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1 Introduction

Biomaterials can be interpreted as the category of materials used in medical devices
and their degree of sophistication has increased significantly. The benefits of engi-
neered materials incorporate unsurprising mechanical properties and simplicity of
their treatment. Wide range of scientific projects in material engineering files is
shifted to biomaterials application. Those materials interact and meet with biological
systems requirement for specific medical purposes are categorized as biomaterials.
This section of engineering body is extracted from synthetic polymers by a variety of
chemical processes utilizing metallic components, polymers, ceramics, or composite
materials. It is essential to mention biomaterials are very typical in today’s dental
applications, surgery, and drug delivery [1, 2]. Bioengineering consists of biologi-
cal, chemical, tissue engineering medicine, and material science subjects. Range of
applications and utilizations like building artificial organs, rehabilitation devices, or
implants to replace natural body tissues are encountered in this area. The world of
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material engineering science confronts to a brilliant concept and nowadays, many
companies are trying to invest and support projects for the development of new prod-
ucts. An unstructured model for comparing and analyzing biomedical materials for
a specific application may lead to huge failure of the product, repeated processes,
considerable loss, impairment of tissue functions and overall increasing of the costs.
Biomaterials have changed the demands of customers and medical services and are
constantly used in human organs for treating heart diseases, coronary angioplasty,
orthopaedics applications, and orthodental structures [3, 4]. The biomaterials are
classified into metals, polymers, ceramics, composites, and apatite. In order to deal
with the problemof human degenerative diseases, investigators effectively rely on the
use of artificial or natural biomaterials for reinstating the functions of affected parts.
The specification and properties each engineer seeks in a biomaterialmust contain the
following item: biomechanical compatibility, biocompatibility, high corrosion and
wear resistance, and osseointegration [5, 6]. Biomaterials also play a vital role in fab-
rication of biological screening devices as well as in a large range of non-biomedical
applications. Discussions on some common and familiar biomaterials are presented
here. One of the vastly used biomaterials is the metallic implants which are the pri-
mary materials used for joint replacement and orthopedic applications. Exceptional
thermal conductivity, excellent strength, higher fracture toughness, corrosion resis-
tance, and hardness along with biocompatibility are the several promising properties
that the metallic alloys and materials possess. Stainless steel is employed to fabricate
artificial bone and becomes the predominant implant alloy due to ease in fabrication
and having required mechanical properties and corrosion resistance. Cobalt-based
alloys, Ti alloys, ceramic materials, zirconia ceramics, and polymeric materials are
otherwell-known types of biomaterials [7–9]. Biomaterials are selected to simultane-
ously satisfy a broad range of fundamental requirements from mechanical to biolog-
ical aspects. The construction of the femoral implant must meet several criteria like
adequate strength, ductility, elastic modulus, wear resistance, corrosion resistance,
biocompatibility, and osseointegration. For example, according to Hafezalkotob and
Hafezalkotob [10], density and elastic modulus properties are also examined for
compatible designs which certainly are strategically necessary implants and prosthe-
ses for material applications. Biocompatibility basically signifies the potentiality and
fitness of a material for not being malignant or physiologically sensitive with living
organisms. This basic requirement is considered to be the most important issue in
the design and selection of implants and the material to be used for its fabrication
[11]. The very required process of engineering and design decision making is how
to deal with the complex system, decision-making rules, many variables, and param-
eters. The recognition of this approach not even build a robust decision system, it
effectively carries out a quality of results and further approval.

A decision-making system comes up with situations where sort of alternatives
(choices) are evaluated with respect to certain factors or criteria. It is valuable to
resolve the decision problem with a well-established mechanism to reveal the opti-
mal solution. Although, this mechanism must satisfy the policy maker’s viewpoints,
however, all conflicting objectives with different optimization direction cause errors
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and shape uncertain and incorrect conditions. This point leads academic and indus-
trial partners to tolerate pressures which needs extraordinary endeavor. Therefore,
it is argued that the key item in almost all of the engineering decisions is to draw
the objectives and map the alternative options in order to overcome existing com-
plexities. Certainly, application of conventional methods has been saturated while
many engineering sectors are reforming their evaluation and measurement systems.
Undoubtedly, choosing advanced methods is highly appreciated and today’s mate-
rial investigators in real projects understand various concepts and logics to adopt
a comprehensive formula in order to take more efficient decisions. All in all, the
realization of multi-criteria decision-making (MCDM) methods in such kind of sit-
uations can refine the question of what methodology fits to what decision problem
and in what way. It eliminates the complexity of decision problem in a productive
manner and formulates a platform to the assessment and selection of the optimal
solution [12–14]. Some MCDM techniques are able to configure the decision prob-
lem containing alternatives, factors, and decisionmakers’ (DMs) opinions, break it to
hierarchical format, analyze, normalize, and finally find the solution. To name them,
analytical hierarchy process (AHP) [15], technique of order preference by similarity
to ideal solution (TOPSIS) [16, 17],VlseKriterijumskaOptimizacija IKompromisno
Resenje (VIKOR) [18–21], complex proportional assessment (COPRAS) [22–26],
multi-objective optimization on the basis of ratio analysis (MOORA) [27], evalu-
ation based on distance from average solution (EDAS) [28, 29] and combinative
distance-based assessment (CODAS) [30, 31] are some of the examples. However,
if the selection methodology is carried out randomly or disorganizedly, there will
be the risk of overseeing suitable materials and criteria affecting the entire selection
process, Hence, the aim of this chapter is to develop a methodology, based on rough
AHP and rough CODAS methods, followed by sensitivity analysis and performance
comparison to select themost suited biomaterial for a hip joint prosthesis application.

2 Literature Review on Biomaterials Selection

Despite there beingmanyMCDMmodels for generalmaterial selection problems, the
literature shows very less amount of works to deal with the problems on biomaterials
selection. Thus, the aim of this section is to study the past researchers on biomaterial
selection and figuring out their weaknesses and enable theDMs to reduce subjectivity
and uncertainty to make a clearer support for a strong framework. Bahraminasab and
Jahan [32] designed a comprehensive biomaterial selection model for femoral com-
ponent of total knee replacement (TKR) while employing comprehensive VIKOR
method. Jahan and Edwards [33] proposed a weighting technique for dependent and
target-based criteria in making optimal decision for biomaterials selection and val-
idated its appropriateness with the extended TOPSIS and comprehensive VIKOR
methods. Bahraminasab et al. [34] conducted a multi-objective design optimization
process for femoral component of TKR. Petković et al. [35] designed a decision
support system while integrating three MCDM tools, i.e., TOPSIS, VIKOR, and
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weighted aggregated sumproduct assessment (WASPAS)methods for identifying the
best biomaterial alternative for bone implants which could compensate the missing
part of a long bone. Hafezalkotob and Hafezalkotob [36] explored the application of
comprehensive MULTIMOORA method for hip and knee joint prosthesis materials
selection. Chowdary et al. [37] proposed a strategy to prioritize some bioengineer-
ing materials under a combined MCDM model with fuzzy AHP and TOPSIS. The
research recommends that Polyether ether ketone (PEEK) material is most suitable
for biomedical implantations. Kabir and Lizu [38] adopted an integrated FAHP and
PROMETHEE methods for selection of femoral material in TKR. Abd et al. [39]
employed fuzzy TOPSIS method for hip joint prosthesis material selection. Ristić
et al. [40] devised an expert system using fuzzy sets for biomaterial selection in a
customized implant application. Hafezalkotob and Hafezalkotob [10] validated the
application of intervalMULTIMOORAmethod with target values of attributes based
on interval distance and preference degree while utilizing two case studies on hip
and knee joint prosthesis materials selection.

3 Materials and Methods

3.1 Rough Numbers and Operations

Rough numbers (RNs), consisting of the upper, lower, and boundary intervals, deter-
mine the intervals of multiple expert evaluations without requiring any additional
information and relying only on the original data [41]. Hence, the obtained expert
preferences objectively represent and improve the decision-making process. The
definition of RNs according to Song et al. [42] is given below.

Let U be a universe containing all the objects and X be a random object from
U. Then, it is assumed that there exists a set of k classes which represents a DM’s
preferences, R = (J1, J2, . . . , Jk) with the condition J1 < J2 <, . . . , < Jk . Then
for every X ∈ U, Jq ∈ R, 1 ≤ q ≤ k, the lower approximation Apr(Jq), the

upper approximation Apr(Jq), and the boundary interval Bnd(Jq) are determined as
follows:

Apr(Jq) = ∪{X ∈ U/R(X) ≤ Jq
}

(1)

Apr(Jq) = ∪{X ∈ U/R(X) ≥ Jq
}

(2)

Bnd(Jq) = ∪{X ∈ U/R(X) �= Jq
}

= {X ∈ U/R(X) > Jq
} ∪ {X ∈ U/R(X) < Jq

}
(3)

The object can be represented by a rough number with the lower limit Lim(Jq)
and the upper limit Lim(Jq) in Eqs. (4)–(5).
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Lim(Jq) = 1

ML

∑
R(X)|X ∈ Apr(Jq) (4)

Lim(Jq) = 1

MU

∑
R(X)|X ∈ Apr(Jq) (5)

where ML and MU represent the sum of objects given in the lower and upper
object approximations of Jq , respectively. For object Jq , the rough boundary interval
(IRBnd(Jq)) is the interval between the lower and upper limits [43]. The rough
boundary interval presents a measure of uncertainty. A bigger IRBnd(Jq) value
shows that the variations in experts’ preferences exist, while smaller values show
that experts’ opinions do not differ considerably. All the objects between the lower
limit Lim(Jq) and the upper limit Lim(Jq) of the rough number RN(Jq) are included
in IRBnd(Jq). SinceRNs belong to a group of interval numbers, arithmetic operations
applied to interval numbers are also appropriate for RNs.

3.2 R-AHP Method

As one of the most popular methods of MCDM, the AHP has widely been used
for criteria weight estimation in a wide range of applications [43]. AHP is a struc-
tured technique for organizing and analyzing complex decisions. It uses the defini-
tions of relative importance to evaluate the weights of the selection criteria. It also
bestows flexibility in quantifying the consistency in DMs’ preferences in a group
decision-making system (GDMS). Due to the presence of uncertainty, subjectivity,
and unreliability in GDM, this chapter uses a RN-based AHP method to exploit
judgments and imprecision. The succeeding section provides a detail description of
the adopted methodology for applying the RN-based AHP method for estimation of
criteria weights.

Step 1. Pairwise comparisons of the criteria:

Assuming that there exists a group of m experts {e1, e2, . . . , em} and n criteria
{c1, c2, . . . cn}, each expert should determine the degree ofmutual influence of criteria
i and j(∀ i, j ∈ n). For this purpose, a pairwise comparative analysis of the i th
and j th criteria sets for kth expert (1 ≤ k ≤ m) is made and denoted by the
values ξ k

i j (i, j = 1, 2, . . . , n; k = 1, 2, . . . ,m), which were performed using Saaty’s
9-point scale [44] and shown by the following matrix.

N (k) =
[
ξ

(k)
i j

]

n×n
=

⎡

⎢⎢⎢
⎣

ξ
(k)
11 ξ

(k)
12 . . . ξ

(k)
1n

ξ
(k)
21 ξ

(k)
22 . . . ξ

(k)
2n

...
...

. . .
...

ξ
(k)
n1 ξ

(k)
n2 . . . ξ (k)

nn

⎤

⎥⎥⎥
⎦

; 1 ≤ i, j ≤ n; 1 ≤ k ≤ m (6)

where ξ
(k)
i j are linguistic Equations of Saaty’s 9-point scale and ξ

(k)
i j = 1 if i = j .
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Step 2. Estimation of weights of the Experts’:

For each matrix N (k), consistency of the expert judgement is verified in two steps
using the consistency ratio (CR) concept [45]. At first, consistency index (CI) is com-
puted, followed by which CR is estimated using the standard relationship between
CI and the random index (RI). A CR value of less than or equal to 0.10 indicates
consistent judgments made by the experts [46].

The weight importance of the experts are now determined using Eqs. (7) and (8).

δk = 1

CRk
; 1 ≤ e ≤ k (7)

where CRk is the CR of the kth expert, and δk is the weight of expert k (1 ≤ k ≤ m).

wk = δk∑m
k=1 δk

(8)

where δk is the weight coefficient of the expert k(1 ≤ k ≤ m)and wk is normalized
weight coefficient of the expert k and

∑m
k=1 wk = 1.

Step 3. Construction of an averaged rough comparison matrix (ARCM):

Using Eqs. (1)–(5), elements ξ
(k)
i j of comparison matrix N (k) are now trans-

formed into RNs as RN(ξ
(k)
i j ) =

[
Lim(ξ

(k)
i j ),Lim(ξ

(k)
i j )
]

=
[
ξ

(k)−
i j , ξ

(k)+
i j

]
,

where Lim(ξ
(k)
i j ) is the lower approximation of the object class ξ

(k)
i j ,

and Lim(ξ
(k)
i j ) is the upper approximation. In this way, for each pair-

wise comparison matrix, rough sequences are obtained as RN(ξ
(k)
i j ) ={[

Lim(ξ
(1)
i j ),Lim(ξ

(1)
i j )
]
,
[
Lim(ξ

(2)
i j ),Lim(ξ

(2)
i j )
]
, . . . ,

[
Lim(ξ

(m)
i j ),Lim(ξ

(m)
i j )
]}

.

For each matrix N (k), we get rough sequence RN(ξ
(k)
i j ) =

[
Lim(ξ

(k)
i j ),Lim(ξ

(k)
i j )
]

on the position (i, j) and finally by applying Eq. (9), we get the averaged rough

number RN(ξi j ) = [Lim(ξi j ),Lim(ξi j )
] =
[
ξ−
i j , ξ

+
i j

]

RN(ξi j ) = RN
{[

ξ
(1)−
i j , ξ

(1)+
i j

]
,
[
ξ

(2)−
i j , ξ

(2)+
i j

]
, . . . ,

[
ξ

(m)−
i j , ξ

(m)+
i j

]}

=
⎧
⎨

⎩

ξ−
i j =∏m

k=1

(
ξ

(k)−
i j

)wk

ξ+
i j =∏m

k=1

(
ξ

(k)+
i j

)wk (9)

where Lim(ξ
(k)
i j ) = ξ

(k)−
i j and Lim(ξ

(k)
i j ) = ξ

(k)−
i j , respectively, represents the lower

and upper approximation of the RN(ξ
(k)
i j ).

Based on Eqs. (8) and (9), we obtain averaged rough comparison matrix as:
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N =

⎡

⎢⎢⎢
⎣

1
[
ξ−
12, ξ

+
12

] · · · [ξ−
1n, ξ

+
1n

]
[
ξ−
21, ξ

+
21

]
1 · · · [ξ−

2n, ξ
+
2n

]

...
...

. . .
...[

ξ−
n1, ξ

+
n1

] [
ξ−
n2, ξ

+
n2

] · · · 1

⎤

⎥⎥⎥
⎦

n × n

(10)

Step 4. Computation of priority vector:

Priority vector (PV ) is the rough weight RN(wj ) which is determined for each
criterion.We obtain the roughweight coefficient RN(wj ) by applying Eqs. (11)–(13).
By applying Eq. (11), the following values are estimated.

RN(ξ ′
i j ) =

∑n

j=1
RN(ξi j ) =

[∑n

j=1
ξ−
i j ,
∑n

j=1
ξ+
i j

]
(11)

and dividing matrix elements of N with the values obtained from Eq. (11), the nor-
malized matrix (W ) is calculated.

RN(�i j ) =
[
�−

i j ,�
+
i j

]
= RN(ξi j )∑n

j=1 RN(ξi j )
=

[
ξ−
i j , ξ

+
i j

]

[∑n
j=1 ξ−

i j ,
∑n

j=1 ξ+
i j

] (12)

A normalized matrix for the rough weights is obtained as follows:

W =

⎡

⎢⎢⎢
⎣

1
[
�−

12,�
+
12

] · · · [�−
1n,�

+
1n

]
[
�−

21,�
+
21

]
1 · · · [�−

2n,�
+
2n

]

...
...

. . .
...[

�−
n1,�

+
n1

] [
�−

n2,�
+
n2

] · · · 1

⎤

⎥⎥⎥
⎦

n × n

(13)

whereRN(�i j ) =
[
�−

i j ,�
+
i j

]
represents a normalizedweights coefficients ofmatrix

(10).
The final rough criteria weights are determined using Eq. (14).

RN(wj ) =
[
1

n

n∑

i=1

�−
i j ,

1

n

n∑

i=1

�+
i j

]

(14)

The criteria weights are placed in the interval RN(wj ) =
[
w−

j ,w+
j

]
where the

condition is satisfied that 0 ≤ w−
j ≤ w+

j ≤ 1 for each evaluation criteria c j ∈ C
(C = {c1, c2, . . . cn}). Since these are rough criteria weights, using Eq. (14), the
actual weight coefficients are obtained, where

∑n
j=1 w

−
j ≤ 1 and

∑n
j=1 w

+
j ≥ 1. It

satisfies the conditions wj ∈ [0, 1] and j = 1, 2, . . . , n.
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3.3 Rough CODAS Method

In this section, an extension of the original CODAS method based on RNs (R-
CODAS) has been proposed to deal with the associated uncertainties. CODAS is an
efficient method, introduced by Ghorabaee et al. [30]. The procedural steps of the
proposed R-CODAS method are now presented below [30, 31]:

Step 1. Construct the basic rough decision matrix (�):

First step is evaluating b alternatives to n criteria. Evaluation of the alternatives
per each criteria by k(1 ≤ k ≤ m) expert is denoted as η

(k)
i j , where i = 1,…, b; j

= 1,…, n. The judgment of k expert is presented as matrix �(k) = [η(k)
i j ]b×n , where

1 ≤ k ≤ m.

�(k) =

⎡

⎢⎢⎢
⎣

η
(k)
11 η

(k)
12 · · · η

(k)
1n

η
(k)
21 η

(k)
22 · · · η

(k)
2n

...
...

. . .
...

η
(k)
b1 η

(k)
b2 · · · η

(k)
bn

⎤

⎥⎥⎥
⎦

b×n

; 1 ≤ i ≤ b; 1 ≤ j ≤ n; 1 ≤ k ≤ m (15)

In accordance with this, �(1), �(2), . . . , �(m) matrices are the judgment matrices
of each of m experts.

Using Eqs. (1)–(5), each sequence η
(k)
i j (i = 1, 2, . . . , b; j = 1, 2, . . . , n)

of �(k) = [η(k)
i j ]b×n is transformed into rough sequence RN(η

(k)
i j ) =[

Lim(η
(k)
i j ),Lim(η

(k)
i j )
]

=
[
η

(k)−
i j , η

(k)+
i j

]
, where Lim(η

(k)
i j ) = η

(k)−
i j and Lim(η

(k)
i j ) =

η
(k)+
i j represent lower and upper limits of the rough sequence RN(η

(k)
i j ), respectively.

For each matrix �(k) = [η(k)
i j ]b×n , we get the rough sequence RN(η

(k)
i j ) =[

Lim(η
(k)
i j ),Lim(η

(k)
i j )
]

=
[
η

(k)−
i j , η

(k)+
i j

]
on the position (i, j) and finally by applying

Eq. (16), we get the averaged RN RN(ηi j ) = [Lim(ηi j ),Lim(ηi j )
] =
[
η−
i j , η

+
i j

]

RN(ηi j ) = RN
{[

η
(1)−
i j , η

(1)+
i j

]
,
[
η

(2)−
i j , η

(2)+
i j

]
, . . . ,

[
η

(m)−
i j , η

(m)+
i j

]}

=

⎧
⎪⎪⎨

⎪⎪⎩

η−
i j = 1

m

m∑

k=1
η

(k)−
i j

η+
i j = 1

m

m∑

k=1
η

(k)+
i j

(16)

where Lim(η
(k)
i j ) = η

(k)−
i j and Lim(η

(k)
i j ) = η

(k)−
i j , respectively, represent the lower

and upper approximation of the RN(η
(k)
i j ).

Based on Eqs. (3) and (16), we obtain the following ARCM:
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� =

⎡

⎢⎢⎢
⎣

[
η−
11, η

+
11

] [
η−
12, η

+
12

] · · · [η−
1n, η

+
1n

]
[
η−
21, η

+
21

] [
η−
22, η

+
22

] · · · [η−
2n, η

+
2n

]

...
...

. . .
...[

η−
b1, η

+
b1

] [
η−
b2, η

+
b2

] · · · [η−
bn, η

+
bn

]

⎤

⎥⎥⎥
⎦

b×n

(17)

whereRN(ηi j ) = [Lim(ηi j ),Lim(ηi j )
] =
[
η−
i j , η

+
i j

]
denotes the value of the ith alter-

native for the jth criterion (i = 1, 2, . . . , b; j = 1, 2, . . . , n). The matrix elements
RN(ηi j ) in Eq. (17) are RNs determined by the experts or by using the aggregation
of the experts’ decisions.

Step 2. Normalization of basic matrix element:

Determine RN normalized decision matrix N = [η∧i j ]b×n for beneficial and non-
beneficial (cost criteria) criteria by the following expressions:

η
∧

i j =
⎧
⎨

⎩

[
η−
i j−η−

j

η+
j −η−

j
,

η+
i j−x−

j

η+
j −η−

j

]
; if j ∈ B,

[
η+
i j−η+

j

η−
j −η+

j
,

η−
i j−η+

j

η−
j −η+

j

]
; if j ∈ C

(18)

where η+
j = max

i

(
ηi j
)
, η−

j = min
i

(
ηi j
)
, B and C represent the sets of beneficial and

non-beneficial criteria, respectively, and η
∧

i j denotes the normalized RN values.

Step 3. Calculate RN-weighted normalized decision matrix (R):

The RN-weighted normalized matrix R = [ri j ]b×n is calculated as follows

RN(ri j ) = RN(wj ) · RN(η
∧

i j ) =
[
w−

j ,w+
j

]
· [η∧−

i j , η
∧+
i j

]
(19)

where RN(wj ) =
[
w−

j ,w+
j

]
represents the final RN criteria weight of jth criterion

and RN(ri j ) =
[
r−
i j , r

+
i j

]
indicates weighted normalized values.

Step 4. Determine FR negative-ideal solution:

We obtain the RN negative-ideal solution matrix NS = [RN(ns j )]1×n as follows

ns j = min
i

ri j =
[
min
{
r−
i j

}
,min

{
r+
i j

}]
(20)

Step 5. Calculate the RN-weighted Euclidean (EDi ) and RN-weighted Hamming
(HDi ) distances of alternatives from the RN negative-ideal solution

We obtain EDi and HDi as per [47, 48] and shown as follows:
RN-weighted Euclidean (EDi ) distances:
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EDi =
n∑

j=1

dE
(
ri j ; ns j

)
(21)

where dE
(
ri j ; ns j

)
we obtain as follows

dE
(
ri j ; ns j

) =

√√√√
{
r−
i j − ns−

j

}2 +
{
r+
i j − ns+

j

}2

2
(22)

RN-weighted Hamming (HDi ) distances

HDi =
n∑

j=1

dH
(
ri j ; ns j

)
(23)

where dH
(
ri j ; ns j

)
we obtain as follows

dH
(
ri j ; ns j

) =
∣∣∣r−

i j − ns−
j

∣∣∣+
∣∣∣r+

i j − ns+
j

∣∣∣

2
(24)

Step 6. Determine the relative assessment matrix (RA):

By applying Eq. (25), we obtain elements of the relative assessment matrix RA =
[pie]b×b

pie = (EDi − EDe) + (g(EDi − EDe) × (HDi − HDe)) (25)

where e ∈ {1, 2, . . . , b} and g is a threshold function, defined as follows [49]:

g(x) =
{
1 if |x | ≥ θ

0 if |x | < θ
(26)

The threshold parameter (θ) of this function can be set by the DM. In this study,
we use θ = 0.02 for the calculations.

Step 7. Calculate the assessment score (ASi) of each alternative:

By applying Eq. (27), we obtain assessment score

ASi =
b∑

e=1

pie (27)

The alternative with the highest assessment score is the most desirable alternative.
Figure 1 illustrates the rough number-based decision-making model in a comprehen-
sive way.
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Fig. 1 Proposed rough decision-making model

4 R-AHP-CODAS Model Application

The implementation viability of the proposed R-AHP-CODAS model is now
explored via a real-time illustrative example ofmaterial selection for femoral element
for hip joint prosthesis. Human hip prosthesis has three major parts, namely femoral
component, acetabular cup, and acetabular interface. Among these, the femoral ele-
ment is a rigid metallic rod inserted into the hollow femur. The acetabular cup is
normally fitted with ilium. On the other hand, the acetabular interface lies between
the femoral component and the acetabular cup. It is made by various materials like
metals, polymers, and ceramics to reduce the amount of frictional wear. Evaluation
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matrix for the considered problem consists of eleven alternative biomaterials and nine
criteria which can be found in [39, 50]. Among the nine considered nine attributes,
tissue tolerance (C1), corrosion resistance (C2), tensile strength (C3), fatigue strength
(C4), toughness (C5), and wear resistance (C6) are the beneficial attributes, whereas
elastic modulus (C7), density (C8), and cost (C9) are the attributes regarded as non-
beneficial. The concerned study included the expertise of five experts who evaluated
the considered alternatives.

4.1 Implementation of R-AHP Model

Step 1. Pairwise comparisons of the criteria:

After the five experts evaluated each of the nine considered criteria, a comparison
matrix between the criteria pairs has been developed, as shown in Table 1.

Step 2. Determination of weights of the experts:

After the pairwise comparison, consistency ratio is estimated. Now, using Eqs. (7)
and (8), criteria weights are determined, as presented in Table 2.

δ1 = 1

CR1
= 1

0.0695
= 14.378;

δ2 = 1

CR2
= 1

0.0849
= 11.772;

δ3 = 1

CR3
= 1

0.0980
= 10.208;

δ4 = 1

CR4
= 1

0.0861
= 11.621;

δ5 = 1

CR5
= 1

0.0752
= 13.299.

Using Eq. (8), the experts’ weights are obtained as follows:

wE1 = 14.3788

14.378 + 11.772 + 10.208 + 11.621 + 13.299
= 0.2346;

wE2 = 11.7718

14.378 + 11.772 + 10.208 + 11.621 + 13.299
= 0.1921;

wE3 = 10.2080

14.378 + 11.772 + 10.208 + 11.621 + 13.299
= 0.1666;

wE4 = 11.6210

14.378 + 11.772 + 10.208 + 11.621 + 13.299
= 0.1896;

wE5 = 13.2998

14.378 + 11.772 + 10.208 + 11.621 + 13.299
= 0.2170.
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Table 2 CRk matrix of
comparison and weights of
experts

Expert CRk δk wk

E1 0.0695 14.3788 0.2346

E2 0.0849 11.7718 0.1921

E3 0.0980 10.2080 0.1666

E4 0.0861 11.6210 0.1896

E5 0.0752 13.2998 0.2170

Step 3. Calculation of ARCM:

ARCM is now estimated based on the data of Table 1 and using Eqs. (1)–(5),
the components ξ

(k)
i j of the CM N (k)are transformed into rough number RN(ξ

(k)
i j ) =[

Lim(ξ
(k)
i j ),Lim(ξ

(k)
i j )
]
and five rough matrices N (k) (k = 1, 2, … 5) are obtained.

Determination of the rough elements of CM N (1), N (2), …, N (5), for C1–C3 are
illustrated here. For every N (k) matrix, rough sequences that make up the rough

number RN(ξ
(k)
13 ) =

[
Lim(ξ

(k)
13 ),Lim(ξ

(k)
13 )
]
are achieved. From Table 1, for C1–C3

position, the object class ξ
(k)
13 with five elements ξ

(k)
13 = {6; 9; 8; 6; 5} is selected.

Now, using Eqs. (1)–(5), we determined the rough sequences as follows:

Lim(6) = 1

3
(6 + 6 + 5) = 5.67,Lim(6) = 1

4
(6 + 9 + 8 + 6) = 7.25;

Lim(9) = 1

5
(6 + 9 + 8 + 6 + 5) = 6.80,Lim(9) = 9;

. . .

Lim(5) = 5,Lim(5) = 1

5
(6 + 9 + 8 + 6 + 5) = 6.80;

This way, we get five rough sequences, as shown below:

RN(ξ
(1)
13 ) = [5.67, 7.25];RN(ξ

(2)
13 ) = [6.8, 9.0];RN(ξ

(3)
13 ) = [6.25, 8.5];

RN(ξ
(4)
13 ) = [5.67, 7.25];RN(ξ

(5)
13 ) = [5.0, 6.8].

By applying Eq. (9) and the experts’ weights of Table 2, we get the ARN as
RN(ξ13) = [Lim(ξ13),Lim(ξ13)

] = [ξ−
13, ξ

+
13

]

RN(ξ13) = [ξ−
13, ξ

+
13

] = RN(ξ
(1)
13 , ξ

(2)
13 , . . . , ξ

(5)
13 )

=
{

ξ−
13 = (5.67)0.2346 · (6.80)0.1921 · · · (5.00)0.2170

ξ+
i j = (7.25)0.2346 · (9.0)0.1921 · · · (6.80)0.2170

This way, we obtained the values of Table 3.

Step 4. Computation of the PV
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Based on the data of Table 3 and Eqs. (11) and (12), the normalized values of
weights coefficients are computed, as given in Table 4.

The determination of the C1–C3 element of Table 4 is obtained by the following
computations. Using Eq. (11), the following values are first calculated.

RN(ξ
′
13) =

9∑

i=1

RN(ξi3) =
[

9∑

i=1

ξ−
i3,

9∑

i=1

ξ+
i3

]

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

9∑

i=1

ξ−
i3 = 5.81 + 5.10 + · · · + 2.40 = 28.56

9∑

i=1

ξ+
i3 = 7.65 + 7.79 + · · · + 3.90 = 40.81

Then based on these values, we obtain rough number RN(ξ ′
i3) =∑9

i=1 RN(ξi3) =
[28.56, 40.81]. These values are further used to normalize the third column of the
average interval RCM. Thus, for the C1–C3 position, we obtain

RN(�13) = RN(ξ13)
∑9

i=1 RN(ξi3)
= [5.81, 7.65]

[28.56, 40.81]
= [0.14, 0.27]

Similarly, applying Eq. (11), the other values of Table 4 are achieved. Now using
Eq. (14), the criteria weights are finally estimated. For example, the following values
are calculated by dividing the weight of the first row of the normalized matrix by the
number of criteria:

RN(w1) =
[
1

9

9∑

i=1

�−
i j ,

1

9

9∑

i=1

�+
i j

]

= 1

9
· [0.962, 3.055] = [0.107, 0.339]

The same process is followed for the other weight coefficients.

RN(w1) = [0.107, 0.339];RN(w2) = [0.130, 0.423];RN(w3) = [0.018, 0.042];
RN(w4) = [0.066, 0.162];RN(w5) = [0.041, 0.104];RN(w6) = [0.032, 0.075];
RN(w7) = [0.032, 0.083];RN(w8) = [0.106, 0.287];RN(w9) = [0.073, 0.184].

4.2 Implementation of R-CODAS Model

Now, the step-by-step implementation of the R-CODAS model is explained below.

Step 1. Construct the basic RN decision matrix (�)
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Results of the expert assessment for the considered biomaterials are shown in
Table 5. By applying Eqs. (1)–(5), elements of the matrix are first translated into
RNs, after which, by implementing Eq. (16), we average the RNs to obtain Table 6.

Step 2. Normalization of basic matrix element (�)

The normalization of the criteria is carried out using Eq. (18). The first six criteria
(C1–C6) belongs to the max (benefit) set, and three criteria (C7–C9) belongs to the
min (cost) set. Normalized basic RN decision matrix is shown in Table 7.

Step 3 and 4. Calculate RN-weighted normalized matrix and determine FR negative-
ideal solution

By the multiplication of Table 7 and the criteria weights, we obtain the following
weighted matrix.

R =

⎡

⎢⎢⎢
⎣

[0.02, 0.23] [0.02, 0.23] . . . [0.01, 0.07]
[0.02, 0.22] [0.02, 0.26] . . . [0.01, 0.07]

...
...

. . .
...

[0.01, 0.15] [0.02, 0.25] . . . [0.01, 0.05]

⎤

⎥⎥⎥
⎦

11×9

Now by applying Eq. (20), we obtain the RN negative-ideal solution matrix NS =
[RN(ns j )]1×9 as given below:

NS =
⎡

⎢
⎣
RN(ns1) = [0.011, 0.145];RN(ns2) = [0.017, 0.234];RN(ns3) = [0.000, 0.002];
RN(ns4) = [0.004, 0.026];RN(ns5) = [0.002, 0.011];RN(ns6) = [0.001, 0.008];
RN(ns7) = [0.001, 0.007];RN(ns8) = [0.011, 0.087];RN(ns9) = [0.005, 0.035];

⎤

⎥
⎦

1×9

Step 5 and 6. Calculate the RN distances of alternatives from the RN negative-ideal
solution and determine relative assessment matrix (RA)

After calculation of the RN negative-ideal solution matrix NS = [RN(ns j )]1×9,
we obtain the EDi and HDi distances of the biomaterial alternatives from the RN
negative-ideal solution, using Eqs. (21)–(24), as exhibited in Table 8.

In order to obtain the elements of the relative assessment matrix RA = [pik]11×11,
we use previous obtained Euclidean distances and Hamming distances and Eqs. (26)
and (27), respectively.

RA =

A1 A2 A3 . . . A11

A1

A2

A3
...

A11

⎡

⎢⎢⎢⎢⎢
⎣

0.000 −0.055 −0.075 . . . 0.090
0.055 0.000 −0.010 . . . 0.145
0.075 0.010 0.000 . . . 0.165

...
...

...
. . .

...

−0.090 −0.145 −0.165 . . . 0.000

⎤

⎥⎥⎥⎥⎥
⎦

Step 7. Calculate the assessment score (ASi) of each biomaterial
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Table 9 Materials ranks
using the RN-CODAS model

Alternative Hi Rank

A1 −0.650 8

A2 −0.035 6

A3 0.167 5

A4 −0.644 7

A5 1.376 3

A6 1.195 4

A7 1.644 2

A8 2.202 1

A9 −1.408 9

A10 −2.214 11

A11 −1.634 10

RN-CODAS criteria function for the final ranking of the alternatives
Ai (i = 1, 2, . . . , 11) are calculated using Eq. (27), as shown in Table 9.

5 Sensitivity Analysis, Discussion, and Validation

Sensitivity analysis (SA) is a key component for interpreting the outcomes of any
multi-criteria analysis. The main objective of SA is to analyze the robustness of
the proposed R-AHP-CODAS method. It aims to determine the minimum change I
criteria weights that steers some changes in the ranking preorder of the biomaterial
alternatives. Figure 2 shows theSAof the proposedR-AHP-CODASmodel at varying
weights of different material selection criteria for the considered case study. The
evaluative outcome of the case study (Table 9) is analyzed through 36 different
scenarios in which one criterion has been favored over others in each scenario by
increasing its weight in the following manner. In the first scenario (S1), criterion C1

(tissue tolerance) was favored, in the second scenario (S2), C2 (corrosion resistance)
was favoured, and so on. Variation in the ranking preorder of the biomaterials for
different circumstances is revealed in Fig. 2.

From Fig. 2, it is well understood that the ranking preorder of the biomaterials has
changed slightly due to the changes in criteria weights. From a comparison among
the best two alternatives (A8) in different scenarios with the initial rank of Table 9, it
is noted that the best alternative (A8) rank has not been affected by weight variations.
Analysis of the ranking through 36 scenarios of Fig. 2 shows that alternative A8

(Ti–6Al–4V) holds its rank in 32 scenarios (88.89%), while the second-best alterna-
tive (Pure titanium) holds its rank in 23 scenarios (63.89%). However, there are few
minor changes in the ranking order for some intermediate biomaterials which is also
confirmed by the standard deviation (SD) of the ranks, as shown in Fig. 3.
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Fig. 3 SD values for different scenarios

SD values are computed based on the initial ranks of Table 9 with that of achieved
through different weight changing scenarios (Fig. 2). Figure 3 shows a high ranking
correlation with a SD value of less than 0.50 in 28 scenarios. The mean value of SD
for the scenarios for the biomaterial selection case study is found to be 0.428, which
again signifies very good ranking agreement for all the scenarios.

To arrive at a final decision for selecting the optimal biomaterial, a comparative
study has nowbeen performed between differentMCDMmethods, namelyCOPRAS
[26, 52] and MABAC [51, 53], as shown in Fig. 4. Ranking of the biomaterials
according to these methods shows that alternative A8 retained its first position for
all the considered MCDM methods, thus establishing its superior acceptability over
other biomaterial alternatives considered in the presented case study, as shown in.



15 A Rough Decision-Making Model for Biomaterial Selection 253

0

2

4

6

8

10

11

R-CODAS R-MABAC R-COPRAS MABAC CODAS COPRAS

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11
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Table 10 Spearman’s rank
correlation coefficient values
between R-AHP-CODAS and
other MCDM methods

MCDM method Spearman’s rank correlation coefficient

R-MABAC 0.982

R-COPRAS 0.973

MABAC 0.991

CODAS 0.982

COPRAS 0.986

Average SCC 0.986

Ranking agreement and stability are validated by Spearman’s rank correlation
coefficient values, as exhibited in Table 10.

Table 10 shows a considerably high correlation between different MCDM meth-
ods. Spearman’s rank correlation coefficient between the considered methods ranges
from 0.982 to 1.00, which shows very strong correlation and ranking agreement
among all these methods which ultimately establishes the reliability and credibility
of the proposed model.

6 Conclusions

This paper proposes a new application of an integrated rough number-based AHP-
CODAS model for selection of biomaterials. One real-life hip prosthesis joint mate-
rial selection example demonstrates the potentiality and precision of the adopted
model. The R-AHP method is used to determine the criteria weights, while alterna-
tive biomaterials are assessed by theR-CODASmodel. In order tomeasure the quality
of the results, weight SA and performance comparison with other well-established
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MCDM methods have been carried out. Agreement between the obtained ranking
orders is validated by using Spearman’s rank correlation coefficients which indicates
a very high rank correlation between all the consideredmethods, thus establishing the
trustworthiness of the adopted approach. Amalgamation of fuzzy and neutrosophic
theories with RNs can be the directions of future research.
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