tilted Mn-Bz stacking and a monotonically increasing behavior of their high-
spin multiplicities.

Lastly, we herein refer to several studies that are aimed at the controlled assembly
of transition metal-benzene sandwich clusters. For the functionalization of such
clusters, a promising route is to assemble the clusters on surfaces with certain
hierarchical nanostructures and tailored dimensionality. However, the fabrication
of cluster-based assemblies on surfaces requires a deposition technique that allows
clusters to be deposited softly onto a surface, as clusters may be dissociated
upon impact. In addition, a deep understanding of the cluster-surface interaction
is crucial because cluster structures are often perturbed by a strong interaction
with surfaces. To this end, Judai et al. [60, 118] adopted a soft-landing technique
to deposit VBz2

+ cluster cations into a low-temperature Ar matrix with precise
control of deposition energy. The Ar matrix was chosen as it is known to serve
as a buffer dissipating the kinetic energy of the projectile clusters and keeping
the cluster largely intact [119–120]. Nagaoka et al. later deposited VBz2

+ [121],
V2Bz3

+ [122], and Cr(aniline)2
+ cations [123] onto alkanethiolate self-assembled

monolayers (SAMs). Infrared reflection absorption spectroscopy (IRAS) confirmed
that, on both the substrates, the deposited clusters are neutralized and maintain
sandwich structures. While the use of Ar matrix is limited to cryogenic temperature
conditions, SAMs can support the sandwich clusters even at room temperature.
In addition, the sandwich clusters can be highly oriented on the SAMs. Very
recently, Huttmann et al. [124] synthesized europium-cyclooctatetraene (Eu-COT)
nanowires on a graphene substrate, where the nanowires are found to be lying
parallel to each other. Scanning tunneling spectroscopy (STS) and low-temperature
X-ray magnetic circular dichroism (XMCD) revealed that the Eu-COT wire is
a ferromagnetic insulator [125]. These immobilization methods, together with
spectroscopic applications and theoretical approaches, can readily provide a direct
route to investigate the low-dimensional functionality of transition metal-benzene
sandwich clusters on a substrate. As such, functionalized sandwich clusters will
open up possibilities for exploiting themselves as new building blocks in future
molecular electronics and spintronics.
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Chapter 9
Si Nanopowder for Photoluminescence
and Hydrogen Generation Materials

Yuki Kobayashi and Hikaru Kobayashi

Abstract Si nanopowder fabricated from Si swarf using the beads milling method
exhibits two kinds of photoluminescence (PL), green-PL and blue-PL. Green-PL
arises from band-to-band transition of Si nanopowder with band-gap enlarged by the
quantum confinement effect. Blue-PL, on the other hand, is attributable to adsorbed
9,10-dimethylanthracene (DMA) impurity in hexane because the structure of the
observed PL spectra is nearly identical to that of DMA solvent. The peaked PL
spectra arise from vibronic interaction of DMA, and nearly the identical separation
energies between the neighboring peaks correspond to the vibrational energy of
DMA in the electronic ground-state. The PL intensity of DMA is enhanced by
60,000 times due to adsorption of DMA on Si nanopowder. For excitation photon
energies higher than 4.0 eV, new peaks appear in the energy region higher than the
(0, 0) band, attributable to transition from vibrational excited-states.

Si nanopowder reacts with water in the neutral pH region between 7 and 9. The
hydrogen generation rate strongly depends on pH, while pH doesn’t change after
the reaction. Si nanopowder reacts with OH− ions, generating hydrogen, SiO2, and
electrons in the SiO2 conduction band. Electrons are accepted by water molecules,
generating hydrogen and OH− ions. Since OH− ions act as a catalyst, the hydrogen
generation rate greatly increases with pH. The generated hydrogen volume vs. the
reaction time follows a logarithmic relationship, indicating that migration of OH−
ions through the SiO2 layer is the rate-determining step. The hydrogen generation
reaction stops when the SiO2 thickness reaches to ∼5 nm.

Keywords PL enhancement · Vibrational excited-state · Neutral water ·
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9.1 Photoluminescence From Si Nanostructures

9.1.1 Introduction

Si is a nonpoisonous material, and thus, its photoluminescence (PL) phenomenon is
applicable to biology [1]. PL from Si nanoparticles is attributed to (i) intrinsic band-
to-band transition [2, 3] and (ii) extrinsic transition involving states such as defect
states in an oxide layer [3, 4]. For case (i), the PL energy depends on the size of Si
nanoparticles because the band-gap energy strongly depends on the size due to the
quantum confinement effect [5, 6]. For example, the energy shift of the PL peaks
by oxidation of Si nanoparticles results from case (i) because oxidation decreases
the size of Si nanoparticles by the formation of SiO2 [2, 3]. For case (ii), on the
other hand, the PL energies are less dependent or independent of the nanoparticle
size [3, 4].

Trave et al. [6] fabricated Si nanoparticles by the laser pyrolysis method and
found that the PL intensity of as-deposited nanoparticles was weak, but it increased
after thermal oxidation at temperatures between 700 and 1000 ◦C accompanied by
blue shift to the wavelength region between 800 and 900 nm. Kang et al. [2] showed
that using the oxidation method which could control the size of Si nanoparticles, the
PL emission color could be varied in the wide wavelength range between red and
blue. For Si nanoparticles produced using the pulsed laser ablation method in liquid,
a PL peak was observed at ∼500 nm [7] or 450 and 600 nm [8]. Si nanoparticles
which exhibited PL were also formed by the use of the laser ablation method in
helium gas [9]. Si nanoparticles of ∼3 nm size were fabricated by implantation of
Si+ ions onto SiO2, and the PL peak was observed in the 750∼950 nm wavelength
region [10]. Si nanoparticles embedded in silicon oxide were formed by the rf co-
sputtering method, and their PL spectra were greatly changed by heat treatment up
to 1100 ◦C [8]. Using ball-milling of graphite and SiO2 powder, Si nanoparticles
with PL emission in the broad wavelength region between 650 and 900 nm were
fabricated [11]. For Si nanoparticles fabricated using ball milling of graphite and
SiO2 powder, broad PL spectra were observed in the wavelength region between
650 and 900 nm [12].

Several researchers investigated effects of adsorbates on Si nanoparticles on PL
behavior. Ryabechikov et al. [13] showed that adsorption of alkyl groups caused
blue shift of the PL peak accompanied with broadening of the peak and attributed the
phenomenon to prevention of energy transfer from small to large Si nanoparticles
by adsorption. For phenyl-passivated Si nanoparticles in hexane, Imamura et al.
[14] reported three-peaked PL spectra (∼3.52, ∼3.68, and ∼3.85 eV) which did
not depend on excitation photon energies. Fang et al. [15] observed enhancement of
PL from adsorbed porphyrin on Ag nanoparticle-covered Si surfaces and attributed
the enhancement to the resonant excitation by local surface plasmons and to the
increased radiative decay rate. We observed peaked structure in the PL spectra
for Si nanopowder in hexane and attributed it to 9,10-dimethylanthracene (DMA)
adsorbed on the surface by which the PL intensity was greatly enhanced [16, 17].
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9.1.2 Experiments

Si swarf generated during slicing of Si ingots by use of the fixed-abrasive wire
saw method was used as a starting material. After cleaning with organic solvent
to remove coolant and other organic species, Si swarf was milled with a ball mill
apparatus followed by beads milling with zirconia beads [16–19]. For one-step
beads milling, 0.5 μm diameter beads were used, while for two-step beads milling,
subsequent milling was performed with 0.3 μm beads. The following two different
methods were employed for production of green-PL and blue-PL Si nanopowder:
To obtain green-PL Si nanopowder, fabricated nanopowder was etched with an HF
solution, followed by centrifugation and filtration, and then, it was immersed in
ethanol. For fabrication of blue-PL Si nanopowder, milled swarf was filtered using
a Teflon membrane filter, followed by immersion in hexane solvent.

Transmission electron micrography (TEM) measurements were performed using
an EM-3000F (JEOL) microscope with 300 keV incident electrons. X-ray diffrac-
tion (XRD) measurements were carried out by use of a Rigaku SmartLab diffrac-
tometer. Photoluminescence (PL) spectra were recorded using a Hitachi High-
Technologies Corporation F-7000 spectrometer. Ultraviolet and visible light (UV-
Vis) absorption spectra were measured by use of a JASCO V-570 spectrometer.
Time-dissolved PL measurements were carried out using a HORIBA DeltaFlex
photometer.

9.1.3 Results and Discussion

9.1.3.1 Structure of Si Nanopowder

Figure 9.1a shows the TEM micrograph of Si nanopowder fabricated by the one-
step beads milling method from Si swarf. The TEM observation was performed
after etching with an HF solution to remove amorphous SiO2. Many crystallites
with polygonal shapes and sizes less than 10 nm are clearly observed.

Fig. 9.1 TEM micrographs
of Si nanopowder fabricated
from Si swarf using the
following beads milling
methods: (a) one-step
milling, (b) two-step milling

(a) 10 nm

(b)

10 nm
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Fig. 9.2 XRD patterns of Si
swarf before (a) and after
beads milling using the
following methods: (b)
one-step milling, (c) two-step
milling

Fig. 9.3 Volume distribution
of the crystallite size of Si
nanopowder fabricated from
Si swarf using the following
methods: (a) one-step beads
milling, (b) two-step beads
milling
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Figure 9.2 shows the XRD patterns of Si swarf before (pattern a) and after
one-step (pattern b) and two-step (pattern c) beads milling. The intense peaks at
28.4, 47.5, and 56.2◦ are attributable to (111), (220), and (311) orientations of Si
nanopowder. After beads milling, all the diffraction peaks due to Si observed before
milling are present with nearly the same intensity ratio, but the widths of the peaks
are considerably increased, indicating that the average crystallite sizes are greatly
decreased.

From the analysis of the shape of the Si(111) XRD peak, the volume distribution
of Si nanopowder (i.e., distribution of the volume of Si nanoparticles vs. the
diameter assuming the spherical shape) obtained using the theoretical diffraction
line profile from spherical crystallites with lognormal size distribution (SLN profile)
method [20] is shown in Fig. 9.3. For one-step milling, the maximum of the volume
distributions (i.e., mode diameter) is present at 5.2 nm. The median diameter for
the volume distribution (i.e., the vertical line by which two regions, A and B, is
divided into the same areas) is estimated to be 10.5 nm and the average diameter to
be 13.2 nm. For two-step milling, the mode diameter, the median diameter, and the
average diameter are determined to be 4.8, 8.4, and 10.2 nm, respectively.

9.1.3.2 Photoluminescence from Si Nanopowder

Figure 9.4 shows the photos of the solutions containing blue-PL and green-PL Si
nanopowders, observed under 365 nm black light irradiation. Si nanopowder was
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Fig. 9.4 Photos of Si
nanopowder in the following
solvents under black light
irradiation: (a) Si nanopowder
without HF etching in
hexane, (b) Si nanopowder
with HF etching in ethanol.
Photo c is for hexane without
Si nanopowder

Fig. 9.5 PL spectra of
green-PL Si nanopowder in
ethanol with HF etching
observed under the following
excitation energies: (a)
2.76 eV, (b) 3.02 eV, (c)
3.26 eV, (d) 3.54 eV, (e) 3.76
eV
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fabricated using the one-step beads milling method from Si swarf. It is clearly seen
that PL color strongly depends on the treatments carried out after fabrication of
Si nanopowder. Si nanopowder without HF etching in hexane shows blue-PL (Fig.
9.4a) while that with HF etching in ethanol exhibits green-PL (Fig. 9.4b). It is noted
that hexane without Si nanopowder doesn’t show PL (Fig. 9.4c).

Green-Photoluminescence-Emitting Si Nanopowder
Figure 9.5 shows the PL spectra for green-PL Si nanopowder. Only one broad
peak is observed in the spectra, and the peak maximum shifts in the higher energy
direction by an increase in the excitation photon energy. The width of the peak
increases with the excitation energy (i.e., incident light energy). It should be noted
that Si nanopowder includes various size crystallites as shown in Fig. 9.3. With low
excitation energy, only large size Si crystallites with narrow band-gap energies are
excited, followed by low energy PL (Fig. 9.6a). With high excitation energy, on
the other hand, smaller Si nanopowder with higher band-gap energies can also be
excited, and thus, higher energy PL is exhibited (Fig. 9.6b). The broader structure
of the PL spectra results from wider distribution of PL-emitting Si nanopowder with
various band-gap energies, e.g., 2.2 eV band-gap for 2.4 nm diameter and 1.7 eV
for 4.5 nm diameter [5, 6].

Figure 9.7 shows the PL spectra for one-step beads milled Si nanopowder
(spectrum a) and two-step milled Si nanopowder (spectrum b). The maximum of
the PL peak for one-step beads milled Si nanopowder is located at 2.60 eV while
that for two-step beads milled Si nanopowder is present at 2.91 eV. Since two-step
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Fig. 9.6 Schematics to explain the relationship between the PL characteristics and the excitation
energy: (a) low excitation energy, (b) high excitation energy

Fig. 9.7 PL spectra for
green-PL Si nanopowder
fabricated with the following
methods: (a) one-step beads
milling, (b) two-step beads
milling
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beads milled Si nanopowder possesses higher band-gap energies due to the quantum
confinement effect, this result also gives the evidence that green-PL arises from
band-to-band transition of Si nanopowder.

Assuming the free electron model for valence and conduction bands of Si
nanopowder and using the indirect band-gap energy, Eg, indi, and direct band-gap
energy, Eg, di, the absorption coefficient, α, is written as

α2 ∝ hν − Eg,di, (9.1)

α1/2 ∝ hν − Eg,indi, (9.2)

where hν is the incident photon energy. The plots for green-PL Si nanopowder using
Eq. (9.1) and (9.2) are shown in Fig. 9.8a and b, respectively.Both the plots aren’t
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Fig. 9.8 Plots for estimation
of the band-gap energies of Si
nanopowder: (a) α2 vs. hν (α,
absorption coefficient; hν,
photon energy) plot for
estimation of indirect
band-gap energy, (b) α1/2 vs.
hν plot for estimation of the
direct band-gap energy
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linear but curves with the curvature increasing with the energy. These nonlinear
plots result from presence of Si nanopowder with various sizes (cf. Fig. 9.3). From
the intercept of the plot with the energy axis, the minimum of the indirect band-
gap energy of Si nanopowder is determined to be 1.3 eV, which corresponds to the
diameter of 6∼8 nm [21]. On the other hand, the minimum of the direct band-gap
energy is estimated to be 4.1 eV (cf. direct band-gap energy of crystalline Si: 3.4 eV
[22]).

Blue-Photoluminescence-Emitting Si Nanopowder
Figure 9.9 shows the PL spectra of blue-emission Si nanopowder fabricated by the
one-step milling method. Four peaks are clearly observed at 2.54, 2.72, 2.91, and
3.10 eV, and these peak energies don’t change at all by changing the excitation
photon energy from 3.17 eV (spectrum a) to 3.50 eV (spectrum c). This result
indicates that blue-PL arises from a single source. The PL spectra of Si nanopowder
coincide with that of DMA (spectrum d). These results show that PL emission
results from adsorbed DMA on Si nanopowder surfaces. (Low concentration DMA
is present in hexane as an impurity.) The PL emission is attributable to π − π∗
transition of DMA and the peaked structure to the vibronic bands with the total
symmetric breathing vibrational mode [23].

Figure 9.10 shows the PL spectra of hexane containing Si nanopowder before
(spectrum a) and after (spectrum b) addition of an HNO3 plus HF solution.
The HNO3 plus HF solution dissolves Si nanopowder [24], and after addition,



360 Y. Kobayashi and H. Kobayashi

Fig. 9.9 PL spectra of
blue-PL Si nanopowder
observed with the following
excitation energies: (a)
3.17 eV, (b) 3.35 eV, (c)
3.50 eV. Spectrum d is for
free DMS molecules for
comparison
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Fig. 9.10 PL spectra for
blue-PL Si nanopowder
fabricated using the one-step
beads milling method before
(a) and after (b) addition of
an HNO3+HF solution.
Spectrum c is 10,000 times
enlargement of spectrum b
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the PL intensity greatly decreases, indicating that adsorption of DMA on Si
nanopowder greatly enhances the PL intensity. The low intensity PL observed after
addition of HF+HNO3 is probably due to undissolved Si nanopowder stabilized by
adsorbed DMA. The PL intensity of a DMA-containing hexane solution without Si
nanopowder don’t change at all by addition of HF plus HNO3, showing that the
HF+HNO3 solution doesn’t react with DMA (i.e., no chemical reaction). Spectrum
c is observed after concentration of DMA in hexane solutions by 10,000 times by
evaporation. Comparison of spectrum a with spectrum c demonstrates that the PL
intensity of DMA is enhanced by ∼60,000 times by the presence of Si nanopowder.

Figure 9.11 shows the absorption spectra of blue-PL Si nanopowder in hexane.
For both the spectra, the absorption background due to hexane solvent is subtracted.
In the presence of Si nanopowder in hexane (spectrum a), the peaked structure is
observed, and it is attributed to absorption by DMA adsorbed on Si nanopowder. The
peaked structure in the absorption spectrum due to adsorbed DMA disappears by
addition of an HF+HNO3 solution in hexane containing Si nanopowder (spectrum
b), clearly showing that the peaked structure arises from DMA adsorbed on Si
nanopowder, but not from free DMA dissolved in hexane. It is confirmed that the
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Fig. 9.11 Absorption spectra for the following specimens: (a) blue-PL Si nanopowder in hexane,
(b) after addition of an HNO3+HF solution to specimen a

absorption spectrum of hexane containing DMA without Si nanopowder doesn’t
change at all by addition of the HF+HNO3 solution.

The peaked structure in the absorption spectra results from transition to the
electronic excited-state with various vibrational states. The peaks at 3.153, 3.341,
and 3.530 eV are due to (0,0), (1,0), and (2,0) bands. (For both the PL spectra and
the absorption spectra, (l, m) denotes transition between the l-th vibrational state of
the electronic excited-state and the m-th vibrational state of the electronic ground-
state.) The separated energy for these peaks of 0.19 eV is ∼0.02 eV higher than that
observed without Si nanopowder. This result indicates that adsorbed DMA in the
excited-state has a slightly higher C–C bond energy, possibly leading to a shorter
C–C bond length than that of free DMA.

The shortened C–C bond length in the exited-state results in an increase in
the difference in the bond length between the excited- and ground-states. The
PL spectrum of free DMA molecules has a (0,0) peak with the highest intensity
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Fig. 9.12 PL spectra for blue-PL Si nanopowder in hexane observed with various excitation
photon energies between 3.18 and 4.28 eV

(spectrum d in Fig. 9.9), which results from the nearly identical C–C bond lengths
of DMA in the electronic ground- and excited-states. On the other hand, the PL
spectra of DMA adsorbed on Si nanopowder possess the (0,1) peak with the highest
intensity (spectra a∼c in Fig. 9.9). This result is in accordance with the above
consideration that the C–C bond length of adsorbed DMA in the excited-state is
shorten.

Figure 9.12 shows the PL spectra of blue-PL Si nanopowder in hexane, i.e.,
DMA-adsorbed Si nanopowder, observed with various excitation energies. With the
excitation energies higher than 3.76 eV, PL peaks with energies higher than the
(0,0) band are observed at 3.21, 3.38, 3.55, and 3.73 eV, i.e., nearly the constant
energy separation, in a broad peak. The energies of the sharp peaks remain constant
by changing the excitation photon energy, while the broad peak shifts toward the
higher energy with an increase in the excitation energy. The broad peak is attributed
to band-to-band transition of Si nanopowder, similar to the case of green-PL (Figs.
9.5 and 9.7).

Each neighboring PL peak is separated by 0.17∼0.18 eV, which is nearly
identical to that observed in the absorption spectrum (Fig. 9.11). These PL peaks
with energies higher than the (0,0) energy are attributable to transitions from
the vibrational excited-states, and thus, the separation energy corresponds to the
vibrational energy in the electronic excited-state, i.e., the same as that observed
in the absorption spectra. The transition from the vibrational excited-states most
probably results from an increased probability of the transition between the
electronic excited-state and the ground-state, in analogy to electronic transition
observed in absorption spectrum b of Fig. 9.11.
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Fig. 9.13 PL excitation spectra for blue-PL Si nanopowder in hexane observed at various PL
energies between 2.21 and 3.65 eV

Figure 9.13 shows the PL excitation spectra for blue-PL Si nanopowder in
hexane. The excitation spectra are measured by scanning the incident photon energy
with the PL energy fixed, and thus, they correspond to absorption which causes PL
emission at the fixed PL energy. For the PL energies between 2.39 and 2.93 eV, i.e.,
transitions from the vibrational ground-state, peaked structure is observed, showing
that absorption by adsorbed DMA causes the PL peaks. In the higher energy region,
on the other hand, broad structure is present with no vibronic bands. The broad
structure is attributable to absorption by Si nanopowder, indicating that the PL peaks
with energies higher than the (0,0) peak result from band-to-band excitation of Si
nanopoweder.

Figure 9.14 shows the time-dependent PL intensity measured at 2.91 eV (curve a)
and 3.35 eV (curve b). The PL intensity at 3.35 eV for DMA without Si nanopowder
is shown in curve c for reference, and in this case, the PL lifetime is determined to
be 5.0 ns. The PL lifetime measured at 2.91 eV which corresponds to the (0, 1)
transition of DMA, on the other hand, is much shorter, i.e., 0.97 ns. Considering
that the pulse width of incident light is 0.75 ns, the real lifetime is estimated to be
0.62 ns for DMA with Si nanopowder and 4.9 ns for DMA without Si nanopowder.
The short lifetime results from the high PL transition probability, indicating that
the interaction of DMA with Si nanopowder greatly increases the PL transition
probability.

The PL energy for curve b (3.35 eV) corresponds to the (n+1, n) PL band
overlapped with the more intense band-to-band transition of Si nanopowder. The
lifetime considering the pulse width is estimated to be 3.1 ns, indicating that the
lifetime of electron-hole pairs in Si nanopowder is much longer than the PL lifetime
arising from adsorbed DMA of 0.62 ns.
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Fig. 9.14 Time-dependent PL intensity for blue-PL Si nanopowder in hexane measured with the
following excitation photon energies: (a) 2.91 eV, (b) 3.35 eV. Curve c is for DMA-containing
hexane without Si nanopowder

Photoluminescence Enhancement for DMA by Adsorption on Si Nanopowder
The absorption bands due to DMA appear in the presence of Si nanopowder in
hexane, while they aren’t observed in the absence of Si nanopowder (cf. Fig. 9.11).
This result clearly shows that the light absorption probability is greatly increased by
adsorption on Si nanopowder. Therefore, the PL enhancement is partly attributable
to an increased light absorption probability.

The transition probability from the ground-state to the excited-state is greatly
enhanced by adsorption of DMA on Si nanopowder as described above. Therefore,
it is quite likely that the transition probability from the excited-state to the ground-
state is also increased by the adsorption. The PL intensity is proportional to
the product of the light absorption probability and the PL emission probability,
leading to the great enhancement by ∼60,000 times by adsorption of DMA on Si
nanopowder (cf. Fig. 9.10).

The PL intensity, Ig, for transitions from vibrational ground-state of the electronic
excited-state is proportional to the number of electrons, ne, in the vibrational
ground-state and the rate constant, kr, for radiative transition. Considering the PL
enhancement factor by Si nanopowder of 60,000, we have

Ig ∝ ne
1kr

1 = 60, 000ne
0kr

0, (9.3)

where superscripts 0 and 1 denote the values without and with Si nanopowder,
respectively. For ne

0 and ne
1, we have the following differential equations:

dne
0

dt
= −

(
kr

0 + knr
0
)

t, (9.4)
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dne
1

dt
= −

(
kr

1 + knr
1
)

t, (9.5)

where knr is the rate constant for non-radiative transition. Since the PL lifetime is
inversely proportional to the total rate constant, we have

4.9 : 0.62 = 1

kr
0 + knr

0
: 1

kr
1 + knr

1
. (9.6)

Considering the quantum efficiency of 0.42 and 0.45 for PL in the absence and
presence of Si nanopowder, respectively, we have

kr
0

kr
0 + knr

0 = 0.42, (9.7)

kr
1

kr
1 + knr

1 = 0.45. (9.8)

Using Eqs. (9.6), (9.7), and (9.8), we have

kr
1 = 8.5kr

0. (9.9)

Therefore, using Eq. (9.3), ne
1 is given by

ne
1 = 7.1 × 103ne

0. (9.10)

The above consideration can lead to the following conclusion. The PL intensity
is increased by adsorption on Si nanopowder for the following two reasons: (i) an
increase in the number of electrons in the electronic excited-state (∼7100 times
enhancement) and (ii) an increase in the rate constant for radiative transition (∼8.5
times enhancement). The increased number of electrons in the excited-state results
from the increased transition probability which in turn results from a great increase
in the dynamic dipole moment by adsorption and/or enhancement of wave function
of DMA by adsorption, i.e., surface resonance state [25].

Photoluminescence Mechanism
The excitation spectra with the PL energies lower than 3.12 eV clearly possess
vibronic bands (Fig. 9.13), indicating that adsorbed DMA molecules are directly
excited. In the excitation spectra for the PL energies higher than 3.29 eV, on the
other hand, a broad structure is dominant. The peak energy of the broad structure
shifts in the higher energy direction with the PL energy. It should be noted that
for excitation with energies higher than 3.76 eV, the PL vibronic bands from
vibrational excited-states are observed (cf. Fig. 9.12). This result demonstrates
that for PL emission from vibrational excited-states, incident light is absorbed
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Fig. 9.15 Mechanism of blue-PL emission involving generation of electron-hole pairs in Si
nanopowder by incident light, followed by electron and hole transfer to adsorbed DMA with the
following order: (a) a photo-generated hole transfers to DMA first, (b) a photo-generated electron
transfers to DMA first

by Si nanopowder. Therefore, it can be concluded that for PL emission from the
vibrational excited-states, electron-hole pairs are generated in Si nanopowder, and
they transfer to adsorbed DMA, followed by recombination.

The lifetime of photo-generated electron-hole pairs (3.1 ns) is much longer than
the PL lifetime (0.62 ns), and therefore, a photo-generated electron and a hole
transfer to adsorbed DMA separately. We consider the case where a photo-generated
hole in Si nanopowder moves to adsorbed DMS first, and then an electron moves to
DMA. In this case, the hole is captured by the potential of the electronic ground-state
of DMA. The ground-state with a positive charge is stabilized due to solvation (Fig.
9.15a). Immediately when an electron is captured by a potential of the electronic
excited-state, transition from the electronic excited-state to the ground-state occurs.
Due to the high transition probability, transition from the vibrational excited-state
to the electronic ground-state proceeds. Since solvation lowers the potential energy
of the ground-state, the transition energy is increased by solvation, leading to a blue
shift of the PL peaks.

For the opposite case, an electron generated in Si nanopowder transfers to
adsorbed DMA first, followed by transfer of a hole to DMA (Fig. 9.15b). An
electron is captured in the electronic excited-state of DMA, and in this case, internal
relaxation to the vibrational ground-state proceeds before electronic transition
because of the absence of a hole in the electronic ground-state. There is enough
time for solvation of adsorbed DMA with the electron in the electronic excited-
state to proceed before a hole transfers to DMA (Fig. 9.15b). Due to solvation, the
potential energy of the electronic excited-state is lowered. When a hole transfers
to DMA, it is captured in the vibrational ground-state of the electronic ground-
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state. Immediately after a hole is captured, electronic transition of the electron in
the electronic excited-state occurs, resulting in PL emission. Because of lowering
of the potential energy for the temporary captured electron (i.e., the potential of the
excited-state), the PL energy decreases, in contrast to the case where a hole transfers
to DMA first. The above consideration clearly shows that the PL energy for case a in
Fig. 9.15 increases by solvation, while that for case b decreases. This consideration
is verified by observation of two (0, 0) bands (or one (0,0) band and one (n, n) band)
separated by 0.11 eV. Each solvation energy is likely to be approximately a half of
the energy difference of the two (0, 0) bands, i.e., ∼55 meV.

The (0, 0) PL band for case a and the (n, n) band for case b are located at 3.10
and 3.21 eV, respectively. The (0, 0) band in the absorption spectra is observed at
3.15 eV, i.e., the average energy between the (0, 0) and (n, n) PL bands. In the
case of light absorption, both the initial and final states are in neutral charge states,
and therefore, solvation doesn’t occur. Therefore, the transition energy is between
that for the ground-state-stabilized case (case a) and the excited-state-stabilized case
(case b).

The intensity ratios of the PL peaks due to transitions from the vibrational
ground-states, i.e., (0, 0), (0, 1), (0, 2), and (0, 3) bands, are nearly independent on
the excitation energy. This is because after complete internal relaxation, transition
from the vibrational ground-state proceeds, and in this case, the PL intensity is
determined by the individual Franck-Condon factors which don’t depend on the
excitation energy. On the other hand, the intensity ratios of the PL peaks due
to transitions from the vibrational excited-states strongly depend on the incident
photon energy. To explain this phenomenon, we consider the case where an electron
enters the x-th vibrational state of the electronic excited-state. The n-th PL band
contains various transitions, (l, m), which satisfy the following equation:

l − m = n. (9.11)

The transition rate, Rl, m, is given by the product of the transition probability,
Pl, m, and the number of electrons in the l-th vibrational state, Nl:

Rl,m = Pl,mNl. (9.12)

Nl is given by

Nl = Nx (1 − ax) (1 − ax−1) · · · · · · · · (1 − al+1) = Nx

l+1∏

x

(1 − ax) , (9.13)

where Nx is the number of electrons transferred from Si nanopowder to the x-
th vibrational state of the electronic excited-state, and aj expresses the transition
probability from the j-th vibrational states to various vibrational states of the
electronic ground-state which probability is proportional to the sum of the Franck-
Condon factors:
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aj ∝
∑

m

Fj,m, (9.14)

where Fj, m is the Franck-Condon factor for the (j, m) transition. The term,
∏l+1

j=x

(
1 − aj

)
, in Eq. (9.13) expresses the probability that an electron transferred

from Si nanopowder to the x-th vibrational state of adsorbed DMA relaxes to the
l-th vibrational state without electronic transition. Therefore, we have

Rl,m ∝ Fl,m

n−l+1∏

j

(
1 − aj

) = Fl,mPl,mNx

l+1∏

x

(1 − ax) . (9.15)

The intensity of the n-th band, In, is proportional to the sum of the transition rates
over l which satisfies Eq. (9.11):

In ∝ Nx

∑

l

Fl,l−n

n−l+1∏

j

(
1 − aj

) = Nx

∑

l

Pl,,m

l+1∏

x

(1 − ax) . (9.16)

Equation (9.16) clearly shows that the PL intensity of the n-th band (i.e., (a+n,
a), a = 0.1,2, 3 · · · · · ) depends not only on the Franck-Condon factor for the (n,
0) transition, Fn, 0, (i.e., a = 0), but also other Franck-Condon factors. When the
incident photon energy is varied, the vibrational energy state, x, to which a photo-
generated electron in Si nanopowder transfers, is changed, leading to a change in the
PL intensity, In. Therefore, the PL bands whose intensities depend on the excitation
energy support the transition from vibrational excited-states.

9.2 Hydrogen Generation from Si Nanopowder by Reaction
with Water

9.2.1 Introduction

Reactive oxygen species (ROS) are generated in the body for various reasons, e.g.,
metabolism [26], UV irradiation [27], and environmental pollution [28]. Among
ROS, hydroxyl radicals (OH radicals) possess the highest oxidation-reduction
potential, i.e., the highest oxidation power. Oxidation of cells, DNA [29], lipid [30],
etc., (i.e., oxidative stress) causes various diseases such as Alzheimer’s disease
[31, 32], Parkinson’s disease [31, 33], chronic kidney failure [34], cancer cell
proliferation [35], atopic dermatitis [36], cutaneous senility [37], etc. Hydrogen
reacts with OH radicals to form water molecules, and thus hydrogen can prevent
oxidative stress-induced diseases.

Although Si bulk doesn’t strongly react with water in the neutral pH region
between 7 and 9, Si nanopowder with sizes less than ∼30 nm does, leading to
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generation of hydrogen molecules [38–40]. Therefore, oral administration of Si is
expected to prevent oxidative stress-induced diseases.

To prevent oxidative stress-induced diseases by elimination of OH radicals
generated in the body without side effects, the following three requirements should
be satisfied: (i) a large amount of reducing species is present in the body, (ii) the
concentration of reducing species is always maintained high, and (iii) reducing
species reacts only with OH radicals among ROS. Requirement (i) arises from
the high reactivity of OH radicals, which easily attack and oxidize cells, and
therefore, hydrogen is necessary to react with OH radicals before they damage cells.
Requirement (ii) results from continuous generation of OH radicals in the body
due to mitochondrial respiratory metabolism. Other ROSes possess physiological
functions such as immunity, and therefore, their elimination may cause side
effects. Hydrogen reacts only with the most reactive OH radicals among ROSes
(requirement iii), and therefore, no side effects arise by hydrogen.

Hydrogen-rich water may have effects to prevent oxidation stress-induced
diseases. However, the saturated hydrogen concentration in water is only 1.6 ppm at
room temperature, and even in the case of the saturated concentration, only 18 mL
hydrogen gas dissolves in 1 L water. The hydrogen concentration in hydrogen-rich
water is usually much lower because hydrogen easily diffuses to air even when
it is contained in a container. Moreover, in 1 h, the hydrogen concentration in
every organ returns to the initial values before intake of hydrogen-rich water [41].
Therefore, the effects of intake of hydrogen-rich water on oxidative stress-induced
diseases seem to be limited.

Polyphenol [42, 43], vitamin C [44], and vitamin E [45] can eliminate OH
radicals. However, their reducing power is too strong to react with other ROSes.
Therefore, taking a large amount of these species may cause side effects. Moreover,
keeping a high concentration of these species in the body continuously is almost
impossible.

We have demonstrated that the above three requirements can be satisfied with
intake of Si composition, as explained below.

9.2.2 Experiments

Si nanopowder was fabricated from Si powder (Koujundo Chemical Laboratory,
Si Powder ca. 5 μm) by use of the beads milling method with 0.5 mm� zirconia
beads, unless otherwise noted. Fabricated Si nanopowder was etched in a 5wt% HF
solution for 10 min at room temperature, followed by immersion in ethanol to make
the surface hydrophilic.

For the reaction with water in the neutral pH region between 7 and 9, the
generated hydrogen volume was obtained by measuring the hydrogen concentration
in water using a TOA DKK DH-35A potable dissolved hydrogen meter, while that
generated by the reaction with strong alkaline solutions was determined just by
measuring the volume after subtraction of the volume of water vapor.
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Fourier transform infrared absorption (FT-IR) spectra were measured using a
JASCO FT/IR-6200 spectrometer. X-ray photoelectron spectroscopy (XPS) mea-
surements were performed by use of a KRATOS AXIS-165x spectrometer with
an Mg Kα radiation source in which photoelectrons were collected in the surface-
normal direction. SEM measurements were carried out using a JOEL JSM-6335F
microscope.

9.2.3 Results and Discussion

9.2.3.1 Reaction of Si Nanopowder with Strong Alkaline Solutions

Figure 9.16 shows the hydrogen volume generated by the reaction of Si nanopowder
with strong alkaline solutions having pH higher than 12.9 at room temperature.
The total amounts of generated hydrogen are 1589 mL/g for the pH 13.9 solution,
1530 mL/g for the pH 13.4 solution, and 972 mL/g for the pH 12.9 solution. The
maximum hydrogen generation rate in the case of the reaction with pH 13.9 solution
is 351 mL/min.g. This hydrogen generation rate corresponds to ∼10,000 times
that for photocatalytic hydrogen generation using efficient photocatalysts such as
Ta3N5/SiO2 which respond to visible light [46]. Using the 1 g photocatalyst under
AM1.5 100 mAW/cm2 irradiation, generation of 1,500 mL hydrogen requires more
than 1.5 years. In the case of Si nanopower, ∼1.500 mL hydrogen can be generated
in a few minutes although the reaction is irreversible.

We consider the following reaction mechanisms for hydrogen generation by the
reaction of Si nanopowder with water:

Si + 2H2O → SiO2 + 2H2O, (9.17)

Si + 2OH− + 2H2O → H2SiO4
2− + 2H2. (9.18)

Fig. 9.16 Hydrogen volume
generated by the reaction of
Si nanopowder with alkaline
solutions at room temperature
having following pHs: (a)
13.9, (b) 13.4, (c) 12.9, (d)
12.1
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Both the reactions generate 2 M hydrogen from 1 M Si, i.e., 1712 mL hydrogen
at room temperature from 1 g Si. Reaction (9.17) doesn’t consume OH− ions, while
reaction (9.18) does, resulting in a decrease in pH. Therefore, the reaction ratio, i.e.,
the hydrogen volume generated by reaction (9.18) divided by the total generated
hydrogen volume, can be estimated from the decrease in pH. This ratio is estimated
to be 1.0 for pH 13.4 and 13.9 solutions, 0.58 for pH 12.9 solutions, and 0.12 for
pH 12.1 solutions. By reaction (9.18), soluble H2SiO4

2− ions are formed, and thus,
all Si atoms in Si nanopowder can react with OH− ions because no materials to
prevent the reaction with OH- ions are present on the Si surface. For reaction (9.17),
on the other hand, SiO2 with low solubility is formed on the surface, and when the
SiO2 thickness reaches a certain value, the hydrogen generation stops because of
the migration-limited mechanism. (For reaction (9.17), OH− ions are the migrating
species through SiO2 as explained below.) We have observed that when the SiO2
thickness reaches to ∼5 nm, the hydrogen generation reaction stops. The decrease
in the volume of generated hydrogen with a decrease in pH can be explained by this
migration-limited mechanism.

1589 mL/g hydrogen generated by the reaction with pH 13.9 solutions is 93% of
the stoichiometric value of 1712 mL/g at room temperature. This small difference
is attributable to the presence of a silicon oxide layer on Si nanopowder before the
hydrogen generation reaction, i.e., 7wt% Si is already oxidized before the reaction.

972 mL/g hydrogen is generated by the reaction with the pH 12.9 solutions,
which is equal to 61% hydrogen generated by the reaction with 13.9 solutions,
and therefore, unreacted Si is estimated to be 39% that before the reaction. The
weight of SiO2 formed by the hydrogen generation reaction is estimated to be 1.22 g
from initial 1 g Si nanopowder. Assuming that Si nanopowder before the reaction
possesses spherical shape with the 23.4 nm diameter (i.e., the average diameter
before the reaction), the diameter of unreacted Si nanopowder is estimated to be
17.1 nm. From the diameter of unreacted Si nanopowder, its weight, and the weight
of formed SiO2, the thickness of formed SiO2 is estimated to be 5.1 nm, in good
agreement with that estimated from XPS measurements, i.e., 4.8 nm.

9.2.3.2 Reaction of Si Nanopowder with Neutral Water

Si nanopowder was produced from Si powder for hydrogen generation experiments
with neutral water. The size of Si nanopowder is larger than that produced from Si
swarf, i.e., for one-step milling, the mode diameter, the median diameter, and the
average diameter are 6.6, 14.0, and 23.4 nm, respectively, and those for two-step
milling are 5.8, 9.6, and 13.8 nm, respectively.

Figure 9.17 shows the hydrogen volume generated by the reaction with water
in the neutral pH region vs. the reaction time. Even in the case of the reaction
with ultrapure water of pH 7.0, Si nanopowder generates hydrogen (plot a), but
the hydrogen generation rate is low, i.e., 0.026∼0.047 mL/min.g. The hydrogen
generation rate increases by the reaction with tap water having pH 7.4 (plot b). The
hydrogen generation rate further increases by increases of pH to 8.0 (plot c) and 8.6
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Fig. 9.17 Hydrogen volume
generated from Si
nanopowder vs. the reaction
time for the reaction with
water having following pHs:
(a) 7.0 (ultrapure water), (b)
7.4 (tap water), (c) 8.0, (d)
8.6
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(plot d). The initial hydrogen generation rates for pH 7.4, 8.0, and 8.6 solutions are
higher by approximately 10, 50, and 100 times than that for ultrapure water of pH
7.0. On the other hand, the change in pH observed after the hydrogen generation
reaction is much lower than that calculated assuming that OH- ions are consumed
for the hydrogen generation reaction. (The slight pH change is due to dissolution of
CO2 in the air to the solutions during the hydrogen generation reaction.) From these
results, the most probable reaction schemes are written as

Si + 2OH− → SiO2 + H2 + 2e, (9.19)

2H2O + 2e → 2OH− + H2. (9.20)

In reaction (9.19), Si reacts with OH− ions, forming SiO2, H2, and electrons
most probably in the SiO2 conduction band. Electrons transfer to the SiO2 surface,
and water molecules accept them, resulting in the formation of OH− ions and H2.
OH− ions are consumed in reaction (9.19) but generated in reaction (9.20), and
therefore, after the overall reaction (reaction (9.17) = reactions (9.19) + (9.20)), the
concentration of OH− ions, i.e., pH, doesn’t change. The reaction rate for reaction
(9.19) is much lower than that for reaction (9.20), and therefore, the total reaction
rate greatly increases with the concentration of OH− ions.

If reaction (9.19) was the rate-determining step for hydrogen generation reaction,
then the reaction rate should be proportional to the square of the concentration of
OH− ions. However, the initial reaction rates for the reaction with pH 7.4, 8.0, and
8.6 solutions are approximately 10, 50, and 100 times that for ultrapure water of
pH 7.0. It is very likely that even in the early reaction stage, a silicon oxide layer
is present on Si nanopowder, and migration of OH− ions through the oxide layer is
the rate-determining step, as explained below.
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Fig. 9.18 Hydrogen volume generated from Si nanopower vs. the reaction time for the reaction
with ultrapure water. The dashed and dotted lines show the calculated curves for the reaction-
limited and migration-limited mechanisms

Figure 9.18 shows the generated hydrogen volume vs. the reaction time for the
reaction of Si nanopowder with ultrapure water of pH 7.0 at room temperature.
The observed plot is well expressed by the curve calculated with the following
procedure: Si nanopowder is assumed to possess spherical shape with the initial
diameter, r0, and the diameter changes to r1(t) by the hydrogen generation reaction.
The weight of an SiO2 overlayer, Wox, is simply written as

Wox = 4π

3

(
ro

3 − r1
3
)

DSi
60

28
, (9.21)

where DSi is the density of Si nanopowder. Using the SiO2 thickness, lox, Wox is
given by

Wox = 4π

3

[
(r1 + lox)3 − r1

3
]

Dox, (9.22)

where Dox is the density of silicon oxide. The hydrogen volume generated from unit
weight Si nanopowder, VH2 , is given by

VH2 = 4π

3

[ (
r1 + lox

)
3 − r1

3
]

Dox
3

4πr0
3DSi

C0 =
[ (

r1 + lox

)
3 − r1

3
]

r0
3

Dox

DSi
C0,

(9.23)

where C0 is a constant.
When anions are the moving species through SiO2 and their migration is the rate-

determining step, the relationship between the SiO2 thickness, lox, and the reaction
time, t, is given by [47]
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lox = kT

C1
ln

C1C2 (t + t0)

kT
− W

C1
, (9.24)

where W is the activation energy for migration of anions, and C1 and C2 are
constants. Using Eqs. (9.23) and (9.24), the relationship between the generated
hydrogen volume, VH2 , and the reaction time, t, can be calculated, and the result
is shown by the dotted line in Fig. 9.18.

In cases where the reaction at the Si/SiO2 interface is the rate-determining step,
the relationship between the SiO2 thickness, lox, and the reaction time, t, is simply
given by

lox = Ct, (9.25)

where C is a constant. Using Eqs. (9.23) and (9.25), the relationship between VH2

and t can be obtained, and the calculated curve is shown by the dashed line in Fig.
9.18. The experimental plot in the initial reaction stage and the subsequent stage
is well fitted by the dashed line and the dotted line, respectively. This result shows
that in the initial reaction stage, interfacial reaction is the rate-determining step,
and in the subsequent stage, anions, i.e., OH− ions, are the migrating species, and
the migration of OH− ions through SiO2 is the rate-determining step. The rate-
determining step changes from the interface reaction to migration of OH- ions across
silicon oxide at the generated hydrogen volume between 2.0 and 2.2 mL/g. In the
case of the reaction with pH 8.0 and 8.6 solutions (plots c and d in Fig. 9.17), this
volume of hydrogen is generated in a few minutes, showing that the rate-determining
step changes to migration in the very early reaction stage.

For reaction (9.19), OH- ions move inward, while for reaction (9.20), electrons
move outward. This mechanism in which negative charges transfer in the opposite
direction is likely to decrease the activation energy for migration of OH- ions which
is the rate-determining step. By this decrease in the activation energy, the hydrogen
generation reaction proceeds easily at room temperature, resulting in the formation
of the thick silicon oxide layer of ∼5 nm thickness. It should be noted that in the
case of thermal oxidation of crystalline Si, formation of a ∼5 nm SiO2 layer requires
temperatures above 700 ◦C [48].

Figure 9.19 shows the hydrogen volume generated by the reaction of HF-etched
Si nanopowder with ultrapure water vs. the reaction time for two different crystallite
sizes. The hydrogen generation rate for smaller crystallite size Si nanopowder
produced by the two-step beads milling method (average crystallite size: 13.8 nm) is
1.4∼1.5 times higher than that for the larger crystallite size Si nanopowder (average
crystallite size 23.4 nm). The surface area estimated from the average crystallite
size is 190 m2/g for the two-step beads milled Si nanopowder and 110 m2/g for
the one-step beads milled Si nanopowder. The ratio of the hydrogen generation
rate of 1.4∼1.5 between the two-step and one-step beads milled Si nanopowders
is in reasonable agreement with the ratio of the surface area estimated from the
average crystallite sizes. Si nanopowder forms agglomerate as is evident from the
SEM micrograph (Fig. 9.20). The average sizes of Si agglomerates for one-step
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Fig. 9.19 Hydrogen volume
vs. the reaction time for the
reaction of Si nanopowder
fabricated by the following
methods with ultrapure water:
(a) one-step beads milling
(average crystallite diameter:
23.4 nm), (b) two-step beads
milling (average crystallite
diameter: 13.8 nm)
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Fig. 9.20 SEM micrograph
of Si nanopowder fabricated
by the one-step beads milling
method

200 nm

and two-step beads milled Si nanopowers determined from dynamic light scattering
measurements are nearly the same, i.e., 128 and 134 nm, respectively. These results
show that the hydrogen generation rate strongly depends on the crystallite size but
not on the size of agglomerate.

The thickness of the silicon oxide layer formed on Si nanopoweder by the
reaction with water is estimated from XPS spectra in the Si 2p region (Fig. 9.21).
The peak at 99∼100 eV is due to Si nanopowder, and the broader peak centered at
103∼105 eV is attributable to silicon oxide [49, 50]. After HF etching (spectrum a),
the peak due to silicon oxide is very weak, and the thickness of the oxide layer is
thought be less than 0.3 nm. When the hydrogen generation reaction stops after the
reaction with pH 8.0 solutions for 24 h, the thickness of the silicon oxide layer can
be estimated assuming a cylindrical shape with the radius, R, the same as the height.
(Although Si nanopowder possesses polygonal shape (cf. Fig. 9.1.), assumption
of cylindrical shape is thought not to cause a serious error in estimation of the
silicon oxide thickness.) In this case, the oxide thickness, lox, is estimated using
the following equation [51]:



376 Y. Kobayashi and H. Kobayashi

Fig. 9.21 XPS spectra in the
Si 2p region for Si
nanopowder fabricated by the
one-step beads milling
method: (a) after etching with
an HF solution, (b) after the
reaction of specimen a with
the pH 8 solution for 24 h
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(9.26)

where I is the area intensity of the XPS peak; N, σ, and λ are the number density
of Si atoms, the photoemission cross-section, and the photoelectron mean free path,
respectively; and subscripts, ox and Si, denote the values for silicon oxide and Si,
respectively. The radius, R, is assumed to be 11.7 nm which is a half of the average
diameter determined from XRD measurements. In this estimation, the following
values are adopted: λox = 2.9 nm for Mg Kα (1254 eV) radiation, λSi = 2.5 nm, and
σox
σSi

= 1.1 [52, 53]. Using Eq. (9.26), the silicon oxide thickness after the hydrogen
generation reaction stops (spectrum b) is determined to be 4.8 nm.

Figure 9.22 schematically shows the mechanism of hydrogen generation from
Si nanopowder. OH− ions are adsorbed on the silicon oxide surface. OH− ions
migrate through a silicon oxide layer (step 1) enhanced by electrical field induced by
adsorbed OH− ions. Si atoms at the Si/silicon oxide interface react with OH− ions,
leading to generation of hydrogen, silicon oxide, and electrons in the conduction
band of the silicon oxide layer (step 2). Electrons in the conduction band move
outward to the silicon oxide surface (step 3), and then, electrons are accepted
by water molecules, generating OH− ions and hydrogen (step 4). Namely, OH-

ions move inward, while electrons move outward, which is likely to decrease
the activation energy of inward migration of OH− ions, i.e., the rate-determining
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Fig. 9.22 Schematic
mechanism of the reaction of
Si nanopowder with water in
the neutral pH region
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Fig. 9.23 FT-IR spectra in
the Si-H stretching
vibrational region for
HF-etched Si nanopowder:
(a) just after etching with the
HF solution, (b) after the
reaction of specimen a with
ultrapure water for 24 h
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step for the hydrogen generation reaction from Si nanopowder, and therefore, the
reaction proceeds at room temperature.

The initial reaction of HF-etched Si nanopowder with ultrapure water is investi-
gated using FT-IR spectroscopy (Fig. 9.23). HF-etched Si nanopowder exhibits three
peaks in the Si-H stretching vibrational region (spectrum a), and they are attributed
to SiH (2087 cm−1), SiH2 (2110 cm−1), and SiH3 (2155 cm−1) [54, 55]. After
reaction with ultrapure water for 24 h at room temperature (spectrum b), new peaks
appear at 2158, 2200, and 2248 cm−1, which are attributable to HSiO, HSiO2, and
HSiO3 species, respectively [56, 57], and the peaks due to SiH, SiH2, and SiH3
are still present. These results show that OH− ions attack Si back bonds to form
Si-O bonds, but they don’t attack Si-H bonds. Nearly the same energy differences
between the HSiO and HSiO2 peaks and between the HSiO2 and HSiO3 peaks show
that only one species with one hydrogen atom (i.e., HSiO, HSiO2, and HSiO3, but
not H3SiO, H2SiO, and H2SiO2) is included in each Si-H stretching vibrational
peak.
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Fig. 9.24 FT-IR spectra in
the Si-H stretching
vibrational region for
HF-etched Si nanopowder
after the reaction with pure
heavy water for the following
periods: (a) 10 min, (b) 3 h,
(c) 24 h
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In the case of the reaction with pure D2O (Fig. 9.24), a strong HSiO3 peak is
observed even after 10 min reaction, but the intensity of the peak due to HSiO2
is much weaker (spectrum a), and after 3 h reaction, the intensity of the HSiO3
peak increases, while the HSiO2 peak disappears almost completely (spectrum b).
This result is in strong contract to the reaction with H2O where HSiO2 species is
present even after the reaction for 24 h (spectrum b in Fig. 9.23). This difference
can be explained by the local reaction to form two-dimensional agglomerate-like
structure in the case of the surface reaction with D2O, while the reaction proceeds
more uniformly on the surface for the reaction with H2O.

The peak due to HSiO3 shifts from 2248 (cf. spectrum a for 10 min reaction) to
2253 cm−1 (spectrum c for 24 h reaction) with the reaction time for the reaction
with D2O, while such a shift doesn’t occur in the case of the reaction with H2O.
This shift is most probably attributable to an increase of the charge on Si atoms
[58]. Namely, the Si-H bonds become stronger as the reaction proceeds locally. For
the reaction with H2O, on the other hand, the reaction proceeds uniformly, and such
a change in the charge state doesn’t occur.

After the reaction with D2O, vibrational peaks are observed in the Si-D stretching
vibrational region (Fig. 9.25), indicating that replacement of H atoms to D atoms
proceeds on the surface. Peaks appear at 1516, 1525, and 1549 cm−1, and they
are most probably attributable to SiD, SiDH, and SiDH2 species, respectively. The
replacement probability after 24 h reaction (spectrum c) is estimated to be 37%, and
therefore, the probabilities of formation of SiD2 and SiD2H (or SiD3) are likely to
be much lower than those of SiDH and SiDH2, respectively.

Although the intensity of the Si-H peak is lower than that of Si-H2 peak before
the reaction with D2O (spectrum a in Fig. 9.23), the intensity of the Si-D peak is
higher than that of the Si-DH peak after the reaction with D2O. This result indicates
that Si-H bonds in Si-H species are weaker than those in Si-H2 species, resulting
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Fig. 9.25 FT-IR spectra in
the Si-D stretching
vibrational region for
HF-etched Si nanopowder
after the reaction with pure
heavy water for the following
periods: (a) 10 min, (b) 3 h,
(c) 24 h
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in the higher replacement probability. This result is in accordance with the higher
frequency of the Si-H2 vibrational peak than that of the Si-H peak.

After the reaction with D2O for 3 h (spectrum b), a strong peak due to DSiO3
is observed at 1640 cm−1, while no peak due to DSiO2 is present. This result also
indicates the formation of agglomerate-like structure which consists of DSiO3 and
HSiO3.

9.3 Conclusion

Si nanopowder is fabricated by use of the beads milling method. Fabricated Si
nanopowder has the following PL and hydrogen generation characteristics:

1. Si nanopowder etched with an HF solution and immersed in ethanol shows
green-PL. The PL energy depends on the excitation photon energy, and it
is attributed to band-to-band transition of Si nanopowder whose band-gap is
enlarged by the quantum confinement effect.

2. Si nanopowder which isn’t etched with HF and immersed in hexane exhibits
blue-PL. The PL energy is independent of the excitation photon energy, and it
is attributed to transition of DMA adsorbed on Si nanopowder.

3. The intensity of blue-PL is enhanced by ∼60,000 times due to adsorption of
DMA on Si nanopowder. The PL intensity is increased by adsorption on Si
nanopowder for the following two reasons: (i) an increase in the number of
electrons in the electronic excited-state (∼7100 times enhancement) and (ii) an
increase in the rate constant for radiative transition (∼8.5 times enhancement).
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4. For blue-PL arising from excitation with energies higher than 3.76 eV, PL peaks
with energies higher than the (0,0) band are present, and they are attributed to
transition from vibrational excited-states.

5. The excitation spectra show that blue-PL results from the two different
mechanisms: (i) excitation of adsorbed DMA and (ii) band-to-band transition
of Si nanopowder, followed by transfer of photo-generated electrons and holes
to DMA. For mechanism (ii), a photo-generated electron and a hole transfer to
DMA separately, resulting in two (0,0) bands.

6. Only when a photo-generated hole transfers to DMA first, followed by electron
transfer, transition from vibrational excited-states occurs.

7. Si nanopowder easily reacts with strong alkaline (pH>13) solutions, and almost
stoichiometric amount of hydrogen (i.e., ∼1700 mL/g) is generated in a few
minutes.

8. Si nanopowder reacts with water in a neutral pH region between 7 and 9
to generate hydrogen. In this case, the hydrogen generation rate markedly
increases with pH of the solution, while pH doesn’t change by the reaction.
In the first reaction stage, Si nanopowder reacts with OH- ions, generating
hydrogen, silicon oxide, and electrons in the conduction band of silicon oxide,
while in the second reaction stage, electrons are accepted by water molecules
to form hydrogen and OH- ions.

9. In the very early hydrogen generation reaction stage (less than 2.2 mL/g
hydrogen generation), the surface reaction is the rate-determining step, and
then, migration of OH- ions through a silicon oxide layer becomes the rate-
determining step.

10. The hydrogen generation reaction stops when a ∼5 nm silicon oxide layer is
formed on Si nanopowder.

11. The hydrogen generation rate strongly depends on the crystallite size of Si
nanopowder, but it doesn’t depend on the size of its agglomerate.

9.4 Outlook

Si is a nontoxic material, and its medical application is expected. We have proposed
two kinds of medical application of Si nanopowder, i.e., (i) photoluminescence
material and (ii) internal hydrogen generation material. For application (i), Si
nanopowder can be applied to life cell imaging, e.g., to detect cancer cells. Si
nanopowder, especially, blue-PL Si nanopowder, can give much stronger PL than
conventional dyes and is more stable, especially, high photostability, both of which
make the application easier and more effective.

For various diseases, oxidation stress is one of the largest factors to cause
diseases. Hydrogen generation in the body can decrease oxidative stress, and
therefore, it can prevent various oxidative stress-induced diseases. Moreover, for
apparently healthy persons, i.e., persons who don’t suffer from diseases but on
whom addition of a tiny factor causes diseases, a decrease of oxidative stress can
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make them really healthy. The decrease of oxidative stress by internal hydrogen
generation can also retard aging, which can extend health life expectancy.

Si-based agent which can generate a high amount of hydrogen in bowels is now
being developed in our laboratory. Contrary to conventional medicines, Si-based
agent isn’t absorbed in the body, but only hydrogen generated from the agent is
absorbed. Therefore, a medicine with great medical effects but without any side
effects is expected to be developed using Si-based agent.
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Chapter 10
New Na+ Superionic Conductor Narpsio
Glass-Ceramics

Toshinori Okura and Kimihiro Yamashita

Abstract This review article describes a series of studies on glass-ceramic
Na+ superionic conductors with the Na5YSi4O12 (N5)-type structure and with
a Na3+3x−yR1−xPySi3−yO9 composition, where R is a rare earth element. In
the crystallization of N5-type glass-ceramics, its relatives (Na3YSi3O9 (N3)-
and Na9YSi6O18 (N9)-type glass-ceramics) structurally belonging to the family
of Na24−3xYxSi12O36 were found to crystallize as the precursor phase at low
temperatures. In order to produce N5 single-phase glass-ceramics, the concentration
of both phosphorus and rare earth was found important. The meaning of the
composition was evaluated by kinetic study on the phase transformation of
metastable N3 or N9 phases to stable N5 phase with Na+ superionic conductivity.
The possible combinations of x and y became more limited for the crystallization
of the superionic conducting phase as the ionic radius of R increased, while the
Na+ conduction properties were more enhanced in the glass-ceramics of larger R.
These results are discussed in view of the structure and the conduction mechanism.
Also discussed were the microstructural effects on the conduction properties,
which were dependent upon the heating conditions of crystallization. These effects
were understood in relation to the grain boundary conduction properties as well
as the transmission electron microstructural morphology of grain boundaries.
Recent research into the effects of microstructure on conduction properties and
microstructural control of Na+ superionic conducting glass-ceramics is also
introduced. The optimum conditions for crystallization are discussed with reference
to the conduction properties and the preparation of crack-free N5-type glass-
ceramics. The effects of substituting Si with other elements exhibiting tetrahedral
oxygen coordination and substituting Y with various rare earth elements are also
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discussed in the context of the ionic conductivity of these N5-type glass-ceramics. In
addition, results on the improvement in superconductivity by Na+ ion implantation
and control of the structure by bias crystallization of glasses in an electric field are
presented.

Keywords Superionic conductor · Glass-ceramics · Crystallization ·
Microstructure · Ion implantation · Bias crystallization

10.1 Introduction

The use of glass-making processing is favorablefor the fabrication of Na+ conduct-
ing electrolyte tubes, which has been the key to the technological development of
1 MW Na/S secondary battery plants. However, the processing technique cannot
be applied to well-known β- and β′′-aluminas (e.g., NaAl11O17 and NaAl5O8) and
Nasicons (Na1+xZr2P3−xSixO12) because their high inclusion of Al2O3 or ZrO2
brings about the inhomogeneous melting or crystallization of glasses. Alternatively,
Nasicon-like glass-ceramics were synthesized using a composition with lower
content of ZrO2 (mNa2O·xZrO2·yP2O5·(100−m−x−y)SiO2 [m = 20, 30 mol %]).
However, the conductivities (σ) attained were, at most, as high as σ300 = 2 × 10−2

S/cm at 300 ◦C with the activation energies (Ea) of ca. 30 kJ/mol [1]. These
low conductivities were attributed to the crystallization of the poorly conductive
rhombohedral phase in these Nasicon-like materials [1]. Na5YSi4O12 (N5), which
comprises 12-(SiO4)4−-tetrahedra-membered skeleton structure (Fig. 10.1) [2, 3], is
another Na+ superionic conductor with σ300 = 1 × 10−1 S/cm and Ea = 25 kJ/mol
[4–7]. A pioneering work on N5-type glass-ceramics was performed by Banks et

a

b

RO6 octahedron
R = Rare earth

Na bonding

Na mobility

SiO4, PO4 tetrahedron

Fig. 10.1 Crystal structure of Na5YSi4O12 [4]. Reprinted from Solid State Ionics 285 (2016) 143,
Copyright 2016, with permission from Elsevier
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al. on the family of N5-type materials by substituting Y with Er, Gd, or Sm [8].
However, their results were not completely satisfactory because of the relatively
lower conductivities of σ300 < 2 × 10−2 S/cm than the reported values of N5 [8].
This discrepancy may possibly have arisen from the occurrence of a less conductive
metastable phase during crystallization [9], as discussed below.

Contrary to the results of Banks et al., we obtained glass-ceramics where
σ300 = 1 × 10−1 S/cm and Ea = 20 kJ/mol [10]; these compounds were based on
the phosphorus-containing N5-type materials discovered in the Na2O-Y2O3-P2O5-
SiO2 system [10]. These N5-type materials, in addition to Na3YSi3O9 (N3)-type
materials [11–13], were obtained with the composition formula originally derived
for N3-type solid solutions and expressed as follows [14]:

Na3+3x−yY1−xPySi3−yO9 (x < 0.6, y < 0.5) (10.1)

With the aim of searching for more conductive glass-ceramic N5-type materials,
the verification of the validity of the general composition

Na3+3x−yR1−xPySi3−yO9 (R = a rare earth element) (10.2)

for the synthesis of other types of rare earth N5-type glass-ceramics was studied
first. Formula 2 is rewritten with formula 3 according to the formula N5.

Na4(3+3x−y)/3Y4(1−x)/3P4y/3Si4(3−y)/3O12 (10.3)

In relation to previous works [10, 14], formula 2 was employed in this work, and
formula 3 is referred to in the results. The trivalent ions employed here for R3+ were
Sc3+, In3+, Er3+, Gd3+, Sm3+, Eu3+, Nd3+, La3+, and Y3+. These results are to
be interpreted in terms of the effect of the rare earth ions on the crystallization of
the N5-type phase in glasses [15–20].

Interestingly, in the course of the fundamental studies on the glass-ceramics
Na3+3x−yR1−xPySi3−yO9, we have found the crystallization of those N3- and
Na9YSi6O18 (N9)-type phases as the precursors in the glasses [21]. These are the
analogues to the silicates N3 and N9 [10, 22] and therefore are the same members
of the family of Na24−3xYxSi12O36 [12] as N5. Although we had also successfully
synthesized those materials by the solid-state reactions of powders with the above
composition of various sets of the parameters x and y [10, 22], the metastability of
those precursor phases had not been noticed in the synthesis. It has been observed
that such precursor phases were transformed to the Na+ superionic conducting
phase on specimens with appropriate sets of x and y. The present review paper
deals with the thermodynamic and kinetic studies on the phase transformation
of metastable phases to the stable phase with Na+ superionic conductivity. The
superiority of our present materials to the other silicate N5 will also be detailed
based on the kinetic results.

The microstructure of a glass-ceramics, including neck growth among grains
as well as grain size, is generally affected by the crystallization process [23]. As
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the abovementioned devices utilize the dc conduction properties of Na+ superionic
conductors, another aim was to study the microstructural effects on the conduction
properties of a whole glass-ceramic [24–28]. Special attention was paid to the
analysis of grain boundary properties using the Na2O-Y2O3-P2O5-SiO2 system.
For the analysis of grain boundary properties, as discussed below, composition
dependences on the conductivity of sodium silicophosphate glasses containing
Y2O3 were also introduced in the Na2O-Y2O3-P2O5-SiO2 system. For convenience,
the present materials are abbreviated as Narpsio, taken from the initials of the Na2O-
R2O3-P2O5-SiO2 system.

10.2 Materials

10.2.1 Glasses and Glass-Ceramics

We successfully produced the Narpsio family by the following methods: (i)
solid-state reactions of powders [10, 22], (ii) sol-gel method [19, 29], and (iii)
crystallization of glasses [30]. In considering practical applications such as Na/S
batteries, the present Narpsio materials may be expected to show advantages over
the aluminas, both in lowering the heat treatment temperatures and in fabricating
various shapes because of the ease of glass-making. The latter point closely depends
on the glass-ceramic processing technology.

Precursor glasses were prepared from reagent-grade oxides of anhydrous
Na2CO3, R2O3 (R = Y, Sc, In, Er, Gd, Sm, Eu, Nd, La), NH4H2PO4, and SiO2; the
mechanically mixed powders according to formula 2 or appropriate compositions
shown below were melted at 1350 ◦C for 1 h after calcination at 900 ◦C for 1 h. The
melts were quickly poured into a graphite cylinder and then annealed at 500 ◦C for
3 h, giving Narpsio glasses. The composition parameters studied were in the range
of 0.2 < x < 0.6 and 0 < y < 0.5 of formula 2. As shown below, grain boundary
conduction properties are discussed in relation to the properties of glasses. For
the evaluation of the composition dependence of conductivity in Na+ conducting
glasses, various sodium-yttrium silicophosphate glass specimens with different
atomic ratios of Na/(P+Si) and Na/Y were also prepared.

Crystallization was carried out according to a previous report [14]; bulk glasses
were heated at a rate of 75 ◦C/h to a temperature approximately 50 ◦C above the
glass transition point, which had been determined in advance by differential thermal
analysis (DTA). This pretreatment was performed in order to obtain homogeneous
nucleation [23]. After annealing for 1 h, the specimens were heated at temperatures
of 800–1100 ◦C, depending on the composition, for 0.5 to 72 h, and thereafter slowly
cooled in a furnace with a decreasing rate of 150 ◦C/h to room temperature. These
quenched glasses or glass-ceramic specimens were polished with 0.5 μm diamond
paste and thereafter subjected to conductivity measurements.
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For the description of a specific Narpsio, R of the term will be replaced,
respectively, with Y, Sc, In, Er, Gd, Sm, Eu, Nd, and La as Y-Narpsio, Sc-Narpsio,
In-Narpsio, Er-Narpsio, Gd-Narpsio, Sm-Narpsio, Eu-Narpsio, Nd-Narpsio, and
La-Narpsio for Y2O3, Sc2O3, In2O3, Er2O3, Gd2O3, Sm2O3, Eu2O3, Nd2O3, and
La2O3, respectively.

10.2.2 Characterization

10.2.2.1 AC Impedance Measurement

Ionic conductivities were evaluated by the compleximpedance method on cylindri-
cal glasses or glass-ceramics, typically 15 mm in diameter and 2 mm in thickness.
Electrodes were prepared by sputtering of gold on polished surfaces. The applied
ac field ranged from 5 to 10 MHz in frequency. The temperature dependence
of the conductivity was measured similarly at several temperatures ranging from
room temperature to 350 ◦C. The complex impedance or admittance loci of glass
and glass-ceramics were analyzed by an equivalent circuit (Fig. 10.2), which was
experimentally found to comprise one and two semicircles in Narpsio glasses
and glass-ceramics, respectively. The two intercepting points on the real axis are
interpreted as the resistance of the crystallized grains (RG(c)) and the total resistance

R1

E-B INT

C1

R2

GB

C2

R3

G

Grain (G)

Grain boundary (GB)

Electrode (E) Electrode (E)

Fig. 10.2 Equivalent circuit employed for the admittance analysis. E-B INT, GB, and G represent
the electrode-bulk interface, grain boundaries, and grains, respectively, and (R1, C1), (R2, C2),
and R3 are their resistances and capacitances [30]. Reprinted by permission from Springer Nature:
Springer J. Electroceram. 24 (2010) 83, COPYRIGHT (2010)
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0

Fig. 10.3 Idealized diagram of complex admittance for glass-ceramics, in which arc 1 (ARC 1)
and arc 2 (ARC 2) are related to the crystallized grains (G(c)) and remaining glasses (GB(g)). L1,
L2, RG(c), and RGB(g) are, respectively, the radii of arcs 1 and 2 and the resistances of G(c) and
GB(g) [30]. Reprinted by permission from Springer Nature: Springer J. Electroceram. 24 (2010)
83, COPYRIGHT (2010)

of the grains and remaining glassy grain boundaries (RGB(g)). Assume the complex
admittance diagram shown in Fig. 10.3, where the parameters L1 and L2 are set here
as the radii of the two arcs 1 and 2. Those parameters are related to one another as
follows:

L1 ∝ 1/
(
RG(c) + RGB(g)

)
(10.4)

and

L2 ∝ (1/RG(c)

)− 1/
(
RG(c) + RGB(g)

)
(10.5)

Then,

L2/L1 = RGB(g)/RG(c) (10.6)

Therefore, in an ideal glass-ceramic where residual glass would have negligible
influence on the total, arc 2 would be much smaller than arc 1, because L2/L1→0.

10.2.2.2 X-Ray Diffraction

The form of the powder X-ray diffraction (XRD) data obtained from a material
will depend upon the crystal structure it adopts. This structure is delineated by the
lattice type, crystal class, unit cell parameters, and the distribution of the various
ion and molecule types within the unit cell. The number and positions, in terms of
2θ, of the reflections depend upon the cell parameters, crystal class, lattice type, and
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wavelength used to collect the data, while peak intensity depends upon the types of
atoms present and their positions.

As a result of the enormous range of different structures which materials adopt,
nearly all crystalline solids have a unique powder X-ray diffraction pattern in terms
of the positions of the observed reflections and the peak intensities. In mixtures of
compounds, each crystalline phase present will contribute to the powder diffraction
pattern in its own unique set of lines. The relative intensity of line sets from mixtures
will depend on the amount present and the ability of a structure to scatter X-rays.

The crystalline phases of glass-ceramic specimens were identified by XRD. The
lattice parameters of the N5-type hexagonal unit cell were calculated by a least-
squares method using the XRD peaks of (054), (044), (134), (440), and (024).

10.2.2.3 Scanning Electron Microscope and Transmission Electron
Microscope

A recent and very useful research tool is a scanning electron microscope (SEM).
The surface of a specimen to be examined is scanned with an electron beam, and
the reflected (or backscattered) electron beam is collected and then displayed at the
same scanning speed on a cathode ray tube (CRT). The image on the screen that may
be photographed represents the surface features of the specimen. The surface may
or may not be polished and etched but must be electrically conductive. A very thin
metal surface coating must be applied to the nonconductive material. Magnifications
in the range of 10 times to 50,000 times are also possible, and there is also a very
great depth of field. Ancillary equipment allows qualitative and semiquantitative
analysis of the elemental composition of highly localized surface areas.

The image seen with a transmission electron microscope (TEM) is formed by an
electron beam passing through the specimen. Details of the internal microstructural
features are accessible for observation. The contrasts in the image are caused by the
differences in beam scattering or diffraction occurring between the various elements
of the microstructure or defect. Since the solid materials are highly absorptive to the
electron beams, the specimen to be examined must be prepared in the form of a
very thin foil. This allows a significant fraction of the incident beam to penetrate
the specimen. The transmitted beam is projected onto a fluorescent screen or a
photographic film so that the image can be seen.

Glass-ceramics of Y3+-containing Narpsio were subjected to SEM and TEM for
microstructural analysis. Electron diffraction and compositional analyses were also
performed to characterize the structure of the grain boundary.

10.2.2.4 Arrhenius Plot and Kissinger Plot

In chemical kinetics, an Arrhenius plot displays the logarithm of a reaction rate
constant (ln k, ordinate axis) plotted against inverse temperature (1/T, abscissa
axis). Arrhenius plots are often used to analyze the effect of temperature on the
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rates of chemical reactions. For a single rate-limited thermally activated process,
an Arrhenius plot gives a straight line, from which the activation energy can be
determined. The temperature dependence Arrhenius plots were presented based on
the calculated conductivity values of grains and grain boundaries of the Narpsio
glass-ceramics.

Apparent activation energies for crystallization (crystal growth) were determined
by employing the non-isothermal-modified Kissinger methods [31, 32] in which
some characteristics of the crystallization peak determined by DTA were monitored
as a function of heating rate or temperature. The following relationship was then
applied.

ln

(
αn

T0
2

)
= − Em

RT0
+ const.,

where α is the heating rate, T0 is the peak crystallization temperature at a given
heating rate, E is the apparent activation energy, R is the gas constant, and m and
n are numerical factors which depend on the crystallization mechanism (m depends
on the dimensionality of crystal growth). When bulk crystallization occurs with an
increasing number of nuclei (i.e., the number of nuclei is inversely proportional to
the heating rate), m = 3 and n = 4 (indicating three-dimensional growth of crystals).
In this study, the parameters m and n were assumed to be 3 and 4, respectively,
because bulk glasses were heated to a temperature above ca. 50 ◦C of Tg in order to
obtain homogeneous nucleation.

10.3 Phase Stability and Transformation

10.3.1 Composition Dependence of Precursor
and High-Temperature-Stable phases

Figure 10.4 shows the composition dependence of both the precursor phases
and the high-temperature-stable phases of glass-ceramic Y-Narpsio on the maps
of phosphorus-yttrium (P-Y, Fig. 10.4a), yttrium-sodium (Y-Na, Fig. 10.4b), and
phosphorus-sodium (P-Na, Fig. 10.4c), where the variables on the abscissas and
ordinals are expressed with the composition parameters 1 − x, y, and 3 + 3x − y
for yttrium, phosphorus, and sodium, respectively. As reported before [10, 21], N3-
and N9-type Y-Narpsio glass-ceramics can be crystallized as the high-temperature-
stable phases at the regions of higher yttrium content [Y] (1 – x > approximately 0.8)
and rather lower [Y] (1 – x < approximately 0.55), respectively, in the phosphorus
content [P]-[Y] relation.

Concerning the precursor phases, only either N3- or N9-type Y-Narpsio was
found in any composition, and N5-type Y-Narpsio was difficult to crystallize from
glasses at low temperatures. It is also seen in the P-Y map (Fig. 10.4a) that, under
a given [P] (< 0.6), a composition with a higher [Y] gives N3-type Y-Narpsio (open
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Fig. 10.4 Composition dependence of precursor (pp) and high-temperature-stable phases (sp) of
glass-ceramic Narpsio on P-Y (a), Y-Na (b), and P-Na (c) maps, where precursor phases N3 and
N9 are shown with circles and squares, respectively. High-temperature-stable phases are shown in
such a way that solid marks means that N5-Narpsio is the stable and open marks indicate that the
precursor phases are also stable even at high temperatures [30]. Mixed phases are also shown: open
circle pp = sp = N3; filled circle pp = N3, sp = N5; open square pp = sp = N9; filled square pp =
N9, sp = N5; open split square pp = N9, sp = N9 + N5. Reprinted by permission from Springer
Nature: Springer J. Electroceram. 24 (2010) 83, COPYRIGHT (2010)

circles) as the precursor phase, whereas lower [Y] results in N9-type phase (open
squares). The values of [Y] dividing the regions allowed for N3- and N9-type Y-
Narpsio glass-ceramics decreased with increasing [P], and the boundary seems to
locate slightly apart from the deduced line of [Y] = 0.75 − 0.5[P] [10] shown with
the solid line. Around the boundary region, N5-type Y-Narpsio can be obtained as
the stable phase at high temperatures (solid circles or squares). In the Y-Na or P-
Na relations (Fig. 10.4b and c), the region where N5-type Y-Narpsio can be found
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Fig. 10.5 Schematic figure
of composition ([Y]×[P])
dependence of free energy of
N5-, N3-, and N9-type
Y-Narpsio [30]. Reprinted by
permission from Springer
Nature: Springer J.
Electroceram. 24 (2010) 83,
COPYRIGHT (2010)
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as the high-temperature-stable phase is found under approximately 3.6 < sodium
content [Na] < 4.3. The effect of sodium content seems insignificant, because the
value of [Na] is subordinately determined as [Na] = 6 − 3[Y] − [P] (=3 +3 x − y)
depending on the contents of both yttrium and phosphorus.

The above results may suggest that the [P]-[Y] relation dominates the region
which is allowed for each Y-Narpsio at high temperatures. Considering this
inference, we calculated the products of [P] × [Y] for all the specimens. The values
of [P] × [Y] were as follows (shown in Fig. 10.5): 0.16–0.25 for single-phase N3-
type Y-Narpsio, 0.14 for mixed phases of N3- and N5-type Y-Narpsio, 0.12–0.20
for single-phase N5-type Y-Narpsio, 0–0.14 for the mixed phases of N5- and N9-
type Y-Narpsio, and 0–0.17 for single-phase N9-type Y-Narpsio, respectively. It was
therefore deduced (Fig. 10.5) that the free energy of formation (�Gf) of N9-type Y-
Narpsio would be the lowest in a lower region of [P] × [Y], N5-type Y-Narpsio may
have the lowest �Gf in a medium [P] × [Y] region, and a higher [P] × [Y] would
lower the �Gf of N3-type Y-Narpsio.

For a specimen in which N5-type Y-Narpsio is the stable phase at high tem-
peratures, the aspect such as Fig. 10.6a would be illustrated in that �G of N3- or
N9-type Y-Narpsio would be much smaller than that of N5-type Y-Narpsio near
the crystallization temperature (Tc), and the value of N5-type Y-Narpsio would be
lowered much less than of the two. Figure 10.6b indicates the aspect that �G of N3-
or N9-type Y-Narpsio is stable.

10.3.2 Kinetic Effects of Composition on the Phase
Transformation

The kinetic effects of composition on the phase transformation are shown
in Fig. 10.7, which compares the phase transformation rates of specimens



10 New Na+ Superionic Conductor Narpsio Glass-Ceramics 393

Fr
ee

 e
ne

rg
y

T T

Tc Tc(a) (b)

N5 N5

N3 (N9)
N3 (N9)

Fig. 10.6 Schematic figures of temperature dependence of free energy change of N5- and N3-
or N9-type Y-Narpsio in the cases assuming N5- (a) and N3- (b) or N9-type (b) Y-Narpsio as
the high-temperature-stable phase, where Tc is the crystallization temperature [30]. Reprinted by
permission from Springer Nature: Springer J. Electroceram. 24 (2010) 83, COPYRIGHT (2010)

Fig. 10.7 Comparison of
phase transformation rate (αv)
between specimens
Na3.9Y0.6P0.3Si2.7O9
(1 h-annealing, (—);
3 h-annealing, (· · · )) and
Na3.75Y0.65P0.3Si2.7O9 (1 h,
3 h-annealing, (- - -)) [30].
Reprinted by permission from
Springer Nature: Springer J.
Electroceram. 24 (2010) 83,
COPYRIGHT (2010)
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Na3.9Y0.6P0.3Si2.7O9 and Na3.75Y0.65P0.3Si2.7O9. The transformation rate (αv) of a
precursor phase to the stable N5 phase was determined as the weight ratio of N5-
type Y-Narpsio in a glass-ceramic specimen. The value of αv was experimentally
obtained from the relationship between the weight ratio and the XRD intensity
ratio, which had been determined previously by XRD intensity measurement on
specimens with a given weight ratio of N5-type Y-Narpsio to metastable phases.
It is seen that the composition Na3.9Y0.6P0.3Si2.7O9 is superior to the other, for
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Fig. 10.8 Phase
transformation rate (αv) of
N3- to N5-type Y-Narpsio on
the specimen
Na3.9Y0.6P0.3Si2.7O9 [30].
Reprinted by permission from
Springer Nature: Springer J.
Electroceram. 24 (2010) 83,
COPYRIGHT (2010)
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Table 10.1 Kinetic
parameters of phase
transformation of N3- to
N5-type Y-Narpsio of
Na3.9R0.6Si2.7O9 [30]

Annealing temp. (K) Avrami modulus n ln k

1073 2.61 −20.7
1123 1.94 −14.6
1173 1.39 −9.54
1223 0.75 −4.41

Reprinted by permission from Springer Nature:
Springer J. Electroceram. 24 (2010) 83, COPYRIGHT
(2010)

the N5 single-phase Y-Narpsio was difficult to obtain in the latter specimen. In
specimen Na3.9Y0.6P0.3Si2.7O9, a glass-ceramic of N5 single-phase Y-Narpsio was
easily obtained at a temperature higher than 900 ◦C for only 3 h. The composition
Na3.75Y0.75Si3O9 (or Na5YSi4O12) was inferior in the same respect.

Figure 10.8 shows the kinetic characteristics of phase transformation of the
metastable phase of N3- to N5-type Y-Narpsio of specimen Na3.9Y0.6P0.3Si2.7O9
at various temperatures. The transition rates, αv, of the silicophosphate Y-Narpsio
were much higher than those of the Na3.75Y0.75Si3O9 silicate material.

The results shown were analyzed with the Avrami empirical equation, αv=1 −
exp(−ktn), where k is the rate constant and n is a constant. The data on αv obtained
at the initial and intermediate stages gave a linear relationship between ln(ln(1
− αv)−1) and ln(t) with a correlation coefficient of more than 0.99. The Avrami
parameter and rate constants obtained are summarized in Table 10.1. Based on the
Arrhenius relationship (Fig. 10.9), k = Aexp(−Ev/RT) with Ev as the activation
energy and constants A and R, where the k values which increased with increasing
temperature, we obtained an activation energy of 1.2 × 103 kJ/mol, suggesting
that the phase transformation could be rather difficult to take place. An addition
of phosphorus and the excess sodium seem effective to the promotion of the phase
transformation.
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Fig. 10.9 Arrhenius-type
plot of ln k with 1000/T of
specimen Na3.9Y0.6Si2.7O9
[30]. Reprinted by permission
from Springer Nature:
Springer J. Electroceram. 24
(2010) 83, COPYRIGHT
(2010)
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10.4 Effects of Microstructure on Conduction Properties

10.4.1 Crystallization and Phase Diagram

As expected from the previously reported results on Y-Narpsio [9], the crystalliza-
tion of the superionic conducting N5-type phase took place, depending both on the
contents of [R] and [P], at temperatures of 800–1000 ◦C in most Narpsio glasses of
Er to Sm, except for scandium and lanthanum Narpsio glasses. The N5 single-phase
region was wider for Narpsio of smaller R but was limited at the [P] ≈ 0 region. The
effect of phosphorus substitution for Si is important in the crystallization of N5-type
phase. Composition 7

Na3.9R0.6P0.3Si2.7O9 (10.7)

was experimentally shown as the most appropriate composition for the crystalliza-
tion of N5-type phase.

The relationship between the ionic radius of R3+ (rR) and the hexagonal lattice
parameters of N5-type single phase is consistent with the previous report [4] on
Na5RSi4O12 (R = Sc–Sm) in the tendency that both lattice parameters increased
with increasing rR. The elongation of these lattice axes is attributed to the octahedral
coordination of R3+ with the O2− of SiO4- or PO4-tetrahedra of the 12-membered
rings. The local structure around R3+ ions is to be further discussed below in
relation to conduction properties. On the formation of N5-type single phase, the
incorporation of excess sodium ions [4(3 + 3x − y)/3 – 5 = (12x − 4y −3)/3 in
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composition 3] and substitution of rare earth ions [1 − 4(1 − x)/3=(4x − 1)/3] must
be accounted for in view of the N5-type crystal structure.

Banks et al. [8] have reported the values of σ300 as 5 × 10−3 to 1 × 10−2 S/cm
for glass-ceramic Na5RSi4O12 (R = Er, Y, Gd, Sm), which are as low as those of the
mixed-phase Narpsio specimens. The single-phase N5-type glass-ceramic was not
obtained in the present work. Based on the above crystallization analysis, their glass-
ceramic specimens are reasonably considered to suffer from phase inhomogeneity
brought about by insufficient annealing. The formation of N5-type structure from
the precursor glasses is a matter of crystallization kinetics, because single-phase N5
has been synthesized in single crystal [2, 3, 33] or polycrystalline [6, 7, 11] form
based on the composition of N5. It is noted here that the precursor phases identified
were N3- or N9-type. Both N3 and N9 are considered to form isostructural [12, 21,
34] with Ca3Al2O6 [35] to be comprised of the skeleton structure of six-membered
SiO4-tetrahedra rings [14]. It is generally known that phosphorus pentoxide acts
as a nucleating agent in the formation of glass-ceramics. It is therefore presumed
at present that the substitution of an asymmetric PO4-tetrahedron has a weakening
effect on the bonding of the skeleton structure of 6-membered SiO4-tetrahedra rings,
resulting in the tendency to form the stable 12-membered structure.

10.4.2 Conduction Properties of Crystalline Grains

The complex impedances and admittances of the measured Narpsio glass-ceramics
consisted of two semicircles below 300 ◦C. The two intercepting points on the real
axis are interpreted as the resistance of the crystallized grains (RG) and the total
resistance of grains and remaining glassy grain boundaries (RGB). Figure 10.10
shows examples of the temperature dependence Arrhenius plots based on the cal-
culated conductivity values of grains and grain boundaries of the glass-ceramics Y-
Narpsio (Na3.9Y0.6P0.3Si2.7O9) and Sm-Narpsio (Na3.9Sm0.6P0.3Si2.7O9), in which
the geometrical ratios of thickness-to-surface area for grains were also used for
convenience for those of grain boundaries, because of their undefinable shapes.
Table 10.2 summarizes the measured conductivities (σ300) and the calculated
activation energies (Ea) assigned for grains of the glass-ceramics with composition
7 of Sc to La, regardless of whether their crystalline phases are N5-type or not.
The conductivities, σ300, of single-phase Narpsio specimens of Er to Sc range
from 4 × 10−2 to 1 × 10−1 S/cm; in accordance the Ea falls in the range of 23–
27 kJ/mol. In contrast, the mixed-phase Narpsio of Sc and In showed much smaller
σ300 of 3 × 10−3 with an Ea of 35–40 kJ/mol, whereas non-Narpsio glass-ceramics
with unknown or mixed phases showed much lower conductivities of 1 × 10−5 to
1 × 10−4 S/cm with an Ea of 55–58 kJ/mol.

The tendency of the conduction properties in single-phase Narpsio specimens is
consistent with the reported result measured on the corresponding polycrystalline
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Fig. 10.10 Arrhenius plots
of the conductivities of grains
(G), grain boundaries (GB)
and the total bulk (T) of the
glass-ceramic
Na3.9Y0.6P0.3Si2.7O9 (A) and
Na3.9P0.3Sm0.6Si2.7O9 (B)
[30]. Reprinted by permission
from Springer Nature:
Springer J. Electroceram. 24
(2010) 83, COPYRIGHT
(2010)
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Table 10.2 Conduction properties of various Narpsio glass-ceramics with composition
Na3.9R0.6Si2.7O9 [30]

R3+ (ions) Ea kJ•mol−1 Conductivity (σ300) S•cm−1 Crystalline phase

Sc 35.3 3.2 × 10−3 N5-type + unknown
In 39.8 3.1 × 10−3 N5-type + unknown
Er 26.9 3.6 × 10−2 N5-type
Y 26.6 6.6 × 10−2 N5-type
Gd 23.0 1.3 × 10−1 N5-type
Eu 24.4 5.2 × 10−2 N5-type
Sm 20.9 6.3 × 10−2 N5-type
Nd 55.1 2.2 × 10−5 Unknown
La 57.8 1.6 × 10−4 Unknown

Reprinted by permission from Springer Nature: Springer J. Electroceram. 24 (2010) 83, COPY-
RIGHT (2010)
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Na5RSi4O12 [4]: σ increased with increasing rR. Previous works have proposed a
mechanism whereby rare earth ions, octahedrally coordinated with the non-bridging
oxide ions of the 12-membered rings of silica tetrahedra, work to expand the
conduction paths for Na+ ions along the c-axis [4, 33], which could explain the
observed dependence of Ea on rR in this work.

10.4.3 Structure and Conduction Properties of Grain
Boundaries

As RGB decreases rapidly with increasing temperature because of high (Ea)GB to
a comparable value with RG at 300 ◦C (Fig. 10.10), the total conductivities (RG +
RGB) are dominated by grain boundary conductivity. The grain size-dependence of
σ300 is therefore explained by the decrease in the number of poorly conductive grain
boundaries with increasing grain size.

The conduction properties of grain boundaries were strongly dependent on
the annealing conditions, although those of the grains were little changed by the
annealing temperature and time. Glass-ceramics are generally composites consisting
of crystallized grains and small amounts of residual glass (< 1%) [23]. To compare
the properties of grain boundaries with those of glasses, the conduction properties of
sodium-yttrium silicophosphate glasses with various compositions were measured.
Unlike glass-ceramics, the impedance loci of glasses were comprised of one arc,
which indicates that there is no polarization arising from microstructural inhomo-
geneity. Based on the intercepting points on the horizontal axis, the composition
dependence of the conduction properties of σ300 and Ea was evaluated. The value
of σ300 ranged from 1 × 10−4 to 5 × 10−3 S/cm, and Ea increased from 53 to
67 kJ/mol with [Na] or [Na]/[Y]. These results are also in good agreement with
those reported for the glasses in the Na2O-Y2O3-SiO2 system [36]. The values of
(Ea)GB of the specimens annealed below 950 ◦C for shorter times correspond to
those in the range of glasses, strongly suggesting that their grain boundaries are a
glassy matrix. The abovementioned dependence of (Ea)GB on sodium oxide content
[Na2O] is explained by the well-known tendency that the conduction properties of
glasses are improved by increasing [Na2O], which provides the increase in carrier
Na+ ions. The ratio of [Na]/[Y] is also an important parameter for the conduction
properties [36], showing an effect on the conduction properties similar to [Na2O].

In order to identify the structure of the grain boundaries of the specimen
(Na3.9Y0.6P0.3Si2.7O9) annealed at 800 ◦C for 0.5 h, TEM analysis was performed
both on grains and grain boundaries. The results in Fig. 10.11 show clear electron
diffraction on grains, but not on grain boundaries. This confirms that the grain
boundaries are amorphous. Compositional analyses were also performed; however,
[Na] was difficult to determine because of the evaporation by electron ablation. It
was also observed that the glassy phase was condensed at triple points enclosed by
grains and that the neck growth among the grains was well developed. Thus, it is



10 New Na+ Superionic Conductor Narpsio Glass-Ceramics 399

Fig. 10.11 TEM micrograph
of glass-ceramic specimen
(Na3.9Y0.6P0.3Si2.7O9)
annealed at 800 ◦C for 0.5 h
(a) and the electron
diffraction patterns on the
spots a (b) and b (c) in Fig.
11A [18]. Reprinted with
permission from J.
Electrochem. Soc., 143,
(1996) 2180. Copyright 1996,
The Electrochemical Society
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reasonable to consider that the grain boundaries annealed at lower temperatures are
amorphous, whereas those annealed at higher temperatures for longer periods of
time are poorly conductive crystalline compounds in the specimens.

10.5 Microstructural Control of Glass-Ceramic Narpsio
Conductors

10.5.1 Preparation of Crack-Free Na5YSi4O12-Type
Glass-Ceramics Containing Large Sm3+ Ions:
Crystallization Conditions and Ionic Conductivities
[15–17]

A number of glass-ceramics of the phosphorus-containing N5-type Na+ superionic
conductors have been prepared by the crystallization of glasses with the composition
formula 2, where it was found that the identity of R strongly influences the
glass crystallization and its conduction properties. To date, polycrystalline N5-type
Narpsio compounds have been prepared using Sc, Y, Gd, or Sm as the R component.
In such compounds, the ionic radius of R, which is coordinated to six oxygen
atoms, strongly affects the phase crystallization. In addition, the reported results
for the silicate ceramics show that the conductivity of N5-type Narpsio increases
with an increasing ionic radius of R, thereby giving the order Sm-Narpsio > Gd-
Narpsio > Y-Narpsio > Sc-Narpsio. However, this order has not always held true in
glass-ceramics. Although the majority of Narpsio compounds have been obtained as
crack-free bulky glass-ceramics (15 mm diameter and 5 mm thickness), the cracking
of Sm-Narpsio during crystallization has proven difficult to prevent. Furthermore,
crack-free Gd-Narpsio, which contains relatively large Gd3+ ions, was found to
be the most conductive; however, Sm-Narpsio, which contains the largest R ions,
exhibited a lower conductivity than Y-Narpsio, which contained only medium Y3+
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Fig. 10.12 Temperature/time
program for the production of
the Sm-Narpsio
glass-ceramics [17].
Reprinted from J. Ceram.
Soc. Jpn. 111 (2003) 257,
Copyright 2003
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ions. In the study discussed herein, N5-type Sm-Narpsio ionic conductors were
prepared by the crystallization of the corresponding glasses, and the optimum
conditions for crystallization are discussed in this review with reference to the
conduction properties and the preparation of crack-free N5-type glass-ceramic Sm-
Narpsio.

Samples were prepared according to the desired composition Na3+3x−ySm1−x

PySi3−yO9, and the temperatures employed for nucleation and crystallization of
the glass specimens were selected based on the results of DTA. Figure 10.12
shows the temperature/time program employed for preparation of the Sm-Narpsio
glass-ceramics. The corresponding N5-type Sm-Narpsio ionic conductors were
then produced successfully following the crystallization of these glasses. Although
the glass samples heated using program (A) broke during crystallization, and
the glass-ceramic Sm-Narpsio obtained using pattern (B) cracked easily during
crystallization, the majority of Sm-Narpsio compounds prepared using pattern (C)
were obtained as crack-free bulky glass-ceramics. However, it should be noted that
the glass samples broke during crystallization when a crystallization heating time
of > 5 h was employed. Figure 10.13 shows the phase-composition diagram of
the samples crystallized at 900 ◦C using pattern (C). As indicated, crystallization
of the N5 single-phase glass-ceramic Sm-Narpsio was strongly dependent on the
concentrations of both R and P (or x and y in the composition parameters) and on the
temperature used to crystallize the glass specimens. In addition, Figure 10.14 shows
a SEM micrograph of the Na3.9Sm0.6P0.3Si2.7O9 specimen microstructure heated
at 900 ◦C using pattern (C). The grain size of this specimen was approximately
3–5 μm. The state of grain growth was promoted by increasing the crystallization
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Fig. 10.13
Phase-composition diagram
of the Sm-Narpsio
glass-ceramics crystallized at
900 ◦C [17].
• N5, � N3, � N9,
©N5+N3, 	N5+N9,
♦N3+N9. Reprinted from J.
Ceram. Soc. Jpn. 111 (2003)
257, Copyright 2003
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Fig. 10.14 SEM micrograph
of the Na3.9Sm0.6P0.3Si2.7O9
specimen heated at 900 ◦C
using heating program (C)
[17]. Reprinted from J.
Ceram. Soc. Jpn. 111 (2003)
257, Copyright 2003

3 m

heating temperature and heating time. Although grain growth can result in high
conductivity, crack prevention was difficult in the case of the samples prepared
with long heating times. Conduction properties were measured using the alternating
current (AC) two-probe method with a low-frequency impedance analyzer. The
glass-ceramics for analysis were prepared as cylindrical samples with typical
diameters and thicknesses of 15 and 2 mm, respectively. Electrodes were prepared
by the sputtering of gold on polished surfaces. The frequency of the applied AC
field ranged from 5 to 10 MHz, and the temperature dependence of the conductivity
was measured similarly at several temperatures ranging from room temperature to
350 ◦C. Table 10.3 summarizes the conduction properties of the N5-type glass-
ceramic NaSmPSi specimens. It is likely that the low conductivity of Sm-Narpsio
(which contained large Sm3+ ions) compared to that of Y-Narpsio (containing
medium-sized Y3+ ions) was due to the particularly small grain sizes of the
presented specimens.
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Table 10.3 Conduction
properties of the N5-type
Sm-Narpsio glass-ceramics
[17]

Mix proportion Ea/kJ•mol−1

x y σ300/10−1 S•cm−1 T G G.B.

0.40 0.30 0.238 27.6 17.9 51.4
0.45 0.40 0.408 30.4 18.8 95.7
0.50 0.35 0.352 19.5 15.8
0.50 0.40 0.478 29.3 16.6

Heat treatment: 900 ◦C, 5 h
Reprinted from J. Ceram. Soc. Jpn. 111 (2003) 257, Copy-
right 2003
σ300: Conductivity at 300 ◦C
Ea: Activation energy (T total, G grain, G.B. grain boundary)

10.5.2 Composition Control of Silicophosphate
Glass-Ceramics

10.5.2.1 Ionic Conductivities of Nasicon-Type Glass-Ceramic Superionic
Conductors in the System Na2O-Y2O3-XO2-SiO2 (X = Ti, Ge,
Te) [37]

Our phosphorus-containing compositions have been confirmed to be superior to
the mother composition of N5, especially in the production of single-phase glass-
ceramics. Recently, our work has mainly focused on the synthesis of various
glass-ceramics with N5 single phase. In the study discussed herein, N5-type
glass-ceramics of the titanium-, germanium-, or tellurium-containing Na+ supe-
rionic conductors (N5YXS) were prepared from glasses with the composition
Na3+3xY1−xXySi3−yO9 (X = Ti; NYTiS, Ge; NYGeS, Te; NYTeS) ranging in
x = 0.1–0.55 and y = 0.1–0.45, and the effect of the X element on phase
separation was investigated along with the effect of the sample microstructure on
the conduction properties of the glass-ceramics.

The precursor glasses were prepared by melting stoichiometric mixtures of
reagent-grade powders of anhydrous Na2CO3, Y2O3 (TiO2, GeO2, or TeO2), and
SiO2 at 1300–1400 ◦C for 1 h, followed by annealing for several hours at an opti-
mum temperature. Following crystallization of the obtained glasses, the correspond-
ing N5YXS ionic conductors were successfully produced. Figures 10.15, 10.16,
and 10.17 show the diagrams of phase-composition-crystallization temperature of
the obtained NYTiS, NYGeS, and NYTeS glass-ceramics, respectively, where it
was apparent that N5YXSi was obtained as a stable phase at high temperatures. In
addition, the crystallization of a single N5 phase was found to be strongly dependent
on the contents of yttrium and (titanium, germanium, or tellurium) ions (or the
values x and y in Na3+3xY1−xXySi3−yO9). Furthermore, the N3 and N9 phases
were crystallized as high-temperature-stable phases in the regions of higher Y and
rather lower Y concentrations, respectively. The combination of x and y gave the



10 New Na+ Superionic Conductor Narpsio Glass-Ceramics 403

Fig. 10.15
Phase-composition diagrams
of the NYTiS glass-ceramics
heated at 900 ◦C (a) and
1000 ◦C (b) for 5 h [37].
• N5, � N9, 	 N5+N9, ♦
N3+N9. Reprinted from
Solid State Ionics 180 (2009)
537, Copyright 2009, with
permission from Elsevier

Fig. 10.16
Phase-composition diagrams
of the NYGeS glass-ceramics
heated at 900 ◦C (a) and
1000 ◦C (b) for 5 h [37].
• N5, � N9, © N5+N3, 	
N5+N9. Reprinted from
Solid State Ionics 180 (2009)
537, Copyright 2009, with
permission from Elsevier

Fig. 10.17
Phase-composition diagrams
of the NYTeS glass-ceramics
heated at 900 ◦C (a) and
1000 ◦C (b) for 5 h [37].
• N5, � N9, 	 N5+N9.
Reprinted from Solid State
Ionics 180 (2009) 537,
Copyright 2009, with
permission from Elsevier

greatest variation in N5YGeS but was more limited in the order: N5YTeS > N5YTiS.
Moreover, Table 10.4 summarizes the conduction properties of the N5-type glass-
ceramics with compositions of Na3.6Y0.8Ti0.2Si2.8O9, Na4.2Y0.6Ge0.3Si2.7O9, and
Na4.2Y0.6Te0.3Si2.7O9, respectively. The conductivities and activation energies of
these species are in the order of 10−2 S/cm at 300 ◦C and 15–24 kJ/mol, respectively.
Interestingly, the conductivity of these samples decreased, giving the order N5YGeS
> N5YTeS > N5YTiS. It is considered that this order corresponds to the N5 single-
phase region.
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Table 10.4 Conduction properties of the N5 glass-ceramics with the Na3.6Y0.8Ti0.2Si2.8O9,
Na4.2Y0.6Ge0.3Si2.7O9, and Na4.2Y0.6Te0.3Si2.7O9 compositions [37]

Specimen Heat treatment σ300 Ea/kJ•mol−1

Temp. Time /10−2•S•cm−1 T G G.B.

NYTiS 1000 5 2.5 15.5 19.8 10.0
NYGeS 900 5 4.0 21.1 17.3 44.0

1000 5 4.5 24.1 19.3 56.6
1000 24 6.7 22.9 20.6 67.2

NYTeS 900 5 3.2 19.8 18.7 43.7
1000 5 4.6 21.8 20.5 56.6

Reprinted from Solid State Ionics 180 (2009) 537, Copyright 2009, with permission from Elsevier
σ 300: Conductivity at 300 ◦C
Ea: Activation energy (T total, G grain, G.B. grain boundary)

10.5.2.2 Synthesis and Na+ Conduction Properties of Nasicon-Type
Glass-Ceramics in the System Na2O-Y2O3-X2O3-SiO2 (X = B,
Al, Ga) and Effect of Si Substitution [38]

Following preparation of the glass-ceramics of the boron-, aluminum-, or gallium-
containing Na5RSi4O12-type (R = rare earth; Y) Na+ superionic conductors
obtained from glasses with the Na3+3x+yY1−xXySi3−yO9 composition (X = B;
NYBS, X = Al; NYAlS, X = Ga; NYGaS) (x = 0.2, y = 0.1), the effect of X on the
phase separation was investigated in addition to the effect of the microstructure on
the conduction properties of glass-ceramics, and the crystallization kinetics of the
glasses were examined by DTA.

The precursor glasses were obtained by melting stoichiometric mixtures of
reagent-grade powders of anhydrous Na2CO3, Y2O3 (H3BO3, Al2O3, or Ga2O3),
and SiO2 at 1350 ◦C for 1 h after calcinations at 900 ◦C for 1 h. The melts were
quickly poured into a graphite cylinder. Crystallization was carried out according
to a previous report [14]. The N5-type glass-ceramic NYBS, NYAlS, and NYGaS
with the Na3.7Y0.8B0.1Si2.9O9, Na3.7Y0.8Al0.1Si2.9O9, and Na3.7Y0.8Ga0.1Si2.9O9
compositions, respectively, were successfully produced by crystallization of the
glasses. The apparent activation energies for crystallization (crystal growth) were
determined by employing the non-isothermal-modified Kissinger methods [39, 40],
in which some characteristic of the crystallization peak determined by DTA is
monitored as a function of the heating rate or temperature. Figure 10.18 shows
the modified Kissinger plots for NYBS, NYAlS, and NYGaS glasses. Table 10.5
summarizes the DTA peak temperatures and activation energies of crystal growth
obtained from the modified Kissinger equation under non-isothermal condition of
the NYXS glasses. The activation energies of crystal growth are 410 for NYBS, 392
for NYAlS, and 381 kJ/mol for NYGaS. The activation energy of crystal growth of
the NYXS glass decreases as the ionic radius of X increases. Table 10.6 summarizes
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Fig. 10.18 Modified
Kissinger plots for the
NaYBS, NaYAlS, and
NaYGaS glasses [38].
Reprinted from Solid State
Ionics 225 (2012) 367,
Copyright 2012, with
permission from Elsevier
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Table 10.5 DTA peak temperatures and activation energies of crystal growth of the NYBS,
NYAlS, and NYGaS glasses [38]

DTA peak temperature (◦C)
Heating rate (◦C•min−1) NYBS NYAlS NYGaS

10 694 743 728
20 715 763 753
30 720 779 765
40 734 787 772
Activation energy of crystal growth
(kJ•mol−1)

410 392 382

Ionic radius (nm) 0.025 0.053 0.061

Reprinted from Solid State Ionics 225 (2012) 367, Copyright 2012, with permission from Elsevier

Table 10.6 Conduction properties of the NYBS, NaYAlSi, and NYGaS glass-ceramics [38]

NYBS NYAlS NYGaS

σ300 (G) (S) 5.61 × 10−2 4.03 × 10−2 3.79 × 10−2

σ300 (G.B.) (S) 18.8 × 10−2 50.4 × 10−2 33.0 × 10−2

σ300 (Total) (S) 4.32 × 10−2 3.73 × 10−2 3.40 × 10−2

Ea (Total) (kJ•mol−1) 12.6 12.8 13.2
Ionic radius (nm) 0.025 0.053 0.061

Reprinted from Solid State Ionics 225 (2012) 367, Copyright 2012, with permission from Elsevier
σ300: Conductivity at 300 ◦C (T total, G grain, G.B. grain boundary)
Ea: Activation energy at higher temperatures ranging from 250 to 350 ◦C

the conduction properties of the NYXS glass-ceramics. The conductivities of the
glass-ceramics NYBS, NYAlS, and NYGaS were 4.32 × 10−2, 3.73 × 10−2, and
3.40 × 10−2 S/cm at 300 ◦C, respectively. The conductivity decreases in the order
NYBS > NYAlS > NYGaS. The conductivity of the NYXS glass-ceramics decreases
as the ionic radius of X increases.
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10.5.2.3 Effect of Substitution of Si with V and Mo on Ionic Conductivity
of Na5YSi4O12-Type Glass-Ceramics [41]

Glass-ceramics of the vanadium- or molybdenum-containing N5-type Na+ superi-
onic conductors were prepared by crystallization of glasses with the compositions
Na3+3x−yY1−xVySi3−yO9 (NYVS) or Na3+3x−2yY1−xMoySi3−yO9 (NYMoS) rang-
ing in x = 0.3–0.5 and y = 0.1–0.4, and the effects of V or Mo elements on the
phase separation and the microstructural effects on the conduction properties of
glass-ceramics are discussed.

The precursor glasses were made by melting stoichiometric mixtures of reagent-
grade powders of anhydrous Na2CO3, Y2O3, V2O5, MoO3, and SiO2 at 1400 ◦C
for 1 h, followed by annealing for several hours at an optimum temperature.
Figure 10.19 shows the diagrams of phase-composition-crystallization temper-
ature of the glass-ceramic specimens with the Na3.9Y0.6V0.3Si2.7O9 (A) and
Na3.7Y0.7Mo0.1Si2.9O9 (B) compositions. N5-type NYVS and NYMoS are obtained
as a stable phase at high temperatures. The crystallization of N5 single phase is
strongly dependent both on the contents of yttrium and (vanadium or molybde-
num) ions (or the values x and y correspond to the composition parameters in
Na3+3x−yY1−xVySi3−yO9 or Na3+3x−2yY1−xMoySi3−yO9). N3 and N9 phases can

Fig. 10.19 Phase-composition–crystallization temperature diagrams of the NYVS (a) and

NYMoS (b) glass-ceramics crystallized at 800–1100 ◦C [41]. • N5, � N3,
�

N9, � N5+N3,
�

N5+N9. Reprinted from Solid State Ionics 179 (2008) 1291, Copyright 2008, with permission
from Elsevier
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Table 10.7 Total
conductivities and activation
energies of the glass-ceramic
specimens
Na3.9Y0.6V0.3Si2.7O9 (A) and
Na3.7Y0.7Mo0.1Si2.9O9 (B)
[41]

(A)
Temp. (◦C) σ (10−2•S•cm−1) Ea (kJ•mol−1)

T G G.B. T G G.B.
150 0.13 0.43 0.19
200 0.28 0.44 0.73 27.5 10.5 47.1
250 0.47 0.62 1.97 —— —— ——
300 0.87 1.24 2.93 38.1 40.5 31.7
350 1.63 2.33 5.38

(B)
150 0.63 1.24 1.27
200 1.45 2.11 4.68 29.2 41.1
250 2.46 3.33 9.45 —— 22.5 ——
300 3.58 4.81 13.91 21.8 19.1
350 4.61 6.49 15.95

Reprinted from Solid State Ionics 179 (2008) 1291, Copyright
2008, with permission from Elsevier
σ Conductivity, Ea Activation energy, T Total, G grain, G.B. grain
boundary

be crystallized as the high-temperature-stable phases at the regions of rather lower
[Y] and higher [Y], respectively. The total conductivities and the activation energies
are summarized in Table 10.7. The total conductivities of the specimens (A) and
(B) were 0.87 × 10−2 and 3.58 × 10−2 S/cm at 300 ◦C, respectively, and the
activation energies of those specimens were 38.1 and 21.8 kJ/mol, respectively.
The combination of x and y was most varied in N5-type NYPS and more limited
in N5-type NYVS and NYMoS. The conductivity decreases in the order NYPS >
NYMoS > NYVS. It is considered that this order corresponds to the N5 single-phase
region. We assume that the effect of the substitution of Si with V or Mo should be
to bring about the difference in homogeneity in the N5 ring structure. The total and
electronic conductivities and the Na+ ionic transport numbers of the specimen (A)
determined by the Wagner polarization method are summarized in Table 10.8. The
ionic transport numbers of specimen (A) were nearly 0.9, and those of specimen
(B) were nearly 1. It is considered that approximately 10% of the total conduction
is electronic conduction (hopping conduction by transition metal vanadium) in the
specimen (A). This result can explain the following fact: the conductivity of the
specimen (A) is lower than other N5 conductors.

10.5.2.4 Synthesis and Na+ Conduction Properties of Nasicon-Type
Glass-Ceramics in the System Na2O-Y2O3-R2O3-P2O5-SiO2 (R
= rare earth) and Effect of Y Substitution [42]

Glass-ceramics of the phosphorus-containing N5-type Na+-superionic conductors
were prepared by the crystallization of glasses of the Na3+3x+yY1−x−zRzPySi3−yO9
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Table 10.8 Total and
electronic conductivities and
the Na+ ionic transport
numbers of the glass-ceramic
specimen
Na3.9Y0.6V0.3Si2.7O9 (A)
[41]

Temp. (◦C) σt (S•cm−1) σe (S•cm−1) ti
150 1.312 × 10−3 1.582 × 10−5 0.988
200 2.752 × 10−3 1.826 × 10−4 0.934
250 4.728 × 10−3 4.687 × 10−4 0.901
300 8.715 × 10−3 6.582 × 10−4 0.924
350 1.627 × 10−2 1.563 × 10−3 0.904

Reprinted from Solid State Ionics 179 (2008) 1291,
Copyright 2008, with permission from Elsevier
σt Total conductivity, σe Electronic conductivity, ti Ionic
transport number

Fig. 10.20 Lattice constants
of the NYRPS (R = Nd, Sm,
Eu, Gd, Dy, Er, or Yb) and
NYPS (Y-Narpsio)
glass-ceramics [42].
Reprinted from Solid State
Ionics 262 (2014) 604,
Copyright 2014, with
permission from Elsevier
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composition (NYRPS; R = Nd, Sm, Eu, Gd, Dy, Er, or Yb, x = 0.4, y = 0.2, z = 0.1),
where yttrium was substituted with the various R elements. The crystallization
kinetics of the glasses were examined by DTA, and the effects of R on the phase
separation properties of the glass-ceramics were investigated in addition to the
effects of the microstructure on the conduction properties.

The precursor glasses were initially prepared by melting stoichiometric mixtures
of reagent-grade powders of anhydrous Na2CO3, Y2O3, R2O3 (R = Nd, Sm, Eu,
Gd, Dy, Er, or Yb), NH4H2PO4, and SiO2 at 1350 ◦C for 1 h following calcinations
at 400 ◦C for 0.5 h and at 900 ◦C for 0.5 h. The N5-type glass-ceramics NYRPS and
NYPS (Y-Narpsio) with the Na4.4Y0.6P0.2Si2.8O9 composition were successfully
synthesized by crystallization of the glasses. As indicated in Fig. 10.20, the lattice
constants of the glass-ceramic NYRPS species increased upon increasing the ionic
radius of R, whereas the activation energies for crystal growth of the NYRPS glass
decreased with greater ionic radii (Fig. 10.21). The formation of N5-type structures
from the precursor glasses was also found to be dependent on the crystallization
kinetics. In this case, the substitution of large R ions weakens the bonding of the N3-
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Fig. 10.21 Activation
energies (Ea) of crystal
growth for the NYRPS (R =
Nd, Sm, Eu, Gd, Dy, Er, or
Yb) and NYPS (Y-Narpsio)
glasses [42]. Reprinted from
Solid State Ionics 262 (2014)
604, Copyright 2014, with
permission from Elsevier
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or N9-type skeleton structure of the 6-membered SiO4-tetrahedral rings, thereby
leading to the formation of stable N5-type 12-membered structure. Furthermore, as
shown in Fig. 10.22, the conductivities of the NYRPS glass-ceramics increased upon
increasing the ionic radius of R. Presumably, rare earth ions that are octahedrally
coordinated with the non-bridging oxide ions of the 12-membered rings of the
silica tetrahedra expand the conduction paths for Na+ ions along the c-axis [4];
this expansion explains the observed dependence of the activation energies on the
ionic radius of R.

10.5.3 Ionic Conductivities of Na+ Ion-Implanted
Silicophosphate Glass-Ceramics [26]

We consider that a material processing technique to introduce a large number of
mobile Na+ ions into samples is required to realize the superionic conduction in
the N5-type Narpsio compounds. Here, we report that a large enhancement in the
electrical conductivity, probably due to Na+ ions, has been obtained in the glass-
ceramic Narpsio by ion implantation of Na+ ions.

Substrate N5-type Narpsio compounds used for ion implantation were the
glass-ceramic Na3.9Y0.6P0.3Si2.7O9 and Na3.9Sm0.6P0.3Si2.7O9. Approximately 5-
mm-thick glass-ceramic disks were implanted with 200 keV Na+ ions with flux
densities of 1014 to 1015 ions/cm2 at room temperature. The current density was
3 μA/cm2. The XRD patterns of the Na+ ion-implanted specimens exhibited
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Fig. 10.22 Conductivity at
300 ◦C of the NYRPS (R =
Nd, Sm, Eu, Gd, Dy, Er, or
Yb) and NYPS (Y-Narpsio)
glass-ceramics [42].
Reprinted from Solid State
Ionics 262 (2014) 604,
Copyright 2014, with
permission from Elsevier
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Table 10.9 Conduction properties of the Na+-ion-implanted Narpsio glass-ceramics [26]

Ea / kJ•mol−1

Dose/ions•cm−2 σ300/10−1 S•cm−1 T G G.B.

Na3.9Y0.6P0.3Si2.7O9

Before implantation 0.201 23.8 18.4 31.3
1014 0.427 18.3 13.3 32.2
1015 0.586 19.3 12.6 40.1
Na3.9Sm0.6P0.3Si2.7O9

Before implantation 0.238 27.6 17.9 51.4
1014 0.512 36.7 16.9 88.8
1015 0.715 33.3 16.3 104.1

Reprinted from Solid State Ionics 136/137 (2000) 1049, Copyright 2000, with permission from
Elsevier
σ300, Conductivity at 300 ◦C
Ea Activation energy (T total, G grain, G.B. grain boundary)

N5 single phase. No cracking was perceived for any of the implanted surfaces.
Table 10.9 summarizes the conduction properties of the glass-ceramic Narpsio
specimens. The samples with the Na3.9Y0.6P0.3Si2.7O9 and Na3.9Sm0.6P0.3Si2.7O9
compositions crystallized at 900 ◦C for 5 h showed the ionic conductivities of
2.01 × 10−2 and 2.38 × 10−2 S/cm at 300 ◦C, respectively. It was found that
Sm-Narpsio containing the largest Sm3+ ions was more conductive than Y-Narpsio
with medium Y3+ ions under the same heating conditions. The ionic conductivities
of the glass-ceramic Na3.9Y0.6P0.3Si2.7O9 and Na3.9Sm0.6P0.3Si2.7O9 at 300 ◦C
were drastically enhanced from 2.01 × 10−2 S/cm to 5.86 × 10−2 S/cm and from
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2.38 × 10−2 S/cm to 7.15 × 10−2 S/cm, respectively, upon implantation of 200 keV
Na+ ions with a flux density of 1015 ions/cm2.

10.5.4 Structure and Conduction Properties
of Na5YSi4O12-Type Glass-Ceramics Synthesized
by Bias Crystallization of Glass [27]

Glass-ceramics of the phosphorus-containing N5-type Na+ superionic con-
ductors were prepared by bias crystallization of glasses with the composition
Na4.05Y0.55P0.3Si2.7O9 in an electric field. The conditions for bias crystallization
are discussed with respect to the microstructure and the conduction properties.

The precursor glasses were made by melting stoichiometric mixtures of reagent-
grade powders of anhydrous Na2CO3, Y2O3, SiO2, and NH4H2PO4 at 1350 ◦C
for 1 h, followed by annealing for several hours at an optimum temperature.
The annealed specimens were heated to 900 ◦C in an electric field for the bias
crystallization. The thermostable heating holder was produced in order to do the
crystallization in a direct current electric field. This holder is made of alumina and
platinum. Glass samples (5 mm × 5 mm × 8 mm) were held between the platinum
plates and crystallized in an electrical field of 1 V/mm. The thermal treatment was
the same as that used in conventional crystallization without the electric field.

The microstructure was investigated with SEM. The grain length of the cross
section parallel with the electric field direction was 10–15 nm, and it was proven
to be smaller than the 15–30 nm grain length of the cross section perpendicular
to the direction and the specimen crystallized by the conventional method. It was
possible to control shape and orientation of crystal grain by the crystallization in the
electrical field.

Owing to the bias field, an electric current related to temperature was measured
during the crystallization process. Figure 10.23 shows a current profile with
respect to temperature during the crystallization process in the electric field. The
largest observed current was 250 μA. The current profile exhibits three peaks at
approximately 600 ◦C, 700 ◦C, and 850 ◦C. These temperatures correspond to those
of nucleation, phase transition from N3 phase to N5 phase, and crystallization of
glass specimens determined by DTA analysis, respectively. An electric current with
respect to temperature was measured newly by applying the bias voltage only in two
limited temperature ranges, because two main peaks were observed in Fig. 10.23.
One range is from right before of the first main peak (511–652 ◦C), and another
range is from right before of the second main peak (790–865 ◦C). The resulting
current profile is shown in Fig. 10.24. It was found that the mass transfer in the
specimen is generated even in the condition of no applied voltage.

Crystalline phases were identified on the sample after the crystallization in the
electric field by XRD in order to consider the possibility of structural changes by the
movement of Na+ ion, which is a carrier. In the several cut sections, no difference in
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Fig. 10.23 Current profile in
relation to temperature during
crystallization process in
electric field [27]. Reprinted
from Solid State Ionics 154
(2002) 361, Copyright 2002,
with permission from Elsevier

0 200 400 600 800 1000

300

250

200

150

100

50

0

Temperature / C

C
ur

re
nt

 / 
μA

0 200 400 600 800 1000

300

250

200

150

100

50

0

Temperature / °°C

C
ur

re
nt

 / 
μA

500100 300 700 900

Start temp.
511 °C

End
temp.
652 °C

Start temp.
790 °C

End temp.
865 °C

Fig. 10.24 Current profile in relation to temperature measured by applying voltage in two limited
temperature ranges [27] Reprinted from Solid State Ionics 154 (2002) 361, Copyright 2002, with
permission from Elsevier

the fundamental structure was observed. Judging from the patterns, the N5 single-
phase ionic conductors were successfully produced by the bias crystallization of
glasses.

Figure 10.25 shows the temperature dependence Arrhenius plots of the con-
ductivities of various specimens. The complex admittances of the measured glass-
ceramics consisted of two semicircles below 300 ◦C. The two intercepting points
on the real axis are interpreted as the resistance of the crystallized grains (RG)
and the total resistance of the grains and remaining glassy grain boundaries (RGB).
As RGB decreases rapidly with increasing temperature because of high (Ea)GB to
a comparable value with RG at 300 ◦C, the total conductivities (RG+RGB) are
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Fig. 10.25 Temperature dependence Arrhenius plots of the conductivities of the bias-crystallized
Narpsio glasses [27]. © Conventional,
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Table 10.10 Conduction
properties of the
bias-crystallized Narpsio
glasses [27]

Ea / kJ•mol−1 σ300 / mS•cm−1

Temperature
High Low

◦ Conventional 33.0 99.9 0.9860
�

Parallel 66.6 73.5 0.0923
� Perpendicular 76.4 82.2 0.1320

Reprinted from Solid State Ionics 154 (2002) 361,
Copyright 2002, with permission from Elsevier

dominated by grain boundary conductivity. The effect of the grain boundary is
greatly seen on the appearance at lower temperatures. Table 10.10 summarizes the
conduction properties obtained from Fig. 10.25. The cross sections parallel and
perpendicular to the electric field direction showed the ionic conductivities of 0.0923
and 0.132 mS/cm at 300 ◦C, respectively. It was found that the bias-crystallized
specimens were less conductive than those crystallized by the conventional method.
Figure 10.26 shows the temperature dependence of the conductivity of the bias-
crystallized specimen. At temperatures over 300 ◦C, anisotropy in the conductivity
was observed. It was also found that the cross section perpendicular to the electric
field direction was more conductive than that parallel with the electric field
direction. The microstructure and the electric conductivity of the Narpsio glass-
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Fig. 10.26 Temperature dependence of conductivity of the bias-crystallized Narpsio glasses [27].
Reprinted from Solid State Ionics 154 (2002) 361, Copyright 2002, with permission from Elsevier

ceramics perpendicular to the electric field direction were significantly different
from those in parallel.

10.6 Concluding Remarks

In this article, Na+ superionic conducting Narpsio glass-ceramics with the
Na5YSi4O12 (N5)-type structure and containing various rare earth elements (R),
which were prepared according to the Na3+3x−yR1−xPySi3−yO9 composition,
were reviewed, and recent research into the structural control of Na+ superionic
conducting glass-ceramics was introduced. The possible combinations of x and
y became more limited for the crystallization of the superionic conducting phase
as the ionic radius of R increased and the Na+ conduction properties were more
enhanced in the glass-ceramics of larger R. The meaning of the composition formula
can be clarified in the thermodynamic and kinetic study of the crystallization and
phase transformation of metastable to stable phase in the production of N5-type
glass-ceramics. It was demonstrated that the medium value of content product as
[P]×[R] is important in the crystallization of the N5 single phase. The conduction
properties of these glass-ceramics were strongly dependent upon the crystallization
conditions as well as the compositions. Not only complex impedance analysis
but also TEM observations confirmed that this dependence was attributed to the
conduction properties of grain boundaries, which were glasses condensed at triple
points enclosed by grains.
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The Narpsio conductors exhibit great potential and are one of the most important
groups of solid electrolytes, not only because they are practically useful for
application in advanced batteries but also because they are three-dimensional
ionic conductors with a 12-(SiO4)4−-tetrahedra-containing skeleton structure from
which, or by analogy with which, various solid electrolyte materials can be derived.
In addition, various modified Narpsio glass-ceramics have been synthesized by
replacing R with Sc, Y, In, La, Nd, Sm, Eu, Gd, Dy, Er, or Yb and/or by substituting
tetravalent (Ti4+, Ge4+, Te4+), trivalent (B3+, Al3+, Ga3+), pentavalent (V5+),
and hexavalent (Mo6+) ions for P or Si. In this review, the results of Na+ ion
implantation as a material processing technique to introduce a large number of
mobile Na+ ions were presented. A large enhancement in electrical conductivity
was observed in the Narpsio glass-ceramics by ion implantation of Na+ ions.
Such glass-making processing is favorable for the fabrication of differently shaped
electrolytes, and the microstructures of glass-ceramic electrolytes can be controlled
through variation of the crystallization conditions. We have successfully produced
anisotropic glass-ceramic conductors by bias crystallization of the glasses in an
electric field. The microstructure and the conduction properties were dependent on
the current direction in the crystallization process.

10.7 Future Prospects

The Narpsio family has great potential. It is a solid solution in the Na2O-R2O3-
P2O5-SiO2 system and is expected to develop a variety of modified Narpsios. Our
main work has recently been focused on the synthesis of various glass-ceramics
with N5 single phase as shown in Fig. 10.27, which contain 15.6% mobile Na+
ions and 84.4% bonding Na+ ions. In the research currently underway, we are
trying to synthesize them without R elements but with Fe of high abundance and
low costs, by melt quenching and glass-crystallization method. Furthermore, mobile
Na+ ions in the N5 phase also can be exchanged for proton or several alkali ions.
Our group is advancing the development of new Narpsio family conductors by
exchange of carrier mobile Na+ with Li+, K+, or H+. In the future, we are expecting
computational chemistry to elucidate the conduction mechanism in conductors with
various kinds of carrier ions.

FeO6 octahedron a

b

RO6 octahedron
R=Rare earth

Na bonding 84.4%
Na mobility 15.6%

SiO4 tetrahedron

RO6 octahedron

XO4 tetrahedron

LiNa+ → Li+ , K+ , H+

R = Sc , Y , In , La , Nd
Sm , Eu , Gd , Dy , Er , Yb 

X = B , Al , Ga , Ti
Ge , Te , P , V , Mo

Fig. 10.27 A variety of modified Narpsios
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Chapter 11
Surface Characterization
of Plasma-Electrolytic Oxidized Coatings
by X-Ray Photoelectron Spectroscopy

Elena A. Koblova, Alexander Yu. Ustinov, and Oleg L. Shcheka

Abstract To explain the catalytic properties inherent to a number of coatings
formed by the method of plasma-electrolytic oxidation (PEO), a series of Ni- and/or
Cu-containing coatings on aluminum were investigated by X-ray photoelectron
spectroscopy (XPS). It was determined that the main components of the surface
layers of these coatings are a variety of oxide structures of the base and electrolyte
elements – oxides of aluminum, nickel, copper, and more complicated composite
structures. In this chapter, our experimental results are introduced.

Keywords X-ray photoelectron spectroscopy (XPS) · Surface structure · CO
oxidation · Metal oxide coating

11.1 Introduction

Design and investigation of various novel functional materials have been the main
objectives in modern material science. It was recently found that coatings formed
by the method of plasma-electrolytic oxidation (PEO) and containing 3d element(s)
have a pronounced catalytic activity in the oxidation of CO to CO2 [1–7]. Since the
surface plays a decisive role in heterogeneous catalysis, our research has emphasized
to investigate the composition and structure of the surface layers of the metal oxide
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PEO-coatings and interrelationships between the surfaces and catalytic properties. A
number of Ni- and/or Cu-containing coatings formed by PEO have been investigated
by the method of X-ray photoelectron spectroscopy (XPS) [5–7]. It was determined
that the main components of the surface layers of these coatings are a variety of
oxide structures of the base and electrolyte elements – oxides of aluminum, nickel,
copper, and more complicated composite structures. In this chapter, we introduce
our recent experimental results on surface coatings on aluminum.

11.2 Composition and Electronic State of Surface Metal
Oxide Structure

11.2.1 Experimental Details

The coatings were formed on aluminum (A7 grade) by PEO in water electrolytes
containing the basic components (Na3PO4, Na2¥4O7, Na2WO4) [8] and nickel and
copper acetates in various ratios. A detailed description of the coatings and the
process of their formation are in Ref. [5].

The XPS spectra were measured by an ultra-vacuum spectrometer (Specs, Ger-
many) equipped with a 150 mm electrostatic hemispherical Phoibos-150 analyzer
[4]. To excite the spectra, we used nonmonochromatized Mg Kα (1253.6 eV)
radiation. The vacuum in the analyzer chamber (when measuring the spectra) was
about 5·10−7 PÃ. The transmission energy of the analyzer was set to 50 eV (which
caused the resolution of the spectra in the C 1s band about 1.8 eV). The spectra
of the initial surface of the samples (the upper layers of 3–5 nm thickness) and the
underlying near-surface layers exposed by ion etching were measured. To remove
the upper layer (∼3 nm thick), ion etching was used by scanning the sample surface
for 5 min at an Ar+ energy of 5000 eV and current Itotal= 20 μA. According to
our estimation, the etching rate of the studied materials was about 0.1 Å/s. The
spectra were calibrated using the hydrocarbon C1s lines whose energy was taken to
be 285.0 eV.

11.2.2 Experimental Results

According to our previous results [5–7], PEO-coatings have the complicated
composition and structure due to the peculiarities of their formation processes.
Oxidation of the initial pure aluminum in the base electrolyte (PBW) leads to the
oxidation of upper layer metal-base and to the integration of components from
electrolyte: Na, P, and W (see Fig. 11.1). Here, as follows from the photoelectron
spectra (see Table 11.1), the surface layer of the Al-PBW coating contains not
only aluminum oxide and phosphate but also sodium phosphate Na3PO4, tungsten
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Fig. 11.1 Amounts of the
elements in the surface layers
of coatings: 1, Al; 2,
Al–PBW; 3, Al–Ni0,020; 4,
Al–Cu0,025; 5,
Al–Ni0,080–Cu0,0125

Table 11.1 The binding energy (eV) of the elements and their amounts in the coatings (the upper
line is the original sample, the lower one is after etching)

Sample Na Auger Cu 2p3/2 Ni 2p3/2 O 1s C 1s P 2p Al 2p W 4f7/2

1 − − − 532,1/28,6
532,3/29,7

285,0/59,9
285,0/1,8

− 74,2/11,5
74,8/68,5

−

2 264,6/1,4
264,1/0,5

− − 531,9/54,0
531,2/58,5

285,0/12,8
285,0/1,3

134,2/3,9
133,6/1,5

74,7/27,7
74,4/38,1

35,8/0,2
35,2/0,1

3 264,0/2,2
263,7/2,0

− 856,9/6,8
852,8/8,8

531,8/51,6
531,2/55,4

285,0/18,8
285,0/5,0

133,5/6,0
133,0/4,6

74,0/14,4
73,6/24,2

35,2/0,1
35,3/0,1

4 263,9/1,9
263,9/1,2

935,7/7,5
933,7/4,1

− 531,7/51,9
531,6/60,3

285,0/18,3
285,0/1,6

133,3/6,5
133,6/5,8

74,3/13,6
74,5/26,9

36,3/0,4
36,2/0,2

5 264,0/3,2
264,6/1,8

933,6/1,6
933,1/1,0

856,6/4,6
853,4/6,6

531,6/42,9
532,0/46,2

285,0/25,9
285,0/5,6

133,8/9,5
134,4/9,1

74,5/11,8
75,2/28,9

36,0/0,5
36,8/0,8

oxide WO3, and carbon-containing compounds (see Fig. 11.2a). Coatings formed
in electrolytes with the addition of appropriate amounts of nickel and/or copper
acetates contain not only the above structural components, oxides, and phosphates of
3d elements, but also more complex spinel-like formations MAl2O4, where M = Ni
or Cu (see Fig. 11.2b). Depending on the features of the formation (first of all, the
composition of the electrolyte, the regime, and the formation time), the proportion
of aluminum oxide in the surface layer of coatings can reach 35 at.%; aluminum
phosphate, 15 at.% (in the base coating Al-PBW – 60 and 15 at.%, respectively);
nickel oxide, 20 at.%; nickel phosphate, 10 at.%; copper oxide, 15 at.%; copper
phosphate, 30 at.%. Obviously, the presence of Ni and Cu oxides in a certain
quantity and quality determines the observed catalytic activity of the coatings.

In general, the upper layers of nickel- and copper-containing coatings are similar
in structure and composition. The main difference is the different occurrence of Ni
and Cu in the thickness of the coatings (see Fig. 11.3). Thus, under the transition
from the upper to the underlying layers of coatings, an increase in the nickel amount
is observed. On the contrary, a decrease in the copper amount indicates the Cu
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Fig. 11.2 The expected composition of the base coating surface Al–PBW (a) and Ni- or Cu-
containing coatings (b). M = Ni or Cu. MO, MPO4, and MAl2O4 conditionally denote the oxides
of 3d elements, their phosphates, and spinel-type structures

Fig. 11.3 Amounts of Ni 2p and Cu 2p in coatings 3 and 4 according to XPS

concentrating in the surface layers but Ni in the near-surface layers of the coatings.
It should be noted the change in the amount of “active” components during the
catalytic cycles (with gradual heating and subsequent cooling). An increase in the
nickel amount is observed in the upper and lower layers for the nickel-containing
coatings, while the copper amount decreases in copper-containing coatings, which
characterizes the different orientation of the diffusion processes. As an illustration
of these changes, Fig. 11.3 shows the Ni and Cu amounts in coatings 3 and 4, formed
in electrolytes with a close amounts of nickel and copper acetates, respectively.

For mixed Ni-, Cu-containing coatings, the presence of both 3d elements in the
upper layers is noted. In this case, the composition of the surface of coatings depends
significantly on the ratio of components in the electrolyte and the formation time.
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Comparing to the “mono” coatings (containing either nickel or copper), there is
a larger amount of phosphorus, less amount of oxygen, significantly less nickel
and copper in mixed Ni-, Cu-containing coatings (see Fig. 11.1). According to
the binding energies (see Table 11.1), the states of the elements in “mono” and
in mixed coatings are similar. Also, as for “mono” coatings, for the mixed ones,
the concentration of copper in the upper surface layers of the coatings is noted, and
nickel is in the deeper layers; an increase in the nickel amount and a decrease in the
copper amount in the entire analyzed thickness (about 5 nm) under heating during
the catalytic process were found [5].

11.3 Outlook

For deeper understanding of our experimental results, quantum chemical calculation
based on density functional theory (DFT) can be applicable [9]. We are investigating
catalytic reactions (including the adsorption of carbon monoxide) of the surface
metal oxides in case of aluminum (III), nickel(II), and copper(II) oxide clusters.
The results of DFT calculations will be summarized in a similar manner after some
refinements.
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Chapter 12
Inter-spin Interactions of Organic
Radical Chains in Organic 1D
Nanochannels: An ESR Study
of the Molecular Orientations
and Dynamics of Guest Radicals

Hirokazu Kobayashi

Abstract Unique inter-spin interaction appears in one-dimensional (1D) organic
inclusion compounds which are synthesized by using 2,4,6-tris(4-chlorophenoxy)-
1,3,5-triazine (CLPOT) and (o-phenylenedioxy) cyclotri phosphazene (TPP).
Molecular orientations and dynamics of guest radicals incorporated in CLPOT or
TPP nanochannels have been investigated using variable-temperature electron spin
resonance (ESR) measurement, together with ESR simulation. When 4-substituted-
2,2,6,6-tetramethyl-1-piperidinyloxyl (4-X-TEMPO) is incorporated in 1D CLPOT
and TPP nanochannels, they exhibited three-dimensional, temperature-independent
or 1D, temperature-dependent exchange interactions. It will be possible to design
and develop innovative organic magnet based on these features.

Keywords Inclusion compound · 1D nanochannel · Molecular dynamics ·
Organic magnet · ESR measurement · ESR simulation

12.1 Introduction of Inclusion Compounds

Various new organic functional materials intended for the development of inclu-
sion compounds (ICs) have been developed over the last few decades [1–13].
The guest molecules in ICs occupy nanosized cavities, nanochannels, molecular
sheets or jungle-jim-like frameworks in host lattices [12, 14, 15]. The guest com-
pounds within host compounds are mainly governed by van der Waals interaction.
Figure 12.1 demonstrates the images of zero- to three-dimensional nanospaces
and the included guest molecules. The nanospaces within the host materials are
called as one-dimensional (1D) when their structures are tunnel-like cavities,
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Fig. 12.1 Images of 0–3D nanospaces and the included guest molecules. Black-and-white
spherical objects demonstrate guest materials

two-dimensional (2D) in the case sandwiched between molecular sheets, and three-
dimensional (3D) in the case stacked jungle-jim-like. On the other hand, when
guest molecules are included in the center of circular host molecules, such as
crown ether, cyclodextrin, or micelles, they are called as zero-dimensional (0D)
for convenience[16]. In 1–3D host materials, when the pores of host materials
are kept even in the guest desorption by heating or pH change such as zeolite,
they are called as porous materials. Many researchers have employed 0–3D host
materials with periodic and regular cavities, including 1D nanochannels serving as
nanosized molecular templates to align guest molecules [11–13, 17–19]. ICs such
as these are expected to exhibit anisotropic physical properties. As an example,
the 1D alignment of paramagnetic molecules in 1D nanochannel may generate
the array of dimers, trimers, or multi-metric assembly of electron spins and may
give rise to anisotropic magnetic characteristics by the intra- or interchain magnetic
interactions. Such materials have attracted attention with regard to the fabrication of
novel molecular-scale magnets and electric devices [11–13, 17–24] and medications
based on magnetic markers [25] and also have applications in magnetic resonance
spectroscopy [26, 27].

Crystalline tris(o-phenylenedioxy)cyclotriphosphazene (TPP: Scheme 12.1a) has
tunnel-like 1D nanochannels in which the walls comprise locally trigonally coordi-
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Scheme 12.1 Chemical structures of host compounds described in this review: TPP (a) and
XPOT (b–d)

nated phenyl rings [14, 28]. The pore size of these nanochannels, 0.45 nm in the
guest-free state [29], can be expanded to 0.9 nm by including guest molecules.
The homogeneity of TPP nanochannels has been examined using hyperpolarized
and high-pressure 129Xe nuclear magnetic resonance (NMR) spectroscopy [30–
32]. During the recrystallization of TPP, solutes within the solvent and the solvent
molecules themselves can be included in TPP nanochannels in a 1D manner to form
molecular chains. The extent of inclusion in these nanochannels is decided by the
molecular size and the concentration of the guest molecules. If functional molecules
having unique electrical characteristics are included in the TPP nanochannels, the
resulting ICs may express anisotropic optical, electric, or magnetic properties. As an
example, TPP ICs including dye molecules exhibit an anisotropic second harmonic
generation effect due to the charge transfer direction in the guest molecules [33,
34] and those including I2 exhibit anisotropic electron conductivity parallel or
perpendicular to the channel axes due to electron donor properties of guest atoms or
molecules and the dielectric host structures which separates I2 chains [35].

TPP-based ICs incorporating sulfur-nitrogen or alkyl stearate radical molecular
chains have been assessed by several groups [36, 37]. The formation of 1D
molecular chains of 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO; Scheme 12.2a)
radicals was achieved using the 1D nanochannels of TPP crystals ([(TPP)2-
(TEMPO)1.0]; 1a/2a) [38, 39]. Electron spin resonance (ESR) analyses of 1a/2a
demonstrated isotropic line profiles over all temperature range, in particular inter-
mediate between Lorentzian and Gaussian above 139 K. In addition, a narrowing
of the peak-to-peak line width was associated with the 1D spin diffusion behavior
in this material (|Jintra| < 1 K) (see Sects. 12.2.5 and 12.6). On the other hand, the
inclusion amount of the guest radicals in nanochannels can be reduced using non-
radical molecules such as 2,2,6,6-tetramethylpiperidine (TEMP; Scheme 12.3a),
which are similarly sized to the guest radicals. Then, the ICs demonstrate high-
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Scheme 12.2 Chemical structures of guest radicals described in this review: 4-substituted-
TEMPO derivatives (4-X-TEMPO: a–d), DTBN (e), 4-substitute-PhNN (4-XPNN: f and g), and
PhIN (h)

Scheme 12.3 Chemical
structures of spacers
described in this review:
4-substituted-TEMP
derivatives (4-R-TEMP: a–c),
pivalone (d), and N-PhMI (e)

resolved ESR spectra due to the reduction of dipolar broadening. Above 108 K,
TEMPO radicals dispersed in TPP nanochannels by TEMP were found to undergo
anisotropic rotational diffusion around the principal y-axis of the g tensors of
the radicals, which were perpendicular to the molecular long axis (see Sects.
12.2.3 and 12.5) [40]. These results suggest the possibility of correlating the
inter-spin exchange/dipolar interactions of 1a/2a with the molecular dynamics of
TEMPO radicals in TPP nanochannels. 1a/2a undergo antiferromagnetic exchange
interactions at quite low temperatures, indicating that one-dimensional organic
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Table 12.1 Host, guest, and spacer described in this chapter

Roles Materials Example

Host Nanochannel 1–3D porous material TPP, XPOT
Guest Magnetic source Organic radical 4-X-TEMPO (including

DTBN), 4-XPNN, PhIN
Spacers Reduction of guest inclusion

in nanochannel
Non-radical molecule 4-R-TEMP, pivalone,

N-PhMI

inclusion compounds incorporating organic radical (1D OIC-OR) may potentially
be synthesized from these compounds. Such materials could be used to probe the
magnetic exchange between radicals, based on the appropriate selection of host and
guest materials so as to tune the molecular orientations and dynamics of the guest
radicals in the nanochannels. In the case of several TPP ICs incorporating organic
radicals such as 2a–c (2b: 4-oxo-TEMPO (TEMPONE), 2c: 4-hydroxy-TEMPO
(TEMPOL)), e (di-t-butyl nitroxide (DTBN)), f (phenylnitronylnitroxide (PhNN)),
and h (phenyl iminonitroxide (PhIN)), the molecular orientation and dynamics of
guest molecules in nanochannels have been determined using ESR spectroscopy
[41–44] as well as theoretical simulation of spectra [45–47] (see Sects. 12.2.3 and
12.5). These techniques can be employed to determine the molecular orientations
and dynamics of organic radicals both in 1D nanochannels and 0D cavities [48, 49].
In Table 12.1, the characters of host, guest, and spacer materials described in this
review are summarized.

In other work, the 1D nanochannels of 2,4,6-tris(4-chlorophenoxy)-1,3,5-triazine
(CLPOT: Scheme 12.1b) [50] crystals have been used to confine several organic rad-
icals, including 4-substituted-TEMPO derivatives (4-X-TEMPO: Schemes 12.2a–d)
[51, 52] and 4-substituted-phenylnitronylnitroxides (4-XPNN: Schemes 12.2f and
g) [27]. The 1D rotational diffusion of these radicals in CLPOT nanochannels
has been confirmed, based on the ESR spectra of radicals in the nanochannels
and numerical simulations (see Sects. 12.2.3 and 12.4). CLPOT ICs incorporating
1D 4-X-TEMPO molecular chains have demonstrated temperature-independent 3D
exchange interactions and exchange narrowing in the temperature range from 4.2 to
300 K (see Sect. 12.6) [53]. These results indicate, as predicted, the proper choice
of host materials, and guest radicals can control the inter-spin interaction in 1D
OIC-OR.

In the synthesis of 1D OIC-OR, CLPOT crystals are preferable to TPP as a host
material, as these crystals allow the inclusion of many different types of organic
radicals. This is due to the pore diameters in the former, which are comparable to the
molecular cross section of many stable nitroxide or NN (nitronylnitroxide) radicals
(ca. 1.1–1.3 nm in CLPOT but 0.45–0.9 nm in TPP) as well as the suitable polarity
of the former (as radicals frequently have polar substituent groups). However, it is
possible to include several types of guest radicals in TPP nanochannels by following
the appropriate stepwise process [41, 44]. Prior work concerning the determination
of the molecular orientations and dynamics of NN or IN (iminonitroxide) radicals
in TPP or CLPOT nanochannels using ESR has demonstrated the feasibility of
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developing a new ESR spin probe technique based on NN groups [27, 44]. For the
reasons described above, 1D OIC-OR represent an important new type of magnetic
material.

Both organic porous materials and metal organic frameworks [11, 13] can
be used as molecular templates for the array of guest radicals. In addition, 0D,
2D, or 3D porous materials may be employed to produce magnetic inclusion
compounds instead of those having 1D nanochannels. As an example, 2,4,6-
tris(4-bromophenoxy)-1,3,5-triazine (BRPOT: Scheme 12.1c) [50], one possible
derivative of 2,4,6-tris(4-halophenoxy)-1,3,5-triazine (XPOT: Scheme 12.1b–d),
can contain several different guest molecules, including Buckminsterfullerenes [54–
56]. However, the cavities of XPOT derivatives other than CLPOT do not necessarily
have 1D structures. These difference in morphology originate from the inter-atom
interactions between halogen atoms in the XPOT crystals [50].

In this review, the molecular orientations and dynamics of various guest rad-
icals, as an example, 4-X-TEMPO, 4-XPNN, or PhIN, in CLPOT or TPP 1D
nanochannels are described based on the ESR analyses. In addition, the inter-
spin interactions of 4-X-TEMPO radical chains formed in the CLPOT or TPP
nanochannels are explained in relation to the molecular dynamics of 4-X-TEMPO in
the nanochannels. In Sect. 12.2, theoretical background of ESR and the calculation
method in ESR simulation using EasySpin program [46, 47] are introduced. Sample
preparation and characterization of 1D OIC-OR are noted in Sect. 12.3. The
molecular dynamics of guest radicals in CLPOT- or TPP-based 1D OIC-ORs are
explained in Sects. 12.4 and 12.5, respectively. Remarkable exchange interaction
in CLPOT- or TPP-based 1D OIC-ORs with 4-X-TEMPO chains are explained in
Sect. 12.6. Finally, in Sect. 12.7, the conclusion and outlooks in the future of this
study are described.

12.2 Theoretical Background and ESR Simulation

12.2.1 Electron Spin Resonance

In ICs, magnetic resonance spectroscopy is a powerful means of elucidating the
molecular structures of host materials and the molecular orientations and the
dynamics of guest radicals in host nanochannels, in addition to assessing inter-
spin interactions and magnetism of guest radical chains. When the researchers tune
into the unpaired electrons in guest radicals or the electric properties of 1D OIC-
ORs (as examples, conductivity, dielectric or magnetism), they may use electron
spin resonance (ESR) spectroscopy, whereas nuclear magnetic resonance (NMR)
spectroscopy is available for the study when they are interested in the molecular
structures or the dynamics of non-radical compounds. The reader is referred to
several texts that provide detailed discussions of magnetic resonance spectroscopy
[57–60].
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When a sample with unpaired electrons is inserted into an external magnetic
field B0, the magnetic moments of electrons in the material are split into different
energy levels, depending on whether these moments are parallel or antiparallel to
B0. The electron magnetic moment operators are proportional to the electron spin
angular momentum values, and the proportionality constant γ (also referred to
as the gyromagnetic ratio) will be negative for electrons. Therefore, the electron
magnetic moment will be antiparallel to the angular momentum. In the external
magnetic field, the electron spin magnetic moments precess around B0 at the
Larmor frequency ω0, which equals -γ B0. The Larmor frequencies of the various
electron magnetic moments in a specimen will differ according to the shielding
effect of neighboring electrons and/or nuclei. If an electromagnetic wave whose
frequency corresponds to the energy difference of the magnetic moments in the
field, (�E = hv = �ω = γ�B) is applied to the sample, the electron spins in the
ground states will be excited. This phenomenon is the basis of ESR, which focusses
on electron spins. ESR studies employ a magnetic field (generated using an electric
magnet) that sweeps over the range of 0–1 T in conjunction with continuous-wave
(cw) microwave irradiation (1–100 GHz) of a sample in a cavity resonator. Pulse
ESR methods are also used for the clarification of complicated spin-lattice or inter-
spin interactions. Variable-temperature ESR over the temperature range from 4.2 to
400 K can be applied to determine the spin concentration of each IC, as well as the
molecular orientations and dynamics of organic radicals in 1D nanochannels and
the inter-spin interactions and magnetism of 1D organic radical chains constructed
in the 1D nanochannels. In this review, the theoretical background of the analysis of
free radicals in 1D nanochannels by ESR spectroscopy is described in detail.

12.2.2 Nuclear Magnetic Resonance

When a sample without unpaired electrons is used, electron spins in the description
in the prior subsection can be replaced into nuclear magnetic moments (more
properly, only in the case of I = 1/2 (I: the nuclear spin quantum number of
the nuclei). If I > 1/2, see Sect. 12.2.3.1 and references [57–59]). However, the
proportionality constant γ will be positive for most nuclei. Therefore, the nuclear
magnetic moment will typically be parallel to the angular momentum. In modern-
day NMR analyses, radio-frequency pulses (ω; in the range of 102–103 MHz) are
applied to a sample surrounded by a coil and subjected to an external magnetic field
of approximately 1–15 T in conjunction with a superconducting magnet. In the case
of metals or metal nanoparticles, analyses are conducted in a static external magnetic
field using a cw radio-frequency source with either a permanent or electric magnet
[60, 61]. Room temperature solution 1H NMR spectroscopy is primarily performed
for the structural elucidation of host materials such as TPP and CLPOT.
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12.2.3 ESR Simulation

12.2.3.1 g Tensor and A Tensor

The ESR spectra for the free radicals in 1D nanochannels is reproducible using
EasySpin program for the ESR spectral reproduction under various conditions of
electron and nuclear spins [62]. The total spin Hamiltonian used in EasySpin is as
follows:

Ĥ =
∑

i

(
ĤEZI(i) + ĤZFI(i)

)
+
∑

i

(
ĤNZI(k) + ĤNQI(k)

)

+
∑

i

∑

j>i

ĤEEI (i, j) +
∑

i

∑

k

ĤHFI (i, k) (12.1)

with the following terms: ĤEZI(i), electron-Zeeman interaction (EZI) between
electron spin i with an external magnetic field; ĤZFI(i), zero-field interaction (ZFI)
of electron spin i with adjacent electron spins in the case of S > 1/2 (S, the total spin
quantum number of electrons in the system); ĤNZI(i), nuclear-Zeeman interaction
(NZI) between nuclear spin k with an external field; ĤNQI(i), nuclear quadrupole
interaction (NQI) between nuclear spin k with I > 1/2 (I, the nuclear spin quantum
number of the nuclei) having an electric quadrupole moment that can interact
with the local electric field gradient at the nucleus; ĤEEI (i, i), electron-electron
interaction (EEI) between electron spin i and j as an example, exchange interaction;
and ĤHFI (i, k), hyperfine interaction (HFI) between electron spin i and nuclear spin
k at the nucleus. In this review, ĤNZI(i) and ĤNQI(i) are ignored due to the small
influence in the electron spin system and also ĤZFI(i) and ĤEEI (i, i) due to the quite
isolated spin system without zero-field splitting or exchange interaction.

Therefore, the spin Hamiltonian for the free radicals isolated in 1D nanochannels,
as examples, 4-X-TEMPO (2a–e), 4-XPNN (2f and g), and PhIN (2h), is simplified
as follows:

Ĥ = βeB · g · Ŝ + Ŝ ·
∑

p=1,2

Ap · Îp + βngnB ·
∑

p=1,2

Ap · Îp (12.2)

where βe, B, g, Ap, βn, gn, Ŝ, and Îp are the Bohr magneton, the laboratory magnetic
flux density vector (corresponding to the external magnetic field), the electron spin
g tensor, the hyperfine tensor for the pth 14N nucleus, the nuclear magneton, the
nuclear spin g-factor, the electron spin operator, and the nuclear spin operator for
the pth 14N nucleus in the radicals, respectively [27, 41–44, 51, 52, 63, 64]. g and
Ap are described as diagonal matrices
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g =
⎛

⎝
gxx 0 0
0 gyy 0
0 0 gzz

⎞

⎠ (12.3)

Ap =
⎛

⎝
Apxx 0 0

0 Apyy 0
0 0 Apzz

⎞

⎠ (12.4)

via a rotation matrix parameterized by three Euler angle where gqq and Aqq (q = x,
y, z) are the three principal values of the g and Ap matrices [62]. If p = 1,
the summation sign in Eq. (12.2) may be often omitted for simplification. The
isotropic components of g and Ap are defined by giso = (gxx + gyy + gzz)/3, and
(Ap)iso = (Apxx + Apyy + Apzz)/3.

In the case of 4-X-TEMPO, the single nitrogen atom of the nitroxide (NO) group
is considered (i.e., p = 1), whereas the nitrogen atoms of the nitronyl and/or imino
nitroxide groups (i.e., p = 1 or 2) in 4-XPNN and PhIN radicals are considered.

The principal axes of the 4-X-TEMPO radicals are defined such that the z-axis
is perpendicular to the NO group, and along the 2pz orbital of the NO group, the
x-axis is parallel to the NO bond and the y-axis is perpendicular to the zx plane
[65]. The principal axes of the g and A tensors are coincident. The A tensor of
the NO radicals is quite anisotropic, such that Azz > Axx, Ayy [51, 52, 63–65]. To
ensure accurate reproduction of the ESR spectra, the Axx and Ayy values for 4-X-
TEMPO are assumed to be similar, while cylindrical symmetry of the A tensor is
not necessarily assumed.

The principal axes of the 4-XPNN radicals are defined such that the z-axis is
perpendicular to the molecular plane of the NN group of 4-XPNN, the y-axis is
parallel to the bond between the NN group and phenyl ring, and the x-axis is
perpendicular to the yz plane [27, 44, 66]. Therefore, the g tensor for the 4-XPNN
radical is determined as follows [66]. The unpaired electron of the NN group is
associated with a π orbital. As such, the lowest component of the g tensor should be
observed perpendicular to the molecular plane of the NN group (i.e., the principal
z-axis direction) and should have a value of approximately 2.0023. In molecular
orbital calculations, gxx >gyy >gzz for the 4-XPNN radical (i.e., the intensity of
the gxx component is observed at the leftmost (lowest magnetic field) side). With
respect to the A tensor for the 4-XPNN radical, the unpaired electron occupies the
π orbital composed of the 2pz orbitals of the nitrogen atoms (having considerable
spin density), such that Azz is major component, with Axx and Ayy being minor
components. Therefore, the A tensor for NN radicals is also quite anisotropic.
Although the local axes of the A tensors of the two nitrogen nuclei of the 4-XPNN
radical are expected to be different, it is assumed that the unpaired electron interacts
with the two nitrogen nuclei with an averaged A tensor, so as to simplify the analysis.
In this approximation, the principal axes of the g and A tensors for the 4-XPNN
radical will be coincident.
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The principal axes of the g tensor of the PhIN radical are assumed to be similar
to those of the 4-XPNN radical and also consistent with NN due to the higher spin
density on the NO group [44]. However, it should be noted that A1 �= A2 for IN
radicals ((A1)iso > (A2)iso), [44, 67] where A1 is the hyperfine tensor of the NO
nitrogen of the IN groups and A2 is that of the 3-position nitrogen. Since the xx and
yy components of A1 and A2 are much smaller than the zz component, the principal
axes of the g, A1, and A2 tensors for the IN radicals are also assumed to be coincident
to allow for simplified calculations, similar to the procedure for 4-XPNN radicals.

12.2.3.2 Calculation Procedure

To the determine the molecular orientations and dynamics of guest radicals in 1D
nanochannels, the ESR spectra of isolated radicals must be reproduced in detail,
because these spectra provide information concerning the principal values of the
g and A tensors. Such spectra can be generated based on theoretical calculations.
EasySpin program is a component of the MATLAB software package (MathWorks,
Natick, MA, USA), developed by Stoll and intended for the simulation and fitting
of a wide range of ESR spectra (EasySpin 5.2.20, ETH Zürich) [46, 47]. EasySpin
program provides extensive ESR-related functionality, ranging from spin physics
to data analysis. This software also contains routines for the simulation of liquid-
and solid-state ESR and electron-nuclear double resonance data. The programming
language of MATLAB is based on matrices and very efficient matrix algorithms, and
EasySpin program consists of over 80 MATLAB functions that perform a variety of
ESR-related tasks. Functions from the larger and more basic category provide the
core functionality necessary for computational ESR. Building on this foundation,
a small number of general, robust high-level functions for spectral simulation are
provided.

This sub-subsection references a number of programs. These include the Pepper,
which is used to produce the field-swept and frequency-swept solid-state cw ESR
spectra of powders and crystals; Chili, which simulates field- and frequency-swept
cw ESR spectra in the slow-motion regime on the ESR time scale; and Garlic,
which produces the isotropic or anisotropic fast-motion cw ESR spectra of radicals
in solution or nanospaces. Calculations for 4-XPNN and PhIN radicals with two
14N atoms (I = 1) based on the interactions of electron spins can be performed
using a PC with more than 8 GB of RAM. Chili requires more memory to
generate spectral reproductions for 4-XPNN or PhIN radicals, and so the allocation
function of Opt within the program parameters, as an example, should be set to
Opt.Allocation = [4e7 2e5] [47].

12.2.3.3 Rigid-Limit ESR Spectra

Figure 12.2 presents typical rigid-limit ESR spectra for nitroxide, NN, and IN
radicals as simulated using the EasySpin Pepper program to calculate solid-state
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Fig. 12.2 Typical rigid-limit
ESR spectra for powder (a)
nitroxide [52] (b) NN [27]
and (c) IN radicals [44] using
the EasySpin Pepper program
[46, 47]. Bars on the
horizontal axis in each figure
indicate the major hyperfine
coupling interactions by
equivalent or inequivalent
nitrogen atoms

cw spectra. In Fig. 12.2a–c, the three, five, or seven major hyperfine interaction
lines associated with the equivalent/inequivalent nitrogen atoms having unpaired
electrons in the substituent groups are shown on the horizontal axis for convenience.
These spectra were reproduced using the principal values of the g and A tensors of
unpaired electrons, along with line width parameters and signal amplitudes. The g
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Table 12.2 Tensor components of the g, Ap, and line width parameters (G, Gaussian component; L, Lorentzian
component) for the reproduced ESR spectra of nitroxide, NN, and IN radicals presented in Fig. 12.2

State of
radicals gxx gyy gzz A1xx(/A2xx)/mT A1yy(/A2yy) /mT A1zz(/A2zz) /mT Line width

G/mT L/mT

Fig. 12.2a
(nitroxide
radicals)a

2.0095 2.0066 2.0023 0.06 0.06 3.30 0.50 0.40

Fig. 12.2b
(NN
radicals)b

2.0120 2.0075 2.0028 0.02 0.03 1.84 0.20 0.40

Fig. 12.2c
(IN
radical)c

2.0103 2.0050 2.0028 0.01
0.02

0.01
0.02

2.36
1.16

0.10 0.40

aRef. [52]. bRef. [27]. cRef. [44]

and A tensors for each radical were estimated from experimental data by setting
default values for gzz and Azz based on the hyperfine coupling lines associated with
isolated radicals acquired at both ends of low-temperature ESR spectra, assuming
that the molecular motion of the radicals was frozen. The values of gxx and gyy

and of Axx and Ayy are difficult to determine directly from ESR spectra, and so
these were initially estimated by visual inspection of the simulations of ESR spectra
generated using EasySpin program. The final values for each component of the g
and A tensors of each radical were estimated via the step-by-step variation of these
components or gqq and Aqq (q = x, y or z) along with the line width parameters
and signal amplitudes, so as to minimize the sum of the squares of the difference
between the experimental and simulated spectra. The number of the A tensor in Eq.
(12.2) will vary according to the number of equivalent/inequivalent nitrogen atoms
in substituent groups on which unpaired electron is localized. The principal axis
components of the g and A tensors for the reproduced ESR spectra shown in Fig.
12.2 are summarized in Table 12.2.

The EasySpin program expresses the line shape using a Voigt function based
on the Gaussian broadening (convolution) of a Lorentzian line [46, 47, 68]. In the
present analysis, the full width at half maximum (FWHM) is employed as the line
width parameter, and the Gaussian and Lorentzian line width components for the
reproduced ESR spectra shown in Fig. 12.2 are also provided in Table 12.2.

The three major hyperfine interaction lines associated with the nitrogen atoms in
the NO groups of nitroxide radicals are shown on the horizontal axis in Fig. 12.2a
for convenience. These supplementary lines have equivalent peak heights when the
ESR spectrum is acquired in dilute solution. In the case of the reproduction of an NN
radical spectrum in Fig. 12.2b, the five major hyperfine interaction lines associated
with equivalent nitrogen atoms having the same hyperfine coupling constants are
included on the horizontal axis. The peak heights of these supplementary lines are
proportional to their peak intensities in dilute solution, (i.e., 1:2:3:2:1). Although
lines 1, 2, 4, and 5 are well-resolved, the shape of line 3 is more complicated
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Table 12.3 Tensor components of the g and A tensors for various organic radicals in the various
states. Spacer molecules are abbreviated in each state

State of
radicals gxx gyy gzz A1xx(/A2xx)/mT A1yy(/A2yy)/mT A1zz(/A2zz)/mT

TEMPO in
TPPa

2.0100 2.0070 2.0024 0.60 0.55 3.35

DTBN in
TMCBb

2.0088 2.0062 2.0027 0.76 0.60 3.18

DTBN in
TPPc

2.0090 2.0062 2.0022 0.50 0.50 3.48

TEMPOL
in TPPd

2.0092 2.0061 2.0026 0.83 0.30 3.33

TEMPO in
CLPOTe

2.0102 2.0062 2.0023 0.73 0.60 3.35

MeO-
TEMPO in
CLPOTf

2.0098 2.0062 2.0024 0.56 0.43 3.43

PhNN in
rigid Duco
Cementg

2.0127 2.0068 2.0028 0.52 0.52 1.80

PhNN in
CLPOTh

2.0118 2.0075 2.0031 0.34 0.12 1.74

PhNN in
TPPi

2.0107 2.0086 2.0031 0.01 0.01 2.13

p-NPNN in
CLPOTh

2.0116 2.0076 2.0030 0.32 0.16 1.77

PhIN
glassy
toluenej

2.00932 2.00604 2.00222 – – 2.32/1.28

PhIN in
TPPi

2.0103 2.0050 2.0028 0.02/0.01 0.01/0.02 2.36/1.16

TMBC tetramethyl-1,3-cyclobutanedione
aRef. [40]. bRef. [64]. cRef. [41]. dRef. [43]. eRef. [51]. fRef. [52]. gRef. [66]. hRef. [27]. iRef.
[44]. jRef. [67]

[66]. This occurs because the gxx and gyy components are larger than the gzz

component and because the Axx
NN and Ayy

NN components are much smaller than
the A1zz

NN component. In the case of PhIN results in Fig. 12.2c, the seven major
hyperfine interaction lines associated with inequivalent nitrogen atoms having
different hyperfine coupling constants (typically, A1zz

IN ∼ 2A2zz
IN) are included.

The peak heights of these lines are proportional to the peak intensities obtained
from analyses in dilute solution. Here, lines 1, 2, 5, 6, and 7 are well-resolved, and
the spectrum between lines 3 and 4 is more complicated [44]. These results are due
to the gxx and gyy components, which are large relative to the gzz components, and
to the A1xx

IN, A1yy
IN, A2xx

IN, and A2yy
IN components, all of which are much smaller

than the A1zz
IN or A2zz

IN components. The principal axis components of the g and A
tensors of several organic radicals in various states are provided in Table 12.3.
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12.2.3.4 Anisotropic Rotational Diffusion

When simulating ESR spectra at higher temperatures (at which the molecular
motions of radicals in the 1D nanochannels are increased), it is assumed that the
rotational axis of each organic radical can be defined by polar and azimuthal angles,
θ and φ, respectively, in the principal axis system of the g tensor for each radical
[27]. As noted, the Chili program within the EasySpin package allows ESR spectra
in the slow-motion regime to be generated [46, 47]. These simulations are based on
solving the stochastic Liouville equation on the basis of rotational eigenfunctions.

In the case of a molecule that undergoes numerous collisions that cause small
random angular reorientations, the resultant anisotropic rotational motion is a
Markov process [45]. If � is defined as the Euler angle for a tumbling molecular axis
with respect to a fixed laboratory axis system, the probability of finding the molecule
in direction � at time t is defined as P(�, t). In a Markov process, the probability of
being in state �1 at time t, if in state �2 at time t-Δt, is both independent of the �

value at any time earlier than t-Δt and dependent only on Δt rather than t. As such,
P(�, t) can be described by the rotational diffusion equation:

∂P (�, t)

∂t
= R∇�

2P (�, t) (12.5)

where ∇�
2is the Laplacian operator on the surface of a unit sphere and R is the

rotational diffusion coefficient. If the molecule is approximated by a rigid sphere
of radius a rotating in a medium of viscosity η, the rotational Stokes-Einstein
relationship yields

R = kT

8πa3η
(12.6)

In an anisotropic liquid, the average rotational diffusion correlation time τR is
given by:

τR =
(

6
√

R‖R⊥
)−1

(12.7)

where R|| and R⊥ are defined as the parallel and perpendicular components of R. It
is expected that Eqs. (12.5, 12.6, and 12.7) can be applied to anisotropic molecular
rotational diffusion in organic 1D nanochannels [27, 44, 51, 52]. Thus, in ESR
simulations, highly anisotropic R|| and R⊥ components, such as R||/R⊥ ≈ 1000,
are assumed.

The θ and φ values for nitroxide, NN, and IN radicals can be estimated by varying
τR along with the line width parameters and signal amplitudes so as to obtain the
best fit to the ESR spectrum at the highest temperature. At elevated temperatures,
the molecular motions of guest radicals in the 1D nanochannels will be in the slow-
motion regime (10−6 s > τR > 10−9 s) on the ESR time scale. Using these θ
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Fig. 12.3 Simulated ESR
spectra of nitroxide, NN, and
IN radicals, modulated on the
basis of anisotropic rotational
diffusion around the principal
x, y, and z axes of the g tensor
(a–c), the principal y-axis of
the g tensor (d), and (again)
the principal y-axis of the g
tensor (e), respectively, using
the Chili program within the
slow-motion regime with
respect to the ESR time scale
[27, 41, 44, 52]

and φ values, τR is similarly estimated at additional temperatures by varying the
same factors. Figure 12.3 shows the simulated ESR spectra of nitroxide, NN, and
IN radicals, modulated on the basis of anisotropic rotational diffusion around the
principal x, y, and z axes of the g tensor, the principal y-axis of the g tensor, and
(again) the principal y-axis of the g tensor, respectively, using the Chili program
within the slow-motion regime with respect to the ESR time scale. The associated
τR values are based on the typical spectra in rotational diffusion of organic radicals
in 1D nanochannels and are 6 × 10−9 s for spectra (a)–(c), 3 × 10−8 s for (d), and
9 × 10−9 s for (e) [27, 41, 44, 52]. See Sects. 12.4 and 12.5 about the examples of
experimental and simulated ESR spectra of various organic radicals in CLPOT and
TPP nanochannel.

12.2.4 Van Vleck’s Formula for Rigid Spin Lattices

Sections 12.2.4 and 12.2.5 describe the theoretical background associated with
determining the line widths and profiles of broader isotropic ESR spectra in 1D
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organic radical chains constructed in 1D nanochannels. This discussion is helpful
with regard to clarifying the inter-spin interactions within 1D 4-X-TEMPO chains
in 1D nanochannels.

The line profiles of isotropic ESR spectra reflect the type and magnitude of inter-
spin dipolar and/or exchange interactions in the specimen, as well as the inter-spin
distances between electron spins and other factors. In the absence of exchange
interactions (i.e., considering only dipolar interactions in the spin system), the
average second moment, M2, of the rigid spin lattice can be estimated using Van
Vleck’s formula [39, 44, 59]

M2 = �ω2 = 3

5
γ 4

�
4S (S + 1)

∑

k

1

rk
(12.8)

where γ , S, and rk are the electron gyromagnetic ratio, the electron spin quantum
number, and the distance between two spins. In this case, the ESR profile becomes
a Gaussian function. Generally, the peak-to-peak line width ΔBpp is equal to 2

√
M2

and the FWHM, ΔB1/2 is equal to 2.36
√

M2 [59]. Under the condition of the
existence of only dipolar interaction in the spin system, the peak-to-peak line width
is described by Bpp

D in this chapter. It should be noted that the experimental value
for ΔBpp may be much narrower than the value estimated using Eq. (12.8), as a
result of exchange or motional averaging. Therefore, it is necessary to estimate the
inter-spin distance in the system as accurately as possible.

In our previous work regarding [(TPP)2-(TEMPO)1.0] (1a/2a) and [CLPOT-
(4-X-TEMPO)] (1b/2a–d), the electron spins on the NO groups of 4-X-TEMPO
molecules in TPP or CLPOT nanochannels were found to interact with those of other
4-X-TEMPO molecules in the same or adjacent channels [39]. These interactions
are, respectively, defined as “intrachain” or “interchain” inter-spin interaction. In
1a/2a and 1b/2a–d, a single 4-X-TEMPO molecule (i.e., one unpaired electron)
was determined to be accommodated in a TPP or CLPOT unit cell formed by
two molecules. The electron spins of 4-X-TEMPO molecules in the nanochannels
were assumed to be located at the center of gravity of the molecules, so as to
simplify computation by averaging the uniaxial rotational diffusion of 4-X-TEMPO
molecules around the rotational axis (commonly considered to be parallel to the
nanochannel axis). In this case, the nearest neighbor intra-channel or interchain
inter-spin distance, respectively, corresponds to the cell parameters, such as c = 1.2
nm or a = 0.98 nm in the case of the TPP frameworks of 1a/2a [39] and c = 0.688
nm or a = 1.51 nm in the CLPOT frameworks of 1b/2a [44]. Therefore, it is
convenient to consider 1a/2a as a spin system having a sixfold symmetric spin
lattice with 1.2 nm intra-channel and 0.98 nm inter-channel inter-spin distances.
The structures of 1b/2a–d were interpreted in a similar manner.

However, subsequent studies showed that these assumptions are valid only near
room temperature. In this temperature range, 4-X-TEMPO molecules in the TPP or
CLPOT nanochannels undergo rotational diffusion in the fast-motion region on the
ESR time scale (τR < 10−9 s, where τR is the correlation time for the rotational
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diffusion of 4-X-TEMPO molecules; see Sect. 12.2.3.4). As an example, in 1a/2a
below 112 K, the rotational diffusion of TEMPO molecules in TPP nanochannels is
thought to cease, such that the nitroxide groups of TEMPO molecules at different
sites are likely disordered [39]. Nevertheless, the relative error associated with the
estimations of M2 using the simple model described in reference [39] and the more
precise model taking into account the disorder of nitroxide groups noted above is
at most 10%. Similar results are obtained for 1b/2a–d [44]. Therefore, the simple
model based on reference [39], in which the positions of the electron spins of 4-
X-TEMPO molecules in the 1D nanochannels are assumed to coincide with the
centers of gravity of 4-X-TEMPO molecules, is thought to be suitable as a means of
reducing the computational demands when determining M2.

12.2.5 Dietz’s Method for Determination of ESR Line Profiles
and Inter-spin Interactions

The ESR line profile [39, 44, 59, 69] is determined by the Fourier transform of the
time-dependent relaxation function of transverse magnetization, ϕ(t) expressed as:

ϕ(t) = exp

[
−M2

∫ t

0
(t − τ) � (τ) dτ

]
(12.9)

where Ψ (τ ) is the normalized transverse magnetization correlation function of the
local field at the spin. In the absence of an exchange interaction between two
electron spins, ϕ(t) can be described by a Gaussian function, resulting in a Gaussian
resonance line. In the case of a spin system with 3D interactions due to exchange,
or with motional averaging, Ψ (τ ) rapidly decays to zero, leading to an exponential
function for ϕ(t) and a Lorentzian resonance line. If Ψ (τ ) decays according to the
diffusion equation at the long time region (τ e << τ , where τ e is approximately
equal to 1/ωe where ωe is the spin fluctuation frequency), ϕ(t) for 1D spin diffusion
process can be represented as exp[-(Γ t)3/2] where Γ is a constant. This suggests
the presence of exchange interactions between neighboring spins in the 1D system.
Since the effect of exchange narrowing becomes weaker than that of 3D exchange
interactions between spins in this scenario, the ESR line profile will be intermediate
between Lorentzian and Gaussian.

The dimensionality of 1D OIC-OR exchange interactions can be assessed by
examining the temperature dependency of the ESR line profile using a Dietz’s plot
[69], which depicts the inverse of the ESR line profile. In such plots, I(B0)/I(B) is
plotted against [(B−B0)/(ΔB1/2/2)]2 (see Figs. 12.14 and 12.15 in Sect. 12.6) where
I(B) is the intensity of the ESR resonance line in an external magnetic field B, B0
is the magnetic field on resonance, and ΔB1/2 is the FWHM of the resonance line
(meaning that the term ΔB1/2/2 included in the horizontal axis parameter is the half
width at half maximum of the resonance line). Figures 12.14 and 12.15 in Sect. 12.6
present one such plot. The magenta one demonstrates a Gaussian function having
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the power index of ϕ(t) is population to -t2. The green line in this same figure depicts
a Lorentzian function in which ϕ(t) showing an exponential manner, while the cyan
curve is for the case intermediate between Gaussian and Lorentzian observed in 1D
spin diffusion systems.

12.3 Experimental Procedure

12.3.1 Sample Preparation and Notation

For the investigation of the molecular orientations and dynamics of organic radicals
in 1D nanochannels, the appropriate spacer molecules for the dilution of radicals
included in TPP or CLPOT nanochannels were selected. The resulting material
comprised needle-like crystallites and was colorless. For the construction of 1D
organic radical chains in 1D nanochannels, a solution of the radical species was
prepared having an excess concentration and without the spacer species. The
resulting material comprised needle-like crystallites and was pale orange or pale
pink. The reader is referred to several papers that provide detailed preparation
process of 1D OIC-OR [27, 39, 41, 44, 52]. Most of 1D OIC-ORs prepared in this
way were stable for at least a year in air.

In this chapter, the notation [(A)2−(B)x/(C)y] is used for 1D OIC-OR. For exam-
ple, when TPP, 4-X-TEMPO, and 4-R-TEMP are used to as host, guest, and spacer,
respectively, the notation becomes [(TPP)2-(4-X-TEMPO)x/(4-R-TEMP)y]. x and y
denote the numbers of incorporated units per two host molecules. Throughout the
text, the sample names may also be abbreviated simply as “1a/B/C” or “1b/C.” Note
that the host to guest ratio notation for each sample has been abbreviated for the sake
of simplifying the figure or in the case of focusing only the component materials of
1D OIC-OR (e.g., the notation of [(TPP)-(4-X-TEMPO)/(4-R-TEMP)] is used for
[(TPP)2-(4-X-TEMPO)x/(4-R-TEMP)y]).

12.3.2 Sample Characterization

The structures of TPP and CLPOT nanochannels are known to be maintained
even after the inclusion of guest radicals. In addition, the space group and
cell parameters of CLPOT crystals are similar following inclusion. However,
following inclusion, the cell parameters and pore diameters of TPP crystal can
be expanded according to the molecular cross section of the guest radical. Figure
12.4 presents the room temperature powder X-ray diffraction (XRD) patterns
obtained for guest-free TPP, [(TPP)2-(PhIN)0.002/(N-PhMI)1.0] (1a/2h/3e) [44],
[(TPP)2-(PhNN)x/(PhIN)y/(N-PhMI)1.0] (x ≈ 5 × 10−4 and y ≈ 2 × 10−4;
(1a/2f/2h/3e) [44], [(TPP)2-(DTBN)x/(pivalone)1.1] (x ≈ 4 × 10−4; 1a/2e/3d)
[41], [(TPP)2-(TEMPONE)0.021/(TEMP)1.1] (1a/2b/3a) [41], and [(TPP)2-
(TEMPOL)0.004/(TEMP)1.2] (1a/2c/3a) [43]. In Figs. 12.4a–f, the reflection patterns
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Fig. 12.4 Powder XRD
patterns of (a) guest-free TPP,
(b) [(TPP)2-(PhIN)0.002/(N-
PhMI)1.0] (1a/2h/3e) [44], (c)
[(TPP)2-
(PhNN)x/(PhIN)y/(N-
PhMI)1.0] (x ≈ 5 × 10−4 and
y ≈ 2 × 10−4; 1a/2f/2h/3e)
[44], (d) [(TPP)2-
(DTBN)x/(pivalone)1.1] (x ≈
4 × 10−4; 1a/2e/3d) [41], (e)
[(TPP)2-
(TEMPONE)0.021/(TEMP)1.1]
(1a/2b/3a) [41], and (f)
[(TPP)2-
(TEMPOL)0.004/(TEMP)1.2]
(1a/2c/3a) [43] at room
temperature

at small degree values are shifted to the lower degree side as the molecular cross
section of the guest radical is increased, demonstrating the expansion of the pore
diameters of the TPP nanochannels. The reader is directed to various literature
publications that discuss estimation of the cell parameters in various ICs [41–44].
In contrast, the reflection patterns in CLPOT ICs incorporating organic radicals are
independent of the presence of guest radicals [51, 52], possibly because of the larger
pore diameter of these nanochannels. The inclusion amounts and the composition
ratios of guest radicals and spacers in the nanochannels in TPP or CLPOT ICs can
be determined according to the ESR spin concentrations, the elemental analysis
(EA) results, and the desorption amounts indicated by thermogravimetric analysis –
differential thermal analysis (TG-DTA) [27]. The spin concentration in each IC can
be obtained from ESR spectra. The composition ratio of guest molecules to host
materials or of guest radicals to spacers can be determined from EA data. Finally,
in each IC, the possibility of the inclusion of guest molecules in the nanochannels
or the adsorption of such species on the host crystal surfaces is given by TG-DTA
results. There are several literature reports that provide detailed descriptions of the
composition ratios in ICs [39–44, 51–53].

12.4 ESR Analysis of Molecular Orientations and Dynamics
of Organic Radicals in CLPOT Nanochannels

As reported in our previous publication [27, 51–53] various organic radicals can be
included in CLPOT nanochannels. If these guest organic radicals are adequately
dispersed by spacer molecules with sizes similar to those of the guest, or by
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vacancies between guest radicals, the molecular orientations and dynamics of the
guest radicals can be examined using ESR spectroscopy and spectral simulations.
The reader is referred to several papers that provide detailed experimental conditions
for ESR analyses [27, 39, 41, 44, 52].

CLPOT nanochannel can include many organic radicals due to its large pore
diameters (1.1–1.2 nm in the guest-free state) and minimal polarity. In this section,
the ESR spectra of 4-X-TEMPO and 4-XPNN are presented, and the process of
spectral reproduction is explained. The results are used to elucidate the molecular
orientations and dynamics of guest radicals in the CLPOT nanochannels.

Figure 12.5 shows temperature-dependent ESR spectra acquired from
[(CLPOT)2-(MeO-TEMPO)0.002/(TEMP-OH)0.50] (1b/2d/3b) between 102 and
290 K [52]. All these spectra have been normalized to have the same maximum
peak-to-peak height. Green, yellow, and red lines indicate the rotational diffusion,
rigid-limit components of the MeO-TEMPO radicals in the CLPOT nanochannels

Fig. 12.5 Temperature
dependence of the ESR
spectra acquired from
[(CLPOT)2-(MeO-
TEMPO)0.002/(TEMP-
OH)0.50] (1b/2d/3b) [52]. All
these spectra have been
normalized to have the same
maximum peak-to-peak
height. A rigid powder
pattern of the isolated
MeO-TEMPO radical below
102 K, a superposition (red)
of a rigid-limit powder
pattern (yellow), a slow
anisotropic rotational
diffusion component (green;
10−9 s < τR < 10−6 s) in the
range of 153–231 K, and a
slow anisotropic rotational
diffusion component in the
range of 255–290 K.
(Reprinted with permission
from Magn. Reson
Chem.2016, 54, 641.
Copyright 2018 Wiley.)
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as generated using the EasySpin program (see Sect. 12.2.3.2) [46, 47], and their
superpositions, respectively. The spin concentration for each sample remained
unchanged after the temperature-dependent ESR analyses. The ESR spectra below
102 K for 1b/2d/3b were reproduced on the basis of a rigid-limit powder pattern
showing an isolated nitroxide radical (see Sect. 12.2.3.3). The ESR spectra in this
figure do not include fine structure peaks originating from the formation of radical
clusters [37] in the CLPOT nanochannels. Therefore, at these low temperatures,
the MeO-TEMPO radicals in 1b/2d/3b were evidently adequately isolated and
did not exhibit molecular motion on the ESR time scale (i.e., τR > 10−6 s). The
experimental 1b/2d/3b ESR spectra in Fig. 12.5 were generated using the g and
A tensor components in Table 12.3. The Gaussian and Lorentzian line widths of
these components were 0.56 and 0.24 mT, respectively. The values for the g and
A tensors for 1b/2d/3b were estimated using the Pepper program within EasySpin
program (see Sect. 12.2.3.2 and Table 12.3) and were consistent with values reported
previously for different 4-X-TEMPO compounds under other conditions (see Table
12.3).

The ESR spectra for 1b/2d/3b shown in Fig. 12.5 evidently change with
increasing temperature, in accordance with a model for the anisotropic rotational
diffusion of nitroxide radicals within the slow-motion region relative to the ESR
time scale (10−9 < τR <10−6) (see Sect. 12.2.3.4). Over the range of 255–290 K,
these spectra can be simulated using the Chili program within EasySpin. The
ESR spectra at 290 K were reproduced by assuming rotational diffusion around
an axis tilted by (θ , ϕ) = (65◦, 42◦) relative to the principal g tensor system,
with Gaussian and Lorentzian line width components of 0.011 and 0.19 mT,
respectively, and τR equal to 6.5 × 10−9 s. The spectra for temperatures above
255 K were also accurately simulated based on the anisotropic rotational diffusion
model around the same rotation axis applied in the case of the 290 K data. The
results obtained for CLPOT nanochannel incorporated 4-X-TEMPO with a spacer
other than TEMP gave similar (θ , ϕ) values [51, 52]. These results demonstrate that
the molecular orientations of guest 4-X-TEMPO molecules in CLPOT nanochannels
are independent of the specific 4-position substituent group or spacer molecules.

In contrast, the 1b/2d/3b spectra obtained in the intermediate-temperature range
(153–231 K) were reproduced using a superposition of rigid and anisotropic
rotational diffusion (i.e., mobile) components (yellow and green, respectively, in
Fig. 12.5). The mobile components in this temperature range were based on the
rotational diffusion model previously discussed, around the same rotational axis as
had been applied when working with the 290 K data, but with longer τR values (Fig.
12.5). With increasing temperature, the peak intensities of the rigid components
were reduced, whereas those of the mobile components were increased due to the
wide distribution of τR resulting from the local inhomogeneity of the host structure
and/or guest packing in these ICs.

The procedure applied for 1b/2d/3b are also available for 4-XPNN radicals,
of which molecular orientations and dynamics in nanospaces were not adequately
known before [66]. Figure 12.6 presents the temperature-dependent ESR spectra
for [(CLPOT)2-(p-NPNN)0.04/(N-PhMI)0.5] (1b/2g/3e) over the temperature range
from 255 to 398 K [27]. The red lines in Fig. 12.6 indicate simulated 1b/2g/3e
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Fig. 12.6 Temperature
dependence of the ESR
spectra for [(CLPOT)2-(p-
NPNN)0.04/(N-PhMI)0.5]
(1b/2g/3e). Each red line
indicates the spectrum
simulated using the EasySpin
program package [46, 47],
The ESR spectra for 1b/2g/3e
below 255 K were
well-reproduced on the basis
of the rigid-limit powder
pattern of p-NPNN radicals.
The spectra for 1b/2g/3e
above 294 K were reproduced
an anisotropic rotation
diffusion model for p-NPNN
in CLPOT nanochannels.
(Reprinted with permission
from J. Phys Chem. A2014,
118, 4907. Copyright 2018
American Chemical Society.)

spectra generated using EasySpin program. The 1b/2g/3e spectra were unchanged
below 255 K within experimental error and were well-reproduced based on the
rigid-limit powder pattern of an isolated NN radical shown in Fig. 12.2b (see Sect.
12.2.3.3). Therefore, it appears that the p-NPNN radicals included in the CLPOT
nanochannels of 1b/2g/3e were adequately isolated by spacers and the molecular
motion was frozen with respect to the ESR time scale (i.e., τR > 10−6 s). The
p-NPNN spectra at 255 K were simulated using the g and A tensor components
in Table 12.3, and the respective Gaussian and Lorentzian line width components
were 0.06 and 0.88 mT for 1b/2g/3e. The values of the g and A tensors for 1b/2g/3e
estimated using the EasySpin program were consistent with the results reported
by D’Anna et al [66]. Similar results were also obtained for PhNN in CLPOT
nanochannels [27]. In the case of isolated NN radicals in CLPOT nanochannels, a
change in the ESR spectra from the rigid-limit data was observed above 255 K [51,
52], while temperature was found to affect the ESR spectra of 4-X-TEMPO radicals
in CLPOT even above 100 K (see above). The difference in initiation temperature of
a change in the ESR spectra is attributed to the fact that the NN radicals have larger
molecular size and interaction with the wall of CLPOT than the TEMPO derivatives.
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Figure 12.6 shows continuous changes in the ESR spectra with increases in
temperature. In the vicinity of 351 K, the 1b/2g/3e spectra exhibit two narrower
peaks between lines 2 and 3 in Fig. 12.2b (see Sect. 12.2.3.4) [27, 66]. In addition,
a modulated quintet associated with the two 14N atoms for which I = 1 in the
NN group appears above 369 K for p-NPNN. The temperature-dependent ESR
spectra of 1b/2g/3e were reproducible based on a model for assumption anisotropic
rotational diffusion of isolated p-NPNN molecules in CLPOT nanochannels within
the slow-motion regime with respect to the ESR time scale (10−9 s < τR < 10−6 s)
over the entire temperature range in Fig. 12.6. The 1b/2g/3e spectra at 398 K
were obtained by assuming rotational diffusion around the axis tilted by (θ ,
φ) = (74◦, 90◦) relative to the principal system of the g tensor, with Gaussian and
Lorentzian line width components and τR of 0.11 and 0.30 mT and 1.0 × 10−8 s,
respectively. The ESR spectra were also well-reproduced at other temperatures
using the anisotropic rotational diffusion model around the same rotation axis.

The rotational axes in 1b/2g/3e are approximately parallel to the principal y-axis
of the g tensor (θ = φ = 90◦). For this reason, p-NPNN molecules are expected to
be included in the CLPOT nanochannels with the longest molecular axis parallel to
the channel axis, assuming that the rotational axis is parallel to the channel axis. The
(θ , φ) parameters for the rotational axis relative to the principal axis for p-NPNN
are larger than those for PhNN ((θ , φ) = (68◦, 78◦)). This difference is likely the
result of the ratio of the molecular lengths of the NN radicals relative to the pore
diameter for the CLPOT nanochannels (0.9 nm for PhNN, 1.1 nm for p-NPNN, and
1.1–1.3 nm for CLPOT).

The effects of temperature on τR for various [(CLPOT)-(4-X-TEMPO)] or
[(CLPOT)-(4-XPNN)] are shown in Fig. 12.7 [27, 51, 52]. The rotational activa-
tion energy, Ea, for 4-X-TEMPO rotation in each [(CLPOT)-(4-X-TEMPO)] was
estimated to be in the range of 6–8 kJ mol−1, using the τR values plotted in this
figure. Thus, all [(CLPOT)-(4-X-TEMPO)] have similar Ea values, and this value
is independent of the size or type of the substituent group or the total inclusion
amount. This independence may result from the relatively large pore diameter of
the CLPOT nanochannels relative to the sizes of the radical molecules. However, the
τR values for [(CLPOT)-(4-X-TEMPO)] are an order of magnitude greater than the
value for 1a/2a/3a. This result suggests that the pore diameter of the nanochannels
is an important factor determining τR.

The high-temperature side in Fig. 12.7 demonstrates the temperature dependence
of τR for [(CLPOT)-(PhNN)/(N-PhMI)] (diagonal crosses) and [(CLPOT)-(p-
NPNN)/(N-PhMI)] (yellow circles) [27]. The τR values for PhNN or p-NPNN
rotations in [(CLPOT)-(PhNN)/(N-PhMI)] and [(CLPOT)-(p-NPNN)/(N-PhMI)]
are much longer than those for 4-X-TEMPO radicals in these nanochannels at the
same temperature. As an example, τR for TEMPO or TEMPOL is on the order of
10−9 s at room temperature [51], whereas τR for the NN radical was approximately
10−7 s [27]. The Ea values for PhNN and p-NPNN rotations in [(CLPOT)-
(PhNN)/(N-PhMI)] and [(CLPOT)-(p-NPNN)/(N-PhMI)] were estimated to be 37
and 54 kJ mol−1, respectively, using the τR values in the range of 293–400 K in
Fig. 12.7 [27]. These values are several times larger than those for 4-X-TEMPO [51,
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Fig. 12.7 Temperature
dependence of the rotation
diffusion correlation time τR
for the isolated organic
radicals in the CLPOT
nanochannels such as
p-NPNN (1b/2g/3e) [27],
PhNN (1b/2f/3e) [27],
MeO-TEMPO (1b/2d/3b)
[52], TEMPOL (1b/2c/3b)
[51], TEMPONE (1b/2b/3a)
[52], and TEMPO (1b/2a/3a)
[51]

52]. This difference may be due to the molecular size and weight of the NN radicals
(which are larger and heavier than 4-X-TEMPO) as well as stronger interactions
between NN radicals and the surrounding host or other guest molecules. Such
interactions result from the delocalization of spin density on the nitronylnitroxide
group of the NN radical for which, as opposed to 4-X-TEMPO, the spin density is
wrapped internally.

12.5 ESR Analysis of Isolated Organic Radical in 1D TPP
Nanochannels

The pore diameters of TPP nanochannels are adjustable over the range of 0.45–
0.9 nm to the size of guest molecules [14, 28, 29]. The guest radicals in TPP
nanochannels undergo uniaxial rotational diffusion motion in the relatively smaller
space than the case of CLPOT. Under such conditions, the molecular orientations
and dynamics of guest molecules in these nanospaces are dependent on the
molecular size [70]. Although the inclusion of guest radicals is limited due to
the smaller pore diameter of TPP nanochannels and/or the minimal polarity of
TPP molecules, systematic investigations are possible for several 4-X-TEMPO
compounds and for simple NN and IN radicals.

Figure 12.8 provides the temperature-dependent ESR spectra acquired for
[(TPP)2-(DTBN)x/(pivalone)1.1] (x = 4 × 10−4; 1a/2e/3d) from 54 to 243 K
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Fig. 12.8 Experimental and
reproduced ESR spectra of
[(TPP)2-
(DTBN)x/(pivalone)1.1]
(x = 4 × 10−4; 1a/2e/3d)
[41]. Green, yellow, and red
lines of 1a/2e/3d indicate the
rotational diffusion and
rigid-limit components of the
DTBN radicals in the TPP
nanochannels reproduced
using the EasySpin program
package and their
superposition. (Reprinted
with permission from J. Phys
Chem. A2013, 117, 2093.
Copyright 2018 American
Chemical Society.)

[41]. Here, green, yellow, and red lines indicate the rotational diffusion, rigid-
limit components of the DTBN radicals in the TPP nanochannels as reproduced
using EasySpin program [46, 47], and their superposition. At 54 K, a typical
pattern of a rigid-limit nitroxide radical, similar to that in Fig. 12.5 is observed
(see Sects. 12.2.3.3 and 12.4). This result demonstrates that the DTBN molecules
were adequately isolated in the TPP nanochannels. The narrowed ESR spectra of
1a/2e/3d at 214 K provide evidence for the uniaxial rotational diffusion of DTBN in
the TPP nanochannels within the slow-motion regime with respect to the ESR time
scale around the y-axis of the g tensor of the DTBN molecule. The g and A tensors
of the DTBN molecules in the TPP nanochannels were determined, as summarized
in Table 12.3, from the 54 K spectrum according to the standard procedure (see
Sects. 12.2.3.1, 12.2.3.2, and 12.2.3.3). The calculated g and A tensors are consistent
with those of DTBN molecules confined in a tetramethyl-1,3-cyclobutanedione
(TMCB) matrix within experimental error [41]. In this simulation, the Gaussian
and Lorentzian components of the line width were 0.64 and 0.65 mT, respectively.
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The 1a/2e/3d spectra at 214 K shown in Fig. 12.8 were accurately simulated
based on rotation around the axis defined by (θ , φ) = (86◦, 89◦) in the principal
axis system of the g and A tensors in Table 12.3. These simulations assumed that
R||/R⊥ had a value of approximately 1000, τR was approximately 7.5 × 10−9

s and that the line widths of the Gaussian and Loretzian components were 0.08
and 0.15 mT, respectively (see Sect. 12.2.3.4). The direction of the rotational axis
was estimated to be almost parallel to the principal y-axis (θ = 90◦, φ = 90◦).
That is, the nitroxide groups of uniaxially rotating DTBN molecules confined in
TPP nanochannels are considered to be almost perpendicular to the rotational axis,
which in turn can be assumed to be parallel to the channel axis. When TEMPO or
TEMPONE are dispersed in TPP nanochannels, both the temperature dependency
of the ESR spectra and the molecular orientations of the guest radicals in the TPP
nanochannels are similar [40, 41]. In the range of 85–106 K, the ESR spectra were
reproduced by the superposition of a rigid component and an axially rotational
diffusion component, though it was not reproduced by simple rigid or axially
rotational diffusion components. These results provide evidence for the coexistence
of low- and high-temperature phases, in which the molecular motion of the guest
molecules is frozen out and unfrozen, respectively.

When TEMPOL is included as guest radical in TPP nanochannel, molecular
orientations and dynamics were quite different from DTBN and other 4-X-TEMPO.
Figure 12.9 shows the variable-temperature experimental and simulated ESR spectra
for a powdered sample of [(TPP)2-(TEMPOL)0.004/(TEMP)1.2] (1a/2c/3a) [43]. At
55 K, the ESR spectrum of 1a/2c/3a demonstrates a rigid-limit for the nitroxide
radical that is similar to those of other radicals in the TPP and CLPOT nanochannels
(see Figs. 12.5 and 12.8 and Sect. 12.2.3.3). In addition, the principal components
of the g and A tensors in this case are comparable to those of other nitroxide radicals
(see Table 12.3). However, the spectra of 1a/2c/3a in the higher temperature region
(e.g., at 288 K in Fig. 12.9) are quite different from those in Figs. 12.5 or 12.8.
According to the spectral simulation, the rotational axis of the TEMPOL molecules
in the TPP nanochannels are tilted by (θ , φ) = (19◦, 66◦) in the principal axis system
of the g and A tensors. These values are close to the principal z-axis of the g tensor
(corresponding to θ = 0◦ and an arbitrary φ; see Sect. 12.2.3.4). Thus, it appears that
the molecular orientations of guest radicals in TPP nanochannels can be adjusted by
the proper selection of guest radicals and spacer molecules, or the co-inclusion of
other radicals.

In addition, a rare example of the inclusion of IN or NN radicals in TPP
nanochannels has been demonstrated. Figure 12.10 presents the temperature-
dependent ESR spectra for [(TPP)2-(PhIN)0.002/(N-PhMI)1.0] (1a/2h/3e) [44]. Here,
green, yellow, and red lines indicate the rotational diffusion and rigid-limit com-
ponents of PhIN in 1a/2h/3e as reproduced using EasySpin program and their
superposition. The spectra acquired at less than 165 K were well-reproduced
based on a rigid-limit powder pattern for isolated PhIN (see Sect. 12.2.3.3) [68].
The spectrum for 1a/2h/3e at 56 K shown in Fig. 12.10 was simulated using
the g and A tensor components in Table 12.3, and the respective Gaussian and
Lorentzian line width components were 0.31 and 0.30 mT. The values of the g
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Fig. 12.9 Temperature
dependence of the
experimental (black) and
reproduced (red) ESR spectra
of the powder sample of
[(TPP)2-
(TEMPOL)0.004/(TEMP)1.2]
(1a/2c/3a) in the temperature
range of 55–288 K [43].
(Reprinted with permission
from Chem. Lett2015, 44,
893. Copyright 2018
Chemical Society of Japan.)

and A tensors for 1a/2h/3e estimated using EasySpin program were consistent with
the previous results obtained for PhIN dispersed in glassy toluene (see Table 12.3)
[68]. Therefore, in 1a/2h/3e, the PhIN radicals may be considered to be adequately
isolated in the TPP nanochannels as a result of the use of spacers and/or located on
the surfaces of the TPP crystals, and the molecular motion is frozen on the ESR time
scale (i.e., τR > 10−6 s).

The spectra of 1a/2h/3e above 165 K depicted in Fig. 12.10 were not generated
using a single anisotropic rotational diffusion component but by the superposition
of anisotropic rotational diffusion and rigid-limit components. From 258 K to room
temperature, the rotational diffusion and rigid-limit components were temperature-
independent within experimental error. The anisotropic rotational diffusion compo-
nent of 1a/2h/3e in the temperature range from 165 to 258 K was reproduced as
a septet associated with two 14N atoms (both I = 1, but with different hyperfine
coupling constants) in the IN group of PhIN modulated by molecular motion in the
slow regime with respect to the ESR time scale. These results suggest that some
PhIN radicals may be included in the TPP nanochannels, but that additional PhIN
radicals may be on the surfaces of the TPP crystals.

In the case of PhIN in diluted solutions or in nanospaces within the fast-motion
regime on the ESR time scale, seven major hyperfine splitting lines associated with
the inequivalent nitrogen atoms of IN with A1zz

IN ∼ 2A2zz
IN are observed, with
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Fig. 12.10 Temperature-
dependent ESR spectra for
[(TPP)2-(PhIN)0.002/(N-
PhMI)1.0] (1a/2h/3e) [44].
Green, yellow, and red lines
indicate rotational diffusion
and rigid-limit components of
PhIN in 1a/2h/3e reproduced
using the EasySpin program
package [46, 47] and their
superposition. (Reprinted
with permission from J. Phys
Chem. A2018, 122, 5493.
Copyright 2018 American
Chemical Society.)

an intensity ratio of 1:1:2:1:2:1:1. However, with the molecular motion around the
principal y-axis of the g tensor in the slow regime on the ESR time scale, the ESR
spectra of PhIN radicals are modulated as shown in Fig. 12.3e (see Sect. 12.2.3.4
and reference [44]. When a low-temperature rigid-limit component is superposed,
the spectral reproduction at 258 K is improved, as shown in Fig. 12.10. In fact, the
modulated septet of the ESR spectrum of 1a/2h/3e at 258 K is simulated reasonably
well assuming that the anisotropic rotational diffusion around the axis is tilted by
(θ , φ) = (90◦, 73◦) relative to the principal axis system of the g tensor and parallel
to the principal y-axis, with Gaussian and Lorentzian line width components and
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τR of 0.17 and 0.036 mT and 1.3 × 10−8 s, respectively. These results show that
the rotational axis is also approximately parallel to the molecular long axis of the
PhIN molecules (i.e., the molecular long axis is parallel to the channel axis of the
TPP nanochannels, if it is assumed that the rotational axis is parallel to the channel
axis). Every ESR spectrum collected over the range from 165 to 239 K was also
reproduced using this same approach. Based on the spectral reproduction process,
it is evident that at least some PhIN radicals are included in the TPP nanochannels,
although other PhIN radicals in 1a/2h/3e may be adsorbed on the surfaces of the
TPP crystals.

PhNN radicals can also be included in TPP nanochannels [44]. However,
as some PhNN is reduced to PhIN during the synthetic process, [(TPP)2-
(PhNN)x/(PhIN)y/(N-PhMI)1.0] (x ≈ 5 × 10−4 and y ≈ 2 × 10−4, 1a/2f/2h/3e)
is produced. According to the ESR results, PhNN radicals included in the TPP
nanochannels undergo anisotropic rotational diffusion around a rotational axis tilted
by (θ , φ) = (90◦, 89◦) relative to the principal axis system of the g tensor above
253 K.

Figure 12.11 summarizes the effect of temperature on τR for isolated organic rad-
icals in TPP nanochannels, including PhNN (1a/2f/3e), PhIN (1a/2h/3e), TEMPOL
(1a/2c/3a), TEMPONE (1a/2b/3a), TEMPO (1a/2a/3a), and DTBN (1a/2e/3d) [40,
41, 43, 44] The τR of each radical can be approximately determined from the
rotational Stokes-Einstein relationship, assuming that the material behaves as an
anisotropic liquid (see Sect. 12.2.3.4) [45]. The Ea values of several nitroxide
radicals (such as DTBN, TEMPO, and TEMPONE) increase as the substituent
groups become larger (with values 3, 5, and 10 kJ mol−1) [40, 41]. In addition,

Fig. 12.11 Temperature
dependence of the rotational
diffusion correlation time τR,
for the isolated organic
radicals in the TPP
nanochannels such as DTBN
(1a/2e/3a), TEMPO
(1a/2a/3a), TEMPONE
(1a/2b/3a), TEMPOL
(1a/2c/3a), PhIN (1a/2h/3e),
and PhNN (1a/2f/3e) [40, 41,
43, 44]
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the Ea values for PhIN and PhNN rotations in TPP nanochannel (19 and 45 kJ
mol−1) are much greater than those for such nitroxide radicals [44]. These results
indicate that the τR values in TPP nanochannels are determined by the moment
of inertia for guest radicals. Alternatively, these data may result from the strong
interactions of PhIN or PhNN with the surrounding host walls formed by the phenyl
rings of TPP molecules. Interactions may also occur with neighboring spacers
in the TPP nanochannels as a result of the delocalization of the spin density
on the iminonitroxide groups of PhIN radicals or the nitronylnitroxide group of
NN radicals, in contrast to the behavior of TEMPO (in which the spin density
is wrapped inside). However, the Ea value for PhIN rotation is smaller than that
for 4-hydroxy-TEMPO (TEMPOL) in TPP nanochannels (26 kJ mol−1) [43]. The
Ea for TEMPOL rotation has been reported to be much larger than those for
other TEMPO derivatives due to the different molecular orientation of TEMPOL
in TPP nanochannels, as shown above (see Fig. 12.9). In the case of PhIN and
TEMPOL in TPP nanochannels, the NO groups are approximately perpendicular to
the nanochannel axis and also close to the nanochannels walls formed by the phenyl
rings of TPP molecules [14, 28, 29], assuming that the rotational axis is parallel to
the channel axis. The larger Ea for TEMPOL rotation in TPP nanochannel may be
caused by the additional interaction between the OH groups (rather than the NO
groups) of TEMPOL and the π -clouds on the phenyl rings of the TPP wall. This is
as opposed to hydrogen bridging of the OH groups of TEMPOL with the oxygen
atoms or the lone pairs of the nitrogen atoms of the TPP structure.

The molecular orientations of NN radicals in TPP or CLPOT nanochannels is as
same each other as discussed in Sects. 12.4 and 12.5, that is, the molecular long axis
is parallel to the channel axis. In addition, the Ea value for PhNN rotation in TPP
nanochannel is larger than that for PhNN rotation in CLPOT nanochannel (37 kJ
mol−1, see Fig. 12.7). This result may be due to the smaller pore diameter of TPP
nanochannels compared to those in CLPOT. The Ea value for PhNN rotation in
TPP nanochannel is smaller than that for p-NPNN in CLPOT nanochannels (54 kJ
mol−1, see Fig. 12.7). This outcome is attributed to the smaller moment of inertia
for PhNN compared to that for p-NPNN. In addition, PhNN rotation gives larger
Ea value than PhIN rotation. It may be attributable to the difference in the steric
hindrances of NN and IN groups, or to the stronger intermolecular interactions of
PhNN with neighboring spacer molecules.

12.6 1D 4-X-TEMPO Chains Constructed in CLPOT
and TPP Nanochannels

The ESR measurements for organic radicals in 1D nanochannels dispersed by
spacer molecules were conducted in Sects. 12.4 and 12.5. In such systems, dipolar
and/or exchange interaction between radicals can be ignored due to the longer
intermolecular distance, although 1D molecular chains are formed (see Fig. 12.12a).
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Fig. 12.12 Images of intermolecular distance and inter-spin interaction between radicals included
in 1D nanochannel described in Sects. 12.4 and 12.5. (a) Isolated radical dispersed by spacer in
CLPOT or TPP nanochannel described in Sects. 12.4 and 12.5. (b) 1D molecular chain of organic
radicals in CLPOT and TPP nanochannel described in this section

In this section, the inter-spin interaction of 1D molecular chains of 4-X-TEMPO
constructed in CLPOT and TPP nanochannels (without any spacers; see Fig. 12.12b)
is discussed herein, based on the ESR spectra of [(CLPOT)-(4-X-TEMPO)] and
[(TPP)-(4-X-TEMPO)]. In particular, the dimensionality and magnitude of these
interactions are examined in terms of the molecular dynamics of guest radicals
in the CLPOT and TPP nanochannels. Approximately, the inter-spin interactions
of organic radical chain in CLPOT nanochannel are independent of the molecular
orientations and dynamics of guest radicals, whereas those in TPP nanochannel are
affected by the molecular dynamics of guest radicals described in Sects. 12.4 and
12.5.

Figure 12.13 summarizes the effect of temperature on the peak-to-peak
line width ΔBpp values (see Sect. 12.2.4) associated with the ESR spectra
of [(TPP)2-(TEMPO)1.0] (1a/2a; diagonal crosses), [(CLPOT)2-(TEMPO)1.0)]
(1b/2a; yellow triangles), [(CLPOT)2-(TEMPOL)1.0)] (1a/2c; empty circles),
[(CLPOT)2-(TEMPONE)1.1)] (1a/2b; magenta diamonds), and [(CLPOT)2-(MeO-
TEMPOL)0.91)] (1a/2d; cyan squares) over the temperature range from 4.2 to
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Fig. 12.13 Temperature dependency of the ESR spectra of the ΔBpp of isotropic ESR spectra
of [(TPP)2-(TEMPO)1.0] (diagonal crosses; 1a/2a), [(CLPOT)2-(TEMPO)1.0)] (yellow trian-
gles; 1b/2a), [(CLPOT)2-(TEMPOL)1.0)] (empty circles; 1a/2c), [(CLPOT)2-(TEMPONE)1.1)]
(magenta diamonds; 1a/2b), and [(CLPOT)2-(MeO-TEMPOL)0.91)] (1a/2d; cyan squares) in the
temperature range from 4.2 to 300 K [41, 53]. Note that the composition ratio of host to guest
of each sample in the figure was abbreviated in the figure for simplification. (Reprinted with
permission from Bull. Chem. Soc. Jpn.2018, 91, 375. Copyright 2018 Chemical Society of Japan.)

300 K [53]. Note that the composition ratio of host to guest in each sample has
been abbreviated in this figure for simplification. Isolated 4-X-TEMPO radicals
in the 1D TPP or CLPOT nanochannels generate anisotropic ESR signals, as
discussed in Sects. 12.4 and 12.5. However, in the case of spin systems having spin
concentrations greater than those for isolated radicals (as shown in this section), the
ESR spectra appear isotropic because the line width of the 4-X-TEMPO absorption
line becomes broader than the hyperfine coupling of the nitroxide. This occurs due
to significant dipole interactions and minimal exchange narrowing.

The effect of temperature on the ΔBpp values of [(TPP)2-(TEMPO)1.0] (1a/2a)
are summarized as follows. These effects are related to the molecular motions of
TEMPO radicals in TPP nanochannels [39, 40, 53]. The essentially steady value
of ΔBpp of approximately 4.8 mT below 100 K reflects the termination of the
molecular motion of TEMPO radicals in the TPP nanochannels. In addition, the
gradual decrease of ΔBpp with increasing temperature in the range of 100–253 K
reflects the rotational diffusion of these radicals in the nanochannels within the slow-
motion regime on the ESR time scale (10−9 s < τR < 10−6 s). The almost constant
value (ΔBpp = 1.8 mT) above 253 K indicates rotational diffusion within the fast-
motion regime on the ESR time scale (τR < 10−9 s). The variations in ΔBpp values
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between the highest and lowest temperatures are close to 3.6 mT. Above 100 K, the
experimental ΔBpp values for 1a/2a are smaller than the estimated dipolar peak-to-
peak line width (ΔBpp

D; see Sect. 12.2.4) based on Van Vleck’s formula for a rigid
spin lattice (Eq. (12.8) in Sect. 12.2.4), indicating exchange narrowing due to the
temperature dependency of the ESR line profile (see below and Fig. 12.15).

On the other hand, the effect of temperature on the ΔBpp values of 1b/2a–d
is evidently more gradual than that for 1a/2a, although there is a slight decrease
with increases in temperature. The magnitude of the ΔBpp values for 1b/2a–d
was at most 2–3 mT even at low temperature, and the variation with increasing
in temperature was less than 1.4 mT, even at 300 K. The ΔBpp value is also
somewhat larger when the 4-position substituent group on the TEMPO molecule is
bulkier. Because the crystal structure of the CLPOT nanochannels and the quantity
of guest radicals per unit cell in each [CLPOT-(4-X-TEMPO)] are similar to the
values for 1a/2a (see Sect. 12.3.2), the dipolar peak-to-peak line width (ΔBpp

D,
see Sect. 12.2.4) for 1b/2a–d was estimated assuming a hexagonal rigid spin lattice
formed by positioning the electron spin in the CLPOT nanochannels at the center
of gravity of the TEMPO molecule [39, 53] (see Sect. 12.2.4). Using this model,
the ΔBpp

D value for 1b/2a–d was estimated to be 11.2 or 11.3 mT. A significantly
larger ΔBpp

D was evidently obtained from the shorter c (i.e., shorter intra-channel
inter-spin distance of 0.7 nm) [50] of 1b/2a–d as compared to 1a/2a. These results
indicate the narrowing of ESR line width of 1b/2a–d due to molecular motion or
exchange interaction.

The ESR line profiles were determined according to the theory described in Sect.
12.2.5. Figure 12.14 shows the effect of temperature on the line profiles of [(TPP)2-
(TEMPO)1.0] (1a/2a; diagonal crosses) and of [CLPOT-(4-X-TEMPO)], such as
[(CLPOT)2-(TEMPO)1.0)] (1b/2a, yellow triangles), [(CLPOT)2-(TEMPOL)1.0)]
(1a/2c, empty circles), [(CLPOT)2-(TEMPONE)1.1)] (1a/2b, magenta diamonds),
and [(CLPOT)2-(MeO-TEMPOL)0.91)] (1a/2d, cyan squares) according to Dietz’s
method (see Sect. 12.2.5) at 4.2, 155 K, and 290 K [39, 53]. Note that the host to
guest ratio notation for each sample in Fig. 12.14 has been abbreviated for the sake
of simplifying the figure.

In the case of 1b/2a–d, the molecular motions of guest radicals in CLPOT
nanochannels are temperature-dependent, as shown in Sect. 12.4, with a rigid-
limit under about 120 K. With increases in temperature (above 200–240 K), the
rotational diffusion motion originally in the slow-motion regime on the ESR time
scale changed such that τR moved into the fast-motion region of the ESR time
scale. In addition, τR of 1b/2a–d was shorter than the value for TEMPO in the
TPP nanochannels in the same temperature range (see Figs. 12.7 and 12.11) [41,
43, 52]. The 1b/2a–d line profiles were almost independent of temperature, as seen
in Fig. 12.14a–c, indicating different results compared to those obtained for 1a/2a
(see below and Fig. 12.15). These data suggest that the molecular motions and/or
substituent groups of guest radicals in the CLPOT nanochannels are not correlated
with the inter-spin interactions of 1b/2a–d. Therefore, the narrower ESR line width
for 1b/2a–d may be considered to originate not from motional narrowing but
rather than 3D exchange interactions. This finding demonstrates that 3D exchange
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Fig. 12.14 Dietz’s plot of
isotropic ESR spectra of
[(TPP)2-(TEMPO)1.0] (1a/2a;
diagonal crosses) and the
[CLPOT-(4-X-TEMPO)]
(1b/2a, yellow triangles;
1b/2c empty circles; 1b/2b,
magenta diamonds; and
1b/2d, cyan squares)
according to Dietz’s method
at (a) 4.2, (b) 155 K, and (c)
290 K [41, 53]. Note that the
composition ratio of host to
guest of each sample in the
figure was abbreviated in the
figure for simplification.
(Reprinted with permission
from Bull. Chem. Soc.
Jpn.2018, 91, 375. Copyright
2018 Chemical Society of
Japan.)
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Fig. 12.15 Temperature
dependency of line shape of
[(TPP)2-(TEMPO)1.0]
(1a/2a) in 12–383 K using
Dietz’ method. (Reprinted
with permission from Bull.
Chem. Soc. Jpn.2007, 80,
711. Copyright 2018
Chemical Society of Japan.)

interactions can be observed even in 1D OIC-OR by selecting the optimal host
and/or guest compounds. The 3D exchange interactions of organic radical chains in
[CLPOT-(4-X-TEMPO)] may result from the formation of an imperfect 1D electron
spin array due to the disordered orientation of the nitroxide groups of guest 4-X-
TEMPO molecules in the CLPOT nanochannels, which have larger pore diameters
than those in TPP.

Figure 12.15 shows the effect of temperature on the ESR line profiles of [(TPP)2-
(TEMPO)1.0] (1a/2a), as determined using Dietz’s method (see Sect. 12.2.5). In the
temperature range from 12 to 139 K, approximately corresponding to the rigid-limit
of TEMPO in TPP nanochannels, the line shape exhibits characteristics intermediate
between those expected from the pure Gaussian and 1D spin diffusion models.
Therefore, the 1D spin diffusion mechanism occurs even at fairly low temperature,
where TEMPO rotation is frozen in TPP nanochannel. Over the range of 139–
166 K, corresponding to τR values of approximately 10−7 s for TEMPO in TPP
nanochannels, the 1a/2a line shape is in good agreement with that expected from
the pseudo-1D-spin diffusion model. This result obviously indicates that exchange
narrowing explains the narrowing seen in Fig. 12.13. At temperatures greater than
166 K (corresponding to τR < 10−8 s), the resonance peak become more Lorentzian
with increases in temperature, although a pure Lorentzian line shape never appears,
even at 383 K. This increase in the Lorentzian character suggests that anisotropic
exchange interactions occur between interchain spins. These interchain interactions
cut off Ψ (τ ) after a characteristic time (see Sect. 12.2.5). The line shape at 383
K roughly reflects the ratio of intrachain exchange interactions, Jintra, to interchain
exchange interactions, Jinter, giving a Jinter/Jintra ratio in the range of 10−2–10−3 [71,
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72]. The average molecular orientation of TEMPO in TPP nanochannel by rotational
diffusion provides homogeneous interaction between unpaired electrons in adjacent
TEMPOs. This scenario produces a large exchange integral, thus increasing the
efficiency of exchange narrowing. The exchange integral in this system may be
calculated based on the wavefunction perturbed by molecular motion of guest
radicals in TPP nanochannel. For these reasons, 1a/2a is a remarkable material,
as the dimensionality of the exchange interactions changes from 1D to 3D with
increasing temperature (compare this result to that in CLPOT above).

In other [TPP-(4-X-TEMPO)], a few interesting experimental results are known.
[(TPP)2-(DTBN)1.3] (1a/2e) exhibits a similar effect of temperature on ΔBpp
to 1a/2a [42]. However, the ΔBpp

D value for 1a/2e estimated from Eq. (12.8)
(approximately 9 mT) is significantly larger than that for 1a/2a. Therefore, the
line width of 1a/2e is thought to be much narrower than that for 1a/2a. In
addition, the ESR line profiles for [(TPP)2-(DTBN)1.3] (1a/2e) are also temperature-
dependent, but 1D spin diffusion behavior is observed around room temperature
[42], while [TPP-TEMPONE] (1a/2b) shows temperature-dependent anisotropic
exchange interaction even in the vicinity of 4.2 K. Thus, [TPP-(4-X-TEMPO)] is
unique among the various 1D OIC-OR.

12.7 Concluding Remarks and Outlook

In CLPOT and TPP nanochannels, incorporated organic radicals form 1D organic
radical chain. To examine the 1D or 3D exchange interactions in 1D organic radical
chain, molecular dynamics of organic radicals in the nanochannels were assessed
by experimental and theoretical ESR analyses.

It was found that molecular dynamics of 4-X-TEMPO radical in CLPOT
nanochannel is independent of the substituent groups of the guest radicals and/or
the type of spacer. From ESR adsorption line profiles and the molecular dynamics
of 4-X-TEMPO radicals in CLPOT nanochannels, it was found that [CLPOT-
(4-X-TEMPO)] exhibits temperature-independent 3D exchange interactions. The
existence of 3D exchange interaction in [CLPOT-(4-X-TEMPO)] may be the first
step to express magnetic phase transition in 1D OIC-OR.

On the other hand, [TPP-(4-X-TEMPO)] exhibited temperature-dependent
anisotropic exchange interaction. It may be correlated with temperature dependency
on molecular dynamics of guest radical in TPP nanochannel with a small pore
diameter. These different exchange interaction in CLPOT and TPP nanochannels
will be a key to design and develop a new organic magnet.

The molecular dynamics of 4-XPNN and PhIN radicals in CLPOT or TPP
nanochannels was clarified using ESR analyses. These results may be available
to the development of a new ESR spin probe technique using NN or IN radicals
for the clarification of the structure of nanospaces in polymer, liquid crystal, and
membrane. It is expected that spin system based on 4-XPNN or PhIN radicals will
be formed in 1D OIC-OR by the increase of the guest inclusion amount.
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The relationship between exchange interactions of organic radical chain and
molecular dynamics should be further elucidated in order to design and develop
innovative organic magnet. This work is underway.
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Chapter 13
If Truncated Wave Functions of Excited
State Energy Saddle Points Are
Computed as Energy Minima, Where Is
the Saddle Point?

N.C. Bacalis

Abstract Theoretical computations tend to compute electronic properties of
increasingly larger systems. To understand the properties, we should rather need
small truncated but concise and comprehensible wave functions. For electronic
processes, in particular charge transfer, which occur in excited states, we need both
the energy and the wave function in order to draw and predict correct conclusions.
But the excited states are saddle points in the Hilbert space, and, as shown here,
the standard methods for excited states, based on the Hylleraas-Undheim and
MacDonald (HUM) theorem, compute indeed the correct energy but may give
misleadingly incorrect truncated wave functions, because they search for an energy
minimum, not a saddle point (many functions can have the correct energy). Then,
where is the saddle point? We shall see the use of a functional Fn of the wave
function that has a local minimum at the excited state saddle point, without using
orthogonality to approximants of lower-lying states, provided these approximants
are reasonable, even if they are crude. Therefore Fn finds a correct, albeit small
and concise, thus comprehensible truncated wave function, approximant of the
desired excited state saddle point, allowing correct predictions for the electronic
process. This could also lead to computational developments of more appropriate (to
excited state) truncated basis sets. It is further shown that, via a correct approximant
of the 1st excited state, we can improve the ground state. Finally it is shown
that, in iterative computations, in cases of “root flipping” (which would deflect
the computation), we can use Fn to identify the flipped root. For all the above,
demonstrations are given for excited states of He and Li. The grand apophthegm
is that HUM finds an energy minimum which, only if the expansion is increased,
can approach the excited state saddle point, whereas Fn has local minimum at the
saddle point, so it finds it independently of the size of the expansion.
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Keywords Configuration interaction · Excited states · Saddle point by
minimization · Truncated wave function · LUMO

13.1 Introductory Remark

Suppose that we want to know the behavior of some material when we bring
atoms close together, for example, we want to know the behavior of a catalyst or
we want to invent a new battery. After the contact of the atoms, where will the
electrons go? Will they be excited? How will they drive the surrounded nuclei?
Will they go to the lowest unoccupied orbital of the ground state or to the highest
occupied orbital of the excited state? When the charge transfer occurs in appropriate
excited electronic states, the electrons are transferred to appropriate orbitals of the
surrounding species. Therefore, we must know not only the excitation energy but
also the wave function of the excited state. But, the excited states are saddle
points in the Hilbert space, and the standard computational methods (except for
some that aim to the saddle nature of the answer), based on the Hylleraas-Undheim
and MacDonald (HUM) theorem [1], minimize the energy of the desired root of the
secular equation, since in optimizing the “desired root,” the other roots, all mutually
orthogonal, get deteriorated. However, a local minimum (i.e., HUM) cannot
be simultaneously saddle point in the same restricted subspace; therefore, the
standard methods, finding a local energy minimum, do not find the saddle point
sought, with a danger, if they use small truncated, supposedly easily comprehensible
expansions, to get probably a deceiving answer. For this reason the standard methods
resort to approaching the saddle point using huge expansions (rather inappropriate
for large systems). We can use a proposed functional [2] that, even within small
expansions, has minimum at the saddle point, successfully tested, up to now, by
direct multidimensional minimization, which is hard to use and time-consuming.
It will be much more beneficial to the scientific community, both theoretical and
practical, if we try to transform it, so that it is solved, faster and safer, self-
consistently, as we shall see below, but this has not been done yet. Presently we shall
see the presentation of the functional along with some computational applications
due to it, e.g., (i) immediately improving a ground state approximant if we know a
better excited state saddle point approximant and (ii) avoiding “root flipping.” Then,
we shall see demonstrations, for excited He, using both Hylleraas coordinates and
configuration interaction (CI) in standard coordinates, and for Li using CI.

13.2 Overview

In order to study electronic processes occurring via excited states, we must know
not only the excitation energy but also the wave function of the excited state, which,
as is well known, is a saddle point in the Hilbert space. The correct wave function
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Fig. 13.1 En is a saddle point Saddle Point

− L

+U

is needed because if the computed wave function is away from the saddle point,
incorrect conclusions may be deduced, concerning the physical process of charge
transfer, i.e., of the main information needed both for the understanding of the
electronic process and for the prediction of the path of the process, desired by any
interested social-minded organization, private or public. This danger exists because
we expand the wave functions in truncated bases, mimicking an ideal expansion in
the complete orthonormal basis of the unknown exact Hamiltonian eigenfunctions,
ψ0, ψ1, ... (|0〉, |1〉, . . . ) with energies E0 < E1 < ... (assumed in the present analysis
normalized real and non-degenerate). That is, if these were known, we could expand
in terms of them any normalized wave function, in particular an approximant |φn〉
of the nth excited state, as

|φn〉 =
∑

i �=n

|i〉 〈i|φn〉 + |n〉
√

1 −
∑

i �=n

〈i|φn〉2,

where the expansion coefficients 〈i| φn〉 would be small. Then the energy would be

〈φn |H |φn〉 = E [φn] = E = En − L + U (13.1)

where the lower term, L, and the higher term, U, would be

L =
∑

i<n

(En − Ei) 〈i|φn〉2 > 0, U =
∑

i>n

(Ei − En) 〈i|φn〉2 > 0, (13.2)

which, in the Hilbert space (of the wave functions), are parabolas, the L downward
and the U upward. In other words, the unknown sought exact eigenfunction, ψn, i.e.,
the stationary point of the parabolas, is a saddle point with n downward parabolas
as indicated pictorially in Fig. 13.1.

Thus, the ground state, ψ0 (n = 0), where the term L (with n = 0) does not exist,
can be computed by minimizing the energy, E = E0 + U, of a trial normalized
approximant φ0. And also, if the term L (with n �= 0) were artificially absent,
the excited states, ψn, could be computed similarly by minimizing the energy of
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a normalized trial approximant φn, by orthogonalizing the trial function φn to all
lower exact ψ i, i < n (if they were known), that would nullify all coefficients in L,
〈i| φn〉=0, and would leave only the remaining term U to be minimized.

However, when, in the absence of the exact eigenfunctions, ψn, we have only
normalized approximants φn (expanded in truncated bases, e.g., Gaussians), we
cannot use orthogonalization to a known φ0, approximant of ψ0, not even to
approach the 1st excited state ψ1: Because, if (most probably) the – known –
normalized approximant φ0 is not exactly orthogonal to the – unknown – ψ1, the
orthogonal to φ0 subspace (call this subspace {\�0}) does not contain ψ1 (see
Fig. 13.2). Therefore, ψ1 cannot be found orthogonally to the normalized approx-
imant φ0. So, the best achievement of a normalized trial φ1 varied orthogonally
to φ0 (i.e. belonging to the subspace {\�0}) is to be closest to ψ1 in the subspace
{\�0}, i.e. with the largest overlap 〈1| φ1〉. At the closest, here called φ+

1 , it has no
other components out of the 2D space of {φ0, ψ1} (because any other components
would diminish the largest overlap 〈1| φ1〉), i.e. φ+

1 is the Gram-Schmidt orthogonal
to φ0 in the 2D space of {φ0, ψ1}:
∣∣φ+

1

〉 = |1〉 − |φ0〉 〈φ0|1〉
√

1 − 〈1|φ0〉2
; with E

[
φ+

1

] = E1 − E1 − E [φ0]

1 − 〈1|φ0〉2
〈1|φ0〉2. (13.3)

Observe, however, that (if φ0 is a reasonable approximant of ψ0 with E[φ0] < E1)
the last (subtracted) energy term in Eq. (13.3), is positive, and φ+

1 , the closest to
the saddle point ψ1 in the orthogonal to φ0 subspace, has lower energy than the
exact E1, without being any stationary point. Therefore, the minimization of the
energy of φ1 orthogonally to the known normalized approximant φ0 will end up
even lower, departing even more from the saddle point (of the sought excited ψ1),
farther than φ+

1 . The final (converged in minimization) function, being orthogonal
to a reasonable ground state approximant, will not be collapsed to the ground state,
but it will simply be veered away from the saddle point ψ1. This problem has been
known since the early application tries of quantum mechanics.

However, fortunately (for the energy – but “unfortunately” for the wave function)
the theorem of Hylleraas-Undheim and MacDonald (HUM) [1] ensures that the
(n + 1)th root (eigenvalue) of the secular equation of the expansion coefficients
in truncated basis, when varied, cannot take values below the exact (unknown)
Hamiltonian eigenvalue, i.e., it has a minimum at (or just above) the exact value
En. Thus, almost all computational methods of excited states (except some that
aim to the saddle nature of the excited states, cf. [3–9]) are based on the HUM
theorem, cf. [3–5, 10–65], achieving correct energies by minimizing the energy
of the desired root. But the finally converged point, being a minimum, cannot
be simultaneously a saddle point in the same, restricted, subspace; thus, only
when the expansions are huge can the wave functions approach the exact excited
state saddle point eigenfunctions (the larger, the closer to the exact). If they are
truncated, not huge, “unfortunately,” the HUM wave functions (themselves – not
their energies) avoid the saddle points of the exact and unknown eigenfunctions,
ψn, many times deceivingly.
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Fig. 13.2 Schematic representation of states. All states are assumed normalized: ψ0, ψ1, ψ2, ...
with energies E0 < E1 < E2 < ... are the unknown exact eigenstates; ϕ0 is a known approximant of
ψ0. The subspace S = {�, ϕ+

1

}
(red circle orthogonal to the blue circle of {ϕ0, ψ1}) is orthogonal

to ϕ0, and if ϕ0 is not (accidentally) orthogonal to the unknown ψ1, the subspace S = {
�, ϕ+

1

}

does not contain ψ1. In the subspace S = {�, ϕ+
1

}
, the closest approximant to ψ1 is ϕ+

1 (the trace
of the red on the blue cycle), and, as explained in the text, ϕ+

1 lies below ψ1: E
[
ϕ+

1

]
< E1. In

going, while in S, orthogonally to ϕ0, from ϕ+
1 toward a state near ψ2 (the green vector near ψ2),

i.e., in going, in S, from E
[
ϕ+

1

]
< E1 toward E ≈ E2 > E1, one passes from E1, i.e., from states, ϕ1,

of S, orthogonal to ϕ0, but having energy E[ϕ1] = E1. If, in optimizing ϕ1 by HUM theorem, ϕ0 is
the lowest (deteriorated, as explained in the text) root of the secular equation, then the 2nd “root,”
ϕ1 = �HUM, is one of these states, “ϕ1,” with lowest possible energy E[ϕ1] = E[�HUM] = E1. But
it is not ψ1. It might be desirable to continue optimization in S toward, at least, ϕ+

1 , the closest, in
S, to ψ1. But HUM theorem forbids such a continuation, since the 2nd root must always be higher
than E1. In an attempt to approach, as much as possible, ψ1, one might try, by other means, i.e., by
direct minimization, to minimize the energy, in S, orthogonally to ϕ0, toward ϕ+

1 . But ϕ+
1 is not a

critical point, and the minimum in S, orthogonal to ϕ0, lies even lower: E[�Min] < E1. �Min does
not suffer from variational collapse, since it is orthogonal to ϕ0. �Min is not a “bad” approximant
of ψ0: it is an approximant of ψ1, probably as good (or as bad) as �HUM. Both �HUM and �Min
are veered away from ϕ+

1 , in S, and, therefore, from ψ1. On the other hand, the here reported
“variational principle for excited states” Fn (VPES) approaches ψ1 (in general the exact excited
states ψn), �VPES → ψ1, independently of the orthogonality to ϕ0 (to lower lying approximants),
and regardless of the accuracy of the latter, i.e., of their closeness to the exact saddle point, provided
that the lower approximants, used in VPES Fn, are reasonable approximants, as explained in the
text
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Why “unfortunately”? Because by optimizing one root of the secular equation,
all others get deteriorated: For example, the expansion of ψ0 in the truncated basis
of the roots – all mutually orthogonal to each other – �0,�1, ..., �N , leaves an
unknown remainder Y; therefore, even if we optimize at will one of them, say �1,
〈ψ1| �1〉2 → 1, we shall have

〈ψ0|�0〉2 + 〈ψ0|�1〉2 + 〈ψ0|�2〉2 + · · · + 〈ψ0|�N 〉2 ≤ 1 − Y 2

⇒ 〈ψ0|�0〉2 < 1 − 〈ψ0|�2〉2 − · · · − 〈ψ0|�N 〉2 < 1

i.e., �0 will be deteriorated, without being able to approach ψ0 at will, and
the optimized �1 will be orthogonal to a deteriorated �0. So, if the expansion
is large, then it tends to the exact eigenfunction, but if the expansion is small
(necessarily for large systems, like molecules, catalysts, etc.), then, in a trun-
cated basis, it is worse than just always being “�1 �= ψ1.” For example, in a
subspace of mainly two configurations, if the deteriorated normalized function is
�0 = αψ0 + βψ1 (+corrections), where β is not negligible, α <

√
1 − β2, then

the HUM-optimized (i.e., with E[�1] > E1) �1 = αψ1 − βψ0 (+corrections)
is equally deteriorated, and the worse, it is not even close to �+

1 , which is the
closest to the saddle point ψ1, among all normalized functions orthogonal to
�0: �+

1 = ((
1 − β2

)
ψ1 − αβψ0

)
/
√

1 − β2 (+corrections) with E
[
�+

1

]
< E1,

because the HUM theorem necessitates that the optimized root �1 shall not go below
E1 (in order to try to approach �+

1 ).
Therefore, the HUM-optimized root �1 is much more away from the saddle point

ψ1, although its energy approaches E1. (Since there are normalized functions �

orthogonal to φ0 with E[�] < E1, it will eventually lead to one of the infinitely
many normalized functions having E[�] = E1. Indeed, doing the analysis from
any function � if we consider a normalized function φ⊥+

1 orthogonal to both φ0

and φ1
+ and diagonalize the Hamiltonian operator between φ⊥+

1 and φ1
+, this will

open their energy gap, giving eigenfunctions �− and �+ (both orthogonal to φ0).
Then the function

� = �−
√

E
[
�+]− E1

E
[
�+]− E

[
�−] ± �+

√
E1 − E

[
�−]

E
[
�+]− E

[
�−]

is orthogonal to φ0 and has equal to E1 energy E[�] = E1, without being ψ1. Even
worse, from any �, consider a normalized function �⊥ orthogonal to both ψ0 and
ψ1. Then the function

� =
√

E [�⊥] − E1

E [�⊥] − E0
ψ0 + 0ψ1 −

√
E1 − E0

E [�⊥] − E0
�⊥

has equal to E1 energy: E[�] = E1, but is orthogonal, to ψ1.) Thus, the only
rescue of HUM optimization of a higher root, in order to approach the excited state
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saddle point, is to use huge expansions (α → 1) (impracticable for large systems).
The above are explained pictorially in Fig. 13.2.

However, in order to correctly comprehend charge transfer that will enable us
to guide the applied research toward the correct and not (as seen below) toward
a deceiving direction, we must find the saddle point, ψn, and, as explained above,
with truncated bases, this cannot be approached by neither orthogonal optimization
(OO) nor by HUM optimization. On the contrary, by both of these methods
(OO, HUM), with truncated bases, the saddle point ψn, is avoided! (At least,
by HUM the correct energy is approached). For this reason, a safe approach
of the saddle point, ψn, is needed, using truncated bases, thus, allowing both
an understanding and a correct prediction, of practical interest, about the
behavior of the electrons concerning charge transfer. Specifically:

Because, by HUM, the space spanned by a small basis is not completely
exploitable, since, necessarily, normalized functions that are closer to the saddle
point ψ1 – and in general to ψn (i.e., with lower energy than the HUM answer,
toward �+

n ) – are excluded (forbidden) by HUM, we shall see a developed
functional, Fn [2], which has local minimum at the saddle points, ψn, which uses
lower-lying normalized approximants �i, i < n, but, practically, does not depend
on �i’s accuracy (provided only that the �is are reasonable):

Fn [�0, �1, . . . ; �n] ≡E [�n] +2
∑

i<n

〈�i | H−E [�n] |�n〉2

E [�n] −E [�i]

[

1−
∑

i<n

〈�i |�n〉2

]−1

.

(13.4)

As shown below, Fn has a minimum at each excited energy saddle point, even
in pathological cases where at the excited eigenvalue there is no definite Hessian
(to count its negative eigenvalues). As a “difficult” check, Fn easily passes the
pathological Rellich test [5] of the Hermitian matrix:

(− sin x sin y

sin y sin x

)(
X

Y

)
= E

(
X

Y

)
⇒ E0,1 = ±

√
sin2 x + sin2y.

The “excited” E1 has minimum at x = 0, y = 0 (as parameters), with indefinite
Hessian there. The eigenvectors ψ0, ψ1 are easily computed:

Y0,1

X0,1
= ±

√
sin2 x + sin2y + sin x

sin y
, ψ0,1 (x, y) =

(
X0,1

Y0,1

)
/

√
X2

0,1 + Y 2
0,1.

If we choose in F1 (i.e., for n = 1), as fixed function, a crude but reasonable
“ground state” expansion, in terms of {ψ0, ψ1}, namely, �0 = 0.1 ψ1 +
ψ0

√
1 − 0.12 (where 0.1 is “close” to 0, but, obviously, not too close) and if,

by using this fixed function �0, we minimize F1 by optimizing �1 = a ψ1 +
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(a) F “large” (b) F “small” (c) Correlation orbitals

(d) HUM “large” (e) HUM “small” (f) HUM deteriorated 1st root

Fig. 13.3 CI wave functions (main orbitals): for He3S1s3s. Dotted: 1s. Dashed: 2s. Solid: 3s.
Clearly, the “large” expansions, either “F” (a) or HUM (d), are equivalent and have the same main
orbitals as the F “small” (b), i.e., 1s3s, and the 2s just serves for dynamic correlation. However, the
HUM “small” (e) is, incorrectly, mainly 1s2s, and the 3s “tries to improve” the wave function (and
the energy) as static correlation, but by no means can 3s be taken as “LUMO” (and 2s as “HOMO”)
orbital. Note its orthogonal deteriorated HUM 1st “root” (f): they have the same main orbitals but
with different signs. Note also that the “large” expansion needs static correlation corrections (from
other CI terms) (c), to “split” electrons in areas where they are compacted together in the core. The
diffuse orbital 3s essentially is not affected

ψ0
√

1 − a2 with respect to the parameters {a, x, y} around (a, x, y) ∼ (1, 0, 0), the
resulting minimum is easily obtained correctly at x = 0, y = 0 (for any a).

The above F1 has been successfully tested for excited states of the atoms
He and C [2, 66] using large basis sets, where it agrees with bibliography
and with our HUM – large-bases – computations, as well as using small
bases for He, where, for example, it gives correct excited wave functions
1s3s (+corrections)1S or3S, whereas, on the contrary, small-bases-HUM gives,
incorrectly, 1s2s (+corrections)1S or3S [2]. See also Fig. 13.3, where it is shown
that, in optimizing the 2nd HUM root, the 1st root, �0, is indeed deteriorated: It
is neither 1s2 nor 1s2s, the nodes are at unexpected “unphysical” distances from
the nucleus, and the energy deviates significantly from the ground state energy.
Its orthogonal optimized 2nd HUM root consists of the same “main” orbitals but
with different signs, i.e., mainly (β, −α), although its energy approaches E1, but
remains above it, E[�] > E1, in accordance with the HUM theorem. It is not allowed
to approach even �+

1 , the closest to the saddle point ψ1 in the space orthogonal to
the deteriorated �0 (because �+

1 has energy E
[
�+

1

]
< E1). Thus, the optimized

2nd HUM root avoids the exact saddle point eigenfunction ψ1 = 1s3s. This is
clearly shown in Fig. 13.4, where the functional Fn [2], with a small basis, finds the
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Fig. 13.4 He3S 1s3s. (a) F1 “small” expansion: Saddle point of energy at the F minimum. (b)
HUM “small” expansion: Although the optimized 2nd root has “perfect” energy, it is not a saddle
point and, of course, does not correspond to an F minimum. (c) F1 “large” expansion: Saddle point
of energy at the F minimum. (d) HUM “large” expansion: Although the optimized 2nd root has
more “perfect” energy, it is not a saddle point

excited state saddle point, whereas the HUM optimization, with a small basis, does
not find it, while, with a large basis, although HUM finds a minimum – as expected,
not the saddle point – it approaches it more reasonably (the larger the basis, the
better the approximation).
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From Fig. 13.3 it is shown that the HUM optimization tries to correct the 2nd
root as much as possible, via other orbitals (in the same small basis) as static (just
descriptive) correlation corrections. Thus, although the energy may approach the
correct eigenvalue E1, the normalized wave function remains orthogonal to the
deteriorated �0, and far from �+

1 , and much farther from the saddle point ψ1.
Similar results are found for Li 2S and 4S low-lying excited states (cf. Table

13.1).
Since the optimization of higher HUM roots fails for the smallest atoms

He and Li, it does not provide any guarantee for larger systems, where, most
probably, small basis sets are needed.

Presently, the direct minimization of the functional Fn has been tested by varying
the parameters of the trial normalized expansion �n (while the lower normalized
approximants �i < n must be kept unvaried), but this procedure is hard to use and
is time-consuming. It is desirable, by nullifying (setting equal to 0) the derivatives
of Fn with respect to the parameters, to reduce the minimization to an eigenvalue
problem, so that the lowest eigenvalue would be used. This would be immediately
accomplishable if the differentiation yielded a set of linear equations.

However, because of the form of Fn in the denominator, the Rayleigh-Ritz
quotient yields a nonlinear system of equations of higher degree. Thus, there should
be a plan to solve the problem self-consistently, i.e., to consider �n in certain
locations in the formula of the Rayleigh-Ritz quotient, except one location, as
constant (initial guess), so as, by nullifying the (varied) derivatives, to use the lowest
root as a new guess �n in the other (artificially un-varied) locations, hoping to
converge. A choice that has not been yet exhaustively tested, but seems to work
efficiently, is to consider as initial guess (ig) all locations of the 2nd term of the
Fn formula, except inside the quadratic term (because this term always converges
quadratically), i.e., specifically,

Fn

[
�ig, �n

] ≡ E [�n] + 2
∑

i<n

〈�i | H − E
[
�ig

] |�n〉2

E
[
�ig

]− E [�i]

[

1 −
∑

i<n

〈
�i |�ig

〉2
]−1

which is of the form

Fn

[
�ig, �n

] ≡ 〈�n| H |�n〉
〈�n|�n〉 + 2Z

[
�ig

]∑

i<n

〈�i | H − E
[
�ig

] ∣∣�n/
√〈�n|�n〉

〉2

E
[
�ig

]− E [�i]
,

where �n is yet unnormalized, and which reduces to a standard generalized
eigenvalue problem:

Fn

[
�ig, �n

] 〈�n|�n〉 ≡ 〈�n| H |�n〉 + 2Z
[
�ig

]∑

i<n

〈�i | H − E
[
�ig

] |�n〉2

E
[
�ig

]− E [�i]
.
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After normalization, the normalized �n is used as a new �ig ← �n, until
convergence. Note that, this way, we need only the extra computation of 〈�i| �n〉
and 〈�i|H|�n〉, which is standard feature in most standard electronic structure
codes, with �n expanded in the chosen (presumably small) basis.

In other words, this would extend the known MCSCF (multi-configuration self-
consistent field) methodology with a Rayleigh-Ritz quotient of not only the energy
(of the 1st term of Fn) under the normalizing condition of the trial function but of
the whole functional Fn. Note that now, having used the �i < n lower, rather crude,
approximants, the desired root of the resulting secular equation is the lowest root
above the (nth HUM root – δE) where δE should be a reasonably small quantity.
(This precaution should be taken especially for the initial guess.)

Since the above self-consistency is presently still being tested, in the following
demonstrations, for the linear part of the process, the optimization of the expansion
coefficients minimizing Fn is performed on the 1st term of Fn while checking
whether the 2nd term vanishes (being essentially Schrodinger’s equation “dotted”
on the unvaried �i < n). Thus, the lowest (not the nth) HUM root, if it is above all
lower-lying (crude) energies and if it does not nullify the 2nd term and is not a
saddle point, is rejected. But, in this way (by checking every time), the correct local
minimum may be missed, that is why a targeted but self-consistent nullification of
the derivatives of the Rayleigh-Ritz quotient from Fn itself is rather needed.

If the method succeeds for larger atoms, then it could be extended to molecules
and larger systems using CI expansions in standard Gaussian bases, so that it may
be proven useful for large systems demanding small bases, appropriate for both time
saving and easy understanding of the (small and comprehensible) wave functions.
These, however, are future plans; here we shall see a presentation of Fn and some
demonstrations of its applications.

13.3 The Construction of Fn

The central idea is to invert the sign of L in Eq. 13.1, in order to have all parabolas
upward and then to make a continuation from the unknown exact set of {ψ i} to
known approximants φi < n.

Consider the energy (Eq. 13.1) of a normalized approximant φn of the nth excited
state, expanded in the exact eigenfunctions {ψ i}

E [φn] = En − L + U,

where L and U are the downward and upward paraboloids defined in Eq. 13.2.
Invert the sign of L to introduce the functional

F [φn] = En + L + U ;

now all parabolas are upward and F[φn] has a local minimum at ψn: F[φn] = En.
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Substitute from Eq. 13.1 the unknown quantities En + U = E[φn] + L:

F [φn] = E [φn] + 2L; (13.5)

now F[φn] is expressed in terms of only the lower exact eigenfunctions ψ i < n in
paraboloid L, inverted upward. But all ψ i < n are unknown; suppose, however, that
we already have computed normalized approximants φi < n for all ψ i < n. Then make
a continuation of F[φn] from ψ i < n to φi < n.

Expand each φi < n in the {ψ i} basis, and obtain to leading order in coefficients

〈φi |φn〉 = 〈i|φn〉 + 〈n|φi〉 + · · ·
〈φi | H |φn〉 = Ei 〈i|φn〉 + En 〈n|φi〉 + · · · .

(13.6)

Solve Eq. 13.6 for 〈i| φn〉, and substitute to each term of L = ∑

i<n

(En − Ei) 〈i|φn〉2

in Eq. 13.5 to get, to leading order, L =∑i < n(En〈φi| φn〉 − 〈φi|H|φn〉)2/(En − Ei),
which suggests an examination, in terms the known approximants φi < n, of the
expression

S ≡
∑

i<n

(E [φn] 〈φi |φn〉 − 〈φi | H |φn〉)2

E [φn] − E [φi]
. (13.7)

When both φi = ψι and [in Eq. (13.1)] U = ∑

i>n

(Ei − En) 〈i|φn〉2 → 0, the

quantity S of Eq. 13.7 reduces, as directly verified, to

S ≡ L

(

1 −
∑

i<n

〈φi |φn〉2

)

⇒ L = S

1 − ∑

i<n

〈φi |φn〉2 .

Then, for U �= 0 and for φn close to ψn, the functional F[φn] in Eq. 13.5 adequately
behaves as

Fn [φ0, φ1, . . . ; φn] ≡ E [φn] + 2
∑

i<n

〈φi | H − E [φn] |φn〉2

E [φn] − E [φi]

[

1 −
∑

i<n

〈φi |φn〉2

]−1

,

where the adequacy depends on the Hessian determinant, An
n, and its principal

minors along the main diagonal, Ak<n
n , at φn = ψn. According to the standard

theorems of calculus (cf. Sylvester theorem), if ψn is still a critical point and
Ak<n

n > 0, An
n > 0, then F[φn] has a local minimum at φn = ψn.

Indeed, at φn = ψn, E[φn] = En, and the 2nd term vanishes because the operator
becomes (H - E[φn])φn = (H−En)ψn = 0, (i.e., Schrödinger’s equation) so that
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Fn [φ0, φ1, . . . ; ψn] = En,

i.e., ψn is a critical point, the saddle point, regardless of the quality of φi < n.
Incidentally, notice that, since En is a saddle point, the energy E[φn] of an

approximant φn is not necessarily an upper bound of En; it must only be an upper
bound of (En – L): Since E[φn] + L − En = U > 0, then En − L < E[φn], or

En −
∑

i<n

(En − Ei) 〈i|φn〉2 < E [φn] , (13.8)

i.e., it may be below En (that is why the aforementioned “orthogonal” minimization
(OO) does not “collapse”). This means that since, in practice, with a truncated
expansion, the minimization procedure of Fn, within a tolerance, stops around
(but not exactly at) ψn, if it stops at a side of upward parabola, we will have
En < E[φn] < Fn, but if it stops at a side of downward parabola, we will have En –
L < E[φn] < En < Fn. In this case, the final (converged) φn, although slightly below
E[HUM] (by ≤ L), will be certainly acceptable. The value of L could be estimated
using accurate approximants φi < n and checked to be of the order of the tolerance.

Further, at φn = ψn, if we denote by
∣∣∣φ⊥{n}

i

〉
the projection of |φi〉 on the subspace

of the higher than-n eigenfunctions, the Hessian determinant is

An
n=2n+1

n−1∏

i=0
(En−Ei)

(
E
[
φ

⊥{n}
n

]
−En

)
×

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1+2

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

n
n−1∑

i=0
〈n|φi〉2+

+
n−1∑

i=0

(
E
[
φ

⊥{n}
n

]
−En

)(
E
[
φ

⊥{n}
i

]
−En

)
−
(〈

φ
⊥{n}
i

∣
∣
∣H−En

∣
∣
∣φ⊥{n}

n

〉)2

(En−Ei)
(
E
[
φ

⊥{n}
i

]
−En

)
〈
φ

⊥{n}
i |φi

〉2

− 2
n−1∑

i=0

n−1∑

j=i+1

((En−Ej)〈j |φi 〉+(En−Ei)〈i|φj 〉)2

(En−Ei)(En−Ej)
+ O[coefficients]3

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(13.9)

and its principal minors are

Ak<n
n = 2k+1

k∏

i=0
(En − Ei) ×

×

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 + 2

⎡

⎢⎢⎢
⎣

(k + 1)
n−1∑

i=0
〈n|φi〉2 +

n−1∑

j=k+1

k∑

i=0

En−Ei

En−Ej

〈
i|φj

〉2 +
k∑

i=0

E
[
φ

⊥{n}
i

]
−En

En−Ei

〈
φ

⊥{n}
i |φi

〉2

−
n−1∑

j=k+1

k∑

i=0

En−Ej

En−Ei
〈j |φi〉2 − 2

k∑

i=0

k∑

j=i+1

((En−Ej )〈j |φi 〉+(En−Ei)〈i|φj 〉)2

(En−Ei)(En−Ej )

⎤

⎥⎥⎥
⎦

+ O[coefficients]3.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(13.10)
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(For clarity in the above expressions, care has been taken to be expressed in terms
of positive quantities.) In these expressions, if the lower approximants φi < n are
accurate enough, the coefficients inside the “2[square brackets]” are normally small
(squared: even smaller), and the factor of “1,” before them, normally dominates
over them, so that Ak<n

n > 0, An
n > 0. Therefore, if the lower approximants

φi < n, without being very accurate, fulfill the conditions Ak<n
n > 0, An

n > 0, the
functional F[φn] has a local minimum at φn = ψn. (In practice, if these conditions
are not fulfilled, F[φn] drops down to −∞).

It is important to note that no orthogonality to the lower approximants φi < n

has been assumed, whatsoever; it is not needed, the functional F[φn] has a local
minimum at φn = ψn for any reasonable φi < n (that would satisfy Eqs. 13.9 and
13.10). Also, as mentioned before, it is not necessary to compute and diagonalize
the Hessian and count its negative eigenvalues to identify the saddleness at φn = ψn.

However, a simple criterion of being at the saddle point is to compute the 2nd
derivative of the energy E[φn] with respect to the parameters: There should be
n down-parabolas. Of course, the corresponding 2nd derivatives of Fn would be
positive.

13.4 Improving a Ground State Approximant φ0 Via
an Accurate φ1

The central idea is that: if our approximant φ1 is more accurate than an approximant
φ0, then diagonalizing the Hamiltonian between the two, opens their energy gap
and improves φ0 more than φ1 (since φ1 is more accurate than φ0). Then repeat
the process by working in the space orthogonal to φ1, by diagonalizing between the
new φ0 and any function orthogonal to both φ1 and the new φ0, and so on, until no
further improvement.

13.4.1 Improving φ0 Orthogonally to the Exact ψ1 (Analysis)

First, if we had the exact ψ1, then we could immediately improve an approximant
φ0 orthogonally to ψ1 [2]: In the subspace of {φ0, ψ1,}, the highest Hamiltonian
eigenvector, �+, is ψ1 itself:

�+ = ψ1. (13.11)

The lowest, �−, is orthogonal to ψ1,

�− = φ+
0 ≡ φ0 − ψ1 〈ψ1|φ0〉√

1 − 〈ψ1|φ0〉2
, (13.12)



480 N. C. Bacalis

with energy

E
[
φ+

0

] = E [φ0] − (E [ψ1] − E [φ0]) 〈ψ1|φ0〉2

1 − 〈ψ1|φ0〉2
≤ E [φ0] (13.13)

(i.e., �− is same or better than φ0). Further, rotating φ+
0 around ψ1 would

improve φ+
0 as follows: Introduce (e.g., by one more configuration) a function φ

(2+)
0

orthogonal to both {φ+
0 , ψ1}. Then, in the subspace of {φ+

0 , φ
(2+)
0 }, (both orthogonal

to ψ1), the Hamiltonian opens their energy gap, so the lowest eigenvector �− ≡ φ−
0

has energy E
[
φ−

0

] ≤ E
[
φ+

0

]
, closer to E[ψ0] (in a three-dimensional function

space {ψ0, ψ1, ψk}, this would be exactly E[ψ0] as directly verified). E
[
φ−

0

]
could

be further improved by further rotating around ψ1 similarly: i.e., after introducing
another function φ

(3+)
0 orthogonal to both {φ−

0 , ψ1} in the subspace of {φ−
0 , φ

(3+)
0 }

(both orthogonal to ψ1), the lowest Hamiltonian eigenvector is �− ≡ φ
(2−)
0 with

energy E
[
φ

(2−)
0

]
≤ E

[
φ−

0

]
(even closer to E[ψ0]) and so on.

Now let us consider the approximants.

13.4.2 Improving φ0 Orthogonally to φ1

Since ψ1 is never exactly known, we can still improve φ0 orthogonally to φ1, our
best approximant of ψ1 (obtained either via F1 or via a “large” HUM expansion),
by first computing φ+

0 orthogonal to our φ1,

φ+
0 ≡ φ0 − φ1 〈φ1|φ0〉√

1 − 〈φ1|φ0〉2
, (13.14)

if the condition E
[
φ+

0

] ≤ E [φ0] is attainable: Indeed, by expanding about
φ1, as directly verified, the condition E

[
φ+

0

] ≤ E [φ0], to leading order, reads

(E1 − E0)
(
1 − 〈ψ1|φ0〉2) ≥

(
E
[
φ

⊥{1}
0

]
− E0

) 〈
φ

⊥{1}
0 |φ0

〉2
, which is not impossi-

ble. Here, as defined in Eqs. (13.9) and (13.10), φ
⊥{1}
0 is the normalized function,

orthogonal to both {ψ0, ψ1}, collecting all higher than ψ1 terms (the last terms
forming U) of Eqs. (13.1) and (13.2) for φn = φ0. For φ0,φ1 very close to ψ0,ψ1,
as directly verified by expanding about φ0 as well, the condition is satisfied when
〈ψ0| φ1〉2 ≤ 〈ψ1| φ0〉2, i.e., when φ1 attains better orthogonality to ψ0 than φ0 to
ψ1, which is essentially the original assumption that our φ1 is more accurate than
our φ0.

In fact, if our φ1 is close to ψ1, then a 2 × 2 diagonalization of the Hamiltonian
between φ1 and φ0 (or φ+

0 ) should give as a higher eigenvector φ1 ≈ ψ1 unaffected
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and as a lower eigenvector φ+
0 itself as improved φ0. This, by just a 2 × 2

diagonalization, is another simple criterion of being at the saddle point.
Incidentally, all other (small) components are less relevant, so that the opposite

procedure of optimizing φ1 orthogonally to φ0 can lead to φMIN
1 , unpredictably

far from ψ1, even orthogonal to ψ1, with still E
[
φMIN

1

]
<∼ E [ψ1], as shown

(as analysis) in the following counterexample: Even in the subspace {ψ0, ψ1,
ψ2} (supposedly known for the present counterexample), the orthonormal trial

functions φ0 = aψ0 + 0ψ1 + bψ2 and φ1 = bψ0 − aψ2 with a =
√

(E1−ε)−E0
E2−E0

,

b =
√

E2−(E1−ε)
E2−E0

, (small ε), where, by construction, φ0 is orthogonal to ψ1 and

φ1 is orthogonal to both ψ1 and φ0, have energies 〈φ0|H|φ0〉 = a2E0 + b2E2=,
E[φ0] = E0 + E2 − (E1 − ε) > E0, and E[φ1] = E1 − ε, while φ0 may approximate
ψ0. (To make the counterexample numerical, consider He 1S, for which it is known
that, in a.u., E0 = − 2.903, E1 = − 2.146, E2 = − 2.06. In terms of {ψ0 (=1s2),
ψ1(=1s2s), ψ2(=1s3s)} (supposedly known for the present counterexample), the
function φ0 = 0.9476 ψ0 + 0.3194 ψ2 would have E[φ0] = − 2.832, and the
function φ1 = 0.3194 ψ0 − 0.9476 ψ2 chosen orthogonal to both ψ1 and φ0
would have E[φ1] = − 2.146 = E1 (i.e., it would be a function with the energy of
ψ1, although orthogonal to ψ1), so that, any function orthogonal to the same φ0,
between this φ1 and φ1

+ = ψ1 (if φ0 is orthogonal to ψ1, the “closest” to ψ1 is
ψ1 itself), could be a minimization result, φMIN

1 , with arbitrary
〈
ψ1|φMIN

1

〉
and with

E1 − ε ≤ E
[
φMIN

1

] ≤ E1. In this counterexample, using F1 this danger would
not exist: Minimization of F1, for the same, not particularly accurate, unvaried φ0
(0.3194 is not very small), by varying φ1 = c ψ0+d ψ2+ψ1

√
1 − c2 − d2, yields:

c < tol(=10−8) and d < tol, i.e., φ1 = ψ1, with E[φ1] = − 2.146 [so that, from Eq.
13.14, φ+

0 = φ0]. Below we shall see an actual demonstration.

13.4.3 Further Improvement of φ0

If E
[
φ+

0

] ≤ E [φ0], then, by rotating around φ1, as described above [after Eq.
13.13], since the Hamiltonian always opens the energy gap between mutually
orthogonal functions (all orthogonal to φ1), φ+

0 can be further improved (until
〈ψ0| φ1〉2 > 〈ψ1| φ0〉2), by always computing the 2 × 2 eigenfunctions (both
orthogonal to φ1) and taking the lowest current eigenfunction �− as: φ

(m−)
0 = �−.

(At any step, φ
(m−)
0 could be used as a new φ0 to improve φ1 via F1 of Eq.

13.4.) In the above example (using the above He values), rotating φ0 around φ1

immediately gives φ
(1−)
0 = �− = ψ0 (and �+ = ψ2). Below we shall see an

actual demonstration, performing a few “rotating” cycles.
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13.5 Identifying a Flipped Root Around an Avoided Crossing

When atoms approach each other, then at a certain nuclear separation for each
pair of molecular electronic states (of the same symmetry), the Hamiltonian opens
their energy gap, and an avoided crossing may occur, changing their order: In
passing the crossing, the continuation of the ground state becomes excited, and the
continuation of the excited state becomes lowest. At a fixed nuclear separation, near
the crossing, the (avoided) exact and sought eigenstates ψ0 and ψ1 are distinct.
However, their approximants φ0 and φ1 are computed by varying their (truncated)
expansion parameters, and in the parameter space, also an avoided crossing occurs,
because, for any set of their parameters, the Hamiltonian opens their energy gap.
However, there is a significant difference between avoided crossing in the parameter
space and avoided crossing in the nuclear separation space. In the nuclear separation
space, the wave function in the united-atom limit is completely different than in the
separated-atom limit. However, in the parameter space, if φ1 ≈ ψ1 is, say 1s2s,
then, just beyond the crossing and away from the sought ψ1, φ1 is still 1s2s, but
with slightly different values of the same parameters (i.e., of the exponents, of the
expansion coefficients, etc.). Thus, during optimization, the new (last suggested
by the optimization method) trial parameters do not provide any information as
to whether they are beyond or before the crossing. And if, toward convergence,
we consider as φ1 the φ0 (instead of φ1, erroneously), just because, with the
new (last suggested) trial parameters, φ0 has flipped to be higher, i.e., beyond the
crossing, then the computation gets lost. We should feed φ1 with the orbitals of
φ1 at the new (last suggested) trial parameters beyond the crossing, despite their
flipping [9, 61, 64, 65, 67–78], i.e., in spite of the fact that at the new (last
suggested) trial parameters, φ1 is lower than φ0. Root flipping may be avoided
by an appropriate representation of the excited state, [65] but this may not be known
in advance. If we do not know where the crossing is, we cannot identify the flipped
functions by looking at the values of their parameters, but we can, by checking
their (individually computed) F1 using an unvaried (at least crude but reasonable)
lower approximant of ψ0, say �0 (presumably unambiguously known from nearby
nuclear separations): We shall see that: independently of whether φ1 is, the 2nd
(correct) or the 1st (flipped) root, by computing the two functionals F1[�0;φ1] and
F1[�0;φ0], we will have

F1 [�0; φ1 ]< F1[ �0; φ0] . (13.15)

Indeed: Consider the two lowest states [see also Ref. 75]. The eigenfunctions
of the secular equation, “roots,” depend on variational parameters p (both
linear and nonlinear) to be optimized, and say the optimal functions are
φ0(p0), φ1(p1). For example, in 1-electron hydrogen-like S-states φ0(r)∼e−αZr,
φ1(r)∼(1 − γ Zr/2)e−βZr/2, p = (α, β, γ ), so that at their F1 minimum p0 = (1, 0, 0),
p1 = (0, 1, 1). At the specified nuclear positions, under examination, φ0, φ1 are
continuous functions of their parameters; their characteristics are maintained at
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the region of any value of p. Of course, we are seeking the optimal positions,
in the parameter space, i.e., p0 for φ0 and p1 for φ1, not the position of the
crossing, which is not the optimal. Now, it is important to realize that if there is
no other crossing closer to p0 and p1 (otherwise we would consider the closest,
judged by the overlap 〈�0| φ0〉), the optimal functions φ0 (lower), φ1 (higher) are
unflipped both at p0 (where φ0(p0) is the lowest and all other roots (deteriorated)
including φ1(p0) are above it) and at p1 (where φ1(p1) is excited, having the
lower root(s) (deteriorated) below it, including φ0(p1)): Since E0 < E1, and at p0,
φ0(p0) � ψ0 is the lowest lying, then every other root, including φ1(p0), lies higher,
i.e., at p0, E0 ≈E[φ0(p0)] < E[φ1(p0)]; also, at p1, φ1(p1) � ψ1, E1 ≈E[φ1(p1)]>
E0, and any lower-lying root must describe (well or badly) the only lower-lying
exact ψ0 (or, in general, one of the lower lying ψ i < n), i.e., it is the deteriorated
approximant φ0(p1), so, also, E0 < E[φ0(p1)] < E[φ1(p1)] ≈ E1; otherwise, if
we had E[φ1(p1) � ψ1] < E[φ0(p1)], then φ1(p1) � ψ1 would not be excited,
contrary to our assumption. Thus, the order E[φ0(p)] < E[φ1(p)] holds at both
optimal positions p0 (of φ0) and p1 (of φ1). Let us call the whole union of the
p-regions where E[φ0(p)] < E[φ1(p)]: “in front of ” the crossing or “before” root
flipping. Thus, both optimal positions p0 and p1 are located “before” root flipping.
At the (closest) crossing (say at some value pc), since there is no other crossing
in between, the characteristics of the roots φ0(p0), φ1(p1) in the region of pc are
maintained, i.e., they are continuous at pc. In the variational parameter p-space,
“root flipping” E[φ0(p)] > E[φ1(p)] means that the parameters p are such that the
continuation behind the crossing of the sought excited state φ1 lies lower than the
continuation of φ0, behind the crossing, i.e., the lower “root” behind the crossing
consists mainly, i.e., has, behind the crossing, mainly the characteristics, of the
sought excited state wave function which we must detect and recognize, in order
to extrapolate it (i.e., the “root” that is lower behind the crossing) by some method,
e.g., by quasi-Newton, to regions in front of the crossing, close to p1 (where the
unknown optimal E[φ1(p1)] must occur – higher than E[φ0(p1)]), while the other
root, that is higher beyond the crossing, must, beyond the crossing, mostly resemble
the crude approximant �0 ∼ φ0(p0).

Near the crossing, let the indices “−”/“+” indicate “just before”/“just behind”
the crossing, so that, while φ0 and φ1 are continuous near the crossing, i.e.,
φ0− = φ0+ = φ0 and φ1− = φ1+ = φ1, the higher (blindly taken) “2nd root,”
�“2r”

1 , “just before” (unflipped) is �“2r”
1− = φ1− and “just behind” (flipped) is

�“2r”
1+ = φ0+, whereas the lower (blindly taken) “1st root,” �"1r"

0 , “just before”
(unflipped) is �"1r"

0− = φ0− and “just behind” (flipped) is �"1r"
0+ = φ1+. Now, near

the crossing, by computing the two functionals F1[�0; φ1] and F1[�0; φ0], we
have for the higher (blindly taken) “2nd root”: F1

[
�0; �“2r”

1−
] = F1 [�0; φ1−]

and F1
[
�0; �“2r”

1+
] = F1 [�0; φ0+], similarly for the lower (blindly taken)

1st root: F1
[
�0; �"1r"

0−
] = F1 [�0; φ0−] and F1

[
�0; �"1r"

0+
] = F1 [�0; φ1+].

(These could be anyway recognizable from known p-points a little away from
the crossing, i.e., where unambiguously F1

[
�0; �“2r”

1

] = F1 [�0; φ1] and
F1
[
�0; �"1r"

0

] = F1 [�0; φ0].) Now, the fixed �0, independent of the presently



484 N. C. Bacalis

varied parameters, already optimized at its own energy minimum, is close to φ0, i.e.,
〈φ0| �0〉2∼1 > 〈φ1| �0〉2∼0, so, near the crossing, the denominators in Eq. 13.4 are
[1 − 〈φ1| �0〉2]−1 < [1 − 〈φ0| �0〉2]−1 (for the two lowest states � holds), while
the numerators in Eq. 13.4, 〈�0|H − E[φ0]|φ0〉2, 〈�0|H − E[φ1]|φ1〉2, remain
finite. But, in optimizing the 2nd “root,” the 1st “root” deteriorates. So, if the
(supposedly good) lower approximant �0 is better than the deteriorated �"1r"

0 near
the crossing, i.e., if E [�0] < E

[
�"1r"

0

] ∼ E
[
�“2r”

1

]
, then the 2nd terms (i.e., the

sums 2
∑

. . . – the “annexations,” so to speak, to the energy) of both individually
computed F1

[
�0; �“2r”

1

]
and F1

[
�0; �"1r"

0

]
are positive (cf. Eq. 13.4), and, due

to the smaller denominator, the F1 of (the continuous) φ0 is normally larger than
the F1 of (the continuous) φ1. Therefore, in passing the crossing, for the blindly
taken 2nd root, we have that F1

[
�0; �“2r”

1

]
jumps up from F1

[
�0; �“2r”

1−
] =

F1 [�0; φ1−] = F1 [�0; φ1] to F1
[
�0; �“2r”

1+
] = F1 [�0; φ0+] = F1 [�0; φ0]:

F1

[
�0; �“2r”

1−
]

= F1 [�0; φ1] < F1 [�0; φ0] = F1

[
�0; �“2r”

1+
]

, (13.16)

while for the blindly taken 1st root, we have that F1
[
�0; �"1r"

0

]
jumps down from

F1
[
�0; �"1r"

0−
] = F1 [�0; φ0−] = F1 [�0; φ0] to F1

[
�0; �"1r"

0+
] = F1 [�0; φ1+] =

F1 [�0; φ1]:

F1

[
�0; �"1r"

0−
]

= F1 [�0; φ0] > F1 [�0; φ1+] = F1

[
�0; �"1r"

0+
]

. (13.17)

In both cases

F1 [�0; φ1] < F1 [�0; φ0] .

Hence, near the crossing, if E [�0] < E
[
�"1r"

0

] ∼ E
[
�“2r”

1

]
, we can recognize

φ1: It is the (blindly taken) “root” that has the lowest (individually computed) F1.
Of course, it is a continuation of an unambiguous value of F1[�0; φ1] well before
the crossing – if it is known. It might be possible to just check the closeness to �0,
or, for the nth state, to check

∏
i < n(1 − 〈�i| φn〉2)−1 vs.

∏
i < n(1 − 〈�i| φn − 1〉2)−1

because all terms are close to 1, except the one resembling some lower crude
approximant �i < n, that would make it close to 0−1, but this possibility needs future
investigation. (Generally, the recognition of φ1 could be used in MCSCF to feed the
next iteration.)

Yet, by just recognizing φ1 at the crossing, we have not found the sought optimal
position of p1, which is “before” the crossing. Therefore, at every quasi-Newton
cycle, we must “suggest” new trial p values that are “before” the crossing, without
being stuck at the crossing. To ensure that we are not stuck at the crossing, we
can use the procedure shown in Table 13.2, which extrapolates the quasi-Newton p
values every three steps by twice the final step – or more if convergence is slow, the
question being to decide, via F1, whether a given value of p, near the crossing, is
“before” or “beyond” the crossing.
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Table 13.2 Three-step
quasi-Newton (qN)
extrapolation

if F1[Φ0;Φ1st root(p)]< F1[Φ0;Φ2nd root(p)] then
n(p) � 1

else
n(p) � 2.

if |p3-p2|>|p2-p1| then
h � p3 

else 
h � p3+(p3-p2).

if n(p1)≡1 then
{ p2 � qN(p1) and
if n(p2)≡1 then

[ p3 � qN(p2) and
if n(p3)≡1 then

p � h
else if n(p3)(≡2)¹1 then

p � qN(p3)
] 

else if n(p2)(≡2)¹1 then
p � qN(p2)

} 
else if n(p1)(≡2)¹1 then

p � qN(p1).

(Incidentally, note that “state averaging” at the crossing does not provide any
information about the correct, and sought, optimal points p0 and p1 that must be
located “before” the crossing.) The recognition is demonstrated below for 1-electron
atomic ion S-states.

13.6 Demonstrations

Below demonstrations of the above are presented for He 1S (1s2 and 1s2s), by using
Hylleraas variables s = r1 + r2, t = r1 − r2 and u = ∣∣−→r 1 − −→

r 2
∣∣ [1], so as to

establish rather accurate basis-functions out of variationally optimized state-specific
Laguerre-type orbitals [79], where the polynomial coefficients and exponents are
optimized, allowing few term (small-size) series expansions in terms of si(t2)juk:
For example, by selecting 24 terms up to 0.001 s2(t2)2u3, the obtained energy is
E0 � − 2.90372 a.u. However, for demonstration reasons, all 27 terms up to
s2(t2)2u2 are used (E0 � − 2.90371 a.u., E1 � − 2.14584 a.u.), along with
all 8 terms up to s1(t2)1u1 whose φ0 will be immediately improved via the 27-
term φ1. (Pekeris’ 9-term φ1 is still unbound; he reports larger than 95 terms wave
functions [80] – indicating that the present optimized Laguerre-type orbitals reduce
the size efficiently.) Evidently, if E1 were minimized, instead of F1, the 2s Laguerre-
type orbital (1 − ar) e−ζ1r would collapse to 1s (a → 0, ζ 1 → ζ 0), transparently
showing E1’s “saddleness” at |φ1〉 = |1〉.



486 N. C. Bacalis

In the next section, the formalism will be described (see [81] for matrix elements
of 〈φi| φn〉, 〈φi|H|φn〉 in Hylleraas coordinates). Then, the results will be presented,
including the immediate improvement of φ0 via a more accurate φ1. And then, a
demonstration of recognizing a “flipped root” near the crossing will follow. After
the demonstrations using the Hylleraas coordinates demonstrations for He and Li
by conventional CI computation, appropriate for any number of electrons, will be
presented.

13.6.1 Formalism in Hylleraas Coordinates

For two-electron atomic ions of nuclear charge Z, the wave function will consist of
a single Slater determinant multiplied by a truncated power series of s = r1 + r2,

t = r1 − r2, and u = ∣
∣−→r 1 − −→

r 2
∣
∣:

ns,nt ,nu∑

is ,it ,iu=0
cis ,it ,iu sis t2it uiu . Due to the spin

antisymmetry, the Slater determinant is reduced to a symmetric sum of products and
the power series to a symmetric function of t, i.e., of t2. And since the Hamiltonian
is also symmetric, the t-integrals could be evaluated only for t > 0 (eventually
multiplied by 2), so that, with volume element 2π2(s2 − t2)u dt du ds, the limits
of integration be 0 < t ≤ u ≤ s < ∞ [82].

The spin-orbitals are composed of Laguerre-type radial orbitals, where their
polynomial coefficients are treated as variational parameters [79]. For low-lying
singlet states, only s- such orbitals will be considered. Thus, the spatial orbitals will
be

χ
(
n, r; zn,

{
an,k

}) = 4
√

π
√

(n − 1)!n!
n2

z
3/2
n

n−1∑

k=0

an,k(−2rzn/n)ke−rzn/n

k! (k + 1)! (n − k − 1)!

where the variational parameters are zn and an, k factors [the latter are expected
to have values near 1 (for k = 0, an, 0 ≡ 1)] for state-specific functions, allowing
also the possibility for non-state-specific description: an, 0 ≡ 1, an, k > 0 = 0. (In
wider parameter space, the free non-state-specific functions turn out to be slightly
more accurate than the state-specific.) The prefactors assert orbital orthonormality
for one-electron ions (all zn = Z and all an,k = 1). The power series will be truncated
at most up to the 2nd power, s2(t2)2u2, sufficient for the purposes of the present
demonstrations.

The two-electron Hamiltonian in terms of the s, t, u variables is given, e.g., in
Refs. [82] or [83], but:

(i) by selecting r1 or r2 via the sum (1 − q)r1 + qr2, (q = 0, 1), (so that
the symmetric sum of products be expressed as a monomial sum, e.g.,

1∑

q=0
ψ
(
(1 − q) r1 + qr2

)
χ
(
qr1 + (1 − q) r2

)
),



13 If Truncated Wave Functions of Excited State Energy Saddle Points Are. . . 487

(ii) by binomial expanding rk
1,2 ∼ (s ± t)k ,

(iii) by using
(
s2 − t2

)
ϕ =

1∑

p=0
(−1)ps2(1−p)t2pϕ, and,

(iv) by writing the required derivatives as d
dx

(
xne−zx

) =
1∑

b=0
[n (1 − b) − zb]

xn−1+be−zx ,

all terms can be reduced to monomial sums, so that the total symmetric two-electron
function be written as

φ
(−→

r 1,
−→
r 2
)=�

(
n1�

,n2�
,ns�

,nt�
,nu�

)
(s, t, u) = 1

π

√(
n1� − 1

)!n1� !
√(

n2� − 1
)!n2� !

(
1 − 1

2δn1�
,n2�

)

ns�∑

is�=0

nt�∑

it�=0

nu�∑

iu�
=0

n2�
−1∑

k2�
=0

n1�
−1∑

k1�
=0

1∑

q�=0

k2�∑

j2�
=0

k1�∑

j1�
=0

[
(−1)j1�

+k1�
+k2�

(2q� − 1)j1�
+j2� n

−2−k1�

1�
n

−2−k2�

2�
z

3
2 +k1�

�,n1�
z

3
2 +k2�

�,n2�
e
−s

(
z�,n1�

2n1�
+

z�,n2�
2n2�

)

− t
(

1
2 − q�

) ( z�,n1�

n1�
− z�,n2�

n2�

)
sis�−j1�

−j2�
+k1�

+k2� t2it�+j1�

+ j2�uiu� a�,n1�
,k1�

a�,n2�
,k2�

c�,is� ,2it� ,iu�

]
/

[
j1� !j2� ! (k1�+1

)!(k1�−j1�

)! (k2�+1
)!(k2�−j2�

)! (n1�−1−k1�

)! (n2�−1−k2�

)!]

where ni� is the degree of the associated Laguerre polynomial of the ith spin-
orbital in the �-Slater determinant (which is multiplied by the power series
expansion). Hence, the total wave function is characterized by the set of integers
(n1, n2, ns, nt, nu) (where ni − 1 is the number of nodes of the ith polynomial).
Thus, the ground state’s, 1s2, approximant is characterized by (1, 1, ns, nt, nu) and
the 1st excited state’s, 1s2s, approximant, by (1, 2, ns, nt, nu) or equivalently by
(n1 = 2, n2 = 1, ns, nt, nu) , in state-specific description, or also by the 2nd root of
“(1, 1, ns, nt, nu)a = 0” in non-state-specific description (where “a = 0” means that
all parameters an,k �= 0 = 0), and these can be calculated either by using (minimizing)
the F functional – indicated by an index F, or not.

By applying Green’s theorem in the integrals, in order to deal with first
derivatives, �s, �t, �u, instead of Laplacians, the Hamiltonian and overlap matrix
elements are:

〈� |H | �〉 = 2π2
∫∞

0

∫ s

0

∫ u

0

[

−4Z s u � � +
1∑

p=0
(−1)p(s2(1−p)t2pu (�s�s

+�t�t + �u�u) + u2(1−p)t2ps (�u�s + �s�u) + s2(1−p)u2pt (�u�t + �t�u)

+s2(1−p)t2p� �)
]

dt du ds
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and

〈�|�〉 = 2π2
∫ ∞

0

∫ s

0

∫ u

0

1∑

p=0

(−1)ps2(1−p)t2pu � � dt du ds

The integrals, of the form J (zs, zt ; ns, nt , nu) = ∫∞
0

∫ s

0

∫ u

0e−zss−zt t sns tnt

unudt du ds, are reported in [81].

13.6.1.1 Fn Minimization Procedure

To minimize Fn, the fixed lower approximants {φi, i < n} (that can be crude, but
reasonable, needed to compute Fn) have been computed (independently of each
other, and not necessarily orthogonal to each other, since, in Fn, Schrödinger’s
equation is “dotted” into them). For each (varied) value of the parameters zn and
an, k, the critical points of Fn (saddle points of En) are found, and Fn is minimized
(without demanding orthogonality to the lower approximants .{φi, i < n} Orthogo-
nality, among the functions that minimize each Fi, i < n, should be an outcome). In
finding the saddle points of En, for certain trial values of the parameters zn and an, k,
the linear part, ∂ 〈φn| H |φn〉 /∂cis ,2it ,iu = 0, can be solved either by direct variation
of the c-coefficients or, preferably, by reducing to a generalized eigenvalue problem
(requiring 〈φn| φn〉 for normalization). Thus, the lowest eigenvalue (1st root) above
the known (highest) E[φn−1] and the c-coefficients of its eigenvector are substituted
in Eq. 13.4 of Fn, and improved values of zn and an, k are sought until minimization
of Fn.

13.6.1.2 Establishing “Exact” Wave Functions ψ0, ψ1 and Truncated
Approximants φ0, φ1

First a reliable wave function basis |ψ0〉 ∼= |0〉, |ψ1〉 ∼= |1〉 is established
by taking 27 terms, i.e., up to s2(t2)2u2, (ns, nt, nu) = (2, 2, 2), adequate to
achieve coincidence of the HUM and F1 minima: (E[φ0∼ψ0] = −2.90371 a.u.,
z0 = 1.9549), (E

[
ψHUM

1

] = −2.14584, z1,1 = 1.8348, z1,2 = 1.9745, a1,2,1 = 0;

or E
[
ψ

F1
1

]
= −2.14577, z1,1 = 1.930501, z1,2 = 1.827298, a1,2,1 = 0.799760;

〈
ψ

F1
1 |ψHUM

1

〉
= 0.99996) – thus, going up to (ns, nt, nu) = (2, 2, 2) is sufficient.

Then, in order to exhibit the aforesaid demonstrations, truncations up to s1(t2)1u1,
(ns, nt, nu) = (1, 1, 1), i.e., 8 terms, will be used.

In F1, a fixed 1-term normalized φ0, i.e., up to s0(t2)0u0, (ns, nt, nu) = (0, 0, 0)
(z0 = 1.6875, E[φ0] = −2.84766 a.u.), is used.
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13.6.1.3 Results

For He (Z = 2) 1S, the exact eigenvalues are [80] E0 = −2.90372 a.u.,
E1 = −2.14597 a.u., E2 = −2.06127 a.u.

The Lowest Orthogonal to φ0 (OO)

Before proceeding to HUM and Fn results and their comparisons, it will be
demonstrated that minimizing the excited state energy while keeping orthogonality
to a normalized approximant, φ0, of the ground state (e.g., the 1-term “fixed,” used
in F1) leads to a function, φLE

1 , lying lower than the exact, therefore veered away
from the exact.

From a trial function φ (unnormalized), subtract its projection to (normalized)
φ0, to obtain the required normalized orthogonal, and its energy:

φ⊥ ≡ �1 = φ − φ0 〈φ0|φ〉
√

〈φ|φ〉 − |〈φ0|φ〉|2
;

〈�1| H |�1〉 = 〈φ| H |φ〉 − 2 〈φ0| H |φ〉 〈φ0|φ〉 + 〈φ0| H |φ0〉 |〈φ0|φ〉|2
〈φ|φ〉 − |〈φ0|φ〉|2 ,

(13.18)

which will be used as a Rayleigh-Ritz quotient.
To obtain the energy minimum, either all parameters ({z},{a},{c’s}) of the trial

function φ can be varied, or only the nonlinear ({z},{a}) can be varied, while (for
every trial {z},{a}) the linear part, {c}, can be reduced to a generalized eigenvalue
problem (A − λB) · c = 0, where Aij are the coefficients of cicj of the numerator
and Bij of the denominator of the Rayleigh-Ritz quotient and where λ is a Lagrange
multiplier, whose lowest value (1st root) is minimized by varying ({z},{a}). The
corresponding lowest-lying eigenvector {c} provides the coefficients of φ, which,
along with ({z},{a}), minimize 〈�1|H|�1〉, to obtain the final φLE

1 , by normalizing
the function φ − φ0〈φ0| φ〉.

After minimization of the above Rayleigh-Ritz quotient, (without using ψ1 or
φ1

+) φLE
1 has energy −2.14762 a.u., certainly below the exact or of the above 27-

term ψ1, −2.14584. The 27-term minimizing function φ forms φ − φ0〈φ0| φ〉,
whose main orbital part has the form (υ(r1)χ (r2) + υ(r2)χ (r1) − 1)ω(r1)ω(r2),
where ω(r) is the 1s orbital of φ0 (after normalization) and υ(r) and χ (r) are shown
in Fig. 13.5. They remind 1s and 2s (where the 2s is more remote), which means
that φLE

1 , despite its lower energy, is not collapsed but, of course, is veered away
from the exact.

(ns, nt, nu) = (2, 2, 2): 27 Terms

First establish a reliable basis |ψ0〉 ∼= |0〉, |ψ1〉 ∼= |1〉, (27 terms) in order to compare
(project on it) the truncated (ns, nt, nu) = (1, 1, 1) 8-term approximants:
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Fig. 13.5 Main orbitals of
the 27-term (solid line) and
8-term (dashed line) optimal
wave functions. (a) Ground
state 1s2. (b) HUM excited
state 1s1s′ (either a = 0, or
a ≈ 0 as explained in the text,
compared to 1s2. (c) F1
excited state 1s2s compared
to 1s2. (d) Lowest orthogonal
to φ0 (OO)
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Table 13.3 Energies and overlaps of the computed states. Notation “tSzaR”: t = {ψ : 27 terms,
�: 8 terms}, S = {via optimization of: 0: ground state, 1: excited state}, z = {0: z1 only, 1: z1, z2},
a = {0: a = 0, 1: a �= 0}, R = {0: 1st root, 1: 2nd root, H: HUM, F: F1}
� = tSzaR E (a.u.) (ψ0|�) (ψ1|�) (�010H |�)

ψ0000 → ψ0 −2.90371
(ψ0001) (−2.1391)
ψ0100 −2.90371 1
(ψ0101) (−2.1306)
ψ110H → ψ1 −2.14584 0.000172
(ψ1100) (−2.90327)
ψ111F −2.14577 0.000457 0.99996
φ0 (1-term) −2.84766 0.993
�0000 −2.903121 0.999958 1.3 10−5

(�0001) (−2.01016)
�100H −2.07215 1.97 10−5 0.875
(�1000) (−2.89748)
�100F −2.07215
�010H −2.903123
(�0101) (−2.0196)
�110H −2.14449 0.0026
(�1100) (−2.8886)
�110F −2.14449
�111H → 1s1s′ −2.14449 0.0033 0.9986
�111F → 1s2s −2.145152 0.00490 0.999807 0.0186

Ground State 27 Terms

The optimized ground state approximant 0(1,1,2,2,2) [cf. monosyllabic “tSzaR” =
ψ0000 in Table 13.3] has lowest root energy E[0(1,1,2,2,2)] = −2.90371 a.u. and
parameters z0,1 = 1.954881, and the 27 c-expansion coefficients are given in Ref.
[81]. (The optimized 2nd root with the same z0,1 is rather high: (tSzaR = ψ0001),
E = −2.1391 a.u.)

Also, by including the z1,2 parameter, but a1,2,1 = 0, the optimized 1st
root 0(1,2,2,2,2)a = 0 (tSzaR = ψ0100) has E[0(1,2,2,2,2)a = 0] = −2.90371 a.u.,
z1,1 = 1.93945, z1,2 = 3.8926 and corresponding c-expansion coefficients as given
in Ref. [81]. (The optimized 2nd root with the same z1,1, z1,2 is rather high again:
(tSzaR = ψ0101) E = −2.1306 a.u.)

As seen in Fig. 13.6, the minimum is very flat, but indeed, within the accuracy
of the computation (∼ 6 digits1), the 2nd function has, as expected, z1,2 = 2z1,1,
i.e., both represent the same 1s orbital, with {c} coefficients very similar to the
1st, and 〈0(1, 1, 2, 2, 2)| 0(1, 2, 2, 2, 2)a = 0〉=1. = (ψ0000|ψ0100). Among the above

1The computation is performed in 15 digit “double precision,” but the coexistence in the secular
matrix of very large numbers with small ones reduces the accuracy to ∼ 6 digits
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Fig. 13.6 1st root’s energy (in a.u.) v.s. z1,1 (left) and 2nd root’s energy v.s. z1,1, z1,2 (right). Dotted
line: Some other property might not have 0 slope at the (flat) energy minimum

two approximants representing the same unique ground state the simplest is used,
0(1,1,2,2,2), (tSzaR = ψ0000), as a quite reliable approximant of ψ0.

Incidentally, because of the flatness of the minimum, any traditional convergence
criterion (e.g., δE < ε = 10−6) can be easily satisfied anywhere between 1.5 < z1,1,
< 2.3, so that any other property not having extremum at ψ0 but rather would pass
from it with a finite slope would be computed arbitrarily incorrectly; some reference
could give it positive, while others would give it negative. The same comment holds
also for the 1st excited state – [cf. below and Fig. 13.6] – which is also quite flat in
varying the z1,1, z1,2 parameters. Thus the exact F minimum is required.

2nd HUM Root 27 Terms

The optimized 2nd HUM root 1(1,2,2,2,2)a = 0 has (tSzaR = ψ110H) E[1(1,2,2,2,2)a = 0]
= −2.14584 a.u., z1,1 = 1.8348, z1,2 = 1.9745 and corresponding c-expansion
coefficients as given in Ref. [81]. (Of course, this is orthogonal to its deteriorated 1st
root �1r

0 , (tSzaR = ψ1100) E = −2.90327 compared to E[0(1,1,2,2,2)] = −2.90371).
Its overlap is 〈0(1, 1, 2, 2, 2)| 1(1, 2, 2, 2, 2)a = 0〉=0.000172 = (ψ0000|ψ110H), and its

main two orbitals are as in Fig. 13.5. However, these resemble 1s,1s′, rather than
1s,2s, but since its F-value is the same (F − E = 3 × 10−9), because its 27-term
series is large, it can be considered close to the excited state saddle point.

Also, by allowing a1,2,1 �= 0, the optimized 2nd HUM root has a1,2,1 ≈ 0, intro-
ducing a node very far from the nucleus (rendering it literally “2”s!, but essentially
1s′), and its energy is negligibly better than the above with a1,2,1 = 0. Actually
there is also another minimum at a1,2,1 = 0.539, with E[1(1,2,2,2,2)] = −2.126 a.u.
Although z1,1 = 2.106, z1,2 = 2.478, i.e., the main (without the series expansion)
orbital 2s is orthogonal to the main 1s, this high lying function is rejected. This
suggests that using a (perhaps habitual) criterion of orthogonality of the main
orbitals, in computing excited states, is not sufficient, because many random
functions may have mutually orthogonal main orbitals.
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Fig. 13.7 The difference Schr ≡ 〈0(1, 1, 0, 0, 0)|(H − E[�])|�〉 vs. the exponent z0 of normalized
0(1,1,0,0,0), for optimized � = (a): 1(1,2,2,2,2)a = 0 HUM 2nd root, (b) 1(1,2,2,2,2)F,a, (c) 1(1,2,1,1,1)F,a,
(d) 1(1,2,1,1,1)a = 0 HUM 2nd root

“F1” Root, 27 Terms

The optimized “F1” root �F
1 �1

F (the 1st above the fixed E[φ0] = −2.84766 a.u.)
has (tSzaR = ψ111F) E[1(1,2,2,2,2)F] = −2.14577 a.u., (F – E = 3 × 10−8) a.u.,
z1,1 = 1.930501, z1,2 = 1.827298, a1,2,1 = 0.799760, and corresponding c-expansion
coefficients as given in Ref. [81]. Its main orbitals are as in Fig. 13.5, resembling
1s, 2s. It has overlap 〈0(1, 1, 2, 2, 2)| 1(1, 2, 2, 2, 2)F〉= 0.000457 = (ψ0000|ψ111F) and
〈1(1, 2, 2, 2, 2)a = 0| 1(1, 2, 2, 2, 2)F〉= 0.99996 = (ψ110H|ψ111F). Although their main
orbitals differ, their series expansions, up to (ns, nt, nu) = (2, 2, 2), are large, and the
two wave functions essentially coincide.

Checking the Satisfaction of Schrödinger’s Equation

If these two functions �2r
1 and �F

1 are close to the exact, they should satisfy
Schrödinger’s equation for any normalized “φ0” not orthogonal to �1:

Schr ≡ 〈φ0| (H |�1〉 − E [�1] |�1〉) = 〈φ0| H |�1〉 − E [�1] 〈φ0|�1〉 ∼ 0.

(In principle it might be possible for some 〈φ0| to be accidentally almost
orthogonal to both |�1〉 and H|�1〉, making Schr artificially small without �1 being
close to the exact, that could pull F1 below E1: E < F1 < E1. To avoid this, just use
some other φ0 for the same �1.)

Using the above fixed φ0, the Schr difference equals ∼3 × 10−5 for �2r
1

and ∼8 × 10−5 for �F
1 . Figure 13.7 shows the Schr difference for both �2r

1
and �F

1 , along with their more truncated versions (cf. below) 1(1,2,1,1,1)a = 0 (Schr
∼8 × 10−4) and 1(1,2,1,1,1)F (Schr ∼4 × 10−4), for various φ0s, i.e., various values
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of the exponent z0. Indeed, �2r
1 has slightly better Schr values than �F

1 , contrary to
the more truncated versions.

Thus, a quite reliable basis (27 terms) has been established, adequate for the
attempted demonstration, by adopting {ψ0 = 0(1,1,2,2,2), ψ1 = 1(1,2,2,2,2)a = 0}, since
the state-specific expansion, despite its more reasonable main orbitals, is slightly
inferior in Schr than the expansion of the (large) HUM 2nd root.

(ns, nt, nu) = (1, 1, 1): 8 Terms

Minimal Basis

Ground State 8 Terms

The optimized ground state 8-term approximant 0(1,1,1,1,1) has lowest root
energy (cf. Table 13.3: tSzaR = �0000) E[0(1,1,1,1,1)] = −2.903121 a.u. and
parameters z0,1 = 1.84250, c0,0,0,0 = 1, c0,0,0,1 = 0.290798, c0,0,1,0 = 0.190212,
c0,0,1,1 = −0.0765151, c0,1,0,0 = 0.00688611, c0,1,0,1 = 0.0139948, c0,1,1,0
= 0.016833, c0,1,1,1 = 0.0120625, normalization constant N = 1/1.47861, while

its orthogonal 2nd root 1
[
0(1,1,1,1,1)

]
(same z0,1) lies too high: (tSzaR = �0001)

E[1]
[
0(1,1,1,1,1)

]
= −2.01016 a.u. Since 0(1,1,1,1,1) has 〈ψ0| 0(1, 1, 1, 1, 1)〉= 0.999958

and 〈ψ1| 0(1, 1, 1, 1, 1)〉 = 1.3 × 10−5, it is nearly “perfect.” However, for the 1st
excited state, as seen below, this truncation (1,1,1,1,1) is not adequate: A richer
function (1,2,1,1,1) is needed.

2nd HUM Root and “F1” Root 8 Terms

The optimized 8-term 2nd HUM root 1(1,1,1,1,1) (see also Fig. 13.5) has
(tSzaR = �100H) E[1(1,1,1,1,1)] = −2.07215 a.u., z1,1 = 1.44234, and
corresponding c-expansion coefficients {c} = {1, 0.199163, 0.0540545, 0.0273041,
−0.418026, −0.0402484, −0.0720681, −0.040584}, N = 1/1.3566, while
its orthogonal 1st root 0

[
1(1,1,1,1,1)

]
(same z1,1) is, of course, deteriorated:

(tSzaR = �1000) E[0]
[
1(1,1,1,1,1)

]
= −2.89748 a.u., {c} = {1, 0.145873,

0.160241, −0.0416745, −0.245673, −0.00154526, −0.0197971, 0.00659241}.
The overlap between the normalized independently optimized approximants is
〈0(1, 1, 1, 1, 1)| 1(1, 1, 1, 1, 1)〉= − 1.97349 × 10−5 = (ψ0|�100H), meaning that the
HUM root 1(1,1,1,1,1) has contributions from other higher states orthogonal to the
1st root (its energy is close to the 3rd). The overlap with the above established
ψ1 = 1(1,2,2,2,2) is 〈ψ1| 1(1, 1, 1, 1, 1)〉= 0.875. By using F1 the optimized “F” root
1(1,1,1,1,1)F (tSzaR = �100F), in lack of other parameters, nearly coincides with the
2nd HUM root near the minimum.

Richer Basis

In a richer parameter space, including z1,2 and, optionally, a1,2,1 �= 0 (state-specific
description), the optimized 8-term functions are as follows:
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a1,2,1 = 0

HUM 1st Root 8 Terms, a1,2,1 = 0

The optimized 8-term HUM 1st root 0(1,2,1,1,1) has (tSzaR = �010H)
E = −2.903123 a.u, z0,1 = 1.93393, z0,2 = 3.50164, {c} = {1, 0.290154, 0.184912,
−0.077204, 0.006390, 0.014435, 0.017008, 0.011521}, N = 1/2.94444, with 2nd
root severely deteriorated (tSzaR = �0101), E = −2.0196 a.u. Thus, the 8-term
0(1,2,1,1,1) is not essentially improved over the above simpler 8-term 0(1,1,1,1,1).

HUM 2nd Root 8 Terms, a1,2,1 = 0

However, the optimized 8-term HUM 2nd root 1(1,2,1,1,1) has (tSzaR = �110H)
E = −2.14449 a.u., z1,1 = 0.851359, z1,2 = 3.73405 (or z1,1 = 1.86703,
z1,2 = 1.70272), {c} = {1, 0.180637, −0.127452, 0.019460, −0.367640,
−0.065135, −0.046299, −0.003814}, N = 1/3.19489, with 1st root deteriorated
(tSzaR = �1100), E = −2.8886 a.u. The overlap 〈0(1, 2, 1, 1, 1)| 1(1, 2, 1, 1, 1)〉 = 0.0026
=(�010H|�110H).

“F1” Root 8 Terms, a1,2,1 = 0

By minimizing F1 (using the above fixed 1-term φ0) first with a1,2,1 = 0, the same
function is obtained, because the 1st root lies below φ0 – and the lowest root above
E[φ0] is the 2nd root. [With a1,2,1 = 0 there are no other parameters to vary, and, as
seen in the next subsection, with a1,2,1 �= 0, a minimum of F1 is obtained with the
same φ0 above; so, it is not necessary to use any lower (fixed) φ0.]

a1,2,1 �= 0

HUM 2nd Root, 8 Terms, a1,2,1 �= 0

Using a1,2,1 �= 0, the optimized 8-term HUM 2nd root 1(1,2,1,1,1)a, having
a1,2,1 = 1.5773 × 10−7, remains essentially the same: (tSzaR = �111H)
E = −2.14449, z1,1 = 1.86703, z1,2 = 1.70272. The main orbitals resemble
1s1s′ (cf. Fig. 13.5). The overlaps with the above established ψ0 = 0(1,2,2,2,2)

and ψ1 = 1(1,2,2,2,2) are 〈ψ0| 1(1, 2, 1, 1, 1)〉= 0.0033, and 〈ψ1| 1(1, 2, 1, 1, 1)〉= 0.9986.
Generally, in a complete (infinite) space, both HUM and F should yield the same

wave function, but in a truncated space, the 2nd HUM root may be worse than
the lowest root above the known (highest) E[φn−1]. Indeed, in 8-term He2

1S, at
the F1 minimum, the lowest three roots above the known 1-term E[φ0] = −2.824
are {−2.145, −2.028, −1.898}, whereas in optimizing the 2nd HUM root, the
lowest three HUM roots are {−2.889, −2.144, −1.993} (As seen later in detail,
F1 yields E[φ1] = −2.1452, much closer to the exact −2.1459 than the 2nd HUM
root E

[
φ2r

1

] = −2.144, while its 1st HUM root, E
[
φ1r

1

] = −2.889, is much
deteriorated).
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Obviously, fulfilling the inherent restrictions of the HUM functions [84], the 8-
term 2nd HUM root 1(1,1,1,1,1) has lower quality than 0(1,1,1,1,1) (≈ 0(1,2,1,1,1)) since
0.8752 < (1 − (1.3 × 10−5)2), but also the optimized HUM 2nd root 1(1,2,1,1,1)a

has lower quality as well, since 0.99862 < 1− (1.3 × 10−5)2 – assuming near
orthogonality (0.0026) to the optimized HUM 1st root.

“F1”Root 8 Terms, a1,2,1 �= 0

In contrast, by minimizing F1, with the same set of parameters, (z1,1, z1,2, a1,2,1),
a much better 8-term approximant 1(1,2,1,1,1)F,a is obtained: (tSzaR = �111F)
E = −2.145152, F = −2.145151, F – E = 5.3 × 10−7, z1,1 = 1.938718,
z1,2 = 1.817736, a1,2,1 = 0.799286, {c} = {1., 0.196506, 0.086316, −0.026204,
0.043226, 0.016366, 0.015810, 0.002479}, N = 1/3.637910, where the main
orbitals resemble 1s2s [cf. Figure 13.5]. The overlap with the optimized 8-term
HUM 1st root is 〈0(1, 2, 1, 1, 1)| 1(1, 2, 1, 1, 1)F, a〉 = 0.0186 = (�010H|�111F). The
corresponding overlaps with the above-established basis are 〈ψ0| 1(1, 2, 1, 1, 1)F, a〉 =
0.00490, and 〈ψ1| 1(1, 2, 1, 1, 1)F, a〉 = 0.999807. Clearly, the F1-minimizing function,
although truncated (to 8 terms), is much closer to the exact saddle point. This
is also depicted in Fig. 13.7, where it satisfies the Schrödinger equation better
(−0.0003 < Schr < 0.0009) than the 8-term HUM 2nd root (0.0006 < Schr < 0.0012).

13.6.1.4 The Main Orbitals: F1 (and OO) Give 1s2s; HUM Gives 1s1s′

Observe that the HUM 2nd root’s main orbitals are 1s1s′ and it is “corrected” by
the c-series, the (OO) function, although veered away and below the saddle point
(thus, abandoned) has correct main orbitals 1s2s (cf. Eq. 13.18 ff), whereas F1
directly finds physically correct main orbitals 1s2s (and better energy in truncated
space). If this HUM phenomenon emerges already in a system of two-electrons,
or three-electrons as foresaid and will be seen for Li (cf. Table 13.1), there is no
guarantee (and might be more important) in large systems, where small truncated
space is unavoidable and where the nature of the main (HOMO/LUMO) orbitals is
decisive in order to predict or cause desired reactions; then, the F functional will
be needed. The above energies and overlaps are summarized in Table 13.3.

13.6.1.5 Fulfillment of the Saddle Point Criteria by F1 and Immediate
Improvement of �0

The functions obtained by F1, fulfill the saddle point criteria mentioned in the
introduction:

Firstly, to check the 27-term approximant ψ1, a 2 × 2 (Hij − ESij) generalized
diagonalization between ψ1 and the 1-term �0 indeed leaves ψ1 practically
unaffected, as “high 2 × 2 root” φ1 = (ψ1–4.7 × 10−5 �0), with energy changed
by only 1.57 × 10−9 a.u, while, by opening their energy “gap,” improves �0
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to the “low 2 × 2 root” φ0 = (0.999 �0−0.048 ψ1), with (indeed lower than
E[�0] = −2.84766) energy: E[φ0] = −2.84926 a.u. differing from the energy
of the exact orthogonal to ψ1 (in the {�0, ψ1} subspace [cf. Eq. 13.13]) by
−1.57 × 10−9 a.u. (which means that the “low 2 × 2 root” φ0 is actually orthogonal
to ψ1). This verifies that ψ1 is indeed very close to the exact excited saddle point
eigenfunction and that φ0, in order to further approach ψ0, needs be rotated only
orthogonally to ψ1.

Similarly, a 2 × 2 diagonalization between the F1 27-term Φ1 and the 1-term
�0 yields: φ1 = (ψ1–1.4 × 10−4 �0), E[φ1] – E[�1] = −1.34 × 10−8 a.u.,
φ0 = (0.999 �0−0.048 ψ1), with lower energy: E[φ0] = −2.84934 a.u. differing
from the energy of the exact orthogonal to �1 (in the {�0, �1} subspace [cf. Eq.
13.13]) by −1.34 × 10−8 a.u., which verifies that the F1 27-term �1 is also very
close to the exact saddle point, as expected.

Now, to check F1, a 2 × 2 diagonalization between the 8-term Φ1 and the
1-term �0 indeed leaves �1 also almost unaffected, as “high root” φ1 = (ψ1–
6.2 × 10−4 �0), E[φ1] – E[�1] = −2.69 × 10−7 a.u., and, by opening their “gap,”
improves �0 to the “low root” φ0 = (0.999 �0−0.052 ψ1), with lower energy:
E[φ0] = −2.84957 a.u. differing from the energy of the exact orthogonal to �1 (in
the {�0, �1} subspace [cf. Eq. 13.13]) by −2.69 × 10−7 a.u., which means that
the “low 2 × 2 root” φ0 is practically orthogonal to �1 and verifies that �1 1s2s is
indeed very close to the exact excited saddle point eigenfunction; φ0 could still be
further improved by rotating it orthogonally to �1.

Repeating the check with the 8-term HUM 2nd root 1s1s′ and the 1-term �0,
yields: φ1 = (0.999 ψ1–1.2 × 10−3 �0), E[φ1] – E[�1] = −1.02 × 10−6 a.u.,
φ0 = (0.999 �0−0.049 ψ1), with lower energy: E[φ0] = −2.84937 a.u. differing
from the energy of the exact orthogonal to �1 (in the {�0, �1} subspace [cf. Eq.
13.13]) by −1.02 × 10−6 a.u., which verifies that 8-term HUM 2nd root 1s1s′ is
indeed inferior than the F1 8-term 1s2s function.

Secondly, as shown in Fig. 13.8, F1 has local minimum, always above the
energy, while (thirdly) the energy E[�1] is a saddle point at the minimum of F1,
showing that it has approached the exact excited state 1s2s. For some parameters (z,
c, etc.), the energy has local minimum, while for others (a1,2) it has local maximum.

13.6.1.6 Quick Check of Reasonableness via the Main Orbitals and via
2nd Derivatives

Figure 13.5 shows the main orbitals of both the 27-term and the 8-term optimized
wave functions of the HUM 2nd root and also of φLE

1 (the lowest orthogonal to
φ0) and of F1 excited state solutions, compared to the ground state. Observe that
the HUM answer is 1s1s′, instead of 1s2s (because a1,2 ≈ 0, as mentioned above),
and the HUM 8-term function deviates from the 27-term ψ1, as anticipated in the
introduction (also the HUM 1s orbital is, unexpectedly, slightly more diffuse than
1s2); therefore the HUM function is veered away from the exact, whereas the F1
answer is indeed 1s2s, the F1 8-term function already almost coincides with the
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Fig. 13.8 The 27-term
energy and the F1 values
(a.u.) near the minimum of
F1, versus: Top: a z-parameter
(z1,2). Middle: an
a �= 1-parameter (a1,2).
Bottom: a c-parameter
(c0,0,1). Always: F1 ≥ E1
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Fig. 13.9 The behavior of F1 (upper curves in each frame) above the energy due to the main-
orbitals (lower curves in each frame) (in a.u.) in varying z1 (left frames) and a1 (right frames).
Upper frames: F1 1s2s approximant. Middle frames: HUM 1s1s′ approximant. Lower frames: OO:
the lowest orthogonal to φ0, whose behavior (at the minimum) was expected, i.e., both F1 and
energy have minimum. But note that the HUM energies (and F1) also have minimum (not saddle)

exact, and the F1 1s orbital is indeed more compact than 1s2, pushed toward the
nucleus by the 2s electron, as intuitively expected.

Using F1 we can quickly decide about the quality of the main orbitals. If the
function of the main orbitals is close to the saddle point, then F1 will have a
minimum above it. Fig. 13.9 shows that F1 behaves “reasonably” around the F1
1s2s 8-term main orbitals (i.e., without the series expansion), but neither HUM 1s1s′
8-term nor the 27-term (OO) lowest orthogonal to φ0 behave “reasonably.”

We shall see that similar results hold also for Li (cf. Table 13.1) where the
2nd derivative is also displayed, (positive for HUM, negative with respect to one
parameter for Fn).
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13.6.1.7 The Energy of φ+
1 (the Closest to ψ1 Orthogonal to φ0)

Now, by using the above-established �2r
1 as ψ1 and a truncated approximant of ψ0

as φ0, it is demonstrated that the corresponding
∣∣φ+

1

〉
[cf. Eq. 13.3], i.e., the closest

to ψ1 while orthogonal to φ0, lies lower than E[ψ1] (actually, than E[�2r
1 ]). Since

the 8-term HUM 1st root 0(1,1,1,1,1) is, as seen above, “almost perfect,” 〈φ0| 1〉2=
10−10, E

[
φ+

1

]
is lower than E1 = −2.14584 by only 10−10 a.u., well beyond

the accuracy of the present demonstration, so, a less accurate φ0 will be used in
the demonstration, e.g., the 1-term “fixed,” used in F1, with 〈φ0| 1〉= 0.04786;
then by replacing ψ1 by �2r

1 in
∣
∣φ+

1

〉
:
〈
φ+

1

∣
∣H
∣
∣φ+

1

〉 = −2.15470 a.u., whereas by
replacing it in the exact formula [cf. Eq. 13.3]: E

[
φ+

1

] = −2.14745 a.u. The 0.3%
discrepancy is due to the inexactness of �2r

1 . We expect that if the energy were
further minimized while keeping orthogonality to this 1-term φ0 = 0(0,1,0,0,0), we
should end up with a function orthogonal to this φ0, lying lower than −2.15470 a.u.
(if this were the correct value based on the exact ψ1), veered well away from ψ1.
This is demonstrated below. If the deteriorated HUM 1st root, orthogonal to the
optimized HUM 2nd root 1(12111)a = 0, is used as φ0, with 〈φ0| 1〉 = −0.00405,
then the corresponding

〈
φ+

1

∣∣H
∣∣φ+

1

〉 = −2.14591 a.u. (and by the exact Eq.
13.3: E

[
φ+

1

]= − 2.14585 a.u.), which is slightly below E[�2r
1 ], while the exact

eigenvalue is slightly even lower, which confirms that it is not necessary for the 1st
root to approach ψ0, φ0 → ψ0, although deteriorated, only orthogonality to ψ1,
〈φ0| ψ1〉 → 0, is adequate.

13.6.1.8 Comparison Between F, HUM, and the Lowest Orthogonal to φ0
(OO)

Up to now it has been demonstrated that the optimized HUM 2nd root �2r
1 is

veered away from the exact saddle point because it must be orthogonal to a
deteriorated approximant of the ground state while lying higher than the exact (in
accordance with the HUM theorem). Also, previously it was demonstrated that (OO)
minimizing the excited state energy orthogonally to a normalized approximant φ0,
of ψ0, leads to a function, φLE

1 , lying lower than the exact (not collapsed), therefore,

also veered away from the exact. Thus the F1-minimizing function, φ
F1
1 , is the most

reliable truncated approximant among the three {φF1
1 , φLE

1 , and �2r
1 }.

13.6.1.9 Remarks

1. If 〈1| φ0〉 = 0, then the three functions {φF1
1 , φLE

1 , and �2r
1 } coincide with ψ1

and φ+
1 , because the orthogonal to φ0 subspace will contain ψ1; hence φ+

1
will coincide with ψ1: not lying lower. Thus the minimizing function φLE

1 will
coincide with φ+

1 and, therefore, with ψ1. Also, �2r
1 , having φ0 as 1st root, will
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Fig. 13.10 The various (E,F) values visited in F1-minimization, sorted by descending F1. Observe
that many E values are deceptively low, having large F1 (the first points). Those having good F1,
e.g., the 2074th or the 2010th zoomed in the inset, may have acceptable wave function (see text).
The correct is the last one

belong to the orthogonal subspace that contains ψ1, and, since there is no other
minimum than that of φLE

1 = ψ1, it will coincide with ψ1. Therefore, for the
three functions to coincide the condition 〈1| φ0〉 → 0 suffices; it is not necessary
to meet the condition φ0 → ψ0.

2. Finding the minimum of Fn is necessary: Fig. 13.10 shows all computed 8-term
energy values, E[φ1], in this work along their F1 values, sorted by F. Of course,
the first points have large F and low E, and the last points tend to the minimum of
F1. Nevertheless, some of the last points, as shown in the inset, have reasonable
F1, but rather low E[φ1]. The correct point is the last one at the minimum of F1,
where the E and F values coincide.

3. Since En is a saddle point, some wave functions φn near the Fn minimum are still
acceptable even if they lie below En, as long as they lie above En – L [cf. Eq.
13.8], or, in general, above the convex combination of all lower eigenvalues up
to En, which is of the form (1 −∑iai)En +∑iaiEi; if the expansion coefficients
(weights ai = 〈i| φn〉2) are small, or L < ε (an acceptable tolerance), the point
is near En and φn is acceptably near ψn [79]. The value of L, already at such
accuracies near the Fn minimum, can be easily checked. This criterion of validity
holds for any φn, not necessarily obtained via Fn. For example, φLE

1 , above, has

L = (E1 − E0)
〈
0|φLE

1

〉2= 0.0018, which is a quite large tolerance; therefore,
φLE

1 is rather unacceptable.



502 N. C. Bacalis

13.6.2 Demonstration of Identifying a “Flipped Root”

Let the ground and 1st excited state wave functions of a hydrogen-like ion be
parametrized as

ψ0 (z0; r) = a0 (z0) e−Z r z0 , ψ1 (z1, g; r) = a1 (z1, g) e−z1Z r/2 (1 − g Z r/2)

where Z is the nuclear charge, z0, z1, g are variational parameters, and a0(z0),
a1(z1, g) are normalization constants. These functions are not orthonormal, unless
z0 = 1, z1 = 1, g = 1, when they form eigenfunctions of the Hamiltonian Hψj (r) =
−ψ ′′

j (r)/2 − ψ ′
j (r)/r − Zψj (r)/r .

In their 2 × 2 subspace create an orthonormal basis

�0(r) = ψ0(r), �1(r) = (ψ1(r) − ψ0(r) 〈ψ0|ψ1〉) /

√
1 − 〈ψ0|ψ1〉2,

whose overlap matrix is δi, j. In diagonalizing their Hamiltonian matrix Hi,j =
∞∫

0
4πr2 �i(r)H�j (r)dr , let the two normalized eigenfunctions be �1r(r), �2r(r),

with their eigenvalues (“roots”) depending on z0, z1, g.
Now, around z0 ≈ 2 a root crossing occurs for a wide range around z1 ≈ 1

and g ≈ 1. Near and “before” the crossing the continuation of ψ0(z0; r) is �1r(r)
and the continuation of ψ1(z1, g; r) is �2r(r), whereas “beyond” the crossing the
continuation of ψ1(z1, g; r) is �1r(r) and the continuation of ψ0(z0; r) is �2r(r). The
question is to decide, via F1, whether a given value (“point”) of (z0, z1, g), near the
crossing, is “before” or “beyond” the crossing, in order to use the continuation, ε, of
(always) E[ψ1(z1, g; r)] in an optimization algorithm. (In the present demonstration
Newton-Raphson (NR) is used: ε

′
:= (∂ε/∂z0, ∂ε/∂z1, ∂ε/∂g) = 0 is solved by

proceeding iteratively to a new point p + δp = p − J−1 · ε
′

– or less if the method
diverges – having started at some point p = (z0, z1, g), where J is the Jacobian
matrix, Hessian of ε [85].)

Thus, consider

F1
[
φ0; �nr

] = E
[
�nr

]+ 2
(〈φ0| H |�nr〉 − E [�nr ] 〈φ0|�nr〉)2

(E [�nr ] − E [φ0])
(
1 − 〈φ0|�nr〉2) , n = 1, 2

where the fixed predetermined (deliberately not very accurate) ground state approx-
imant is φ0

(
z0

0; r
) = a0

(
z0

0

)
e−Z r z0

0 with z0
0 = 1–0.05. (By direct minimization,

F1[φ0; �2r] is minimized to F1 → E[�2r(r)] = E[ψ1(1, 1; r)] = − 0.125 at z1 = 1,
g = 1, (z0 ≈ 1).) As explained above in the theory (cf. Eq. 13.15), among the two
“roots,” the continuation of the excited state, near the crossing, is the one with the
lowest F1. Indeed, for Z = 1, using (first traditionally) blindly the “2nd root,” i.e.,
keeping ε to E[�2r(r)], i.e., regardless of which n (nth root) the lowest F1 suggests,
“root flipping” occurs: The sequence of Table 13.4 is obtained, even by using half
NR-step.
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Table 13.4 Root flipping: no
convergence of the 2nd root

n E2r (a.u.)

2.7 0.95 0.8 1 1.09915
1.89975 0.657935 0.618574 1 0.0312309
1.79561 0.457167 0.5843 2 −0.05816
1.81109 0.303372 0.471712 2 −0.0491109
1.88811 0.0253053 0.0834495 2 −0.0056792
−4.64705 1.13597 3.82639 1 14.4125
−4.64705 1.13597 3.82639 1 14.4125
−1.79846 0.463128 1.53227 1 3.19065
0.416586 −0.117902 −0.379791 2 0.0138916
0.647726 −0.168901 −0.60433 2 0.0232773
0.913718 −0.21854 −0.88652 2 0.0336386
1.15883 −0.254786 −1.19969 2 0.0428655
... ... ... ... ...

Table 13.5 Same as Table
13.4, but by consulting F1

z0 z1 g n ε (a.u.)

2.7 0.95 0.8 1 −0.142331
2.62754 0.95588 0.907362 1 −0.127151
2.37234 0.971824 0.98181 1 −0.124935
1.92938 0.992178 1.00683 1 −0.125094
1.3233 1.02512 0.953813 2 −0.124875
1.18358 1.01644 0.958059 2 −0.12496
1.07193 1.01041 0.964645 2 −0.124988
0.980565 1.00646 0.97107 2 −0.124997
0.905827 1.00399 0.976612 2 −0.124999
0.844753 1.00248 0.981153 2 −0.125

On the contrary, by consulting F1 the continuation of the excited state is
recognized near the crossing and is used (until finally, at convergence, only n = 2,
the 2nd root, is suggested by the lowest F1) [cf. Table 13.5].

Observe that at the beginning, “beyond” the crossing, the lowest F1 dictates to
use, for the next step, the (lower than E1) value of ε = E[�1r(r)] (n = 1, the lowest
function at that point).

Similarly, using blindly only the 2nd root (regardless of which n is dictated by the
lowest F1) and starting again “beyond” the crossing (n = 1), Table 13.6 is obtained.
In this case, despite the original irregularities due to root flipping, the 2nd root finally
happened to remain “before” the crossing (n = 2) and converged (0.3 of NR-step
was used.)

By starting from the same point but by consulting F1 no irregularities occurred
[cf. Table 13.7].

Note that finally, near the minimum of the 2nd root where E[�1(p1)] > E[�0(p1)],
“before” the crossing, the convergence should use the 2nd root. If (and when),
while in n = 1, it were stuck approaching a point of the 1st root, i.e., “beyond”
the crossing, the NR-step should be increased somewhat in the direction of the last
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Table 13.6 Accidental
convergence of the 2nd root

z0 z1 g n E2r (a.u.)

2.7 1.2 1.1 1 0.99477
2.20242 0.940034 0.917342 1 0.256091
1.89495 0.731999 0.818135 1 −0.0551044
1.58749 0.523964 0.718929 2 −0.0866029
−3.05737 −10.9139 −12.3444 1 69.042
−2.07399 −7.38161 −8.30417 1 33.6488
−1.38465 −4.90769 −5.47902 1 16.3024
−0.695314 −2.43378 −2.65387 1 5.07481
−0.695314 −2.43378 −2.65387 1 5.07481
−0.414382 −1.43604 −1.53652 1 2.2856
−0.214196 −0.731385 −0.76036 1 0.910672
−0.0140099 −0.0267279 0.0157957 2 0.0214185
0.164968 0.31467 −0.18661 2 −0.0598432
0.326748 0.626253 −0.334901 2 −0.103163
0.401263 0.771636 −0.381191 2 −0.116354
... ... ... ... ...
0.518132 1.00162 −0.429903 2 −0.124998
0.516411 0.998281 −0.42876 2 −0.125

Table 13.7 Same as in Table
13.5, but by consulting F1

z0 z1 g n ε(a.u.)

2.7 1.2 1.1 1 −0.119716
1.93961 1.03415 0.976157 1 0.126188
1.76764 0.886719 1.08156 2 −0.121279
1.61807 0.892447 1.16453 2 −0.121751
1.41702 0.918759 1.21697 2 −0.123372
1.20892 0.9443 1.21744 2 −0.124476
1.04199 0.963778 1.18615 2 −0.12487
0.924215 0.977699 1.15139 2 0.124969
0.841179 0.986541 1.12222 2 0.124992
0.780975 0.991767 1.09888 2 0.124998
0.735948 0.994853 1.0804 2 −0.124999
0.701294 0.996712 1.06577 2 −0.125

Table 13.8 Overpassing a
false convergence

z0 z1 g n E (a.u.)

2.5 1.2 0.9 1 −0.138096
2.62454 1.03587 0.935687 1 −0.127460
2.48591 0.989487 0.976356 1 −0.125154
2.34727 0.943106 1.01703 1 −0.124859
1.41343 1.02160 0.963025 2 −0.124868
1.25337 1.01623 0.964009 2 −0.124954
1.12615 1.01049 0.968734 2 −0.124986
1.02330 1.00655 0.974106 2 −0.124996
0.939738 1.00405 0.978974 2 −0.124999
0.871820 1.00250 0.983044 2 −0.125
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“false”-converged δp in order to send it farther to n = 2, i.e., “before” the crossing
where the real minimum should be [cf. Table 13.8]. (Such a “false” convergence
should always be checked). While being in n = 1, it approached p = (2.34, 0.94,
1.01); in order to send it farther to n = 2 “before” the crossing, p was extrapolated
every three steps by twice the final step – or more if convergence is slow, according
to the logical code exposed in Table 13.2. Such an extrapolation was also used in
the first example above; in the second it was not needed.

Note that the graphs of all converged functions, above,

�2r (r) = −0.0074983 e−0.844753 r + (0.206437 − 0.101273 r) e−0.50124 r ,

�2r (r) = 0.615983 e−0.516411 r − (0.416497 + 0.0892886 r) e−0.499141 r ,

�2r (r) = 0.0178076 e−0.701294 r + (0.182078 − 0.0970265 r) e−0.498356 r ,

�2r (r) = −0.00706569 e−0.87182 r + (0.205952 − 0.10123 r) e−0.50125 r

are practically identical to the exact

ψ1 (1, 1; r) = (1 − r/2) e−r/2/
√

8π = (0.199471 − 0.0997356 r) e−r/2;

they differ by at most 0.001 at r = 0 (the second differs at most by 1.5 10−5).

13.6.3 Application to Conventional Configuration Interaction
Treatment

The functional Fn has been preliminarily [2, 66] used for the computation of
atomic excited states in standard coordinates (r, θ , ϕ) by configuration interaction
(CI), where the configurations are symmetry-adapted linear combinations of Slater
determinants (SD) composed of analytic Laguerre-type orbitals, whose polynomial
prefactors are variationally optimized (AVOLTOs), thus providing small, concise,
and comprehensible analytic wave functions, with accuracy comparable to numeri-
cal MCSCF [79]:

〈r|n, ", m〉 = An,",mLn,"(r)Y ",m (θ, φ) ,

where An, ", m are normalization factors, Y", m(θ , φ) are spherical harmonics, and
Ln, "(r) are the AVOLTOs,

Ln,"(r) =
n−"−1∑

k=0

c
n,"
k g

n,"
k r("+k)e−zn,"

r
n + bn,"e−qn,"zn,"

r
n δ",0. (13.19)
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Here c
n,"
k are the usual associated Laguerre polynomial coefficients, zn, ", bn, ", qn, "

are variational parameters, and g
n,"
k are factors determined by orthogonalization

to desired, only, orbitals, i.e., by solving (for g
n,"
k ) the relations 〈ni, ", m| nj, ",

m〉 = δi, j, so that not all orbitals are mutually orthogonal. Therefore the general
formalism is non-orthogonal, which allows spin unrestricted as well as open shell
computation.

Thus, for an atom with nuclear charge Znuc and N electrons, with space and spin
coordinates r1s1, ..., rNsN , and for a given symmetry type and electron occupancy,
the desired N − electron normalized wave function, of the nth excited state,
consisting of Nconf (predetermined) configurations, out of Ndet SDs, is written as

φn (r1s1, . . . , rNsN) =
Nconf∑

p=1

dp

Ndet∑

a=1

fp,aDa; |φn|2 = 1 (13.20)

and is obtained by minimization of Fn, with Hamiltonian

H = −1

2

N∑

i=1

(
∇2

i + Znuc

| ri |
)

+
N∑

i>j

1

| ri − rj | ≡
N∑

i=1

hi +
N∑

i>j

gi,j .

In Eq. 13.20, if Ndet is the number of SDs, Dα , consistent with the desired
electronic state, Norb is the predetermined number of spinorbitals, ai, under opti-
mization, and fp,a are all (Nconf × Ndet) consistent corresponding coefficients, then,
the linear parameters dp are determined from a desired root of the secular equation
(Nconf × Nconf) with (p,q) matrix elements

Ndet∑

a,b=1

fp,afq,b 〈Da |H − E| Db〉 ,

and φn is a critical point of both the energy and Fn, while all φi i < n, remain
unvaried, rather crude, approximants of the lower states.

The one- and two-electron terms between SDs are computed by

〈Da|
N∑

i=1

hi |Db〉 = 1√
DaaDbb

N∑

i,j=1

〈ai |h| bj

〉
Dab

(
aibj

)

where Dab = det � 〈a1| b1〉〈a2| b2〉· · · 〈an| bn〉�, ai (and bj, etc.) are the spin-orbitals,
and where Dab(aibj) is the cofactor of the element 〈ai| bj〉 in the determinant Dab,
and Daa, Dbb are similar normalization factors. Also,
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〈Da|
N∑

i>j

gi,j |Db〉 = 1√
DaaDbb

N∑

j>l

N∑

i>t

〈aiat |g| bj bl

〉
Dab

(
aiatbj bl

)

where Dab(aiatbjbl) is the cofactor of Dab defined by deleting the rows and columns
containing 〈ai| bj〉 and 〈at| bl〉 and attaching a factor (−1)i + j + t + l to the resultant
minor. The determinant cofactors are most efficiently computed via the inverse
matrix, after adding to all matrix elements small random numbers of the order
of machine accuracy, in order to avoid occasional (but harmless) vanishing of the
determinant.

13.6.3.1 Results

He

To check the reliability of the CI computation, before demonstrating comparisons
between Fn and HUM – small and large – expansions, a comparison with the
literature is shown:

For the 1st excited state of He 1S 1s2s, using, in φ1, 11 AVOLTOs forming 76
SDs and 22 configurations and a fixed crude φ0 approximant of 1s2 of only two
AVOLTOs in a 2 × 2 CI (E[φ0] = −2.88 a.u.), then E[φ1] = −2.1458140 a.u.
(F1 = −2.1458139 a.u.). The wave function is primarily φ1 = 0.9993 (1sB 2sA –
1sA 2sB) + 0.0190 (2p1A 3p−1B – 2p1B 3p−1A – 2p0A 3p0B + 2p0B 3p0A + 2p−1A
3p1B – 2p−1B 3p1A) + 0.0178 3s2, where A,B denote the spin, the {rrms distance
from the nucleus (a.u.); and zn, ", bn, ", qn, " values} are, respectively, for 1s:
{0.8699666; 1.9690983, 0.0881525, 1.2060984}, for 2s: {5.6429592; 1.1248561,
0, 1}, for 2p: {1.1438142; 4.7885604, 0, 1}, and for 3s: {1.0879814; 5.6155136,
0, 1}, the gk-factors are for 2s: (0.8186816, 1) and for 3s: (4.0287651, 2.0322568,
1), making them both orthogonal to another 1s, a little more diffuse: {1.0374887;
3.0931600, −0.9341100, 0.9519696}. This energy value can be compared to (i)
−2.1457316 a.u., with 10 AVOLTOs forming 68 SDs and 18 configurations, exactly
orthogonal to a quite accurate φ0 of E = −2.9031501 a.u. with 15 AVOLTOs, 157
SDs, and 40 configurations and to (ii) −2.145873 a.u. using 10 numerical MCHF
orbitals, with a comparably highly accurate ground state of E = −2.9031173 Eh
[86].

For the 2nd excited state of He 1S 1s3s, using, in φ2, 11 AVOLTOs, 77 SDs,
23 configurations, and again 2 × 2 φ0 and φ1, then E[φ2] = −2.0612263 a.u.
(F1 = −2.0611758 a.u.). The wave function is primarily φ2 = 0.9788 (1sA 3sB –
1sB 3sA) + 0.2035 (3sA 2sB – 3sB 2sA) + 0.0170 (1sA 2sB – 1sB 2sA); the {rrms; z,
b, q} values are for 1s: {1.1051964; 1.61507, 2.0564, 0.95729}, for 3s: {12.9875477;
1.09458, 0, 1}, and for 2s: {1.6490337; 3.49456, 0, 1}; the gk-factors are for 3s:
(0.7660135, 0.9277702, 1), making it orthogonal to 1s and to the previous 2s, and for
2s: (1.5813926, 1), making it orthogonal to 1s. This energy value can be compared
to −2.0612681, obtained by B-splines [87]. By increasing to 19 AVOLTOs, 263



508 N. C. Bacalis

Fig. 13.11 CI wave functions (main orbitals): for He1S1s3s. Dotted: 1s. Dashed: 2s. Solid: 3s.
The HUM main orbitals (a) are, incorrectly, 1s,1s′, whereas the F main orbitals (b) are, correctly,
1s3s. Notice that the “LUMO” is just a static correlation orbital very close to the nucleus, not an
excitation orbital

SDs, 53 configurations, the improved energy is E[φ2] = −2.0612522 a.u. (= F1)
[88].

Therefore, the CI computation is reliable. To compare with HUM, as “exact”
ψn a “large” expansion in 1s, 2s, 3s, 4s, 5s, 2p, 3p, 4p, 5p, 3d, 4d, 5d, 4f, 5f was
used. For 1S: E0 ≈ −2.90324 a.u., E1 ≈ −2.14594 a.u., E2 ≈ −2.06125 a.u. (exact:
−2.06127 a.u [80].), for 3S: E0 ≈ −2.17521 a.u. (compared to −2.17516 of ref.
[89]), E1 ≈ −2.06869 a.u. (exact: −2.17536, −2.06881 a.u [80]). As “truncated”
trial functions φn a “small” expansion in 1s, 2s, and 3s was used.

He 1S

He 1S 1s2s (1st Excited State φ1)

As found above with Hylleraas coordinates, for He 1S 1s2s the “small” HUM and
F functions, in lack of other parameters, are essentially the same. There is nothing
interesting to compare.

He 1S 1s3s (2nd Excited State φ2)

For the singlet He 1S 1s3s, the comparison is shown in Fig. 13.11. F “small”
is, correctly, mainly 1s3s, whereas HUM “small” is, misleadingly, mainly 1s1s′,
instead of 1s3s. Notice that the lowest unoccupied orbital, “LUMO,” acts as a static
correlation orbital, improving the total wave function near the nucleus. By no means
should it be considered as the first candidate orbital to be occupied by an excited
electron. For details see Ref. [90].



13 If Truncated Wave Functions of Excited State Energy Saddle Points Are. . . 509

He 3S

He 3S 1s3s (1st Excited State φ1)

The lowest state of He 3S is 1s2s, obtainable by simply minimizing the energy. For
the 1st excited state φ1, as seen in Fig. 13.3 (a), again it is demonstrated that “large”
functions, HUM and F, are practically equivalent. The F “small” function (b) has
the same main orbitals, 1s and 3s, as both the “large” functions F (a) and HUM (d),
where the 2s just adds some static correlation correction near the nucleus (as well
as all higher orbitals of the “large” expansion (c)). But the HUM “small” expansion
(e), orthogonal to a deteriorated 1st root 3S “1s2s” (f), has main orbitals 1s2s (with
opposite sign), while the 3s orbital acts as a static correlation correction of the total
wave function, to approach the correct energy. Thus, the HUM solution incorrectly
predicts, as “HOMO” orbital, the 2s instead of the 3s; therefore, it is misleading.
Of course, blindly considering as “LUMO” the 1st higher “unoccupied” orbital, i.e.,
the HUM 3s, is completely out of question.

The above conclusions are clearly confirmed by Fig. 13.4, where all HUM
functions have minimum, whereas all F functions, either “large” or “small,”
have energy saddle point. (Of course, the larger the expansion, the better is the
approximation, but for larger systems this is not feasible; rather “small” but reliable
functions are needed.)

Li

Similar results are found for Li: Several low-lying excited states of Li 2S and 4S
are shown in Table 13.1, where the main configuration, the energy E and the Fn

value are displayed, along with the RMS extent of the main orbitals. The low-lying
HUM “small” functions were misleading. However, by appropriately changing the
basis, guided by the Fn functional, much better HUM “small” functions were found,
used for final comparisons with the Fn functions. This, as well as the corresponding
aforementioned results for He, suggests that small expansions for excited states
would be more correctly described in terms of more appropriate basis functions.
The last (9th) column shows the number of configurations along with the overlap
〈HUM| Fn〉 of the corresponding functions. Clearly, the larger the expansion, the
better the approximation; nevertheless, the 2nd derivatives in the eighth column
assert that the HUM functions always have energy minimum and therefore are not
the excited state saddle points, whereas the Fn functions are saddle points.

13.6.4 Immediate Improvement of a Lowest State Approximant

A very accurate φ1 approximant of ψ1 was used for He 1S 1s2s, in terms of 19
AVOLTOs up to 5 g with unrestricted s orbitals up to 4s, 53 CI terms, 263 SDs,
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with E[φ1] = −2.14593739906107 a.u., F1 = −2.14593739906075, and, as φ0,
a crude approximant 1s2, restricted s, with E[φ0] = −2.847656 a.u. In their 2D
space their 2 × 2 overlap matrix, sij, and Hamiltonian matrix, hij, are s11 = 1.0;
s12 = s21 = −0.047857; s22 = 1.0 and h11 = −2.847656; h12 = h21 = 0.102699;
h22 = −2.145937, as expected, since φ1 is very close to ψ1 and (s12 h22 –
h12) = 5 × 10−8 (i.e., in other words: 〈φ0|H|φ1〉 = E1〈φ0| φ1〉).

The (orthonormal) eigenvectors are indeed �+ = 1.2 10−6 φ0 + 1.00 φ1 = ψ1,
E+ = E1 = −2.145937 a.u. (unchanged, since it was already essentially a
Hamiltonian eigenfunction) and the improved �− = 1.0011471 φ0 + 0.047910626
φ1, E− = −2.8492667 a.u. This is equal to [also computed independently via
Eq. (13.14)] φ+

0 exactly orthogonal to φ1 = ψ1. By using a partially optimized

wave function f2 = 2s3s, a function φ
(2+)
0 orthogonal to both {φ+

0 , ψ1} was

obtained, then, in the 2 × 2 subspace of {φ+
0 , φ

(2+)
0 } (both orthogonal to ψ1),

the lowest Hamiltonian eigenvector �− ≡ φ−
0 = 0.09305114 φ1 + 0.29149129

φ0 + 0.715803 f2 has energy E
[
φ−

0

]= − 2.8673305 a.u. By further introducing an
individually optimized wave function f3 = 4s2, then �− ≡ φ2−

0 = 0.093057191
φ1 + 0.29149218 φ0 + 0.71580519 f2–0.0025808019 f3 was obtained with
E0

−2 = −2.8673481 a.u. By repeating with an individually optimized wave function
f4 = 2p3p, then �− ≡ φ3−

0 = 0.09284577 φ1 + 0.29145852 φ0 + 0.71572254 f2–
0.0025805039 f3 – 0.013914576 f4 was obtained with E0

3− = −2.8677801 a.u., and
so on. All these improvements were done immediately within negligible time.

13.7 Final Remark

The excited states are energy saddle points in the Hilbert space of wave functions.
To compute excited states with truncated wave functions, most standard methods
are based on HUM theorem, which says that, optimizing the desired higher root
of the secular equation approaches the correct energy from above; it does not say
anything about the quality of the wave function. However, the wave function is
needed if we want to understand the behavior of the electrons and to compute
other properties besides the energy. For large systems we need rather small and
comprehensible (truncated) wave functions. We have seen that using small wave
function expansions, HUM theorem, allows us to approach the energy (from above,
i.e., by minimization), but it prevents us from approaching the exact excited
state saddle point wave function. Thus, based on HUM theorem, we must use
large expansions (the larger, the better), which is impracticable for large systems.
We have also seen that the functional Fn (Eq. 13.4) has local minimum at the
excited state saddle point, regardless of the size of the expansion. Therefore,
it could be used for large systems with small wave functions. We saw that it has
been tested for small atoms and demonstrated the above statements. So, it is worth
trying it for larger systems. The implementation needs the computation, beyond
the energy 〈φn|H|φn〉, of simple matrix elements 〈φi < n| φn〉 and 〈φi < n|H|φn〉, that
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are standard subroutines of most of the common computational codes. The lower
lying approximants φi < n need not be very accurate; it is sufficient to be crude but
reasonable. Fn can be also used to identify a “flipped root,” a usual problem near
an avoided energy crossing in the variational parameter space. It can also be used
to immediately improve a ground state approximant if the 1st excited state is more
accurately known.
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Chapter 14
Simulating Quantum Dynamics in
Classical Nanoscale Environments

Gabriel Hanna and Alessandro Sergi

Abstract In this chapter, we describe a mixed quantum-classical approach for
simulating the dynamics of quantum mechanical phenomena occurring in nanoscale
systems. This approach is based on the quantum-classical Liouville equation
(QCLE), which prescribes the dynamics of a quantum subsystem coupled to a
classical environment. We explain how the QCLE can be solved using a stochastic
surface-hopping algorithm and how expectation values of observables can be
computed. Schemes for reducing the number of trajectories required in these
computations and for ensuring the continuous evolution of the quantum subsystem
states along the trajectories are also outlined. To demonstrate the utility of these
techniques, we describe two recent applications: vibrational energy transfer in
an alpha-helical polypeptide and the field-driven dynamics of a plasmonic meta-
molecule.
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14.1 Introduction

Nanotechnologies have attracted the attention of many over the last several decades
due to their versatility and advanced functionality. Optoelectronics [24, 88], molec-
ular electronics [62] and quantum computing/information [8, 58, 59] are just a
few prominent examples of fields that have benefitted tremendously from nan-
otechnologies. Nowadays, researchers are faced with the challenge of designing
high-performance, efficient and environmentally friendly materials and devices.
This challenge could translate into, for example, constructing devices that are
capable of highly efficient transfer of energy [43, 57], charge [30, 54] or quantum
information [58, 59] in complex nanostructures. To achieve such goals, however,
one must gain a fundamental understanding of the dynamical processes involved
and how these processes are influenced by their nanoscale environments. In this
regard, molecular simulation has proven to be an indispensable tool for probing the
structure and dynamics of nanoscale systems.

When the process under study is of a quantum nature and occurs in a complex,
many-particle system such as a nanomaterial, a fully quantum approach to mod-
elling the dynamics will be computationally intractable. In this case, an approximate
treatment of the dynamics is required to gain insight into the process. Mixed
quantum-classical dynamics methods, which treat a subsystem of interest quantum
mechanically and the particles in its environment (or bath) in a classical-like fashion,
can provide tremendous computational savings over fully quantum methods. For
example, the subsystem could be a key proton/electron in a charge transfer reaction,
a chromophore involved in a vibrational/electronic energy transfer process or an
exciton in a light-harvesting system, while the environment could be a molecule,
solvent or crystal.

The partitioning of a system into different sets of degrees of freedom (DOF)
lies at the heart of the Born–Oppenheimer (BO) approximation, which assumes
a time/energy scale separation between the motions of the nuclei and electrons.
In quantum chemistry, the BO approximation greatly simplifies calculations of
molecular energies and wave functions by enabling one to solve the electronic
Schrödinger equation for a fixed configuration of the nuclei to obtain electronic
energies and wave functions that depend on the nuclear configuration. By repeating
this calculation for a sufficiently large number of nuclear configurations, one can
then construct the potential energy surfaces (PESs) of the electronic subsystem.
These PESs give rise to forces (known as Hellmann-Feynman forces) that act on
the nuclei over the course of their dynamics. When the energy scale separation
between the nuclei and electrons is sufficiently large, the nuclei will evolve subject
to the forces obtained from the PES corresponding to the current state of the
electrons (which will not change because the electrons will not have enough energy
to hop to another PES). This is known as adiabatic dynamics. However, when
their energy scales become comparable, the nuclei can evolve subject to the forces
obtained from another PES (because the electrons may acquire enough energy from
the nuclei to hop to another PES). This breakdown of the BO approximation is
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Fig. 14.1 A schematic
representation of the ground
and excited electronic PESs
of a system. In adiabatic
dynamics, the nuclei evolve
on a single PES. However, in
the vicinity of an avoided
crossing, a nonadiabatic
transition can occur, which
causes the nuclei to evolve on
another PES
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known as nonadiabatic dynamics. It typically occurs in the vicinity of an avoided
crossing or conical intersection between PESs. (See Fig. 14.1 for an illustration of
the aforementioned concepts.)

In general, adiabatic dynamics arises whenever one set of DOF changes slowly
compared to another set, as in the case of nuclei and electrons in the BO
approximation. If one is able to partition a system into a subsystem containing
fast DOF of interest and an environment containing slow DOF, then the dynamics
of the environmental DOF will be governed by a single PES corresponding to the
state of the subsystem. However, when the time scales of motion of the subsystem
and environmental DOF become comparable, motion on a single PES is no longer
able to accurately capture the dynamics of the slower DOF. Many important
processes in physics, chemistry and biology involve this nonadiabatic dynamics.
Examples include intersystem crossings and internal conversions in photochemistry,
electron transfer reactions in electrochemistry, ion–molecule reactions, reactions at
metal surfaces, photo-induced dynamics of molecules adsorbed to semiconductor
substrates (as in a photovoltaic cell) and photo-induced dynamics in quantum dots.

Due to the importance of nonadiabatic dynamics, a great deal of effort has been
devoted to developing simulation methods over the years that take nonadiabatic
effects into account. In particular, many mixed quantum-classical methods have
been proposed for simulating nonadiabatic dynamics, which essentially differ in
the way they couple the subsystem and bath DOF [1, 3, 25, 27, 33, 35, 39, 41, 48,
50, 61, 70, 74, 76, 81, 84, 85]. The two most widely used methods are mean-field
(or Ehrenfest) and fewest switches surface-hopping (FSSH) dynamics [5–7, 10, 20,
29, 60, 67–69, 71, 75, 77, 86]. Mean-field dynamics is based on the assumption
that the environmental motions are governed by a single effective PES, which is
a weighted average over the adiabatic PESs of the subsystem. On the other hand,
surface-hopping methods evolve the environmental DOF on a single adiabatic PES
at any given time, with instantaneous hops to other PESs at times when the BO
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approximation breaks down. However, mean-field and FSSH dynamics suffer from
several drawbacks. Both methods do not correctly describe the “quantum back-
reaction”, i.e. the effect due to the subsystem-environment coupling, whereby a
change in the environmental DOF modifies the subsystem Hamiltonian, which in
turn modifies the forces governing the motion of the environmental DOF. Mean-
field dynamics is not capable of capturing decoherence, while FSSH can do so
after incorporating some ad hoc corrections [68, 71]. Both methods also struggle
to satisfy detailed balance. Due to the incorrect nature of the energy transfer
between the subsystem and environment, it is possible for the subsystem to approach
unrealistically high temperatures in mean-field dynamics [55]; in such cases, one
can employ quantum correction factors that modify the dynamics in such a way that
detailed balance is enforced [4]. In FSSH, it is possible to satisfy detailed balance
in certain limits if the so-called frustrated hops are allowed [64].

In this chapter, we focus on a mixed quantum-classical dynamics approach that
is based on the quantum-classical Liouville equation (QCLE) [2, 22, 33, 89], which
can be derived from the quantum Liouville equation by first taking its partial Wigner
transform [87] over the bath DOF (leading to a description of the subsystem and
bath DOF in terms of operators and phase space variables, respectively) and then
truncating the resulting equation after first order in h̄. The QCLE constitutes an ideal
starting point [31, 32] for deriving mixed quantum-classical dynamics algorithms
because (i) it can be rigorously derived from the more fundamental quantum
Liouville equation based on a well-defined and physically reasonable approxi-
mation, and (ii) it yields the exact quantum dynamics for quantum subsystems
that are bilinearly coupled to harmonic environments [45], which are frequently
used models in chemical and condensed matter physics research. A large number
of QCLE-based algorithms have been developed over the years [16–18, 23, 26–
28, 34, 36, 37, 40, 41, 44, 46, 47, 49, 53, 63, 82, 83]. This chapter will deal with a
particular algorithm known as sequential short-time propagation (SSTP) [23, 47],
due to its favourable compromise between accuracy and ease of implementation.
SSTP is a hybrid molecular dynamics/Monte Carlo algorithm, which relies on the
so-called momentum jump approximation [23, 65] and solves the QCLE in terms of
an ensemble of surface-hopping trajectories. However, a direct application of this
algorithm has proven to be very challenging due to severe numerical instabilities
that arise beyond short times when the subsystem-bath coupling strength is not
very weak. In this case, the statistical weights associated with the Monte Carlo
sampling of the nonadiabatic transitions (and that enter into the calculation of the
observable) grow very rapidly in time, thereby necessitating very large numbers
of trajectories to obtain converged expectation values. Transition filtering schemes
[12, 13, 15, 23, 66, 79, 80], which impede the growth of these weights by filtering
out the low-probability nonadiabatic transitions, have been shown to significantly
alleviate the numerical instabilities. We will discuss one such scheme [12, 13] in
this chapter.

In most mixed quantum-classical surface-hopping approaches (including the
SSTP algorithm), one must evaluate the adiabatic states and nonadiabatic couplings
between them at each time step of the simulation. In most cases, they are evaluated
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numerically, which first entails a numerical diagonalization of the Hamiltonian
matrix. However, the resulting eigenvectors are determined uniquely up to a
sign, which leads to an arbitrariness in the signs of the nonadiabatic coupling
vectors. These signs must be corrected by requiring that the eigenvectors change
continuously from one point to the next along a trajectory in configuration space.
However, the situation is further complicated when one is interested in computing
time-dependent expectation values based on an ensemble of trajectories (which are
typically initialized at different points in the configuration space). In this chapter,
we outline a recently proposed method [14] for ensuring eigenvector sign continuity
across an ensemble of trajectories in surface-hopping simulations.

To illustrate the utility of the aforementioned methods for simulating the
dynamics of mixed quantum-classical systems, we present two applications. The
first one demonstrates how transition filtering can be used to facilitate the calculation
of amide I mode populations in a six-site model of an alpha-helical polypeptide,
after a vibrational excitation at one end of the chain. The second one involves
calculations of populations and coherences in a reduced model of a plasmonic
metamolecule in an external field, using a generalized version of the SSTP algorithm
for simulations of systems with time-dependent Hamiltonians.

The chapter is organized as follows. In Sect. 14.2, we present the QCLE, discuss
how it can be solved via the SSTP algorithm, and explain how expectation values of
observables can be computed. Recently proposed schemes for transition filtering and
eigenvector sign correction are also outlined in this section. In Sect. 14.3, we present
two recent applications of the aforementioned techniques to simulating vibrational
energy transfer in an alpha-helical polypeptide and the field-driven dynamics of a
plasmonic metamolecule. Our summary and future outlook are given in Sect. 14.4.

14.2 Mixed Quantum-Classical Liouville Dynamics

14.2.1 The Quantum-Classical Liouville Equation

We begin by considering a quantum subsystem, whose Hamiltonian operator is ĤS,
embedded in a classical environment, whose Hamiltonian function is HB(Q, P ) =
P 2

2M
+ V (Q). The coordinates (Q, P ) denote the positions and momenta, respec-

tively, of the atoms or molecular fragments (characterized by masses M and
interacting according to the potential energy function V (Q)) in the environment.
The coupling between the quantum subsystem and classical environment is gov-
erned by the operator ĤC(Q), which is also a function of the configuration of the
environment. (In this chapter, we do not consider situations where the subsystem
interacts with a magnetic field, such that the coupling Hamiltonian depends only on
the configuration.) Hence, the Hamiltonian of the total system is given by

Ĥ (Q, P ) = ĤS + HB(Q, P ) + ĤC(Q) , (14.1)
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Fig. 14.2 A schematic
representation of the total
system and its components.
The Hamiltonian of the total
system is the sum of the
subsystem (ĤS), bath (HB)
and coupling (ĤC)
Hamiltonians

Classical  
bath 

Quantum 
subsystem 

ĤS HB(Q, P )

ĤC(Q)

where S, B and C stand for subsystem, bath and coupling, respectively (see Fig. 14.2
for a schematic representation of the total system). The statistical and dynamical
properties of the hybrid quantum-classical system defined by the Hamiltonian in
Eq. (14.1) can be obtained in terms of the system’s time-dependent density matrix
ρ̂(Q, P, t), which is also a function of the phase space coordinates (Q, P ). The
mixed quantum-classical dynamics of ρ̂(Q, P, t) is governed by the QCLE:

∂

∂t
ρ̂(Q, P, t) = − i

h̄

[
Ĥ , ρ̂(Q, P, t)

]
+1

2

{
Ĥ , ρ̂(Q, P, t)

}
−1

2

{
ρ̂(Q, P, t), Ĥ

}
,

(14.2)

where [·, ·] and {·, ·} denote the commutator and Poisson bracket, respectively. The
QCLE can either be postulated by requiring energy conservation (i.e. the antisym-
metry of the right-hand side guarantees that the time derivative of the Hamiltonian
Ĥ (Q, P ) is identically zero) or derived from a fully quantum dynamical description
of the total system in the limit that the particles in the environment are much heavier
than those in the subsystem. This derivation first involves a representation of the
heavy coordinates in Wigner phase space, followed by a linearization of the resulting
equation in the smallness parameter μ = √

m/M , where m is a characteristic
mass of the quantum DOF and M is a characteristic mass of the classical DOF.
By coupling the dynamics of the quantum and classical DOF in this fashion, the
QCLE consistently describes the back-and-forth exchange of energy between the
quantum subsystem and classical environment.

Knowledge of ρ̂(Q, P, t) allows one to calculate the average of any observable
property of the system, which is represented in this formalism by a microscopic Her-
mitian operator that depends on the phase space point, i.e. χ̂ (Q, P ) = χ̂†(Q, P ).
Finally, the value of a macroscopic observable at time t is given by

〈χ̂ (t)〉 = Tr′
∫

dQdP χ̂(Q, P )ρ̂(Q, P, t) , (14.3)

where Tr′ denotes a partial trace over the quantum DOF. It is also possible to
evaluate the average in the Heisenberg picture,
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〈χ̂ (t)〉 = Tr′
∫

dQdP ρ̂(Q, P )χ̂(Q, P, t) , (14.4)

where the mixed quantum-classical equation of motion of χ̂ (Q, P, t) is given by

∂

∂t
χ̂(Q, P, t) = i

h̄

[
Ĥ , χ̂(Q, P, t)

]
− 1

2

{
Ĥ , χ̂(Q, P, t)

}
+ 1

2

{
χ̂ (Q, P, t), Ĥ

}
.

(14.5)

14.2.2 Representing the QCLE in the Adiabatic Basis

To arrive at a surface-hopping algorithm for solving the QCLE, one must first
represent it in the adiabatic basis defined by the following eigenvalue problem (i.e.
the time-independent Schrödinger equation):

Ĥad(Q)|�k(Q)〉 = εk|�k(Q)〉 , (14.6)

where Ĥad(Q) = ĤS + ĤC(Q) + V (Q) is the so-called adiabatic Hamiltonian
operator, |�k(Q)〉 is the kth adiabatic basis state, and εk is the energy of that state.
In this basis, the QCLE becomes [34]

∂

∂t
ρkk′(Q, P, t) = −

∑

jj ′
δkj δk′j ′ (iωkk′ + iLkk′) ρjj ′(Q, P, t)

−
∑

jj ′
Kkk′,jj ′ρjj ′(Q, P, t) , (14.7)

where ρkk′(Q, P, t) = 〈�k|ρ̂(Q, P, t)|�k′ 〉 are the density matrix elements, ωkk′ =
[εk(Q) − εk′(Q)]/h̄ are the Bohr frequencies, iLkk′ are the matrix elements of a
classical-like Liouville operator

iLkk′ = P

M

∂

∂Q
+ Fk(Q) + Fk′(Q)

2

∂

∂P
, (14.8)

with Hellmann-Feynman forces Fk = −∂εk/∂Q, and Kkk′,jj ′ are the matrix
elements of a nonadiabatic transition super-operator

Kkk′,jj ′ = δk′j ′ckj (Q, P )

(
1 + 1

2

h̄ωkj

ckj (Q, P )
dkj (Q) · ∂

∂P

)

+ δkj c∗
k′j ′(Q, P )

(

1 + 1

2

h̄ωk′j ′

c∗
k′j ′(Q, P )

d∗
k′j ′(Q) · ∂

∂P

)

, (14.9)

with dkj = 〈�k|∂�j /∂Q〉 the nonadiabatic coupling vector and ckj = P/M · dkj .
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14.2.3 The Sequential Short-Time Propagation Algorithm

Now, we demonstrate how one can obtain a numerical algorithm for solving
the QCLE in terms of a swarm of stochastic trajectories, where each trajectory
is composed of piecewise deterministic segments interspersed with stochastic
transitions of the quantum subsystem between different adiabatic states.

The sequential short-time propagation (SSTP) solution to Eq. (14.7) for
ρkk′(Q, P, t) is [47]

ρkk′(Q, P, t) =
∑

(k1k′
1)...(kN k′

N )

[ N∏

j=1

(e−iL̂�tj )kj−1k′
j−1,kj k′

j

]
ρkN k′

N
(Q, P ),

(14.10)
where the time interval t is divided into N segments and �tj = tj −tj−1. In the limit
that �tj is sufficiently small, the propagator for segment j may be approximated by

(e−iL̂�tj )kj−1k′
j−1,kj k′

j
≈Wkj−1k′

j−1
(tj−1, tj )e

−iLkj−1k′
j−1

�tj

×
(
δkj−1kj

δk′
j−1k′

j
− �tKkj−1k′

j−1,kj k′
j

)
, (14.11)

where Wkj−1k′
j−1

(tj−1, tj ) = e
−iωkj−1k′

j−1
�tj

is the phase factor associated with

that segment. To simulate the action of Kkk′,jj ′ on functions of the momenta, the
momentum-jump approximation (MJA) [23, 65] is invoked, namely,

(
1 + h̄ωkj

2

dkj

ckj

· ∂

∂P

)
f (P ) =

(

1 + h̄ωkj

∂

∂(P̄ · ¯̂
dkj )2

)

f (P )

≈ eh̄ωkj ∂/∂(P̄ · ¯̂dkj )2
f (P )

= f (P + �P), (14.12)

where P̄ = P/
√

M , ¯̂
dkj = d̄kj /|d̄kj |, d̄kj = dkj /

√
M , and the momentum shift,

�P , is given by

�P = √
M

¯̂
dkj

[
sgn(P̄ · ¯̂

dkj )

√
(P̄ · ¯̂

dkj )2 + �εkj − (P̄ · ¯̂
dkj )

]
. (14.13)

(N.B.: dkj /
√

M = dT
kj M−1/2, where T stands for the transpose and M−1/2 is a

diagonal matrix containing the inverse square root of the masses.) According to

Eq. (14.13), if �εkj < 0 (i.e. an upward transition from k → j) and (P̄ · ¯̂
dkj )2 <

∣∣�εkj

∣∣ (i.e. there is insufficient kinetic energy from the bath momenta along ¯̂
dkj for

the nonadiabatic transition to occur), then the argument of the square root is negative
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leading to imaginary momentum changes. If this occurs, the nonadiabatic transition
is forbidden, and the trajectory is continued adiabatically. It should be noted that
the approximation made in the second line of Eq. (14.12) relies on |h̄ωkj dkj c−1

kj /2|
being small. Also, the total energy of the system is conserved along a trajectory
under the MJA.

The expectation value of χ̂ (Q, P, t) is given by

〈χ̂ (t)〉=
∑

kk′

∫
dQdPχk′k(Q, P )ρkk′(Q, P, t)

=
∑

(k0k′
0)...(kN k′

N )

∫
dQdPχk′

0k0
(Q, P )

[ N∏

j=1

(e−iL̂�tj )kj−1k′
j−1,kj k′

j

]
ρkN k′

N
(Q, P ),

(14.14)

or, in the Heisenberg representation, by

〈χ̂ (t)〉 =
∑

kk′

∫
dQdPχkk′(Q, P, t)ρk′k(Q, P )

=
∑

(k0k′
0)...(kN k′

N )

∫
dQdPρk′

0k0
(Q, P )

[ N∏

j=1

(eiL̂�tj )kj−1k′
j−1,kj k′

j

]
χkN k′

N
(Q, P ).

(14.15)

The SSTP algorithm evaluates Eq. (14.15) via a hybrid molecular dynamics
(MD)/Monte Carlo (MC) approach, whereby the multidimensional sums over
the state indices are evaluated using MC sampling, the initial conditions of
the subsystem and bath are determined from ρk′

0k0
(Q, P ), and χkk′(Q, P, t) is

propagated in time using MD simulation.
We now detail the steps of the SSTP algorithm for evaluating Eq. (14.15) by

considering the evolution through a single time step (i.e. N = 1):

〈χ̂(�t)〉 =
∑

(k0k′
0)(k1k′

1)

∫
dQdPρk′

0k0
(Q, P )(eiL̂�tj )k0k′

0,k1k′
1
χk1k′

1
(Q, P ).

=
∑

(k0k′
0)(k1k′

1)

∫
dQdPρk′

0k0
(Q, P )Wk′

0k0
(t0, t1)e

iLk0k′
0
�t1

×
(
δk0k1δk′

0k′
1
+ �tKk0k′

0,k1k′
1

)
χk1k′

1
(Q, P ). (14.16)
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1. After specifying the initial density matrix, ρk′
0k0

(Q, P ), of the system, sample
the initial conditions from |ρk′

0k0
(Q, P )| using an appropriate scheme.

2. Propagate the bath DOF adiabatically on the adiabatic PES corresponding to the
pair of indices (k0k′

0), i.e. (εk0 + εk′
0
)/2, for a time interval �t , and calculate the

phase factorWk′
0k0

(0, �t) for this interval.
3. According to Eq. (14.9) for Kk0k′

0k1k′
1
, determine stochastically whether or not a

nonadiabatic transition (k0k′
0) → (k1k′

1) takes place. One way of sampling the
nonadiabatic transitions involves first identifying which of the two terms in the
expression for Kk0k′

0,k1k′
1

acts (viz. the first term changes the index k0 → k1,
while the second changes the index k′

0 → k′
1). This can be accomplished using

MC by assigning a 50% probability to selecting each term. Once one of these
terms has been selected, the actual transition is MC sampled with a probability

Pkj = �t |dkj · P
M

|
1 + �t |dkj · P

M
| . (14.17)

The probability of remaining in the same adiabatic state (i.e. no nonadiabatic
transition) is therefore

Qkj = 1

1 + �t |dkj · P
M

| , (14.18)

satisfying Pkj + Qkj = 1. If the transition is accepted, then the momenta are
shifted according to Eqs. (14.12) and (14.13), and the value of the observable
becomes

χk1k′
1
(�t)=2Wk0k′

0
(0, �t)dkj·P�t

M
χk0k′

0
(Q�t , P�t+�P)

1

Pkj

. (14.19)

In the above equation, the factor of 2 is the MC weight associated with the
sampling of the k0 → k1 or k′

0 → k′
1 term in Kk0k′

0,k1k′
1

(which each occur
with a probability of 50%), and 1/Pkj is the MC weight associated with the
sampling of the transition. On the other hand, if the transition is rejected, there is
no momentum shift, and the value of the observable becomes

χk1k′
1
(�t) =Wk0k′

0
(0, �t)χk0k′

0
(Q�t , P�t )

1

Qkj

, (14.20)

where 1/Qkj is the MC weight associated with no transition.
4. Repeat steps 2–3 until time t to calculate χkN k′

N
(t).

5. Multiply χkN k′
N

(t) by the sign of the density matrix, and average the resulting
value over the initial conditions to obtain 〈χ̂ (t)〉.
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14.2.4 Transition Filtering

To obtain reliable expectation values beyond short times using the SSTP algorithm,
experience has shown that one requires extremely large ensembles of trajectories.
This is mainly due to the fact that the statistical weights associated with the MC
sampling of the nonadiabatic transitions grow very rapidly in time, making it
extremely difficult to obtain converged expectation values at longer times. More
specifically, each trajectory acquires a statistical weight,

∏N
j=1Wj (where Wj

is the MC weight for time step j ), which factors into the expectation value. In
practice, these weights grow exponentially with time [12], thereby requiring an
exponentially growing number of trajectories to converge expectation values at
longer times. To slow down the growth of these weights and thereby reduce the
number of trajectories required for convergence at longer times, observable cutting
[23] and transition filtering [12, 13, 15, 66, 79, 80] schemes have been used, both
separately and together, with varying degrees of success.

In observable cutting, one sets an upper bound on the magnitude of the weight at
each time step of the simulation, thereby ensuring that the magnitude of the weight
never becomes too large. Then, one computes the expectation value subject to this
upper bound. To determine the value of the upper bound that will yield a satisfactory
expectation value, one must repeat the calculation with increasingly larger values
of the upper bound. Using this scheme, however, it is difficult to know if one has
converged to the true result. In other words, if the upper bound is too small, the
result may appear stable but may be inaccurate. Conversely, if the upper bound is
too large, the result may be too noisy to be interpretable.

In contrast, transition filtering reduces the statistical noise by disallowing those
nonadiabatic transitions that would lead to large statistical weights. In this subsec-
tion, we will outline the transition filtering approach proposed and implemented
by Hanna et al. in Refs. [12, 13, 15]. In Refs. [12, 13], the scheme was laid out
and applied to two relatively simple systems (viz. 2 quantum states coupled to
20 classical DOF and 3 quantum states coupled to 1 classical DOF), yielding
substantial reductions in the numbers of trajectories required for convergence and
smoother and more accurate results than those obtained with observable cutting.
In Ref. [15], the scheme was applied to a model containing six quantum and six
classical DOF, in order to investigate the feasibility and efficacy of the scheme for
treating subsystems with larger numbers of states (as the number of trajectories
scales with the number of states in the quantum subsystem). In this case, it was
possible to obtain numerically stable results with more than one order of magnitude
fewer trajectories than the number of trajectories used to generate the results without
any filtering. This application will be discussed in more detail in Sect. 14.3.1.

We now outline the transition filtering scheme. To begin with, we define the
following transition probability for the MC sampling of nonadiabatic transitions
along an SSTP trajectory [12]
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# = �t |A(Q, P )|w(καβ, �Eαβ)

1 + �t |A(Q, P )|w(καβ, �Eαβ)
, (14.21)

where �t is the time step and

w(καβ, �Eαβ) =
{

1, if|�Eαβ | ≤ καβ,

0, otherwise.
(14.22)

As can be seen, this transition probability restricts nonadiabatic transitions between
adiabatic PESs α and β to occur when the magnitude of the energy gap between
the surfaces is sufficiently small, i.e. less than a threshold value καβ . The functional
form of A(Q, P ) should be chosen in such a way to minimize the statistical noise in
the expectation value. One form that has been shown to work relatively well is [12]

A(Q, P ) = P

M
· dαβ

�Emin
αβ

�Eαβ

, (14.23)

where �Emin
αβ is the smallest energy gap between the α and β surfaces. In practice,

�Emin
αβ may be extracted from a �Eαβ histogram, generated by evolving the system

adiabatically on its ground-state PES for a sufficiently long time. By filtering out
nonadiabatic transitions with large �Eαβ ’s according to w and placing �Eαβ in the
denominator of A(Q, P ), one favours the high-probability transitions and thereby
slows down the temporal growth of the statistical weights.

For an n-state quantum subsystem, one must specify the values of n(n − 1)/2
�Emin

αβ ’s and καβ ’s (because there are n(n − 1)/2 possible α ↔ β nonadiabatic

transitions). The �Emin
αβ values may be obtained as explained in the previous

paragraph, while sensible initial trial values for the καβ ’s are the mean values
of the �Eαβ ’s. Using the SSTP algorithm, one then computes a time-dependent
expectation value out to some time t , using a reasonably large number of trajectories.
If the result is noisy, one may converge the expectation value according to the
following steps:

1. Reduce the value of κ1n (relative to its previous value) to filter the 1 ↔ n

transitions and recompute the expectation value out to time t .
2. If the result is noisy, then further reduce the values of καβ to filter the transitions

between states for which |α − β| = n − 2 (e.g. in the n = 4 case, the 1 ↔ 3 and
2 ↔ 4 transitions) and recompute the expectation value out to time t .

3. If n > 3, then repeat the previous step for the transitions with |α − β| = n − k

(where k = 3 . . . n − 1).
4. If the result is noisy, repeat steps 1 to 3.
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14.2.5 Eigenvector Sign Correction

In nonadiabatic dynamics methods such as the SSTP algorithm, the adiabatic states
and nonadiabatic couplings between them must be evaluated on-the-fly. Typically,
they are evaluated numerically, which first involves a numerical diagonalization of
the Hamiltonian matrix (represented in a convenient basis). The diagonalization
results in eigenvectors that are uniquely determined up to a sign, which leads to
arbitrary signs of the nonadiabatic coupling vectors. The signs may be corrected
by requiring that the eigenvectors change continuously from one time step to
the next. However, when a system is in the vicinity of an avoided crossing or
conical intersection between two PESs, it becomes more complicated to correctly
distinguish between physical and unphysical sign changes in the eigenvectors.
Previously, Errea et al. proposed a procedure for correcting the sign of an electronic
state, which involves tracking the sign of the overlap between the state evaluated at
neighbouring points in a grid of nuclear positions [19]. This procedure also accounts
for situations in which the system is in the vicinity of an avoided crossing or conical
intersections.

The procedure put forward in Ref. [19] focuses on ensuring the continuous
evolution of eigenvectors and nonadiabatic coupling vectors along a single trajectory
in configuration space. However, when computing time-dependent expectation
values based on an ensemble of trajectories (which are typically initialized at
different points in configuration space), one is faced with the issue of how to
ensure eigenvector sign continuity within the ensemble. In Ref. [14], building upon
elements of Errea et al.’s method, Hanna et al. proposed a simple procedure that
accomplishes this within the context of mixed quantum-classical surface-hopping
dynamics simulations. The utility of this procedure was demonstrated by calculating
both adiabatic state populations in a reduced model of a condensed phase proton-
coupled electron transfer reaction and subsystem state populations in an excitonic
model of an alpha-helical chain undergoing vibrational energy transport, using the
SSTP algorithm. More specifically, the results showed that ensuring eigenvector
sign continuity across the ensemble leads to minor (but significant) improvements
in the accuracy of expectation values in some cases and to drastic improvements in
other cases.

We now outline the procedure proposed in Ref. [14]. To properly evaluate the
expression for a time-dependent expectation value in Eq. (14.15), the sign continuity
of the eigenvectors must be preserved across all of the points in the configurational
space (of the classical DOF) visited by an ensemble of trajectories, as opposed to
the points within a single trajectory. This may be accomplished by first sampling
the initial conditions of the classical DOF for the first microcanonical (i.e. NVE)
trajectory from a canonical (i.e. NVT) trajectory, in which the eigenvector signs are
tracked and corrected at each time step according to the following steps:

1. Compute Oαα(t) = 〈α; Qt |α; Qt−�t 〉 (i.e. the overlap of eigenvector α with
eigenvector α of the previous time step) for each α. When the classical
configuration Qt−�t is not close to an avoided crossing or conical intersection
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and the time step is sufficiently small, the eigenvectors are not expected to rotate
by much. In this case, the Oαα’s will be close to 1 (assuming that the eigenvectors
are normalized). However, if an eigenvector undergoes an arbitrary sign flip, then
the Oαα’s will be close to -1. In contrast, when Qt−�t is close to an avoided
crossing or conical intersection, the eigenvectors may vary rapidly, leading to
Oαα’s that are substantially lower than 1 and possibly even negative. In this
case, if an eigenvector undergoes an arbitrary sign flip, then Oαα could lie in
the interval −δ < Oαα < δ, where |δ| is substantially lower than 1 (e.g. 0.7 or
lower).

2. Determine the value of mt(α) for all α’s, according to

mt(α) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if |Oαα(t) − 1| < ε

1 if |Oαα(t) + 1| < ε

2 otherwise

(14.24)

where ε is a threshold parameter (with 0 < ε < 1) that depends on the size
of the time step, �t , and the details of the PESs. The mt(α) = 0 and 1 cases
would typically arise when Qt−�t is not in the vicinity of an avoided crossing
or conical intersection and the eigenvector undergoes a physical rotation and
unphysical sign flip, respectively. The mt(α) = 2 case would typically arise
when Qt−�t is in the vicinity of an avoided crossing or conical intersection. In
this case, one must return the system to the end of the previous time step, divide
the current time step in half, and evolve the system with the reduced time step.
This process is repeated until mt(α) becomes either 0 or 1. A sensible choice of
ε (in combination with a sufficiently small �t) should yield mt(α) = 0, 1 most
of the time (in order to minimize the number of time steps needed).

3. Correct the signs of all eigenvectors according to

|α; Qt 〉c = (−1)mt (α)|α; Qt 〉, (14.25)

i.e. if mt(α) = 0, then the sign is not changed, and if mt(α) = 1, then the sign is
flipped to ensure the continuous evolution of the eigenvector.

At the end of this NVT dynamics phase, the eigenvectors are stored in memory
(i) to continue the sign tracking and correction during the first NVE trajectory
in the ensemble and (ii) to continue the sign tracking and correction during the
second NVT dynamics phase preceding the second NVE trajectory. This procedure
is repeated for the remaining trajectories in the ensemble (see Fig. 14.3 for an
illustration of this procedure). In this way, the basis coefficients in |α; Q〉 =∑

i cα
i (Q)|φi〉 (where {|φi〉} is a basis set of choice), which may enter explicitly

into the sampling of ρα′α(Q, P ) and into the dynamics of χαα′(Q, P, t), will evolve
continuously throughout the configurational space.

For systems that do not spend a significant amount of time in the vicinity of
an avoided crossing or conical intersection, one can reduce the computational time
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Fig. 14.3 A pictorial
depiction of the procedure for
ensuring sign continuity
within an ensemble of
trajectories

Fig. 14.4 Histogram of all
eigenvector overlap values,
Oαα , for the PCET model
considered in Ref. [14]. The
inset portrays a zoomed in
portion of the histogram
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associated with implementing the mt(α) = 2 case by neglecting it altogether, i.e.
one does not change the sign of the eigenvector (based on the assumption that
any sign change is physical in this region of the configurational space). In such
situations, one must choose the value of ε with great care. If ε is too large, then one
could erroneously change the eigenvector signs and, in turn, distort the results. We
now discuss a way of choosing appropriate ε values for a given system and time step
size (in general, the optimal value of ε will depend on these factors). To determine
which value or range of values would be appropriate, it is instructive to first generate
a histogram of the Oαα values. In Fig. 14.4, we present the histogram of Oαα values
for the proton-coupled electron transfer (PCET) model considered in Ref. [14],
which was calculated based on a sufficiently large ensemble of “sign-uncorrected”
trajectories. As can be seen, the most probable values of Oαα occur in the ranges
−1 < Oαα < −0.9 and 0.9 < Oαα < 1, with the remaining Oαα values having
very low probabilities. Zooming in on the region at low ordinate values (see inset of
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Fig. 14.4), one sees continuous decays starting from Oαα = ±1, followed by two
blips centred at Oαα ≈ ±0.5, and a peak centred at Oαα = 0 (which is presumably
due to character switches in the eigenstates after a nonadiabatic transition). The
discontinuities at Oαα ≈ ±0.5 are suggestive of the onset of eigenvector rotations
near an avoided crossing or conical intersection and thereby point to an optimal ε

value that is slightly less than ≈ 0.5.
To validate the accuracy of the expectation values calculated using the stream-

lined version of the eigenvector sign correction procedure, one could repeat the
calculation with a reduced time step and compare the results to those obtained with
the larger time step. (For the system considered in Ref. [14], it was found that the
percentage of the total time that the mt(α) = 2 case arises for a particular choice
of ε decreases by about two orders of magnitude when the time step is decreased
by at least a factor of ten.) If there is no significant change in the results, then the
streamlined method is justified.

Finally, to speed up the generation of the ensemble of trajectories, one can split
up the work onto many computer processors. As a result, however, one can no
longer easily ensure eigenvector sign continuity across the entire ensemble, but
only within the sub-ensemble of trajectories generated on a given processor. In
Ref. [14], the authors confirmed that the final expectation values were not adversely
affected by the parallelization by checking what happens after randomizing the
initial eigenvector signs every n trajectories on each processor. This check revealed
that for the system considered, one must run at least ≈400 trajectories per processor
to recover the fully sign-corrected results.

14.3 Applications

14.3.1 Vibrational Energy Transfer in an Alpha-Helical
Polypeptide

We now present an application in which the utility of the previously discussed
transition filtering scheme is demonstrated for simulating vibrational energy transfer
in a six-state model of an alpha-helical polypeptide [15]. In this case, the vibrational
energy transfer is monitored by computing the time-dependent amide I mode
populations, following a vibrational excitation at one end of the polypeptide.

The aforementioned model, portrayed in Fig. 14.5, involves a one-dimensional
chain of hydrogen-bonded (H-bonded) peptide groups, constituting one of the three
peptide chains in an alpha-helical polypeptide. Adopting a mixed quantum-classical
description, the high-frequency amide I modes are treated quantum mechanically,
while the low-frequency H-bond displacement coordinates to which the amide I
modes are coupled are treated classically. The Hamiltonian of this system is given
by

H = H0|0〉〈0| +
∑

m,n

Hmn|φm〉〈φn|, (14.26)
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E1

E0

Qm
qm

JJJJJ

Fig. 14.5 One-dimensional chain model of H-bonded peptide groups (blue spheres) in an alpha-
helical polypeptide. The position of the mth amide I mode (green rectangles) is denoted by qm,
while the longitudinal displacement of the mth unit (blue double-sided arrows) is denoted by Qm.
Initially, the first amide I mode in the chain is vibrationally excited (as indicated by the red arrow)
with energy E1, and the remainder of the amide I modes are in their ground states with energies
E0

where |φm〉 = |χm1〉∏n �=m |χn0〉 is the mth singly excited state and |0〉 =∏m |χm0〉
is the ground state of a chain of amide I modes. (N.B.: |χm0〉 and |χm1〉 denote
the ground and first excited states, respectively, of the mth amide I mode). The

ground-state matrix element is given by H0 = T + E0(Q), where T = �i
P 2

i

2M
is the

kinetic energy associated with the motion of the H-bond lattice displacements and
the potential energy has the following form:

E0(Q) =
∑

m

[
Em0 + (1 − δm,1)

W

2
(Qm − Qm−1)2 + wm0(Q)

]
. (14.27)

The excited state matrix elements are given by

Hmn = δm,n [H0 + Em1 − Em0 + wm1(Q) − wm0(Q)]

−J
[
δm−1,n〈φm|qmqm−1|φm−1〉

+ δm,n−1〈φn|qnqn−1|φn−1〉
]
, (14.28)

where δi,j is the Kronecker delta function, J is the parameter governing the strength
of the transition dipole moment coupling between neighbouring amide I modes,
W is the force constant governing the motion of the H-bond lattice displacements,
Em1 − Em0 is the energy gap between the ground and first excited states of the
mth amide I mode, qm is the position of the mth amide I mode, and Q = {Qm}
corresponds to the set of H-bond lengths. The term wmν(Q), which describes the
coupling between the H-bond displacements and the amide I modes, is given by

wmν(Q) = (1 − δm,1)
χ

2
(Qm − Qm−1)〈χmν |q2

m|χmν〉, (14.29)

where χ is the coupling strength. The values of the various matrix elements of qm

and q2
m are taken from Table 2 in Ref. [73], while the values of the parameters
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Em1 − Em0, J , W , χ and M are taken from Table 1 in Ref. [73] and are given
by 1660 cm−1, 7.8 cm−1, 13 N/m, 62 pN and 87 mp, respectively.

The quantum subsystem of amide I modes and classical environment of H-bond
lattice displacements are uncorrelated initially, which yields the following factorized
initial density matrix:

ρ̂ (0) = ρ̂q (0) ρe (Q, P ) , (14.30)

where ρ̂q(0) and ρe(Q, P ) correspond to the initial densities of the quantum sub-
system and classical environment, respectively. Following a vibrational excitation
of the first amide I mode in the chain, the initial density matrix of the quantum
subsystem, represented in the subsystem basis of singly excited states, is given by

ρ̂q(0) =

⎛

⎜⎜⎜
⎝

1 0 · · · 0
0 0 · · · 0
...

...
. . . 0

0 0 · · · 0

⎞

⎟⎟⎟
⎠

. (14.31)

The positions and momenta of the classical oscillators are initialized by first treating
them as a collection of uncoupled harmonic oscillators at thermal equilibrium at
300 K, whose equilibrium Wigner distribution ρe (Q, P ) can be well approximated
by

ρe (Q, P ) ≈ 1

Z

M∏

j=1

exp

[

−β

{
P 2

j

2
+ 1

2
W 2Q2

j

}]

, (14.32)

where M is the number of oscillators and Z= ∫ dQdP exp
[
−β

2

∑
j (P 2

j +W 2Q2
j )
]

is the partition function. The correct thermal equilibrium distribution at 300 K
(in the absence of any amide I excitation) is then achieved by equilibrating the
coupled harmonic oscillators for 2 ps using the ground-state potential found in
Eq. (14.27) with a Nosé-Hoover thermostat and a time step of 0.25 fs. (In Ref. [21],
the ergodicity of the Nosé-Hoover thermostat was confirmed by comparing the
results to those generated with a Nosé-Hoover chain thermostat.) The initial state
of the quantum oscillators is sampled by first transforming ρ̂q(0) to the adiabatic
basis (see details of the transformation and sampling in Appendix A of Ref. [21]).
Following the classical equilibration and sampling of the initial quantum state,
a 50-fs microcanonical SSTP trajectory is generated using a time step of 1 fs.
The arbitrary sign flips in the eigenvectors upon numerical diagonalization of the
Hamiltonian matrix are corrected at each time step using the procedure described in
Sect. 14.2.5.

Before presenting the results for the time-dependent populations of the amide I
modes, one must describe how the optimal values of �Emin

αβ and καβ are determined
(see Sect. 14.2.4 for the definitions of these quantities). Because the basis set
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Fig. 14.6 Histograms of
|�Eαβ | values (in units of
10−22 J) for all 15 possible
energy gaps between the
adiabatic states. The mean
value of each histogram is
denoted by a vertical arrow.
Each colour corresponds to
energy gaps with the same
value of |α − β|

contains six singly excited states (one per amide I mode), the number of adiabatic
states involved in the dynamics is n = 6, and, therefore, one has to determine
15 �Emin

αβ values and 15 καβ values. To accomplish this, the system is evolved
adiabatically on its ground-state PES for a sufficiently long time (i.e. to explore the
important regions of the configuration space of the classical DOF), and 15 |�Eαβ |
histograms are generated based on the �Eαβ values calculated at each time step
(see histograms in Fig. 14.6). The first, second and third columns of Table 14.1
show the �Emin

αβ values corresponding to the smallest �Eαβ values with a non-zero
probability density in the histograms, the mean values of each |�Eαβ | histogram
and the optimal καβ values used to generate the results, respectively. It should be
noted that the |α − β| = 1 transitions (whose |�Eαβ | histograms have substantial
probability densities at lower |�Eαβ | values) are not filtered in an effort to minimize
the errors introduced by filtering out transitions.

Figure 14.7 shows the time-dependent populations of the amide I modes out to
50 fs, generated using the transition filtering scheme, 109 trajectories and a time step
of 1 fs. Comparing these results to the unfiltered ones [14] generated using 5 × 1010

trajectories, one sees that it is possible to obtain smoother and comparably accurate
results with more than an order of magnitude fewer trajectories when transition
filtering is used.
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Table 14.1 The values of the
transition filtering parameters
used in the simulations. All
values are in units of 10−22 J

α ↔ β �Emin
αβ �Eαβ καβ

1↔2 0.00182 9.3 –

1↔3 0.255 15.53 8

1↔4 3.117 20.57 12

1↔5 5.103 26.55 20

1↔6 6.327 35.72 23

2↔3 0.00035 6.19 –

2↔4 0.229 11.27 8

2↔5 3.117 17.27 12

2↔6 4.826 26.42 20

3↔4 0.0004 5.02 –

3↔5 0.181 11.01 8

3↔6 3.119 20.19 12

4↔5 0.000577 5.76 –

4↔6 0.234 15.15 8

5↔6 0.00119 8.98 –

Fig. 14.7 Comparison of the time-dependent populations of the six amide I modes, generated with
the transition filtering scheme (red lines) and without any filter (black lines). (The unfiltered results
are taken from Ref. [14])

14.3.2 Field-Driven Dynamics of a Plasmonic Metamolecule

We next present an application in which the SSTP algorithm is generalized
for simulating the dynamics of a metamolecule subjected to a time-dependent
driving field [78]. In this case, because the Hamiltonian is time-dependent, a time-
dependent basis is used. Metamolecules are important in the field of quantum
plasmonics [9, 11, 72, 90], which studies the interactions of surface plasmons with
quantum emitters (a metamolecule collectively refers to the surface plasmon and
quantum emitter). At the nanometre scale, metamolecules can operate at optical
frequencies [38, 42, 52, 56]. A typical example of such a metamolecule is a quantum
dot coupled to a surface plasmon in a metal nanoparticle [51].

A metamolecule can be modelled by a two-level system, representing the
quantum dot, coupled to a resonant mode, representing the surface plasmon in
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Fig. 14.8 A schematic illustration of a model metamolecule. The metamolecule is composed
of a quantum dot, represented by a two-level system, coupled to a surface plasmon in a metal
nanoparticle and represented by a quantum harmonic oscillator (with a manifold of equispaced
energy levels)

the metal nanoparticle (see Fig. 14.8 for a schematic illustration) [72]. In addition,
the effect of a time-dependent driving field on the dynamics of the metamolecule
can be considered. In this section, we present a study in which the two-level
system is treated quantum mechanically and the resonant mode and driving field
are treated classically. The time-dependent Hamiltonian of this mixed quantum-
classical system, written in terms of adimensional quantities (whose definitions are
given in the Appendix), is given by

Ĥ (t) = −�

2
σ̂z + P 2

2
+ 1

2
ω2Q2 − cQσ̂x + g cos(ωdt)σ̂x , (14.33)

where � is the frequency associated with the two-level system, ω is the frequency
associated with the resonant mode, c is a coupling constant, g denotes the
subsystem-field coupling strength, ωd is the driving frequency, and σ̂x/z denote
the Pauli matrices. The composite system is initialized in the factorized state
ρ̂(Q, P ) = ρ̂SρB(Q, P ), where the density matrix of the subsystem (i.e. the two-
level quantum dot), expressed in the subsystem basis, is given by

ρ̂S =
(

0 0
0 1

)
, (14.34)
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and ρB(Q, P ), the Wigner distribution function of the bath (i.e. the resonant
harmonic mode), is given by

ρB(Q, P ) = tanh(βω/2)

π
exp

[
−2 tanh(βω/2)

ω

(
P 2

2
+ ω2Q2

2

)]
. (14.35)

To simulate the quantum-classical Liouville dynamics of the Hamiltonian in
Eq. (14.33), a generalization of the SSTP algorithm to time-dependent Hamiltonians
is needed. To this end, one can introduce a time-dependent basis in terms of the
eigenstates of ĥ(Q, t) = Ĥ (Q, P, t) − P 2/2M (defined by ĥ(Q, t)|α; Q, t〉 =
Eα(Q, t)|α; Q, t〉, where |α; Q, t〉 and Eα(Q, t) are the αth eigenstate and eigen-
value, respectively). In this basis, the evolution of an observable χ takes the form

χαα′(Q, P, t) = T
⎧
⎨

⎩

∑

ββ ′

(
e

i
∫ t
t0

dτLt (τ )
)

αα′,ββ ′

⎫
⎬

⎭
χββ ′(Q, P, t0) , (14.36)

where t0 is the initial time, T is the time-ordering operator and

iLt
αα′,ββ ′(t) = iL̃αα′,ββ ′(t) +K t

αα′,ββ ′(t) . (14.37)

In the above equation, the operatorK t is responsible for the nonadiabatic transitions
in the subsystem due to the interaction with the external field, and its matrix
elements are given by

K t
αα′,ββ ′ = 〈α̇|β〉δα′β ′ + 〈β|α̇′〉δαβ , (14.38)

where the dot denotes a time derivative. The matrix elements of the operator iL̃
have a similar form to those implied in Eq. (14.7) and are given by

iL̃αα′,ββ ′(t) = iL̃0
αα′(t)δαβδα′β ′ + K̃αα′,ββ ′(t) , (14.39)

where iL̃0
αα′(t) = iω̃αα′(t) + iL̃αα′(t), with the Bohr frequency ω̃αα′(Q, t) =

[Eα(Q, t)−Eα′(Q, t)]/h̄ and the classical-like Liouville operator iL̃αα′ = (P/M)·
(∂/∂Q)+(1/2)[F̃ α

W(t)+ F̃ α′
W (t)] ·∂/∂P (F̃ α

W(Q, t), is the time-dependent Hellman-

Feynman force derived from the adiabatic energy surface Eα(Q, t)); the operator K̃
is responsible for nonadiabatic transitions in the subsystem due to the interaction
with the bath and its matrix elements are given by

K̃αα′,ββ ′(t) = T̃α→β(t)δα′β ′ + T̃ ∗
α′→β ′(t)δαβ , (14.40)

where

T̃α→β(t) = P

M
· dαβ(Q, t)

(

1 + 1

2

�Eαβ(t)dαβ(Q, t)

P
M

· dαβ(Q, t)

∂

∂P

)

, (14.41)
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T̃ ∗
α′→β ′(t) = P

M
· d∗

α′β ′(Q, t)

(

1 + 1

2

�Eα′β ′(t)d∗
α′β ′(Q, t)

P
M

· d∗
αβ(Q, t)

∂

∂P

)

, (14.42)

with �Eαβ(t) = Eα(Q, t) − Eβ(Q, t) and dαβ(Q, t) = 〈α; Q, t |∂/∂Q|β; Q, t〉 is
the nonadiabatic coupling vector between the time-dependent states α and β.

To arrive at an algorithm for computing χαα′(t), one starts by discretizing the
time to obtain

χαα′(t) =
∑

ββ ′
T
{

exp

[

i
∑

n

τnLt (τn)

]}

αα′,ββ ′
χββ ′(t0) , (14.43)

where
∑

n τn = t − t0. As in the derivation of the SSTP algorithm [47], one then
assumes very small time steps τn and applies the Dyson identity to obtain

χαα′(t) =
∑

ββ ′
T
∏

n

{
exp
[
iτnL̃0

αα′(τn)
]

×
(

1 + τnK̃αα′,ββ ′ + τnK t
αα′,ββ ′

) }
χββ ′(t0) . (14.44)

In what follows, it will be assumed that the subsystem-bath coupling is sufficiently
weak that the action of K̃αα′,ββ ′ can be disregarded. Thus, if τn = τ for every n,
then one obtains

χαα′(t) =
∑

ββ ′
T
∏

n

{
exp
[
iτ L̃0

αα′(τ )
] (

1 + τK t
αα′,ββ ′

) }
χββ ′(t0) . (14.45)

In practice, Eq. (14.45) can be evaluated using an analogous procedure to that
described in Sect. 14.2.3. At the beginning of each time step, one propagates the
phase space point deterministically using iL̃0

αα′,ββ ′(t). Then, at the end of the step,
one samples stochastically the nonadiabatic transition due to the driving field. This
is done by first sampling with probability 1/2 one of the two terms of K t

αα′,ββ ′ in
Eq. (14.38). The probability of accepting the transition is defined as

Pβ→α = τ |〈α̇|β〉|
1 + τ |〈α̇|β〉| , (14.46)

while the probability of rejecting the transition is given by

Qβ→α = 1

1 + τ |〈α̇|β〉| . (14.47)

As described in Sect. 14.2.3, the observable is then multiplied by the appropriate
MC weight, depending on whether or not the transition is accepted. Finally, the
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Fig. 14.9 Plot of the
time-dependent coherence,
〈σx(t)〉, for the weak
subsystem-field case
(g = 0.1)
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Fig. 14.10 Plot of the
time-dependent coherence,
〈σx(t)〉, for the strong
subsystem-field coupling case
(g = 1.5)
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average value of the observable is calculated according to Eq. (14.15), with the use
of the time-dependent basis as opposed to the time-independent one.

The results of the simulations are now presented and discussed. A time step of
τ = 0.1 and 105 trajectories were used to obtain all the results. First, the influence
of the driving field on the metamolecule is investigated by varying the subsystem-
field coupling from g = 0.1 to g = 1.5 while keeping the system parameters
fixed at β = 12.5, c = 0.01, � = 0.8, ω = 0.5 and ωd = 0.05. For this set
of parameter values, the coupling between the quantum dot and resonant mode is
weak, and, therefore, the effect of nonadiabatic transitions (due to this coupling)
on the dynamics is expected to be minor. Figure 14.9 shows the results for the
time-dependent subsystem coherence, 〈σx(t)〉, in the g = 0.1 case. We see that
〈σx(t)〉 exhibits both high- and low-frequency oscillatory modes, with the values
of 〈σx(t)〉 ranging between −0.5 and 0.5. The fast mode (with angular frequency
≈ 0.81) is superimposed on the slow mode (with angular frequency ≈ 0.05). The
low frequency corresponds to that of the driving field, while the high frequency
corresponds to that of the tunnel splitting, shifted by a very small amount due to the
weak coupling to the bath and field. As expected, in the case of weak coupling to
the driving field, the tunnel splitting dominates the time evolution of 〈σx(t)〉.

Figure 14.10 shows the results for the time-dependent subsystem coherence,
〈σx(t)〉, in the g = 1.5 case. When strongly coupled to the driving field, the time
evolution of 〈σx(t)〉 displays an irregular pattern, viz. it starts by rapidly oscillating
around 〈σx〉 = −0.25 between t = 0 and t ≈ 20; it undergoes large oscillations
from t ≈ 20 to t ≈ 40 and then switches to oscillating rapidly around 〈σx〉 = 0.25
until t = 80; and finally, it undergoes large oscillations again. Based on these
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Fig. 14.11 Plot of the
time-dependent population
difference, 〈σz(t)〉, for the
strong subsystem-field
coupling case (g = 1.5)
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Fig. 14.12 Rate of change of
the expectation value of the
Hamiltonian of the
metamolecule, d〈HM 〉/dt , as
a function of time. The main
figure displays the result for
the strong driving field case,
while the inset shows the
result for the weak driving
field case
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results, one can conclude that the quantum dot switches between two different
dynamical regimes, one in which the coherence is positive and the other in which it
is negative. Because of the strong coupling to the driving field, the frequency of the
fast oscillations is ≈ 200% greater than that obtained in the weak subsystem-field
coupling case.

Figure 14.11 shows the time evolution of the subsystem population difference,
〈σz(t)〉, in the strong driving regime. It also exhibits an irregular pattern, with
regions of large and fast oscillations separated by regions of small and slow
oscillations. In the weak driving regime, such a behaviour is not observed, and the
amplitude of the oscillations is much smaller (result not shown). This is simply
a reflection of the fact that a smaller fraction of the trajectories is driven into the
excited state by the driving field in this regime.

Figure 14.12 shows the rate of change of the expectation value of the energy of
the metamolecule for the g = 0.1 and g = 1.5 cases. For g = 1.5, we see that
d〈HM(t)〉/dt exhibits regions of large and fast oscillations about zero separated by
regions of small and slow oscillations about zero, in the same time intervals where
〈σx(t)〉 and 〈σz(t)〉 do. Instead, for g = 0.1, d〈HM(t)〉/dt exhibits much smaller
oscillations about zero.
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14.4 Summary and Future Outlook

Quantum dynamical modelling of nanoscale systems containing large numbers of
DOF is essential for understanding their microscopic and macroscopic properties.
Adiabatic mixed quantum-classical dynamics simulations, which rely on the Born-
Oppenheimer approximation, may be performed when there is a large separation
between the timescales of the quantum subsystem and classical environment.
However, for many chemical and biological processes of interest, this is not
the case, and, as a result, the dynamics is not confined to a single state of
the quantum subsystem. This has prompted the development of mixed quantum-
classical methods for simulating nonadiabatic dynamics.

In this chapter, we discussed a hybrid MD/MC method known as the SSTP
algorithm, which is based on a solution of the QCLE. This method has been
shown to perform quite well on relatively simple model systems, but its extension
to systems containing multiple (i.e. >2) quantum DOF and strong subsystem-
bath coupling has proven to be challenging. This is primarily due to the rapid
growth of MC weights (associated with the stochastic sampling of the nonadiabatic
transitions) in time, which render the expectation values difficult to converge. To
alleviate this problem, observable cutting and transition filtering techniques have
been put forward, which significantly reduce the number of trajectories required for
convergence of the expectation values. In this chapter, we discussed one transition
filtering scheme, which is designed to filter out the low-probability transitions
(which lead to the large MC weights) and thereby slow down the growth of the
weights. This scheme has been shown to yield substantial improvements in accuracy,
as compared to the other schemes, and to generate results with at least one order of
magnitude fewer trajectories than what would be required without the scheme. We
also discussed a simple procedure for ensuring sign continuity/consistency in the
evolution of eigenvectors within an ensemble of surface-hopping trajectories. This is
required because the on-the-fly numerical diagonalization of the Hamiltonian matrix
can yield eigenvectors with arbitrary signs. Without such a scheme, trajectory-based
calculations of expectation values in the adiabatic representation can be adversely
affected.

This chapter also covered two recent applications of the SSTP algorithm.
The first one demonstrated the efficacy of the aforementioned transition filtering
scheme for simulating vibrational energy transfer dynamics in systems with higher
dimensional Hilbert spaces and phase spaces. In particular, the time-dependent
populations of the amide I modes in a model of an alpha-helical polypeptide
(containing six quantum and six classical coordinates) were presented. The results
showed that it is possible to obtain smooth, reliable profiles with more than one
order of magnitude fewer trajectories compared to those obtained without any
filtering. In the second application, we presented a dynamical study of a model
for a plasmonic metamolecule interacting with an oscillatory driving field. In this
case, the Hamiltonian is explicitly time-dependent, and, thus, the SSTP algorithm
had to be generalized to account for this fact. Results showing the effects of the
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driving strength on the population and coherence dynamics of the quantum dot,
as well as on the rate of change of the metamolecule energy, were presented and
discussed. Interestingly, in the strong subsystem-field coupling case, large and
irregular variations in the populations and coherences of the quantum dot were
observed.

The QCLE-based approach to modelling quantum dynamics in classical envi-
ronments has proven to be successful in studying a variety of quantum processes at
the nanoscale. Nevertheless, the currently available algorithms present significant
challenges, necessitating the need for further improvements and developments.
Thus, we hope that this chapter will stimulate research along this direction. In
addition, we are interested in broadening the scope of applications studied by
the methods discussed herein. In particular, we believe that these methods can be
effectively used to study energy and charge transfer dynamics in nanoscale devices.

Appendix

The following adimensional coordinates and parameters were used to express the
metamolecule Hamiltonian in Eq. (14.33):

� = �′

ω′
a

, (14.48)

P = P ′
√

M ′h̄ω′
a

, (14.49)

Q =
√

h̄ω′
a

h̄
Q′ , (14.50)

ω = ω′

ω′
a

, (14.51)

c = c′
√

h̄ω′3
a M ′ , (14.52)

g = g′

h̄ω′
a

, (14.53)

β = h̄ω′
aβ

′ , (14.54)

where the primed quantities denote coordinates and parameters with dimensions
and M ′ is the inertial parameter of the resonant mode (which has been set to unity).
In the above equations, the energy scale h̄ω′

a has been introduced. ω′
a is chosen in

such a way that the frequency ω = 0.5 of the resonant mode corresponds to ω′ =
8.9 × 1012 Hz (which is typical of metal nanoparticles [51]) and a total simulation
time of 5.62 × 10−12 s.
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