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Foreword

The 7th Topical Conference of the Indian Society of Atomic and Molecular Physics
was held at Tirupati on January 6–8, 2017. It was jointly hosted by the Indian
Institute of Technology Tirupati (IITT) and the Indian Institute of Science
Education and Research Tirupati (IISERT), with generous support from the
Director of the IITT (Prof. K. N. Satyanarayana) and the Director of the IISERT
(Prof. K. N. Ganesh). While Prof. P. C. Deshmukh and Prof. Bhas Bapat served as
the Joint-Conveners of this conference, Dr. S. Sunil Kumar served as the
Conference Secretary.

Tirupati is the only place in India which houses an IIT and also an IISER. Both
of these institutions have taken a major initiative in the field of Atomic, Molecular
and Optical Physics. The ISAMP-TC7 is the first conference jointly convened by
the two institutions, and early enough just within a few years that the institutions
started operating since August 2015.

Apart from 67 posters that were presented at this meeting, 50 talks were
delivered. The delegates came from near and far places in India (Chennai,
Bangalore, Thiruvananthapuram, Mumbai, Delhi, Kolkata, Ahmedabad,
Hyderabad, Patna, Bhopal, Vellore, Dhanbad, Indore, etc.), and also from 11 other
countries (UK, Japan, USA, France, Czech Republic, Germany, Australia, Spain,
Argentina, Singapore, Switzerland). The keynote addresses at the inaugural session
were delivered by Prof. Anatoli Kheifets, ANU-Canberra (Theory), Prof.
E. Krishnakumar, TIFR-Mumbai/RRI-Bengaluru (Experiment).
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The 26 selected articles presented in this special volume of the Springer
Proceedings in Physics represent the high quality of work that was discussed at the
ISAMP TC7. All the contributions at the conference could not be included in this
special volume, but the editors are happy to compile the articles in this volume to be
left behind as the contribution of the ISAMP TC7 to primary scientific literature.

Tirupati, India P. C. Deshmukh
Bangalore, India E. Krishnakumar
Jena, Germany Stephan Fritzsche
Mumbai, India M. Krishnamurthy
Kharagpur, India Sonjoy Majumder

vi Foreword



Contents

Time-Resolved Theory of Atomic and Molecular Photoionization
for RABBITT and Attoclock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Anatoli Kheifets

Electron–Molecule Resonances: Current Developments . . . . . . . . . . . . . 20
E. Krishnakumar and Vaibhav S. Prabhudesai

Electron Collisions with CO Molecule: An R-Matrix Study
Using a Large Basis Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Amar Dora and Jonathan Tennyson

Dynamic Polarizabilities and Magic Wavelengths of Sr+ for Focused
Vortex Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Anal Bhowmik and Sonjoy Majumder

Spin–Orbit Interaction Features in Near-Threshold Photoionization
Dynamics: An Energy- and Angle-Dependent Study . . . . . . . . . . . . . . . 74
Ankur Mandal, Soumyajit Saha, and P. C. Deshmukh

Isotope Separation of Bromine Molecules: A Novel Method . . . . . . . . . 86
Barun Halder, Utpal Roy, Jayanta Bera, and Suranjana Ghosh

Electron Induced Chemistry of Chlorobenzene . . . . . . . . . . . . . . . . . . . 92
Dineshkumar Prajapati, Hitesh Yadav, Minaxi Vinodkumar,
P. C. Vinodkumar, and Chetan Limbachiya

Quantum Dynamics and Frequency Shift of a Periodically Driven
Multi-photon Anharmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Dolan Krishna Bayen and Swapan Mandal

Diagnostics of Ar/N2 Mixture Plasma with Reliable Electron Impact
Argon Excitation Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
S. Gupta, R. K. Gangwar, and Rajesh Srivastava

vii



Long Time Evolution of a Bose–Einstein Condensate
Under Toroidal Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Jayanta Bera, Suranjana Ghosh, and Utpal Roy

Intriguing Single Photon Induced Processes
in Helium Nanodroplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
S. R. Krishnan, Suddhasattwa Mandal, Bhas Bapat, Ram Gopal,
Alessandro D’Elia, Hemkumar Srinivas, Robert Richter, Marcello Coreno,
Marcel Mudrich, and Vandana Sharma

Two Component Bose–Einstein Condensate in a Pöschl–Teller
Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
N. Kundu and Utpal Roy

Electron Transport Modeling in Biological Tissues:
From Water to DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Mario E. Alcocer-Ávila, Michele A. Quinto, Juan M. Monti,
Roberto D. Rivarola, and Christophe Champion

Dissociative Electron Attachment Study of Di- & Triatomic
Molecule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Minaxi Vinodkumar, Hitesh Yadav, and P. C. Vinodkumar

Single-Photon Decay Processes in Atomic Systems
with Empty K Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
L. Natarajan

Electron Excitation Cross Sections of Fine-Structure (5p56s–5p56p)
Transitions in Xenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Priti, R. K. Gangwar, and Rajesh Srivastava

Ionisation of Nanoclusters at Relativistic Laser Intensities . . . . . . . . . . . 180
R. Rajeev and M. Krishnamurthy

Spectroscopic Studies of 1R+ States of HfH+ and PtH+

Molecular Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Renu Bala, H. S. Nataraj, and Minori Abe

Elemental Constitution Detection of Environmental Samples of Delhi
Using XRF Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Ruchika Gupta, Kajol Chakraborty, Ch. Vikar Ahmad, Chirashree Ghosh,
and Punita Verma

Quantum Hall States for a ¼ 1=3 in Optical Lattices . . . . . . . . . . . . . . . 211
Rukmani Bai, Soumik Bandyopadhyay, Sukla Pal, K. Suthar,
and D. Angom

Laser-Induced Fluorescence Spectroscopy of the ~C2Pr � ~X2R+

Transition in LaNH Molecule in Supersonic Free-Jet . . . . . . . . . . . . . . 222
Soumen Bhattacharyya, Sheo Mukund, and S. G. Nakhate

viii Contents



Photoionization of Acetylene Doped in Helium Nanodroplets
by EUV Synchrotron Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Suddhasattwa Mandal, Ram Gopal, S. R. Krishnan, Robert Richter,
Marcello Coreno, Marcel Mudrich, Hemkumar Srinivas,
Alessandro D’Elia, Bhas Bapat, and Vandana Sharma

Positron Collision Dynamics for C2–C3 Hydrocarbons . . . . . . . . . . . . . . 239
Suvam Singh, Pankaj Verma, Nafees Uddin, Paresh Modak, Nidhi Sinha,
Himani Tomer, Vishwanath Singh, and Bobby Antony

Electron-Impact Excitation of Pb+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Swati Bharti, Lalita Sharma, and Rajesh Srivastava

Low-Temperature Scattering with the R-Matrix Method:
The Morse Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Tom Rivlin, Laura K. McKemmish, and Jonathan Tennyson

Strong-Field Ionization with Few-Cycle Bessel Pulses: Interplay
Between Orbital Angular Momentum and Carrier Envelope Phase . . . . 274
Willi Paufler, Birger Böning, and Stephan Fritzsche

Contents ix



Editors and Contributors

About the Editors

Dr. P. C. Deshmukh is Professor at the Department of Physics, and Dean,
Sponsored Research and Consultancy, at the Indian Institute of Technology
Tirupati. He obtained his Ph.D. from Nagpur University, followed by post doctoral
work at the University of Aarhus, the University of Notre Dame, and Georgia State
University. Prior to joining IIT Tirupati, Dr. Deshmukh was Professor and Head at
the Department of Physics, IIT Madras. His primary areas of interest include
photoabsorption processes in free/confined atoms, molecules and ions. He is a
former President of the Indian Society of Atomic and Molecular Physics (ISAMP),
and is a member of several national and international scientific advisory commit-
tees. He has published several articles in international peer-reviewed journals, and
has also edited a previous proceedings of ISAMP, and also of AISAMP.

Dr. E. Krishnakumar retired as Senior Professor from Tata Institute of
Fundamental Research (TIFR) Mumbai in 2017 and currently a Raja Ramanna
Fellow and Emeritus Scientist at the Raman Research Institute, Bangalore. He
obtained his Ph.D. from Physical Research Laboratory, Ahmedabad following
which he worked as a scientist at the Space Applications Centre, Ahmedabad and
the Jet Propulsion Laboratory at Caltech, Pasadena. His research interests include
electron-molecule collisions in gas and condensed phase, molecular dynamics,
electron and ion momentum imaging and spectroscopy, photoionization and pho-
todetachment. He has published more than 100 papers in international
peer-reviewed journals and delivered around 50 invited talks. Dr. Krishnakumar
was President of the Indian Society of Atomic and Molecular Physics (ISAMP), has
been a member of several national and international advisory committees and a
Fellow of Indian Academy of Sciences.

Dr. Stephan Fritzsche is Professor and Theory-Chair for ‘Correlated Quantum
Systems’ at the Helmholtz Institute Jena. He obtained his Ph.D. from the University

xi



of Kassel. Prior to joining the Helmholtz Institute, he worked at Oulu University
(Finland) and the Frankfurt Institute of Advanced Studies. His research focuses
mainly on the structure and dynamics of finite quantum systems with applications in
atomic, optical and nuclear physics. Dr. Fritzsche and his group is working to
develop new many-body techniques for describing the electron dynamics of ions,
atoms and plasma in strong fields.

Dr. M. Krishnamurthy is Professor at the Department of Nuclear and Atomic
Physics, TIFR Mumbai. After completing his Ph.D. from TIFR, he was a post-
doctoral researcher at the Joint Institute for Laboratory Astrophysics, University of
Colorado Boulder. His research interests include non-linear optics, intense lasers,
plasma physics, mass spectrometry, nanoclusters, and X-ray VUV generation. He
has published over 100 articles in international peer-reviewed journals, and also
delivered over 75 invited talks at national and international conferences.
Dr. Krishnamurthy has received several awards and distinctions such as INSA
Young Scientist Medal, and the DAE-SRC Outstanding Investigator Award. He is
also an elected Fellow of the Indian Academy of Sciences.

Dr. Sonjoy Majumder is Associate Professor at the Physics department, IIT
Kharagpur. He obtained his Ph.D. from the Indian Institute of Astrophysics
Bangalore. His major research areas include physics of cold and ultra-cold atoms,
light-matter interaction, computational many-body physics, and astrophysics. He
has published over 50 articles in international journals of repute. He is currently the
principal investigator on two DST and DAE sponsored projects.

Contributors

Minori Abe Department of Chemistry, Tokyo Metropolitan University, Hachioji,
Tokyo, Japan

Mario E. Alcocer-Ávila Université de Bordeaux, CNRS, CEA, CELIA (Centre
Lasers Intenses et Applications), UMR 5107, Talence, France

D. Angom Physical Research Laboratory, Ahmedabad, Gujarat, India

Bobby Antony Atomic and Molecular Physics Lab, Department of Physics, Indian
Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India

Rukmani Bai Physical Research Laboratory, Ahmedabad, Gujarat, India;
Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India

Renu Bala Department of Physics, Indian Institute of Technology Roorkee,
Roorkee, India

xii Editors and Contributors



Soumik Bandyopadhyay Physical Research Laboratory, Ahmedabad, Gujarat,
India;
Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India

Bhas Bapat Indian Institute of Science Education and Research Pune, Pune,
Maharashtra, India

Dolan Krishna Bayen Department of Physics, Visva-Bharati, Santiniketan, India

Jayanta Bera Indian Institute of Technology of Patna, Bihta, Patna, Bihar, India

Swati Bharti Indian Institute of Technology Roorkee, Roorkee, India

Soumen Bhattacharyya Atomic and Molecular Physics Division, Bhabha Atomic
Research Centre, Mumbai, India;
Homi Bhabha National Institute, Anushaktinagar, Mumbai, India

Anal Bhowmik Department of Physics, Indian Institute of Technology Kharagpur,
Kharagpur, India

Birger Böning Theoretisch Physikalisches Institut, Friedrich Schiller Universität
Jena, Jena, Germany

Kajol Chakraborty Department of Physics and Astrophysics, Kalindi College,
University of Delhi, New Delhi, India

Christophe Champion Université de Bordeaux, CNRS, CEA, CELIA (Centre
Lasers Intenses et Applications), UMR 5107, Talence, France

Marcello Coreno Consiglio Nazionale delle Ricerche – Istituto di Struttura della
Materia, Trieste, Italy

Alessandro D’Elia Department of Physics, University of Trieste, Trieste, Italy

P. C. Deshmukh Indian Institute of Science Education and Research Tirupati,
Tirupati, India;
Indian Institute of Technology Tirupati, Tirupati, India

Amar Dora Department of Chemistry, North Orissa University, Baripada, Odisha,
India

Stephan Fritzsche Theoretisch Physikalisches Institut, Friedrich Schiller
Universität Jena, Jena, Germany;
Helmholtz Institut, Jena, Germany

R. K. Gangwar Department of Physics and Astronomy, National Institute of
Technology Rourkela, Rourkela, India;
Department of Physics, Visvesvaraya National Institute of Technology, Nagpur,
India

Chirashree Ghosh Department of Environmental Studies, University of Delhi,
New Delhi, India

Editors and Contributors xiii



Suranjana Ghosh Amity University Patna, Rupaspur, Patna, Bihar, India

Ram Gopal TIFR Centre for Interdisciplinary Sciences, Hyderabad, Telangana,
India

Ruchika Gupta Department of Physics and Astrophysics, Kalindi College,
University of Delhi, New Delhi, India

S. Gupta Department of Physics, Indian Institute of Technology Roorkee,
Roorkee, India

Barun Halder Indian Institute of Technology of Patna, Bihta, Patna, Bihar, India

Anatoli Kheifets Research School of Physics, The Australian National University,
Canberra, ACT, Australia

E. Krishnakumar Raman Research Institute, Bangalore, India

M. Krishnamurthy TIFR Centre for Interdisciplinary Sciences, Hyderabad, India

S. R. Krishnan Indian Institute of Technology Madras, Chennai, Tamil Nadu,
India

N. Kundu Department of Physics, Indian Institute of Technology Patna, Bihta,
Patna, India

Chetan Limbachiya Department of Physics, The M. S. University Baroda,
Vadodara, Gujarat, India

Sonjoy Majumder Department of Physics, Indian Institute of Technology
Kharagpur, Kharagpur, India

Ankur Mandal Indian Institute of Science Education and Research Tirupati,
Tirupati, India

Suddhasattwa Mandal Indian Institute of Science Education and Research Pune,
Pune, Maharashtra, India

Swapan Mandal Department of Physics, Visva-Bharati, Santiniketan, India

Laura K. McKemmish Department of Physics and Astronomy, University
College London, London, UK;
School of Chemistry, University of New South Wales, Kensington, Sydney,
Australia

Paresh Modak Atomic and Molecular Physics Lab, Department of Physics,
Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand,
India

Juan M. Monti Instituto de Física Rosario, CONICET – Universidad Nacional de
Rosario, EKF Rosario, Argentina

Marcel Mudrich Department of Physics and Astronomy, Aarhus University,
Aarhus, Denmark

xiv Editors and Contributors



Sheo Mukund Atomic and Molecular Physics Division, Bhabha Atomic Research
Centre, Mumbai, India;
Homi Bhabha National Institute, Anushaktinagar, Mumbai, India

S. G. Nakhate Atomic and Molecular Physics Division, Bhabha Atomic Research
Centre, Mumbai, India;
Homi Bhabha National Institute, Anushaktinagar, Mumbai, India

H. S. Nataraj Department of Physics, Indian Institute of Technology Roorkee,
Roorkee, India

L. Natarajan Department of Physics, University of Mumbai, Mumbai, India

Sukla Pal Physical Research Laboratory, Ahmedabad, Gujarat, India

Willi Paufler Theoretisch Physikalisches Institut, Friedrich Schiller Universität
Jena, Jena, Germany

Vaibhav S. Prabhudesai Tata Institute of Fundamental Research, Mumbai, India

Dineshkumar Prajapati Shree M. R. Arts & Science College, Rajpipla, Gujarat,
India

Priti Department of Physics, Indian Institute of Technology Roorkee, Roorkee,
India

Michele A. Quinto Instituto de Física Rosario, CONICET – Universidad Nacional
de Rosario, EKF Rosario, Argentina

R. Rajeev TIFR Centre for Interdisciplinary Sciences, Hyderabad, India

Robert Richter Elettra-Sincrotrone Trieste, Basovizza, Trieste, Italy

Roberto D. Rivarola Instituto de Física Rosario, CONICET – Universidad
Nacional de Rosario, EKF Rosario, Argentina

Tom Rivlin Department of Physics and Astronomy, University College London,
London, UK

Utpal Roy Department of Physics, Indian Institute of Technology of Patna, Bihta,
Patna, Bihar, India

Soumyajit Saha Indian Institute of Technology Madras, Chennai, India

Lalita Sharma Indian Institute of Technology Roorkee, Roorkee, India

Vandana Sharma Indian Institute of Technology Hyderabad, Sangareddy,
Telangana, India

Suvam Singh Atomic and Molecular Physics Lab, Department of Physics, Indian
Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India

Editors and Contributors xv



Vishwanath Singh Atomic and Molecular Physics Lab, Department of Physics,
Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand,
India

Nidhi Sinha Atomic and Molecular Physics Lab, Department of Physics, Indian
Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India

Hemkumar Srinivas Max-Planck-Institut für Kernphysik, Heidelberg, Germany

Rajesh Srivastava Department of Physics, Indian Institute of Technology
Roorkee, Roorkee, India

K. Suthar Physical Research Laboratory, Ahmedabad, Gujarat, India

Jonathan Tennyson Department of Physics and Astronomy, University College
London, London, UK

Himani Tomer Atomic and Molecular Physics Lab, Department of Physics,
Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand,
India

Nafees Uddin Atomic and Molecular Physics Lab, Department of Physics, Indian
Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India

Pankaj Verma Atomic and Molecular Physics Lab, Department of Physics,
Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand,
India

Punita Verma Department of Physics, Kalindi College, University of Delhi, New
Delhi, India

Ch. Vikar Ahmad Department of Physics and Astrophysics, Kalindi College,
University of Delhi, New Delhi, India

Minaxi Vinodkumar Electronics Department, V. P. & R. P. T. P. Science
College, Vallabh Vidyangar, Gujarat, India

P. C. Vinodkumar Department of Physics, Sardar Patel University, Vallabh
Vidyanagar, Gujarat, India

Hitesh Yadav Department of Physics, Sardar Patel University, Vallabh
Vidyanagar, Gujarat, India

xvi Editors and Contributors



Time-Resolved Theory of Atomic and
Molecular Photoionization for RABBITT

and Attoclock

Anatoli Kheifets(B)

Research School of Physics, The Australian National University, Canberra,
ACT 0200, Australia

A.Kheifets@anu.edu.au

http://people.physics.anu.edu.au/~ask107/

Abstract. We outline a theoretical framework and present its numeri-
cal implementation for modeling of recent experiments on time-resolved
atomic and molecular photoionization. We focus on RABBITT measure-
ments of the Wigner time delay and the attoclock determination of the
tunneling time. Our theoretical modeling is based on a numerical solution
of the time-dependent Schrödinger equation driven by weak XUV probe
and IR pump pulses in RABBITT experiments as well as by intense IR
pulses in self-referencing attoclock measurements.

1 Introduction

Time-resolved studies of atomic photoionization with various pump–probe tech-
niques such as attosecond streaking [1] or RABBITT [2], and self-referencing
techniques like attoclock [3] opened up a new and rapidly developing area of
research collectively termed attosecond chronoscopy [4]. The attosecond streak-
ing and RABBITT measurements determine the photoelectron group delay
which is related to the photoelectron phase and its energy derivative known
as the Wigner time delay [5]. These studies bring one step closer what had been
thought of as a complete photoionization experiment. The attoclock measure-
ment can be related to the tunneling time, i.e., the time a photoelectron spends
under the barrier in a classically inaccessible region. The new measurements
reopened decade-long debate about a finite tunneling time [6].

In this presentation, the recent theoretical advances in evaluation of the
Wigner time and tunneling time in atoms and molecules will be reviewed and
connection with ongoing experimental activities will be made. The following
topics will be highlighted:

1. Wigner time delay in photoionization of free and encapsulated noble gas
atoms. This topic includes the relativistic effects and angular-dependent time
delay. Connection with the recent measurements in heavy noble gas atoms
will be made [7].

c© Springer Nature Singapore Pte Ltd. 2019
P. C. Deshmukh et al. (eds.), Quantum Collisions and Confinement of Atomic
and Molecular Species, and Photons, Springer Proceedings in Physics 230,
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2. Wigner time delay in molecular photoionization including complex heteronu-
clear molecules.

3. Tunneling time measurements [8] and calculations [9] in atomic hydrogen and
their implications for the finite tunneling time problem.

2 Wigner Time Delay and RABBITT

RABBITT (Reconstruction of Attosecond Beating By Interference of Two-
photon Transitions) technique has been used widely to study time-resolved
dynamics of atomic [2,7,10–14] and molecular [15–17] photoemission. Recently,
this technique has become angular resolved [18–20]. While the initial studies have
been confined to a narrow photon energy range not exceeding 40 eV (twenty-
fourth harmonic of the fundamental radiation at λ � 800 nm), the most recent
experiments [14,21,22] extended this range above 100 eV. This has enabled the
study of photoemission dynamics beyond the outer atomic shells and to probe
the subvalent 4d shell of the Xe atom [21].

The RABBITT technique builds on the interference of two ionization pro-
cesses leading to the same photoelectron state by (i) absorption of the XUV
frequency ω2q−1 of an odd 2q −1 harmonic and an IR quantum ω or (ii) absorp-
tion of ω2q+1 and stimulated emission of ω. Both ionization processes lead to the
appearance of a sideband (SB), in between the one-photon harmonic peaks in
the photoelectron spectrum. The sideband magnitude oscillates with the relative
phase between the XUV and IR pulses [23,24]

S2q(τ) = A + B cos[2ωτ − C], C = Δφ2q + Δθ2q, (1)

where τ = ϕ/ω denotes the phase delay of the IR field relative to the XUV. The
term Δφ2q = φ2q+1−φ2q−1 denotes the phase difference between two neighboring
odd harmonics 2q ± 1 that is related to the finite-difference group delay of the
attosecond pulse as τ

(GD)
2q = Δφ2q/2ω.

2.1 Atomic RABBITT Simulations

Computational Technique Our atomic RABBITT modeling is based on solu-
tion of the one-electron time-dependent Schrödinger equation (TDSE) for a tar-
get atom [25],

i∂Ψ(r)/∂t =
[
Ĥatom + Ĥint(t)

]
Ψ(r). (2)

In the following, we adopt the system of atomic units and set the charge and
mass of the electron as well as the Planck constant to unity e = m = � = 1. The
radial part of the atomic Hamiltonian

Ĥatom(r) = −1
2

d2

dr2
+

l(l + 1)
2r2

+ V (r) (3)

contains an effective one-electron potential V (r). Several choises exist for this
potential. We use either an optimized effective potentials (OEP) [26] or a local-
ized Hartree–Fock potential (LHP) determined as prescribed in [27]. In the case
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of an encapsulated atom trapped inside a fullerene C60 cage, an attractive spher-
ical square well potential is added

ΔV (r) =
{−U0 < 0 if Rinner ≤ r ≤ Rinner + Δ

0 otherwise. (4)

Here Rinner = 5.8 a.u., Δ = 1.9 a.u., and U0 = 0.302 a.u. [28].
The Hamiltonian Ĥint(t) describes interaction with the external field and is

written in the velocity gage

Ĥint(t) = A(t) · p̂,A(t) = −
t∫

0

E(t′) dt′. (5)

This external field is comprised of both XUV and IR pulses. The XUV field
is modeled by an attosecond pulse train (APT) with the vector potential

Ax(t) =
5∑

n=−5

(−1)nAn exp
(

−2 ln 2
(t − nT/2)2

τ2
x

)

× cos
[
ωx(t − nT/2)

]
, (6)

where

An = A0 exp
(

−2 ln 2
(nT/2)2

τ2
T

)
.

Here A0 is the vector potential peak value and T = 2π/ω is the period of
the IR field. The XUV central frequency is ωx and the time constants τx, τT

are chosen to span a sufficient number of harmonics in the range of photon
frequencies of interest for a given atom.

The vector potential of the IR pulse is modeled by the cosine squared envelope

A(t) = A0 cos2
(

π(t − τ)
2τIR

)
cos[ω(t − τ)].

The IR pulse is shifted relative to the APT by a variable delay τ such that
the RABBITT signal of the even SB 2q oscillates as

S2q(τ) = A + B cos[2ωτ − C] . (7)

Solution of the TDSE (19) is found using the iSURF method as given in [29].
A typical calculation with XUV and IR field intensities of 5 × 109 and 3 × 1010

W/cm2, respectively, would take up to 35 CPU hours for each τ .
The RABBITT parameters A, B, and C entering (7) can be expressed via

the absorption and emission amplitudes

A = |M(−)
k |2 + |M∗(+)

k |2, B = 2Re
[
M(−)

k M∗(+)
k

]

C = arg
[
M

(−)
k M

∗(+)
k

]
= 2ωτa. (8)
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Here M(±)
k are complex amplitudes for the angle-resolved photoelectron pro-

duced by adding or subtracting an IR photon, respectively. By adopting the soft
photon approximation (SPA) [30], we can write

A,B ∝ |J1(α0 · k)|2|〈f |z|i〉|2 (9)
∝ [1 + βP2(cos θk)] cos2 θk.

Here we made a linear approximation to the Bessel function as the parameter
α0 = F0/ω2 is small in a weak IR field (see Appendix of [31] for derivation).
In (8), θk is the angle between the photoelectron emission direction k̂ and the
electric field vector of the linearly polarized light. By fitting the calculated angu-
lar dependence of the A and B parameters with the SFA expression (9) we can
obtain the two sets of the angular anisotropy parameters βSB

A and βSB
B and com-

pare them with the values calculated in the random phase approximation with
exchange (RPAE), the latter including inter-shell correlation and exchange of the
photoelectron with the remaining ionic core. These effects are not included in
the single active electron TDSE model. At the same time, we derive the angular
dependence from the odd high harmonic (HH) peaks by fitting angular variation
of their amplitude with 1+βHHP2(cos θk). Thus, for each target atom, three sets
of β parameters are extracted and analyzed over a wide photon energy range.

By using (8), the C parameter is converted to the atomic time delay

τa = C/(2ω) = τW + τcc , (10)

which contains the two distinct components [32]. Here τW is the Wigner-like
time delay associated with the XUV absorption and τcc is a correction due to
the continuum–continuum (CC) transitions in the IR field. The latter term, τcc,
can also be understood as a coupling of the long-range Coulomb ionic potential
and the laser field in the context of streaking [33,34].

Numerical Results In Fig. 1, we display the angular anisotropy β parameters
for the Ne 2p (left), Ar 3p (center), and Xe 4d (right) extracted from the TDSE
calculations. The βHH parameters extracted from the angular dependence of
the high harmonic peaks are plotted along with the βSB parameters extracted
from the angular variation of the RABBITT A and B parameters in (8). The
RPAE calculation is shown with the solid line. This calculation is known to
reproduce accurately the experimental β parameters across the studied photon
energy range [35].

We see that the harmonics and sidebands TDSE calculations of β parameters
are consistent between each other and are fairly close to the XUV-only RPAE
calculation. In Ne 2p and Ar 3p, they are close to the experimental values. In the
case of Xe 4d, the experimental data are somewhat off due to the 4d/4p inter-
shell correlation which is not included in the present calculation. Agreement with
experiment can be significantly improved in a fully relativistic RRPA calculation
with inclusion of all interacting subshells [39].
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Fig. 1. Angular anisotropy β parameters for Ne 2p (left), Ar 3p (center), and Xe 4d
(right) extracted from the TDSE calculations with the localized Hartree–Fock potential
(LHF). The βHH parameters extracted from the angular dependence of the high har-
monic peaks are plotted with (red) filled circles. Same parameters βSB extracted from
the angular variation of the RABBITT A and B coefficients in (8) are plotted with
(orange) triangles and (blue) asterisks, respectively. The RPAE calculation is shown
with the solid line. The experiment [36] for Ne, [37] for Ar, and [38] for Xe are given
by points with error bars (where available)
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Fig. 2. Time delay in the polarization axis direction for Ne 2p (left), Ar 3p (center), and
Xe 4d (right). The atomic time delay τa from the TDSE calculation (red filled circles)
is compared with the Wigner time delay (orange triangle) from the RPAE calculation.
The CC correction τCC is shown with the thin dotted line, whereas the sum τW + τCC

is displayed with the (blue) dotted line. On the right panel, the TDSE calculation of
the atomic time delay τa for 4d shell of the encapsulated Xe@C60 is shown with the
open purple circles

The time delay in the polarization axis direction is shown in Fig. 2 for the
Ne 2p (left), Ar 3p (center), and Xe 4d (right). We compare the atomic time
delay τa extracted from the TDSE calculation with the Wigner time delay τW
from the RPAE calculation. The hydrogenic CC correction τCC, which is shown
separately, is then added to the Wigner time delay. This correction, as a function
of the photoelectron energy, is represented by an analytic expression

τCC(E) = NE−3/2[a log(E) + b], (11)

where the coefficients N , a, and b are found from fitting the regularized
continuum–continuum delay shown in Fig. 7 of [5]. We see that except for the
near-threshold region where the photoelectron energy is very small and where
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Fig. 3. Angular variation of the atomic time delay Δτa = τa(θk) − τa(0) with the
photoelectron emission direction for various side bands. Left: Ne 2p, center: Ar 3p, and
right: Xe 4d. In the case of Ar 3p, an angular variation of time delay for SB32 from
[43] is shown for comparison

the regularization of τCC may not be applicable, the identity τa � τW + τcc

holds well for Ne 2p but less so for Ar 3p. In the case of Xe 4d (right panel), we
also show the atomic time delay τa from the TDSE calculation on the encap-
sulated Xe@C60 atom. This calculation shows multiple confinement resonances
which are particularly prominent when the photoelectron de Broglie wavelength
is comparable with the size of the cage [40,41].

Angular dependence of the atomic time delay τa(θk) as a function of the
escape angle is shown in Fig. 3 for Ne 2p (left), Ar 3p (center), and Xe 4d (right).
This angular dependence is weakest in Ne where it is only prominent at large
emission angles relative to the polarization axis of light. This is so because the
2p → Ed photoemission channel is strongly dominant over 2p → Es due to the
Fano propensity rule [42]. However, at the magic angle close to 54◦, the spherical
harmonic Y20 which determines the angular dependence of the stronger channel
has a kinematic node and a normally weaker channel becomes competitive. This
rings the angular dependence of the time delay shown in the left panel of Fig. 1.
In other atoms, the competitions of the two major photoemission channels are
strong because of a Cooper minimum (Ar 3p) or a centrifugal barrier (Xe 4d).
Hence, the angular dependence of the time delay is considerably stronger.

Because of a very fine energy resolution, the spin–orbit split components of
the valence shells of heavier noble gas atoms, Kr and Xe, could be resolved in
a recent RABBITT measurement [7]. When the accessible photon energy range
was extended to 90 eV, a similar measurement could be performed on the 4d
subshell of Xe [21]. To reproduce these measurements within the present TDSE
model, the one-electron potential in (19) was adjusted to obtain the experimen-
tal threshold energies of the corresponding spin–orbit split bound states. The
corresponding TDSE results are compared with the experiment in Fig. 4. On the
left panel, we make a comparison for the atomic time delay difference τ

3/2
a −τ

1/2
a

of the 5p subshell of Xe. In addition to the TDSE results, we display the rela-
tivistic RRPA result amended by the CC correction [44]. On the right panel, a
similar comparison is made for the atomic time delay difference τ

5/2
a − τ

4/2
a of

the 4d subshell. The shown RRPA + CC result is from [39].
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Fig. 4. The atomic time delay difference τ
3/2
a − τ

1/2
a for the 5p subshell (left) and

τ
5/2
a − τ

3/2
a for the 4d subshell of Xe. The TDSE results are visualized with the filled

red circles. The RRPA calculations amended by the CC correction for 5p [44] and 4d
[39] are shown with the solid blue line. The experimental data for the 5p [7] and 4d
[21] subshells are shown with error bars

2.2 Molecular RABBITT Simulations

Computational Technique Our molecular RABBITT simulations [45,46] are
based on the TDSE solution in an expanding coordinate system [47]. This
method is termed time-dependent coordinate scaling (TDCS). In this method,
the following variable transformation is made:

r = a(t)ξ. (12)

Here a(t) is a scaling factor with an asymptotically linear time dependence
a(t → ∞) = ȧ∞t and ξ is a coordinate vector. Such a transformation makes
the coordinate frame to expand along with the wave packet. In addition, the
following transformation is applied to the wave function:

Ψ(a(t)ξ, t) =
1

[a(t)]3/2
exp

(
i

2
a(t)ȧ(t)ξ2

)
ψ(ξ, t). (13)

Such a transformation removes a rapidly oscillating phase factor from the
wave function in the asymptotic region [47]. Thus, transformed wave function
satisfies the equation

i
∂ψ(ξ, t)

∂t
=

[
p̂ 2

ξ

2[a(t)]2
− A(t)p̂ξ

a(t)
+ U [a(t)ξ]

]
ψ(ξ, t) , (14)

where p̂ξ = −i∇ξ = −i
(

∂
∂ξx

, ∂
∂ξy

, ∂
∂ξz

)
. We note that if the spectrum of the

operator p̂ 2
ξ is upper limited, which is the case for any numerical approximation

of a differential operator, then the first term in the RHS of (14) tends to zero
as [a(t)]−2 for t → ∞ . In the meantime, the potential term with a long-range
Coulomb asymptotic U(r → ∞) ∼ 1/r is transformed to U [a(t)ξ] ∼ Z/a(t)ξ.
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This means that both the Coulomb term and the vector potential term are
decreasing in time as 1/a(t). Therefore, when solving (14), we can increase the
time propagation step Δt = a(t)Δt0 which accelerates the solution quite consid-
erably [47].

For complex molecules, we employ the density functional theory (DFT) with
the self-interaction correction (SIC) [48]. This correction is necessary to restore
the Coulomb asymptotics of the photoelectron interaction with the residual ion
which is essential for time delay calculations. The density functional with the
SIC [48] contains the Hartree EH{ρ} and the exchange-correlation EXC{ρ↑, ρ↓}
components:

ESIC = EH{ρ} + EXC{ρ↑, ρ↓} − [EH{ρi} + EXC{ρi, 0}], (15)

where the electron density ρ(r) =
∑Ne

i=1 ρi(r) is the sum of the particle densities
of the i-th electron orbital ρi(r) = |ϕi(r)|2. The exchange-correlation functional
is expressed in the local density approximation (LDA)

EXC{ρ↑, ρ↓} =
∫

[ρ↑(r) + ρ↓(r)]εXC[ρ↑(r), ρ↓(r)]dr, (16)

where εXC[ρ↑(r), ρ↓(r)] is the exchange-correlation energy per electron. The effec-
tive potential acting upon an i-th electron by the rest of the many-electron
ensemble is expressed as a functional derivative

ui(r) =
δESIC

δρi(r)
. (17)

The Kohn–Sham effective potential is the sum of the nuclear and electron
components:

U(r) = unucl(r) + ui(r). (18)

The SIC can be applied to any density functional. In the present application,
we used two different correlation-exchange functionals: the one proposed in [49]
(GL76-SIC) and a simpler pure exchange functional (X-SIC).

Numerical Results The energy and angular variation of the time delay in
H+

2 are displayed on the left and right panels of Fig. 5, respectively. Both these
dependencies are very different from that of atomic H and He. The energy
variation of τa with Ee for H+

2 is non-monotonous. The angular dependence
of H+

2 displays an additional strong variation in the range of emission angles
θ = 30◦–50◦. To visualize clearly this molecular effect, we make a comparison of
the angular-dependent time delay in H+

2 with the spherically symmetric He+ ion.
To account for different ionization potentials, we carried out the He+ calcula-
tion at the central frequency ωXUV = 43ω. It is clearly seen that the atomic and
molecular ions display the angular-dependent time delay which differs consider-
ably not only by additional strong angular variation but also the magnitude of
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Fig. 5. Left: The time delay τa for H+
2 as a function of the photoelectron ejection energy

Ee at a fixed ejection angle θ = 0. The SC/CCLC results (green dotted line) and dots
for He+ (red squares) are also shown for comparison. The corresponding SB indices
are marked. Right: The angular variation of the time delay Δτa = τa(Ee, θ)− τa(Ee, 0)
(black solid line) and Wigner’s time delay ΔτW = τW (Ee, θ)− τW (Ee, 0) (green dotted
line) of H+

2 for several fixed photoelectron energies Ee. The results for He+ for SB with
close energies are also shown (red dashed line)

the sharp drop of the time delay near the 90◦ emission angle. We note that the
asymptotic field of the ion remainder is the same in both cases. Hence, should
be the same the CC term of the atomic time delay (10). Therefore, the difference
of the atomic time delay in the H+

2 and He+ ions should be attributed largely to
the Wigner component τW of the time delay.

In Fig. 6, we display the atomic time delay of H2 calculated by the TDCS
method. Every energy point on the graph corresponds to a given SB. The error
bars indicate the accuracy of the cosine fit to (7). For comparison, another
calculation is shown in which the Wigner time delay is calculated by the prolate
spheroidal exterior complex scaling (PSECS) [50] and the CLC correction is
introduced analytically [51]. The PSECS is an ab initio technique and it returns
the exact Wigner time delay for diatomic molecules.

Fig. 6. Atomic time delay of H2 as a function of the photoelectron energy Ee for emis-
sion in the polarization direction. The molecular axis is aligned along (left) and per-
pendicular (right) to the polarization direction
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The Wigner time delay was also estimated by a classical approximation to
CLC (CCLC) derived in [51]. The TDCS and PSECS + CCLC results agree
very well close to the threshold and are qualitatively similar at large excess
energies. In the parallel molecular orientation, both set of calculations display
a peak in the atomic time delay. However, in the TDCS calculation this peak
is shifted by 7 eV toward lower photoelectron energies (Ee = 35 eV in TDCS
versus 42 eV in PSECS + CCLC). Such a large difference can be explained by
poor performance of the DFT for such few-electron systems like H2 . We note
that the peak displacement by 7 eV far exceeds an error of 1 eV in the ionization
potential. This indicates that such a dynamic quantity as the atomic time delay
is much more sensitive to inter-electron correlation than the static ionization
potential.

On the right panel of Fig. 7, we display the time delay difference between the
3a1 and 1b1 orbitals of the H2O molecule (visualized on the left panel) at the same
photon energy. It may seem surprising that the time delay difference is nearly
vanishing in the whole studied energy range. This, however, may be explained
by the fact that the randomly oriented water molecule may look like the neon
atom and these two states in Ne differ only by the nodal plane orientation. In the
same figure, we plot the experimental results [17] which show a sign variation of
the time delay difference. The frozen-core Hartree–Fock (FCHF) calculation by
the same authors [17,52] is also overplotted. Neither calculation reproduces the
experimental results within the stated error bars.

Fig. 7. Time delay difference between the 3a1 and 1b1 orbitals in the H2O molecule
(visualized on the left panel) as a function of the photon energy. The filled (red)
circles—TDCS calculation, the (green) solid line—the FCHF calculation [17,52], the
filled squares with error bars—experiment [17]
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3 Tunneling Time and Attoclock

Measuring an offset angle of the peak photoelectron momentum distribution
in the polarization plane of a close-to-circularly polarized laser field has been
used to determine the tunneling time which the photoelectron spends under the
barrier [3,53–55]. Once the photoelectron enters the tunnel at the peak value of
the electric field, the most probable detection direction will be aligned with the
vector potential at the instant of tunneling. This direction is tilted by 90◦ relative
to the electric field at this instant. A measurable angular offset relative to this
axis can be converted to the time the photoelectron spends under the barrier
with the conversion rate of 7.4 attoseconds (1 as = 10−18 s) per 1◦ at 800 nm.
Such a measurement is termed colloquially the attoclock. A similar reading can
be obtained from an attoclock driven by a very short circularly polarized laser
pulse [9,56–59].

The attoclock measurements were aimed to resolve the controversy of a finite
tunneling time which has many decades of history [60]. This controversy is yet
to be resolved with many conflicting reports of a finite time [6,61] as opposite to
zero tunneling time [8,9,56,59]. A promising pathway to resolving this contro-
versy is to examine an often neglected aspect of the attoclock measurement, the
offset angle induced by the Coulomb field of the ion remainder. In theoretical
calculations based on a numerical solution of the time-dependent Schrödinger
equation (TDSE) [62–64], the Coulombic and tunneling components of the off-
set angle are inseparable. The Coulomb field contribution can be switched off
however by replacing the atomic potential with the short-range Yukawa poten-
tial of the same binding strength. This procedure effectively eliminates the offset
angle thus suggesting zero tunneling time [8,9]. In various classical simulations
(the TIPIS model [65], backpropagation [56,57] or semiclassical simulations (the
ARM model [9]), the Coulomb field is separable and its effect can be unambigu-
ously determined.

3.1 Atomic Attoclock Simulations

Computational Technique We solve numerically the TDSE

i∂Ψ(r)/∂t =
[
Ĥatom + Ĥint(t)

]
Ψ(r), (19)

where Ĥatom describes the atomic target in the absence of the applied field and
the interaction Hamiltonian is written in the velocity gage

Ĥint(t) = A(t) · p̂, E(t) = −∂A/∂t . (20)

Here the vector potential of the driving pulse is

A(t) = −A0f(t)[cos(ωt)êx + sin(ωt)êy] (21)

with the envelope function f(t) = cos4(ωt/4) for −2π/ω < t < 2π/ω and zero
elsewhere. The (peak) field intensity is given by I = 2(ωA0)2 and the frequency
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Fig. 8. Left: Photoelectron momentum distribution in the polarization plane at the
driving field intensity I = 8.6×1013 W/cm2 on hydrogen. The offset angle θ relative to
the vector potential direction at the entrance of tunnel is marked. The coloration ranges
from zero (red) to the maximum amplitude (black) linearly. Right: The attoclock offset
angle θA as a function of the field intensity I from the present TDSE calculation (red
filled circles), the H2 set of [9] (blue asterisks), and the KR and KR′ models (filled and
empty triangles). The present TDSE results are fitted with the I−n dependence with
n = 0.41

ω is taken to correspond to 800 nm radiation. At the tunneling entry t = 0,
the electric field E0 reaches its maximum in the êy direction whereas the vector
potential A0 is largest in the −êx direction. The rotating electric field of the
driving pulse causes the photoelectron to make a single turn by 90◦ before it
arrives to the detector in the êx direction with momentum A0. Photoelectron
scattering in the Coulomb field adds an offset angle θA relative to this direction
(left panel of Fig. 8).

Solution of the TDSE (19) is found using the iSURF method implemented in
[29]. A typical calculation takes around 140 CPU hours on a high-performance,
distributed-memory cluster. The solution of the TDSE is projected on the scat-
tering states of the target atom thus forming the photoelectron momentum dis-
tribution. The 2D momentum distribution in the polarization plane k2P (kx, ky)
is shown on the left panel of Fig. 8. This distribution is integrated radially to
obtain the angular distribution P (θ) =

∫
dk k2P (kx, ky). It is then fitted with a

Gaussian to determine the peak position and this value assigned to the attoclock
offset angle θA. The symmetry of P (θ) relative to θA is carefully monitored and
serves as a test of the quality of the TDSE calculation.

Keldysh–Rutherford Model In a simplified classical model [66], the photo-
electron is tunnel ionized and then scatters elastically on the ion remainder. We
examine cases where the applied field is relatively weak and the pulse is short
such that the actual trajectory of the field-driven photoelectron is similar to
that of an elastically scattered particle. This allows us to take an estimate of the
offset angle from the classical scattering formula [67]



Time-Resolved Theory of Atomic and Molecular Photoionization . . . 13

θ = 2

∞∫

r0

(ρ/r2) dr

[1 − (ρ/r)2 − (2V/mv2∞)]1/2
− π. (22)

Here ρ is the impact parameter, v∞ is the velocity of the projectile at the
source and the detector, and the point of the closest approach r0 is the largest
positive root of the denominator. In the case of the attractive Coulomb potential
V (r) = −Z/r, (22) takes the form of the Rutherford formula [67]:

tan
θ

2
=

1
v2∞

Z

ρ
. (23)

In a more general case of a screened Coulomb potential V (r) =
−Z/r exp(−r/λ), the offset angle is given by a modified expression [68] which
is, up to a typically small numerical correction (see 13 of [68]),

tan
θ

2
=

1
v2∞

Z

ρ
exp(−1/z0) . (24)

Here z0 is the root of y(z) = 1−(ρ/λ)2z2−(d/λ)z exp(−1/z) and d = 2Z/v∞
is the so-called collision diameter. If the last term in the right-hand side of y(z)
can be neglected, (24) acquires a simple screening exponent exp(−ρ/λ) (Fig. 9).

Fig. 9. Left: classical scattering trajectory of a particle in a central attractive potential.
The scattering angle θ is defined by the impact parameter ρ and the asymptotic veloc-
ity v∞. The tunnel ionized electron enters this trajectory at the point of the closest
approach r0 driven by the peak electric field E0 and arriving to the detector at the
angle θA relative to the vector potential A0. Right: The Coulomb potential is tipped
by the light field. A finite width potential barrier is created, through which the electron
wave packet leaks out. Ip refers to the binding energy of the electron in an unperturbed
atomic system. See text for further symbol definitions
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Equations (23) and (24) can be readily applied to the case of tunneling ion-
ization. First, we note that photoionization can be considered as half-scattering
and the offset angle should be taken as one-half of the Rutherford or Yukawa
scattering angles. Second, the point of the closest approach r0 should be taken
as the tunnel exit position which, for the Coulomb potential, is the largest root
of the equation

Z/r + E0r = Ip , r1,2 = b/2 ±
√

b2/4 − ab . (25)

Here Ip is the ionization potential, E0 is the peak value of the electric field,
b = Ip/E0, and a = Z/Ip. In the weak field limit, r1 = b � r2 = a � 1, where a
is the characteristic span of the atomic orbital. The onset of the over-the-barrier
ionization (OBI) corresponds to r1 = r2 and E0 = I2p/(4Z) (right panel of Fig. 1).
We note that the b parameter is used to evaluate the Keldysh tunneling time
τ = b/vat with vat =

√
2Ip which, in turn, defines the adiabaticity parameter

γ = ωτ [69]. With these assumptions, the attoclock offset angle in the case of
the pure Coulomb potential takes the form

θA =
1
2
θ � ω2

E2
0

Z

ρ
=

ω2

E0

Z

Ip
. (26)

The signature of this Keldysh–Rutherford (KR) formula is the field intensity
dependence of the offset angle θA ∝ E−1

0 ∝ I−1/2 . This dependence can be
understood as a result of competition of the two terms in (23): the kinetic energy
term v2

∞/2 and the potential energy term Z/ρ. As the field intensity grows, the
kinetic energy grows linearly with I. Hence, this term alone would result in
the I−1 dependence of the offset angle. This is partially compensated by the
potential energy term as the width of the barrier decreases as I−1/2. Hence, the
resulting offset angle also decreases as I−1/2. The recent attoclock measurement
on the hydrogen atom [8] confirmed the I−1/2 dependence experimentally.

Resulting values of the offset angle θA for hydrogen at various field intensi-
ties are plotted on the right panel of Fig. 8. We find the present set of TDSE
calculations to be hardly distinguishable from the set labeled H2 of TDSE calcu-
lations reported in [9]. This is contrasted with the two KR and KR′ estimates.
For the former, we simply plot (26), whereas in the latter we do not make the
small angle approximation for the tangent function. Accordingly, both estimates
converge together with increasing field intensity. The KR scales at all intensi-
ties as I−0.5 by construction. Fitting the KR′ in the low-intensity range yields
I−0.44. The TDSE results display a similar dependency of I−0.41 scaling for the
same region but then flattens and deviates from both the KR and KR′. This is
understandable as the KR model is expected to work for weak fields only when
the field-driven trajectory is close to that involved in field-free scattering.
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4 Conclusions and Further Directions

We demonstrated how an accurate numerical solution of the field-driven time-
dependent Schrödinger equation can be used to gain valuable information on
the attosecond time-resolved dynamics of atomic and molecular photoionization.
This information is complementary to traditional photoemission studies with
continuous synchrotron fields and brings one step closer to practical realization of
the concept of a complete photoionization experiment. We focused our attention
on the two key observables of attosecond chronoscopy: the Wigner time delay
and the tunneling time. The Wigner time delay is unambiguously established in
atomic [1] and molecular [17] photoionization and serves as a useful tool to study
both one-electron potentials and collective many-electron effects. The tunneling
time is still a subject of a considerable debate and controversy [9]. Our numerical
simulation supported by the classical Keldysh–Rutherford model point to zero
tunneling time.

In the future, the present single active electron model will be extended to
include many-electron correlations and relativistic effects.
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Abstract. Electron–molecule resonances, which are short-lived excited states
of molecular negative ions, have attracted increasing attention in recent times
due to their complex dynamics as well as their role in wide variety of practical
applications. Formation and decay of the resonance is the most efficient way of
converting kinetic energy into chemical energy in a medium through the
creation of vibrationally or electronically excited states, radicals and negative
ions—all of which are chemically very active. It has been found that the energy
specificity of this process allows chemical control by bond selective fragmen-
tation of organic molecules. Though diverse experimental techniques have been
used to study the resonances over the last few decades, recent advances have
provided several new insights into the dynamics of these species. This review
would provide a short overview of the role of these resonances in various areas
of science and technology followed by some of the significant findings in recent
times.

1 Introduction

1.1 Process, Dynamics, and Features

“Electron–molecule resonances” or negative ion resonances (NIR) in molecules are
excited states of molecular negative ions. All the atoms and molecules are characterized
with respect to their electron affinity which can be positive or negative. Those with
positive electron affinity could form stable negative ions. These species stay as such
until and unless interacted upon by radiation or other particles. It may be noted that
even without positive electron affinity, atoms and molecules may have negative ion
resonant states. The negative ions and their excited states are important species in any
environment where free electrons are available, as in atmospheric or industrial plasmas,
interstellar medium and liquid or solid medium subjected to high-energy radiation. Due
to their importance, these species have been investigated for more than half a century
[1–3]. Because of its importance in several areas of science and technology, the interest
in this area is still thriving. Recent developments in new instrumentation and a number
of important results have provided a new impetus to the study of NIRs in molecules.
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A very recent review gives a reasonable account of this area in the last two decades [4].
In this article, we try to bring out some of the recent exciting developments in this area.

Depending on its energy, a free electron on its interaction with a molecule could
impart its kinetic energy to the molecule and at the same time get captured forming the
NIR. This is a discrete state lying in the continuum of the free electron + molecule
system, and thus have finite lifetime against auto-detachment, which is loss of extra
electron. This lifetime may vary from femtosecond to microseconds depending on the
molecule and the given resonance. If the lifetime against auto-detachment is sufficiently
large (of the order of vibrational motion time or larger), this electron–molecule colli-
sion complex could also dissociate to give a stable negative ion and one or more neutral
fragments, depending on the nature of the molecule and its potential energy surface.
The process starting from electron attachment and ending in the formation of a frag-
ment negative ion is called dissociative electron attachment (DEA). The schematic of
these processes is shown in Fig. 1. Here an electron of energy E0 interacts with a
molecule AB and gets captured to form the NIR. This state decays continuously
releasing the extra electron through the process of auto-detachment. The electron thus
released need not have the full energy of the free electron that was captured, as the
neutral molecule may be left behind in excited rotational, vibrational, and/or electronic
states. The ejected electron can be observed in a conventional scattered electron
spectroscopy and could be used to obtain information on the resonance that was created
as well as the state in which the neutral molecule was left behind.

The decay of the resonance leading to dissociation giving neutral and negative ion
fragments (in this case, A and B−) could be studied by negative ion mass spectrometry.
A third channel for the decay of the resonance has been recently identified in poly-
atomic molecules in which the resonance decays producing non-radical neutral frag-
ments by breaking more than one bonds (not a double bond) and a free electron. This
has been called bond breaking by catalytic electron (BBCE) [5, 6]. The final products
being neutral the process is difficult to be identified in general except by optical

Fig. 1. Schematic of the formation and decay modes of NIR in molecules
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spectroscopy or using other secondary probes. In this article, we will be mostly dis-
cussing the DEA channel and how it is used to study the electron–molecule resonances,
but include a discussion on the recent identification of BBCE in an experiment.

The schematic of the decay of the resonance in terms of molecular potential energy
curves for a diatomic system is shown in Fig. 2. Here the neutral molecule AB in its
ground state and a generic repulsive state of the resonance AB−* are shown. The width
of the negative ion curve shows its finite lifetime against auto-detachment. Note that the
electron affinity of B makes the energy of the NIR lower than that of the neutral state
for inter-nuclear distance greater than Rc. The vertical dashed lines bounding the v = 0
state of the neutral (where most of the molecules would be energetically at room
temperature) depict that the electron attachment process is Franck–Condon-type tran-
sition. The thick arrows marked a and d indicate auto-detachment and dissociation,
respectively. The thin vertical arrows starting from AB−* and ending on AB show how
the molecule may be formed in vibrationally excited state as the electron is released.
This auto-detachment decay can happen only till Rc, beyond which energetically it is
disallowed.

The absolute cross sections for DEA, rDEA can be written as [7] a product of the
electron attachment probability, rc and the survival probability p as

rDEA eð Þ ¼ rc eð Þ � p eð Þ

and p(e) is given as

p eð Þ ¼ exp �
ZRc

Ee

Ca Rð Þ
�ht Rð ÞdR

0
@

1
A ffi exp � sd

sa

� �

where Гa the auto-detachment width, m(R) the velocity of separation of A and B−, sa the
auto-detachment lifetime, and sd the dissociation time. These equations show that the

Fig. 2. Schematic of the DEA process
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DEA cross sections are very sensitive to Re, the inter-nuclear distance at which the
electron attachment took place. Thus, initial vibrational excitation of the neutral
molecule may lead to exponential change in the DEA cross section [8, 9]. In general,
the cross section increases exponentially with decrease in dissociation time and
increase in auto-detachment time. Note that depending on the isotopic composition of
the molecule, there will be change in the dissociation time, thus leading to considerable
isotope effect in the DEA cross section [10].

1.2 Applications

As described above, the electron–molecule resonance is a very efficient doorway in
converting the electron kinetic energy into chemical energy by creating highly reactive
species like electronically and vibrationally excited molecules, radicals, and negative
ions. In a plasma environment, the free electrons are always present and they contribute
to the plasma chemistry dominantly through the resonant attachment. Interaction of
energetic photons or other particles in a condensed medium produces free electrons in
an exponential manner through an ionization cascade till the entire energy is dissipated
into the medium. While the ionization process creates positive ions and radicals, the
cascade ionization process eventually creates low-energy electrons far more in numbers
which then participate in the formation of NIRs and consequent production of reactive
species. In many of the reactions induced through electron–molecule resonances, the
role of electrons is not only in providing the necessary energy to overcome the barrier
for a reaction but also in creating a pathway which may not have been possible
otherwise. An excellent example of this is the possible formation of stable N4

−, which
has been recently identified in theoretical calculations [11].

There are several gaseous and condensed media in which the electron-induced
chemistry plays a major role. One such medium is the industrial plasmas used for
lighting, semiconductor etching, plasma-assisted chemical vapor deposition, and gas
lasers [12]. The fluorocarbon plasmas used in the semiconductor industry have been in
limelight due to the global warming potential of these molecules and consequent efforts
to replace them with other molecules [4]. These and the new techniques being
developed for nanolithography using focused electron beam and ion beam have
brought the focus on electron interaction on several new molecules. The finding that
low-energy electrons play a significant role in DNA damage [13] has resulted in
increased interest in using DEA properties of molecules in radiation therapy. Single-
molecule engineering using scanning tunneling microscopes (STM) is another area in
which NIRs are found to play a major role [14]. It is also realized that the electron-
induced processes are the inevitable links in the creation of molecules, including
biological molecules in interstellar medium [15].

2 Theory

The resonances observed in electron–molecule collisions have been modeled using
scattering theory with the attached electron getting captured in a state that can be
described by a complex energy value—the real part describing the energy level and the
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imaginary part describing the lifetime of the resonance. Several approaches like the
Schwinger multichannel method [16, 17], discrete momentum representation method
[18], and R-matrix method [19] have been employed to determine and describe these
resonance states. While these methods predict the symmetry, energy, and lifetime of the
resonance they fall short in describing the DEA process as it involves treating the
nuclear degrees of freedom and its coupling with the electronic one. To describe the
DEA process, one needs to obtain the potential energy and the lifetime as a function of
the nuclear coordinates of the excited negative ion states in addition to their variation as
a function of geometry. The additional complication of the description of the extra
electron, which would be done using defused orbitals, makes these calculations
extremely challenging. Very low-energy electron attachment resulting in vibrational
Feshbach resonance and subsequent dissociation has been described using R-matrix
theories [20]. For higher energies, for diatomic molecules, the theoretical description
has been achieved with a great degree of success [21, 22]. However, the same cannot
be said about the polyatomic molecules. The complications of several nuclear degrees
of freedom and their coupling with the electronic degrees of freedom have imposed
severe constraints on the success of these calculations. There have been several
attempts to address this issue by incorporating various approximations.

One such approximation is in describing the dissociation of the molecule as being
confined to nuclear motion at the bond undergoing dissociation, while all other bonds
are kept fixed. Such fixed nuclei approximation although reduces the computational
efforts, it does not capture the very essence of the nuclear dynamics under the influence
of the extra electron. In an advancement of this approach, Haxton et al. [23] have
provided the possibility of incorporating the motion of all atoms in the molecule as
exemplified in the detailed calculations of the DEA process in water molecule. For this
purpose, they carried out calculation of the potential energy surface for the anion state
using large-scale configuration interaction which gives the energy of the anion state.
They also used the complex Kohn variational calculations to determine the width of the
resonances. The idea behind these calculations being that if the resonance width is
narrow in the range of nuclear geometries of the molecule, then the standard CI
calculations can be carried out for the real part of the potential energy surfaces. For the
corresponding imaginary part, the fixed nuclei complex Kohn variational method is
used for limited geometries of the molecule, particularly in the Frank–Condon region
with the neutral target potential energy surface. Knowing the potential energy surfaces
of the anion and neutral ground state, one can describe the full dynamics of the DEA
process using the local complex potential approximation. The DEA cross sections
obtained using this method showed limited success [24]. The absolute cross sections
for the H− channel were consistent with the experimentally observed values but those
for the O− channel were found to be an order of magnitude lower than the measured
values. One of the limitations of this approach is the local nature of the theory where
the width of the resonance depends only on the geometry of the molecule. The electron
energy dependence of the width cannot be described in this model.

In another set of efforts toward understanding the structure of these anion resonance
states, the method of analytic continuation is used to obtain the resonance positions and
widths [25]. One of the ways of achieving this analytic continuation is using the method
of complex scaling [26]. A second approach is the addition of an optimized absorbing
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potential which separates the inner bound region of the anion from the outer part where
wave function of the resonance does not vanish due to continuum states. The complex
potential is chosen such that it does not affect the resonant state in the inner region but
damps the asymptotically increasing continuum wave function in the outer region. This
makes it bound in the inner region and insensitive to the artificially added complex
potential. By suitably choosing a real and imaginary absorbing potential called contin-
uum remover complex absorbing potential (CR-CAP), the problem of obtaining the
resonance energies becomes the problem of solving the bound states in the finite inner
region [27, 28]. After implementing such CR-CAP, the problem is handled with well-
established quantum chemistry methods. In this way, not only the resonance energies can
be derived for polyatomic molecules with fairly good accuracy, one can also calculate the
molecular orbitals that are possibly occupied by the captured electron. This also helps in
determining the possible dissociation paths for the given resonance as one can also
calculate the relevant potential energy surfaces. The understanding of the nature of the
resonance state in acetone and acetaldehyde that result in the formation of O− from the
carbonyl group (shown in Fig. 3) is an example of the usefulness of this technique [29].

The essence of molecular dynamics of the excited anion resonances is captured in
the absolute cross sections and kinetic energy and angular distributions of the fragment
anions produced in the DEA process. The potential energy surfaces obtained from the
ab initio calculations for various resonances can give a fair amount of information on
both these aspects. In the case of H2O, apart from the absolute cross sections for the
DEA channels, Haxton et al. [30] determined the expected angular distribution of the
fragment anions. They calculated the relative differential cross section for the incoming
electron to be captured for various molecular orientations with respect to the electron–
momentum vector [31]. Under axial recoil approximation, these relative differential
cross sections, also known as entrance channel amplitudes (shown in Fig. 4 for water),
could be converted to the angular distribution of the fragment anion with respect to the
electron beam axis after suitable molecular frame to laboratory frame transformation.

Fig. 3. Occupied molecular orbitals on electron attachment to a acetone at 8.2 eV and
b acetaldehyde at about 9.5 eV. The resulting resonance leads to the formation of the O− ion in
each case. Here acetone undergoes a many body breakup, whereas acetaldehyde shows two body
breakup (reprinted with permission from [29])
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Usually, the experimentally obtained angular distributions were fitted with the
functions obtained using the formalism presented by O’Malley and Taylor [32] for
diatomic molecules and further adopted for the polyatomic molecules by Azria et al.
[33]. Here the axial recoil approximation is understood to be essential to fit the angular
distribution. The angular distribution function obtained this way essentially gives the
same distribution that is deduced from the entrance channel amplitude method. For
example, the angular distribution for the H− production obtained [34] for the maximum
kinetic energy ions from the A1 resonance in water can be seen matching with the
expected angular distribution using either method as shown in Figs. 4 and 5a, b.
However, for the ions with kinetic energies lower than that expected based on the
thermodynamics threshold have signature of the molecular dynamics on the NIR
potential energy surface as in Fig. 5c. This has been captured by carrying out the
classical trajectory calculations on the potential energy surface calculated earlier [31].

Fig. 4. Electron attachment probability calculated at the equilibrium geometry of the neutral
water molecule for the three resonances as a function of polar angles about the center of mass.
Dots denote positions of nuclei (Reprinted with permission from [31])

Fig. 5. Angular distribution obtained for H− ions obtained from water molecules by DEA at
a 8.5 eV and b 9 eV electron energy. The distributions shown are for the ions with kinetic energy
release of 4 eV. The dashed line shows fit with s + p wave contribution to the A1 ! A1 transition
and solid line shows the fit with s + p + d waves under axial recoil approximation. c Angular
distribution for DEA at 9.5 eV electron energy with 2 eV of kinetic energy release. The dot-
dashed line expected angular distribution obtained using classical trajectory calculations on the
potential energy surface calculated for anion state [31] (Reprinted with permission from [34])
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3 Experiments

As mentioned earlier, the very essence of these NIRs can be captured in the absolute
cross sections and kinetic energy and angular distributions of the fragment anions from
the dissociative electron attachment process. The absolute cross section provides a
glimpse into the intricacies of the coupling of transient negative ion states with the
auto-detachment continuum. The kinetic energy and angular distributions of the frag-
ment anions carry footprints of the dynamics that these states undergo. Conventionally,
mass spectrometers have been used to obtain the partial absolute cross sections for
various fragment anions produced. Particularly, quadrupole mass spectrometer based
setups have been used for obtaining relative cross sections with high mass resolution.
This is essential when the molecules undergo fragmentation that has multiple channels
available [35]. However, apart from the problem in dealing with H− ions and ions with
large kinetic energies, this method has not been able to provide absolute cross sections.
It has been found that even obtaining relative cross sections with this technique runs
into difficulties while dealing with ions produced with large kinetic energy. While the
quadrupole mass spectrometer allows good mass resolution, the collection and trans-
mission of all ions irrespective of their initial kinetic energies and angular distribution
is a major issue with them. Time of flight technique with a segmented flight tube
employing a pulsed electron beam and pulsed ion extraction was found to eliminate
these problems successfully [36]. One improvement upon this technique is the use of
momentum imaging of the ions ensuring complete collection and detection of the ions
[10]. In both these methods, relative flow technique has been used to determine the
absolute cross sections [37].

Earlier, the kinetic energy distributions of these ions were measured using ion
energy analyzers coupled to a mass spectrometer, which were rotated about the
interaction point in the crossed electron beam, molecular beam setup [38, 39]. Such
measurements carried out in the plane containing the electron beam would provide the
angle differential signal from the process. These methods were time-consuming and
also restricted to limited range of angles, in addition to having systematic errors. The
introduction of velocity map imaging (VMI) technique for measuring the momentum
distribution of the fragment anions in low-energy electron collision experiment [40] has
revolutionized the understanding of the DEA process. That this technique could cover
entire 360° turned out to be very significant advantage as it provides data at 0° and
180°, which are very sensitive from symmetry considerations and enable identifying
new resonances [41], distinguishing different overlapping resonances [42], and iden-
tifying new symmetry-based dynamics of the resonances [43, 44].

The basic idea behind the VMI technique [45] is to map the 3D Newton sphere in
momentum space of the fragment ions produced on a 2D position-sensitive detector in
such a way that the ions produced with a specific velocity are directed to fall at a given
point on the detector. In order to obtain the original 3D velocity distribution, one makes
the back transformation of the distribution obtained on the detector. The underlying
requirement for this is to have an axis of symmetry in the original 3D distribution to be
parallel to the detector plane. A variant of this technique, namely, velocity slice
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imaging (VSI) where a slice of the Newton sphere containing the symmetry axis
parallel to the detector plane is mapped on the 2D position-sensitive detector [46]. This
being a 2D-to-2D transformation, inversion of the measured data is not needed. While
these techniques were successfully used for photodissociation experiments with pulsed
lasers, employing them for low-energy electron collision needed several issues to be
resolved—like how does one ensure that the electric field in the interaction region used
for imaging does not affect the electron beam and how the huge secondary electron
background is eliminated while detecting the negative ions. Apart from pulsing the
electron beam and pulsing the imaging field in the interaction region, the bigger bot-
tleneck of the secondary electron problem was solved by the clever use of a magnetic
field [40]. A schematic of the velocity slice imaging is shown in Fig. 6. The success of
this new experiment led to the development of several such or similar machines across
the world [47–52] which have resulted in a spurt of important publications on the
dynamics of the DEA process. This new development in experimentation led by TIFR
has opened up a new window for studying the DEA process and is playing a major role
in reviving this area of physics. Several of the new results obtained using this technique
have been reviewed very recently [4].

Fig. 6. Schematic of the velocity slice imaging technique for low-energy electron collisions.
a SIMION modeling results for velocity focusing. The electrodes, equipotential surfaces, and the
ion trajectories are shown. b Electron beam direction (blue arrow) and the central section of the
Newton sphere. c Schematic of the trajectory of the Newton sphere. d Typical time of flight
spectrum. The region bounded by the two lines in the center corresponds to the central slice of
the Newton sphere. e Typical velocity slice image
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4 Some Significant Results

4.1 Functional Group Dependence and Chemical Control Using Bond
Selectivity

Chemical control has been the “holy grail” toward which a large number of different
approaches have been made as it allows one to channel a given reaction in a specific
way in order to increase the yield of a specific product and minimize the formation of
unwanted by-products. The obvious and numerous advantages this will bring to the
society have made it the ultimate goal in chemistry. A wide variety of approaches have
been made toward this, the most prominent being use of lasers due to their
monochromatic nature, high intensity in a very narrow spectral band, and, most
importantly, the high level of coherence. Among several ideas that have been put forth
and demonstrated, the most important one has been “coherent control” using fem-
tosecond lasers [53–55]. These and various other techniques demonstrated till now
involve a great deal of instrumentation and sophistication apart from the important
question of scalability to make an impact for real-life applications. This is the context in
which controlling chemical reactions using electrons becomes important.

Short reviews of chemical control using electrons have been given earlier [56, 57].
Electrons are ubiquitous and easily produced and their energy can be changed instan-
taneously and almost trivially by changing the potential on the accelerating electrode. As
is well known, the DEA process can break a molecule even when the electron energy is
less than the dissociation energy of the bond that is being broken. The extra energy that
the electron needed comes from the electron affinity of the fragment. This, along with
the different bond dissociation energies, leads to different threshold energies for different
DEA channels. This provides a natural avenue for bond selection which is solely based
on the dissociation threshold. One example of this is DEA to CS2 [36] where S

− alone is
produced below 4 eV, while all the possible fragment ions are produced above 4 eV.
This property is easily manifested in chlorofluoro compounds in which the C–F bond
dissociation energy is larger that of C–Cl bond dissociation and the electron affinity of
Cl is slightly larger than F. This allows Cl− to be formed at near-zero electron energies,
while F– is formed at electron energies above 2 eV [58, 59]. Such threshold energy
dependence has been highlighted by an innovative experiment for complete chemical
transformation of a molecular film of 1,2-C2F4Cl2 [60]. Another example of this is the
site-selective dissociation of DNA bases by slow electrons (of energy less than 3 eV) in
the H abstraction channel of the DEA process [61].

Around this time systematic measurements at TIFR, Mumbai [62, 63] on DEA to a
number of organic molecules and their isotopomers showed that C–H, O–H, and N–H
bonds in these molecules could be selectively broken, by controlling the electron
energy. An example of the C–H and O–H bond selectivity is the data from acetic acid
shown in Fig. 7. The H− formation from acetic acid (CH3COOH) shows three peaks at
6.6 eV, 8.5 eV, and 10 eV, respectively. In contrast, the H− from CH3COOD shows
only the 10 eV peak. At the same time, D− from CH3COOD shows peaks at 6.5 and
8.5 eV and considerably reduced intensity at 10 eV. This clearly shows that the DEA
process is being confined to either the C-site or the O-site depending on the electron
energy. The measurements on other carboxylic acids and alcohols showed similar
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behavior. On extending these measurements to amines, it was seen that such selectivity
exists for the N-site as well, clearly distinguishing it from that at the C-site [62, 63]. It
may be noted that in all these cases, the threshold energy needed to break any of the C–
H, O–H, and N–H bonds is below 4 eV and what is seen here is not a threshold energy
effect discussed above, where the selectivity is due to bond dissociation energy and the
electron affinity of the fragment anion. The TIFR measurements showed that one can
control the fragmentation in the energy range of 5 eV and above, which is well above
the energy needed to break the C–H, N–H, and O–H bonds. This was a qualitative
jump from the electron-based chemical control known till then. An analysis of the
fundamental basis for this control led to the discovery of the new phenomenon of
functional group dependence in the DEA process.

A comparison of the DEA data from the organic molecules in which the C–H, O–
H, and N–H bonds were selectively broken with that from the precursor molecules of
these bonds like CH4, H2O, and NH3 showed that the resonant electron attachment
property of these precursor molecules are retained in the respective sites in the organic
molecules (Fig. 8). That is, the electron attachment properties of methyl, hydroxyl, and
amine sites in organic molecules follow the pattern seen in methane, water, and
ammonia, respectively, and are universal in nature. Further analysis showed that these
observed properties arise from the formation of Feshbach resonances in which an
electron is removed from a nonbonding orbital and two electrons (including the cap-
tured one) are placed in an antibonding orbital. This leads to a localization and

Fig. 7. Relative intensities of H− and D− from CH3COOH and CH3COOD as a function of
electron energy. While H− from CH3COOH shows three peaks that from CH3COOD shows only
the peak at 10 eV and the first two peaks appear only in the D− signal (Adapted with permission
from [62])
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speeding up the dissociation process so that there is minimum intramolecular energy
redistribution (IVR), which has been historically a bane of chemical control using light.

This discovery of the functional group dependence in DEA provided a deeper and
more robust basis for electron-based chemical control than known till then. That the
bonds in organic molecules could be selectively cleaved based on the functional groups
also opened up the possibility of developing new analytical techniques as well as
greatly enhanced the potential of electron-based chemical control for industrial appli-
cations and in radiation therapy. This work has been one of the major milestones in the
recent renaissance of low-energy electron–molecule collisions.

4.2 DEA to Halo Compounds

DEA to halogen compounds is particularly important since these molecules are used in
dry etching of semiconductor chips. At the same time, these molecules are of concern
in the chemistry of upper atmosphere leading to ozone destruction and as greenhouse
gases. Consequently, DEA measurements on these molecules have attracted consid-
erable interest. Here we summarize the highlights of measurements on two of these
molecules using velocity slice imaging. The first one on CF3I comes out as an excellent
example of the contrast between photodissociation versus DEA and reveals how the

Fig. 8. Relative yield of H− from carboxylic acids and water. The vertical scale is relative
intensity and the horizontal scale is electron energy in eV (Adapted with permission from [63])
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dissociation product intensities are inverted by the presence of the extra electron [64].
The second one on CF4 shows the interplay of symmetry and dynamics in the DEA
process [43].

CF3I: Due to its short lifetime in the atmosphere and hence reduced global warming
potential as compared to tetrafluoromethane (CF4), trifluoroiodomethane (CF3I) is
being considered as a replacement for the former as a plasma etchant in semiconductor
industry. The relatively low lifetime of the molecule in the atmosphere is due to its
efficient destruction by photodissociation leading to CF3 radicals and iodine atoms in
2P3/2 and

2P1/2 states. It has been found that 84% of iodine atoms are produced in the
excited 2P1/2 state which lies at 0.94 eV above the ground state of 2P3/2 [65]. This
branching ratio is a direct result of the excitation probability of the molecule into the
3Q0 and 1Q1 states of the neutral on photoabsorption from where they dissociate
unhampered to the respective dissociation limits (Fig. 9). Thus, the photodissociation
of CF3I could be shown as

CF3Iþ hm ! CF3I 3Q0

� � ! CF3 þ I 2P1=2
� �

dominant channelð Þ
! CF3I 1Q1

� � ! CF3 þ I 2P3=2
� �

weak channelð Þ

DEA measurements on CF3I have shown the formation of I− (at near-zero energy)
and CF3

− (at 3.8 eV) [66]. The resonance leading to CF3
− at 3.8 eV is a core-excited

resonance that is associated with electronic excitation to the antibonding r*CF3-I LUMO
[66], which could result in a 2A1 or 2E state identical to the r ! r* and
n ! r* excitation of the A-band transition in the neutral. The transition of this type in
the neutral molecule on photoabsorption leads to the 3Q0 and

3Q1 states shown in Fig. 9.
In analogy with the photoexcitation, the negative ion resonant states, 2A1 and

2E leading
to the formation of CF3

− could be qualitatively represented in the figure by dashed lines.

Fig. 9. Schematic of the potential energy curves as a function of C–I distance of CF3I and CF3I
−

which are involved in photodissociation and DEA, respectively. In addition to the neutral ground
state, the 3Q0 and

1Q1 excited states of neutral molecule (solid lines) and the corresponding 2A1

and 2E core-excited negative ion states (dotted lines) are shown (Reproduced with permission
from [64])
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The momentum images of CF3
− obtained with electrons of energy around 3.8 eV

(Fig. 10) showed an inner blob and an outer ring [64]. The kinetic energy analysis of
the images proved that the outer ring corresponds to the production of the neutral
atomic iodine in the ground state (I 2P3/2) and the inner blob corresponds to the excited
I (2P1/2). By time-integrating VSI data corresponding to the inner and outer structures,
the total contributions of each of the two (inner and outer) Newton spheres could be
obtained which showed that 96–98% of the total CF3

− signal corresponds to the outer
ring—that is, I (2P3/2) channel. On fitting the angular distribution of the ions corre-
sponding to the outer ring, it was seen that the corresponding resonant state is definitely

Fig. 10. Velocity slice images (left) and the respective angular distributions (right) of CF3
− at

electron energies of 3.3 eV (top), 3.8 eV (middle) and 4.3 eV (bottom). The white arrows in the
images show the electron beam direction and the solid lines in the angular distribution figures are
fit for A1 symmetry (Reproduced with permission from [64])
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of A1 symmetry and not of E symmetry. This allowed the DEA process leading to CF3
−

formation to be described as

CF3Iþ e� ! CF3I� � 2A
� � ! CF3 þ I 2P1=2

� �
weak channelð Þ

! CF3I� � 2A
� � ! CF3I�� 2E

� � ! CF3 þ I 2P3=2
� �

dominant channelð Þ

Thus, in contrast to photodissociation, DEA leads to the production of I atoms mostly
in the ground state. This is a clear example of how the electron-induced chemistry could
be different from photochemistry. It is interesting to note that the contrasting behavior of
electron vis a vis the photon is due to the electron spin, which allows both the negative ion
resonant states to have the same spin multiplicity. The 3Q0 state which has the dominant
oscillator strength cannot transfer its excitation to the 1Q1 state since they have different
spin multiplicity. However, the 2A1 resonant state created with similar core excitation as
that of 3Q0 state (and hence dominant transition probability for formation) has a conical
intersection with the 2E resonant state (which has low probability for formation by
electron attachment, similar to its neutral counterpart 1Q1). This conical intersection
between A1 and E states allows dissociation to the I(2P3/2) limit, as shown in Fig. 9 [64].

CF4: Being an effective plasma etchant gas, CF4 has been investigated in several low-
energy electron scattering studies, including DEA [67, 68]. DEA to CF4 is known to
produce F− and CF3

− with fairly high cross section and F2
− with small cross section

between 4 and 10 eV [69]. While it is a very important molecule in practical appli-
cations, the high-level tetrahedral symmetry it possesses makes it an interesting one
from basic physics considerations.

One of the symmetry-based effects in molecules which have been of considerable
interest is the Jahn–Teller effect. This has been observed in optical spectroscopy and
photochemistry of molecules [70]. The question was if this effect can be seen in a
scattering process and DEA studies on CF4 using momentum imaging proved that it
could be observed in the electron attachment and subsequent dissociation process.
Signatures of the Jahn–Teller effect were suspected to be present in DEA to CH4 [71]
which has identical symmetry properties like CF4, but could not be clearly proved.

The momentum images of F− and CF3
− at different electron energies across the

respective DEA peaks were analyzed both for the kinetic energy distribution of the
fragments and their angular distributions [43, 72]. F− momentum distribution shows the
presence of two distinct but overlapping NIRs in the range of 4–10 eV—one going
through two-body dissociation and the other one decaying through three-body frag-
mentation. CF3

−, on the other hand, appears to be formed from a single resonance
between 5 and 9 eV. The mutual forward–backward mirror symmetry of the
momentum images of the two fragments (Fig. 11) and that both these are produced in
same electron energy range showed that they are the products of the same NIR. These
angular distributions of F− and particularly that of CF3

− could not be fitted well for the
CF4

− resonance state in the Td symmetry. A good fit could be obtained only by
allowing for a superposition of Td and C3v symmetries (Fig. 12). The quantum
mechanical superposition of the two symmetries in the angular distribution can man-
ifest only if during the attachment process the electron encounters both these sym-
metries in the molecule. What it means is that degenerate states of higher symmetry are
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Fig. 11. Velocity slice images of F− (upper) at 5.5 eV (left) and 7.5 eV (right) and for CF3
−

(lower) at 5.5 eV (left) and 8.5 eV (right). The arrows at the top show the direction of electron
beam (Adapted with permission from [43])
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Fig. 12. Angular distributions F− at 5.5 eV (a) and 7.5 eV (b); CF3
− at 5.5 eV (c) and 7.5 eV

(d) (Reprinted with permission from [43])
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split allowing for the capture of an electron with a different angular momentum which
was not possible in the pure Td symmetry. The lifting of degeneracy due to structural
change is typical of Jahn–Teller effect. This is possible since CF4

− has C3v symmetry
with one of the C–F bond being elongated. Because of the dynamics and the corre-
sponding Jahn–Teller distortion, the angular distribution clearly showed the superpo-
sition of the Td and C3v symmetries, the first such instance seen in electron scattering.

The presence of the Jahn–Teller effect could also be determined from the kinetic
energy distributions of the two fragments as a function of electron energy across the
respective DEA peaks. The kinetic energy release from the two-body dissociation
channel of F− showed a direct proportionality to the incident electron energy across the
resonance, though a well-defined fraction of the excess energy is seen to be shared by
the internal excitation of CF3 neutral fragment. In the case of CF3

− channel also, a part
of the excess energy is shared between the internal excitation of CF3

− and the kinetic
energy of the fragments. However, this sharing seemed to have a strong dependence on
the incident electron energy (Fig. 13). Up to certain electron energy, decided by the
stability and geometric structure of the CF3

− relatively small energy appears as kinetic
energy of the fragments. Above the threshold where CF3

− could be formed in the
geometry similar to the CF3 part of CF4, most of the excess energy appears as kinetic
energy of the fragments. This dynamics of the change in geometry of the CF3 part as
the CF4

− undergoes dissociation is also manifested in the angular distribution of the
fragments as Jahn–Teller effect [43, 72].

Fig. 13. Kinetic energy release determined from the velocity slice images in the F− channel
(left) and CF3

− channel (right). While the F− channel shows monotonic increase with electron
energy, the CF3

− channel shows different behavior above and below 7 eV of electron energy
(Adapted with permission from [43])
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4.3 Formation of Molecular Oxygen by DEA to CO2

DEA to CO2 has been reported to produce O
− as the predominant product at energies of

4, 8, and 13 eV [73] and at higher energies O2
− and C− are also reported [74]. The

molecular dynamics leading to the O− channel has been studied recently in great detail
in terms of angular distribution and kinetic energy distribution using the VSI technique
[51, 75, 76]. From the earlier measurements [74], the C− channel appearing at 16, 17,
and 18.7 eV, respectively, was assigned to three-body dissociation leading to C− + O + O
based on its occurrence at the relatively high electron energy.

In the very recent velocity slice imaging studies of C− ions, Wang et al. [77]
observed two distinct structures, as shown in Fig. 14. The data from two electron
energies are shown in the figure. The more intense unresolved structure in the images in
the left panel is due to three-body fragmentation (C− + O + O) while the structures
outside it are due to two-body fragmentation (C− + O2). The two-body fragmentation
with O2 (X

3Rg
−) has the thermodynamic threshold of 10.18 eV. The finer structures in

the two-body channel are due to vibrational excitation of O2 (X
3Rg

−) as marked in the
kinetic energy distributions in the right panels. The data showed that near 16 eV the O2

Fig. 14. Momentum image of C− ions obtained at a 15.9 eV and b 18 eV. Corresponding
kinetic energy distributions are shown in c and d, respectively. The more intense unresolved
structure in the images is due to three-body fragmentation (C− + O + O) while the structures
outside it are due to two-body fragmentation (C− + O2). The finer structures in the two-body
channel are due to vibrational excitation of O2. It may be noted that at lower electron energy the
O2 production is more efficient (Adapted with permission from [77])
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production channel has cross section almost equal to that for the three-body frag-
mentation channel, which has the thermodynamic threshold at 15.28 eV. As the
electron energy is increased, the relative contribution from the O2 production channel
was found to be decreasing. The detailed analysis of the observed angular distribution
of the energetic C− ions showed that up to 17.5 eV, the two-body dissociation appeared
to start with little bend in the O–C–O, whereas for higher electron energies, the parent
anion undergoes substantial bending before dissociation.

The observation that O2 is being produced by DEA to CO2 is of interest in the
context of the early evolution of the planet Earth. It was assumed that in early Earth
molecular oxygen was produced primarily by recombination of two O atoms in the
presence of a third body [78]. Recently, photodissociation of CO2 has been proposed to
be another process responsible for producing O2 on early Earth [79]. The observation
of O2 production by DEA from CO2 shows the presence of yet another process in the
early evolution of Earth’s atmosphere [77].

4.4 Quantum Coherence in Single-Electron Attachment

Dissociative electron attachment to H2 has been extensively studied in the past. The H−

channel shows three peaks in the ion yield curve at 4, 10, and 14 eV of electron energy.
Of particular interest is the 14 eV peak which results from the dissociation of H2

−

anion into H− and H atom in excited (n = 2) state. So far, all reports in electron
scattering measurements assign this resonance to the 2Rg

+ state [80]. Based on the
formalism for fragment anion angular distribution under axial recoil approximation
[32], the angular distribution expected from this resonance (1Rg

+ ! 2Rg
+ transition) is

isotropic if we consider the lowest partial wave (s-wave) transfer in resonance for-
mation. However, the observed angular distribution (Fig. 15) at the 14 eV peak shows
the ion intensity peaking at 0° and 180°. But more importantly the distribution shows
forward–backward asymmetry, which is a feature not expected from a homo-nuclear

Fig. 15. Velocity slice images (converted to momentum images) of H− from H2 and D
− from D2

at different electron energies. The electron beam direction is from bottom to top of the figure. The
data at 4.5 eV for H2 is shown for comparison, which shows the expected symmetry in the
forward–backward lobes [44]
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diatomic molecule due to its inversion symmetry. This asymmetry was found to be
mostly absent or even reversed based on attaching electron energy in the case of D2.

These results, which were first of its kind and surprising to begin with, were
explained due to the very quantum behavior of the attaching electron and subsequent
interference between two quantum paths of DEA. A single electron on attachment to a
molecule creates a coherent superposition of two NIRs (2Rg

+ and 2Ru
+) of opposite parity

that dissociate to the same limit. The two NIRs that participate in this process neces-
sarily overlap in the Frank–Condon region. The even (2Rg

+) and odd (2Ru
+) parity states

are determined by the quantum of angular momentum (in this case, 0 and 1, respec-
tively) transferred to the molecule by the attaching electron. The single coherent state
created by the superposition of the two NIRs propagates through two different paths
decided by the potential energy curves of the individual NIRs and results in a phase
difference at the dissociation limit. This phase difference leads to the interference and
the observed forward–backward asymmetry in the angular distributions. The phase
difference is dependent on how fast the wave packet of the resonance proceeds along
the two paths, which in turn depends on the total energy available based on the energy
of the attaching electron, the path traversed, and the mass of the two nuclei. Thus, one
expects to see a difference in the interference pattern and the angular distribution as a
function of the electron energy as well as the isotopic composition.

This in a way explains the difference between H2 and D2. Yet another effect leading
to the difference in H2 and D2 data is the fact that the two NIRs are continuously
decaying through auto-detachment. In fact, the probability for formation of D− from D2

is only about one-third of H− from H2 [10], implying more loss through auto-
detachment in the case of D2 as compared to that of H2. The cause of this is again the
mass difference between the two, with the wave packet of the D2 resonant system
taking longer time to reach the dissociation limit as compared to that of H2. If the
lifetime of any of the two resonances is comparable or shorter than the dissociation
time scale, the different dissociation time will substantially change the relative
amplitude of each path. The net effect of this is a difference in the contrast of the
asymmetry between H2 and D2 as observed in the experiment. A qualitative model of
this using empirical potential energy curves for the resonances is shown in Fig. 16. It is
also clear that the shorter lived 2Rg

+ resonance contributes substantially in the auto-
detachment channel leaving its signature on the angular distribution of the ejected
electron [80], while the longer lived 2Ru

+ makes dominant contribution to the DEA
channel as observed in its angular distribution [44].

4.5 Bond Breaking by Catalytic Electrons

As discussed in Sect. 1, a new mode of decay of the NIR was proposed in which the
final products are non-radical neutrals and a free electron. The initial proposal of this
came in a reaction in which the free electron attachment was followed by breaking two
bonds in an organic molecule producing two neutral fragments and a free electron [5].
This model was further extended to another system in a concerted barrierless four-
bond-breaking mechanism giving rise to three neutral products and a free electron [6].
It appears that in these cases, the electron is captured into a multicentre antibonding
orbital which weakens the corresponding bonds and they consequently relax.
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At the same time, there is a transfer of electron density from the bonding orbitals to
antibonding orbitals during the course of this and the system evolves with the anti-
bonding orbitals becoming lower in energy compared to the bonding orbitals, thus
leading to dissociation, with concomitant release of the extra electron. It appears that
the whole process is triggered by the attachment of the free electron. The electron thus
acts as a catalyst in this chemical reaction.

The first experimental evidence for such catalytic action of free electron was
observed in the low-energy electron interaction with the condensed formic acid [81]. In
this experiment, cold formic acid films were irradiated with electrons of a given energy
with simultaneous monitoring of the film by Fourier transform infra-red (FTIR)
spectroscopy under UHV conditions. CO2 was found to be the main product. The CO2

production was found to peak at 6 and 11 eV (Fig. 17). At least the one at 6 eV could
not account for by the DEA process since no DEA channel is known to be active either
in the gas phase or in the condensed phase at that energy. The only other resonant
process available to explain the experimental data was the BBCE and the theoretical
calculations supported this further (Fig. 18). It appears that here the BBCE is leading
the formic acid to form CO2 and H2 with the excess electron leaving the system.

The catalytic action of low-energy electron can be a doorway to many enzymatic
activities in the biological systems. The resonant nature of this process gives an
additional edge making it an interesting candidate for control of electron-induced
chemistry.

Fig. 16. Schematic of the DEA process in H2 and D2 at 14 eV. Two quantum paths arising from
the electron attachment lead to the same dissociation limit causing their interference. The
amplitude of each path is dependent on the dissociation time and the individual lifetime of the
participating NIRs against auto-detachment. The change in amplitude is evident for the D2 case
when compared with H2. The resulting forward–backward asymmetry in the angular distribution
can be seen in the VSI images shown in the inset [44]
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5 Future Outlook

As seen so far, the invention of new experimental techniques has changed our
understanding of electron–molecule resonances, particularly their dynamics. New
frontiers of electron–molecule resonant interaction have also come forth in the form of
catalytic action of low-energy electrons and bond selectivity in the fragmentation
observed in the DEA process. Although a lot of new information has been unraveled,
there are several aspects of electron–molecule resonances and particularly their
dynamics that are not yet understood. Following are the possible directions to be
pursued in the future to uncover rich details of unknowns of NIR state.

5.1 Improving the Resolution of Momentum Imaging

Most of the details of the DEA process are presented in the kinetic energy and angular
distributions of the fragment anions. The momentum imaging technique unravels these
details. However, these details are limited by the resolution of the imaging process

Fig. 17. The CO2 yield plotted as a function of energy of the electron that irradiates hundred
monolayers thick formic acid film deposited at 50 K on gold (111) substrate. For point in the
plot, several freshly prepared films are irradiated and the procedure is repeated for all electron
energies (Reprinted with permission from [81])

Fig. 18. Schematic of the theoretical model in the conversion of formic acid to CO2 and H2 by
the catalytic action of the free electron (Reprinted with permission from [81])
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which is primarily due to limited resolution of the electron beam energy. The first and
the foremost step to improve our understanding of the DEA process would be to
improve the energy resolution of the electron beam. One aspect this would definitely
bring out is the details of the internal energy of the molecular fragments with vibra-
tional state resolution. This could lead to qualitative improvement in the understanding
of the dissociation dynamics of the NIRs in polyatomic molecules.

In many polyatomic molecules, the dissociation results in ions with low kinetic
energies. Along with improvement in electron energy resolution, improving the
momentum imaging apparatus in its capability of magnifying low-energy ion images
may provide further details of the dissociation process. Marrying these two advance-
ments together would provide unprecedented details of the dynamics. Moreover,
imaging spectrometers with larger mass resolutions will also help in looking at varieties
of fragments that are generally formed in the DEA to larger molecules.

5.2 Detecting Neutral Fragments

So far, the DEA dynamics has been deduced by obtaining the cross sections as well as
kinetic energy and angular distributions of the fragment anions. However, when the
DEA leads to multiple channels, detecting neutral products are essential to fully
understand the kinematics and dynamics of the process. Li et al. [82] have devised a
method of obtaining the details of the neutral fragment using electron impact ionization
following DEA. They have demonstrated this technique for DEA to CCl4 for near-zero
energy electron attachment where the cross section is very large. Other possibility of
detecting the neutrals would be resonant-enhanced multiphoton ionization (REMPI).
Implementation of such scheme along with the momentum imaging can provide great
details of the DEA process. Apart from that, this method can also provide information
about electron impact neutral dissociation of molecules.

5.3 Electron Collision with Excited Molecules and Radicals

Most of the studies in electron collisions on molecules have been carried out from their
ground states, though it is well known that information on the electron attachment to
excited molecules in the higher vibrational and electronic states is needed for many
practical applications involving plasmas. From pure physics point of view, electron
attachment to excited molecules allows accessing selectively (depending on the excited
state) a wider Franck–Condon region to probe the DEA process as a whole and the NIR
states in particular for their dynamics. As discussed earlier, the site selectivity of
dissociation observed in DEA provides a possible way to control chemical reactions.
With the initial excitation of vibrational or electronic degree of freedom, one can
enhance this control and even realize a mode selective chemistry which was envisaged
after the discovery of lasers.

Limited DEA studies from vibrationally excited molecules have been carried out
using heated gases [2] and in one case on vibrational state-selected molecules [83].
The DEA experiments to excited molecules were reviewed about 20 years back [84]
and unfortunately after the only consistent efforts including the first measurement of
absolute cross sections from an excited state [85–88] very little work has been reported
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on the DEA to excited molecules. The only exceptions are a couple of reports on effects
of vibrational excitations by measuring the temperature dependences of the DEA
processes [89, 90]. As for DEA to radicals and unstable molecules, there has been
limited success [91–93].

In most of these experiments, the main bottleneck has been in preparing the
molecules in selected excited states with sufficient target densities. Optical pumping is
the only way to obtain high level of state selectivity. Techniques based on coherent
control or adiabatic passage [94] are a way forward in this respect. The excited state
DEA studies coupled with momentum imaging technique hold forth great possibilities
in revolutionizing the understanding of electron–molecule resonances and for
enhancing the potential of electron-controlled chemistry.
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Abstract. Fixed-nuclei R-matrix calculations are performed at the
equilibrium geometry of carbon monoxide using the very large cc-pV6Z
Gaussian basis set. Results from a close-coupling model involving 27
low-lying target states indicate the presence of three 2Σ+ resonances at
10.1 eV (width 0.1 eV), 10.38 eV (0.0005 eV), and 11.15 eV (0.005 eV),
a 2Δ resonance at 13.3 eV (0.1 eV) and two 2Π resonances at 1.9 eV (1.3
eV) and 12.8 eV (0.1 eV). These new results are in very good agreement
with many experimental studies but in contrast to a previous calculation
using a smaller cc-pVTZ basis set where we found only one 2Σ+ reso-
nances at 12.9 eV. This is the first time that any theoretical study has
reported these high lying 2Σ+ resonances in agreement to experiment
and reported detection of a 2Δ resonance. Total, elastic and electronic
excitation cross sections of CO by electron impact are also presented.

1 Introduction

The study of various processes involving collision of electrons with molecules is of
fundamental interest to many areas of science and technology. The cross sections
of these processes get significantly enhanced in certain narrow collision energy
range due to the formation of metastable anionic states, called resonances, which
are formed due to temporary capture of the colliding electron by the molecule.
Therefore, the resonances play an important role in processes such as dissociative
electron attachment (DEA) and their detection and characterization is a major
part of any electron–molecule collision study.

Resonances in low-energy electron collision with the CO molecule have been
studied by several groups in the past. A classic review of resonances in CO, along
with other diatomic molecules, was given by Schulz [1]. In addition, a compilation
of available cross sections of different processes in electron–CO collisions is given
by Itikawa [2]. Most of the works on CO have been directed toward the lowest
lying and well-known 2Π resonance at 1.6 eV and on the elastic and vibrational
excitation processes associated with it. In the low and intermediate energy range,
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there have been quite a few experimental [3–6] and theoretical [7–11] studies
on electron impact electronic excitation of CO. However, there is very little
consensus among them on the presence and characteristics of the higher lying
resonances.

Electron collision with CO can produce anionic fragments through the DEA
process as both C and O can form stable anions. Formation of these atomic
anions as result of electron collisions has indeed been observed for a long time
and their production cross sections have been measured by several groups [12–
17]. These cross sections show a broad peak in the 9–12 eV energy range. The
presence of a 2Σ+ resonance at 10.04 eV has been established by Sanche and
Schulz [18] and is thought to contribute to this DEA peak. Furthermore, shape
resonances at 10.4 and 10.7 eV and Feshbach resonances at 11.3 and 12.2 eV
were reported from experiments [1,18,19]; these may also contribute to DEA.

In the DEA process, O− ion production is favored and the cross section of C−

ion is very weak. Therefore, recently there have been attempts by experimental-
ists [17,20,21] to establish the nature of resonances through the measurement of
O− angular distributions. However, these groups arrived at different conclusions
from the analysis of their results while using essentially the same experimental
technique of velocity time-sliced imaging method. Newer and more precise mea-
surements made by Gope et al. [22] have helped to settle the above controversy
[23,24], but the problem calls for accurate theoretical calculations.

In our recent attempt [25] to study the higher lying resonances in CO, our
best model, close-coupling method with 50 target states represented using a cc-
pVTZ basis set, found only one 2Σ+ resonance at 12.9 eV in addition to the low-
lying 2Π at 1.7 eV. In this study, we report on a similar fixed-nuclei calculation
but with a much larger cc-pV6Z basis set. Here, we find clear signatures of a
number of narrow resonances lying in the 10–13 eV range that are in great
agreement with previous experimental findings.

2 Theory

In this section, we describe the theory briefly. Details of the R-matrix method
and its implementation in the UK molecular R-matrix codes [26,27] can be found
in the review article by Tennyson [28].

The R-matrix method, which is employed here, divides the space around
the electron+target system into an inner region, inside which the exchange and
correlation effects among all N +1 electrons is explicitly considered, and an outer
region, where the scattering electron is considered to be interacting with the
multipolar potential of the N -electron target. In the inner region, the scattering
wave function, ψN+1

k , is represented using a close-coupling (CC) expansion:

ψN+1
k = A

∑

ij

aijkΦ
N
i (x1...xN )uij(xN+1) +

∑

i

bikχ
N+1
i (x1...xN+1), (1)

where xi are the space-spin coordinates of the electrons. The ΦN
i in (1) represents

the wave function of the i-th target state, the uij are the continuum orbitals
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representing the scattering electron and A is the anti-symmetrization operator.
The χN+1

i , in the second term, are called L2 configurations. These configurations
are constructed by occupation of the target molecular orbitals (MOs) by all N+1
electrons. The aijk and bik are variational parameters which are obtained from
the diagonalization of the scattering Hamiltonian [29].

At the boundary of the inner region sphere, the R-matrix is calculated from
the boundary amplitude of the inner region wave functions and the R-matrix
poles. The R-matrix is then propagated outward and matched to analytical
asymptotic scattering functions. From this matching, the K-matrix is calculated
as a function of scattering energy. The K-matrix is a key quantity and other
scattering observables can be obtained from this.

In the following section, we use two quantities, the eigenphase sum and the
time delay, to detect and fit the resonances. The fitting of eigenphase sum to
the Breit–Wigner form yields the resonance position and width, which is done
automatically by the module RESON [30] in the UKRmol codes. On the other
hand, the time delay is fitted to a Lorentzian function through the module
TIMEDEL [31,32] to get the same resonance parameters.

3 Calculation and Results

As in the previous paper [25] (hereafter referred as paper-I), here we report on
R-matrix calculation at the equilibrium geometry of CO, Req = 2.1323 a0. As
mentioned above, we use the UK molecular R-matrix codes (also called UKRmol
codes) [26,27,33] for the scattering calculations. The necessary target molecular
orbitals are obtained from MOLPRO [34] using the largest supported cc-pV6Z
basis set which has no augmented diffused functions. The calculations were per-
formed in the C2v point group since neither MOLPRO nor the Gaussian version
of the UKRmol codes can use the full C∞v symmetry of CO molecule. However,
the target and resonant states in the C2v symmetry can be clearly correlated
with their C∞v counterparts. Therefore, these states are reported below in C∞v

symmetry.

3.1 Target Results

The target molecular orbitals necessary in R-matrix calculations are obtained
from MOLPRO using the state-averaged complete active space (CAS) self-
consistent field (SCF) method. We used the LQUANT option available in MOL-
PRO CASSCF program to specify the Lz quantum number and hence obtained
the target states in C∞v symmetry. A total of 27 low-lying target states in
C∞v symmetry were computed. These are 4 1Σ+, 2 1Σ−, 5 1Π, 2 1Δ, 4 3Σ+,
3 3Σ−, 5 3Π, and 2 3Δ. In terms of C2v assignments, this amounts to 41 target
states once the degenerate states of Π and Δ symmetry states are accounted for.
The CASSCF active space is the same as in paper-I, where 10 valence electrons
are distributed freely over 10 valence orbitals. The active space configuration is
defined as (1a1 − 2a1)4 (3a1 − 6a1, 1b1 − 3b1, 1b2 − 3b2)10.
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Table 1. The CASSCF ground state energy (in Eh), the lowest 11 vertical excitation
energies (in eV), and ground state dipole moments (μ in D) of CO calculated using
cc-pV6Z basis set. The target results using cc-pVTZ basis set are also included for
comparison. The experimental data are from Nielsen et al. [35]

State cc-pVTZ cc-pV6Z Expt

X 1Σ+ −112.8565508 −112.8599842

1 3Π 6.31 6.43 6.32 (a 3Π)

1 3Σ+ 8.39 8.36 8.51 (a′ 3Σ+)

1 1Π 8.83 8.97 8.51 (A 1Π)

1 3Δ 9.23 9.22 9.36 (d 3Δ)

1 3Σ− 9.60 9.60 9.88 (e 3Σ−)

1 1Σ− 9.97 9.95 9.88 (I 1Σ−)

1 1Δ 10.00 10.00 10.23 (D 1Δ)

2 3Σ+ 12.90 10.39 10.40 (b 3Σ+)

2 1Σ+ 13.76 11.16 10.78 (B 1Σ+)

2 3Π 12.29 11.34

2 1Π 13.72 11.84

μ 0.291 0.238 0.122

Table 1 presents the target ground state energy (in Eh), vertical excitation
energies to lowest 11 states (in eV), and the ground state dipole moment (in
Debye) for the cc-pV6Z basis set. It also includes the target results from paper-I
obtained with cc-pVTZ basis set along with the experimental values as reported
by Nielsen et al. [35] for the purpose of comparison. As can be seen in the
table, the first seven excitation energies in both cc-pVTZ and cc-pV6Z basis
sets are in excellent agreement with each other and also to the experimental
values. However, if we compare the 2 3Σ+ state, which is designated as b 3Σ+ in
spectroscopic notation, the CASSCF value of 10.39 eV with cc-pV6Z basis set is
very close to the experimentally determined value of 10.4 eV, while that in case
of cc-pVTZ basis set is 12.9 eV. Similarly, the energy for 2 1Σ+ state from the
cc-pV6Z basis set is in much better agreement with experiment than that from
the cc-pVTZ basis set. Notwithstanding the above argument, it may be pointed
out that the vertical excitation energies of the first four target states obtained
using the much lower cc-pVTZ basis set are slightly closer to the experimentally
estimated values than those from the larger cc-pV6Z basis set. This might happen
given that the excitation energies are obtained by finding the difference between
the absolute energies of the ground state and the excited states. Of course, the
absolute energies of all the states calculated with cc-pV6Z basis set are smaller
than those calculated with the cc-pVTZ basis set, as to be expected from a
variational method. Moreover, the theoretically calculated ground state dipole
moment of CO is twice that of the experimental value despite use of the large
cc-pV6Z basis set. We assign this difference to our use of the CASSCF method.
In order to obtain accurate dipole moments close to the experiments, one would
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need to calculate highly correlated wave functions as obtained in multi-reference
configuration interaction methods. However, we did not pursue this aspect as it
was not the purpose of this work.

In the R-matrix calculations, the relative energy positions of different excited
states with respect to the ground state are very important. Since resonances are
often closely associated with a parent target state [36], getting correct target
positions is of tremendous importance to get resonance positions correctly. In
the paper-I, we found a very narrow Feshbach resonance lying extremely close
to the 2 3Σ+ target state at 12.9 eV, and therefore we assigned the later to be
its parent. In the present calculation, we get this target state very close to the
experimental value of 10.4 eV, and therefore we expect this resonance to be near
to 10.4 eV. It is known from experiments that the b 3Σ+ (2 3Σ+) state of CO
has Rydberg character. In the present calculation with cc-pV6Z basis set, which
includes higher angular momentum basis functions up to i-functions (l = 6), the
Rydberg nature of the state is represented correctly.

3.2 Scattering Results

In the following, we present the results obtained from the close-coupling (CC)
scattering calculation using the abovementioned 27 target states. Here, we do
not explore on calculations with different scattering models such as the static
exchange and static exchange with polarization models, as these are unsuitable
for describing the higher lying resonances that are associated with excited target
states. Such studies have been already performed previously in paper-I where
extensive testing with respect to basis sets, molecular orbitals, R-matrix radius,
etc. has been performed.

In the present CC calculation, an R-matrix sphere of radius a = 12 a0 is
used and the continuum functions, appropriate for this radius [37], using partial
waves up to � ≤ 4 are included. The necessary occupied and virtual target
molecular orbitals are obtained from MOLPRO by doing the state-averaged
CASSCF calculation for the 27 target states which carry equal weights.

The positions and widths of the resonances that are found in this study are
listed in Table 2. We have used both the eigenphase sum and the time delay to
find the resonance parameters. Table 2 contains the fitted resonance parameters
from both RESON and TIMEDEL programs. As can be seen in the table, both
the methods give almost identical values in most of the cases. To show the
resonances obtained in the calculation, we provide the eigenphase sum and the
time-delay plots as a function of scattering energy.

Figure 1 shows the eigenphase sum and the time delay for the 2B1 symmetry.
2B1 and 2B2 symmetry results are identical as these constitute the two degener-
ate parts of the 2Π symmetry. The lowest lying 2Π resonance is well known from
many experiments and theoretical calculations. In our calculation, the position
of this resonance is found by RESON to be at 1.87 eV with a width of 1.29
eV, while TIMEDEL missed this resonance. Most of the experiments report the
position of this resonance to be at 1.6 eV. It is worth pointing here that in
our previous work using the cc-pVTZ basis set we obtained this resonance at



Electron Collisions with CO Molecule: An R-Matrix Study . . . 53

Table 2. Positions (and widths) of the resonances as detected by the RESON module
in fitting of eigenphase sums and by the TIMEDEL module in fitting of the time delays.
All quantities are in eV

Symmetry RESON TIMEDEL
2A1 10.1019 (0.1126) 10.0924 (0.1277)

10.3850 (0.00049) –

11.1579 (0.0048) 11.1576 (0.0047)

13.2969 (0.0977) 13.2916 (0.1310)
2A2 13.3135 (0.1641) 13.2823 (0.1456)
2B1 1.8744 (1.2916) –

12.8306 (0.0889) 12.8302 (0.0891)
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Fig. 1. 2B1 symmetry: the upper panel shows the eigenphase sum and the lower shows
the time delay as a function of scattering energy. The inset in the upper panel clearly
shows the second 2Π resonance at 12.83 eV
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1.73 eV, which is lower than the present value and closer to the experimentally
reported data. We can explain this on the basis that the R-matrix method relies
on the difference between the target and scattering states energies. Although
each part is variational and gives lower absolute energies for both the target and
scattering states, the difference between them can lead to resonances moving to
higher energy as the basis set is improved. This behavior has also been observed
in other studies [38]. In addition to the lowest one, we find a higher energy 2Π
resonance lying at 12.83 eV with a narrow width of 0.1 eV. This can be seen in
both the eigenphase sum and the time-delay plots.

The total and elastic cross sections from the 2Π (2B1+2B2) symmetry is
presented in Fig. 2 and the dominant electron impact electronic excitation cross
sections in Fig. 3. These figures show the effect of the 2Π resonances on different
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cross sections. The lowest 2Π resonance causes a huge increase in the total and
elastic cross section while the higher 2Π resonance has very little effect on these
cross sections.

The eigenphase sum and the time-delay plots for the 2A1 and 2A2 symmetries
are shown together in Fig. 4. For the 2A1 symmetry, we find four resonances at
10.1 eV (width 0.1 eV), 10.385 eV (width 0.00048 eV), 11.158 eV (width 0.0048
eV), and 13.29 eV (0.1 eV), while for the 2A2 symmetry we find a single resonance
at around 13.3 eV (width 0.1 eV). Both the 2A1 and 2A2 scattering calculations
find a common resonance at around 13.3 eV with a width of approximately 0.1
eV. Therefore, we assign them to be the two components of a 2Δ resonance.
The first three 2A1 resonances at 10.1, 10.385, and 11.158 eV are assigned to be
of 2Σ+ symmetry in the natural C∞v symmetry of CO molecule. The second
and third 2Σ+ resonances are very narrow and lie extremely close to the 2 3Σ+
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and 2 1Σ+ target states, respectively. We assign these target states to be their
respective parents. With this the binding energy of the second 2Σ+ resonance
with respect to its parent 2 3Σ+ state would be 0.001 eV, while that of the third
2Σ+ resonance with respect to its parent 2 1Σ+ state would be 0.006 eV. All
these resonances are clearly seen in Fig. 4 where we have also marked the parent
target states.

The effect of the 2Σ+ and 2Δ resonances can be seen in the total and elastic
cross sections shown for 2A1 symmetry in Fig. 5. The dominant electron impact
excitation cross sections for 2A1 symmetry is shown in Fig. 6. Similarly, Fig. 7
shows the total and elastic cross sections, and Fig. 8 shows the dominant electron
impact excitation cross sections of CO in the 2A2 symmetry.
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the resonances on the cross sections
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4 Conclusion

We have undertaken an R-matrix study using a very large basis set of cc-pV6Z
to identify higher energy resonances in electron scattering with carbon monox-
ide molecule. Our fixed-nuclei calculation at the equilibrium geometry of CO
indicates the presence of three 2Σ+ resonances, one 2Δ resonance, and one 2Π
resonance in the energy range of 10–14 eV, in addition to the low-lying 2Π reso-
nance near 2 eV. The presence of a number of resonances above 10 eV has been
reported by many experiments; however, this is the first theoretical study to
identify them clearly. The large cc-pV6Z basis set employed here effectively rep-
resents the Rydberg like target states of CO, and therefore helps in getting the
Rydberg resonances in CO correctly. All these high-energy resonances have very
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narrow widths, and therefore can have longer lifetimes to result in dissociation
giving anionic fragments. It is our purpose to study the DEA process from these
resonances and we are already computing resonance parameters as a function of
internuclear distance.

The work clearly shows the need to use extended basis sets to accurately
represent both highly excited target states and the associated resonances. This
presents something of a challenge to R-matrix calculations due to the require-
ment that the target wave function must be entirely enclosed by the R-matrix
sphere. However, we note the development of a new UK R-matrix code based
on the use of B-splines for the continuum basis [39] which facilitates the uses of
greatly extended inner regions.

Acknowledgements. AD gratefully acknowledges UCL for the use of its computa-
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Abstract. A theory of dynamic polarizability for trapping relevant
states of Sr+ is presented here when the ions interact with a focused opti-
cal vortex. The coupling between the orbital and spin angular momentum
of the optical vortex varies with focusing angle of the beam and is stud-
ied in the calculation of the magic wavelengths for 5s1/2 → 4d3/2,5/2

transitions of Sr+. The initial state of our interest here is 5s1/2 with
mJ = −1/2 of which is different possible trapping state compare to our
recent work on Sr+ [Phys. Rev. A 97, 022511 (2018)]. We find a vari-
ation in magic wavelengths and the corresponding polarizabilities with
different combinations of orbital and spin angular momentum of the vor-
tex beam. The variation is very significant when the wavelengths of the
beam are in the infrared region of the electromagnetic spectrum. The
calculated magic wavelengths will help the experimentalists to trap the
ion for performing the high-precision spectroscopic measurements.

1 Introduction

Optical trapping of atoms or ions has been extensively used in high- precision
spectroscopic measurements [1,2]. But the mechanism of trapping using a laser
light inevitably produces a shift in the energy levels of the atoms involved in
absorption. The shift is called the stark shift. In general, the shift is different for
these energy states of the atom. Thus, naturally it will influence the fidelity of the
precision measurement experiments due to nonachievement of exact resonance.
However, this drawback can be diminished if the atoms are trapped at magic
wavelengths of the laser beam, for which the differential AC stark shift of an
atomic transition effectively vanishes. Therefore, the magic wavelengths have
significant applications in atomic clocks [3–5], atomic magnetometers [6], and
atomic interferometers [7].

All the previous studies of magic wavelengths for trapping of different atoms
or ions are obtained for the Gaussian modes of a laser [8–11]. In this work, we
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and Molecular Species, and Photons, Springer Proceedings in Physics 230,
https://doi.org/10.1007/978-981-13-9969-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9969-5_4&domain=pdf
https://doi.org/10.1007/978-981-13-9969-5_4


Dynamic Polarizabilities and Magic Wavelengths . . . 61

determine the magic wavelengths of the transitions 5s1/2,−1/2 → 4d3/2,mJ
and

5s1/2,−1/2 → 4d5/2,mJ
of Sr+ ion, assuming the external light field is a circularly

polarized focused optical vortex such as Laguerre-Gaussian (LG) beam [12].
Since the stark shifts will be different for the states 5s1/2,−1/2 and 5s1/2,+1/2,
different laser frequencies (magic frequency) should be applied to minimize the
systematic errors in the experiments involved the state 5s1/2,−1/2 compare to
5s1/2,+1/2 state. Therefore, it is important to quantify the magic wavelengths
of the transitions 5s1/2,−1/2 → 4d3/2,mJ

and 5s1/2,−1/2 → 4d5/2,mJ
of Sr+,

as we have already reported the magic wavelengths related to 5s1/2,+1/2 state
[13]. However, the special property of optical vortex is that, apart from the
polarization (i.e., spin angular momentum (SAM)), the optical vortex carries
orbital angular momentum (OAM) due to its helical phase front [14]. Now, it
is well known that during the interaction of a paraxial LG beam with atoms or
ions (which are below its recoil limit), the quadrupole transition is the lowest
order transition, where the OAM of the LG beam affects the electronic motion
[14,15]. Therefore, the OAM of a paraxial LG beam does not influence the dipole
polarizability of an atomic state. Hence, in case of paraxial LG beam, the dipole
polarizability and the magic wavelengths solely depend on the SAM of the beam.
But unlike the paraxial LG beam, the OAM and SAM of the optical vortex get
coupled when the beam is focused [12]. This leads to the transfer of OAM to
the electronic motion of the atoms in the dipole transition level and creates an
impact on the polarizability of an atomic state [12]. Further, the coupling of
angular momenta increases with the focusing angle. However, in this work, we
quantify all these effects of OAM and SAM on the polarizability of an atomic
state regarding magic wavelengths.

2 Theory

If an atom or ion is placed in an external oscillating electric field E(ω), then the
second-order shift in a particular energy level of the atom or ion is proportional
to the square of the electric field, E2(ω). The proportional coefficient is called
the dynamic polarizability α(ω) of the atomic or ionic energy state at frequency
ω of the external electric field and it can be written as [16]

α(ω) = αc(ω) + αvc(ω) + αv(ω), (1)

where αc(ω) and αv(ω) are dynamic core polarizability of the ionic core and
dynamic valence polarizability of the single valence system, respectively. This
ionic core is obtained by removing the valence electron from the system. αvc(ω)
is the correction [17] in core polarizability in the presence of the valence electron.
As the core electrons are tightly bound to the nucleus, the presence of a valence
electron is expected not to change the core polarizability significantly. Thus, we
consider αvc in the present method of calculations without variation of ω. αv(ω)
is calculated using the external electric field of focused LG beam [12]. In case
of focused LG beam, OAM, and SAM are no longer separately a good quantum
number as they get coupled to each other. Therefore, the effect of total angular
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momentum (OAM+SAM) can be seen on αv(ω), which can be expressed as [13]

αv(ω) = 2A0α0
v(ω) + 2×

(
mJ

2Jv

)
A1α1

v(ω) + 2×
(
3m2

J − Jv(Jv + 1)

2Jv(2Jv − 1)

)
A2α2

v(ω), (2)

where Jv is the total angular momentum of the state ψv and mJ is its mag-
netic component. The coefficients Ais are A0 =

[
{I

(l)
0 }2 + {I

(l)
±2}2 + 2{I

(l)
±1}2

]
,

A1 =
[
±{I(l)0 }2 ∓ {I(l)±2}2

]
and A2 =

[
{I

(l)
0 }2 + {I

(l)
±2}2 − 2{I

(l)
±1}2

]
. The param-

eter I
(l)
m , where m takes the values 0, ±1, and ±2, depends on focusing angle

(θmax) by Bhowmik et al. [12] and Zhao et al. [18]

I(l)
m (r′

⊥, z′) =

∫ θmax

0

dθ

( √
2r′

⊥
w0 sin θ

)|l|
(sin θ)|l|+1

√
cos θg|m|(θ)Jl+m(kr′

⊥ sin θ)eikz′ cos θ.

(3)
Here r′

⊥ is the projection of r′ on the xy plane, w0 is the waist of the paraxial
circularly polarized LG beam which is focused by a high numerical aperture.
The angular functions are g0(θ) = 1 + cos θ, g1(θ) = sin θ and g2(θ) = 1 − cos θ.
α0

v(ω), α1
v(ω) and α2

v(ω) introduced in (2) are the scalar, vector and tensor parts,
respectively, of the valence polarizability and are expressed as [16,19]

α0
v(ω) =

2
3(2Jv + 1)

∑
n

|〈ψv||d||ψn〉|2 × (εn − εv)
(εn − εv)2 − ω2

, (4)

α1
v(ω) = −

√
6Jv

(Jv + 1)(2Jv + 1)

∑
n

(−1)Jn+Jv

{
Jv 1 Jv

1 Jn 1

} |〈ψv||d||ψn〉|2 × 2ω

(εn − εv)2 − ω2
,

(5)
and

α2
v(ω) = 4

√
5Jv(2Jv − 1)

6(Jv + 1)(2Jv + 1)(2Jv + 3)

∑
n

(−1)Jn+Jv

{
Jv 1 Jn

1 Jv 2

} |〈ψv||d||ψn〉|2 × (εn − εv)
(εn − εv)2 − ω2

.

(6)

Henceforth, whenever we mention about SAM or OAM in the following text,
it is considered to be the angular momentum of the paraxial LG beam before
passing through the focusing lens.

3 Numerical Results and Discussions

The aim of this work is to calculate the dynamic polarizabilities of the 5s1/2,
4d3/2, and 4d5/2 states for different magnetic sublevels of Sr+. The scalar, vector,
and tensor parts of the valence polarizabilities are calculated using (4), (5), and
(6). The precise estimations of these three parts of the valence polarizability
depend on the accuracy of the unperturbed energy levels and the dipole matrices
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among them. In order to evaluate these properties, we use correlation exhaustive
relativistic coupled cluster (RCC) theory [20–24] with wave operators associated
with single and double and partial triple excitations in linear and nonlinear
forms. The wavefunctions calculated by the RCC method can produce highly
precise E1 transition amplitudes as discussed in our recent work [13]. Calculation
in this reference yields that the static core polarizability (αc(0)) of the ion is 6.103
a.u., and the static core-valence parts of the polarizabilities (αvc(0)) for the states
5s 1

2
, 4d 3

2
and 4d 5

2
are −0.25 a.u., −0.38 a.u., and −0.42 a.u., respectively.

In order to determine the precise values of dynamic valence polarizabilities,
we require calculating a large number of dipole matrix elements. Another way
to say, the running index n in (4)–(6) is turning out to be around 25 for Sr+ to
obtain accurate valence polarizability. Since the RCC method is computation-
ally very expensive, we break our total calculations of valence polarizability into
three parts depending on their significance in the sums of (4)–(6). The first part
includes the most important contributing terms to the valence polarizabilities,
which involve the E1 matrix elements associated with the intermediate states
from 52P to 82P and 42F to 62F . Therefore, these matrix elements are calcu-
lated using the correlation exhaustive RCC method. The second part consists
of the comparatively less significant terms associated with E1 matrix elements
in the polarizability expressions arising from intermediate states from 92P to
122P and 72F to 122F . Thus we calculate the second part using second-order
relativistic many-body perturbation theory [25]. The last part, whose contri-
butions are comparatively further small to the valence polarizability, includes
the intermediate states from n = 13 to 25, are computed using the Dirac Fock
wavefunctions.

In Figs. 1 and 2, we present the variations of total polarizabilities of
5s1/2,−1/2, 4d3/2,mJ

, and 4d5/2,mJ
(for different magnetic quantum numbers,

mJ , of the states) states with the frequency of the external field of the focused
LG beam. The focusing angle of the LG beam is considered 50◦ in both the fig-
ures. The combinations of angular momenta of the paraxial LG beam have been
chosen as (OAM, SAM) = (+1,+1) and (+1,−1) in Fig. 1 and Fig. 2, respec-
tively. The resonances occur in the plots due to the 5s1/2 → 5p1/2,3/2 transitions
for 5s1/2 state, 4d3/2 → 5p1/2,3/2 transitions for 4d3/2 state and 4d5/2 → 5p3/2

transitions for 4d5/2 state. The plots show a number of intersections between the
polarizabilities of 5s 1

2
at mJ = −1/2 and different multiplets of 4d 3

2 , 52
states.

These intersections indicate magic wavelengths, at which the difference in the
stark shifts of the two related states vanishes. Figures show that magic wave-
lengths which fall in the infrared region of the electromagnetic spectrum have
large polarizabilities compared to the magic wavelengths of the visible or ultra-
violet region. These magic wavelengths with high polarizabilities will be more
effective to trap the ion, and thus they are highly recommended for trapping.
These two figures are given as an example. Similar plots are studied for differ-
ent focusing angles, say 60◦ and 70◦, and corresponding magic wavelengths are
discussed later in this paper.
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(a) (b)

(c) (d)

Fig. 1. Variation of polarizabilities (Polar) of 5s 1
2

and 4d 3
2 , 52

states with frequency

(Freq) are plotted when the focusing angle of LG beam is 50◦ with OAM = +1 and
SAM = +1. The brackets indicate the magnitudes of different magnetic components.
Figure a and c are for the 5s 1

2
and 4d 3

2
states, and Figure b and d are for the 5s 1

2
and 4d 5

2
states

In Tables 1, 2 and 3, we have listed a large number of magic wavelengths along
with their corresponding polarizabilities, when the focusing angles of LG beam
are 50◦, 60◦ and 70◦. The Table 1 is for the transition 5s1/2 → 4d3/2, and the
combinations of OAM and SAM are (+1,+1), (+1,−1), (+2,+1) and (+2,−1).
In Tables 2 and 3, the transition is 5s1/2 → 4d5/2 but the combinations of OAM
and SAM are ((+1,+1), (+1,−1)) and ((+2,+1), (+2,−1)), respectively. The
mJ value of 5s1/2 is considered −1/2 throughout this paper and the tables show
totally distinct set of magic wavelengths compared to the results published [13]
considering mJ = 1/2. There are five sets of magic wavelengths obtained for each
of the multiplets of 4d3/2 for all combinations of angular momenta and focusing
angles of the LG beam in the given frequency range. Whereas, in the same range
of wavelength spectrum for 4d5/2 state, our calculations show seven sets of magic
wavelengths (see Tables 2 and 3) for most of the multiplets. Since the resonance
transition of 5s 1

2
→ 4d 3

2
, 4d 5

2
are 687 nm and 674 nm, respectively, thus the

ion is attracted and trapped to the high- intensity (low intensity) region of the
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(a) (b)

(c) (d)

Fig. 2. Variation of polarizabilities (Polar) of 5s 1
2

and 4d 3
2 , 52

states with frequency

(Freq) are plotted when the focusing angle of LG beam is 50◦ with OAM = +1 and
SAM = −1. The brackets indicate the magnitudes of different magnetic components.
Figure a and c are for the 5s 1

2
and 4d 3

2
states, and Figure b and d are for the 5s 1

2
and 4d 5

2
states

LG beam when the magic wavelength is larger (smaller) than the resonance
wavelength.

Since this work is about the finding of suitable magic wavelengths for trap-
ping, we only give an estimation of the theoretical uncertainty in the calculated
magic wavelengths. Here we collect the most important set of E1 matrix ele-
ments, which include 5s 1

2
→ 5p 1

2 , 32
transitions for 5s 1

2
state; 4d 3

2
→ 5p 1

2 , 32
and

4d 3
2

→ 4f 5
2

transitions for 4d 3
2

state; 4d 5
2

→ 5p 3
2

and 4d 5
2

→ 4f 5
2 , 72

transitions
for 4d 5

2
state. We compare our RCC results with the SDpT values calculated

by Safronova [26] and further apply those E1 matrix elements in place of our
present RCC values to recalculate the magic wavelengths. This approach leads
to the theoretical uncertainty in our calculated magic wavelength values is about
±1%.



66 A. Bhowmik and S. Majumder

T
a
b
le

1
.

M
a
g
ic

w
av

el
en

g
th

s
(i

n
n
m

)
o
f

S
r+

fo
r

fo
cu

si
n
g

a
n
g
le

s
5
0

◦ ,
6
0

◦ ,
a
n
d

7
0

◦
o
f

th
e

L
G

b
ea

m
fo

r
th

e
tr

a
n
si

ti
o
n
s

5
s 1

/
2
(−

1
/
2
)

→
4
d
3
/
2
(m

J
)

N
o
n
-p

a
ra

x
ia
l
L
G

b
e
a
m

S
ta

te
(4

d
3
/
2
(m

J
))

λ
5
0

◦
m

a
g
ic

α
λ
6
0

◦
m

a
g
ic

α
λ
7
0

◦
m

a
g
ic

α
S
ta

te
(4

d
3
/
2
(m

J
))

λ
5
0

◦
m

a
g
ic

α
λ
6
0

◦
m

a
g
ic

α
λ
7
0

◦
m

a
g
ic

α

O
A
M

=
+
1
,
S
A
M

=
+
1

O
A
M

=
+
1
,
S
A
M

=
−
1

(+
1
/
2
)

2
6
8
0
.2
0

1
0
0
.3
6

2
2
0
1
.1
3

1
0
4
.8
1

1
9
6
3
.9
4

1
0
9
.4
1

(+
1
/
2
)

2
1
6
9
.6
8

1
1
7
.0
1

2
0
8
0
.5
2

1
1
8
.7
7

2
0
1
6
.0
8

1
2
0
.3
2

1
0
6
9
.5
6

1
1
4
.8
2

1
0
5
4
.7
1

1
1
9
.8
4

1
0
4
7
.4
3

1
2
4
.1
9

1
0
3
7
.8
9

1
3
2
.7
6

1
0
2
3
.9
0

1
3
4
.7
6

1
0
2
1
.6
0

1
3
6
.6
7

4
2
2
.2
7

2
0
.8
9

4
2
1
.1
0

2
0
.5
0

4
1
7
.2
5

2
0
.1
3

4
0
4
.6
5

7
.1
9

4
0
4
.6
5

7
.6
9

4
0
4
.6
5

8
.4
7

2
1
3
.6
1

−
2
6
.2
6

2
1
4
.3
1

−
2
7
.8
7

2
1
3
.5
1

−
2
8
.8
2

2
1
3
.2
1

−
3
2
.2
5

2
1
3
.1
1

−
3
2
.8
7

2
1
4
.0
1

−
3
3
.7
2

1
9
8
.2
7

−
2
0
.3
4

1
9
8
.4
5

−
2
1
.3
2

1
9
8
.7
1

−
2
2
.3
7

2
0
0
.7
2

−
2
6
.4
1

2
0
0
.7
2

−
2
6
.6
9

2
0
0
.8
1

−
2
7
.2
3

(−
1
/
2
)

8
1
3
6
.3
1

9
8
.1
7

4
3
3
9
.3
7

1
0
2
.6
2

3
1
2
0
.7
8

1
0
6
.4
2

(−
1
/
2
)

1
6
9
3
.8
0

1
1
9
.8
0

1
6
6
8
.9
9

1
2
1
.5
6

1
6
5
0
.8
5

1
2
2
.7
6

1
0
6
9
.5
6

1
1
4
.9
8

1
0
4
2
.6
4

1
1
9
.5
6

1
0
4
0
.2
6

1
2
4
.4
5

1
0
2
1
.6
0

1
3
3
.4
0

1
0
1
9
.3
1

1
3
5
.2
8

1
0
1
4
.7
7

1
3
7
.0
7

4
2
1
.8
8

−
0
.8
4

4
2
0
.7
1

0
.3
3

4
1
6
.8
7

2
.2
9

4
0
4
.6
5

2
0
.8
7

4
0
4
.6
5

2
0
.7
6

4
0
4
.6
5

2
0
.2
2

2
1
3
.1
1

−
2
6
.1
3

2
1
4
.1
1

−
2
7
.8
0

2
1
3
.2
1

−
2
8
.5
1

2
1
3
.2
1

−
3
2
.2
5

2
1
3
.1
1

−
3
2
.8
7

2
1
4
.3
1

−
3
3
.8
0

2
0
0
.1
9

−
2
0
.9
6

2
0
0
.2
8

−
2
2
.0
4

2
0
0
.3
7

−
2
3
.1
3

1
9
9
.3
1

−
2
5
.7
2

1
9
9
.4
0

−
2
6
.3
3

1
9
9
.4
9

−
2
6
.6
1

(+
3
/
2
)

1
0
7
4
.6
1

1
1
4
.7
5

1
0
7
9
.7
0

1
1
7
.9
4

1
0
8
2
.2
6

1
2
2
.1
8

(+
3
/
2
)

1
8
7
5
.0
4

1
1
8
.4
1

1
8
7
5
.0
4

1
1
9
.8
3

1
8
7
5
.0
4

1
2
1
.1
4

9
1
1
.2
7

1
2
2
.6
2

9
1
6
.7
7

1
2
6
.6
9

9
2
0
.4
7

1
3
0
.4
0

9
7
1
.5
0

1
3
6
.0
0

9
7
7
.7
5

1
3
7
.5
5

9
7
7
.7
5

1
3
8
.9
6

4
2
2
.6
7

4
6
.6
1

4
2
1
.4
9

4
4
.6
1

4
1
7
.2
5

4
2
.0
8

4
0
4
.2
9

−
5
.3
3

4
0
4
.2
9

−
4
.1
1

4
0
4
.2
9

−
2
.4
6

2
1
3
.9
1

−
2
6
.3
9

2
1
4
.3
1

−
2
7
.8
7

2
1
3
.6
1

−
2
8
.8
2

2
1
2
.9
1

−
3
1
.9
1

2
1
2
.9
1

−
3
2
.5
3

2
1
3
.3
1

−
3
3
.3
7

1
9
8
.7
1

−
2
0
.4
7

1
9
8
.7
1

−
2
1
.4
0

1
9
8
.7
1

−
2
2
.5
1

2
0
4
.7
8

−
2
8
.3
8

2
0
4
.2
3

−
2
8
.5
0

2
0
3
.7
7

−
2
8
.5
3

(−
3
/
2
)

1
7
5
9
.2
0

1
0
3
.6
4

1
7
8
6
.8
0

1
0
6
.7
2

1
8
0
0
.9
2

1
1
0
.4
3

(−
3
/
2
)

1
1
1
4
.0
2

1
2
9
.6
9

1
1
3
0
.6
0

1
3
0
.6
0

1
1
9
9
.0
4

1
3
0
.0
5

9
5
7
.2
1

1
2
0
.0
5

9
5
7
.2
1

1
2
4
.2
2

9
6
3
.2
8

1
2
7
.9
0

9
3
5
.5
9

1
3
8
.2
1

9
3
9
.4
5

1
3
9
.6
8

9
4
5
.3
0

1
4
1
.1
2

4
2
1
.4
9

−
1
7
.3
1

4
2
0
.7
1

−
1
5
.7
6

4
1
6
.8
7

−
1
2
.9
8

4
0
5
.0
1

3
5
.9
3

4
0
5
.0
1

3
4
.6
2

4
0
5
.0
1

3
3
.2
2

2
1
2
.5
2

−
2
8
.3
5

2
1
3
.2
1

−
3
2
.2
5

2
1
3
.1
1

−
3
2
.8
7

2
1
4
.3
1

−
3
3
.8
0

2
0
8
.5
3

−
2
6
.5
2

1
9
8
.9
7

−
2
5
.4
9

1
9
9
.0
5

−
2
5
.9
9

1
9
9
.1
4

−
2
6
.4
2

(c
o
n
ti

n
u
ed

)



Dynamic Polarizabilities and Magic Wavelengths . . . 67

T
a
b
le

1
.
(c

o
n
ti

n
u
ed

)

N
o
n
-p

a
ra

x
ia
l
L
G

b
e
a
m

S
ta

te
(4

d
3
/
2
(m

J
))

λ
5
0

◦
m

a
g
ic

α
λ
6
0

◦
m

a
g
ic

α
λ
7
0

◦
m

a
g
ic

α
S
ta

te
(4

d
3
/
2
(m

J
))

λ
5
0

◦
m

a
g
ic

α
λ
6
0

◦
m

a
g
ic

α
λ
7
0

◦
m

a
g
ic

α

O
A
M

=
+
1
,
S
A
M

=
+
1

O
A
M

=
+
1
,
S
A
M

=
−
1

O
A
M

=
+
2
,
S
A
M

=
+
1

O
A
M

=
+
2
,
S
A
M

=
−
1

(+
1
/
2
)

2
4
6
2
.8
8

1
0
1
.8
3

2
0
5
2
.4
0

1
0
7
.3
7

1
8
2
2
.5
3

1
1
3
.6
6

(+
1
/
2
)

2
1
4
9
.2
1

1
1
7
.8
0

2
0
5
2
.4
0

1
1
9
.3
8

1
9
5
5
.5
1

1
2
1
.2
3

1
0
5
7
.1
5

1
1
6
.8
4

1
0
5
2
.2
7

1
2
2
.1
2

1
0
3
7
.8
9

1
2
7
.2
2

1
0
2
1
.6
0

1
3
4
.0
4

1
0
2
3
.9
0

1
3
6
.0
7

1
0
1
9
.3
1

1
3
7
.4
7

4
1
9
.5
5

2
0
.6
0

4
1
8
.0
1

2
0
.6
7

4
1
5
.7
2

2
1
.1
8

4
0
4
.6
5

7
.2
0

4
0
4
.6
5

7
.7
7

4
0
4
.6
5

8
.9
6

2
1
3
.2
1

−
2
6
.9
6

2
1
3
.2
1

−
2
7
.8
6

2
1
3
.1
1

−
2
9
.7
2

2
1
3
.8
1

−
3
2
.8
4

2
1
3
.3
1

−
3
3
.0
2

2
1
3
.8
1

−
3
3
.8
2

1
9
8
.3
6

−
2
0
.7
0

1
9
8
6
.2
0

−
2
1
.9
8

1
9
8
.8
8

−
2
3
.5
2

2
0
0
.8
1

−
2
6
.6
5

2
0
0
.7
2

−
2
6
.9
7

2
0
0
.8
1

−
2
7
.4
4

(−
1
/
2
)

6
4
1
7
.3
7

1
0
0
.0
5

3
7
0
4
.3
4

1
0
4
.5
4

2
6
9
6
.0
6

1
1
0
.2
8

(−
1
/
2
)

1
6
8
7
.5
3

1
1
9
.8
6

1
6
6
2
.9
0

1
2
1
.9
2

1
6
3
3
.1
0

1
2
3
.9
7

1
0
4
7
.4
3

1
1
7
.8
8

1
0
4
0
.2
6

1
2
2
.1
5

1
0
3
7
.8
9

1
2
7
.2
2

1
0
2
1
.6
0

1
3
4
.0
4

1
0
1
9
.3
1

1
3
6
.4
5

1
0
0
8
.0
4

1
3
8
.1
6

4
1
9
.1
7

0
.3
4

4
1
7
.6
3

1
.6
7

4
1
5
.3
5

3
.4
5

4
0
5
.0
1

2
0
.7
8

4
0
5
.0
1

2
0
.4
2

4
0
5
.0
1

2
0
.0
8

2
1
3
.2
1

−
2
6
.9
6

2
1
3
.2
1

−
2
7
.8
6

2
1
3
.1
1

−
2
9
.7
2

2
1
4
.2
1

−
3
3
.1
0

2
1
3
.7
1

−
3
3
.3
1

2
1
4
.1
1

−
3
4
.0
2

2
0
0
.1
9

−
2
1
.4
1

2
0
0
.3
7

−
2
2
.6
8

2
0
0
.5
4

−
2
4
.1
8

1
9
9
.3
1

−
2
5
.9
6

1
9
9
.4
9

−
2
6
.4
6

1
9
9
.5
8

−
2
6
.8
8

(+
3
/
2
)

1
0
7
7
.1
5

1
1
6
.1
1

1
0
8
2
.2
6

1
1
9
.9
2

1
0
9
0
.0
3

1
2
5
.5
0

(+
3
/
2
)

1
8
7
5
.0
4

1
1
8
.4
8

1
8
7
5
.0
4

1
2
0
.2
3

1
8
5
9
.7
3

1
2
1
.6
1

9
1
3
.0
9

1
2
3
.6
9

9
1
8
.6
2

1
2
9
.0
7

9
2
4
.2
1

1
3
3
.9
8

9
7
5
.6
6

1
3
6
.0
2

9
7
7
.7
5

1
3
8
.6
2

9
7
9
.8
6

1
3
9
.4
5

4
1
9
.9
4

4
5
.4
9

4
1
8
.4
0

4
3
.4
8

4
1
5
.7
2

3
9
.4
4

4
0
4
.2
9

−
4
.9
6

4
0
4
.6
5

−
3
.4
2

4
0
4
.6
5

−
1
.5
3

2
1
3
.2
1

−
2
6
.9
6

2
1
3
.2
1

−
2
7
.8
6

2
1
3
.1
1

−
2
9
.7
2

2
1
3
.0
1

−
3
2
.4
9

2
1
3
.0
1

−
3
2
.9
7

2
1
3
.2
1

−
3
3
.5
3

1
9
8
.7
1

−
2
0
.8
2

1
9
8
.7
1

−
2
2
.0
4

1
9
8
.7
9

−
2
3
.4
8

2
0
4
.6
0

−
2
8
.3
9

2
0
3
.9
5

−
2
8
.5
1

2
0
3
.5
0

−
2
8
.6
6

(−
3
/
2
)

1
7
7
2
.8
9

1
0
5
.3
8

1
7
9
3
.8
3

1
0
9
.2
9

1
8
2
2
.5
3

1
1
3
.6
6

(−
3
/
2
)

1
1
1
9
.4
9

1
3
0
.0
0

1
1
3
9
.0
8

1
3
1
.0
7

1
2
3
8
.1
3

1
3
0
.0
0

9
5
5
.2
1

1
2
2
.1
6

9
6
1
.2
5

1
2
5
.5
9

9
6
7
.3
7

1
3
1
.6
8

9
3
7
.5
2

1
3
8
.7
7

9
4
1
.3
9

1
4
0
.3
1

9
4
7
.2
6

1
4
1
.5
1

4
1
9
.1
7

−
1
6
.9
9

4
1
7
.6
3

−
1
4
.6
4

4
1
5
.3
5

−
1
1
.1
6

4
0
5
.0
1

3
5
.6
4

4
0
5
.0
1

3
3
.9
8

4
0
5
.0
1

3
2
.1
2

2
1
2
.2
2

−
2
7
.8
6

2
1
2
.7
1

−
2
9
.2
0

2
1
4
.3
1

−
3
3
.1
8

2
1
3
.8
1

−
3
3
.4
2

2
1
4
.2
1

−
3
4
.1
7

2
0
9
.7
8

−
2
6
.5
2

2
0
7
.4
8

−
2
6
.8
6

1
9
9
.0
5

−
2
5
.8
1

1
9
9
.0
5

−
2
6
.1
7

1
9
9
.1
4

−
2
6
.6
3



68 A. Bhowmik and S. Majumder

T
a
b
le

2
.
M

a
g
ic

w
av

el
en

g
th

s
(i

n
n
m

)
o
f
S
r+

fo
r

d
iff

er
en

t
fo

cu
si

n
g

a
n
g
le

s
5
0

◦ ,
6
0

◦
a
n
d

7
0

◦
o
f
th

e
L
G

b
ea

m
fo

r
th

e
tr

a
n
si

ti
o
n
s

5
s 1

/
2
(−

1
/
2
)

→
4
d
5
/
2
(m

J
)

N
o
n
-p

a
ra

x
ia
l
L
G

b
e
a
m

S
ta

te
(4

d
5
/
2
(m

J
))

λ
5
0

◦
m

a
g
ic

α
λ
6
0

◦
m

a
g
ic

α
λ
7
0

◦
m

a
g
ic

α
S
ta

te
(4

d
5
/
2
(m

J
))

λ
5
0

◦
m

a
g
ic

α
λ
6
0

◦
m

a
g
ic

α
λ
7
0

◦
m

a
g
ic

α

O
A
M

=
+
1
,
S
A
M

=
+
1

O
A
M

=
+
1
,
S
A
M

=
−
1

(+
1
/
2
)

5
8
4
1
.4
6

9
8
.4
2

2
9
2
0
.7
3

1
0
2
.9
4

2
2
5
5
.6
1

1
0
8
.3
5

(+
1
/
2
)

1
8
7
5
.0
4

1
1
8
.2
8

1
8
0
8
.0
7

1
2
0
.2
8

1
7
6
6
.0
2

2
1
.7
6

1
0
7
7
.1
5

1
1
4
.8
2

1
1
1
6
.7
5

1
1
6
.2
7

1
1
0
5
.9
1

1
2
1
.2
7

1
0
7
9
.7
0

1
3
1
.1
7

1
0
8
2
.2
6

1
3
2
.3
2

1
0
7
2
.0
8

1
3
4
.3
4

6
1
7
.3
9

1
7
5
.8
3

6
1
6
.5
5

1
8
2
.4
8

6
1
4
.0
6

1
8
9
.5
1

5
8
9
.4
4

1
9
2
.1
3

5
9
2
.5
0

1
9
4
.2
2

5
9
6
.3
8

1
9
9
.8
6

4
1
9
.5
5

2
7
.7
1

4
1
8
.7
8

2
7
.4
0

4
1
7
.2
5

2
6
.6
6

4
0
4
.6
5

6
.0
3

4
0
4
.6
5

6
.8
2

4
0
4
.2
9

7
.9
9

2
1
2
.3
2

−
2
5
.6
6

2
1
2
.1
2

−
2
7
.3
8

2
1
2
.3
2

−
2
8
.2
6

2
1
2
.3
2

−
3
1
.5
4

2
1
2
.3
2

−
3
2
.5
8

2
1
2
.3
2

−
3
2
.5
2

2
0
2
.5
9

−
2
1
.9
2

2
0
2
.5
9

−
2
2
.9
7

2
0
2
.6
8

−
2
4
.1
8

2
0
0
.9
0

−
2
6
.5
8

2
0
0
.9
9

−
2
6
.9
6

2
0
1
.1
6

−
2
7
.3
4

(−
1
/
2
)

1
4
6
9
7
.8
6

9
7
.9
4

4
0
3
2
.1
6

1
0
2
.4
3

2
7
4
4
.7
8

1
0
7
.0
1

(−
1
/
2
)

1
7
6
6
.0
2

1
1
9
.1
3

1
7
1
9
.3
7

1
2
0
.7
6

1
6
8
7
.5
3

1
2
2
.4
3

1
0
7
7
.1
5

1
1
4
.8
2

1
1
1
6
.7
5

1
1
6
.2
7

1
1
0
5
.9
1

1
2
1
.2
7

1
0
7
9
.7
0

1
3
0
.9
9

1
0
8
2
.2
6

1
3
2
.3
2

1
0
7
2
.0
8

1
3
4
.3
4

4
1
9
.5
5

−
4
.5
6

4
1
8
.4
0

−
2
.9
9

4
1
6
.8
7

−
0
.4
2

4
0
4
.6
5

2
5
.7
6

4
0
4
.6
5

2
5
.1
4

4
0
4
.2
9

2
5
.2
8

2
1
2
.3
2

−
2
5
.6
6

2
1
2
.1
2

−
2
7
.3
8

2
1
2
.1
2

−
2
8
.2
6

2
1
2
.3
2

−
3
1
.5
4

2
1
2
.3
2

3
2
.5
8

2
1
2
.3
2

−
3
2
.5
2

1
9
9
.0
5

−
2
0
.6
4

1
9
9
.4
9

−
2
1
.4
8

1
9
9
.7
5

−
2
2
.9
5

2
0
2
.8
6

−
2
7
.3
5

2
0
2
.8
6

−
2
7
.7
6

2
0
2
.8
6

−
2
8
.1
8

(+
3
/
2
)

1
4
8
9
.0
0

1
0
6
.0
1

1
4
8
4
.1
5

1
0
9
.2
2

1
4
7
9
.3
3

1
1
3
.5
8

(+
3
/
2
)

1
7
3
9
.0
6

1
1
9
.5
4

1
7
1
9
.3
7

1
2
0
.7
6

1
6
9
7
.5
9

1
2
2
.3
5

1
0
9
5
.2
7

1
1
3
.9
5

1
1
2
5
.0
2

1
1
6
.2
7

1
1
1
6
.7
5

1
2
1
.1
7

1
0
8
2
.2
6

1
3
0
.8
5

1
0
8
7
.4
3

1
3
2
.1
7

1
0
7
2
.0
8

1
3
4
.3
4

6
3
1
.0
7

1
7
0
.7
6

6
3
1
.0
7

1
7
6
.4
4

6
3
0
.2
0

1
8
2
.8
3

6
6
8
.0
8

1
7
7
.6
1

6
6
4
.1
9

1
8
0
.8
7

5
6
6
.0
0

2
0
8
.9
7

5
7
0
.2
5

2
1
2
.3
4

5
7
0
.9
7

2
1
7
.8
9

6
4
8
.1
3

1
8
4
.2
0

6
4
9
.0
5

1
8
6
.0
9

4
2
0
.3
3

6
1
.7
7

4
1
9
.1
7

5
9
.3
9

4
1
7
.2
5

5
5
.8
5

4
0
4
.6
5

−
1
2
.7
8

4
0
4
.6
5

−
1
1
.4
3

4
0
4
.2
9

−
8
.5
9

2
1
2
.3
2

−
2
5
.6
6

2
1
2
.1
2

−
2
7
.3
8

2
1
2
.1
2

−
2
8
.2
6

2
1
2
.3
2

−
3
1
.5
4

2
1
2
.3
2

−
3
2
.5
8

2
1
2
.3
2

−
3
2
.5
2

2
0
5
.6
1

−
2
3
.1
2

2
0
5
.4
3

−
2
4
.0
0

2
0
5
.0
6

−
2
5
.4
2

1
9
8
.8
8

−
2
5
.5
4

1
9
9
.1
4

−
2
6
.0
8

1
9
9
.4
0

−
2
6
.5
8

(c
o
n
ti

n
u
ed

)



Dynamic Polarizabilities and Magic Wavelengths . . . 69

T
a
b
le

2
.
(c

o
n
ti

n
u
ed

)

N
o
n
-p

a
ra

x
ia
l
L
G

b
e
a
m

S
ta

te
(4

d
5
/
2
(m

J
))

λ
5
0

◦
m

a
g
ic

α
λ
6
0

◦
m

a
g
ic

α
λ
7
0

◦
m

a
g
ic

α
S
ta

te
(4

d
5
/
2
(m

J
))

λ
5
0

◦
m

a
g
ic

α
λ
6
0

◦
m

a
g
ic

α
λ
7
0

◦
m

a
g
ic

α

O
A
M

=
+
1
,
S
A
M

=
+
1

O
A
M

=
+
1
,
S
A
M

=
−
1

(−
3
/
2
)

2
1
0
9
.4
1

1
0
1
.9
0

2
0
0
7
.2
0

1
0
5
.4
3

1
8
9
0
.6
0

1
1
0
.0
8

(−
3
/
2
)

1
4
7
9
.3
3

1
2
1
.8
9

1
4
7
4
.5
4

1
2
3
.1
5

1
4
7
9
.3
3

1
2
4
.7
3

1
0
8
4
.8
4

1
1
4
.3
8

1
1
1
6
.7
5

1
1
6
.2
7

1
1
1
4
.0
2

1
2
1
.2
3

1
0
8
7
.4
3

1
3
0
.7
5

1
0
9
2
.6
5

1
3
2
.0
1

1
0
7
7
.1
5

1
3
4
.1
4

6
9
4
.5
6

1
5
0
.7
1

6
9
1
.4
0

1
5
5
.6
3

6
8
7
.2
3

1
6
3
.2
9

6
2
8
.4
6

1
9
2
.5
6

6
2
6
.7
3

1
9
6
.3
4

6
2
5
.0
1

1
9
8
.7
7

6
4
3
.5
5

1
6
5
.6
8

6
4
4
.4
6

1
6
9
.0
6

6
4
6
.2
9

1
7
5
.6
2

5
7
5
.2
9

2
2
2
.8
7

5
7
7
.4
8

2
2
5
.6
2

5
7
8
.9
5

2
2
6
.7
3

4
1
9
.1
7

−
3
5
.1
1

4
1
8
.0
1

−
3
1
.3
3

4
1
6
.4
8

−
2
6
.8
7

4
0
5
.0
1

4
5
.8
9

4
0
4
.6
5

4
3
.9
6

4
0
4
.2
9

4
1
.9
2

2
1
2
.3
2

−
2
5
.6
6

2
1
2
.1
2

−
2
7
.3
8

2
1
2
.1
2

−
2
8
.2
6

2
1
2
.3
2

−
3
1
.5
4

2
1
2
.3
2

−
3
2
.5
8

2
1
2
.3
2

−
3
2
.5
2

1
9
5
.2
2

−
1
9
.2
0

1
9
5
.8
9

−
2
0
.4
5

1
9
6
.8
2

−
2
1
.7
6

2
0
4
.5
0

−
2
8
.1
2

2
0
4
.3
2

−
2
8
.4
9

2
0
4
.2
3

−
2
8
.8
2

(+
5
/
2
)

(+
5
/
2
)

1
4
5
5
.7
0

1
2
2
.3
0

1
4
7
4
.5
4

1
2
3
.1
5

1
4
9
3
.8
8

1
2
4
.2
5

1
0
9
7
.9
1

1
3
0
.2
5

1
0
9
7
.9
1

1
3
1
.6
9

1
0
8
2
.2
6

1
3
3
.8
8

6
3
5
.4
7

1
6
8
.8
8

6
3
3
.7
0

1
7
6
.4
4

6
3
3
.7
0

1
8
1
.3
1

6
9
7
.7
5

1
6
9
.2
1

6
9
4
.5
6

1
7
1
.8
1

6
9
0
.3
5

1
7
5
.5
3

5
3
7
.9
4

2
3
7
.8
9

5
4
2
.4
2

2
4
1
.8
8

5
4
7
.6
4

2
4
3
.3
5

6
4
3
.5
5

1
8
6
.0
1

6
4
4
.4
6

1
8
7
.8
8

6
4
4
.4
6

1
9
0
.2
8

4
2
0
.3
3

9
8
.7
4

4
1
9
.5
5

9
3
.3
4

4
1
7
.6
3

8
6
.1
5

4
0
4
.6
5

−
3
2
.0
5

4
0
4
.6
5

−
2
8
.7
7

4
0
3
.9
3

−
2
4
.6
2

2
1
2
.3
2

−
2
5
.6
6

2
1
2
.1
2

−
2
7
.3
8

2
1
2
.1
2

−
2
8
.2
6

2
1
2
.3
2

−
3
1
.5
4

2
1
2
.3
2

−
3
2
.5
8

2
1
2
.3
2

−
3
2
.5
2

2
0
8
.9
1

−
2
4
.4
8

2
0
8
.3
4

−
2
5
.4
9

2
0
7
.8
6

−
2
6
.2
0

1
9
6
.4
8

−
2
4
.6
1

1
9
6
.9
9

−
2
5
.1
2

1
9
7
.6
7

−
2
5
.8
2

(−
5
/
2
)

1
2
2
8
.1
2

1
1
3
.9
7

1
2
7
9
.8
7

1
1
6
.6
4

(−
5
/
2
)

1
2
6
2
.1
4

1
2
5
.7
8

1
2
7
6
.2
8

1
2
7
.1
3

1
2
8
7
.1
0

1
2
7
.9
9

1
1
3
0
.6
0

1
1
6
.1
3

1
1
2
7
.8
1

1
2
0
.7
4

1
1
1
1
.3
0

1
2
9
.7
9

1
1
1
1
.3
0

1
3
1
.2
7

1
0
9
5
.2
7

1
3
3
.4
2

7
8
6
.9
3

1
3
4
.4
1

7
6
0
.6
6

1
4
0
.8
6

7
4
0
.8
7

1
5
1
.6
6

6
3
1
.9
5

1
9
0
.7
5

6
3
1
.0
7

1
9
3
.1
6

6
3
1
.0
7

1
9
6
.6
5

6
4
0
.8
3

1
6
7
.8
0

6
4
1
.7
4

1
7
3
.4
2

6
4
2
.6
4

1
7
7
.9
4

5
6
3
.2
1

2
3
3
.4
6

5
6
9
.5
4

2
3
1
.2
4

5
7
0
.2
5

2
3
2
.4
1

4
1
9
.1
7

−
6
2
.6
7

4
1
8
.0
1

−
5
8
.2
4

4
1
6
.1
0

−
5
1
.2
0

4
0
5
.0
1

6
7
.4
4

4
0
4
.6
5

6
4
.1
1

4
0
4
.6
5

6
0
.5
5

2
1
2
.3
2

−
2
5
.6
6

2
1
2
.1
2

−
2
7
.3
8

2
1
2
.1
2

−
2
8
.2
6

2
1
2
.3
2

−
3
1
.5
4

2
1
2
.3
2

−
3
2
.5
8

2
1
2
.3
2

−
3
2
.5
2

1
8
9
.0
6

−
1
7
.1
7

1
9
0
.5
6

−
1
8
.3
8

1
9
2
.4
9

−
2
0
.1
1

2
0
6
.8
2

−
2
9
.2
3

2
0
6
.4
5

−
2
9
.5
2

2
0
5
.9
8

−
2
9
.6
3



70 A. Bhowmik and S. Majumder

T
a
b
le

3
.
M

a
g
ic

w
av

el
en

g
th

s
(i

n
n
m

)
o
f
S
r+

fo
r
d
iff

er
en

t
fo

cu
si

n
g

a
n
g
le

s
5
0

◦ ,
6
0

◦ ,
a
n
d

7
0

◦
o
f
th

e
L
G

b
ea

m
fo

r
th

e
tr

a
n
si

ti
o
n
s

5
s 1

/
2
(−

1
/
2
)

→
4
d
5
/
2
(m

J
)

N
o
n
-p

a
ra

x
ia
l
L
G

b
e
a
m

S
ta

te
(4

d
5
/
2
(m

J
))

λ
5
0

◦
m

a
g
ic

α
λ
6
0

◦
m

a
g
ic

α
λ
7
0

◦
m

a
g
ic

α
S
ta

te
(4

d
5
/
2
(m

J
))

λ
5
0

◦
m

a
g
ic

α
λ
6
0

◦
m

a
g
ic

α
λ
7
0

◦
m

a
g
ic

α

O
A
M

=
+
2
,
S
A
M

=
+
1

O
A
M

=
+
2
,
S
A
M

=
−
1

(+
1
/
2
)

3
9
2
7
.8
8

1
0
0
.1
7

2
5
1
7
.3
1

1
0
6
.0
0

2
0
5
2
.4
0

1
1
2
.1
8

(+
1
/
2
)

1
8
5
2
.1
7

1
1
8
.9
3

1
7
9
3
.8
3

1
2
0
.8
9

1
7
3
9
.0
6

1
2
2
.9
2

1
0
7
7
.1
5

1
1
5
.8
9

1
1
0
3
.2
3

1
1
9
.7
0

1
0
6
9
.5
6

1
2
6
.1
7

1
0
8
7
.4
3

1
3
1
.2
9

1
0
7
4
.6
1

1
3
3
.3
9

1
0
7
9
.7
0

1
3
5
.0
8

6
1
7
.3
9

1
7
7
.8
5

6
1
4
.8
9

1
8
6
.7
1

6
1
2
.4
1

1
9
6
.0
4

5
9
0
.9
6

1
9
3
.3
5

5
9
4
.0
5

1
9
8
.0
4

6
0
0
.3
1

2
0
2
.7
1

4
1
9
.5
5

2
7
.0
4

4
1
8
.0
1

2
6
.8
4

4
1
5
.7
2

2
6
.5
2

4
0
4
.2
9

5
.8
9

4
0
4
.2
9

6
.9
0

4
0
4
.2
9

8
.3
9

2
1
2
.2
2

−
2
6
.2
3

2
1
2
.3
2

−
2
7
.7
1

2
1
2
.2
2

−
2
9
.4
4

2
1
2
.2
2

−
3
2
.2
9

2
1
2
.5
2

−
3
2
.5
6

2
1
2
.2
2

−
3
3
.1
4

2
0
2
.5
9

−
2
2
.3
0

2
0
2
.6
8

−
2
3
.7
1

2
0
2
.7
7

−
2
4
.9
8

2
0
0
.9
0

−
2
6
.6
6

2
0
1
.0
7

−
2
7
.1
3

2
0
1
.3
4

−
2
7
.6
9

(−
1
/
2
)

6
3
2
8
.2
4

9
9
.7
1

3
1
2
0
.7
8

1
0
5
.1
4

2
2
8
9
.6
2

1
1
1
.3
6

(−
1
/
2
)

1
7
3
9
.0
6

1
1
9
.7
9

1
7
0
0
.1
3

1
2
1
.5
6

1
6
5
0
.8
5

1
2
3
.6
1

1
0
7
7
.1
5

1
1
6
.0
5

1
1
0
3
.2
3

1
1
9
.7
0

1
0
6
9
.5
6

1
2
6
.1
7

1
0
9
0
.0
3

1
3
1
.1
0

1
0
7
7
.1
5

1
3
3
.2
7

1
0
7
9
.7
0

1
3
5
.0
5

4
1
9
.1
7

−
4
.4
0

4
1
7
.6
3

−
2
.1
9

4
1
5
.7
2

0
.6
8

4
0
4
.2
9

2
6
.2
0

4
0
4
.2
9

2
5
.6
8

4
0
4
.2
9

2
4
.4
3

2
1
2
.2
2

−
2
6
.2
3

2
1
2
.3
2

−
2
7
.7
1

2
1
2
.2
2

−
2
9
.4
4

2
1
2
.2
2

−
3
2
.2
9

2
1
2
.5
2

−
3
2
.5
6

2
1
2
.2
2

−
3
3
.1
4

1
9
9
.1
4

−
2
0
.7
3

1
9
9
.6
6

−
2
2
.3
4

2
0
0
.1
0

−
2
3
.8
4

2
0
2
.8
6

−
2
7
.4
9

2
0
2
.8
6

−
2
7
.9
2

2
0
2
.8
6

−
2
8
.3
2

(+
3
/
2
)

1
4
8
4
.1
5

1
0
7
.3
9

1
4
7
9
.3
3

1
1
1
.6
6

1
4
7
9
.3
3

1
1
6
.6
2

(+
3
/
2
)

1
7
3
2
.4
5

1
1
9
.8
3

1
7
0
6
.4
9

1
2
1
.5
0

1
6
8
1
.3
0

1
2
3
.4
2

1
0
9
5
.2
7

1
1
5
.3
3

1
1
1
4
.0
2

1
1
9
.0
5

1
0
8
2
.2
6

1
2
5
.7
7

1
0
9
2
.6
5

1
3
0
.9
7

1
0
7
7
.1
5

1
3
3
.1
9

1
0
8
2
.2
6

1
3
4
.9
5

6
3
1
.0
7

1
7
2
.2
7

6
3
0
.2
0

1
7
9
.3
9

6
2
9
.3
3

1
8
8
.1
8

6
6
7
.1
1

1
7
9
.0
6

6
6
0
.3
4

1
8
3
.1
8

5
6
7
.4
1

2
0
9
.4
0

5
7
0
.2
5

2
1
4
.6
1

5
7
2
.4
0

2
2
2
.7
2

6
4
8
.1
3

1
8
4
.7
1

6
4
9
.0
5

1
8
6
.6
8

4
1
9
.9
4

6
1
.3
0

4
1
8
.4
0

5
7
.7
2

4
1
6
.1
0

5
3
.6
4

4
0
4
.2
9

−
1
2
.2
5

4
0
4
.2
9

−
9
.9
0

4
0
4
.2
9

−
7
.1
0

2
1
2
.2
2

−
2
6
.2
3

2
1
2
.3
2

−
2
7
.7
1

2
1
2
.2
2

−
2
9
.4
4

2
1
2
.2
2

−
3
2
.2
9

2
1
2
.5
2

−
3
2
.5
6

2
1
2
.2
2

−
3
3
.1
4

2
0
5
.5
2

−
2
3
.1
8

2
0
5
.2
4

−
2
4
.3
5

2
0
4
.8
7

−
2
5
.6
9

1
9
8
.9
7

−
2
5
.7
3

1
9
9
.3
1

−
2
6
.3
0

1
9
9
.6
6

−
2
6
.8
7

(c
o
n
ti

n
u
ed

)



Dynamic Polarizabilities and Magic Wavelengths . . . 71

T
a
b
le

3
.
(c

o
n
ti

n
u
ed

)

N
o
n
-p

a
ra

x
ia
l
L
G

b
e
a
m

S
ta

te
(4

d
5
/
2
(m

J
))

λ
5
0

◦
m

a
g
ic

α
λ
6
0

◦
m

a
g
ic

α
λ
7
0

◦
m

a
g
ic

α
S
ta

te
(4

d
5
/
2
(m

J
))

λ
5
0

◦
m

a
g
ic

α
λ
6
0

◦
m

a
g
ic

α
λ
7
0

◦
m

a
g
ic

α

O
A
M

=
+
2
,
S
A
M

=
+
1

O
A
M

=
+
2
,
S
A
M

=
−
1

(−
3
/
2
)

2
0
7
1
.0
6

1
0
3
.3
2

1
9
4
7
.1
5

1
0
7
.9
8

1
8
1
5
.2
7

1
1
3
.4
2

(−
3
/
2
)

1
4
7
4
.5
4

1
2
2
.3
8

1
4
7
9
.3
3

1
2
3
.9
4

1
4
7
9
.3
3

1
2
5
.5
8

1
0
8
7
.4
3

1
1
5
.5
5

1
1
1
1
.3
0

1
1
9
.4
4

1
0
7
4
.6
1

1
2
6
.0
6

1
0
9
7
.9
1

1
3
0
.7
1

1
0
8
2
.2
6

1
3
2
.9
9

1
0
8
4
.8
4

1
3
4
.7
4

6
9
4
.5
6

1
5
2
.8
0

6
8
9
.3
1

1
5
9
.5
1

6
8
1
.0
7

1
6
9
.5
7

6
2
7
.5
9

1
9
3
.7
0

6
2
6
.7
3

1
9
6
.7
6

6
2
5
.0
1

2
0
0
.2
2

6
4
4
.4
6

1
6
7
.3
8

6
4
6
.2
9

1
7
3
.5
9

6
4
6
.2
9

1
8
0
.3
3

5
7
6
.0
2

2
2
3
.8
6

5
7
7
.4
8

2
2
6
.2
8

5
7
9
.6
9

2
2
7
.6
0

4
1
8
.7
8

−
3
4
.3
9

4
1
7
.2
5

−
2
9
.3
8

4
1
5
.3
5

−
2
3
.9
5

4
0
4
.2
9

4
5
.4
3

4
0
4
.6
5

4
3
.9
4

4
0
4
.6
5

4
1
.0
0

2
1
2
.2
2

−
2
6
.2
3

2
1
2
.3
2

−
2
7
.7
1

2
1
2
.2
2

−
2
9
.4
4

2
1
2
.2
2

−
3
2
.2
9

2
1
2
.5
2

−
3
2
.5
6

2
1
2
.2
2

−
3
3
.1
4

1
9
5
.3
0

−
1
9
.6
8

1
9
6
.3
1

−
2
1
.0
2

1
9
7
.5
0

−
2
2
.7
4

2
0
4
.4
1

−
2
8
.2
1

2
0
4
.3
2

−
2
8
.6
3

2
0
4
.1
4

−
2
9
.0
2

(+
5
/
2
)

1
1
6
5
.3
0

1
2
3
.1
2

(+
5
/
2
)

1
4
6
0
.3
6

1
2
2
.7
3

1
4
8
4
.1
5

1
2
3
.8
0

1
4
9
8
.7
9

1
2
5
.2
8

1
1
3
6
.2
4

1
2
3
.9
4

1
1
0
5
.9
1

1
3
0
.5
9

1
0
9
0
.0
3

1
3
2
.7
5

1
0
9
0
.0
3

1
3
4
.5
3

6
3
5
.4
7

1
7
1
.0
8

6
3
3
.7
0

1
7
8
.7
7

6
3
2
.8
2

1
8
6
.0
3

6
9
5
.6
2

1
7
0
.9
3

6
9
1
.4
0

1
7
4
.0
0

6
8
6
.2
0

1
7
8
.4
8

5
3
9
.2
1

2
3
9
.0
6

5
4
5
.0
2

2
4
2
.0
9

5
5
2
.2
8

2
4
3
.7
0

6
4
3
.5
5

1
8
7
.1
5

6
4
4
.4
6

1
8
9
.1
0

6
4
5
.3
7

1
9
1
.6
7

4
2
0
.3
3

9
7
.0
1

4
1
8
.7
8

9
0
.4
4

4
1
6
.4
8

8
0
.7
6

4
0
3
.9
3

−
3
0
.4
0

4
0
3
.9
3

−
2
6
.8
8

4
0
4
.2
9

−
2
2
.5
9

2
1
2
.2
2

−
2
6
.2
3

2
1
2
.3
2

−
2
7
.7
1

2
1
2
.2
2

−
2
9
.4
4

2
1
2
.2
2

−
3
2
.2
9

2
1
2
.5
2

−
3
2
.5
6

2
1
2
.2
2

−
3
3
.1
4

2
0
8
.7
2

−
2
4
.7
5

2
0
8
.1
5

−
2
6
.0
5

2
0
7
.5
8

−
2
7
.2
1

1
9
6
.5
6

−
2
4
.7
0

1
9
7
.3
3

−
2
5
.3
7

1
9
8
.0
2

−
2
6
.0
9

(−
5
/
2
)

1
1
6
8
.2
9

1
1
3
.2
4

1
2
6
2
.1
4

1
1
5
.4
7

1
3
2
8
.3
8

1
1
9
.0
9

(−
5
/
2
)

1
2
6
5
.6
5

1
2
6
.0
0

1
2
7
9
.8
7

1
2
7
.2
7

1
2
9
4
.4
1

1
2
8
.6
5

1
1
3
6
.2
4

1
1
3
.6
9

1
1
2
7
.8
1

1
1
8
.7
3

1
1
0
3
.2
3

1
2
4
.8
9

1
1
1
6
.7
5

1
3
0
.0
7

1
1
0
0
.5
6

1
3
2
.2
8

1
1
0
0
.5
6

1
3
4
.2
6

7
7
6
.2
1

1
3
7
.6
5

7
5
0
.6
3

1
4
6
.6
6

7
2
5
.5
3

1
5
8
.3
8

6
3
1
.9
5

1
9
1
.8
7

6
3
1
.9
5

1
9
4
.5
8

6
3
0
.2
0

1
9
7
.7
9

6
4
0
.8
3

1
6
8
.5
7

6
4
1
.7
4

1
7
4
.8
4

6
4
2
.6
4

1
8
2
.2
1

5
6
5
.3
0

2
3
3
.5
7

5
6
9
.5
4

2
3
1
.9
6

5
7
0
.9
7

2
3
4
.2
2

4
1
8
.4
0

−
6
1
.5
6

4
1
7
.2
5

−
5
5
.4
1

4
1
4
.9
7

−
4
6
.6
5

4
0
4
.2
9

6
6
.5
3

4
0
4
.6
5

6
2
.7
8

4
0
4
.6
5

5
7
.5
2

2
1
2
.2
2

−
2
6
.2
3

2
1
2
.3
2

−
2
7
.7
1

2
1
2
.2
2

−
2
9
.4
4

2
1
2
.2
2

−
3
2
.2
9

2
1
2
.5
2

−
3
2
.5
6

2
1
2
.2
2

−
3
3
.1
4

1
8
9
.4
5

−
1
7
.3
9

1
9
1
.4
4

−
1
9
.0
2

1
9
3
.8
0

−
2
1
.7
7

2
0
6
.7
3

−
2
9
.3
6

2
0
6
.1
7

−
2
9
.5
0

2
0
5
.7
0

−
2
9
.7
6



72 A. Bhowmik and S. Majumder

4 Conclusions

In conclusions, we find a wide list of magic wavelengths for the transitions
5s1/2(mJ = −1/2) → 4d3/2(mJ) and 5s1/2(−1/2) → 4d5/2(mJ ) of the Sr+ ion.
We have found here a quite distinct set of values of magic wavelengths compared
to the same with the initial state 5s1/2(mJ = 1/2). These magic wavelengths
fall from infrared to vacuum-ultraviolet range in the electromagnetic spectrum
and will help experimentalists to trap ions in either at the high intensity or the
low-intensity region of the LG beam. The variations in the magic wavelength
are found tunable by varying the OAM, SAM, and focusing angles of the LG
beam. An appreciable amount of deviations concerning focusing angles in the
infrared magic wavelengths and corresponding polarizabilities are observed. As
these infrared magic wavelengths have significant large values of polarizabilities,
they are recommended as the best for trapping in the high precision experiments.
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Abstract. In this proceeding, we present a study of the spin–orbit inter-
action dominated features in time domain photoelectron dynamics. In
particular, a case study of Wigner–Eisenbud–Smith (WES) time delay
in the photoionization of Xe 4d subshell in the near-threshold region is
presented and discussed. We show that the Spin–Orbit Interaction Acti-
vated Interchannel Coupling (SOIAIC) produces a prominent resonance-
like structure in the WES time delay spectrum.

1 Introduction

Resonances are ubiquitous in nature. Sensitive energy-dependence of the oscilla-
tor strengths of atomic transitions cause resonance features in observables such
as cross-section, photoelectron angular distribution asymmetry parameter, etc.
These resonances could be due to the direct interference between different tran-
sition channels, or mediated by the correlated electron dynamics. When an elec-
tromagnetic field interacts with an atomic system, there are various possible
pathways through which the system may evolve such as ionization of the atomic
system, its excitation to a higher energy bound state, autoionization, multiple
ionization, etc. Observation of real-time dynamics of these light–matter interac-
tions in molecules and atoms has become possible very recently after exciting
advances in ultrafast laser techniques especially in the past two decades.

Many experimental and theoretical studies have been carried out in the
past decade to observe and understand the mechanism of photon–atomic-system
interaction. The time an electron takes to be detached from the potential of the
residual subsystem is a quantity of fundamental interest. We shall not review the
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original literature extensively. For more details of the attosecond pump-probe
like measurement and different theoretical analyses, the reader is referred to
[1–8].

In the pump-probe technique, the total observed time delay can be written
as

τatomic
∼= τWES + τmeasurement, (1)

where τatomic is the total time delay measured in the experiment, τWES is
the intrinsic time delay associated to the one photon (pump) transition, and
τmeasurement is the delay induced by the measurement process (probe).

For scattering by a spherically symmetric potential, the WES time delay for
the lth partial wave is given by

tl,WES(E) = 2�
∂δl(E)

∂E
. (2)

Since photoionization is interpreted as half scattering [9], the time delay is
given by the energy derivative of the phase of the complex matrix element of the
coupling operator (here d representing the dipole operator);

tWES(E, Ω̂) = �
d

dE
arg

[〈
ψf (E, Ω̂)|d|ψi

〉]
(3)

where ψi and ψf are the initial and the final state wave functions, respectively
[7].

The WES time delay comes from the phase accumulated by the photoelectron
due to its interaction with the residual ion. For photoionization of a neutral atom,
the potential between the residual ion and the photoelectron is Coulombic even
at a large distance, while it is dominated by inter-electronic interactions in the
small r region. The asymptotic phase shift due to the scattering by a pure
Coulomb-potential is

δl,Coulomb(E, r) = σC
l (E) +

Z

k
ln 2kr (4)

where σC
l (E) = argΓ (1 + l − iZ

k ) is the “Coulomb phaseshift”. The total time
delay due the scattering in this case is

tl,Coulomb(E, r) = �
∂δl,Coulomb(E, r)

∂E
= �

[
∂σC

l (E)
∂E

+
Z

(2E)3/2
{1 − ln(2kr)}

]
.

(5)
�

∂σC
l (E)
∂E is the part of the time delay attributed to the “Coulomb phaseshift”. In

the case of a Coulomb potential, the term �
Z

(2E)3/2 {1 − ln(2kr)} also contributes
to the time delay.

In streaking experiments, for a short-range potential the logarithmic
Coulomb term does not contribute to the time delay, and τStreaking is, there-
fore, the same as τWES corresponding to the short-range potential [7]. When the
Coulomb term is present

τStreaking = τSR+C
WES + τCLC , (6)
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where τSR+C
WES = �

∂σSR+C
l (E)

∂E and τCLC is the time shift due to the motion of
electron in residual Coulomb along with the Laser field (CLC: Coulomb Laser
Coupling); σSR+C

l (E) = ηSR +argΓ [1 + l − iZ/k]. ηSR is the phase shift due to
the short- range part of the potential due to the correlated many-body interac-
tion of multi-electronic system. For one-electron systems ηSR = 0. Together with
the pump-probe experimental observation and an estimate of cc/CLC time delay
one can get an understanding of the light–matter interaction (pump-system).

These attosecond pump-probe experiments have opened up a new domain in
which information which was time integrated into earlier measurement schemes
can now be captured [7,10–15]. Theoretically, the atomic processes are described
by the complex transition matrix elements, each of which has an absolute mag-
nitude, and a phase. Accurate computation of these matrix elements requires the
inclusion of important electron interactions/correlations to obtain satisfactory
agreement with experiments.

The relativistic effects in the photoionization of atoms are especially impor-
tant for high-Z atoms in the periodic table. One of the most important mani-
festations of the relativistic effects is the spin–orbit splitting of the nl subshell.
Important consequences of this include the splitting of spectral lines, nonzero
photoionization cross-section near Cooper minima, etc. [16–19]. An important
leveraging of the spin–orbit interaction in the photoionization from an atomic
spin–orbit doublet has been seen in experiments and is understood in terms of
some electron correlation effects that were not known earlier [20–22]. The fine-
structure splitting of the nd subshell and the delayed maximum in its photoion-
ization cross-section involves a significant influence on the oscillator strengths in
the usually strong l+1/2 channels by that from the l−1/2 photoionization chan-
nels. The l − 1/2 cross-section is also affected, but somewhat less significantly.
The leveraging of the spin–orbit interaction affects also the spin polarization
and the angular distribution of photoelectrons [23,24]. The correlation-induced
leveraging of spin–orbit interactions is also observed in the photoionization of
the 3d subshell of Xe; and it is predicted that as we go inner from outer subshells
this effect should get to be more prominent, since spin–orbit splitting is more
[20].

The immediate threshold energy region is highly influenced by the CLC/cc
time delay, which is important for measurement. Among some other possibili-
ties, the time delay relative to different subshells, or relative to different atomic
species, at different angles can be studied. Such studies would provide valu-
able information about the one photon transition [25–28]. The spin–orbit split
subshell properties/structures have been studied, and interchannel interaction
effects have been observed in various observables of the experiment such as
the photoionization cross-section, angular distribution asymmetry parameter,
and the spin polarization parameters. Most of these observations/studies were
carried out in the energy domain [20–24], now possible to assess in the time
domain. The spin–orbit interaction affects the photoionization cross-section in
the l + 1/2 state but not quite the photoelectron angular distribution, even if
it depends on the relative phases in the different dipole channels. So the natu-
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ral question comes: how is the energy variation of the Wigner–Eisenbud–Smith
(WES) time delay in the near-threshold region affected by the Spin–Orbit Acti-
vated Inter-Channel Coupling (SOIAIC)? In a recent study, it was found that
the three relativistic channels from the 4d subshell to εf final states show very
different time delays at energies near the thresholds. Similar results have been
found in the photoionization of [29,30]. These studies reveal the dynamical dif-
ferences among the individual channels brought about by interchannel coupling.
In a recent work [31], the spin–orbit interaction induced confinement resonances
were investigated in the WES time delay in photoionization from high Z atoms.

In essence, it is found that WES time delay is highly sensitive to the SOIAIC
effect in the case of photoionization from endohedral atoms. In general, the
interference between different channels with the outgoing final state of different
angular momentum causes the dependence of the WES time delay on the angle
of photoelectron ejection with respect to the polarization of light. The present
study is one of the very first attempts to understand the SOIAIC effect in pho-
toionization time delay in specific dipole-allowed channels and investigate the
energy and the angle dependence of the WES photoionization time delay.

This paper is organized in the following manner. In the next section, we
present a brief theoretical formulation. Results for the angle and energy depen-
dence of WES time delay for photoemission from inner 4d3/2 and 4d5/2 sub-
shells of Xe at two different levels of truncation are presented and discussed in
Sect. 3. Conclusions are presented in the Sect. 4.

2 Theoretical Method

2.1 Photoionization Amplitude

Detailed theoretical formalism that provides the foundation for the present
work has been presented elsewhere [25,30]. Electric dipole transitions from
an nd initial state leads to the following six ionization channels: ndj=3/2 →
εp1/2, εp3/2, εf5/2 and ndj=5/2 → εp3/2, εf5/2, εf7/2. The following expressions
for the nd3/2 ionization amplitudes [30] are of importance for the present work.
In (7), the superscript 1+ of T ′ represents electric multipole transition with spin-
up final state (similarly 1− represents spin-down final state in other cases). The
subscripts 10 represent the unit angular momentum photon with plane polar-
ization. The subscript nd3/2,1/2 of

[
T

′(1+)
10

]
represent the initial state ndjm from

which the photoionization is taking place. Dnd3/2→εp3/2 is used as a shorthand
notation for the reduced dipole matrix element of the transition nd3/2 → εp3/2,
which contains the partial wave phase shift of the outgoing photoelectron and
the electron-correlation induced phase. In our calculations, these phases are the
DHF (Dirac-Hartree-Fock) phase (Coulomb phaseshift and short range phase due
to the exchange and non-Coulombic part of the potential for a multi-electronic
atom) and the short range many-body-correlation correction to the DHF phase
(in total similar to σSR+C

l as defined earlier). Ylm are the spherical harmonics.
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This scheme of notation has been followed for writing the expressions for all T ′s:

[
T

′(1+)
10

]
nd3/2,1/2

= − 1
3
√

2
Dnd3/2→εp1/2Y10(p̂) +

1
3

√
1
10

Dnd3/2→εp3/2Y10(p̂)

+

√
3
70

Dnd3/2→εf5/2Y30(p̂).

(7)

[
T

′(1−)
10

]
nd3/2,1/2

=
1
3
Dnd3/2→εp1/2Y11(p̂) +

1
6
√

5
Dnd3/2→εp3/2Y11(p̂)

−
√

2
35

Dnd3/2→εf5/2Y31(p̂).
(8)

[
T

′(1+)
10

]
nd3/2,3/2

=
1
2

√
3
5
Dnd3/2→εp3/2Y11(p̂) +

√
2

105
Dnd3/2→εf5/2Y31(p̂). (9)

[
T

′(1−)
10

]
nd3/2,3/2

= −
√

1
21

Dnd3/2→εf5/2Y32(p̂). (10)

The angle-resolved amplitudes for the nd5/2 initial state take the following
forms:

[
T

′(1+)
10

]
nd5/2,1/2

=
1√
15

Dnd5/2→εp3/2Y10(p̂) − 1
7
√

10
Dnd5/2→εf5/2Y30(p̂)

−
√

2
7

Dnd5/2→εf7/2Y30(p̂).

(11)

[
T

′(1−)
10

]
nd5/2,1/2

=
1√
30

Dnd5/2→εp3/2Y11(p̂) +
1
7

√
2
15

Dnd5/2→εf5/2Y31(p̂)

− 1
7

√
3
2
Dnd5/2→εf7/2Y31(p̂).

(12)

[
T

′(1+)
10

]
nd5/2,3/2

=
1√
15

Dnd5/2→εp3/2Y11(p̂) − 1
7

√
3
5
Dnd5/2→εf5/2Y31(p̂)

− 5
14

√
3
Dnd5/2→εf7/2Y31(p̂).

(13)

[
T

′(1−)
10

]
nd5/2,3/2

=
1
7

√
3
2
Dnd5/2→εf5/2Y32(p̂)− 1

14

√
10
3

Dnd5/2→εf7/2Y32(p̂). (14)

[
T

′(1+)
10

]
nd5/2,5/2

= −1
7

√
5
6
Dnd5/2→εf5/2Y32(p̂) −

√
6

14
Dnd5/2→εf7/2Y32(p̂). (15)

[
T

′(1−)
10

]
nd5/2,5/2

=
√

5
7

Dnd5/2→εf5/2Y33(p̂) − 1
14

Dnd5/2→εf7/2Y33(p̂). (16)

The corresponding amplitudes with the possible m = −1/2,−3/2,−5/2 pro-
jection will have similar structures. The associated photoelectron group delay,
which is the WES time delay [32–35] is defined as dη

dE , where η = tan−1
[
ImT 1±

10

ReT 1±
10

]
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The angle-dependent time delay for the case where neither the orientation of
the residual ion nor the spin ν of the photoelectron is detected is given for the
ndj state as

τndj
(θ) =

∑
m,ν τndj,m,ν

(θ)
∣∣∣∣
[
T

′(1ν)
10

]
ndj,m

∣∣∣∣
2

∑
m,ν

∣∣∣∣
[
T

′(1ν)
10

]
ndj,m

∣∣∣∣
2 (17)

which is the weighted average over the initial m-states and final state spins of
the photoelectron. We have presented the expressions only for positive m =
1/2, 3/2, 5/2. The corresponding time delay expressions with negative m are
identical.

2.2 Level of Truncation

Since the photoionization of atoms involves correlated many-electron dynamics,
the ab-initio Relativistic Random Phase Approximation (RRPA), which includes
both the relativistic and the many-electron correlation effects on the same footing
[36–38], is applied for calculating the complex matrix elements of the dipole
transitions. For including the select final state correlations, calculations have
been performed at the following two levels of truncation in RRPA:

Level 1 [10 channel coupled]

4d5/2 → εf7/2, εf5/2, εp3/2

5p3/2 → εd5/2, εd3/2, εs1/2

5p1/2 → εd3/2, εs1/2

5s1/2 → εp3/2, εp1/2

4d3/2 → εf5/2, εp3/2, εp1/2

5p3/2 → εd5/2, εd3/2, εs1/2

5p1/2 → εd3/2, εs1/2

5s1/2 → εp3/2, εp1/2

Level 2 [13 channel coupled]

4d5/2 → εf7/2, εf5/2, εp3/2

4d3/2 → εf5/2, εp3/2, εp1/2

5p3/2 → εd5/2, εd3/2, εs1/2

5p1/2 → εd3/2, εs1/2

5s1/2 → εp3/2, εp1/2
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In level-1 truncation, we include the intra-subshell final-state correlations
but exclude interchannel coupling that includes channels from different subshells
[independent particle type]. In the level-II truncation scheme, we include both
intra-subshell and inter-subshell interchannel coupling for channels originating
from the spin–orbit split 4d subshell [correlated particle type]. These alterna-
tive schemes are very similar, respectively, to the Pseudo-Independent Particle
Truncation (PIPT) and Intra Sub-Shell Truncation (ISST) schemes described in
[23], and we, therefore, use the same nomenclature.

3 Results and Discussion

The weighted average, as defined in (17), for 4d3/2 is plotted in Fig. 1. There are
four channels which contribute in general to the average with their corresponding
weights. The WES time delay from each transition amplitude

[
T

′(1±)
10

]
nd3/2,1/2

and
[
T

′(1±)
10

]
nd3/2,3/2

are computed (not shown here). The WES time delay spec-

tra with the corresponding weights are averaged as defined in (19) and plotted in
Fig. 1. The results from the coupled calculation (ISST) are shown in bold solid
lines for different angles in different colors. Corresponding uncoupled (PIPT)
results are shown with thin dashed lines in the same color codes as used in ISST
calculation(s).

Looking into each of the transition amplitudes from 4d3/2, we observe that the
interfering channels are 4d3/2 → εp1/2, εp3/2 and εf5/2 along with the respective
spherical harmonics of the continuum final states. The WES time delays for[
T

′(1±)
10

]
nd3/2,1/2

and
[
T

′(1+)
10

]
nd3/2,3/2

are angle dependent owing to the fact that
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there are more than one final state with different symmetry (i.e., different angular
momenta). The energy and angular variation of the WES time delay in each
channel depends on the oscillator strengths of the dipole transitions (indicated
as D).

Some sharp structures of the WES time delay spectrum in the specific tran-
sition amplitudes are washed out in these averages; but these average results
are more amenable by the experiments. The angular variation of time delay is
non-monotonous in the near-threshold region. Specially near 60◦–90◦ angle of
photoelectron emission, the variation is high and it drops down at the photon
energies above 85 eV. The variation with respect to energy is most prominent
in the ∼10 eV above threshold (4d3/2) region. From the threshold, it starts with
a very high positive value owing to the dominance of the Coulomb phase and
then the correlation-induced phase of the outgoing photoelectron shows up in
the WES time delay as a sharp variation near 80eV photon energy. The differ-
ence between the PIPT and ISST is very prominent in this energy region, which
reflects the impact of SOIAIC on the WES time delay.

Similar to Fig. 1, in Fig. 2 we have shown the WES time delay in pho-
toionization from 4d5/2 subshell of Xe at different energies and angles. Here, the
interfering channels are 4d5/2 → εp3/2, εf5/2 and εf7/2. The WES time delays

for
[
T

′(1±)
10

]
nd5/2,1/2

and
[
T

′(1+)
10

]
nd5/2,3/2

are angle dependent.

The single-hump or no-hump like structure in PIPT level splits into the triple-
hump-like structure in ISST. This difference in structure is due to the inclusion
of correlation between the channels originating from 4d3/2 and 4d5/2 subshells.
Up to about 80eV, the spin–orbit effect is much prominent and it decreases as
the photon energy increases. Eventually, the PIPT result resembles the results of
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ISST as also seen in 4d3/2 case. This is easily understandable, as photoionization
becomes mostly one-electron process for high photon energy. This is very clear
from the present study that not only the transitions from l + 1/2 subshell gets
affected by the channels from l − 1/2 subshell, the reverse effect also holds. This
brings out the result of the general interchannel interaction in which one channel
is affected by the other degenerate channels at the same energy. Since the phase
and its variations with respect to energy and angle are much sensitive to these
changes, the interchannel interactions between the channels from spin–orbit split
subshells manifest in the WES time delay in a prominent way, however complex.

4 Conclusions

The angular dependence of WES time delay is present in six out of ten channels,
where the interfering continuum final states have different angular momentum
quantum numbers. The weighted averages for 4d3/2 and 4d5/2 are presented and
discussed. The hump-like structure as seen in 4d3/2 and the triple-hump-like
structure in 4d5/2 time delays in the energy range of 80 ± 5 eV are due to the
interchannel coupling between the dipole transitions from 4d3/2 with those from
4d5/2.

Two distinct effects play a major role in determining the time delay spectrum
and the observable resonance like structures. These are the intra-subshell corre-
lations (interaction between the photoionization channels originating only from
the 4d5/2, PIPT level of truncation) and the other one is the inter-subshell corre-
lation (interaction between the channels originating from 4d5/2 and 4d3/2, ISST
level of truncation). A part of the latter shows a variation of the structure due to
its subset, i.e., intra-subshell correlation (slightly below from 80 eV). The other
part (near 80eV) of this interaction causes the structure which is completely
absent in PIPT level of calculation and hence attributed to the SOIAIC.

The splitting of ionization thresholds for l ± 1/2 states is important to see
the SOIAIC, since the channels originating from lower j state (l − 1/2) dom-
inate over the channels that originate from the higher j state (l + 1/2). This
situation happens for the 3d subshell in Xe. One may note that the relaxation
effects are also important, hence a study of the WES time delay using both the
RRPA and the RRPA-R will provide further insight into the effect of SOIAIC
in photoionization.

From the previous studies on d5/2 subshell’s photoionization parameters and
from the present study, we may conclude that the SOIAIC affects the WES time
delay spectra in the photoionization of both l ± 1/2 subshells. Angle-resolved
studies thus play an extremely important role in getting insights into the pho-
toionization dynamics.
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D., Johnsson, P., Caillat, J., Mauritsson, J., Maquet, A., Täıeb, R., LHuillier, A.:
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Abstract. Wave packets are spatially localized, mesoscopic object in quantum
mechanics which are known to manifest interesting phenomena, like revival and
fractional revivals, during their course of time evolution when the energy
contains nonlinear dependency in the quantum number. Molecular isotope
separation from a mixture is experimentally carried out in the literature through
different methods: laser isotope separation, wave packet isotope separation, etc.
However, the minimum evolution time required for such separation as given by
the autocorrelation function is quite long ð� 2TrevÞ, which is not favorable for a
quantum system due to its unavoidable interaction with the environment. We
propose a novel method to separate isotopes of Bromine molecule, 79Br2 and
81Br2, in much smaller time compared to that in the existing literature by
introducing an initial time delay between the two lasers while preparing the
wave packets. The particular observation time is nothing but a chosen fractional
revival instant, coincident for both the isotopes.

1 Introduction

The dynamics of a suitably prepared diatomic molecular wave packet have attracted
immense attention in the literature [1–3], in both, theory and experiment. Wave packets
are created by the short and phase-controlled optical pulses. They are localized in
space, hence is a subject of interest in both the classical and quantum domain. Tra-
ditional methods for separating isotopes exploit the variation of their masses [4].
Isotope separation by the method of centrifugation utilizes the shift in their spectral
lines. Wave packet isotope separation relies on the minute observation of their time
evolved wave packets upon appreciable separation due to the difference between their
anharmonicity constants.

Wave packet isotope separation method identifies an observation time where the
wave packets become distinguishable in their long-time evolution through the auto-
correlation function [5]. In this process, the fractional revivals phenomena [6] of the
two isotopes do not match at the observation time because of the decoherence.
However, a time delay can be introduced between the two lasers while producing the
wave packets of the two isotopes. The amount of time delay should be such that the
behavior of fractional revival should coincide at the observation time. The observation
time is exactly at the chosen fractional revival instant. Hence, by introducing the initial
delay, one can get the particular fractional revival for both the isotopes at the same time
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and a careful study of the autocorrelation function offers the separation at much smaller
time ðTrev=8Þ, where the wave packets become quasi-orthogonal, thereby making them
distinguishable.

2 Theoretical Model

The phenomena of revival and fractional revival have been experimentally observed in
the course of free evolution of the wave packets involving vibrational levels. Here, we
consider the Morse potential to study the system as it is capable of capturing the
vibrational dynamics of diatomic molecules [7, 8]. For a diatomic molecule with the
vibrational motion, the Morse potential has the form

VðxÞ ¼ D e�2bx � 2e�bx
� � ð1Þ

where x ¼ r
r0
� 1, r0 is the internuclear distance at the equilibrium, D is the dissociation

energy, and b is a range parameter. For Bromine molecules, we have 30 bound states,
with b ¼ 4:482, reduced mass l ¼ 71933:82 a.u. for 79Br2 and l ¼ 73754:95 a.u. for
81Br2, r0 ¼ 4:310654, and D = 0.073855238 for both the isotopes. Denoting

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lDr20
b2�h2

s

and s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�8lr20
b2�h2

E

s

; ð2Þ

the eigenfunctions of the Morse potential is given by

Wk
nðnÞ ¼ Ne�

n
2n

s
2LsnðnÞ; ð3Þ

where LsnðnÞ is the associated Laguerre polynomial and N is the normalization constant
given by

N ¼ bð2k� 2n� 1ÞCðnþ 1Þ
Cð2k� nÞr0

� �1=2
ð4Þ

Here, n ¼ 2ke�bx, 0\n\1 and n ¼ 0; 1; . . .; ½k� 1=2�. Denoting ½q� as the lar-
gest integer smaller than q, the total number of bound states become ½k� 1=2� þ 1. The
constraint equation is sþ 2n ¼ 2k� 1. Here, k is the potential dependent term and s is
related to energy E.

In our analysis, we consider the coherent state (CS) of Morse potential which
involves only finite numbers of bound states and is given by

vðnÞ ¼
Xn0

m¼0

dmw
k
mðnÞ; ð5Þ
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where

dm ¼ ð�aÞn0�m

ðn0 � mÞ!
n0!Cð2k� mÞ
m0!Cð2k� n0Þ

� �1=2
ð6Þ

Figure 1 shows the dmj j2 distribution of 79Br2 and
81Br2 for three values of a [9].

When a has a smaller value, dmj j2 is peaked at higher value of m, where the anhar-
monicity is larger. The CS wave packet is not well localized due to the presence of an
oscillatory tail. As we increase the value of a, the distribution of dmj j2 moves toward
lower levels and the tail disappears. At the higher values of a, the CS wave packet
consists only the lower levels, where the anharmonicity is small. Thus, the choice of
distribution is important in making the initial wave packet localized.

Temporal evolution of CS state wave packet is given by

vðnÞ ¼
X

m

dmw
k
mðnÞ exp½�iEmt� ð7Þ

with

Em ¼ �ðD=k2Þðk� m� 1=2Þ2 ð8Þ

Due to the quadratic nature of the energy spectrum, the classical and revival times
are given by Tcl ¼ Trev=ð2k� 1Þ and Trev ¼ 2pk2=D, respectively. Figure 2 shows the
CS wave packet distribution in the coordinate space for both the isotopes. Here the
revival behaviors at Trev=4 and Trev=8 are not transparent, hence they seem indistin-
guishable at this moment. By making use of the autocorrelation function, one can find
the separation time for the isotopes at around Trev. However, by introducing a time
delay between the two lasers and investigating the time evolution of the quantum wave
packets we can find that at t ¼ Trev=8 the two isotopes are distinguishable.

79Br2
81Br2

Fig. 1 The dmj j2 plotted as a function of m for the Morse potential of 79Br2 and 81Br2 for the
values of a ¼ 0:2 (Orange, Dashed), a ¼ 1:4 (Red, Thick), a ¼ 2:5 (Black, Dot Dashed)
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3 Results and Discussions

The CS wave packet is formed by the coherent superposition of a finite number of
energy eigenstates of Morse oscillator. Initially, the CS starts oscillating without much
change in its shape. Later, it dissipates and again revives at its revival time Trev. In
Fig. 3, the autocorrelation functions for both the isotopes are depicted. At t � Trev, the
CS revives without any phase shift and is called the full revival. The separation in the

79Br2 81Br2

0t =

/ 4revt T=

/ 2revt T=

/ 8revt T=

Fig. 2 The wave packet distribution in coordinate space for Bromine molecules at various
revival times. Here, a = 1.4, b ¼ 4:482

Isotope Separation of Bromine Molecules: A Novel Method 89



autocorrelation function is appreciable only after t� Trev. An enlarged view of the
spikes around t ¼ Trev is displayed in the second plot of Fig. 3.

Now, by introducing a time delay between the lasers which excite the initial wave
packets, we can get the particular fractional revival for both the isotopes at the same
time, at about t ’ Trev=8. Hence, the observation time is exactly at the chosen fractional
revival instant. The two quantum states become distinguishable for the two isotopes at
this selected observation time (Fig. 4).

Fig. 3 Above, autocorrelation functions for both 79Br2 (red) and 81Br2 (blue) molecules are
shown. Below is the enlarged view of the functions at the time where the isotopes are getting
separated ð� TrevÞ. Time has been scaled by Trev of the first isotope

Fig. 4 With the initial time delay, we get the particular fractional revival for both the isotopes at
the same time at t � Trev=8
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4 Conclusion

In earlier studies, the autocorrelation functions of 79Br2 and 81Br2 become distin-
guishable at t = Trev, which is a very long time as far as experimental feasibility is
concerned. By introducing a time delay, we choose the observation time at particular
fractional revivals for both the isotopes. The two quantum states become distinguish-
able for the two isotopes at the selected observation time. In the present method, we are
capable of separating isotope in much smaller evolution time, compared to the existing
methods in the literature.
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Abstract. Cross sections for the electron impact scattering by
chlorobenzene (C6H5Cl) are calculated using the R-matrix method and
the spherical complex optical potential (SCOP) method in low energy
(0.1–20 eV) and in high energy (20–5000 eV) regimes, respectively. Using
both the methods, we are able to report data on differential, ionization,
and total cross sections (TCS).

1 Introduction

Electron impact studies with organic targets gained prominence after the study,
that secondary electrons produced by energetic radiations are responsible for
single- and double-strand breaks in DNA. Moreover, systematic and detailed
knowledge of cross sections resulting from electron collisions with simple organic
systems can help us to understand the behaviour of more complex biomolecules.
Chlorobenzene has a spectrum of transient anion state [1] and has very broad
applications, found in the planetary atmosphere [2] and used as radiosensitizer
drugs [3]. This makes the study of (C6H5Cl) more appropriate.

Still with the sophisticated techniques available today, there is a scarcity of
cross-sectional data on chlorobenzene. There are a very few works reported on
the cross-sectional study of derivative of benzene molecules. Few efforts are made
by theorist and experimental groups. One of the major contributions comes from
Barbosa et al. [1], they have provided data for DCS and total cross section both
theoretically and experimentally. The other theorist group that gave TCS and ion-
ization cross section is Singh et al. [4]. Lunt et al. [5] gave experimental TCS for
the low-energy region and Makochekanwa et al. [6] provide the TCS from interme-
diate energy to high energy regions. From the literature survey, it can be observed
that the TCS data available in the literature are scattered. Thus, here we made
an attempt to fill this gap by providing the TCS data from 0.01 to 5000 eV.
c© Springer Nature Singapore Pte Ltd. 2019
P. C. Deshmukh et al. (eds.), Quantum Collisions and Confinement of Atomic
and Molecular Species, and Photons, Springer Proceedings in Physics 230,
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In this paper, we focus on the calculation of electron collision with chloroben-
zene over a broad range of impact energies starting from 0.01 to 5000 eV.

2 Theoretical Methodology

The aim of this study is to compute the electron impact scattering cross-
sectional data for the chlorobenzene molecule from low to high energy (0.01–
5000 eV). As a single theoretical method is insufficient to calculate these cross
sections for such a wide energy range, we have employed two different meth-
ods to calculate these cross sections. For the low-energy (≤20 eV) study, we
have used the R-matrix ab initio method through the Quantemol-N package
[7] and further we have employed the Spherical Complex Optical Potential
(SCOP) formalism at energies beyond the ionization threshold of the target.
Much details of the theoretical methodologies adopted for such calculations can
be found in our earlier publications [8–12]. Here, we briefly explain these two for-
malisms for the low-energy as well as for high-energy calculations in the following
subsections.

2.1 Low-Energy Formalism (0.01–15 eV)

As described in the earlier publications [8,10,12], the basic principle behind
the R-matrix method [13,14] is that the configuration space is divided into two
spatial regions. The inner region has a radius of 13 a.u., having short-range
potential due to e–e correlation and exchange effects. The electron–chorobenzene
R-matrix calculation is done using the quantum chemistry codes [14–16] and the
outer region calculation is extended to ∼100 a.u. The inner region wave function
is described as

ΨN+1
k (x1...xN+1) = A

∑

ij

aijkΦ
N
i (x1...xN )uij(xN+1) +

∑

i

bikχ
N+1
i (x1...xN+1)

(1)
In (1), Φi represents the wave function of ith target state. A represents anti-

symmetrization operator and uij denotes the continuum orbitals to represent the
scattering electron and aijk and bik are the variational parameters. The summa-
tion runs over χi for N+1 electrons and denotes L2 function at the boundary
of R-matrix with zero amplitude. The continuum orbitals are discussed briefly
by Faure et al. [17]. For permanent dipole moment of the target, long-range
interaction including l > 4 partial waves, we used Born correction for polar tar-
gets [18–20]. In the outer region at the boundary of R-matrix, the asymptotic
solution is defined by Gailitis [21].

2.2 Intermediate to High-Energy Formalism

For intermediate to high-incident energy for e-(C6H5Cl) system, we have used
Spherical Complex Optical Potential (SCOP) formalism. The optical potential
as given by
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Vopt(r, Ei) = Vst(r, Ei) + Vex(r, Ei) + Vpol(r, Ei) + iVabs(r, Ei) (2)

where Ei is the incident energy and Vst, Vex, Vpol and Vabs represents static,
exchange, polarization, and absorption potential. The absorption potential Vabs,
is employed with few modifications in the quasi-free model of Staszewska et al.
[22,23]. For scattering calculation, we solved Schrödinger equation by partial-
wave method. The partial waves’ phase-shifts were employed to calculate total
(elastic + inelastic) cross sections QTCS

QTCS(Ei) = Qel(Ei) +
∑

Qinel(Ei) (3)

3 Results and Discussion

In Table 1, we present the calculated target properties of the chlorobenzene
molecule using cc-pVDZ basis set. The presented properties are in good agree-
ment with the available experimental as well as theoretical data in the literature.

In Fig. 1 we report the differential cross section (DCS) for e-(C6H5Cl) scat-
tering at 10 eV. The present data is in good agreement with the data available
in the literature qualitatively. While quantitatively, it is in good agreement up
to 40◦ with both the theoretical and experimental data Barbosa et al. [1]. Near
around 50◦ present data shows a shallowness in the cross sections which resem-
bles in experimental data and theoretical data of Barbosa et al. [1]. While in the
backward angles (≥130◦), the present data underestimates the available theoret-
ical data of Barbosa et al. [1]. Here we mainly look to reproduce the structures in
comparison with the literature. The discrepancy in the case of theoretical results
is due to the different methodology and in case of experimental, it depends on the
alignment of the experimental setup. The large dipole moment and polarizabil-
ity plays an important role in the low to intermediate energy electron scattering
cross sections.

In Fig. 2, we report the DCS for e-(C6H5Cl) scattering at 20 eV. The present
result is in very good agreement with the available experimental and theoretical
data by Barbosa et al. [1]. The choice of this sample energies is only because
resonances can be studied. A lot of discussion about DCS is reported by Barbosa
et al. [1].

Table 1. Target properties of chlorobenzene

Target property (unit) Present Others

Ground state (Hartree) −688.64 −689.99 [1]

Ionization potential (eV) 9.200 9.080 [1]

Dipole moment (Debye) 1.689 1.690 [1]

Rotational constants (cm−1) A 0.1893 0.1892 [24]

B 0.0527 0.0526 [24]

C 0.0412 0.0411 [24]
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Fig. 1. Elastic differential cross sections (DCS) for incident energy of 10 eV, where
solid line represents present calculated data, solid sphere line represents experimental
data reported by Barbosa et al. [1], dash line represents calculated data reported for
IAM-SCAR Model by Barbosa et al. [1] and dot line represents calculated data reported
for SMCPP Model by Barbosa et al. [1]

Fig. 2. Elastic differential cross sections (DCS) for incident energy of 10 eV, where solid
line represents present calculated data, solid sphere line represents experimental data
reported by Barbosa et al. [1], dash line represents calculated data reported for IAM-
SCAR Model by Barbosa et al. [1], and dot line represents calculated data reported
for SMCPP Model by Barbosa et al. [1]
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Fig. 3. e-C6H5Cl total ionization cross sections, where solid line represents the present
calculated data, dash line represents calculated data from Singh [4]

In Fig. 3, we represent the total ionization cross section calculated using the
BEB method incorporated with the Quantemol-N package [7]. The present data
is in very good agreement with a theoretical data presented by Singh et al. [4].

In Fig. 4, we report the total scattering cross sections (TCS) of chlorobenzene
molecule. The present data is in good agreement with available data in the
literature [1,4–6]. The low-energy TCS is in good agreement with Barbosa et al.
[1] computed using the IAM model for the cross-sectional calculation. Whereas
it overestimates the other theoretical values done by Barbosa et al. [1] using
different models. While in the case of experimental comparison the present data
is in good agreement with the Makochekanwa et al. [6] from intermediate to
high- energy regime. There is a theoretical data in the high energy regime for
the comparison given by Singh et al. [4] that nominally under estimates the
present data. The difference observed in the data of Singh et al. [4] is due to the
difference between the single centre expansion employed in our calculations as
against the multi-centre expansion employed by them. The peaks in the region
between 1 and 2 eV represent the resonance peak at energy 1.24 and 1.42 eV,
which is due to the degeneracy of b1 and a2 symmetry as π∗ states. The reason
behind this splitting is the weakness of π∗ bond in the excitation function, which
is quite evident in the cross sections reported in the Fig. 4.

4 Conclusion

In the present study, we report the electron impact scattering cross sections
of chlorobenzene molecule. The present DCS data is in good agreement with
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Fig. 4. e-C6H5Cl Total scattering cross sections, where solid line represents present
calculated data, dash line represents calculated data reported for IAM-SCAR Model
by Barbosa et al. [1] and dot line represents calculated data reported for SMCPP
Model by Barbosa et al. [1], dash-dot line represents calculated data from Singh [4],
solid sphere line represents experimental data reported by Makochekanwa et al. [6],
and solid triangle line represents experimental data reported by Lunt et al. [5]

available experimental data reported by Barbosa et al. [1]. The ionization cross
section is in very good agreement with the Singh et al. [4] and the TCS is overall
in good agreement with available theoretical and experimental data [1,4–6]. The
present work will encourage the other experimentalist and theorist to study
derivatives of benzene as these are important applied targets.
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Abstract. The Hamiltonian and hence the relevant equations of motion
involving the dynamics of a driven classical anharmonic oscillator with
2m–th anharmonicity are framed. By neglecting the nonsynchronous
energy terms, we derive the model of a driven multi-photon (2m–th)
quantum anharmonic oscillator. The dynamical nature of the field oper-
ators is expressed in terms of the coupling constant, excitation number
and the driven parameter. The solutions presented here are fully analyt-
ical and are exact in nature.
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1 Introduction

The basic physics is easily understood in terms of the physical models. Of course,
the model of a harmonic oscillator (HO) is perhaps the most useful one among
them. The model of a simple harmonic oscillator is realized when a particle moves
under the action of a restoring force. In spite of the wide applications of the SHO
model, it is inadequate when we come across with the real physical situations.
For a real physical system, the inclusion of damping and/or anharmonicities in
the model of HO are inevitable. In addition to these, the oscillator may also be
put under the action of an external force and hence the model of a forced (driven)
oscillator. It is true that the presence of damping in the model of an SHO is not
a serious problem as long as we are interested in the classical regime. On the
other hand, the presence of damping in the model of a SHO makes the problem
a nontrivial one. Therefore, the damped quantum harmonic oscillator requires
special attention. In this short communication, we will ignore the presence of
damping if any. Because of the wide range of applications and of the fundamental
nature of the problem, the problems of anharmonic oscillator have attracted
people from various branches of physics [1–8].
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2 Driven Classical Anharmonic Oscillator

The Hamiltonian of a driven classical anharmonic oscillator of unit mass is given
by

H =
p2

2
+

q2

2
+

λ

2m
q2m + fq (1)

where q and p are the classical position and momentum, respectively. The param-
eter λ is a small positive constant and will be termed as anharmonic constant.
The frequency of the oscillator governed by the (1) is assumed to be 1. The m
(m ≥ 2) being a positive integer involving the order of anharmonicity. From
our choice of the Hamiltonian, it appears that we will be investigating for the
anharmonic oscillators of having even orders of anharmonicities. It is attributed
because of the fact that most of the time we are interested in the matter–field
interaction to discuss the anharmonic effects. The medium with inversion sym-
metry automatically eliminates the even orders of nonlinear susceptibilities and
hence the even orders of nonlinear polarization. Again, the odd orders of non-
linear polarization contribute to the even orders of nonlinear terms in the model
Hamiltonian. By virtue of symmetry, the entire gaseous medium is inversion
symmetric. Therefore, the choice of the Hamiltonian is quite consistent with
the matter–field interaction. Now, the equations of motion corresponding to
the Hamiltonian (1) follows from the Hamiltonian’s equation. Therefore, we
have

q̇ = p
ṗ = −q − λq2m−1 − f

(2)

The above two equations (2) are combined to obtain a second-order inhomoge-
neous nonlinear differential equation. The corresponding equation is given by

q̈ + q + λq2m−1 = −f (3)

In absence of driven term (i.e., f = 0) and for m = 2, the (3) corresponds
to the equation of motion of a classical quartic anharmonic oscillator. Unfortu-
nately, the classical quartic anharmonic oscillator does not give a closed-form
analytical solution. Of course, for small values of λ, the classical quartic anhar-
monic oscillator is solved approximately [6]. In absence of anharmonic and driven
terms, the Hamiltonian reduces to the Hamiltonian of a simple (one dimensional)
harmonic oscillator. Now, the quantum mechanical counterpart of the Hamilto-
nian (1) is obtained by the replacement of the classically conjugate position q(t)
and momentum p(t) by their corresponding operators. During the passage from
classical anharmonic oscillator governed by the Hamiltonian (1) to the corre-
sponding quantum mechanical oscillator, the fundamental commutation relation
between the position and momentum operators should be respected.
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3 Driven Quantum Anharmonic Oscillator

In order to obtain the quantum mechanical counterpart of the Hamiltonian (1),
we replace the classical canonical position (q) and momentum (p) by their equiv-
alent operators. Therefore, we have

Ĥ =
p̂2

2
+

q̂2

2
+

λ

2m
q̂2m + f q̂ (4)

In the Hamiltonian (4), we assumed that the mass and the frequency of
the oscillator are unity. During the passage from classical-driven anharmonic
oscillator to its quantum mechanical counterpart, we need to the impose the
following equal time commutation relation [9,10]:

[q̂(t), p̂(t)] = [q̂(0), p̂(0)] = i (5)

where � = 1. Now, in order to differentiate between the c-numbers and the
operators, we use the caret for the operators. Based on the relation (5), we define
the usual relations connecting the position and momentum operators with those
of the dimensionless annihilation (â) and creation (â†) operators

â(t) = 1√
2

(q̂(t) + ip̂(t))
â†(t) = 1√

2
(q̂(t) − ip̂(t)) (6)

Hence, we have
q̂(t) = 1√

2

(
â(t) + â†(t)

)

p̂(t) = − i√
2

(
â(t) − â†(t)

) (7)

Therefore, it follows that the annihilation operator â(t) and creation operator
â†(t) obey the following commutation relation:

[â(t), â†(t)] = 1 (8)

In the later part of this article, we shall simply use â and â† instead of â(t) and
â†(t) respectively. Now, the Hamiltonian follows as

Ĥ =
(

a†a +
1
2

)
+

λ

2m

1
2m

(
â + â†)2m

+ f
(
â + â†) (9)

In order to obtain the equations of motion involving the operators q̂ and p̂, we
use the Heisenberg operator equation of motion. Therefore, we have

ȧ = −ia − iλ

2m

(
â + â†)2m−1 − if (10)

where, we have made use of the commutation relation
[
a, g(a, a†)

]
= ∂g(a,a†)

∂a† .
The equation of motion for the field operator a† may easily be obtained by taking
the Hermitian conjugate of the (10). In order to study the dynamical behavior of
the field operators, we need to solve the differential equation (10). Unfortunately,
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the differential equation is nonlinear and is involving the noncommuting opera-
tors. Therefore, a numerical solution or an approximate analytical solution may
be explored. The differential equation involving the noncommuting operators are
certainly a nontrivial problem if at all possible. Therefore, in the present arti-
cle, we rely on the so-called rotating wave approximation for solving the above
differential equation. The RWA entails us to remove the nonconserving energy
terms. In order to do so, we express the normal ordered form of

(
â + â†)2m−1

(
â + â†)2m−1 =

m−1∑

r=0
(2r − 1)!!

(
2m − 1

2r

)
:
(
â + â†)2m−2r−1 : (11)

where the notation :: stands for the normal ordered form, the binomial coefficient(
x
y

)
= x!

(x−y)!y! and (2r−1)!! = (2r−1)(2r−3)....3.1. Now, we make a binomial

expansion of the term
(
:
(
â + â†)2m−2r−1 :

)
under normal ordered form. We

have 2m−2r number of terms. In this expansion, we have two middle terms. Out

of these two terms, the middle term tm−r+1 =
(

2m − 2r − 1
m − r + 1

)
â†m−râm−r+1

will be the synchronous one. Now, we neglect all the terms except the syn-
chronous one in the expansion of

(
â + â†)2m−1 in the (10). Hence, the (10)

assumes the following form:

˙̂a = −i[â, Ĥ] = −iÔâ − if (12)

where, the operator Ô(t) is given by

Ô(t) = 1 + λ
2m

m−1∑

r=0
(2r − 1)!!

(
2m − 1

2r

) (
2m − 2r − 1
m − r + 1

)
â†m−râm−r

(13)

The equation (12) of the field operator â corresponds the equation of motion of
the driven m-photon anharmonic oscillator. As a matter of fact, the m-photon
anharmonic oscillator is found useful for investigating squeezing [11–13], phase
properties [14], Wigner function [15], and the kth power squeezing of the radia-
tion field [16]. However, the driven m-photon anharmonic oscillator is still unex-
plored. For f = 0, the operator Ô(t) is a constant of motion. The operator Ô(t)
is a function of number operator a†a. This is quite reasonable since the conser-
vation of number is guaranteed by the use of RWA and hence the removal of
nonsynchronous terms from the equations of motion. The operator Ô has the
dimension of frequency and hence may be called as a frequency operator. In
absence of anharmonicity (λ = 0), the operator Ô reduces to a unit operator.
Essentially, the anharmonic part of the Hamiltonian (4) is responsible for the
shift of the frequency of the oscillator (here we assumed 1). In other words, the
frequency normalization takes place through the nonlinear term. The complete
solution of the differential equation (12) can only be obtained if the functional
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form of f(t) is explicitly known. The corresponding solution will follow as

e−iÔtA − e−iÔti

∫
f(t)eiÔtdt (14)

where A is the integration constant to be evaluated under initial condition.
Taking the Hermitian conjugate of the above solution (14), we obtain the the
solution for the creation operator â†. Therefore, the dynamical behavior of the
driven anharmonic oscillator under the rotating wave approximation are com-
pletely solved provided the integral (14) is evaluated for physically acceptable
function f(t). As an example, we assume that the oscillator is periodically driven.
Therefore, we have

f(t) = f(0) cos ωt (15)

Finally, the analytical expressions for the annihilation operator (14) assumes the
following form:

â(t) = e−iÔtâ(0) + f(0)
(
Ô2 − ω2

)−1 [
Ôe−iÔt − Ô cos ωt + iω sinωt

]
(16)

It is possible to obtain the creation operator a† from the (16). Assuming f(0)
as real, we have

â†(t) = â†(0)eiÔt + f(0)
(
Ô2 − ω2

)−1 [
ÔeiÔt − Ô cos ωt − iω sin ωt

]
(17)

where the Hermitian nature of the frequency operator Ô is utilized. Certainly,
the solutions for the field operators involving the (16) and (17) correspond the
physical model of a multiphoton driven anharmonic oscillator. Interestingly, the
dynamics of the driven anharmonic oscillator corresponding to the Hamiltonian
(9) is completely known. The exact nature of the solution (16) is certainly useful
for investigating quantum statistical properties of the radiation field coupled
to the oscillator. It is of interest to calculate the shift of the frequency of the
oscillator by calculating the matrix elements of < n|â(t)|n + 1 > in terms of
the number state basis |n >. It is clear that the shift of the frequency of the
oscillator is governed by the anharmonic parameter Before we go further, we
check the equal time commutation relation between the annihilation and creation
operators. This can easily be established since the time derivative of the following
commutator vanishes:

d

dt

[
a(t), a†(t)

]
= 0 (18)

In calculating the above relation (18), we have made use of the (12) and it’s
Hermitian conjugate. Now, we construct the dimensionless quadrature operators
which are happened to be position and momentum operators involving the (7).
Therefore, we have

q̂(t) = 1√
2

(
e−iÔtâ(0) + a†(0)eiÔt + 2f(0)Ô

(
Ô2 − ω2

)−1 {
cos Ôt − cos ωt

})

p̂(t) = − i√
2

(
e−iÔtâ(0) − a†(0)eiÔt − 2if(0)

(
Ô2 − ω2

)−1 {
Ô sin Ôt − ω sin ωt

})

(19)
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In addition to the fundamental academic interests, the present solution will find
potential applications in the investigation of the quantum statistical properties
of the radiation field coupled to a nonlinear medium. However, the present exact
solution is obtained at the cost of the sacrifice of nonconserving energy (i.e.,
RWA) terms in the original Hamiltonian (13).

4 Conclusion

In the present investigation, we provide the solution of the driven anharmonic
oscillator. The complete solution of the driven anharmonic oscillator requires the
knowledge of the functional form of the driven parameter. The present solution is
explored under the RWA and is certainly based on the complete analytical app-
roach. The present solution will find applications in the investigation of quantum
statistical properties of the radiation fields and in the dynamics of the trapped
ions/atoms in an MOT. These quantum statistical properties include squeezing,
higher ordered squeezing, photon antibunching, and photon statistics.
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Abstract. The diagnostic study of Ar/N2 mixture plasma at low temperature
has been presented with varying concentrations of N2 gas. For the diagnostics of
such mixture plasma, a fine-structure resolved collisional-radiative (CR) model
is developed. The CR model requires a large amount of accurate and reliable
atomic cross-section data for the proper inclusion of all the relevant processes
occurring in the plasma. Thus we incorporated in our model, electron-impact
excitation cross-sections of argon calculated by using fully relativistic distorted
wave method. Processes which account for the coupling of argon with nitrogen
molecules have been further added in the model. We couple our CR model with
the OES measurements of Lock et al. [Physics of plasmas 23, 043518 (2016)]
and the electron density (ne) and temperature (Te) are simultaneously estimated
by optimizing the model-simulated intensities with the five emission lines
[originates from 3p54p (2pi) ! 3p54s (1si) transitions] observed in the mea-
surements. On comparison of our results with the values reported by Lock et al.
[Physics of plasmas 23, 043518 (2016)], we find that as the concentration of N2

(0–10%) increases in the Ar/N2 mixture, the electron density decreases by three
orders of magnitude from 3.0 � 1013–3.0 � 1010 cm−3 while Te remains
approximately close to 1.6 eV.

1 Introduction

Often inert gases are added in trace amounts to different plasmas for the diagnostics
purposes, known as Trace-Rare-Gas Optical Emission Spectroscopy (TRG-OES) [1, 2].
In our earlier work, we developed collisional radiative (CR) models for pure Ar and Kr
[3, 4] inert gas plasmas for the diagnostics of low temperature (LT) plasmas. Dominant
processes in LT plasma are due to electron impact collisions [5]. The inert gases, viz.,
Ar, Kr, Xe, and Ne show several fine-structure levels due to strong relativistic
effect/spin-orbit coupling [6, 7]. Consequently, several fine-structure transitions
between the ground state to various fine-structure excited states and among the excited
states are involved in the plasma kinetics. Thus, to develop plasma population-kinetic
model, i.e., the CR model for inert gas plasmas, required fine-structure electron impact
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excitation cross-section data are calculated using fully relativistic distorted theory. The
calculated cross sections are then incorporated into the CR model for diagnostic pur-
poses. In continuation of our earlier work on pure Ar plasma [3], in the present study,
we aim to develop a CR model of Ar/N2 mixture plasma for diagnostic purposes.

The addition of N2 reactive gas traces in the inert gas plasma is very useful for
applications like thin film deposition [8, 9], surface chemistry [10], nitride thin films
(viz, GaN and TiN) [10], material modification, etching [11], surface sterilization [12],
and lighting [13]. To optimize the plasma processing in these applications, it is
essential to understand how the mixing of N2 in argon influences the plasma parameters
[e.g, electron density (ne) and electron temperature (Te)] which behave differently
depending on the quantity of N2 introduced in the plasma. Thus, the aim of this work is
to develop a reliable CR model for Ar/N2 plasma and then apply it to understand the
behavior of plasma parameters. Here, we applied our model for the diagnostics of an
electron beam generated Ar/N2 plasma. It is worth mentioning here that electron beam
generated plasmas are different from the normal discharge plasma and only very few
diagnostic studies are available in the literature for these plasmas [14].

In this light, in the present work by coupling our CR model with the OES mea-
surements reported by Lock et al. [14], we performed the diagnostics of an electron
beam generated Ar/N2 plasma. In our study, we obtained the plasma parameters, viz,
electron temperature, electron density, and species population which characterize the
plasma [15] by optimizing five Ar-I lines with the measurements [14].

2 Collisional–Radiative Model

In the present CR model, we are considering 40 fine-structure levels, viz, 1si (i = 2–5),
2si (i = 2–5), 2pi (i = 1–10), 3pi (i = 1–10), and 3di (i = 1–12) with the inclusion of
ground state and first ionization state of Ar. These states are interconnected through the
various collisional and radiative processes occurring in the plasma. The model incor-
porates different population transfer mechanisms among fine-structure levels such as
electron impact excitation, ionization, and radiative decay along with their reverse
processes, viz, electron impact de-excitation, three-body recombination. In this work,
we follow our earlier CR model on pure Ar and thus more details can be found from
our previous publications [3, 16]. However, for Ar/N2 mixture plasma, the depopula-
tion channels of argon-excited states (1si and 2pi manifold) through quenching with N2

molecule have been added. The particle balance equation for an excited level “u” is
given by the following expression,

X41

l ¼ 1

l 6¼ u

kluðTeÞnlne þ
X
l[ u

Aeff
lu nl þ nenþ ne kþ uðTeÞ �

X41

l ¼ 1

l 6¼ u

kulðTeÞnune

�
X
l\u

Aeff
ul nu � nunekuþ ðTeÞ � nuk

diff
u � nunðN2Þk

quench
u ¼ 0

ð1Þ
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Here, nl (l = 1–41) refers to the density of the lth fine-structure level populations,
and n+ and nðN2Þ are the population densities of the Ar+ and N2. As defined earlier, ne
and Te are the plasma parameters. In the (1), positive terms are the population channels
and negative terms are the depopulation channels for the level u. The first and fourth
terms refer to the population transfer through electron impact excitation and de-
excitation. The klu and kl+ are rate coefficients for the electron excitation and ionization
processes, respectively [3, 17]. The de-excitation rates (kul) are obtained following the
detailed balance principle as well as the rates for third and sixth terms which denote the
three-body recombination and ionization are evaluated as described in our earlier
papers [3, 6, 16, 17]. The second and fifth terms are the radiative decay processes,
where the effective transition probability is defined as Aeff

ul ¼ KðKulqÞAul. The modi-
fication in the transition probability (Aul) by a factor of KðKulqÞ is to incorporate the
reabsorption of the radiation. KðKulqÞ is known as escape factor, here Kul denotes the
reabsorption coefficient and q is the source plasma characteristic scale length (2.0 cm.
in the present work). We have calculated the escape factor by using the Mewe
approximation [18, 19] and calculated it for all the considered transitions and for
different N2 concentrations. The calculated escape factors with the addition of N2 in the
range for 0–10% exhibit only slight changes in the escape factors for the lines origi-
nating from 2pi ! 1si transitions. These escape factors are obtained for the same
conditions as in the experiment of Lock et al. [14].

The last two terms of the (1) refer, respectively, to the depopulation through dif-
fusion of the excited states via chamber walls and the quenching with N2 molecules.
Diffusion is taken into account mainly for 1si excited states using the diffusion rate
coefficients reported by Kolts and Setser [20]. The rate coefficients for the quenching of
1si and 2pi levels with N2 molecules are taken from Scheller et al. [21].

3 Result and Discussion

For the diagnostics of Ar/N2 mixture plasma, the coupled particle balance equations for
all considered states (as represented in (1)) were solved simultaneously. The solution
provides the population densities of the various fine-structure excited states of Ar up to
3pi levels considered in the present model as a function of plasma parameters (i.e.,
electron density (ne) and electron temperature (Te)). In the present calculation, the
ground state argon population nAr are calculated from the standard gas law using the
pressure and gas temperature reported by the Lock et al. [14] at each concentration of
N2. The ground state argon population was *8.04 � 1020 m−3.

For the diagnostics purpose, we obtain the intensities of the emission lines con-
sidered in the present model as a function of ne and Te. As the CR model provides the
population densities of excited states of an argon atom, thereafter, the line intensities
are calculated by using (2). Now in order to fix the particular values of ne and Te which
really correspond to the plasma parameter, we find the best match of our calculated
intensities with the measured intensities of Lock et al. [14]. For this purpose, before
doing this, as the intensities reported by Lock et al. [14] are in arbitrary unit, we
normalize/scale them and get the value in percentage and also do the same with our
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calculated intensities. Then the least square method is applied and we obtain the
minimum deviation parameter which fixes the plasma parameters (viz., ne and Te). The
intensity corresponding to these values of ne and Te is taken to be the best match with
the measured intensity. We calculate the deviation parameter using the minimum
scatter approach.

The intensity (Iul) of an emission line (with wavelength kul) corresponding to a
transition (u ! l) is linked to the population density of the upper excited level (nu)
as [3],

Iul / nu
hc
kul

Aeff
ul ð2Þ

where h and c are the usual Planck’s constant and speed of light, respectively. Thus
following (1), the intensities of emission lines have been calculated as a function of Te
and ne. Here, we have considered five emission lines decaying from 2pi (i = 1–10)
states to the 1si (i = 2–5) states as observed in the Lock et al. [14] OES measurements.

We individually normalize both the measured and modeled intensities, respectively,
as follows,

Inormalizedu;OESðModelÞ ¼
Iu;OESðModelÞP5
u¼1 Iu;OESðModelÞ

� 100 ð3Þ

In order to check the matching of our simulated intensities with those of OES
measurements, we calculated the deviation parameter ðDÞ as given below based on the
minimum scatter approach [1]. The least magnitude of deviation parameter fixes the
plasma parameter.

D ¼
X5
u¼1

Inormalizedu;OES � Inormalizedu;Model

� �2
ð4Þ

In Fig. 1, the deviation parameter is plotted as a function of Te for different values
of ne at different concentrations of N2 (0–10%). The minimum value of the deviation
parameter fixes the value of Te and ne. The Te and ne values corresponding to the lowest
deviation parameter are given in a table as shown in Fig. 1. We find that the electron
temperature does not change much but remains almost close to the value of 1.6 eV
while the electron density decreases by three orders of magnitude from 3.0 � 1013 to
3.0 � 1010 cm−3 as the concentration of N2 varies from 0 to 10% in the Ar/N2 mixture
plasma. However, Lock et al. [14] extracted Te from the EEDF as obtained in their
previous work and taken the constant value of ne = 2.0 � 1011 cm−3 for the Ar/N2

mixture plasma. Using these in their CR model, they obtained the state populations for
1si and 2pi states which decrease as the concentration of N2 varies from 0 to 10%.
Thus, we note that our results show different and opposite behavior with the modeling
results of Lock et al. [14]. In fact, it is important to mention here that the variations of
ne and Te as obtained by us are similar to those as seen by Kang et al. [10] with their
global modeling results carried out in the light of their measurements for Ar/N2 mixture
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plasma. Fantz et al. [13] also experimentally studied the Ar/N2 plasma at low pressure
and varied the concentration of N2 and from their CR model, they found the similar
variations of ne and Te as seen by us and Kang et al. [10].

Figure 2 presents our model intensities calculated by using the populations of the
2pi excited levels (which decay to 1si) obtained at the optimized value of ne and Te as
given in the table with Fig. 1. These are compared with Lock et al. [14] measured
intensities at 0, 1, 3, 5, and 10% concentrations of N2. We observe from Fig. 2 that out
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0% 3.06 ×1013 1.599

1% 4.00 ×1012 1.602

3% 1.00 ×1012 1.605

5% 5.00 ×1011 1.608

10% 3.00 ×1010 1.612

Fig. 1. Deviation parameter as a function of Te at different ne for Ar/ N2 (0–10%) mixture are
shown in the figures while the table gives the values of Te and ne corresponding to the lowest
value of the deviation parameter
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of the five lines selected from the measured intensities, the intensities of at least three
measured lines are in reasonable agreement with our modeled intensities. We find that
the 750.4 nm and 751.5 nm lines whose intensities are not in good agreement, decay
from the 2p1 and 2p5 levels. Both these levels have total angular momentum J = 0.
Interestingly, we observe a correlation between these two lines with respect to their
agreement with the experiment. As can be seen from Fig. 2, for 0% N2 concentration,

Fig. 2. Comparison of the normalized intensities obtained from the CR model with the OES
measurements [14] for Ar (2pi ! 1si) transition lines

Diagnostics of Ar/N2 Mixture Plasma with Reliable Electron … 111



the 751.5 nm line is relatively in better agreement with the experiment as compared to
750.4 nm line. On the other hand, as the N2 concentration increases the behavior flips;
and for 10% N2, concentration the 750.4 nm line agrees better with the experiment as
compared to the 751.5 nm line. Although the precise reason behind this feature is not
clear, it may be due to the fact that the states 2p1 and 2p5 correspond to the total angular
momentum J = 0 value and these are also getting excited by electron impact from
the Ar ground state (1s0) with J = 0. In fact, it is found that for such J = 0 to J′= 0
transitions, the theoretically calculated electron excitation cross sections are generally
larger as compared to the experimentally measured cross sections and possibly this
could be one of the reasons. Lock et al. [14] did not report explicitly the intensity
obtained from their CR model at the extracted values of ne and Te obtained by them;
therefore, it is not straightforward to understand the accuracy of their CR model. We
believe that our CR model is quite consistent and detailed; therefore, it can improve the
diagnostics of the plasma.

4 Conclusions

In the present work, we have developed a CR model for Ar/N2 mixture plasma. We
coupled our model with the OES measurements of Lock et al. [14]. Plasma parameters
(Te and ne) are obtained by the minimum scatter approach by using experimental
intensities of the five intense lines (2pi ! 1si transitions) at various N2 fractions (0–
10%). We observe that the optimized electron temperature (Te) does not change and is
almost constantly close to 1.6 eV as N2 fraction changes from 0 to 10% while the
electron density decreases by three orders of magnitude. We believe that our CR model
is well optimized and demonstrates the importance of the applicability of our reliable
RDW cross sections.
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Abstract. We consider Bose–Einstein condensates under an experimentally
feasible toroidal trap. Temporal expansion of the condensate along the minima
of the trap experiences self interference between the counter-propagating con-
stituent parts of the condensate. Condensate density nicely manifests fractional
revivals in long time evolution, where the original condensate splits into several
subsidiary components at times, rational fractions of the revival time. Upon
pointing out this novel phenomenon in this system, we investigate the spatial
interference pattern, which requires a careful explanation of the phase distri-
bution among the petals. These features have come out as significantly different
from other quantum systems and pave the way to achieve efficient quantum
precision measurements in this system.

1 Introduction

The experimental realization of Bose–Einstein condensate (BEC) has gradually made it
one of the most appropriate candidates to observe various unexplored quantum phe-
nomena. Although the formation mechanism and dynamics of BEC always remain a
nontrivial task, due to its long coherence time and high tunability, it is indeed a
favorable candidate for achieving quantum technology. The field is also connected to
many important directions: quantum optics, quantum information, weak measurement,
higher harmonic generation, negative temperature, condensed matter applications, etc.
While dealing with gravimetry, rotation sensing, and interferometric measurements,
matter–wave play an important role. Matter–wave interference has drawn huge atten-
tion for more than a decade in various aspects like quantum precision measurements
[1]. First atomic interference was observed by superposing two independent conden-
sates [2], which can be produced in a compact interferometer. Particularly, a toroidal
trap is realized in BEC by tuning the lasers in an ring shaped configuration [3, 4]. Such
trapping potential can be created by a blue-detuned laser beam in the middle of the
harmonic magnetic trap. BEC loaded in a toroidal trap has got huge attention for the
last few years [5–7] and found interesting applications in persistent flow of current [8],
solitary waves and vortices [9], and interference [1, 10]. After creating the condensate
in a toroidal trap, it radially expands along the minimum of the effective potential with
time. The tails of the expanding condensate coming from opposite directions collide,
resulting in interference which is observed experimentally [10]. However, the detailed
analysis of the dynamics of two condensates in a toroidal trap and its long time
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evolution, which reveals a number of interesting phenomena, has not yet been reported
in the literature.

In this work, we are studying the dynamics of two condensates placed in a toroidal
trap by numerically solving the Gross–Pitäevskii equation (GPE) under weak inter-
atomic interaction. We, not only report the revival and fractional revivals phenomena in
this system but also quantify the time scales and explain the origin of the occurrence of
a particular fractional revival situation. When the condensate is allowed to superpose
spatially in the central region of the trap, the resulting interference pattern becomes
quite different from similar situations in other quantum systems.

We reveal the origin of these structures through a careful phase analysis at time
snapshots.

2 Theoretical Model

The dynamics of weakly interacting BEC can be modeled by GPE which is widely
used in such nonlinear systems [11]. Incorporating various external potentials make the
dynamics richer and tunable to achieve coherent control. The mathematical form of the
3D-GPE can be written, in the presence of some external potential as

� �h2

2M
r2 þVext X; Y ; Z;Tð Þþ g W X; Y ; Z; Tð Þj j2

� �
W X; Y ; Z; Tð Þ ¼ i�h

@W X; Y ; Z; Tð Þ
@T

:

ð1Þ

The order parameter of the condensate isW R; Tð Þ and the total number of atoms are
related as R W R; Tð Þj j2dR ¼ N. The weak coupling constant is given by g ¼ 4p�h2a

M , where
a is the s-wave scattering length for low-energy scattering. It can be positive or neg-
ative depending on the repulsive and attractive two-body interactions, respectively.
M is the mass of the atom and Vext is the external confining potential. When an external

trap is harmonic in nature, i.e., Vext X; Y ; Zð Þ ¼ 1
2M x2

xX
2 þx2

yY
2 þx2

z Z
2

� �
:

To make the equation in a convenient form, we reduce (1) into a dimensionless
form by scaling variables and parameters [3]. If the reference harmonic trap frequency
is x, the corresponding harmonic oscillator length is given by ah ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=M x

p
. The

scalings are given by t ¼ xT ; x ¼ ahX; y ¼ ahY , z ¼ ahZ, vext x; y; tð Þ ¼ Vext X;Y ;Zð Þ
�hx , and

W x; y; z; tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
N=a3h

p eW x; y; z; tð Þ. The final form of the 3D-GPE becomes (after
removing tilde)

� 1
2

@2

@x2
þ @2

@y2
þ @2

@z2

� �
þ vext x; y; zð Þþ g3d W x; y; z; tð Þj j2

� �
W x; y; tð Þ

¼ i
@W x; y; z; tð Þ

@t
ð2Þ
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where vext x; y; zð Þ ¼ 1
2 c2xx

2 þ c2yy
2 þ c2z z

2
� �

with cx ¼ xx
x ; cy ¼ xy

x , and cz ¼ xz
x . Now the

weak coupling constant is given by g3d ¼ 4paN
ah

and normalization R W x; y;ðj
z; tÞj2dx dy dz ¼ 1.

If we apply strong confinement along any one particular direction, suppose z-
direction, then the time scales of the dynamics become quite asymmetric and effec-
tively the condensate will be confined in two-dimension (2D): x and y. This is assuming
that the system is in the ground state in the transverse z-axis. In this case, the wave

function in (2) can be written as W x; y; z; tð Þ ¼ u x; y; tð Þ cz
p

	 
1
4e

�czz
2

2 e
�iczt
2 . The resulting

3D-GPE reduces to a quasi 2D-GPE:

� 1
2

@2

@x2
þ @2

@y2
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þ vext x; y; tð Þþ g2d u x; y; tð Þj j2

� �
u x; y; tð Þ ¼ i�h

@u x; y; tð Þ
@T

: ð3Þ

where vext x; yð Þ ¼ 1
2 c2xx

2 þ c2yy
2

� �
. The modified coupling constant for 2D-GPE is

given by g2d ¼ 2
ffiffiffiffiffiffiffi
2pcz

p
aN

ah
and normalization R u x; y; tð Þj j2dx dy ¼ 1.

3 External Confinement and Methodology

The external trapping potential is considered here as a toroidal trap, which can be
written as

vext x; y; tð Þ ¼ 1
2
a2 x2 þ y2
	 
þU x; y; tð Þ:

Here, að¼ cx ¼ cyÞ is the harmonic trapping frequency in x- and y-directions and U
(x, y, t) is a Gaussian whose peak amplitude, A(t) may be time-dependent, such that one
can switch off the potential and control it whenever needed in the experiment. The
parameter r is associated with the width of the Gaussian peak. The expression of the
potential peak is given by

U x; y; tð Þ ¼ A tð Þ e�2 x2 þ y2ð Þ=r2� �
: ð4Þ

The minima of the potential can be calculated and its distance of minima from the
center of the harmonic trap is given by (r0):

@vext
@r

����
����
r¼r0

¼ 0;
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where

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

q� �
¼ rffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

4A
a2r2

r
: ð5Þ

Hence, the radius of the toroid can be controlled by the parameters a, r, and A.
Numerical method: We solve the corresponding GPE (3) numerically, which is non-
trivial due to the non-linear nature of the second-order partial differential equation of
two variables and the inclusion of the space-time-dependent potential function. Bao
and Tang haves given a general method to solve the time-dependent GPE to find both
stationary and non-stationary states in various types of potential [12]. Runge–Kutta
types of method, Adhikari used semi-implicit Crank–Nicolson scheme [13, 14], finite
difference method, and Fourier split-step method [15]. Here, we take up the second
approach to solve the corresponding dynamics, i.e., split-step Fourier method (SSFM).

To solve the 2D-GP equation (4) using SSFM, we assume the shape of the initial

condensate wave function as Gaussian: u x; y; t ¼ 0ð Þ ¼ 1
2

2w
p

	 
1=4
e�w x�x0ð Þ2 þð�

y� y0ð Þ2Þþ e�w xþ x0ð Þ2 þ yþ y0ð Þ2ð ÞÞ, where w is associated with the initial width of the
condensate. In our analysis, the amplitude A of the potential is taken as 100. The values
of r0 and a are chosen as 11.0 and 1, respectively. The other parameters are as follows:
a = 4.98� 10−11 m, ah = 1 lm, N = 104, cz ¼ 1, and g2d = 2.5. We discretized the
space into 512 � 512 grids and the step size becomes 0.12.

4 Results and Discussions

We investigate the evolution of the condensate density inside the trap for a longer time.
Two Gaussian-shaped condensates are placed at the calculated minima of the effective
trap and in the diametrically opposite corners of the toroidal trap. Because of the
existence of the Gaussian barrier in the middle of the harmonic trap, the condensate
expands along the trap minima. We have chosen the amplitude and width of the
Gaussian barrier, such that the tunneling probability becomes negligible through the
barrier. During their course of evolution in the ring-shaped dip and the counter-
propagating components start overlapping each other, producing self interferences.
This spatial density distribution reveals petal formation after a complete mixing.
Figure 1a–r depict the petal formation in density at different evolution times. One can
observe that at time t = 375 (Fig. 1r), the density distribution is the replica of the initial
density distribution and this time is known as revival time (Tr). When time t becomes a
rational fraction of the revival time, the initial pattern breaks into several parts: the
evolution times, Tr/20 (Fig. 1b), Tr/16 (Fig. 1c), Tr/14 (Fig. 1d), Tr/12 (Fig. 1e), Tr/10
(Fig. 1f), Tr/8 (Fig. 1g), Tr/6 (Fig. 1h), Tr/4 (Fig. 1i), and Tr/2 (Fig. 1n), produce 20,
16, 14, 12, 10, 8, 6, 4, and 2, respectively. At time t = Tr/2, the half revival time,
similar density distribution is observed in the vertical direction with respect to the
initial position.
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To get a clear understanding of the condensate density distribution, phase analysis
is also quite important; we have performed the phase analysis which is displayed in
Fig. 2. The phase distribution in space is quite random in nature, not having a trivial
correlation with the obtained density patterns (Fig. 1). However, the petals at the
diametrically opposite points have equal phase. Such phase analysis is important to
analyze the spatial interference pattern when the central Gaussian peak is switched off.

5 Conclusion

We have studied the formation of quantum interferences in a toroidal trap. The number
of petals formed due to the interference of the counter-propagating condensate prob-
abilities, at different times is studied in details, which clearly reveals fractional revivals.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j)

(m) (n) (o) (p) (q)

(k) (l)

(r)

Fig. 1. The density distribution in x-, y space of the condensate at different times. The snapshots
at times, t = 0, 19.52, 23.42, 27.34, 31.24, 39.06, 46.86, 62.5, 93.74, 113.28, 125, 140.62,
156.24, 187.50, 234.36, 250, 281.24, and 375 (a–r), respectively. The bright color manifests
maximum density and dark color manifests density minimum. Both x and y ranges from −12
to 12

Fig. 2. Phase distribution in x-y space. The snapshots at time t = 19.52, 23.42, 31.24, and 46.86,
corresponding to figure (a), (b), (c), and (d), respectively
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The phase information during the time evolution as depicted in Fig. 2 made the physics
more engrossing and rich. Our model is quite useful towards quantum measurement or
quantum metrology. This is a promising system for rotation sensing too.

References

1. Berman, P.R.: Atom Interferometry. Academic, New York (1997)
2. Andrews, R., Townsend, C.G., Miesner, H.-J, Durfee, D.S., Kurn, D.M., Ketterle, W.:

Observation of interference between two Bose condensates. Science 275, 637–641. https://
doi.org/10.1126/science.275.5300.637

3. Gupta, S., Murch, K.W., Moore, K.L., Purdy, T.P., Stamper-Kurn, D.M.: Bose–Einstein
condensation in a circular waveguide. Phys. Rev. Lett. 95, 143201 (2005). https://doi.org/10.
1103/physrevlett.95.143201

4. Ryu, C., Andersen, M.F., Clade, P., Natarajan, V., Helmerson, K., Phillips, W.D.:
Observation of persistent flow of a Bose–Einstein condensate in a toroidal trap. Phys. Rev.
Lett. 99, 260401 (2007). https://doi.org/10.1103/physrevlett.99.260401

5. Murray, N., Krygier, M., Edwards, M., Wright, K.C., Campbell, G.K., Clark, C.W.: Probing
the circulation of ring-shaped Bose-Einstein condensates. Phys. Rev. A 88, 053615 (2013).
https://doi.org/10.1103/physreva.88.053615

6. Eckel, S., Lee, J.G., Jendrzejewski, F., Murray, N., Clark, C.W., Lobb, C.J., Phillips, W.D.,
Edwards, M., Campbell, G.K.: Hysteresis in a quantized, superfluid atomtronic circuit.
Nature (London) 506, 200 (2014)

7. Wood, A.A., McKellar, B.H.J., Martin, A.M.: Persistent superfluid flow arising from the He-
McKellar-Wilkens effect in molecular dipolar condensates. Phys. Rev. Lett. 116, 250403
(2016). https://doi.org/10.1103/PhysRevLett.116.250403

8. Moulder, S., Beattie, S., Smith, R.P., Tammuz, N., Hadzibabic, Z.: Quantized supercurrent
decay in an annular Bose–Einstein condensate. Phys. Rev. A 86, 013629 (2012). https://doi.
org/10.1103/PhysRevA.86.013629

9. Mason, P., Berloff, N.G.: Dynamics of quantum vortices in a toroidal trap. Phys. Rev. A 79,
043620 (2009). https://doi.org/10.1103/PhysRevA.79.043620

10. Bell, T.A., et al.: Bose–Einstein condensation in large time-averaged optical ring potentials.
New J. Phys. 18, 035003 (2016). https://doi.org/10.1088/1367-2630/18/3/035003

11. Pethick, C.J., Smith, H.: Bose–Einstein Condensation in Dilute Gases. Cambridge
University Press, Cambridge (2002). Pitevskii, L.P., Stringar, S.: Bose–Einstein Conden-
sation. Oxford University Press, Oxford (2003)

12. Bao, W., Tang, W.: Ground-state solution of Bose–Einstein condensate by directly
minimizing the energy functional. J. Comput. Phys. 187, 230 (2003). https://doi.org/10.
1016/S0021-9991(03)00097-4

13. Adhikari, S.K., Muruganandam, P.: Bose–Einstein condensation dynamics from the
numerical solution of the Gross–Pitaevskii equation. J. Phys. B: At. Mol. Opt. Phys. 35
2831 (2002)

14. Muruganandam, P., Adhikari, S.K.: Fortran programs for the time-dependent Gross–
Pitaevskii equation in a fully anisotropic trap. Comput. Phys. Commun. 180, 1888–1912
(2009). https://doi.org/10.1016/j.cpc.2009.04.015

15. Poon, T., Kim, T.: Engineering Optics with Matlab. World Scientific Publishing (2006)

120 J. Bera et al.

http://dx.doi.org/10.1126/science.275.5300.637
http://dx.doi.org/10.1126/science.275.5300.637
http://dx.doi.org/10.1103/physrevlett.95.143201
http://dx.doi.org/10.1103/physrevlett.95.143201
http://dx.doi.org/10.1103/physrevlett.99.260401
http://dx.doi.org/10.1103/physreva.88.053615
http://dx.doi.org/10.1103/PhysRevLett.116.250403
http://dx.doi.org/10.1103/PhysRevA.86.013629
http://dx.doi.org/10.1103/PhysRevA.86.013629
http://dx.doi.org/10.1103/PhysRevA.79.043620
http://dx.doi.org/10.1088/1367-2630/18/3/035003
http://dx.doi.org/10.1016/S0021-9991(03)00097-4
http://dx.doi.org/10.1016/S0021-9991(03)00097-4
http://dx.doi.org/10.1016/j.cpc.2009.04.015


Intriguing Single Photon Induced Processes
in Helium Nanodroplets

S. R. Krishnan1(&), Suddhasattwa Mandal2, Bhas Bapat2,
Ram Gopal3, Alessandro D’Elia4, Hemkumar Srinivas5,
Robert Richter6, Marcello Coreno7, Marcel Mudrich8,

and Vandana Sharma9

1 Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
srkrishnan@iitm.ac.in

2 Indian Institute of Science Education and Research Pune, Pune 411008,
Maharashtra, India

suddhasattwa.mandal@students.iiserpune.ac.in
3 TIFR Centre for Interdisciplinary Sciences, Hyderabad 500107, Telangana,

India
ramgopal@tifrh.res.in

4 Department of Physics, University of Trieste, 34127 Trieste, Italy
delia@iom.cnr.it

5 Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
hemkumar.srinivas@mpi-hd.mpg.de

6 Elettra-Sincrotrone Trieste, Strada Statale 14-km 163.5, 34149 Basovizza,
Trieste, Italy

robert.richter@elettra.eu
7 Consiglio Nazionale delle Ricerche – Istituto di Struttura della Materia, 34149

Trieste, Italy
marcello.coreno@cnr.it

8 Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C,
Denmark

mudrich@phys.au.dk
9 Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana,

India
vsharma@iith.ac.in

Abstract. Helium nanodroplets are a unique system of quantum fluid clusters
possessing several intriguing properties. From the perspective of atomic sys-
tems, they have been predominantly viewed as a spectroscopic matrix hosting
other molecules and systems of interest. In this report, we draw particular
attention to select electronic processes in He aggregates hosting other atoms, in
particular, Rb. From this perspective, we present the details of single- and multi-
electron processes occurring in this alkali-He system interacting with single
extreme ultraviolet and soft X-ray photons. The features brought out in this
study are generic and pertinent to systems with similar design on the atomic
scale.
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1 Introduction

Helium nanodroplets are being widely used as an “ideal” matrix for spectroscopy of
embedded or attached species [1]. Owing to their cold internal temperature due to their
formation in supersonic jets, dopant atoms or molecules attached to these droplets are
also cooled in the process by the evaporation of He atoms in the host. Combined with
finite nanoscale dimensions 1–100 nm and a very large transparency window from the
infrared to beyond the ultraviolet, these droplets have served as nanocryostats for
hosting individual atoms or molecules as well as dopant aggregates [1, 2]. Dopant
species are hosted by the droplets either on the surface or embedded in the interiors,
thus providing a universal route for spectroscopy and investigations of cold reactions at
sub-Kelvin temperatures. This has been widely exploited to study the rotational,
vibration, and electronic spectroscopy of atomic and molecular systems [3]. Since the
lambda-point of bosonic 4He in the bulk is 2.1 K, these aggregates with an internal
temperature of 400 mK, are evidenced to be in a superfluid state, enabling the real-
ization of a nanoscale quantum fluid. From this perspective, these nanodroplets
themselves have become the central object of investigation leading to the observation
of irrotational flow, Landau velocity and vortices in these nanometer-sized aggregates
[4–6]. Aggregates of bosonic 4He have also been viewed as theoretical testbeds to
investigate other such systems which mimic some aspects of atomic nuclei [7]. Hence,
these droplets are a prominent candidate for rich and diverse physics and chemistry.

Complementary to their role as hosts for other systems of interest, the electronic
properties of He nanodroplets themselves in combination with doped atoms or mole-
cules open a new avenue for investigation when these systems are interrogated with
photons and electrons [3, 8–10].

2 Photo-Induced Processes in Helium Droplets

Photodynamics initiated via excitation of He in the droplets with photons of energy
>20 eV proves to be intriguing both when these clusters are pristine as well as in
weakly doped aggregates. Extreme ultraviolet (EUV) and soft X-ray photoexcitation of
doped droplets by the group of Neumark revealed a lowering of the ionization potential
of droplets by almost 1.5 eV as compared to atomic He, revealing the role of atomic-
like states or bands in their electronic structure [11]; this corroborates earlier fluores-
cence measurements [12, 13]. Photoelectron spectroscopy revealed that the photoion-
ization of pure nanodroplets is accompanied by the emission of very low energy meV
electrons.

Photoexcitation and ionization of doped droplets led to the identification of distinct
mechanisms of droplet ionization [14, 15]: (a) at photon energies 20 eV < hm < 23 eV
alkali doped droplets display a prominent ionization channel. However, droplets doped
with rare gas atoms are not ionized when photoexcited at these energies. At these
photon energies, the electronic structure of He consists of single-electron excitations
from the ground state to the 1s2p state. The photoionization of alkali doped droplets is
accompanied by the emission photoelectrons in this Penning transfer process. (b) In the
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photon energy range 23 eV < hm < 24.5 eV below the ionization threshold of atomic
He, both rare gas and alkali doped droplets are photoionized. In this case, the
accompanying photoelectrons are emitted, and the most prominent photoreaction
product is the He dimer ion, He2

+. In both regimes, (a) and (b) the dynamics is initiated
by electronic excitation and the formation of He* and He2*. In pure droplets in these
cases the excited He atom or dimer is ejected from the droplet [16, 17]. (c) At hm >
24.6 eV above the ionization potential of atomic He, the direct formation of He+ ions
in the droplet initiates the photodynamics. While once again, He2

+ ions are the
prominent ionic product of ionization in both doped and pure droplets, characteristic
photoelectron with kinetic energies equal to the difference between the ionization
potential of atomic He and the photon energy is evidenced. Electron-ion coincidence
studies [14] have revealed that even photoelectrons correlated to the dopant ion have
these kinetic energies. Thus, a charge transfer between He and the dopant is the
dominant ionization channel leading to the formation of dopant photoions. The mod-
erate absorption cross section of bulk He at these energies leads to the incident photon
being absorbed in the interiors of the droplet and not just by surface atoms. Hence, a
hopping mechanism leading to the migration of the charge which localizes at the
droplet center has been proposed [18, 19] (Fig. 1).

20 21 22 23 24 25 26

0.0

0.5

1.0

1.5

2.0

2.5 He dimer
Rb monomer

Io
n 

yi
el

d 
si

gn
al

 (a
.u

.)

Photon energy (eV)

Fig. 1. Photoion yield for He2
+ and Rb+ ions emitted from He nanodroplets (*104 atoms per

droplet) doped with Rb atoms. The droplets were photoexcited within the energy range of 19.5–
26 eV. Prominent photoion emission peaks reveal the electronic structure of the alkali-He
complex. While Rb ions are emitted even below 23 eV corresponding to the 1s3p excitation in
atomic He, dimer ions of He are generated only above this energy. The three regimes of
photoexcitation of droplets (a)–(c) discussed in the text are enunciated in this plot. The intensities
of the ion signals are indicative of relative yields observed
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3 Experiment

In this work, we employed a He droplet source attached to a velocity map imaging
(VMI) spectrometer with the capability of performing photoelectron photoion coinci-
dence (PEPICO) measurements at the GasPhase beamline of the Elettra synchrotron,
Trieste. This is similar to the arrangement used in [14, 15]. Depicted in Fig. 2, the set
up consists of a cryogenic source for producing He nanodroplets. The beam of droplets
is produced by expanding continuously high purity 4He gas at high pressures (50–
100 bar) through a cooled (6–30 K) nozzle with an orifice of 5 µm in diameter. To
control the size of the droplets the temperature of the nozzle was changed. Using well-
established scaling laws [3], the most probable size of the distribution of the droplets
emanating from this source in the form of a supersonic beam could be controlled, a log-
normal distribution of droplets is produced. We refer to the most probable size of the
aggregates as the droplet size. He clusters with 100–106 He atoms/droplet could be
controllably produced in these jets. This jet then passes through a skimmer into doping
chamber, equipped with a gas cell and several doping cells. The doping cell consists of
a cylindrical container with two collinear holes which allow the droplet beam to pass
and interact with the dopant vapor (in this case Rubidium). Statistical pick-up of atoms
(or molecules) by the He droplets leads to their doping in or on droplets. To dope
droplets with Rb atoms, the vapor cell was heated between 70 and 120 °C; the con-
ditions are similar to earlier work on Rb doped nanodroplets [20]. The level of doping

Fig. 2. Experimental set up described in this section consisting of a He nanodroplet source, a
doping chamber, and a detector chamber. The supersonic jet of He droplets emanating from the
source is doped with the desired atomic species held in a vapor form in the cells in the doping
chamber. Thereafter, downstream, this jet of doped droplets intercepts a focused photon beam
from the synchrotron. The VMI-PEPICO spectrometer discussed in the text collects and analyzes
the electrons and ions produced in the photo interaction. Also shown above are the speeds of the
vacuum pump used in these chambers. This set up is similar to [14, 15]
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can be controlled by changing the temperature of the doping cell, which is resistively
heated using a PID control loop.

The droplet beam which is doped with Rb atoms is expanded into the adjacent
chamber. Synchrotron radiation from the U12.5 undulator at the Elettra synchrotron
passing through a variable angle monochromator with spherical gratings is delivered
with on-demand energy between 13 and 900 eV. The energy resolution of the photons
is better than E/DE > 104, at a pulse repetition rate of 500 MHz, with pulse widths of
150 ps, and maximum intensity in the range of 10 W/m2 [14, 21]. This photon beam
after passing through a pair of slits whose opening can be controlled for attenuating the
beam intensity is focused on to the reaction chamber.

The VMI-PEPICO spectrometer in the detector chamber consists of an array of
electrodes which accelerates photoelectrons into a position sensitive detector comprised
of a microchannel plate with a delay line anode. The position of the impinging pho-
toelectron is deciphered using conventional electronics and data acquisition modules
[14, 15, 21]. Photoelectrons up to 30 eV are accepted in this VMI system. The image of
photoelectrons from the VMI is converted into kinetic energy spectra using the
MEVELER program for Abel inversion [22]. In tandem, the corresponding photoion
produced from the same parent as the photoelectron is pushed toward and companion
microchannel plate directed opposite to the photoelectron detection element. The flight
time of the photoion is recorded using the photoelectron detector pulse as the start for
this clock. The mass by charge resolution of this ion spectrometer is *70. Thus,
coincidence photoelectron–photoion measurements are possible.

4 Results and Discussion

Figure 3 shows a photoion mass spectrum obtained in the photoionization of Rb doped
He nanodroplets. The counts of photoions received at the detector are depicted against
their mass-to-charge ratio. In this experiment, a chopper was used to alternatingly
interrupt the He droplet jet and signals were acquired in both scenarios—this is similar
to earlier studies, see e.g., [14]. The red curve shows the photoion mass spectrum when
the chopper blocked the droplet beam, while the blue curve is the signal obtained when
the doped He droplet jet passed through. The inset confirms the generation of Rb
photoions from the droplet jet as the blue curve shows contrasting peak at m/q values of
85 and 87 atomic units, over the red bottom-line (background). A second set of peaks
over background is observed at twice the values above near 170 atomic units from Rb2

+

ions generated from the photoionization of doped droplets in the jet. By varying the
droplet size and the heating temperature of the vapor cell containing Rb, the mean
number of doped alkali atoms per droplet can be varied [2, 20]. Thus, even Rb trimer
doping was observed in other cases in our experiment.

4.1 Multi-electron Processes in Rb Doped He Nanodroplets

In our earlier study [14, 15], we employed similar experimental strategies as described
here to investigate single-electron process, i.e., Penning transfer from excited He* in
the droplet to hosted alkali atom(s) particularly when the photoexcitation was in the
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energy region of 21.6 eV corresponding to the 1s2p dipole allowed transition of atomic
He. In these cases, a prominent ionization of the alkali atoms as well as photoelectron
signatures of the excitation transfer induced ionization of the alkali atoms in coinci-
dence measurements was found. Moreover, a strong signal of meV electrons at the
same photoexcitation energy was also evidenced. However, multi-electron processes in
alkali doped droplets have not yet found their way into the literature. The present study
is motivated by this obvious need for investigation.

LaForge et al. [23], studied the double excitation of electrons in pure He nan-
odroplets observing the Rydberg series in droplets. The observed photoelectron spectra
were fit to the Fano formula [24] written in terms of the photoexcitation energy E:

r Eð Þ ¼ ra
qþ �ð Þ2
1þ �2ð Þ þ rb;

where � ¼ E�E0
C=2 is the reduced energy, E0 is the resonance energy, C is the resonance

linewidth, and q is the Fano parameter [24]. The parameter ra is the background cross
section associated with fraction of ionization which interferes with the discrete states,
whereas rb is the fraction which does not interfere with these states [24]. In the sense of
a double-slit experiment these two fractions represent the coherent and incoherent
aspects of the process. In the investigation with pure droplets, while the line widths
were found to increase with the droplet size, quite remarkably, the q parameter and the
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Fig. 3. Photoion mass spectrum: a histogram of the counts of the photoions detected is plotted
against the mass-to-charge ratio (m/q) of the ionic species in atomic units. The droplets here
contained a mean number of 10,000 He atoms/droplet. Inset Mass peak structures at 85 and 87
atomic units in the blue curve corresponding to the open condition of the chopper letting the
droplet jet through, over red the background curve obtained from the chopper closed case which
is the configuration when the droplet beam is blocked but the effusive residual gas interacts with
the photon beam
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peak positions varied rather weakly over a change in aggregate size from 102 to 1011

He atoms/droplet.
We performed similar studies with Rb doped He nanodroplets where most droplets

were singly doped with Rb atoms and the droplets had a mean size of 104 He
atoms/droplet, which corresponds to a geometric size of about 20 nm. Figure 4 depicts
the Fano profile of the 2s2p+ resonance in Rb doped He nanodroplets. Two signals
were employed in this case to trace the resonance line—the first is the most prominent
He photoion, which is the He dimer ion, and the second is the Rb+ photoion.
Remarkably the ion signals when overlaid follow each other closely, for the 2s2p+
resonance at a value of E0 = 60.39 eV for both the lines.

Quantum mechanical calculations and simulations performed ab initio on such
large systems are challenging and perhaps not feasible [23]. Other formulations may
work better in providing a physical model and intuition. However, from the experi-
mental results we can infer the following. The interference process involving two-
electron bound states embedded in the continuum of the single-electron excited states is
hardly perturbed by the presence of the alkali atom(s) on the droplet surface. We
envisage a two-step process of the following kind to explain the observation of the
Fano lineshape through both ionic channels, the He2

+ ion as well as the Rb+ ion:

Rb@HeN þ hm [ 60 eVð Þ ! Rb@HeN�� ! Rb@HeþN þ e� ! Rbþ þHeN þ e�

In the first step, the absorption of the photon leads to the formation of the doubly
excited state in one of the atoms in the He nanodroplet. This doubly excited state
decays either by being autoionized via the quantum interference at the 2s2p+ state or
via the route where the excitation energy is transferred to the attached Rb atom in a

Fig. 4. Fano line shape of the 2s2p+ Rydberg excitation in Rb doped He nanodroplets: The
black curve show He dimer ion signal obtained as a function of incident photon energy in the
photoexcitation process. The quantum interference between the electron pathway from the initial
state to the continuum and the energetically equivalent route involving the formation of the
doubly excited He** state, which leads to the characteristic Fano profile. Subsequent decay of
this state leading to the formation of He2

+ ion and a charge transfer from He2
+ to Rb leads to the

formation of the Rb+ ion
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Penning-like or interatomic decay process leading to its ionization. In the former case,
following the formation of the He+ ion, or very likely the He2

+, in the droplet, a charge
transfer from the Rb atom attached to the droplet leading to an electron hopping from
Rb to the dimer ion results in the formation of the Rb+ ion. Thus, the presence of the Rb
atom in the droplet does not significantly change the characteristics of the decay of a
doubly excited He** atom in the droplet. Subsequent fast decay of this state which has
the characteristic Fano profile leads to efficient ionization of the doped Rb atom by
charge transfer. This fast decay is evidenced by studies using attosecond EUV pulses in
combination with near-infrared pulses to map the temporal dynamics of the 2s2p+ state
in atomic He [25].

5 Conclusion

In this report, we have presented the development of an experiment to study the doubly
excited state of He in He nanodroplets doped with an alkali atom attached to the
droplet. We observe that the Fano profile and quantum interference is not significantly
perturbed by the environment keeping the coherence of the process intact throughout.
This may be surprising considering that alkali atoms do induce structural changes to the
surface of the He droplet [2]. However, our study indicates that the fast decay of the
doubly excited state may preempt much of the environmental effects. This work kindles
again the need for better understanding of multi-electron process in quantum aggre-
gates and should stimulate further experimental and theoretical investigation.
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Abstract. We contribute to the field of rogue waves by providing an exact
analytical model of the coupled Bose–Einstein Condensation (BEC) in Pöschl–
Teller potential. We start with the dimensionless 1D BEC of a weakly inter-
acting ultra-cold atomic gas with cubic nonlinearity, under the influence of one-
dimensional Pöschl–Teller potential. Our main goal is to provide an exact
analytical solution of the two-component Gross–Pitäevskii equation which is the
modified form of NonLinear Schrödinger Equation (NLSE) for different types of
potentials and nonlinearity.

1 Introduction

BEC was experimentally achieved in the year 1995 and its dynamics continue to be an
interesting and nontrivial issue to the scientists, both in experiment and theory. It has
become a highly emerging area to explore the physics of it and make it applicable to the
physically relevant scenarios. Several amazing phenomena like dark and bright solitons,
rogue waves, vortices, interference, and Faraday waves are observed by tuning its
external potential, nonlinearity, etc. To understand the dynamics of BEC, Gross–
Pitäevskii (GP) equation is the most appropriate theoretical model. Our main goal is to
solve the two-component GP equation which is the modified form of NLSE for different
types of potentials and nonlinearity. Though it is quite difficult using analytical tech-
niques to tackle these kinds of nonlinear systems with the improvement of different
methodologies in PDE, it is now possible to map the equation to known localized
solutions and observe their dynamics in various potentials. These kind of analytical
studies are also helpful in interesting physical phenomena like ultra-cold atoms trapped in
BOL [1–3], Anderson localization [4, 5], and subdiffusive transport [6]. Rogue waves
have now become a topic of intense research, which are extreme wave events mostly
known for its large-scale maritime disasters. This kind of waves is related to an oceanic
phenomenon. Apart from the fact that physicist has shown its existence in optics [7, 8],
plasmas [9], capillary waves [10], and BEC [11], new studies related to the solution of
PDE having special properties of correlated solutions are of severe need. Manakov
system [12] is a special kind of system which gives the coupled Rogue wave solutions.
One implements this Manakov system in the coupled NLSE to get rogue wave solutions
[13–15]. These type of solutions are basically the mathematical description of peregrine
solitons [13, 16], which are localized in both the coordinates and is rather a mixture of
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dark-bright solitons [17, 18]. The study of multicomponent scenario on linear waves is a
direction of intense research in BEC [19]. These types of multicomponent systems
demonstrate multiple coupled condensations. The first experimental realization of this
kind of system was in Rubidium atoms [20, 21]. Such multicomponent condensates can
manifest unique features in BEC due to its inter-component interactions.

2 Analytical Model and Discussion

At a temperature below the critical temperature, the Bose–Einstein Condensation is
described by the self-consistent NLSE known as the GP equation.

i�h
@

@t
þ �h2

2m
@2

@z2
þNU0 z; tð Þ wðz; tÞj j2�V zð Þ � is z; tð Þ

� �
w z; tð Þ ¼ 0

In order to rescale the equation, we introduce the normalizations as follows:

~t ¼ t
ts

~x ¼ x
a0

~w z; tð Þ ¼ a3=20 w z; tð Þ

We get the dimensionless 1D BEC [22] of weakly interacting ultra-cold atoms with
cubic nonlinearity [17, 23], trapped in a one-dimensional spatial potential.
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Equation (1) can be written as a system of one-dimensional coupled GPE,
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i
@w2
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þ 1

2
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þR z; tð Þ w1j j2 þ w2j j2

� �
w2 z; tð Þ � is z; tð Þw2 z; tð Þ � V zð Þw2 z; tð Þ ¼ 0

ð2Þ

To study the dynamics of BEC construction of the solution to equation (2) is taken
of the following ansatz

wi z; tð Þ ¼ A z; tð ÞFi ZðzÞ; tð Þeih z;tð Þ ð3Þ

where h(z, t) and A(z, t) are the space and time-modulated phase and amplitude. F(Z(z),
t) is a space and time-dependent variable. Our aim is to construct a set of consistency
conditions which will allow us to map (2, 3) to a solvable coupled differential equation
of the form:
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The above coupled nonlinear differential equation is commonly known as Manakov
equation [6], which possesses special forms of solutions such as dark-bright solitons.

We now derive the consistency conditions among the phase, amplitude, nonlin-
earity, and gain or loss of the system such that the requirements of Manakov system
can be fulfilled.

A2 z; tð Þ; Zz zð Þ� �
z¼ 0 ð5Þ

Zt zð Þþ Zz zð Þhz z; tð Þ ¼ 0 ð6Þ

Z2
z zð Þ � 2A2 z; tð Þg z; tð Þ ¼ 0 ð7Þ

2A z; tð ÞAt z; tð Þþ A2 z; tð Þhz z; tð Þ� �
z�2s z; tð ÞA2 z; tð Þ ¼ 0 ð8Þ

From the above set of consistency conditions, the expression of amplitude, phase,
and nonlinearity can be systematically reduced.

A z; tð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
c tð Þ
Zz zð Þ

s
ð9Þ

hz ¼ � Zt zð Þ
Zz zð Þ ð10Þ

g z; tð Þ ¼ Z2
z zð Þ

2A2 z; tð Þ ð11Þ

As we can observe from the above equations, the amplitude is related to the
nonlinearity coefficient.

The loss or gain is connected as,

ct tð ÞZ2
z zð Þ � 2c tð ÞZz zð ÞZz;t zð Þþ 2c tð ÞZzz zð ÞZt zð Þ � 2c tð ÞZ2

z zð Þs z; tð Þ ¼ 0 ð12Þ

The Manakov system equation [4] has the following form of solutions:

F1 Z zð Þ; t½ � ¼ e2ixT
L
B

	 

a1 þ M

B

	 

a2

� �

F2 Z zð Þ; t½ � ¼ e2ixT
L
B

	 

a2 � M

B

	 

a1

� � ð13Þ

132 N. Kundu and U. Roy



where

L ¼ 3
2
� 8x2t2 � 2a2Z2 zð Þþ 8ixtþ fj j2e2aZ zð Þ
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a21 þ a22

q
x ¼ a2
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a1 and a2 are arbitrary real parameters.
Now from the form of solutions, the ratios L/B and M/B describes asymptotically

as a dark soliton and a bright soliton, respectively, as t!(±)∞. Hence,
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Cosh Z zð Þ½ �
ð15Þ

Again Pösch–Teller (PT) potential is one of the most popular quantum mechanical
systems with some meticulous property of transmitting linear waves without attenua-
tion. The general form of PT potential is given by

V Zð Þ ¼ � 7s2

16
sech2 szð Þ ð16Þ

where s controls the width of the potential. With the proper choice of parameters as

Z zð Þ ¼ c cos ech szð Þ ð17Þ

the following form of nonlinearity is being observed,

g ¼ Gc3s2

2c tð Þ coth
2 szð Þ cos ech2 szð Þ ð18Þ

The final form of the wave function is as given below:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ð19Þ

Two Component Bose–Einstein Condensate … 133



The condensate density variation with Pöschl–Teller potential is given below:

s ¼ �0:5

As we observe in Fig. 1 for the first component, we switch off the parameter a2
bright soliton is obtained in the PT potential, whereas we obtain a dark soliton for the
second component. In Fig. 2, we observe a mixture of dark and bright soliton for both
the two condensate components where the second component condensate density is the
inverted condensate density of the first component.

3 Conclusion

In this work, we have constructed a family of solutions for Pöschl–Teller potential for
two-component Bose–Einstein Condensation. We have proposed a novel method to
find an explicit analytical solution for the coupled GP equation for Pöschl–Teller
potential. The present idea can be further extended for higher order nonlinearities and
other typical potentials such as Morse potential, Toda Lattice potential, Power law
potential, etc.

Fig. 1. Variation of condensate density (bright-dark) with potential. The first component (left
side) and the second component (right side). The potential is given in the negative y-axis and
density is depicted in the positive y-axis

Fig. 2. Variation of condensate density (dark-dark) with potential. The first component (left
side) and a second component (right side)
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Abstract. A proper and reliable description of charged particles inter-
actions in the biological matter remains a critical aspect of radiation
research. All the more so when new and better methods for treating can-
cer through the use of ionizing radiation are emerging on the horizon such
as targeted alpha therapy. In this context, Monte Carlo track-structure
codes are extremely useful tools to study radiation-induced effects at
the atomic scale. In the present work, we review the latest version of
CELLDOSE, a homemade Monte Carlo track-structure code devoted
to electron dosimetry in biological matter. We report here some recent
results concerning the stopping power and penetration range of electrons
in water and DNA for impact energies ranging from 10 eV to 10 keV.

1 Introduction

A complete and accurate description of charged particles’ interactions with mat-
ter at the nanometric scale is essential for understanding the radio-induced
biological effects such as cellular death and chromosomal aberration induction.
Computer simulations, particularly those based on Monte Carlo (MC) methods,
are a very powerful tool in this field and have been used for decades to tackle
particle transport problems. MC radiation transport codes can be grouped into
two categories depending on how the particles are tracked: condensed-history
(MCCH) codes and track-structure (MCTS) codes. In MCCH codes, also known
as general-purpose MC codes, a particle’s path is divided into discrete steps,
each step encompassing a large number of collision processes and taking into
account their combined effects by means of multiple scattering theories. This
allows to determine the energy losses and angular changes in the direction of the
particle at the end of the step [1]. Some examples of general-purpose MC codes
are PENELOPE, MCNP, Geant4, and FLUKA. Although MCCH codes have
the obvious advantage of reducing computation time and provide results accu-
rate enough for most applications in radiation therapy, they have also important
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shortcomings, especially when dealing with very small geometries or low-energy
transfers [2,3]. Therefore, only MCTS codes are appropriate for microdosimetry
applications and remain the only tools able to reproduce in detail the energy
deposit pattern in small biological structures such as cell nucleus or DNA sub-
units (nucleobase, sugar-phosphate backbone) [4]. Contrary to MCCH codes,
MCTS codes follow both the primary and the secondary particles in an event-
by-event manner, until their energy falls below a cutoff value. Track-structure
simulations consist in a series of random samplings, which first determine the
distance traveled by the particle, then the type of interaction taking place at the
point of arrival and finally the full kinematics of the secondary particles created.
To properly simulate the transport of particles in a given medium, MCTS codes
require total and differential cross sections for describing the various particle-
induced interactions as input data. Most of the time, these cross sections are
obtained using a combination of experimental data and theoretical models. It is
worth noting that, in the end, the effectiveness and reliability of the code will
depend on how accurate and complete the cross sections database is.

The preferred medium for the simulations in most of the existing MCTS
codes designed for applications in radiobiology and medical physics is water,
since it has often been considered a good surrogate for tissue. A few codes have
also included models which allow to explore in more detail the damage to DNA
[5,6]. A summary of some well-known MCTS codes and their relevant features
may be found in [1,2].

The purpose of this paper is to review the latest version of CELLDOSE,
an homemade MCTS code for electron dosimetry in biological matter [7]. We
present some of our results and discuss the ongoing work devoted to extend the
code’s capabilities. In Sect. 2, we summarize the main features of CELLDOSE
and we provide the theoretical framework used to describe the biological media
and the physical processes considered in the code, concluding with a general out-
line of the future developments. In Sect. 3, we present our calculations regarding
the stopping power and the penetration range for electrons in water and DNA
and compare them with values found in the literature.

2 CELLDOSE

CELLDOSE is an MCTS code developed in the C++ programming language.
In its current version, it is able to simulate the full slowing-down histories of
electrons and positrons in gaseous and liquid water, as well as in DNA. The
underlying physics of CELLDOSE—needed to describe the elastic as well as the
inelastic electron-induced processes—refers to several theoretical models inde-
pendently developed and mostly within the quantum-mechanical framework.
For more details, we refer the reader to some of our previous studies where
the ionization treatment for electrons in water is detailed [8], where the elastic
scattering of electrons and positrons has been studied in liquid and gaseous water
[9], and finally to [10] where the ionization of DNA subunits was investigated.
All these models were summarized in [11] and implemented into a homemade
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Monte Code track-structure code—called EPOTRAN—devoted to electron and
positron transport in water for impact energies ranging from 1 MeV down to a
predefined energy cutoff of 7.4 eV (i.e. the water excitation threshold) [12]. Thus,
CELLDOSE may be seen as a dosimetric extension of EPOTRAN whose cur-
rent extension includes newly studied electron–DNA interactions. In this context,
CELLDOSE has been used previously to assess the electron dose distribution
for several radionuclides in simple geometries [7,13] as well as in more complex
environments [14].

2.1 Description of the Biological Medium: From Water to DNA

In CELLDOSE, the water target is described following the quantum approach
proposed by Moccia for water vapor [15]. The ten bound electrons of the water
target are distributed in five molecular orbitals (j = 5), which are constructed
from a linear combination of atomic orbitals in a self-consistent field. Each molec-
ular orbital wave function is developed in terms of Slater-type-orbital functions
centered on the oxygen nucleus. According to this description, the molecular
orbital wave functions are written as

ψj(r) =
Nj∑

k=1

ajkφ
ξjk
njkljkmjk

(r) (1)

where Nj is the number of Slater atomic orbitals φ
ξjk
njkljkmjk

and ajk is the cor-
responding weight. The atomic components are written as

φ
ξjk
njkljkmjk

(r) = R
ξjk
njk(r)Sljkmjk

(r̂), (2)

with the radial part given by

R
ξjk
njk(r) =

(2ξjk)2njk+1/2

√
2njk!

rnjk−1e−ξjkr, (3)

and the angular part, expressed by means of real spherical harmonics, is given
by:

⎧
⎪⎪⎨

⎪⎪⎩

if mjk �= 0 : Sljkmjk
(r̂) =

(
mjk

2|mjk|
)1/2

×
{

Yljk−|mjk|(r̂) + (−1)mjk

(
mjk

|mjk|
)

Yljk|mjk|(r̂)
}

,

if mjk = 0 : Sljk0(r̂) = Yljk0(r̂).

(4)

All the necessary coefficients and quantum numbers are reported in [15].
DNA modeling follows a similar ab initio approach in which each component

(i.e., nucleobase or sugar-phosphate backbone unit) is described via N molec-
ular subshell wave functions similar to (1); N = 35, 29, 39, 33, 29 and 48 for
adenine (A), cytosine (C), guanine (G), thymine (T), uracil (U), and sugar-
phosphate backbone unit (SP), respectively. Each molecular subshell wave func-
tion is expressed as a linear combination of atomic wave functions corresponding
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to the different atomic components: H1s, C1s, C2s, C2p, N1s, N2s, N2p, O1s, O2s,
O2p, P1s, P2s, P3s, P2p, and P3p. Total-energy calculations for all targets were
performed in the gas phase with the Gaussian 09 software at the RHF/3-21G
level of theory [16]. The computed ionization energies of the occupied molec-
ular orbitals of the targets were scaled so that the ionization energy of their
HOMO coincides with the experimental values found in the literature. For each
molecular orbital j, the effective number of electrons relative to the atomic com-
ponent k was derived from a standard Mulliken population analysis and their
sum for every occupied molecular orbital is very close to 2, since only atomic
shells with very small population were discarded. More details about this model
are provided in [17]. Besides, to get insight into the real energy deposit cartog-
raphy induced by charged particles impact in the biological medium, a DNA
molecule composed of a nucleobase-pair plus two SP groups has been consid-
ered. Additionally, to fit the realistic composition of living cells, we used the
nucleobase repartition percentages reported by Tan et al. [18], namely, 58%
(A-T) (adenine–thymine base pair) and 42% (C-G) (cytosine–guanine base pair).
Thus, by using the respective molar mass of each DNA component, viz. MA =
135.14 g mol−1, MT = 126.12 g mol−1, MC = 111.11 g mol−1, MG = 151.14 g
mol−1 and MSP = 180 g mol−1, the following mass percentages were obtained: A
(12.6%), T (11.8%), C (7.5%), G (10.2%) and SP group (57.9%). However, this
description corresponds to dry DNA. In order to obtain an even more realistic
biological medium, hydrated DNA was simulated by adding 18 water molecules
per nucleotide, which modified the mass percentages as follows: A (8.3%),
T (7.7%), C (4.9%), G (6.7%), SP group (38.1%), and water (34.3%). This
is consistent with the suggestion made by Birnie et al. [19] who estimated that
the total amount of water associated with DNA was of the order of 50 moles per
mole of nucleotide, in order to get the expected density of 1.29 g cm−3.

Irrespective of the biomolecular targets investigated, CELLDOSE is based
on a cross section database, which refers to isolated molecules and to living
matter components in vapor state. In this context, the present work clearly differs
from existing studies on condensed matter (water or DNA), where the energy-
loss function of realistic biological components was extracted from experimental
data and interpolated for use in cross section calculations (see for example [20]
and the recent series of works by Abril and coworkers [21,22] and Emfietzoglou
et al. [23]) or developed within the independent atom model framework [24].
However, whether it is for water or DNA, the available data—cross sections as
well as macroscopic outcomes like ranges and stopping power—are exclusively
measured in vapor phase and comparisons with the liquid homologous have been
only rarely reported. Consequently, a vapor-based approach is chosen here in
order to check the suitability of our theoretical models, although comparisons
with existing condensed matter models are presented in the Results section of
this manuscript. Nevertheless, the theoretical models described in the following
section report some information about the extrapolations performed for treating
the liquid water phase, in particular for modeling the elastic scattering process
[9] and the electron-induced ionization [25].
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2.2 Interactions and Cross Sections

CELLDOSE implements a set of theoretical cross sections calculated within the
quantum-mechanical framework, using the partial-wave method. The following
interactions are taken into account in the code: elastic scattering of the incident
particle; ionization and electronic excitation of the target molecule; and Positron-
ium formation, when the primary particle is a positron. We report hereafter some
details on the theoretical treatment of electron-induced interactions in water by
considering—in some cases—the vapor and liquid environment specificities.

Elastic Scattering. When the selected interaction is elastic scattering, the
singly differential cross sections are sampled in order to determine the scattering
direction at the electron incident energy Einc, which remains almost unchanged
because the energy transfer induced during this process is very small (of the
order of meV) [12].

The perturbation potential of the water molecule can be approximated by
a spherically symmetric potential V (r) composed of three different terms: the
static contribution Vst, the correlation-polarization term Vcp, and the exchange
term Vex. Thus, we can write:

{
V (r) = Vst(r) + Vcp(r) + Vex(r) for electrons,
V (r) = −Vst(r) + Vcp(r) for positrons. (5)

As we mentioned before, for water vapor the description of the water molecule
provided by Moccia [15] was used. The static potential Vst(r) was numerically
calculated from each target molecular wave function by using the spherical aver-
age approximation and is expressed as

Vst(r) =
Norb∑

j=1

[V j
st(r)]elec + [Vst(r)]ion, (6)

where [V j
st(r)]elec and [Vst(r)]ion refer to the electronic and ionic target contribu-

tion to the static potential, respectively.
For liquid water, the molecular wave functions can only be obtained by

theoretical calculations performed in the Dynamic Molecular framework, which
rapidly becomes extremely computer time-consuming. To overcome this limita-
tion, the static potential for liquid water has been deduced from the experimental
electron density reported by Neuefeind et al. [26]. This latter was then fitted and
analytically expressed as [9]:

ρN (r) =
1
4π

(
a1e

−r/b1 + a2re
−r/b2

)
, (7)

what leads to a static potential given by

VN (r) = −1
r
[a1b

2
1(r + 2b1)e−r/b1 + a2b

2
2(r

2 + 4b2r + 6b22)e
−r/b2 + (2δ − 2)],(8)
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where a1 = 4411 a.u., a2 = 120.435 a.u., b1 = 0.06046 a.u., b2 = 0.3248 a.u. and
the parameter δ is expressed as

δ =
{

r
ROH

for r ≤ ROH

1 for r > ROH,
(9)

with ROH = 1.8336 a.u. for the water molecule in liquid phase [27,28]. The
correlation-polarization contribution is based on the recommendations of Salvat
[29] and is given by

Vcp(r) =
{

max{Vcorr(r), Vp(r)} for r < rcr
Vp(r) for r > rcr,

(10)

where rcr is defined as the outer radius at which Vp(r) and Vcorr(r) cross. The
polarization potential Vp(r) is the same for electrons and positrons and is given
by

Vp(r) = − αd

2(r2 + r2c )2
, (11)

where the static dipole polarizability of the water molecule αd = 9.7949 a.u. [30]
and rc is the cutoff parameter proposed by Mittleman and Watson [31]:

rc =
[
1
2
αdz

−1/3b2pol

]1/4

, (12)

with z = 10 and bpol an adjustable parameter given by:

bpol =
√

max{(E − 0.5)/0.01; 1}. (13)

The correlation potential differs for electrons and positrons and has been well
described by Padial and Norcross [32] for the former and by Jain [33] for the
latter. The corresponding expressions V −

corr(r) and V +
corr(r) are reported below:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

V −
corr(rs) = 0.0311 lnrs − 0.0584 + 0.006rs lnrs

−0.015rs for rs ≤ 0.7,
V −
corr(rs) = −0.07356 + 0.02224 lnrs for 0.7 ≤ rs ≤ 10,

V −
corr(rs) = −0.584r−1

s + 1.988r
−3/2
s − 2.450r−2

s

−0.733r
−5/2
s for rs ≥ 10,

(14)

with rs =
[

3
4πρ(r)

]1/3

and:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

V +
corr(rs) = 1

2

{
− 1.82

r
1/2
s

+ (0.051 lnrs − 0.115) lnrs

+1.167} for rs ≤ 0.302,

V +
corr(rs) = 1

2

{
−0.92305 − 0.09098

r2
s

}
for 0.302 ≤ rs ≤ 0.56,

V +
corr(rs) = 1

2

{
− 8.7674rs

(rs+2.5)3 + −13.151+0.9552rs
(rs+2.5)2

+ 2.8655
rs+2.5 − 0.6298

}
for 0.56 ≤ rs ≤ 8.0.

(15)
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Finally, the exchange effect (only used for electrons) was treated via the phe-
nomenological potential Vex(r) proposed by Riley and Truhlar [34], and is
expressed as

Vex(r) =
1
2

{
Einc − (Vst(r) + Vcp(r))

−
[
(Einc − (Vst(r) + Vcp(r)))

2 + 4πρ(r)
]1/2

}
. (16)

Ionization. In the case of ionization, the kinetic energy of the ejected elec-
tron Ee is first determined by random sampling among the singly differential
cross sections. Then by applying a direct MC sampling according to the relative
magnitude of the partial total ionization cross sections (at Ee), the ionization
potential IPj is determined. The particle energy is reduced by Ee+IPj , whereas
the ejected and scattered directions are determined according to the triply and
double differential cross sections, respectively. The particular ionization poten-
tial IPj is stored as locally deposited energy, except when inner-shell ionization
occurs, in which case an Auger electron is produced and assumed to be isotrop-
ically emitted with a kinetic energy EAuger [7,12].

Regarding the theoretical approach, the ionization process is described within
the frozen-core first Born approximation that consists in reducing the ten-
electron problem to a one active electron problem (for more details see [35]).
Thus, the triply differential cross sections (TDCS) are defined as

σ(3)(Ωs, Ωe, Ee) ≡ d3σj

dΩsdΩedEe
=

keks
ki

|M |2, (17)

where dΩs = sin θsdθsdφs and dΩe = sin θedθedφe correspond to the scattered
and ejected direction, respectively. The momenta ki,ks and ke are related to
the incident, the scattered and the ejected electron, respectively. The transition
amplitude M is given by

M =
1
2π

〈Ψf |V |Ψi〉 , (18)

where V represents the interaction between the incident electron and the target
and is written as

V = − 8
r0

− 1
|r0 − R1| − 1

|r0 − R2| +
10∑

i=1

1
|r0 − ri| , (19)

with R1 = R2 = ROH = 1.814 a.u., while ri is the position of the ith bound
electron of the target with respect to the oxygen nucleus [36]. The initial state is
written as the product of two wave functions: a first one φ(ki, r0) describing the
incident electron by a plane wave and a second one ϕi(r1, r2, . . . , r10) for the
ten bound electrons described by the Slater functions given by Moccia. Thus,
the initial state is expressed as

|Ψi〉 = |φ(ki, r0)ϕi(r1, r2, . . . , r10)〉 . (20)
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Considering the final state of the collisional system, it was successively described
within five different models: two first models where the incident and the scattered
electrons are both described by plane waves, whereas the ejected one is described
by a Coulomb wave (FBA-CW) or a distorted wave (DWBA), respectively; a two-
Coulomb wave (2CW) model where the scattered and ejected electrons are both
described by a Coulomb wave; the Branner, Briggs, and Klar (BBK) model whose
main characteristic consists of exhibiting a correct asymptotical Coulomb three-
body wave function for the ejected and scattered electrons in the residual ion field
and finally the DS3C—for dynamic screening of the three two-body Coulomb
model. For more details about these models as well as a fine analysis of the
respective improvements, we refer the reader to our previous work [36]. However,
on the basis of TDCS calculations and comparisons with available experimental
measurements, we concluded that the two first-order models, namely, FBA-CW
and DWBA, reproduced quite well the shape of the TDCS, the 2CW model
giving nevertheless a better agreement with experiments than the first cited
ones, even considering that the recoil peak remains still underestimated for some
molecular orbitals. Considering the double structure of the binary region, it is
generally well reproduced for all models. However, we observed that none of the
models—even the rather sophisticated DS3C approach—reproduces correctly
the data at low ejection angles. To conclude, for computational time reasons, we
first focused our efforts to the building and the implementation in CELLDOSE
of a DWBA database including triply, doubly, singly differential, and total cross
sections.

Let us remind that the water target wave function used here refers to an
isolated water molecule, namely, in vapor phase. For a more realistic modeling
of the electron tracking in biological matter, it is worth noting that water should
be considered in its liquid phase. To that end, various semi-empirical models
were developed since the pioneer works of the Oak Ridge group [37,38]. For
more details, we refer the reader to the works of Emfietzoglou and coworkers
[39–41]. In this context, we reported in a recent work [25] a unified methodology
to express the molecular wave functions of water in the liquid phase by means
of a single center approach and reported a low influence of the water phase on
the cross section calculations, limited to the low-incident energy regime. Indeed,
in this energy range, the contribution of the outermost target subshells to the
ionization cross sections is very important, which leads to an increasing influence
of the water phase as the incident electron energy decreases.

Excitation. When the selected interaction is excitation, direct MC sampling
is applied according to the relative magnitude of all partial excitation cross
sections for determining the excitation level n. The particle energy is reduced
by the potential energy Wn, assumed as locally deposited, whereas the incident
direction remains unaltered [7].

Excitation includes all the processes which modify the internal state of the
molecule without emission of electrons. These processes include, in particular,
the following:
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1. Electronic transitions toward Rydberg states or degenerate states (Ã1B1,
B̃1A1, diffuse band);

2. The dissociative excitation processes leading to excited radicals (H∗, O∗, and
OH∗);

3. The vibrational and rotational channels;
4. The dissociative attachment leading to the formation of negative ions.

It is worth noting that describing the electronic states of molecular targets
remains a challenging task in a quantum-mechanical approach. In this context,
we first privileged semi-empirical models for treating both the electron- and
positron-induced excitations. For the first three processes listed above, the total
excitation cross sections are given by [11,42,43]

σn(Einc) =
4πa2

0Ry2f
(n)
0 c

(n)
0

W 2
n

(
Wn

Einc

)Ω
[
1 −

(
Wn

Einc

)β
]ν

, (21)

where Wn is the deposited energy during the excitation channel labeled n, and Ω,
β, ν are fitting parameters; f

(n)
0 and c

(n)
0 being the oscillator strength and a con-

stant of normalization deduced from experimental total cross sections σn(Einc),
respectively. All these parameters are listed in Olivero et al. [42]. For the disso-
ciative attachment process, the following expression is used [44]:

σn(Einc) =
Aet

U(1 + et)2
(22)

with:
t =

Einc − Wn

U
, (23)

where A and U are fitting parameters. Moreover, let us add that according to
experimental results [44], we assume that impact excitation induces no angular
deflection.

Positronium Formation. When the incident particle is a positron, a target
electron capture process can take place, leading in the final channel of the reac-
tion to the formation of Positronium atoms (Ps), a bound system consisting of
an electron and a positron. In its ground state (triplet state), this exotic system
has a mean lifetime of approximately 1.47 × 10−7 s (ortho-Positronium) anni-
hilating in three photons, whereas in the singlet state (para-Positronium) its
mean lifetime is approximately 1.25 × 10−10 s with annihilation in two photons
of 511 keV each, the rest mass of the electron. The knowledge of this process is
important for many domains of physics as well as in medicine, a field where it
is nowadays common the use of positron emission tomography (PET) for both
diagnostic and treatment monitoring.

The description of the Positronium formation process when positrons collide
with a water target is based on the work by Hervieux et al. [45], who devel-
oped a continuum distorted-wave final state (CDW-FS) approximation. Within
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this approach, the final state of the collision is distorted by two-Coulomb wave
functions associated with the interaction of both the positron and the active
electron (the captured one) with the residual ionic target. Since the collision of
a positron with a vapor water molecule is a many-electron problem, the inde-
pendent electron model (IEM) was adopted. This means that at the high impact
energies considered here, it is possible to assume that the electron is, before
being captured, suddenly ejected into an intermediate state corresponding to
a high-velocity continuum of the target (with a velocity close to the projectile
one). Therefore, it is considered that the other electrons remain as frozen in
their initial orbitals due to the fact that the relaxation time is much larger than
the collision one. The total cross sections are calculated by using a partial-wave
technique. More details are given in [45].

2.3 Future Developments

The next step in the development of CELLDOSE is to extend the code by includ-
ing the interactions of heavier charged particles, namely protons and alpha par-
ticles, with water and DNA. This will be achieved by coupling CELLDOSE with
TILDA-V (an acronym for “Transport d’Ions Lourds Dans l’Aqua & Vivo”), a
newly developed MCTS code [6,46]. In its current version, TILDA-V is able to
simulate the full transport of protons and its secondaries in water and DNA
components. Thus, the main task remains the modeling of alpha particles, tak-
ing into account all the charge states of the helium atom [47,48]. With the
growing interest in targeted alpha therapy (TAT) for treating microscopic or
small-volume disease [49], an accurate nano-dosimetric description of the pat-
tern of energy deposit of alpha particles could be a valuable input to assess
and compare the potential therapeutical advantages of several alpha-emitting
radionuclides. This is even more true given that microdosimetry seems essential
to investigate the therapeutic efficacy of TAT [50].

3 Results

We present here some recent results obtained with the latest version of CELL-
DOSE. We have computed the stopping power and penetration range for elec-
trons in water and DNA for incident energies, Einc in the range 10 eV to 104

eV. To compute the stopping power one million histories of stationary projec-
tiles, i.e., primary particles for which the initial energy remains unchanged, were
simulated. In this mode, each primary particle is followed until it experiences
an interaction with the medium. A sum over the energy loss and the distance
traveled by each particle is carried out and the linear stopping power—expressed
in keV µm−1—is then defined as

SP =
Etot

L
, (24)

where Etot is the total energy lost by the stationary projectiles and L is the
track length. The results were later normalized using the mass densities for
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Fig. 1. Total stopping power for electrons in water versus DNA as provided by CELL-
DOSE

each medium (ρH2O = 1 g cm−3, ρDNA = 1.29 g cm−3 [19]) to obtain the
mass stopping power, expressed in MeV cm2 g−1. Figure 1 represents the total
stopping power for electrons in water versus DNA. The results display a similar
behavior for both media, with a maximum stopping power of 232 MeV cm2 g−1

at 160 eV and 223 MeV cm2 g−1 at 120 eV for water and DNA, respectively. It
is worth noting that the linear stopping power of DNA is greater than for water;
however, when normalizing with respect to the mass density of the medium to
obtain the mass stopping power as mentioned before, the DNA curve initially
above the one from water is shifted downwards, as shown in Fig. 1.

Figure 2 shows the contribution of ionization as well as excitation processes
to the total stopping power of electrons in both media. In panel (a) we report
our results for water and compare them with values found in the literature. A
good agreement can be seen with the data provided in the IAEA TECDOC 799
[51] and the ICRU Report 16 [52] for Einc > 300 eV, as well as with the calcula-
tions by Garcia-Molina et al. [53] and Tan et al. [54] for Einc > 500 eV. At lower
energies, however, important discrepancies are observed, especially with respect
to the maximum value of the stopping power, since there is a difference of about
12% and 19% between our values and the predictions of Garcia-Molina et al.
[53] and Tan et al. [54], respectively. This can be explained by the fact that both
authors used the dielectric formalism for their calculations, which without all the
necessary corrections is known to overestimate the inelastic cross sections at the
peak region, as pointed out in the work by Tan et al. [54]. Finally, our predictions
agree with the results obtained by Paretzke [55] in most of the energy range here
considered, although a slight underestimation of the maximum is still noticeable.
Panel (b) shows our results for DNA. As in the case of water, significant dif-
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(a)

(b)

Fig. 2. Contribution of ionization and excitation processes (dashed and dash-dotted
line, respectively) to the total stopping power for electrons in a water and b DNA
(blue and red solid lines, respectively), as provided by CELLDOSE. Total stopping
power data are taken from the IAEA TECDOC 799 [51] (squares), the ICRU report
16 [52] (diamonds), Garcia-Molina et al. [53] (triangles), Tan et al. [54] (open circles)
and Paretzke [55] (solid circles)

ferences are observed between our values and those of Garcia-Molina et al. [53]
and Tan et al. [54] at low energies and near the peak region. Nevertheless, now
the maximum stopping power values predicted by Garcia-Molina et al. [53] and
Tan et al. [54] are only 7% and 6% greater than our result, respectively. On the
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other hand, a good agreement between the three calculations can be observed
for Einc > 300 eV.

Figure 3 presents our results for the penetration range of electrons in water
and DNA (blue and red solid line, respectively). We apply here the same defi-
nition of penetration range used by Meesungnoen et al. [56], namely, the length
of the vector |Rf − Ri| from the point of departure (Ri) to the final position
(Rf ) of the electron after thermalization. As shown in Fig. 3, at energies below
∼700 eV our results for water fall between those of Meesungnoen et al. [56]
(open circles) and the values computed with the default version of Geant4-DNA
[57] (solid diamonds). For incident energies above ∼700 eV the three predictions
overlap perfectly. The penetration range for electrons in DNA is represented in
Fig. 3 by the red solid line. It can be observed that in the whole energy range
here considered the penetration range values for DNA are lower than those for
water. There is a maximum difference of 80% in the penetration range for both
media at 10 eV, while for energies higher than 2 keV the difference falls to about
15%. In order to confirm that this behavior is not only due to the different den-
sities considered for water and DNA, we have plotted in Fig. 4 the penetration
range in water with the density rescaled to a value of 1.29 g cm−3 (blue dashed
line). The results show that even after the density correction the difference in
the penetration range for electrons in water and DNA is still remarkable at low
incident energies, reaching 75% at 10 eV. On the other hand, it can be seen that
at about 500 eV the penetration range is almost the same for both media. At

Fig. 3. Penetration range for electrons in water (blue solid line) and DNA (red solid
line), as provided by CELLDOSE. Calculations provided by Meesungnoen et al. [56]
(open circles) and results obtained with the default version of Geant4-DNA, as reported
by Bordage et al. [57] (solid diamonds), are shown for comparison
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Fig. 4. Penetration range for electrons in water (blue solid line), water with the density
rescaled to 1.29 g cm−3 (blue dashed line) and DNA (red solid line), as provided by
CELLDOSE

higher impact energies (Einc > 500 eV), the penetration range in DNA becomes
greater than in density-rescaled water, with a difference of about 9% at 10 keV.

4 Conclusion

We have reviewed in this paper the main features and physical models imple-
mented in the CELLDOSE MCTS code. We have also presented our latest calcu-
lations regarding the stopping power and penetration range for electrons in water
and DNA, showing that for the former medium our results are in agreement with
the values found in the literature. In the case of DNA we have provided here
the predictions of our code and compared our stopping power values with the
calculations performed by other authors, observing differences at low incident
energies and a better agreement for Einc > 300 eV. Our results could be taken
as a reference for future comparisons as more experimental data and theoretical
calculations on this medium become available. Finally, we have briefly discussed
the objectives of the ongoing work to improve and extend our code, underlining
the significant potential applications in ionizing radiation microdosimetry and
targeted alpha therapy.
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Abstract. In this article, we report Dissociative Electron Attachment
(DEA) cross sections. DEA is a resonant process and happens at low
energy electron scattering on electron collision with simple molecules
(≤20 eV). Using the well-established ab inito R-matrix method via.
Quantemol-N DEA estimator we compute the cross sections for the
diatomic molecules and applied the same for a triatomic molecule.

1 Introduction

From the perspective of fundamental study, it becomes more important to under-
stand different properties of atoms and molecules including their dynamics and
different processes involving bond formation, bond breaking, and other chemical
processes. And the easiest and simple technique for understanding the system is
to perturb the system, and one such method is electron impact scattering study.

Variety of atomic and molecular processes are widely studied using electron
collision. And the important part of the electron impact collision study at low
energy is that it is not governed by the dipole selection rule and contains all the
angular momentum components [1,2]. Thus, the study helps in understanding
the molecular structure more precisely and their relative dynamics. With this,
it underlines the importance of scattering study with electron impact. The scat-
tering study was the first phenomenal change, that helped in understanding the
structural symmetries very well. Rutherford’s experiment with the alpha particle
and the gold foil is the base for this scattering studies. With the advancement
in technology and availability of sophisticated and well-equipped instruments,
through quantum scattering elastic and inelastic processes were well studied. The
inelastic process includes rotational excitation, vibrational excitation, dissocia-
tive electron attachment/recombination, neutral dissociation, electronic excita-
tion, and ionizations [3,4].
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In this article, we focus on the study of dissociative electron attachment
(DEA) and the study of resonance phenomena that leads to dissociation of neu-
tral target.

2 Resonance

Resonance is a temporary formation of a compound state between the incident
electron and the target molecule i.e a transient state that decays by emitting
electron [5]. And these resonances have a lifetime appreciably longer than the
electron passage time, i.e., a/v where a is the linear dimension of the target
and v is electron velocity [5]. In collision process, the formation of a resonance
from the target system and incident electron will occur at some energies as it
generally leads to a severe distortion of the incident electron wave function. This
only happens when the incident electron falls in one of the discrete energy bands,
where the incident electron finds quasi-stationary orbit of the target molecule.

The resonance process is not only the effect of temporary capture of the inci-
dent electron to quasi-stationary state, but also effects the potential of the target
system [5]. The signature of inelastic processes such as rotational, vibrational,
and electronic excitations can be found in resonances. In this process, the tar-
get is excited by incident electron energy and also the electron loses its energy.
One of the inelastic process closely related to the resonance is the dissociative
electron attachment (DEA).

2.1 Theoretical Methodology

To calculate the resonance for our electron–target interaction, we have employed
the ab initio R-matrix via Quantemol-N [7]. The principle behind the R-matrix
method [6] relies on the division of the configuration space into two spatial
regions, viz., inner and outer regions. The inner region is chosen generally to
have a R-matrix radius of 10–15 au, which accounts for the short-range potentials
arising due to electron–electron correlation and exchange effects. It is solved
using the quantum chemistry codes [7]. All required target wave functions must
vanish at the boundary of the R-matrix. The outer boundary is extended to
∼100 au. The trial wave function in the inner region is expressed as

ΨN+1
k (x1 . . . xN+1) = A

∑

ij

aijkΦN
i (x1 . . . xN )uij(xN+1) +

∑

i

bikχN+1
i (x1 . . . xN+1)

(1)

In (1), the first summation Φi represents the wave function of ith target state.
A is the anti-symmetrization operator taking care of exchange effect and uij is
the continuum orbitals to represent the scattered electron, whereas aijk and bik

are the variational parameters determined by the diagonalization of N+1 Hamil-
tonian matrix. In the second term, summation runs over χi for N + 1 electrons
and represents L2 function with zero amplitude at the R-matrix boundary [4].
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The continuum orbitals are represented by the orbitals given by Faure et al.
[8]. The asymptotic solution is obtained in the outer region by expanding the
R-matrix on the boundary by the expression given by Gailitis [9]. The K-matrix
obtained used to derive all the physical quantities which are used to calculate
the cross sections. Further, the eigenphase sum obtained on diagonalizing the K-
matrix is used to obtain the position and width of the resonance by fitting them
to the Breit–Wigner profile [10] using the RESON program [10]. The details of
the methodology can be obtained from our earlier publications [3,4,11].

3 Dissociative Electron Attachment (DEA)

As discussed in the earlier section of resonance, DEA is one of the process which
is closely related to resonance phenomena. In DEA, electron is temporally cap-
tured by the molecule to form a transient negative ion (TNI) or a resonant state
[4,12,13]. This can be understood as one of the inelastic channel being intro-
duced, i.e., electronic excitations from ground state of the neutral molecule to
the ground state or any other accessible excited states of the anion. A graphi-
cal representation of the potential energy curve of diatomic target, anion, and
excited transient negative ion is given in Fig. 1. The DEA process in general for
electron scattered by the diatomic molecule AB is given by

e− + AB −→ AB∗− −→ A + B−orB + A− (2)

The dissociative electron attachment process is active below the ionization
threshold of the molecule and it is very important in understanding the local
chemistry induced by the incident electron. The necessary condition for target
to fragment is that the energy of the incident electron must be greater than
the dissociation energy of the bond. The cross sections for a given DEA process
is defined by the initial attachment cross sections resulting from attachment
of electron with the target molecule multiplied by the survival probability of
TNI beyond the cross point (rc in the Fig. 1) of the respective potential energy
curves. In dissociation, excitation is the initial step involved either in the direct
or exchange scattering. Dissociation is certain once the interatomic distance of
the resonance state anion exceeds cross point rc (see Fig. 1).

3.1 Theoretical Methodology

In general, the DEA cross sections is calculated as a product of resonance cross
section σr(Ei) arising from electron collision with ground state of the target and
the survival probability “S” of these resonances that occur during the interaction.
Thus, DEA cross section σT (Ei) is represented as

σT (Ei) = C
∑

r

Siσri (3)

where Ei is the incident energy of electron and the summation runs over the
different resonances being considered. Whereas C accounts for energy-dependent



158 M. Vinodkumar et al.

Fig. 1. A typical interatomic potential energy curve of a diatomic molecule. Here
AB represents the neutral diatomic molecule, AB∗− represents the excited diatomic
molecule, A is the neutral fragmented atom, B− represents the negative ion formed
after fragmentation and EC is the electron-captured process for the Franck–Condon
region, AD represents the auto-detachment process, DEA represents the dissociative
electron attachment process, and EA represents Electron affinity of the AB molecule

widths for the resonances. To perform the DEA calculations the inputs required
are the dissociation energy, the ground state vibrational energy, and the electron
affinity Ea of the target molecule. Further, the resonance cross sections, σri are
calculated by computing resonance width and position using Breit-Wigner profile
using RESON program [10]. Resonance cross-sections (σri) is as follows

σr(Ei) =

∞∫

0

ψ∗(r)σBW (Ei, r)ψ(r)dr (4)

where ψ∗(r), is the wave function of the vibrational ground state is assumed to
have a simple harmonic form given by

ψ(r) = (
rmrEv

π
)

1
4 e(−mrEv)(r−Re)

2
(5)

The Breit–Wigner [10] cross section is expressed as

σBW (Ei, r) =
2π

Ei

1
4Γ 2

(Ei − Vr(r))2 + 1
4Γ 2

(6)

where Vr is the resonance potential. Using the molecular geometry, the equilib-
rium distance for the molecule in the direction of the dissociating coordinate (re)



Dissociative Electron Attachment Study of Di- & Triatomic Molecule 159

is computed. This is approximately the average distance of each atom from the
center of mass multiplied by a dimensional correction factor of

√
2. Further, the

dissociation energy is computed as the difference between the target dissocia-
tion energy and the electron affinity of the dissociating fragment, Dr = De −Ea.
A Morse potential is used to approximate the ground state electronic target
potential. The details regarding the Morse potential can be found in our earlier
publication [3,4].

From Fig. 1, the anion reaches rc point without autoionizing, then the
molecule must dissociate. A survival probability (S) for target to dissociate is
then computed. When rc > re, the survival probability S is estimated by con-
sidering the classical time to reach rc given by

t =

√
2me(rc − re)2

Vr(re) − Vt(rc)
(7)

and survival probability S is given by

S = e−Γt (8)

where Γ is resonance width. When the crossing point rc is less than the target
equilibrium geometry re the survival probability is assumed to be unity (S = 1).

4 Results and Discussion

Target selected for the present study, HCl, ClO, and FNO molecules are of
varying importance in different fields of applied physics.

In Fig. 2, we report the result of DEA process of H− anion formation from
HCl. The present theoretical data is in good agreement with the experimental
data of Orient and Srivastava [14] above 10 eV. Below 10 eV present results
are lower compared to experimental data of Orient and Srivastava [14]. The
calculated resonance by Quantemol-N is at 9.4 eV. This shift in the DEA cross
sections computed here is attributed by an energy shift of resonances, due to the
formulation through which we calculated position and width of resonance using
R-matrix (Quantemol-N) [3,4].

Chlorine-containing molecules play a particularly important role in the
removal of ozone and atomic oxygen at Earth’s upper atmosphere due to which
its importance in global stratospheric ozone is lost. The open shell nature of
many of the ClxOy compounds makes them difficult systems to treat theoret-
ically. Electron correlation plays an important role in these systems, not only
for characterizing the ground state wavefunction, but also in the excitation of
the many low lying excited states which significantly affect low energy electron
collisions. The DEA-estimator [4] method is based on electron–molecule calcula-
tions performed with the R-matrix method [6] and is implemented as part of the
Quantemol-N [3] expert system. In Fig. 3 it is our maiden effort to report Cl−

anion on dissociation of ClO molecule. The two prominent shape resonances are
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Fig. 2. HCl dissociative to Cl + H−, where solid line represents the present calculated
result of DEA cross section of H−, solid sphere represents the measured data by Orient
and Srivastava [14]

Fig. 3. ClO dissociative to O + Cl−, where solid line represents the present calculated
result of DEA cross section of Cl−

at 6.7 and 12.6 eV in Fig. 3. The contribution to these peaks comes from symme-
try state 3A2. ClO belongs to C∞v symmetry but we have done our calculations
using C2v symmetry as Quantemol-N uses only Abelian point group symmetry.
These resonances can be easily recognized from the nature of Fig. 3.
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Fig. 4. FNO dissociative to F + NO−, where solid line represents the present calculated
result of DEA cross section of NO−

FNO molecule is a reactive agent which is mainly used for converting the
metal to their respective fluorides and release of nitric oxide during this process.
It is also considered as a source to have NO during the organic processes and
also been proposed as an oxidizer for the rocket propellants. Nitric oxide (NO) is
a radical and has a probability of NO− ion on the dissociation of FNO molecule.
In Fig. 4, we report the DEA cross sections for the NO− anion on dissociation of
FNO molecule. Electron collisions with FNO gives different resonance structures.
Our DEA calculation finds resonances at 9.4 and 13.07 eV due to 2A′ symmetric
state and at 5.3 eV due to 2A′′ symmetric state.

5 Conclusion

In the present study, we report the DEA cross sections of HCl (H−), ClO (Cl−),
and FNO (NO−) molecules. The H− of HCl molecule is in good agreement with
available experimental data reported by Orient and Srivastava [14]. The Cl−

of ClO and NO− of FNO are reported here for the first time to the best of
our knowledge. The present work will encourage the other experimentalist and
theorist to study DEA of these targets as these are important applied targets.
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Abstract. Two extreme cases of atomic configurations and the resulting
radiative decay are considered: (a) only two electrons knocked out and
(b) only two electrons present. In the first case, an empty K shell with
an otherwise normal atomic configuration (hollow atom) is considered
and the decay properties of the two possible modes of radiative decay
of empty K shell resulting in one-electron one-photon (OEOP) or two-
electron one-photon (TEOP) processes are analyzed to study the impact
of correlation on the coupling schemes as the coupling moves from LS
at low Z to jj at high Z. In the second case, the correlation induced
intense TEOP transitions from He-like ions with empty K shell and only
two electrons in the 2s subshell are investigated. The radiative rates of
transitions between 2s2 and 1snp (n = 2−4) groups have been studied to
evaluate the contributions from each group to the total TEOP rates. The
dependence of the estimated line intensities of X-ray photons from 2s2-
1s2p on the nature of orthogonalization of the spin orbitals is analyzed.

1 Introduction

The excitation and de-excitation of hollow atoms where the inner shell is com-
pletely empty have been experimentally investigated using different processes
since it was first produced by Briand et al. [1] and theoretically analyzed by many
workers using Dirac-Hartree-Slater (DHS) and multi-configuration Dirac-Fock
(MCDF) models with the inclusion of Breit interaction and quantum electrody-
namics corrections. An electron jump from the 2p shell to the doubly ionized
1s shell leads to one-electron one-photon (OEOP) transition and an alternate
simultaneous two electron jumps from the L shell (one from the 2s and the
other from the 2p subshells) give rise to two-electron one-photon (TEOP) tran-
sition.The former radiation is termed as Kα X-ray hypersatellite and the latter
which is exclusively due to the correlation between 2s and 2p electrons is known
as Kαα X-ray. Though Kαα X-rays are less intense than Kα X-ray hypersatel-
lites, accurate evaluation of measurable quantities like lifetimes, fluorescence
yields, ionization cross sections does require the X-ray rates from both OEOP
and TEOP transitions. While Kα X-ray hypersatellites have been extensively
analyzed both theoretically [2–5] and experimentally [1,6–12], experimental data
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on Kαα X-rays are scarce [13] placing added importance on the systematic eval-
uation of theoretical data. The double ionization process of K shell is a sensitive
tool to investigate the relativistic and QED effects in atoms [4] and is probably
the only testing ground to study the variation of coupling scheme from almost
pure LS at low Z to jj coupling at high Z. In spectroscopy, the nomenclatures
employed to specify the initial and final configurations leading to radiative tran-
sitions are usually of two types. In the first type, the holes characterize the states
and the configurations are indicated by the missing electrons in the initial and
final states. In the second type, the initial and final configurations are indicated
by the occupation numbers of electrons in the different shells. In this work, the
first nomenclature is used to describe the Kα X-ray hypersatellites and Kαα
X-rays and the second one is used to describe He-like ionic configurations. The
relative intensities of the Kαh

1 and Kαh
2 lines from 1s−2− 1s−12p−1 fine struc-

ture transitions have been used to prove the LS and jj coupling schemes. Just
like Kαh

1 and Kαh
2 lines, the relative intensities of Kα1α3 and Kα2α3 lines from

1s−2− 2s−12p−1 are also highly sensitive to the degree of intermediacy of the
coupling scheme (LS vs. jj) and an attempt has been made by us for the first
time to analyze the impact of correlation on the variation in the coupling with
Z [14].

The K X-ray spectra from singly excited states of He-like ions have been
investigated both experimentally and theoretically for some selected configura-
tions. However, experimental results on the OEOP transition from the doubly
excited 2s2 1S0 state of He-like ion are scarce due to the low probability of
emission of the only possible magnetic dipole (M1) line. This situation places
an added importance on the systematic evaluation of other possible alternative
modes of decay. While the normal two-electron one-photon (TEOP) transitions
where both the electrons jump to the same inner shell (Kαα) are weak, special
type of TEOP transitions in which the two electrons jump to different shells are
highly intense [15]. As this unusual type of transition is due exclusively to the
correlated motion of the two electrons and hence very sensitive to the nature
of the spin orbitals of the initial and final states, in our previous work [15] we
had carried out two different versions of Optimal level scheme. The first method
was based on bi-orthogonalization in which the initial and final state functions
are orthogonal to each other and the second method considered a common set
where the orbital functions of the two states are not completely orthogonal to
each other. The transition data from these two methods were analyzed to test the
dependence of the calculated line intensities on the nature of the spin orbitals.
In [15], we had considered 2s2− 1s2p TEOP and 1s2s M1 transitions. In this
work we have extended our calculations to 2s2− 1snp (n = 3, 4) groups of transi-
tions to evaluate all nonnegligible contributions to the total transition rates. All
the calculations have been computed in the relativistic configuration interaction
formalism (RCI) which uses correlated MCDF wavefunctions and include Breit
interaction and QED effects [16].
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2 Numerical Procedure

In a multi-configuration relativistic calculation, the configuration state functions
(CSFs) are symmetry- adapted linear combinations of Slater determinants con-
structed from a set of one-electron Dirac spinors. A linear combination of these
configuration state functions (CSFs) is then used in the construction of atomic
state functions (ASFs) with the same J and parity.

Ψi(JP ) =
nCSF∑

α=1

ciαΦ(ΓαJP ) (1)

where ciα are the mixing coefficients for the state i and nCSF are the number of
CSFs included in the evaluation of ASF. The Γα represents all the one-electron
and intermediate quantum numbers needed to define the CSFs and the con-
figuration mixing coefficients are obtained through the diagonalization of the
Dirac-Coulomb Hamiltonian

HDC =
∑

i

[cαi.pi + (βi − 1)c2 − Z

ri
] +

∑

i<j

1
rij

(2)

Once a set of radial orbitals and the expansion coefficients are optimized for
self-consistency, RCI calculations can be performed by including higher order
interactions in the Hamiltonian. The most important of these is the transverse
photon interaction

Htrans = −
N∑

i<j

[
αi.αj cos(ωijrij)

rij
+ (αi.�i)(αj .�j)

cos(ωijrij) − 1
ω2

ijrij
] (3)

where ωij is the wavenumber of the exchanged virtual photon and is obtained
as the difference between the diagonal Lagrange multipliers associated with the
orbitals. However, this is valid only when the shells are singly occupied and the
diagonal energy parameters may not represent the correct binding energies of
the orbitals in a variously ionized atomic system. Hence in the present work,
the low-frequency limit ωij → 0 is considered and only the mixing coefficients
are recalculated by diagonalizing the Dirac-Coulomb-Breit Hamiltonian matrix.
The dominant QED corrections comprise of self energy and vacuum polariza-
tion. While the former contribution is evaluated in the hydrogen-like approxima-
tion, the latter correction is treated perturbatively. The theoretical background
using relativistic wavefunctions and higher order corrections is fully described in
[16–19].

In the active space approximation method [17], the electrons from the occu-
pied orbitals are excited to unoccupied orbitals in the active set. Since the
orbitals with the same principal quantum number n have near similar ener-
gies, the active set is expanded in layers of n. The correlation contribution was
evaluated by considering SD excitations of electrons from the occupied shells to
unoccupied virtual shells. In the first step, as a zeroth-order minimal basis set,
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we generated mono-configuration DF wavefunctions separately for the initial and
final reference sets in Extended Optimal Level (EOL) scheme using variational
method [18]. In EOL calculations, the radial functions and the mixing coefficients
are determined by optimizing the energy functional, which is the weighted sum of
the energy values corresponding to a set of (2j + 1) eigenstates. In the subsequent
steps, we included higher order correlation corrections by gradually expanding
the size of the CSF sets in layers and repeated the computations for each step
by step multi-configuration expansion until the convergence and stability of the
observable is obtained. Finally in the relativistic configuration interaction (RCI)
calculations, we included Breit interaction and QED corrections and evaluated
the transition parameters. As pointed out earlier, the TEOP transitions from
2s2 (1S0) are due exclusively to the correlated motion of the two electrons and
hence to test the influence of relaxed and frozen spin orbitals on the transition
amplitudes, in our earlier work [15] we generated two sets of spin orbitals. In the
first method (Method I), we used a set of separately generated initial and final
state spin orbitals which were subsequently made mutually orthogonal to each
other. In the second method (Method II), we opted for a common orthonormal
basis set incorporating some amount of non-orthogonality in the radial functions.
In this work, only Method I is considered in the study of transitions between
2s2 and 1snp (n = 3, 4) groups in He-like ions.

3 Results and Discussion

The Kαh
2 and Kαh

1 fine structure lines are due to 1s−2 1S0→ 1s−12p−1 1P1

and 1s−2 1S0→ 1s−12p−1 3P1 transitions respectively. Similarly the respective
Kα2α3 and Kα1α3 lines represent the 1s−2 1S0→ 2s−12p−1 1P1 and 1s−2 1S0→
2s−12p−1 3P1 transitions. For closed shell atoms with an initial empty K shell,
the number of Kαh or Kαα fine structure transitions will be only two whereas
atoms with open shell ground configurations will yield a lot more transitions. In
our work, we have neglected the interaction of the electrons in the unfilled outer
shells with the inner shells. While this simplification might lead to a marginal
change in the transition data, the intensity ratios of the fine structure lines will
not be affected.

The intensity ratio of the Kαh
1 to the Kαh

2 lines in terms of the spin–orbit
and electrostatic interactions matrix elements can be expressed as [10]

I(Kαh
1 )/I(Kαh

2 ) = (8/9)χ2/[1 − χ/3 + (1 − (2/3)χ†χ2)1/2]2 (4)

where χ = (3/4)ζ(2p)/G1(1s,2p). The symbols ζ(2p) and G1(1s,2p) represent the
spin–orbit and electrostatic interaction matrix elements respectively. For low Z
ions, ζ(2p) is negligible in comparison to G1(1s,2p). With increasing Z, contri-
bution from ζ(2p) increases and for high Z ions, the intensity ratio approaches 2,
the corresponding limit observed for the Kα diagram lines. In Fig. 1, the inten-
sity ratios of Kαh

1 to Kαh
2 lines are compared with other relativistic and available

experimental data [3,4,6–9]. In pure LS coupling, only Kαh
2 and Kα2α3 transi-

tions are dipole allowed and Kαh
1 and Kα1α3 are spin forbidden where as the
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Fig. 1. Comparison of intensity ratios of Kα hypersatellite lines with other available
data. Costa et al. [3], Chen et al. [4], Diamont et al. [6,7], Salem et al. [8,9], Ahopelto
et al. [12]

later two transitions are fully allowed in jj coupling due to mixing between the
two final states.

As 2p1/2 is close to the nucleus than 2p3/2, Kαh
1 line intensity increases with

Z due to relativistic effects [3]. As shown in our earlier paper [5], our calculated
ratios are in good agreement with the existing relativistic and experimental
data. The ratio for low Z atoms is nearly zero showing the prominence of pure
LS coupling. As Z increases, spin -orbit interaction starts contributing to the
transition parameters and at Z around 40, I(Kα1

h)/I(Kαh
2 ) � 1,thereby proving

that the strengths of e–e interaction and spin–orbit interaction are nearly the
same in this Z range. With increasing Z, spin–orbit interaction dominates and the
coupling moves from intermediate to jj scheme. Thus,as pointed out by earlier
workers [3,4,6,7], the intensity ratio I(Kαh

1 )/I(Kαh
2 ) is strongly dependent on

the coupling scheme. However, while the intensity ratio is nearly 0 for low Z,
it does not approach the jj coupling limit of 2 for high Z as predicted by the
angular momentum coupling scheme [2,10]. For example, our present calculation
for Z = 80 gives a ratio of 1.69. As experimental measurements for Z > 45
where the smooth variation of coupling from intermediate to jj scheme occurs
are limited, the accuracy of the theoretical predictions can be verified only when
experimental data on high Z elements are made available.

In Fig. 2, I(Kα1α3)/I(Kα2α3) values reported by us using relativistic con-
figuration interaction method [14] are plotted for 12 ≤ Z ≤ 80. For the sake
of comparison, our calculated Kα1

h/Kαh
2 ratios [5] are also shown in the figure.

While the same trend in moving from pure LS to pure jj scheme is reflected
in both decay modes, TEOP intensity ratios are consistently lower than OEOP
ratios for all Z. We also note that while OEOP intensity ratio is unity around Z
= 40, TEOP gives unit value around Z = 50. It may be pointed out here that
the transition rates of Kα hypersatellites calculated in the length and velocity
forms are nearly the name for most of the ions considered in our work whereas



168 L. Natarajan

Fig. 2. Comparison of intensity ratios of Kα hypersatellites and Kαα lines

the intensity ratios of Kαα fines structure lines calculated in length and velocity
gauges vary substantially [14].

Precise experimental measurements are needed to know how well pure jj
coupling applies for high Z elements and also the influence of correlation on
the coupling scheme, especially at the regime intermediate between LS and jj
couplings.

The configurations mixing between 2s2 1S0 and 2p2 1S0, 3P0 is responsible
for the E1 transitions from 1S0 state and 3P1−1S0 is a result of configuration
interaction and spin–orbit mixing with the final term [21]. Detailed investiga-
tions on the influence of correlation and higher order corrections from Breit
interaction and QED effects to the X-ray energies and rates and also on the
effects of fully and partially relaxed spin orbitals of the initial and final states on
the correlation sensitive radiative rates are reported in our earlier paper [15]. In
Table 1, to analyze the influence of spin-orbitals on the unusually intense TEOP
transitions from 2s2 1S0 with empty K shell, we reproduce the energies of E1
and M1 transitions from [15] along with available data [20–23] for some select
ions (Z = 26, 27, 46, 66 and 92) calculated using relaxed (Method I) and frozen
orbital (Method II) sets. The calculated energies from Method I are in excellent
agreement with earlier data [20–22] and differ by 50 eV for U90+ from the values
Ref. [23]. The Method II energies agree reasonably well with the previous values
only for ions with Z ≤ 50. The present M1 energies compare well with those of
Ref. [21] except for U90+.

Table 2 reproduces the transition rates from Ref. [15] calculated using Meth-
ods I and II along with other available data for ions with Z = 26, 27, 46, 66 and
92. The transition rates from both the methods are in good agreement with each
other for ions with Z ≤ 46. However, the differences increase with increasing Z.
The present rates are in excellent agreement with the NIST compilation [20] and
MZ rates [22]. While the rates from Method I compare well with REOS rates of
Zhang et al. [21] for low and medium Z ions, the two rates deviate considerably
for ions with Z > 50 whereas the rates from Method II are in better agreement
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Table 1. Comparison of E1 and M1 energies in eV [15] from 2s2 1S0 state with other
relativistic data. The energies listed in the second row under columns 2, 4, and 6 are
values calculated with frozen set of orbitals

Z 1P1-
1S0

3P1 -1S0
3S1 -1S0

Present Others Present Others Present Others

26 6845.41 6845.93c 6878.76 6879.37c 6910.02 6910.47c

6848.82 6846.0a 6882.11 6878.9a 6913.00

6845.44 b 6878.49b

27 7388.92 7389.6a 7425.58 7425.8a 7458.2

7392.78 7389.42b 7429.39 7425.60b 7461.33

46 21799.49 21810.66c 22021.66 22023.99c 22085.23 22087.49c

21822.79 22044.49 22107.29

66 45845.82 45852.44c 46832.55 46839.27c 46931.89 46938.84c

45924.38 46909.98

92 92897.39 92940.43c 97338.71 97381.78c 97482.21 97527.60c

93177.7 92950d 97619. 7 97392d 97536d

aReference [20]
bReference [22]
cReference [21]
dReference [23]

with REOS rates than the rates obtained from Method I. The M1 rates from
Method I compare well with Ref. [21] except for heavy elements.

It is clear from Table 2 that the chosen optimization approach does influence
the transition rates for high Z elements.

The length to velocity gauges rates (Al/Av ) listed in the last two columns
show that the ratio is nearly unity for both dipole allowed and spin forbidden
transitions thereby providing the reliability of the spin orbitals used in the eval-
uation of transition parameters.

Table 3 lists the rates of 2s2− 1snp (1P1,
3P1) (n = 3, 4) transitions calculated

in this work for some select ions. Unlike the 2s2− 1s2p transitions the agreement
between the TEOP rates in the two gauges for 2s2− 1s3p is only 60–76% for
allowed transitions.The spin-forbidden rates agree well by 90% only for ions
with Z < 30 and differ largely for heavy ions. For the 2s2− 1s4p weak lines, the
differences are more pronounced. As the agreement between the rates calculated
in the two gauges is a measure of the accuracy of the atomis state function (ASF)
representation, these less intense transitions need improved ASFs. However, a
comparison of this table with those listed in Table III of Ref. [15], a part of which
is reproduced in Table 2 of this paper, shows that the decay of 2s2 1S0 is mainly
governed by transitions to 1s2p 1P1 and 3P1 states and the contributions from the
other groups of transitions to the total TEOP rates is negligible. The transition
parameters for 2s2− 1snp (1P1,

3 P1) (n = 3, 4) transitions are calculated using
only Method I as the contributions from these groups to the total X-ray rates is
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Table 2. Comparison of length gauge E1 and M1 rates in s−1 [15] from 2s2 1S0 with
other relativistic data. The rates listed in the second row under columns 2, 4, and
6 are values calculated with common set of orbitals. The length to velocity (Al/Av)
values for the E1 transitions are listed in the last two columns. The numbers within
the parentheses are powers of ten

Z 1P1- 1S0
3P1 -1S0

3S1 -1S0
1P1- 1S0

3P1 -1S0

Present Others Present Others Present Others (Al/Av) (Al/Av)

26 5.891(13) 5.78(13)b 4.997(13) 4.75(13)b 5.711(8) 5.46(8)b 1.00 1.01

5.837(13) 5.9(13)a 4.908(13) 4.9(13)a

5.9(13)c 4.1(13)c

27 6.267(13) 6.26(13)a 6.743(13) 6.38(13)a 1.186(9) 1.00 1.01

6.133(13) 6.2(13)c 6.4(13)c

46 5.114(13) 5.02(13)b 1.359(15) 1.04(15)b 1.74(11) 1.8(11)b 1.00 1.01

5.151(13) 1.156(15) 1.822(11)

66 2.178(13) 2.37(13)b 7.508(15) 4.07(15)b 6.787(12) 7.79(12)b 0.991 1.02

2.469(13) 5.209(15) 7.203(12)

92 4.342(12) 8.88(12)b 5.005(16) 1.38(16)b 1.742(14) 2.82(14)b 0.941 1.42

8.264(12) 2.345(16) 2.135(14)
aReference [22]
bReference [21]
cReference [20]

Table 3. E1 rates in length gauge in s−1 from 2s2-1snp (n = 3, 4] transitions

Z 1s3p 1s4p Z 1s3p 1s4p

1P1 −1 S0
3P1 −1 S0

1P1 −1 S0
3P1 −1 S0

1P1 −1 S0
3P1 −1 S0

1P1 −1 S0
3P1 −1 S0

18 2.195(10) 1.460(9) 3.815(9) 3.332(8) 20 3.379(10) 2.981(9) 2.204(10) 1.222(9)

26 2.288(10) 1.023(10) 8.717(9) 2.685(9) 28 4.654(10) 2.072(10) 9.572(9) 3.568(9)

36 4.564(10) 5.4791(10) 1.901(10) 1.410(10) 46 4.554(9) 5.689(10) 1.959(10) 1.363(10)

54 2.131(11) 3.221(11) 1.280(10) 3.054(10) 74 9.881(10) 4.985(11) 1.173(9) 4.675(10)

minimal. However, we expect that the impact of relaxed and frozen orbitals on
the energies and rates will follow the same trend as was observed for 2s2− 1s2p
transitions.

4 Conclusion

The intensity ratios of the Kαh and Kαα fine structure lines prove the well
known angular momentum coupling schemes, namely pure LS coupling at low
Z, moving from intermediate coupling to jj coupling at high Z. We also note
that while the intensity ratio is highly sensitive to the degree of intermediacy
of the coupling scheme, it does not approach the jj coupling limit of 2 for high
Z as predicted by the angular momentum coupling scheme. Also, a comparison
of the intensity ratios of Kαh and Kαα fine structure lines clearly indicates
the influence of correlation on the intermediate and jj coupling schemes. Precise
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experimental measurements are needed to know how well pure jj coupling applies
for high Z elements and also the influence of correlation on the coupling schemes.

The sequential decay of the doubly excited 2s2 1S0 state of He-like ion to
the ground state is possible only through this special type of intense TEOP
transitions to states of 1snp with maximum contribution from 2s2− 1s2p and
hence the decay of such a system will provide valuable information on the
transition dynamics of such hollow ions. Future precise experimental measure-
ments/observations can help in judging the dependence of line intensities on the
nature of spin-orbitals as noticed in this work.
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Abstract. Electron impact excitation cross sections of xenon atoms from its
two metastable states (5p56s)J=2,0 to the ten fine-structure (5p56p)J=0,1,2,3 levels
have been calculated using relativistic distorted wave (RDW) theory. The results
are reported in the wide range of incident electron energies (excitation threshold
to 1 keV). Fitting of the obtained cross sections of each transition with suitable
analytic expression is also provided for plasma modeling purposes.

1 Introduction

In recent years, trace-rare-gas (TRG) optical emission spectroscopy (OES) is widely
used for plasma diagnostics [1, 2]. In this technique, a small amount of a rare-gas (Ne,
Ar, Kr, and Xe) atom is introduced to the plasma and the optical emission intensities
coming from it are recorded. By coupling the OES measured intensities with an
appropriate kinetics plasma model [mostly a collisional radiative (C-R) model] one can
obtain the plasma parameters, such as electron temperature and electron density of the
plasma. Moreover, the most commonly used lines of an inert gas for diagnostics are
from the 2pi (i = 1–10) ! 1si (i = 1–4) transitions (the levels are written in Paschan
notation). In this context, the knowledge of the populations of the 2pi states is very
important as the emitted intensities are directly proportional to the upper-level popu-
lations. Further, to develop a C-R model and get accurate plasma parameters, we need
to utilize reliable cross-section results in the model for the dominant electron impact
processes which populate the 2pi levels [3–7]. These levels can be excited by the
electrons from the ground 1s0 as well as the metastable 1s3 and 1s5 states. Since the
metastable states, as compared to the ground state, are closer to the 2pi energy levels,
their cross sections are expected to be larger [8, 9].

Most of the earlier studies have focused on the electron impact 1si-2pi transitions inAr
and Kr inert gases and reported their cross sections in a detailed manner. Not much
attention has been paid to study similar transitions in Xe which are also prominent in Xe
plasma havingmany applications such as in thrusters [10]. However, for these transitions,
experimental and theoretical cross-section results are very limited and available for a few
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selected electron energies which are often fine-structure unresolved [11–13]. For 1s5-2pi
(i = 5, 7, 9, 10) and1s5-2pi (i = 6, 8) transitions, Jung et al. [12] reported cross sections for
electron incident energy only up to 10 eV and 300 eV, respectively. To compare with
their results, Srivastava et al. [13] performed the RDW calculations for the same transi-
tions and in a similar incident energy range. Therefore, in the light of the required detailed
complete set of cross section data, in the present study, we obtain these cross sections for
all the excitations from both the 1s5 and 1s3 metastable states to all ten 2pi levels in the
wide range of energy up to 1 KeV using the RDW theory.

2 Theoretical Background

For the electron impact excitation of an atom having N electrons from an initial state
a to final state b, the distorted wave T-matrix [14] can be written as

TRDW
a!b JbMb; kblb; JaMa; kala; hð Þ ¼ Urel

b 1; 2;. . .;Nð ÞFDW�
b;lb

kb;N + 1ð Þ V � U Nþ 1ð Þj
D

�jA Urel
a 1; 2; . . .;Nð ÞFDW þ

a; la
ka;Nþ 1ð Þ

n oE

ð1Þ

here, Ja(b) and Ma(b) represent, respectively, the total angular momentum and the
corresponding magnetic component of the atom in the initial (final) state. Ka(b) and
laðbÞ denote, respectively, the wave vectors and the spin projection of the incident
(scattered) electron. h is the scattering angle between the wave vectors of the incident
and scattered electron. Urel

aðbÞð1; 2; . . .;NÞ represents relativistic N-electron wave func-

tion for the target atom in the initial (final) state. FDW þð�Þ
aðbÞ;laðbÞ is the relativistic distorted

projectile electron wave function in the incident (scattered) channel where “+” denotes
an outgoing wave and “−” refers to an incoming wave. V is the interaction potential
between projectile electron and target atom and U is the distortion potential which is
assumed to be a function of rN+1 coordinate only. The electron exchange has been
taken into account by using the antisymmetrization operator A.

In order to evaluate T-matrix, one requires accurate initial and final state wave
function of the xenon atom as well as of projectile electrons distorted waves. The
bound state wave functions in initial and final states of the atom are calculated within
multiconfiguration Dirac–Fock (MCDF) approach by GRASP2K code [15]. These
atomic target wave functions (initial/final) are expressed as a linear combination of
other configuration state functions (CSFs) having the same J value and parity. In
addition to the ground state (5p6), the 5p56s1, 5p56p1, 5p55d1, 5p57s1, and 5p57p1 are
the various CSFs used to represent the xenon atom wave functions in GRASP2K [15].
To insure the reliability of the obtained wave function, we have compared our calcu-
lated transition energies and oscillator strengths with the available results from the
NIST database [16] as well as other experimental [12, 17–19] and theoretical [20, 21]
reports and we found good agreement with them. To obtain the wave function for the
projectile electrons, Dirac equations are solved in the field of the spherically averaged
static potential of the final state of the atom.
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The excitation cross section to its magnetic sublevel Mb can be expressed in terms
of the T-Matrix as follows:

rMb ¼ 2pð Þ4 kb
2 2Ja þ 1ð Þka

Z
TRDW
a!b Ja;Ma; la; Jb;Mb; lb; hð Þ�� ��2dX ð2Þ

where the integration is performed over the solid angle of the scattered electron. We get
the total excitation cross section by summing rMb for all the magnetic sublevels of the
final state of the atom.

3 Results and Discussion

In Fig. 1, 2a and b, we have shown electron impact cross section results for the exci-
tation from the metastable states 1s3 and 1s5 to the ten 5p56p (2pi, i = 1–10) fine-
structure levels of xenon in the incident energy range up to 1 keV. Only experimental
cross section results of Jung et al. [12] are available for the 1s5!2p6 and 1s5!2p8
excitation up to higher impact energies. In Fig. 1, we have compared our calculated
cross sections with the experimental results and find excellent agreement in the energy
range above the 80 eV. However, below this energy, our results are slightly higher than
the experimental results. Being a perturbative approach, RDW method sometimes
slightly overestimates the cross sections for the low incident electron energies. In
Fig. 2b and c, we have presented our complete set of results for the 2pi level excitations,
respectively, from the 1s5 and 1s3 states. We find from these figures that the dipole
allowed transitions (DJ = 0, ±1), have lager cross sections as compare to the forbidden

Fig. 1. Electron impact excitation cross section for the transitions 1s5-2p6 and 1s5-2p8, solid
lines represent the present calculation and solid circles represent the experimental results of Jung
et al. [12]
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transitions which are quite expected. The cross sections for the forbidden transitions
decay faster at higher impact energies as E−3. Further, cross sections for core preserving
excitations, is larger than core changing excitations. Therefore, cross sections for
5�p25p36sð Þ ! 5�p25p36pð Þ transitions are larger than the 5�p25p36sð Þ ! 5�p5p46pð Þ. For
example, cross section for 1s5-2p10 is large than 1s5-2p2 while both are dipole allowed
transitions. Finally, for plasma modeling purposes, we have fitted our calculated cross
sections of all the transitions up to 1 keV by the following expression:

r ¼
Pn

i¼0 biE
i

c0 þ c1Eþ c2E2 ð3Þ

Fig. 2. RDW cross sections for electron impact excitation from the metastable level 1s5 (J = 2)
and 1s3 (J = 0) to the 2pi fine-structure levels of the 5p56p configuration
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Here, r is the electron impact excitation cross section and E is the incident electron
energy. Both r and E are in the atomic units. The b0, b1, b2, b3, c0, c1, and c2 are the fitting
parameters which are given in Table 1. The fitted cross sections are accurate to 5%.

4 Conclusions

We have studied electron impact excitation of xenon from the lowest lying metastable
states to the ten fine-structure states of the 5p56p using RDW method. Cross sections
are calculated in the wide electron incident energy range from excitation threshold to 1
KeV. We have compared our results with the available experimental results of Jung
et al. [12] and found good agreement. Our present study is an effort to provide a
complete set of reliable cross-section data for the most prominent transition lines of the
Xe plasma.
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Ionisation of Nanoclusters at Relativistic
Laser Intensities
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Abstract. Nanoclusters exposed to intense ultrashort pulses have
attracted immense attention due to higher absorption and high charge
state ion emission. Insofar, most of the studies in Coulomb explosion
of clusters have been at non-relativistic laser intensities. The question
of how the ionisation of the clusters change at relativistic intensities
(>2 × 1018 Wcm−2) is little explored. In this article, we present charge
resolved ion spectroscopic measurement of ion emission for two different
cluster sizes of Ar exposed to relativistic intensities. Low charge states
(<8+) dominate for smaller cluster sizes and high charges states (>8+)
dominate the spectrum at larger cluster sizes. Electron impacting ionisa-
tion seem to be dominantly important to comprehend the charge propen-
sity spectrum. Detailed simulations are important to decipher the role
of over the barrier ionisation and electron impact ionisation.

1 Introduction

At low intensities, light interaction with the matter can be understood by the
induced polarisation that is linear to the electric field of the electromagnetic
radiation. The intensity of light is proportional to the square of the electric field
amplitude of the electromagnetic radiation. At high intensities with larger elec-
tric field amplitude, the induced polarisation does not remain linear to the field
[1]. Nonlinear interaction brings in multi-photon processes and typically at inten-
sities beyond 1010 Wcm−2 most atomic systems would undergo multi-photon
ionisation. At larger intensities, such nonlinear interactions are non-perturbative
and electromagnetic fields severely distort the atomic coulomb potential. Tunnel-
ionisation becomes increasingly dominant at intensities larger than 1012 Wcm−2

[2]. At a 100 times larger intensity, the coulomb potential is so severely distorted
that a barrier-less ionisation sets in most atoms [3]. All atoms exposed to the
over-the-barrier ionisation fields would ionise. Free electrons generated from any
atomic system continue to interact with the field after becoming free from the
atomic potential. Electrons can gain energy in the field when they oscillate under
the electron-magnetic field. The equation of the motion of free electrons under
of the interaction of the light is characterised by:

meẍe(t) = eE0 sin ωt, (1)
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where E0 is the field amplitude of the electric field of the electromagnetic radia-
tion, ω is the laser frequency, me and xe are the mass and instantaneous position
of the electron. If we solve for the velocity of the electron and obtain the cycle
average kinetic energy, it is

Up(eV ) =
1
2
me〈V (t)2〉 =

e2E2
0

4meω2
(2)

This is called as the ponderomotive energy and can be simplified for useful
evaluation to be ≈9.33 × 10−14 I(W/cm2)(λ(µm)2), where I is the intensity in
W/cm2 and λ is the light wavelength in µm units [4]. Even at an intensity of
1016 W/cm2 for a laser of wavelength λ = 800 nm, the electron energy is ≈600
eV, which is more than 40 times the ionisation energy of a Hydrogen atom
and is more than 380 times larger than the photon energy. Non-perturbative
phenomenon dominates at this regime and the classical motion of the electron in
the field dominate the interaction physics. At even higher intensity, the velocity
of the electrons becomes sufficiently large to appreciate the interaction of the
electrons with the magnetic field of the radiation. In such a case it becomes more
relevant to use the Lorentz force equation

F = e(E +
v
c

× B) (3)

The motion of the electron in this regime is very different. A simple harmonic
electron motion of the dipole regime changes to a figure eight motion in the high-
intensity regime [5]. An intensity regime is considered relativistic once the laser
field E is so high that [6,7] ponderomotive potential given as mec

2(
√

(a2
o + 1))

becomes close to the electron rest mass, where a0 is the normalised vector poten-
tial representing the amplitude of the laser radiation given by a0 = eA/mec and
A is the vector potential defining the electron magnetic radiation. At these inten-
sities, the ponderomotive energy of the electron becomes comparable with its rest
mass (∼500 keV) and the motion of the electron is governed by the relativistic
mass correction of the electron. For a0 ∼ 1, the intensity corresponds to about
2 × 1018 Wcm−2 with 800 nm light. This gives Up ∼ 200 keV.

When there is an ensemble of atoms, all the atoms in the focal volume are sub-
jected to these effects. Ionisation of a large number of atoms leads to larger elec-
tron density and the screening of Coulomb exponentials by the electrons. When
the number of electrons in a Debye sphere become larger, plasma properties dom-
inate the laser–matter interaction. Collective phenomena affects the key parame-
ters like the dielectric permittivity which changes the propagation of the electro-
magnetic fields and in turn the light–matter interaction. Intense laser-produced
plasmas are different compared to the conventional low-density plasmas due to
the impulsive generation of the plasma [8]. When light fields are so short that
the atoms have no time to move, a solid density system would generate plasma of
solid density or even higher density. Since the ponderomotive energy of the elec-
trons, the plasmas is at high energy compared to any conventional plasma. High-
density, high-temperature laser produced plasma brings about very rich phenom-
ena as every parameter changes vary dramatically both spatially and temporally
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[9]. In the relativistic regime, plasma absorption is known to be very different as
the basic electron motion is different. Light penetrates far beyond the normal skin
depth [6]. The effect of the magnetic field in the Lorentz force leads to J × B forces
that drive electrons along laser propagation [10].

Plasmas made of nanoparticles of matter, also called as nanoclusters, are
special in their own right [11–13]. A few thousand atoms bound together by
van der Waals forces have solid like intra-cluster density. Solid density plasma
with a particle size that is much smaller than the light wavelength have much
different properties compared to plasma generated from macroscopic targets. In
an extended target, when the laser is focused on a few microns, there is always
a continuum of cold or unexposed matter connected to the hot plasma region.
Ejection of electrons from the focal volume will induce electron mobility from
the unexposed region to reduce the charge densities and quickly reduce the local
electrostatic potential. A nanocluster suspended in the vacuum is devoid of such
cold electron currents. Charge density is higher and remain higher till cluster
disintegrates. Plasma temperature remains higher and electron ion recombina-
tion rates are lower. A large number of experiments have demonstrated these
interesting features [11–13].

Atomic systems in nanoclusters are ionised once the electric field experienced
in strong enough to induce multi-photon ionisation. At higher fields tunnel ion-
isation followed by the over barrier ionisation contributes to free electrons from
the atoms. Electrons that leave the atom are considered to be inner ionised.
These electrons continue to interact with the electromagnetic fields and gain
ponderomotive energy. Electrons pulled away from the ion cloud in each half
cycle of the light field are driven back when the field reverses and contribute to
the collisional ionisation of the atoms [14]. Electron cloud oscillates with respect
of the ion cloud under the coulomb potential and the electric field of the light.
Fraction of electrons that gain energy larger than the binding energy due to
cluster potential, leave the cluster and are termed outer ionised [15]. Outer ion-
isation leads to coulomb pressure while the high-energy electrons contributes
to the hydrodynamic pressure. At the end of the laser pulse, thus a hot dense
nanoplasma is generated and it takes several ps for the cluster to expand and to
disintegrate under the coulomb/hydrodynamics forces to expunge highly charged
high- energy ions. Hot dense plasma thus is a bright source of short pulses of
hot electrons, ions, and X-rays [16,17].

Most of the experiments in clusters, be it to measure ion spectra, electron
spectra, X-ray emission, or light absorption, have all been explored mainly in the
nonrelativistic regime [13,16,17]. Even at intensities of about 1016 Wcm−2, Ar
clusters of about 40,000 atoms results in a mean charge of about 8. Ion kinetic
energies extend to about 1 MeV, even though the electron energy is only a few
keV [18]. Electron cloud oscillates about the ion cloud and these dipole oscil-
lations bring out an asymmetric charge distribution with highly charged high-
energy ions preferentially emitted along the direction of polarisation. As the
cluster expands, the electron density decreases and when the local plasma fre-
quency matches the laser frequency there is a resonant enhanced light absorption
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and ion/electron emission. Dipole oscillations of the electron cloud are largely
known to be responsible for the efficient nanoplasma heating and the high charge
states formed in the cluster [19].

The question we ask in this article is about how the nanoplasma generation
changes, if relativistic intensities are used. If the Lorentz force equation drives
the electrons differently compared to the dipole oscillations, there would be J
× B forces on the electron cloud and electrons could be driven along the direc-
tion of the laser propagation. Would the electron ion collisions and the inverse
bremsstrahlung heating change the charge propensity in the cluster? We present
experiments on the measurement of the ion charge-state propensity distribution
(ICSPD) of argon clusters in the relativistic regime for two different cluster sizes.
The peak charge state remains unchanged at 8+ in both the cases. The smaller
clusters have dominantly low charge states (<8+). For larger clusters, there is a
dramatic change and the spectrum is dominated by higher charge states (>8+).
In both the cases, intensity is large enough to generate up to 12+ charge states
by the over-barrier ionisation. Screening of the field could be responsible for the
changes in the spectrum. It appears that the high charge states generated are
correlated with the electron impact ionisation. Smaller clusters with lesser num-
ber of atoms do not seem to offer sufficient electron–ion collisions to produce
the higher charge states. The results point out the need for a detailed simu-
lations of the nanoplasma with the relativistic effects to fully comprehend the
observations.

2 Experiments

The experiments presented here use a Thompson parabola spectrometer (TPS)
that is described in detail elsewhere [20] and only the salient features are dis-
cussed here. A TPS samples ions through a small collimating aperture and dis-
perses positive ions entering like a pencil beam by electric and magnetic fields
designed to deflect ions in orthogonal directions. Ions exhibit a parabolic motion
and are pushed away from the propagation axis. After the field deflection region,
ions are allowed to drift through a small region to increase the spatial disper-
sion and the ions splat on a position-sensitive ion detector. Microchannel plate
(MCP) detector coupled to a phosphor screen and an imaging camera are used
to acquire the images of the ion splat position for each laser pulse exposed to
the clusters. Ion drift from the undeflected beam path depends on the m/q of
the ions and kinetic energy. Splat position of the ions of similar m/q appears
as a parabolic trace. Ions closer to the origin (the splat position of the beam
when the deflection fields are switched off) have the highest kinetic energy and
the lowest energy ions are dispersed far away from the detector. Ions of different
m/q give a different parabolic trace. Kinematic equations of the ion motion in
the fields and the drift region are used to invert the splat position to m/q and the
ion kinetic energy [20]. The technique thus enables charge resolved ion kinetic
energy spectrum (CRKES) apart from the ion charge propensity distribution
(ICSPD) [21].
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Applying the TPS for clusters offers a problem because of the extended nature
of the ion source size. Clusters are typically produced by a supersonic jet and
sampled in high vacuum system by a skimmer. Even at a cm down the nozzle
the cluster beam extends to about a cm. Cluster in the focal volume exceed-
ing an intensity of 1013 Wcm−2 can contribute to the ionisation signals. In our
experimental conditions, the ionisation regime extends to about 3 mm. Ion sam-
pling, therefore, needs an additional pair of slits very close to the focal volume to
restrict the ion sampling and only then, well- resolved parabolic traces of ions are
measurable. In our experiments, we use a pair movable slits that are motorised
and dynamically adjusted to chose the fraction of the focal volume sampled by
the TPS. This allows us to sample ions from the relativistic intensity regime and
enables the measurements described here [20].

A supersonic jet with a 750 µm wide, 45◦ conical nozzle operated with dif-
ferent backing pressures of Ar was used to produce different sizes of clusters.
Rayleigh scattering measurements [16] in conjunction with the use of the Hagena
parameter are used to estimate the cluster sizes. A 500 µm skimmer is used to
sample the cluster in a differentially pumped interaction chamber with a base
pressure of about 10−6 Torr. At these conditions, there is no inter-cluster inter-
actions and the ions fly of the detector without resulting in any charge transfer
or recombination reactions. Ion explosion from individual cluster exposed to the
intensities is thus measured. 35 fs pulses at a pulse energy of about 600 mJ are
focused down to 10µm waist size to achieve peak intensities of ∼4×1018 Wcm−2.

3 Results and Discussion

Figure 1 shows the Thomson parabola image for ion explosion for two cluster
sizes Ar1400 and Ar36,500 at relativistic intensity of 4 × 1018 Wcm−2 achieved
with 40 fs pulses. The variable slits in the TPS probe are set to image ions
generated only in the 300 µm Rayleigh range and so ion emission from the low
intense domains are avoided. Since only a small number of clusters are present
in the focal area, the ion count rates are very low and necessitated an image
acquisition from around 72,000 laser shots to acquire the TPS image.The ion
distribution peaks at Ar8+ for both the cluster sizes [21]. In Fig. 1a parabolic
lines are far away from the origin and a 100 keV ion energy line is indicated.
At higher cluster size, the parabola is drawn more closer to the origin and a
250 keV ion energies line is indicated in Fig. 1b. From these images we derive
a histogram, by integrating the ion yield in the each parabolic line, to get the
relative ion yield for the different charge states. Figure 2 gives the normalised
ion charge state propensity distribution (ICSPD). As can be seen with smaller
clusters, charge propensity is dominated by the lower charge states while for
larger clusters, the high charge states are prominent. For bigger clusters, 8+ is
still the dominant ion. But, the lower charge states are depleted considerably
and the higher charge propensity has increased considerably. The mean charge
here is about 9 while it is about 6.8 with Ar1400.
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Fig. 1. Thompson parabola images at relativistic intensities a, b are ion images
obtained from a Thompson parabola spectrometer for two different backing pressures
in supersonic jet nozzle at ∼4×1018 Wcm−2 intensity. The size in the legend indicates
the mean cluster size. Line indicates the maximum energy points and indicate that the
maximum ion energy observed is 100 keV in case of 2.3 nm (Ar1400) and 250 keV in
case of 6.9 nm (Ar36,500) clusters

To understand these observations, we look into the ionisation mechanism.
The ionisation is by (a) multiphoton ionisation, (b) over-the-barrier ionisa-
tion, (OBI) (c) collisional ionisation by laser-driven electrons, and (d) collective
plasma resonance mechanism. The first three are single particle response mech-
anisms. Multiphoton initiates the ionisation at the early time of the laser pulse
and OBI follows. OBI is a threshold process and the threshold intensity is given
to be [3]

Iobi = 4 × 109(Ip)4/q2 (4)

where Ip is the ionisation potential for atom to a q+ state and Iobi gives the
intensity threshold in Wcm−2. Table 1 gives the OBI threshold intensity for the
different charge states of Ar. At non-relativistic intensities (<3 × 1016 Wcm−2)
OBI threshold is such that direct laser field ionisation can generate at the most
8+. There is a big jump in ionisation energy once eight electrons are removed
and the 9+ requires electron removal from the L shell of Ar. Correspondingly,
there is a big jump in OBI threshold and only relativistic fields can generate 9+
and above directly by field ionisation. At ∼4 × 1018, Ar12+ charge state with an
ionisation energy of about 618 eV can be achieved by over the barrier ionisation.
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Fig. 2. Relativistic ion emission a and b are the ICSPD of ion emission from Ar1400
and Ar36,000 clusters, respectively at relativistic intensity of 4 × 1018 Wcm−2

If all the atoms in the cluster experience the applied relativistic intensity, ide-
ally one would expect only charge states beyond 12+ for measurements done at
∼4 × 1018. It is clear from the measurements that are presented in Fig. 2 that
this is not observed. However, three issues can affect measurements. (i) Focal
volume effect: At the focal waist, the beam has a Gaussian intensity profile.
Slits used in the experiments restrict the ionisation zone sampled only along
the laser propagation direction. In the transverse direction, ionisation in the
low intensity focal volume can not be avoided. This can contribute to ionisa-
tion signals from clusters exposed to lower non-relativistic intensity. For smaller
clusters generated at a lower backing pressure one would expect that the low-
intensity focal volume contribution to be less compared to the measurements
at high backing pressure with larger clusters. Since low-intensity focal volume
contribute to lower charge states, it is expected that the low charge propensity
is lower for experiments with Ar1400 clusters than at Ar36,500 clusters. Experi-
mental results are contrary to these expectations. (ii) Nanoplasma shielding can
reduce the intensity experienced by atoms. A bigger cluster would have more
atoms shielded by the field than with smaller clusters. So, if the plasma shield-
ing is a dominant factor, then larger cluster should yield a lager fraction of lower
charge states. Results presented in Fig. 2 are contrary to these expectations.
(iii) Electron–ion recombination after the laser pulse is incident and can affect
the charge state distribution. Extensive discussion on recombination in single
isolated clusters [22] have concluded that due to the high electron temperature
and large electrostatic fields on the clusters, charge reduction is single isolated
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Table 1. Over the barrier ionisation threshold intensity for different charge states of
Ar along with their ionisation energies

Arq+ (q) Ionisation energy (eV) OBI threshold intensity (Wcm−2)

1 15.76 2.46 × 1014

2 27.66 5.82 × 1014

3 40.74 1.22 × 1015

4 59.81 3.19 × 1015

5 75.02 5.06 × 1015

6 91.00 7.62 × 1015

7 124.32 1.95 × 1016

8 143.46 2.65 × 1016

9 422.45 1.57 × 1018

10 478.69 2.10 × 1018

11 538.96 2.79 × 1018

12 618.26 4.06 × 1018

13 686.10 5.24 × 1018

14 755.74 6.66 × 1018

15 854.77 9.49 × 1018

16 918.03 1.11 × 1019

17 4120.88 3.99 × 1021

18 4426.22 4.73 × 1021

clusters in negligibly small. For the experimental conditions used in these exper-
iments, inter-cluster recombination processes [23] and charge transfer reaction
are avoided. So this feature may not affect the measurements.

Apart from the field ionisation, ionisation by electron collisions is considered
to be a dominant feature in the nano-plasmas. In an inverse bremsstrahlung
mechanism, electrons gain energy from the field and disperse the energy in
electron–ion collisions. In collective mechanism, the dielectric properties of the
plasma modify the electro magnetic field interaction. Here again, the imaginary
part of the dielectric permitivity that contributes to the field attenuation and
energy deposition in the plasma fields depends on the electron-ion collisions.
So, it is anticipated that electron-ion collisions control the charge states, espe-
cially in the generation of the higher charge states that may not be possible
with the field ionisation alone. In Fig. 2b, it is noticeable that the decrease in
charge state propensity appears to have exponential dependence of the charge
state. This decrease in the charge propensity could be reflective of the decrease
in electron impact ionisation cross section. To examine this possibility, we use
the well known Lotz formalism [24,25] to evaluate the electron impact ionisation
cross section of Ar. Electron collision with Arq+ with q varied from 8 to 14 is
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Fig. 3. ICSPD of Ar36,500 clusters at relativistic intensity of 4 × 1018 Wcm−2 for
charge states beyond 8+. Projected in the plot is also the electron impact ionisation
cross section evaluated using the Lotz formalism and is given in the right-side axis of
the plot

evaluated at an electron energy of 200 keV which represents the ponderomotive
energy. At these high energies, electron impact ionization cross section reaches
an asymptotic limit and do not vary significantly with the change in electron
energy. Figure 3 shows the evaluated electron impact ionisation cross section
projected with the ion charge state propensity for charge states beyond 8+. As
can be seen the charge propensity very closely follows the decrease in electron
impact ionisation cross section for the higher charge states. So is it possible that
the higher ionisation state generation is controlled by the electron impact ioni-
sation in the bigger clusters. For the smaller clusters, the electron ion collisions
are expected to be less frequent, since the cluster size is smaller and therefore
the high charge state propensity may be lower.

At relativistic intensities, pulse profile and pulse contrast are known to affect
the plasma generation. In the present experiments, ns contrast is about 10−6 and
the ps contrast can be as large as 10−5 at 10 ps and 10−4 at 2–4 ps [26]. This
means an intensity of 1014 Wcm−2 in the 2–4 ps regime prior to the main pulse.
Clusters experiencing this intensity would expand under Coulomb pressure. For a
Ar1400 cluster experiments presented in Fig. 1, the maximum average ion energy
is about 50 keV and it raises to about 200 keV for the Ar36,500 clusters. Even
if we assume that this average energy is achieved 5 ps ahead of the main pulse,
a Ar1400 cluster would expand to about 2 µm. These atomic ions would still be
in the focal volume and should be subjected to the OBI by the main pulse. The
very fact there is a dramatic change is ICSPD with the cluster size would mean
that the pre-pulse does not destroy the cluster before the main pulse is incident.
Pre-pulse expansion can only expose atoms (to the main pulse and should result
in field ionisation contributing to the higher charge states. So, the pulse contrast
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effects cannot explain the charge states distribution measured in the present
experiments.

It is possible that the nanoplasma shielding is strong and OBI is not brought
out in all the atoms in the cluster. The key question that opens is about the
plasma shielding in a 2 nm cluster and how they change at relativistic intensities.
With the different arguments presented with the experimental measurements,
it is clear that comprehending the ion charge states formed by cluster ioniza-
tion at relativistic intensities is not straightforward. Detailed calculations of the
nanoplasma generation and evolution with the inclusion of relativistic effects is
necessary to understand the experimental measurements. At present, there are
no PIC models that can evaluate these ionisation dynamics in detail and we hope
that the experiments offer inspiration to bring out the nanoplasma dynamics at
relativistic intensities.

4 Summary and Conclusions

We present an experimental study of the Ar cluster ionisation at relativistic
intensities of about ∼4 × 1018 Wcm−2 by using a Thompson parabola spec-
trometer. Ion charge propensity distribution presented for different cluster sizes,
Ar1400 and Ar36,500, bring out very important differences in cluster ionisation
with the cluster size. The measurements are not reflective of the dominance of
over the barrier ionisation. Electron impacting ionisation seem to be important
to generate the high charge states and charge propensity correlates with the elec-
tron impacting ionisation cross section. Larger clusters appear to be necessary
for effective electron impact ionisation and generation of higher charge states.
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Abstract. We have studied the potential energy curves (PECs) for
1Σ+ electronic states of HfH+ and PtH+ molecular ions using the self-
consistent field (SCF) method and the coupled-cluster method with sin-
gle and double excitations (CCSD). The spectroscopic constants derived
from these potential energy curves are reported and compared with the
available calculations in the literature. Further, the permanent dipole
moment (PDM) of these molecular ions are calculated using the finite-
field approach by applying a weak external electric field in the perturba-
tive regime. Furthermore, vibrational parameters are obtained by solving
the vibrational Schrödinger equation numerically.

1 Introduction

The polar diatomic molecules are of particular interest to experimentalists who
are seeking for a non-zero electric dipole moment of an electron (eEDM). The
latter plays an important role while exploring the physics beyond the stan-
dard model of particle physics. Apart from atoms, the current best limit on
eEDM also comes from the cold molecular experiments on ThO [1], HfF+ [2]
and YbF [3]. The theoretical calculations of spectroscopic parameters and prop-
erties of such molecules containing heavy atoms is a challenge because of their
complex electronic structure. As the eEDM hitherto has evaded detection, new
systems are being proposed and explored constantly [4–6]. Two such molecu-
lar candidates: PtH+, and HfH+ have been proposed by Meyer et al. [7] in
which they have obtained the PECs for 1,3Σ, 1,3Π and 1,3Δ electronic states
of these ions, using multi-reference configuration interaction method with sin-
gle and double excitations (MRCISD), available in MOLPRO quantum chem-
istry package. Nevertheless, in their work, equilibrium bond lengths (Re), and
rotational constants (Be) are reported only for 3Δ states. The spectroscopic
constants such as, Re, electronic transition energy (Te), and harmonic frequency
(ωe) have been studied by Skripnikov et al. [8] for the four lowest electronic states
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(3Δ3, 1Σ+, 3Δ2, and 3Δ1) of PtH+ ion, using MRCISD method. Further,
they have used 60-core electron generalized relativistic effective core potential
(GRECP) for the Pt atom. The diatomic constants Re, ωe, Te, and dissociation
energy (De) for 1Σ+ state at the non-relativistic (NR) level, for 1Σ+ and 3Δ
state using perturbation theory (PT), for 1Σ+, 3Π, and 3Δ state using spin-
free no-pair method corrected to second order in the external potential (PVP)
have been reported for PtH+ ion by Dyall [9]. Zurita et al. [10] have performed
Hartree–Fock SCF calculations for the low-lying electronic states of PtH+, with
the relativistic ten-electron pseudopotential (PP10). Quite recently, several elec-
tronic states of PtH and PtH+ have been computed by Shen et al. [11] using
MRCI + Q method that includes the single and double excitations plus David-
son’s cluster correction. Further, spin–orbit coupling (SOC) effects are included
via the state-interaction (SI) approach.

Dyall [9] and Ohanessian et al. [12] have predicted the 1Σ+ state as the
ground state of PtH+, whereas in the recent studies, [7,8,11] 3Δ3 state is
reported as the true ground state of this ion. Further, two contradictory results
for the ordering of first and second excited states of PtH+ are available in the
literature. According to [8,11], 1Σ+ is lower in energy than 3Δ2 state, whereas
an opposite trend is obtained in [7].

The first study on HfH+ ion has been done by Ohanessian et al. [12] using
generalized valence bond plus CISD method together with the effective core
potentials. They have reported relative energies and spectroscopic parameters
for the lowest four (3Δ, 3Π, 3Φ, and 3Σ−) electronic states. The Ω dependent
PECs of 1Σ and 3Δ state have been studied by Meyer et al. [7]. In their work,
ground state of HfH+ ion is a toss-up between 1Σ and 3Δ1. Therefore, more
detailed relativistic calculations are required to resolve this issue.

In the current work, we have performed fully relativistic potential energy
calculations and the spectroscopic constants, viz., equilibrium bond length (Re),
dissociation energy (De), harmonic frequency (ωe), anharmonic constant (ωexe),
and rotational constant (Be and αe) of 1Σ+ states of HfH+ and PtH+ molecular
ions, at SCF and CCSD level of correlation. The permanent dipole moment
(PDM), (μ), at equilibrium internuclear distance, Re, has been calculated using
finite-field method for both the ions. Using PECs obtained at the level of CCSD,
energies (Ev), rotational constants (Bv), and wavefunctions of vibrational states
are obtained by solving the vibrational Schrödinger equation numerically.

In the next section, we briefly describe the computational method, while
in Sect. 3, we show results and discussions for the properties calculated and in
Sect. 4 we conclude.

2 Computational Method

The relativistic energy calculations for 1Σ+ state of PtH+ and HfH+ molecu-
lar ions are performed using Dirac–Fock–Coulomb Hamiltonian with DIRAC15
program [13]. The contribution from two-electron (SS|SS) integrals is taken in
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an approximate manner, as suggested in [14]. The energy calculations at CCSD
level of correlation are carried out with the RELCCSD module of DIRAC15 soft-
ware. The uncontracted correlation consistent polarized valence quadruple zeta
(cc-pVQZ) basis set for H [6s 3p 2d 1f] atom [15] and Dyall valence basis set of
similar level, dyall.v4z, for Pt [78s 30p 19d 13f 4g 2h] and Hf [72s 30p 19d 13f
4g 2h] [16] are used in conjunction with Gaussian charge distribution and C2v

molecular point group symmetry. The nuclear masses of 1.007825, 179.9465457,
and 194.964766 atomic mass unit (amu) are used for H, Hf and Pt, respectively.
The filled orbitals having energy less than −5Eh are taken as a frozen core.
With this constraint, we have correlated 32 electrons for PtH+ and 26 electrons
for HfH+ in CCSD calculations. Further, the virtual energy threshold is set at
5Eh for both the molecular cations that include 102 and 138 virtual orbitals
for PtH+ and HfH+ ion, respectively. The potential energy calculations are per-
formed for a bond distance ranging from, 1 to 12 Å, with a step size of 0.5 Å while
around the equilibrium point, a finer step size of about 0.001 Å is adopted. Using
VIBROT program available in MOLCAS [17] software package, the calculated
potential energies are fitted to an analytical form of potential function using
cubic splines. The dissociation energies are calculated as a difference between
the energies at equilibrium point and those computed at asymptotic distance by
numerical extrapolation. Further, the Numerov method is utilized to solve the
ro-vibrational Schrödinger equation numerically to obtain the spectroscopic con-
stants, with J = 0 rotational state. The energies of ro-vibrational states (Ev,J)
can be expressed as [18]:

Ev,J = ωe

(
v +

1
2

)
− ωexe

(
v +

1
2

)2

+ · · · + BvJ(J + 1) − · · · (1)

where v and J are vibrational and rotational quantum numbers, respectively.
The rotational constant, Bv, corresponding to vibrational state v can be defined
as

Bv = Be − αe

(
v +

1
2

)
+ · · · (2)

where Be(= h/8π2cμR2
e) is the rotational constant at the equilibrium point, and

αe is the vibration–rotation interaction constant. Here, c and μ[= m1m2/(m1 +
m2)] represents the velocity of light and reduced mass of the molecular system,
respectively.
The total energy E of the system in the presence of external electric field of
strength ε is given by [19]:

E(ε) ≈ E0 − με − 1
2
αε2 (3)

where μ and α represent the dipole moment and the static dipole polarizability,
respectively. It is evident from (3) that the dipole moment can be calculated as
the first derivative of total energy with respect to applied electric field. First,
the field-dependent energies are calculated by adding different values of ε in the
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range; 1.03 × 106 and 2.57 × 106 V/cm, to the Hamiltonian using DIRAC15
software. Thereafter, the PDMs are obtained by fitting the first-order polyno-
mial to these energies calculated at the equilibrium bond length. The range of
perturbative electric field is chosen by comparing PDM results obtained using
finite-field approach and those calculated directly using the expectation value
approach in the DIRAC15 software, at the SCF level.

3 Results and Discussion

It has to be noted that the atomic units for distance (1 au = 0.52917721 Å),
dipole moment (1 au = 2.54174691 D), and electric field (1 au = 5.142 × 109

V/cm) are used, unless otherwise mentioned, throughout the paper. Figure 1a,
b show the potential energy curves for 1Σ+ state of HfH+ and PtH+ molecular
ions, respectively, at SCF and CCSD level of correlation. The large difference in
the PECs at SCF and CCSD level of theory indicates that the correlation effects
are large in both the molecular ions considered. The spectroscopic constants cal-
culated from the PECs, together with the available results in the literature, are
tabulated in Table 1. Our value of Re (=2.868 au) for PtH+ ion, reported at the
level of CCSD, differs from other available calculations in the literature [8–12], by
a maximum of 3.1%. The computed value of ωe = 2385 cm−1 for PtH+, at CCSD
level in the present study, agrees well with the value of 2399 cm−1, reported in
[12] at CISD level of correlation, whereas it differs from other calculations [8–
11], by a maximum of 11%. The calculated dissociation energy, De = 4.20 eV, of
PtH+ cation at CCSD level of correlation is considerably larger than any of the
available results [7,9–12]. The potential depth of HfH+, De = 2.49 eV reported in
[7], is larger by 0.06 eV than our result at CCSD level. The difference between
potential depths reported in our work and those reported in the literature could
be due to the relativistic effects, correlation method employed, size of the cor-
relation space and the choice of basis sets. There is no other calculation for the
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Fig. 1. Potential energy curves obtained at SCF and CCSD level of correlation for 1Σ+

state of a HfH+, and b PtH+ molecular ions
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Table 1. Computed spectroscopic constants and molecular properties of HfH+ and
PtH+ molecular ions in their 1Σ+ state compared with the available results in the
literature

Molecule Method Re

(au)

De

(eV)

ωe

(cm−1)

ωexe

(cm−1)

Be

(cm−1)

αe

(cm−1)

μ (au) References

HfH+ SCF 3.473 6.49 1799 19.8 4.97 0.09 1.515 This work

CCSD 3.432 2.43 1909 18.0 5.11 0.07 1.218 This work

MRCISD – 2.49 – – – – – [7]

PtH+ SCF 2.864 7.26 2307 21.9 6.94 0.10 0.353 This work

CCSD 2.868 4.20 2385 42.57 7.28 0.19 0.159 This work

MRCISD – 3.14 – – – – – [7]

MRCISD 2.825 – 2428 – – – – [8]

NR 2.828 0.42 2464 – – – – [9]

PT 2.836 0.89 2546 – – – – [9]

PVP 2.830 1.34 2572 – – – – [9]

DHFa 2.876 1.22 2426 – – – – [9]

SCF 2.783 1.31 2650 – – – – [10]

MRCISD+Q 2.887 3.03 2320 25.9 7.222 – – [11]

CISD 2.870 2.875 2399 – – – – [12]
aDHF: Dirac–Hartree–Fock

spectroscopic constants, except that of De in [7], available in the literature for
the 1Σ+ electronic state of HfH+ ion.
Those results, for the spectroscopic constants of the molecular ions considered in
this work, available in the literature are calculated either at the non-relativistic
level or at the scalar-relativistic level. Further, the highest correlation method
used among all the available calculations is the MRCISD, which is not size exten-
sive, unlike the CCSD method that we have employed in this work. Further, the
size of the basis sets and the active space considered in our work are larger than
that in any other published works on these molecular systems. We, therefore,
believe that our relativistic calculations performed are more reliable than any
other available result.
In order to calculate the contributions from relativistic effects, we have per-
formed both non-relativistic and relativistic energy calculations near the equi-
librium point at the SCF level, for both the diatomic molecules. The relativistic
contributions for the total energies of HfH+ and PtH+ are found to be 5.3% and
6.3%, respectively. Further, the correlation contributions to the spectroscopic
parameters of the molecular ions are calculated by comparing those results cal-
culated at the SCF and the CCSD levels. They are found to be 0.041 au and
0.004 au for the equilibrium bond length Re, −4.06 eV and −3.06 eV for the dis-
sociation energy De, and 110 cm−1 and 78 cm−1 for the harmonic frequency ωe,
respectively, for HfH+ and PtH+.
The value of PDM, at the equilibrium point, is found to be 1.218 au and 0.159 au
for HfH+ and PtH+, respectively, at the CCSD level of theory. The correlation
contribution to the PDM is 19.6% and 54.9% for HfH+ and PtH+, respectively
for the QZ basis set and at the CCSD level of theory. As there is no experimental
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Table 2. Vibrational energies and rotational constants for low-lying vibrational levels
of HfH+ and PtH+ at CCSD level of correlation

v HfH+ PtH+

Ev (cm−1) Bv (cm−1) Ev (cm−1) Bv (cm−1)

0 915.97 5.033 1170.49 7.183

1 2738.40 4.906 3443.80 6.973

2 4544.27 4.794 5638.28 6.774

3 6294.63 4.698 7753.57 6.580

4 7973.99 4.604 9793.36 6.386

5 9584.91 4.496 11757.69 6.191

6 11126.79 4.377 13646.17 5.993

7 12594.18 4.246 15457.33 5.791

8 13980.91 4.094 17188.82 5.586

9 15277.33 3.914 18837.53 5.374

10 16465.74 3.689 20399.65 5.155

or other theoretical results on the PDM of these ions in the literature, to the best
of our knowledge, our result will serve as a benchmark. The calculated vibra-
tional parameters such as the vibrational energies and the vibrationally coupled
rotational constants are given in Table 2 for a few low-lying vibrational levels
of 1Σ+ electronic state of both ions. The relative energy separation between
the adjacent vibrational levels and the value of rotational constant decreases, as
anticipated, as one goes from lower to higher vibrational states.

4 Conclusions

In summary, theoretical investigation of the lowest 1Σ+ state of HfH+ and PtH+

has been carried out using SCF and CCSD levels of correlation taking opti-
mized quadruple zeta basis sets. Our results of the spectroscopic constants are
in reasonable agreement with the existing results wherever available. The value
of PDM for both the ions is reported for the first time. In addition, both the
relativistic and the correlation effects have been calculated for both the ions.
Further, the energies, rotational constants, and wavefunctions of different vibra-
tional states are obtained by solving the vibrational Schrödinger equation and
the results are reported here. Our results may serve as benchmarks for the future
experimental and theoretical investigations of HfH+ and PtH+ molecular ions.
Furthermore, the accurate PEC calculations of 3Δ states are required in order
to resolve the issue of the true ground state of these ionic systems and such
calculations are being performed.



Spectroscopic Studies of 1Σ+ States of HfH+ and PtH+ Molecular Ions 197

Acknowledgements. The relevant calculations, whose results are presented in this
work, were performed on the computing facility available in the Department of Physics,
IIT Roorkee and in the Department of Chemistry, TMU, Japan.

References

1. Baron, J., Campbell, W.C., DeMille, D., Doyle, J.M., Gabrielse, G., Gurevich,
Y.V., Hess, P.W., Hutzler, N.R., Kirilov, E., Kozyryev, I., O’Leary, B.R., Panda,
C.D., Parsons, M.F., Spaun, B., Vutha, A.C., West, A.D., West, E.P., Collabo-
ration, A.C.M.E.: Methods, analysis, and the treatment of systematic errors for
the electron electric dipole moment search in thorium monoxide. New J. Phys. 19,
073029 (2017). https://doi.org/10.1088/1367-2630/aa708e

2. Cairncross, W.B., Gresh, D.N., Grau, M., Cossel, K.C., Roussy, T.S., Ni, Y.,
Zhou, Y., Ye, J., Cornell, E.A.: Precision measurement of the electron’s electric
dipole moment using trapped molecular ions. Phys. Rev. Lett. 119, 153001 (2017).
https://doi.org/10.1103/PhysRevLett.119.153001

3. Hudson, J.J., Kara, D.M., Smallman, I.J., Sauer, B.E., Tarbutt, M.R., Hinds, E.A.:
Improved measurement of the shape of the electron. Nature 473, 493–496 (2011).
https://doi.org/10.1038/nature10104

4. Shafer-Ray, Neil E.: Possibility of 0-g-factor paramagnetic molecules for measure-
ment of the electron’s electric dipole moment. Phys. Rev. A 73, 034102 (2006).
https://doi.org/10.1103/PhysRevA.73.034102

5. Meyer, E.R., Bohn, J.L.: Prospects for an electron electric-dipole moment search
in metastable ThO and ThF+. Phys. Rev. A 78, 010502(R) (2008). https://doi.
org/10.1103/PhysRevA.78.010502

6. Prasannaa, V.S., Vutha, A.C., Abe, M., Das, B.P.: Mercury monohalides: suit-
ability for electron electric dipole moment searches. Phys. Rev. Lett. 114, 183001
(2015). https://doi.org/10.1103/PhysRevLett.114.183001

7. Meyer, E.R., Bohn, J.L., Deskevich, M.P.: Candidate molecular ions for an electron
electric dipole moment experiment. Phys. Rev. A 73, 062108 (2006). https://doi.
org/10.1103/PhysRevA.73.062108

8. Skripnikov, L.V., Petrov, A.N., Titov, A.V., Mosyagin, N.S.: Electron electric
dipole moment: Relativistic correlation calculations of the P, T-violation effect
in the 3Δ3 state of PtH+. Phys. Rev. A 80, 060501(R) (2009). https://doi.org/10.
1103/PhysRevA.80.060501

9. Dyall, K.G.: Relativistic effects on the bonding and properties of the hydrides of
platinum. J. Chem. Phys. 98, 9678–9686 (1993). https://doi.org/10.1063/1.464346

10. Zurita, S., Rubio, J., Illas, F., Barthelat, J.C.: Ab initio electronic structure of
PtH+, PtH, Pt2, and Pt2H from a one-electron pseudopotential approach. J. Chem.
Phys. 104, 8500–8506 (1996). https://doi.org/10.1063/1.471600

11. Shen, K., Suo, B., Zou, W.: Theoretical study of low-lying Ω electronic states of
PtH and PtH+. J. Phys. Chem. A 121, 3699–3707 (2017). https://doi.org/10.1021/
acs.jpca.7b0305

12. Ohanessian, G., Brusich, M.J., Goddard, W.A.: Theoretical study of transition-
metal hydrides. 5. HfH+ through HgH+, BaH+, and LaH+. J. Am. Chem. Soc.
112, 7179–7189 (1990)

13. Bast, R., Saue, T., Visscher, L., Jensen, H.J.A.: In: Bakken, V., Dyall, K.G., Dubil-
lard, S., Ekstroem, U., Eliav, E., Enevoldsen, T., Fasshauer, E., Fleig, T., Foss-
gaard, O., Gomes, A.S.P., Helgaker, T., Henriksson, J., Ilias, M., Jacob, Ch.R.,

https://doi.org/10.1088/1367-2630/aa708e
https://doi.org/10.1103/PhysRevLett.119.153001
https://doi.org/10.1038/nature10104
https://doi.org/10.1103/PhysRevA.73.034102
https://doi.org/10.1103/PhysRevA.78.010502
https://doi.org/10.1103/PhysRevA.78.010502
https://doi.org/10.1103/PhysRevLett.114.183001
https://doi.org/10.1103/PhysRevA.73.062108
https://doi.org/10.1103/PhysRevA.73.062108
https://doi.org/10.1103/PhysRevA.80.060501
https://doi.org/10.1103/PhysRevA.80.060501
https://doi.org/10.1063/1.464346
https://doi.org/10.1063/1.471600
https://doi.org/10.1021/acs.jpca.7b0305
https://doi.org/10.1021/acs.jpca.7b0305


198 R. Bala et al.

Knecht, S., Komorovsky, S., Kullie, O., Laerdahl, J.K., Larsen, C.V., Lee, Y.S.,
Nataraj, H.S., Nayak, M.K., Norman, P., Olejniczak, G., Olsen, J., Park, Y.C.,
Pedersen, J.K., Pernpointner, M., Di Remigio, R., Ruud, K., Salek, P., Schim-
melpfennig, B., Sikkema, J., Thorvaldsen, A.J., Thyssen, J., Stralen, J. van, Vil-
laume, S., Visser, O., Winther, T., Yamamoto, S. (Contributors) DIRAC, a rela-
tivistic ab initio electronic structure program, Release DIRAC15 (2015). http://
www.diracprogram.org

14. Visscher, L.: Approximate molecular relativistic Dirac-Coulomb calculations using
a simple Coulombic correction. Theor. Chim. Acta. 98, 68–70 (1997). https://doi.
org/10.1007/s002140050280

15. Dunning, Jr., T.H.: Gaussian basis sets for use in correlated molecular calculations.
I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023
(1989). https://doi.org/10.1063/1.456153

16. Dyall, K.G.: Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for
the 5d elements Hf−Hg. Theor. Chem. Acc. 112, 403–409 (2004). https://doi.org/
10.1007/s00214-004-0607-y

17. Karlström, G., Lindh, R., Malmqvist, P.-Å., Roos, B.O., Ryde, U., Veryazov, V.,
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Abstract. Metal toxicity has proven to be a major threat to human life as there
are several health risks associated with it. Metal bio-magnification within living
systems is a persisting problem. Due to anthropogenic activities, the concen-
tration of various metals in environmental samples (plants, soil, air, water, etc.)
is increasing at an alarming rate thus leading to their contamination. Investi-
gations on determining the contamination level of environmental samples have
been going on for a substantial amount of time in India as well as all over the
world. Electrochemical, chemical or spectroscopic techniques have been popular
for the abovementioned purpose. These methods although being easier and
compatible, lag behind in sensitivity and accuracy. Thus, there is a need for a
better technique which can detect contaminants in trace and ultra-trace amounts
and also has multi-element detection capacity. Present work is an effort to
identify contamination in different soil and plant samples collected from diverse
land use sites in Delhi using X-Ray Fluorescence (XRF) spectroscopy. XRF
offers the advantages of higher sensitivity (detection in the range of ppm), multi-
element detection capability and easier sample preparation over other tech-
niques. The samples were collected from two sites having different biological
toxicity. Concentrations of the elements detected in the samples have been
estimated from the X-ray spectra of the samples.

1 Introduction

In densely populated cities like Delhi, industrial as well as domestic waste has inad-
vertently become a source of toxic elements which has dramatic effects on the
ecosystem. There is a continuous discharge of wastes and effluents to the environment,
i.e., in soil, water, and air. Most of the waste materials in the vicinity of the industrial
area are dumped without any prior treatment which then directly pollutes soil, water
systems as well as air. All these wastes from industries and other household sources
contain high amounts of heavy elements such as As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb,
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and Zn [1, 2]. Contamination of soil and plants by the significant amount of metals
constitutes biological toxicity. This toxicity has proven to be a major threat and there
are several health risks associated with it. The repercussions become more severe with
the reduction in dimension of contaminating particles. As the particle size decreases, its
ability to seep through soil and vegetation increases. Consumption of food grown on
such soil by humans or animals paves way for the pollutants to enter the body and
cause diseases like cancer [3]. A large number of investigations all over the world have
discussed the effects of pollution on human health [4–6]. Consequently, there is a need
to determine and evaluate the contamination of environmental samples and make
efforts to develop a methodology which could reduce or better overcome this envi-
ronmental deterioration.

Investigations on determining the contamination level of environmental samples
have been going on for a substantial amount of time in India as well as all over the
world. Electrochemical, chemical, or spectroscopic techniques have been popular for
the abovementioned detection purpose. These methods, although being easier and
compatible, lack sensitivity for multi-element detection and accuracy. Thus, there is a
need for a better technique which can detect contaminants in trace and ultra-trace
amounts. Present work is an effort to identify contamination in different soil and plant
samples collected from diverse land use sites in Delhi using XRF spectroscopy. X-Ray
Fluorescence (XRF) spectroscopy, specifically a versatile method for composition
analysis, is nondestructive and has high sensitivity with multi-element detection
capability. This method has high sensitivity in detecting elements with the atomic
number in the range of Z > 18 in trace and ultra-trace amounts in both thick as well as
in thin samples.

The underlying principle in X-Ray Fluorescence (XRF) procedure is based on
measuring the energy and intensity of the characteristic X-rays emitted from the sample
under investigation. In this technique, the sample is irradiated by a collimated beam of
photons, thus creating vacancies in the atomic shells of elements present in the sample.
These vacancies are subsequently occupied by the transition of higher shell electrons
leading to the emission of X-rays characteristic to the elemental composition of the
sample. The emitted X-rays are then detected by a suitable X-ray detector, visible as a
spectrum in the computer after appropriate data acquisition system and software
analysis. The intensity measurement of the X-rays gives a concentration of the indi-
vidual elements present in the sample imparting quantitative estimation of the ele-
mental composition of the sample. Previous investigations have used X-ray radioactive
sources such as 55Fe, X-ray tubes or synchrotron radiation to investigate various
samples using K, L, and M shell/subshell X-ray emission to detect trace and ultra-trace
elements like chromium, arsenic, selenium, silver, mercury, lead, etc., in all types of
environmental samples. This technique has been extensively used by environmentalists
as well as physicists to determine impurities in a sample [3].

1.1 Previous Investigations on Determination of Elemental Constitution
of Environmental Samples Using XRF

The implementation of XRF as a pollutant determinant tool in environmental samples
has gained momentum due to its various merits. One of them is the absence of
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exhaustive procedures involved in sample preparation, analysis, storage, etc., as in the
case of other established electrochemical techniques like Atomic Absorption Spec-
troscopy (AAS). From the literature, it was evident that environmental samples
including different types of soils, various medicinal plants, water samples as well as
aerosols have been analyzed using XRF to determine their elemental constitution and
quantify the pollutants present in them. Mittal et al. [7] in 1993 determined the calcium
and potassium concentrations in roots and leaves of spinach and radish using XRF
taking care of inter-element effects of calcium and potassium. The enhancement of
potassium K X-rays due to the presence of calcium K X-rays in the sample was avoided
by selective excitation of the sample. Deep et al. [8] studied the potassium variation in
(Vigna radiate) sprouts with lunar phases following the method of selective excitation
in thick samples. Bandhu et al. [9] analyzed the pollutant concentration in aerosol
samples of Chandigarh, India. Similarly, Alrakabi et al. [10] and Singh et al. [11]
reported the metal contamination found in groundwater samples of Chandigarh. Deep
et al. [12] analyzed different water samples using XRF. The results indicated the
presence of Ca in water in the range 0.1–100 ppm which attributes to its hardness. In
Spain, Queralt et al. [13] investigated the presence of macro, micro, and nonessential
elements in medicinal plants. Antoaneta et al. [14] reported the decrease of heavy metal
concentration in soil with increasing distance from metallurgical work sites in
Romania. Cruz et al. [15] from Barcelona and Maiana et al. [16] from Argentina
examined aerosol samples under different conditions. McCumber et al. [17] from USA
measured concentration of lead in soil.

It is inferred that XRF finds wide ranging applications in detecting pollutants in
various environmental samples which include aerosols, plants, soil, and water. The
multi-element detection capacity of XRF technique is evident from [9] where sixteen
elements were detected in aerosol samples. XRF is an efficient technique to detect
elements at ultra-trace levels which is clear from the fact that calcium was found in the
range of 0.1–100 ppm in water samples as reported by Deep et al. [12] and lead was
detected in a range of 10–170 ppm in soil samples as reported by McCumber et al.
[17]. Thus, in the present work, XRF spectroscopy has been employed for analysis of
environmental plant and soil samples as detailed here.

2 Methodology and Experiment

The methodology consisted of three parts, viz., identification of sites and collection of
samples, turning powdered samples into pellets, and finally irradiation of pellets and
data acquisition.

2.1 Sample Collection

Air pollution shows a seasonal variation. Moreover, during winter in Delhi, on average
air pollution rises by more than twice the amount in comparison to other seasons
(Spring and Summer). Among all pollutants, Particulate matter (PM), PM10 and PM2.5,
are of greater concern for public health because it is a carrier of all airborne metal
elements. According to Central Pollution Control Board (CPCB) portal, on an average
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day of a January month (last winter phase), the concentration of PM2.5 exceeded
200 mg/m2, in the range of “Very Poor” rating of AQI (Air Quality Index) value
compared to other seasons. Macro and microclimatic reasons for rising pollution levels
in Delhi during winter month include biomass burning from inside and outside Delhi or
brick kiln’s operation in Delhi as major causes of pollution. These seasonal increments
collude with meteorological factors, especially during winter months. Natural “Ther-
mal Inversion Process” (cool air stagnates over the city keeping pollution close to the
ground) creates a persistent winter fog which further worsens the problem.

For the abovementioned reasons, plant leaves and soil samples were collected
during peak winter month (January) in Delhi from two sites; one a heavy traffic
junction and crowded market place referred here as Site 1 and another, a ridge area with
greenery and less traffic referred here as Site 2. These two sites were chosen to obtain a
comparison between metal concentrations in environmental samples obtained from
both the sites. The collected plant and soil samples from two sites in the month of
January 2017 are summarized in Table 1.

2.2 Powder to Pellet/Target Preparation

The collected plant samples were first washed to remove surface impurities and then
oven-dried thoroughly to evaporate all moisture content. The dried leaves were ground
and sieved through a sieve mesh with an aperture width of 53 lm yielding a very fine
powder. The soil samples from both sites were also grinded and then sieved to obtain a
fine powder. These fine powdered samples were subsequently converted to thick pellets
[7] using a pellet making die setup along with a 15 ton hydraulic press.

2.3 Irradiation of Pellets and Data Acquisition

The experiment was performed at XRF Lab, Punjabi University, Patiala, India. Fig-
ure 1 is a schematic representation of the geometrical arrangement experimental set-up.
The experimental setup is described elsewhere in detail [18]. The sample pellets were
irradiated with X-ray photons from a 50 kV X-ray tube equipped with Rh anode. An
Amptek Si-PIN X-ray detector having a resolution of 145 eV at 5.9 keV was used to
detect the X-rays emitted from the sample pellets.

Table 1. Sample information

Sample Species Sample scientific name Sites
Site 1
Heavy traffic junction

Site 2
Ridge area

Plant Banyan Ficus benghalensis ✓ ✓

Ashok Polyalthia longifolia ✓ ✓

Putranjiva Putranjiva roxburghii ✓ –

Mulberry Morus alba ✓ –

Soil type Sandy loam to clay loam ✓ ✓
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2.4 Analysis

For irradiation, the tube was operated at a constant voltage and filament current i.e.
17 kV and 0.01 mA, respectively. The peaks in the recorded sample spectrum were
identified with the help of X-ray energy table [19]. The energy calibration of the
detector was done by irradiating pellets of different elements and taking their Ka peak
as reference. The fractional concentrations were estimated for all the identified ele-
ments according to the following formula:

Conc: of X in sample ¼ Area under peak of X in sample
Area under peak of X in standard

� �
Conc: of X in standard

ð1Þ

where X = Element detected whose concentration has to be calculated (in mg/g) and
standard implies any known compound of element X (for example CaO can be used as
a standard for measuring the concentration of Ca in the sample). The sample and
standard were irradiated under same tube voltage and filament current. The experi-
mental setup (tube–sample–detector geometry) was also the same for both the irradi-
ations. The flux variation of the tube while irradiating sample and standard was taken
into account by normalizing both spectra with respect to the area of Rh La peak. Both
the irradiations were done within a time interval of 30 min to minimize drift in tube and
detector conditions as well as the electronic setup.

Since the experimental setup was inside a glass chamber, a background spectrum
was recorded by replacing the sample with borax and subtracted from each recorded
sample spectrum as shown Fig. 2.

Fig. 1. 90° single reflection geometrical arrangement of 50 kV X-ray tube with Rh anode,
sample S and an Amptek Si-PIN X-ray detector. Distance between X-ray tube window and
sample = 3.5 cm; distance between sample and X-ray detector = 0.5 cm. Sample diame-
ter = 2.5 cm [18]
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The characteristic peaks in the spectrum indicate the elemental composition of the
sample. As mentioned in Sect. 2.1 plant and soil samples from two sites having dif-
ferent toxicities were collected which are summarized in Table 1. The background
subtracted spectra of different samples are shown in the figures below. Figure 3 shows
X-ray spectra of plant samples from Site 1 in January 2017. Figure 4 shows X-ray
spectra of plant samples collected from Site 2 in January 2017.

Figure 5 shows the background-subtracted X-ray spectra of soil samples from site 1
and site 2.

Standards are basically compounds of the elements detected in the environmental
samples. Thick pellets of these compounds were also irradiated under the same tube
conditions to estimate the elemental concentration in the sample by using equation (1).

3 Results and Discussions

In plant samples, K, Ca, and Fe were detected whereas, in case of soil samples apart
from these, Ti and Mn were also found. In the case of Putranjiva roxburghii, a small
amount of Mn was detected. Table 2 and Table 3 show the calculated concentrations of
different elements detected in plant and soil samples, using equation 1, respectively.

The minimum detection limit of the experimental setup was also determined for
different elements by exciting known samples at their edge energies as shown in
Table 4.

It has been observed that concentrations of K, Ca in plants and K, Ca, Ti and Fe in
soils are much higher than their MDL’s while Fe in plants and Mn in soils are just
indications with estimated amounts less than their MDLs. On average, it was found that
the X-ray tube setup had a minimum detection limit of around 1 mg/g for high Z
elements. The qualitative investigation, peak intensities, of plant and soil samples

Fig. 2. Left: background spectrum recorded with the borax target. Right: sample X-ray spectrum
with subtracted background. Both spectra have been recorded for 1000 s
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showed that the present XRF setup can efficiently detect middle Z (atomic number)
elements, i.e., from K to Fe as can be seen from Figs. 6 and 7.

Preliminary calculations showed the presence of Ca in substantial amount in plant
and soil samples of both sites. In the case of soil samples, high amounts of Fe were also
detected as shown in Fig. 7. Future investigations would comprise the determination of

Fig. 3. X-ray spectra of different plant samples collected in from site 1

Fig. 4. X-ray spectra of plant samples collected from site 2
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Table 2. Fractional concentrations of various elements found in plant samples collected from
site 1 and site 2

Plant sample Element Concentration (mg/g)
Site 1 Site 2

Ficus benghalensis K 39.0 31.6
Ca 60.0 79.4
Fe 02.0 01.0

Polyalthia longifolia K 30.7 31.3
Ca 70.3 59.3
Fe 00.9 01.1

Putranjiva roxburghii K 37.6 –

Ca 55.5 –

Mn 00.7 –

Fe 02.2 –

Morus alba K 26.9 –

Ca 93.1 –

Fe 03.5 –

Table 3. Fractional concentrations of various elements found in soil

Element Concentration (mg/g)
Site 1 Site 2

K 36.1 31.7
Ca 71.7 60.4
Ti 09.9 11.0
Mn 02.1 01.7
Fe 82.2 74.3

(a) (b)

Fig. 5. X-ray spectra of soil samples from a site 1 and b site 2

206 R. Gupta et al.



18 19 20 21 22 23 24 25 26 27

0

20

40

60

80

100

120

C
on

ce
nt

ra
tio

n 
(m

g/
g)

Z (Atomic No. of detected element)

Ficus benghalensis
 Polyalthia longifolia
 Putranjiva roxburghii
 Morus

Concentration of different elements
 detected in Plant samples from site 1

Fig. 6. Concentration of different elements detected in plant samples from site 1

Table 4. Minimum detection limit (MDL) of the experimental setup for different elements
found in the samples

Element MDL (mg/g)

Ca 3.4
Ti 3.8
Fe 2.6

 in Soil samples from Site 1 & Site 2
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Fig. 7. Concentration of different elements detected in soil samples from site 1 and site 2
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Ca and Fe levels in soil samples, as vegetation is grown on these soils, and study their
effect on the human body as well as agriculture.

The plant samples of Site 1 were also analyzed using Atomic Absorption Spec-
troscopy (AAS) method. A comparison was drawn between the AAS and XRF cal-
culated concentrations of Fe in plant samples taken from Site 1 as shown in Fig. 8.

From Fig. 8, it can be seen that in case of Polyalthia longifolia and Morus alba,
AAS shows higher concentrations of Fe whereas both XRF and AAS calculated
concentrations are nearly same for Ficus benghalensis and Putranjiva roxburghii. This
anomaly will be studied further in detail to isolate the possible reasons for such
deviation, in the future.

4 Conclusion

Various plant and soil samples from two different regions of Delhi were analyzed for
their elemental constitution using XRF spectroscopy. Details of the preliminary mea-
surements performed to quantify the efficiency of the setup have been presented.
Investigations will be continued in the future to assess metal contamination level in
environmental samples on a large scale basis to identify and mark randomly highly
metal accumulated vegetation species and soil types. After knowing the accurate value
of spatio-temporal contamination level of samples, various suitable control method-
ologies can be devised to stop further toxicity followed by implementation of better
scientific ways to reduce the level of pollution. This will ultimately lead to sustainable
management of environment.
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Fig. 8. Comparison between XRF and AAS concentrations of Fe in plant samples of site 1
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Abstract. We examine the quantum Hall (QH) states of the optical lat-
tices with square geometry using Bose–Hubbard model (BHM) in pres-
ence of artificial gauge field. In particular, we focus on the QH states
for the flux value of α = 1/3. For this, we use cluster Gutzwiller mean
field (CGMF) theory with cluster sizes of 3 × 2 and 3 × 3. We obtain
QH states at fillings ν = 1/2, 1, 3/2, 2, 5/2 with the cluster size 3×2 and
ν = 1/3, 2/3, 1, 4/3, 5/3, 2, 7/3, 8/3 with 3 × 3 cluster. Our results show
that the geometry of the QH states is sensitive to the cluster sizes. For
all the values of ν, the competing superfluid (SF) state is the ground
state and QH state is the metastable state.

1 Introduction

Ultracold Bosons in optical lattices (OLs) [6] have been the subject of intense
research since the experimental realization of Bose– Einstein condensate (BEC)
in OLs [3,15,16,26]. The rapid developments in the control of BECs in OLs
have made these systems an elegant experimental tool to explore the founda-
tions of strongly correlated quantum many-body systems. Till recently, many of
these were limited to the realm of theoretical studies. The near ideal, defect-free,
experimental realizations of OLs make these excellent proxies to explore quan-
tum many-body effects in condensed matter systems. One remarkable recent
experimental development is the introduction of synthetic magnetic fields in
OLs [1,30]. This makes the physics of quantum Hall (QH) effect accessible to
OLs. An important outcome is the study of Harper–Hofstadter model [18,20] and
observation of fractal spectrum [8] for interacting Bosons in OL with synthetic
magnetic field [23]. The scope to investigate the interplay of lattice geometry,
synthetic magnetic fields, and strong interactions have made these systems an
excellent platform to explore exotic quantum many-body phases.

In the quantum description, the energies of electrons in an external mag-
netic field are quantized into Landau levels. These have large degeneracy and
in a lattice these correspond to the Bloch bands [18] and is sensitive to applied
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magnetic field. The key point is the geometrical phase an electron acquires when
completing a loop in the cyclotron motion. Thus, neutral atoms in OLs can
mimic the physics of electrons in magnetic fields if a geometrical phase can be
induced to the atoms. This is achieved through the generation of a synthetic
magnetic field in OLs through an artificial gauge potential [7,24,27,28] using
lasers. Then, an atom hopping around a single unit cell in the OL, also called a
plaquette, acquires Peierls’ phase [36] of Φ = 2πα. Where α is the flux quanta per
plaquette and it is related to the strength of the synthetic magnetic field. In the
condensed matter systems realizing high α require magnetic fields ≈103 Tesla.
In this respect, the OLs have the advantage that by suitable choice of external
as well as internal parameters, various topological states such as fractional QH
(FQH) states are obtainable with the current experimental realizations [34,39]
and a variety of FQH-like states can be expected to emerge from these systems.

A paradigmatic model which describes BECs in OLs is the Bose–Hubbard
model (BHM) [11,22]. In this model, the kinetic energy of the bosons competes
with the onsite interaction and drives a quantum phase transition (QPT) from
superfluid (SF) to bosonic Mott insulator (MI) phase [16,40]. Various theoretical
methods, such as mean field theory [11], strong coupling expansion [12,13,32,43],
quantum Monte Carlo [44], density matrix renormalization group [37] have been
used to study the role of quantum fluctuation and short range on site inter-
action on QPT. The SF phase is compressible with finite SF order parame-
ter and phase coherent; MI phase, on the other hand, is incompressible with
zero-order parameter and shows integer commensurate filling per lattice site.
In contrast to these two phases, the QH states are incompressible states with
zero-order parameter and have incommensurate filling. Several previous works
[4,10,14,17,21,25,31,34,35,39,42] have theoretically explored the existence of
FQH states in OLs using BHM with synthetic magnetic fields, the bosonic coun-
terpart of the Harper–Hofstadter model [18,20]. These theoretical works have
also examined the possible signatures of the FQH states. One of the possibilities
is the measurement of two-point correlation function in the bulk and in the edge
of the lattice [19]. Such measurements may be experimentally possible using the
concepts from quantum information theory [9,41].

In the present work, we use cluster Gutzwiller mean field (CGMF) theory
to provide a better description of the atom–atom correlations. It is proven to
be more accurate than single site Gutzwiller theory and previous works have
also used CGMF theory to study both the integer quantum Hall (IQH) and
FQH states. In [31] the appearance of incompressible QH ground state in the
hardcore limit with stripe order for α = 1/5 and ν = 1/2 is reported. Similarly,
using reciprocal cluster mean field (RCMF) analysis, a competing FQH state
is reported for α = 1/4 in the recent study by Hügel et al. [21]. Motivated
by the above observation of QH states, we explore the possible QH states for
α = 1/3 with different cluster size in the hardcore limit and demonstrate the
dependence of the QH state geometry on the cluster size. For the present studies,
we have considered 3 × 2 and 3 × 3 clusters and report the improvement in the
description of the QH states with the increase of cluster sizes. This stems from
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more accurate accounting of the correlation effect with larger cluster sizes. We
have also performed a comparative study between the obtained QH and SF states
with both the cluster sizes and detect the emergence of various patterns.

2 Theory

We study a system of spinless bosonic atoms at T = 0 K, confined in a two-
dimensional (2D) optical lattice of square geometry under the influence of artifi-
cial gauge field [1,2,23,30]. In the Landau gauge A = (Ax, 0, 0) with Ax = 2παq,
the system is described by the following Hamiltonian [22,23,34,35,39], BHM
Hamiltonian where Peierls substitution is incorporated in the nearest neighbor
(NN) hopping [18,20,36],

Ĥ = −
∑

〈jk〉

(
ei2παqJx + Jy

)
b̂†
j b̂k +

∑

j

n̂j

[
U

2
(n̂j − 1) − μ)

]
, (1)

j ≡ (p, q) corresponds to the lattice site index where q is the index of the lattice
site along y-axis, b̂j (b̂†

j) are the bosonic annihilation (creation) operators, n̂j

is the occupation number operator at jth lattice site, Jx (Jy) are the hopping
strengths between two neighboring sites along x (y) direction, U corresponds to
the onsite interaction and μ is the chemical potential. Based on the experimental
realizations, we consider isotropic hopping Jx = Jy = J , and repulsive onsite
interaction energy (U > 0). In the presence of synthetic magnetic field, the atoms
acquire a phase 2πα upon hopping around a plaquette, where, α is the number
of flux quanta per plaquette, and it has values 0 ≤ α ≤ 1/2. In the absence of
synthetic magnetic field (α = 0), the Hamiltonian (1) reduces to the familiar
BHM Hamiltonian which admits two possible phases—MI and SF [11,16,22].
The MI phase appears in the strongly interacting regime (J/U � 1), while SF
phase occurs in the limit (J/U � 1). In homogeneous system, where the OL does
not include any background potential, the phase-boundary between MI and SF
forms lobes of different fillings and in presence of magnetic field the MI-lobes are
enhanced [33]. We employ the single site Gutzwiller mean field method (SGMF)
and CGMF to analyse the system in presence of synthetic magnetic field and
obtain the QH states.

2.1 Mean Field Theory and Gutzwiller Approximation

Following the mean field [38] calculations of the BHM, we decompose the creation
and annihilation operators in (1) into mean field and fluctuation around the
mean field, that is, b̂j = φj + δb̂j , with φj = 〈b̂j〉, and similarly, b̂†

j = φ∗
j + δb̂†

j ,
with φ∗

j = 〈b̂†
j〉. Neglecting the term quadratic in the fluctuations, the mean field

Hamiltonian is

ĤMF = −
∑

〈jk〉

[
(Jxei2παq + Jy)

(
b̂†
jφk + φ∗

j b̂k − φ∗
jφk

)
+ H.c.

]

+
∑

j

[
U

2
n̂j(n̂j − 1) − μn̂j

]
. (2)
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We can, therefore, express the total Hamiltonian as the sum of single site mean
field Hamiltonians

ĥj = −
[
(Jxei2παq + Jy)

(
φ∗

k b̂j − φ∗
kφj

)
+ H.c.

]
(3)

+
U

2
n̂j(n̂j − 1) − μn̂j .

The next step is to diagonalize the Hamiltonian (2) for each site separately. For
this, we consider the Gutzwiller ansatz, that is the ground state of the entire
lattice is the direct product of the ground states of all the individual sites, and
can be written in the Fock basis as

|ΨGW〉 =
∏

j

|ψ〉j =
∏

j

Nb∑

n=0

c(j)n |n〉j , (4)

with the normalization condition
∑

n |c(j)n |2 = 1. Here, Nb is the occupation
number state maximum number of particles at a site and c

(j)
n corresponds the

complex coefficients for the ground state |ψ〉j at the jth site. Gutzwiller ansatz
is the exact solution of the system in the strongly interacting regime (J � U).

For the numerical computations, we consider Nb = 10 and choose an initial
guess of φ. Then, we diagonalize the Hamiltonian for each site and retain the
ground state as the state |ψ〉j in |ΨGW〉. Then, using this |ψ〉j , we calculate new
φ for the next iteration and this cycle is continued till convergence is reached.
To distinguish the different phases, we compute the SF order parameter at each
site, and for the jth lattice site SF order parameter is

φj = 〈ΨGW|b̂j |ΨGW〉 =
Nb∑

n=1

√
nc

∗(j)
n−1c

(j)
n . (5)

From the above expression it is evident that φj is zero in the MI phase of the
system since only one of the co-efficients in (4) is nonzero, and it is finite for
the SF phase due to the different cns contribution. We also compute the average
lattice occupancy or density at each of the lattice site as

ρj = 〈ΨGW|n̂j |ΨGW〉 =
Nb∑

n=0

n|c(j)n |2. (6)

These are the essence of SGMF theory.

2.2 Theory of CGMF

In the SGMF Hamiltonian (4), we decouple the hopping terms between two
neighbouring sites by considering the mean field or SF order parameter φ. Thus,
we could write the Hamiltonian of the entire system as the sum of Hamiltonians
of individual sites and implement it as a site wise computations. However, this
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approximation is inadequate to incorporate the correlation effects arising from
the NN hopping. To remedy this short coming, which assumes great importance
to describe strongly correlated states like QH states, previous works have relied
on CGMF [31]. To derive the CGMF Hamiltonian, we consider the entire lat-
tice size as K × L, which we divide into W clusters (C) of size M × N , i.e.,
W = (K × L)/(M × N). The case of M = N = 1 corresponds to the SGMF
theory. In CGMF Hamiltonian, the hopping term is decomposed into two parts.
First is the actual hopping term in the internal link of the cluster (δC) and the
second term takes care of the boundary via mean fields. Our recent study [4]
describes the decomposition of hopping term and CGMF method more clearly.
After decomposition, the Hamiltonian for a single cluster (C) is expressed in the
following way

ĤC = −
∑

p,q∈C

[(
ei2παqJxb̂†

p+1,q b̂p,q + H.c.
)

+
(
Jy b̂†

p,q−1b̂p,q + H.c.
)]

−
∑

p,q∈δC

[(
ei2παqJx〈a∗

p,q〉b̂p,q + H.c.
)

+
(
Jy〈a∗

p,q〉b̂p,q + H.c.
)]

+
∑

p,q∈C

[
U

2
n̂p,q(n̂p,q − 1) − μn̂p,q

]
, (7)

where 〈ap,q〉 =
∑

p′ ,q′∈�C〈bp′ ,q′ 〉. Then, we use Gutzwiller ansatz and the local
cluster wavefunction in a Fock basis can be expressed as

|ψc〉 =
∑

n1,n2,...,nMN

Cn1,n2,...,nMN
|n1, n2, . . . , nMN 〉 , (8)

with ni being the index of the occupation number state of ith lattice site
within the cluster, and Cn1,n2,...,nMN

is the amplitude of the cluster Fock state
|n1, n2, . . . , nMN 〉. Here also, the total Hamiltonian of the system can be written
as the sum of all the individual cluster Hamiltonians [29]. The SF order param-
eter φ is computed for each cluster in the similar way as discussed in SGMF
method. The next step is to find the ground state and we adopt the similar
process as is described in SGMF theory. We take the initial solution for φ, con-
struct the Hamiltonian matrix elements for a single cluster and diagonalize it.
After diagonalization, we consider the lowest ground state |ψc〉 for the cluster
and calculate the new φ and repeat the cycle until we get the converged solution.
Here, it is worth to be mention that in case of CGMF, the convergence is very
sensitive to the initial conditions [25,31] and we use the method of successive
over-relaxation for the better convergence [5].

3 Results and Discussions

We start our computations by considering a single cluster for α = 1/3, with 3×2
and 3×3 clusters. We choose these clusters as Hamiltonian becomes periodic over
a 3×1 magnetic unit cell in the Landau gauge for this flux value of α. We obtain
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(a)

(b)

Fig. 1. The variation in the number density ρ for α = 1/3 as function of μ. The states in
SF phase are compressible and have nonzero superfluid order parameter φ. As a result,
ρ varies linearly with μ and the green curve represents the SF states. For specific values
of filling factor ν there are states with constant ρ, represented by the blue lines, and
these correspond to the QH states. a Results from 3 × 2 cluster, the plateaus or the
constant ρ values correspond to ν = n/2, n = 1, 2, . . . , 5 and the corresponding ρ values
are n/6. b Results from 3 × 3, the platueas correspond to ν = n/3, n = 1, 2, . . . , 8 and
the corresponding ρ values are n/9

QH states from the CGMF and characterize them based on the compressibility
κ = ∂ρ/∂μ, where the density for the cluster is ρ =

∑
j 〈ψc| n̂j |ψc〉 /(K × L).

As the QH states are incompressible κ = 0 for these states, and κ is finite for
the compressible SF states. Therefore, ρ(μ) of QH states has plateaus for dif-
ferent fillings ν and ρ(μ) is linear for the SF phase. In the Fig. 1, the plateaus
corresponding to constant ρ indicate the existence for the QH states. Our com-
putations, as mentioned earlier, are in the hardcore boson limit where ρ < 1.
We obtain the QH states at ν = n/2, with n = 1, 2, . . . , 5 by taking the 3 × 2
cluster, and at ν = n/3, with n = 1, 2, . . . , 8 by taking the 3×3 cluster. The QH
states are enhanced with the larger cluster size as mentioned above. Here, 3 × 3
cluster is close to exact diagonalization (ED) as the central lattice site has exact
hopping contributions from the nearest neighbor sites. And, indeed, the diago-
nalization of the cluster can be transformed into ED with minor modifications
in the computations of the Hamiltonian matrix elements. One main reason for
enhancement in the QH states with 3× 3 cluster is that it describes correlations
effects more accurately compared to the 3 × 2 cluster and hence, the results are
more accurate. Further, we show the density plots for the QH and SF states for
the larger lattice system. For this, we take 12 × 12 lattice sites and J/U = 0.01.
This system size, and hopping energies are kept the same for all the QH and SF
states discussed in the rest of the manuscript. The IQH state at filling ν = 1,
μ/U = −0.008 with density ρ = 1/3 is shown in Fig. 2. The IQH state has stripe
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(a) (b)

Fig. 2. The IQH state for α = 1/3 and ν = 1 with a 3 × 2 cluster and b with
3 × 3 cluster. The IQH state switches from stripe to checkerboard geometry with the
mentioned cluster sizes

pattern with 3 × 2 cluster and transforms into checkerboard pattern with 3 × 3
cluster. The transformation from the stripe to checkerboard pattern is observed
for the other IQH state of ν = 2 as well. We observe that all the IQH and FQH
states have stripe pattern except the ν = 3/2 state, which has homogeneous
density with ρ = 0.5 with 3 × 2 cluster. And the corresponding SF states have a
zigzag pattern in the density ρ and in the SF order parameter φ. One of the FQH
state for ν = 5/2 and corresponding SF state is shown in the Fig. 3. As discussed
earlier, we do not observe the half-integer FQH states with 3 × 3 cluster, but do
observe the FQH states at the one third fillings. One of the FQH and SF state
with 3 × 3 cluster for ν = 1/3 is shown in the Fig. 4. Here, with 3 × 3 cluster,
we observe all the FQH states have checkerboard pattern and all the SF states
have the diagonal stripe pattern. We find that in all the cases SF states is the
ground state and QH state is metastable state.

(a) (b)

Fig. 3. a The FQH state with α = 1/3 and ν = 5/2 with 3 × 2 cluster, it has a stripe
pattern in the density with vanishing SF order parameter. b The analogous SF state
with zigzag pattern in the density as well as in the SF order parameter
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(a) (b)

Fig. 4. a The FQH state with α = 1/3 and ν = 1/3 with 3 × 3 cluster with a checker-
board pattern in the density and vanishing SF order parameter. b The analogous SF
state with diagonal stripe pattern in the density as well as in the SF order parameter

One pertinent question that needs to be addressed is the experimental detec-
tion of the QH states we have discussed. In this regard, the two-point correlation
function, say along the y-axis for a fixed x coordinate Cx(y), is an observable
based on which we can identify the QH states. It may be measured through
quantum probes [9,41], and is defined as

Cx(y) = 〈b̂†
x(y)b̂0(y)〉, (9)

where the expectation is taken with cluster wavefunction. In a recent work [19],
it is reported that for QH states, Cx(y) decays as inverse power law at the edge.
While in the bulk, it initially decays exponentially as QH state is gapped and
has a power-law tail associated with the edge. We also observe these trends of
Cx(y) for the QH states discussed in this work.

4 Conclusion

We obtain QH states by considering the two cluster sizes as 3 × 2 and 3 × 3 in
the CGMF theory. With the larger cluster 3× 3, we approach ED as the CGMF
provides an exact description of the hopping term for the central lattice site. We
obtain QH states with fillings ν = n/2, n = 1, 2, . . . , 5 and corresponding density
ρ = n/6 with 3 × 2 cluster size. However, with 3 × 3 cluster, we obtain a larger
set of QH states with fillings ν = n/3, n = 1, 2, . . . , 8 and corresponding density
ρ = n/9. We also observe the competing SF states corresponding to all the QH
states. We find that the SF state is the ground state and QH state is metastable
state in all the cases. We have demonstrated that the QH states change geometry
from stripe to checkerboard by switching 3×2 to 3×3 cluster size. On the other
hand, SF state has zigzag pattern with both the cluster sizes, specially with
3 × 3 the zigzag pattern is equivalent to diagonal stripe pattern. Thus, we have
established that to obtain correct density pattern of the QH states, it is essential
to consider larger cluster sizes in the CGMF theory.
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Abstract. The ~C2Pr � ~X2Rþ system of the linear LaNH molecule in the
ultraviolet spectral region has been studied by the laser-induced fluorescence
(LIF) spectroscopy in free-jet. Recently, we reported the rotational analysis of
the origin band (000 - 000) of the ~C � ~X transition, and the detection of the low-
lying Ã′2Dr electronic state (Bhattacharyya et al. in Chem Phys Lett 692, 1–6
(2018), [9]). Along with the origin band, we detected three weaker bands, two of
them originate from the fundamental and second bend vibrations m2(p, bend) of
the ground state. The experimental rotational spectrum of one of the band
observed at 23,158 cm−1 along with the rotational analysis is presented. Rota-
tional analysis confirms the band as ~C2P3=2ð001; 2 PÞ � ~X2Rþ ð0200; 2 RÞ.
A true rotational analysis for the band at 23,252 cm−1 was not possible,
however, on the basis of contour fit to the experimental spectrum, we could
tentatively assign the band as ~C2P3=2ð0110; 2 DÞ � ~X2Rþ ð0110; 2 PÞ.

1 Introduction

The lanthanide sulphides have potentials to be used as solar energy conversion
materials, pigments, infrared window materials, and phosphor host media [1]. The
lanthanide oxides and imides have attracted considerable interest for their use in cat-
alytic applications. Imides based organometallic lanthanide complexes have been
synthesized recently [2]. Studies on the possibility of treating ammonia nitrogen
wastewater using doped La/Fe/TiO2 photocatalyst by oxidizing ammonia nitrogen to
nitrogen has been reported [3]. The process of actual development of the industrial
catalyst for automotive, petroleum industry, nitrogen fixation, water gas shift reaction
and so on is certainly complex. However, at the heart of these complex reactions is a
common reaction step—the oxidative addition of gaseous reagents with a transition
metal. Elucidating the mechanism of this common reaction step plays a vital role in the
development of these homogeneous and heterogeneous catalysts. The reaction steps in
a complex heterogeneous catalysis reaction include activations of H–H, C–H, C–C and
N–H bonds to a transition metal centre to form a precursor complex. Understanding the
electronic structure of transition metal-containing small imides like ScNH, YNH and
LaNH plays an important role in this cause. The electronic structure provides
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information on the nature of bonding of transition metals with smaller molecules and
radicals.

The monoxides, imides and sulphides of Sc, Y and La form an isovalent family of
molecules whose optical spectra in the yellow-red region is dominated by the ~A2Pr �
~X2Rþ and ~B2Rþ � ~X2Rþ electronic transitions. The only theory available for the
ground and low-lying electronic states of these molecules is for YNH by Das and
Balasubramanian [4]. The authors had shown that the YNH molecule in linear form is
more stable than the NYH bent molecule, and the symmetry of the linear YNH ground
state is 2R+. The singly occupied r molecular orbital has dominant electron density
from the yttrium metal’s 5s orbital. The electron promotion from the metal nsr to the
(n − 1)dp and (n − 1)dr orbitals is accountable for the ~A� ~X and ~B� ~X transitions,
respectively. The experimental data for the ScNH [5] and YNH [6] molecules are
limited to the origin bands of the ~A� ~X and ~B� ~X transitions. For LaNH molecule,
substantial spectroscopic work related to the vibrational structure of the ground state,
and the rotational spectra for the ~A� ~X and ~B� ~X transitions were presented by Rixon
[7]. Along with the origin bands of the ~A� ~X and ~B� ~X transitions, rotational tran-
sitions between the bending vibrations of the ground and excited states were also
presented in the thesis. The Renner–Teller coupling between the excited states ~A2Pr

and ~B2Rþ was evident from the 33% higher vibrational frequency of the ~B state
compared to the ~X state. The effect of Renner–Teller coupling was also manifested in
the rotational spectrum by the fact that the K-doubling constant in the Ã2Pr state has
similar value as the spin-rotation constant, c in the ~B2Rþ state.

In our recent work in LaNH molecule, we presented the rotational spectrum of the
origin band of the ~C2Pr � ~X2Rþ transition and determined rotational constants for the
~C state. We also experimentally detected the low-lying Ã′2Dr electronic state for the
first time in a group3 imide molecule. Along with the origin band, we observed three
weaker bands lying between the spin–orbit components of the origin band. To make the
work uncluttered, we reported the origin band only in the earlier communication. In the
present paper, we focus on the rotational spectrum of two of these weak bands
observed, respectively, at 23,252 and 23,158 cm−1. Based on the energy consideration,
they are assigned, respectively, as the ~C2P3=2 0110ð Þ � ~X2Rþ 0110ð Þ and
~C2P3=2 001ð Þ � ~X2Rþ 0200ð Þ transitions.

2 Experimental

The experimental details could be found in the earlier work from our laboratory [8]. In
brief, using Smalley-type laser vaporization supersonic expansion apparatus, we pro-
duced LaNH molecules in free-jet. Two percent NH3 diluted in helium was used in the
gas pulsed valve, which facilitated the reaction between the La-plasma and NH3. LaNH
molecules in the free-jet were excited by a XeCl excimer laser pumped tunable dye
laser at right angles to the beam expansion axis, about 50 mm downstream the nozzle.
The resulting laser-induced fluorescence (LIF) was collected orthogonal to the free-jet
and dye laser beam axes by a lens system. The LIF was dispersed by a monochromator
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and detected by a Peltier cooled photomultiplier tube. The signal was amplified,
integrated and stored on a computer. The rotational spectrum was recorded by scanning
the dye laser wavelength. The spectral linewidth of the dye laser was 0.1 cm−1. The
wavelength calibration was done by a wavelength metre (HighFinesse WS5) with an
absolute accuracy of 2 pm.

3 Results and Discussion

The LIF search scan, in the 15,000–23,750 cm−1 spectral range, for the excitation
bands of the reaction products of the laser produced lanthanum plasma and ammonia,
revealed two intense bands centred at 23,366 and 23,093 cm−1 and three weak bands at
23,322, 23,252 and 23,158 cm−1 belonging to LaNH molecule. The low-resolution
excitation spectrum was presented in Fig. 1 of our recent publication [9]. The carrier of
these bands was confirmed from the known values of the ground state vibrations;
v3(r

+, La-N stretch) = 752 cm−1 and m2(p, bend) = 464 cm−1 [7]. For the two intense
bands, the lower state, ~X2Rþ 000ð Þ was confirmed from the lower state combination
differences. The dispersed fluorescence spectrum also confirmed the lower state as the
ground state. Two weak bands, respectively, at 23,252 and 23,158 cm−1 probably
belong to the ~C2P3=2 0110ð Þ � ~X2Rþ 0110ð Þ and ~C2P3=2 001ð Þ � ~X2Rþ 0200ð Þ transi-
tions. A crude approximation can be made to locate these two bands energetically by

Fig. 1. Rotationally resolved spectrum of the ~C2P3=2ð001;2 PÞ � ~X2Rþ ð0200;2 RÞ transition in
LaNH. The branches are marked in the spectrum by solid and dashed vertical lines which,
respectively, represent transitions from G = 3 and G = 4 hyperfine components of the lower
state. The simulated spectrum has been generated using the constants in Table 1 and for
rotational temperature of 40 K and Gaussian linewidth of 0.1 cm−1
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assuming that the fundamental m2(p, bend), (01
10) and v3(r

+, La-N stretch) frequency,
(001) of the ~C state is same as that of the Ã2P state of 380 and 693 cm−1, respectively
[7]. This place the former and later bands at 23,282 and 23,162 cm−1, respectively. The
energy of the ~X2Rþ ð0200;2 RÞ state was measured 896 cm−1 in [7].

3.1 Rotational Analysis of the ~C2P3=2 001ð Þ � ~X2Rþ 0200
� �

Transition

The rotationally resolved spectrum of the band centred at 23,158 cm−1 is presented in
Fig. 1. The ~C2P3=2 electronic state belongs to Hund’s case (a). The
~C2P3=2ð001;2 PÞ � ~X2Rþ ð0200;2 RÞ system, where the notation indicates electronic
and vibronic symmetries of the upper and lower states, is expected to have four
apparent branches [10]. These four branches are PP, QP + QQ, RQ + RR and SR. In
terms of the pattern-forming quantum number J′ for the upper 2P state and N″ for the
lower 2R+ state, these four branches correspond to values of J′-N″ of 3/2, 1/2, −1/2 and
−3/2. The ~X2Rþ ð0200;2 RÞ lower state is described by bbS coupling; La has magnet-
ically active nuclei with nuclear spin, I = 7/2, and since the unpaired electron in r
molecular orbital of LaNH is mainly 6s electron of La atom, spin (S) of the electron
couples to I more strongly than the rotation (N). I and S couple to form G which in turn
couples to N to form the total angular momentum F. For LaNH ~X2Rþ state, I = 7/2
and S = 1/2, which gives G = 3 and 4, with the two G levels split by 4bF. The lower
state has been identified from the combination differences of the isolated rotational
lines. We used PGOPHER [11] to assign rotational lines of all the branches and to fit
the experimental line positions. We followed a modified branch labelling scheme [12]
over the commonly occurring ΔNΔJFi′Fi″(N″), in which the Fi″ label is replaced by the
value of G″. The four branches for a ~C2P3=2ð001;2 PÞ � ~X2Rþ ð0200;2 RÞ transition
are PP2G″,

QP2G″ +
QQ2G″,

RQ2G″ +
RR2G″ and

SR2G″, where G″ = 3, 4.
Usually, the X quantum number of the upper electronic state is determined from the

first rotational lines. We could not observe first rotational lines isolated in the rotational
branches at the employed resolution of 0.1 cm−1 of the dye laser. The intensity in the
band is approximately one-fourth of the origin band, and this hindered us to record the
rotational spectrum at higher resolution of the dye laser by introducing intra-cavity
etalon. Once the intra-cavity etalon is used it reduces the dye laser pulse energy and
produces a spectrum for the weak band with unacceptable signal to noise ratio. In our
earlier work on the origin band, the first SR branch G″-pairs, SR23(0) and

SR24(0), could
not be observed isolated at lower resolution of *0.1 cm−1 and were merged with the
broad RQ23 +

RR23 branch lines. The SR23(0) line was observed isolated only when the
spectrum was recorded at a higher resolution of 0.05 cm−1. For the present spectrum as
well, the first isolated line in this branch is SR24(1). It was straightforward to identify
the SR2G″ branch lines from N″ = 1–11 for both the G″ = 3 and 4 components. These
SR2G″ branch lines were observed mostly isolated at the employed experimental res-
olution of 0.1 cm−1. The QP2G″ +

QQ2G″(N″) branch lines from N″ = 2–16, which
combine with the corresponding SR2G″(N″) lines were identified in the spectrum from
the lower state combination differences. The RQ2G″ +

RR2G″ branch is intense, how-
ever, observed unresolved. This branch has a clear double band head structure
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separated by *0.44 cm−1. Many rotational lines of this branch were observed blended
with the QP2G″ +

QQ2G″ branch lines, which were identified in the spectrum from
N″ = 2–16. The PP2G″ branch lines were identified from N″ = 4–9. The rotational
spectrum was observed mostly free from local rotational perturbations at the employed
resolution.

Rotational constants for both the upper and lower states were determined from the
least squares fitting of the rotational wavenumbers using PGOPHER. The lower state
was split into two states where the G″ = 4 component was placed 4bF (=0.4438 cm−1)
higher in energy than the G″ = 3 component. The constants for the lower state was
initially held fixed to the known values for the m2(p, bend) = 1 state of the ~X2R state,
~X2Rþ ð0110;2 PÞ [7]. The molecular constants are listed in Table 1, and the rotational
line list is provided in Table 2. The rotational temperature *40 K and Gaussian
linewidth *0.1 cm−1 were determined from the intensity contour fit.

3.2 23,252 cm−1 Band

The band observed at 23,252 cm−1 perhaps belongs to the ~C2P3=2ð0110;2 DÞ �
~X2Rþ ð0110;2 PÞ transition. This consists of two overlapping bands corresponding to
the two-spin components, X = 5/2 and 3/2 of the 2D vibronic state of the ~C2P elec-
tronic state. For the present spectrum, which was recorded at a moderate resolution of
0.1 cm−1, it was not possible to assign the rotational lines unambiguously and carry out
a rotational analysis. However, our simulated spectrum, with two energetically close-
lying upper states of 2D vibronic symmetry, and the lower state as ~X2Rþ ð0110;2 PÞ
reproduces the experimental spectrum well (Fig. 2). The simulated spectrum was
obtained with the following rotational constants (in cm−1) for the upper state
—Tð~C2P3=2ð0110;2 D5=2Þ ¼ 23618:4, Tð~C2P3=2ð0110;2 D3=2Þ ¼ 23617:0, B = 0.2727,
A = 200, q = 0.008, D = 1 � 10−6. The rotational constants other than T were

Table 1. Molecular constants (in cm−1) for the ~C2P3=2ð001;2 PÞ and ~X2Rþ ð0200; 2 RÞ states of
LaNH molecule. The symmetry notations shown inside the bracket indicate vibronic symmetry
for the corresponding electronic state

Constants ~C2P3=2ð001;2 PÞ ~X2Rþ ð0200;2 RÞ
T x + 23057.547(4) xa

A 200b –

B 0.285730(38) 0.30649(25)
D � 106 – 8.82(59)
q � 104 – 4.788c

bF – 0.11095c

ax = 896 cm−1 from DF measurements [7]
bThe spectrum was fitted using spin–orbit parameter, A = 200 cm−1, in the upper state.
Therefore, the fitted band origins are shifted 100 cm−1 to lower energies from the sub-band
origins
cThe constants are held fixed to the values for the ~X2Rþ 0110ð Þ state from [7]
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Table 2. The observed and calculated transition energies (in cm−1) for the
~A2P3=2ð001;2 P3=2Þ � ~X2Rþ ð0200;2 RÞ band of LaNH molecule

Branch N
″

Observed Obs. −
calc.

Branch N
″

Observed Obs. −
calc.

PP23 4 23153.73 0.02 QP24 +
QQ24 2 23156.16 0.03

5 23152.70 0.05 3 23155.74 0.02
6 23151.62 0.06 4 23155.26 −0.01
7 23150.46 0.03 5 23154.81 0.02
8 23149.27 0.01 6 23154.26 0.00
9 23148.04 −0.02 7 23153.73 0.03

8 23153.08 −0.03
PP24 4 23153.26 −0.01 9 23152.44 −0.04

5 23152.27 0.06 10 23151.81 −0.01
6 23151.18 0.07 11 23151.18 0.05
7 23150.02 0.04 12 23150.46 0.03
8 23148.81 −0.01 13 23149.64 −0.05
9 23147.61 −0.01 14 23148.90 −0.03

15 23148.12 −0.03
QP23 +

QQ23 2 23156.57 0.00 16 23147.39 0.03
3 23156.16 0.00
4 23155.74 0.02 SR23 1 23159.15 −0.07
5 23155.26 0.04 2 23159.99 −0.01
6 23154.69 −0.01 3 23160.75 0.01
7 23154.19 0.04 4 23161.41 −0.03
8 23153.52 −0.03 5 23162.06 −0.03
9 23152.86 −0.07 6 23162.68 −0.04
10 23152.27 0.00 7 23163.30 0.00
11 23151.62 0.04 8 23163.89 0.03
12 23150.89 0.02 9 23164.45 0.08
13 23150.08 −0.05 10 23164.90 0.04
14 23149.33 −0.04 11 23165.35 0.03
15 23148.60 0.01
16 23147.83 0.03 SR24 1 23158.70 −0.08

2 23159.57 0.01
QP24 +

QQ24 2 23156.16 0.03 3 23160.33 0.04
3 23155.74 0.02 4 23160.95 −0.04
4 23155.26 −0.01 5 23161.62 −0.04
5 23154.81 0.02 6 23162.26 −0.01
6 23154.26 0.00 7 23162.87 0.01
7 23153.73 0.03 8 23163.40 −0.01
8 23153.08 −0.03 9 23163.98 0.05
9 23152.44 −0.04 10 23164.45 0.04
10 23151.81 −0.01 11 23164.90 0.03
11 23151.18 0.05

(continued)
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assigned same for both the vibronic states. The rotational constants for the lower state,
~X2Rþ 0110ð Þ, were held fixed to the following values from [7]; T = 464,
B = 0.306263, D = 2.8 � 10−7, q = 0.000478 and 4bF = 0.4438. For an unambiguous
rotational analysis, the rotational spectrum needs to be investigated at a higher
resolution.

4 Conclusion

The laser-induced fluorescence spectrum from the second bend vibration of the ground
state, m2(p, bend) = 2 to the fundamental stretch vibration v3(r

+, La-N stretch) = 1 of
the ~C2P3=2 state has been studied in the free-jet of LaNH molecules. The rotational
spectrum has been recorded at a resolution of 0.1 cm−1 by scanning the wavelength of

Table 2. (continued)

Branch N
″

Observed Obs. −
calc.

Branch N
″

Observed Obs. −
calc.

QP24 +
QQ24 12 23150.46 0.03

13 23149.64 −0.05
14 23148.90 −0.03
15 23148.12 −0.03
16 23147.39 0.03

Fig. 2. Experimental and simulated spectrum of the ~C2P3=2ð0110;2 DÞ � ~X2Rþ ð0110;2 PÞ
transition
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a tunable dye laser. The rotationally resolved LIF spectrum of the ~C2P3=2ð001;2 PÞ �
~X2Rþ ð0200;2 RÞ transition has been analyzed to obtain the molecular constants for the
upper and lower states. The rotational constants for the ~C2P3=2ð0110;2 DÞ �
~X2Rþ ð0110;2 PÞ transition could be derived from a contour fit to the experimental
spectrum. To derive true rotational constants, the spectrum is to be obtained at a higher
resolution.
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Abstract. Photoionization process of acetylene doped in helium nan-
odroplets is studied with EUV synchrotron radiation with photon ener-
gies between 20 and 26 eV by Photoelectron-Photoion Coincidence
(PEPICO) experiment by detecting photoelectrons in coincidence with
the photoions using electron velocity map imaging (VMI) spectrometer
and ion time of flight (TOF) spectrometer. Acetylene is ionized in the
droplet via Penning ionization at 21.6 eV photon energy. For photon
energy of 23.9 eV and above the photoionization threshold of He, charge
transfer ionization occurs in acetylene following autoionization and direct
ionization in the droplet respectively.
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1 Introduction

Helium nanodroplet is used as an ideal host matrix for spectroscopic study
of embedded molecules because of its non-reactiveness with the embedded
molecules, transparency to infrared, visible and ultraviolet light and ability to
ro-vibronically cool the embedded molecule. However, upon photo-excitation of
the He nanodroplets with extreme ultraviolet radiation, typically for photon
energies between 20 and 26 eV, He droplet strongly absorbs the incident light
and excites to electronically excited states or ionizes to the continuum. Following
this excitation or ionization, He nanodroplet exhibits a very complex photody-
namic between the droplet and the dopant [4,5]. Due to the transfer of excitation
energy from the droplet to the dopant, ionization may occur in the dopant via
Penning ionization process or charge transfer between the neutral dopant and
the ionized droplet may lead to dopant ionization via charge transfer ionization
process.

The effect of He environment in ionization process of acetylene with EUV
synchrotron radiation has been studied at the GasPhase beamline of Elettra
Synchrotron Facility, Italy. The photoion yields for different ionic fragments at
different photon energies enabled us to identify different ionization processes in
acetylene. We observed C2H

+
2 ion yield peaks at 21.6 and 23.9 eV photon energies

which occur through Penning ionization process following the de-excitation of
excited He droplet and charge transfer ionization process following the autoion-
ization of He droplet respectively. Charge transfer ionization process is noticed
between the directly ionized He atoms in the droplet and the dopant C2H2 at
photon energies above the ionization threshold of He.

We have recorded the photoelectrons with a Velocity Map Imaging (VMI)
spectrometer in coincidence with the photoions detected with a Time of Flight
(TOF) mass spectrometer for photon energies between 20 and 26 eV. From this
detection procedure, the photoelectron spectra (PES) correlated to different ionic
fragments from the droplet are obtained and these mass correlated PES helped
us to gain insight into the ionization processes of acetylene in the droplet.

We have also looked into the isomerization process in acetylene under the He
droplet environment. Acetylene cation [HC = CH]+ is a well-studied molecular
ion in which isomerization occurs through H atom migration from one C atom
to other C atom upon absorption of EUV radiation. The isomerization of gas
phase isolated acetylene occurs at an energy of 16.7 eV [9] which is well below
the photoexcitation energy of He nanodroplets, therefore He nanodroplet envi-
ronment is expected to play an important role in the isomerization process. The
signature of isomerization in acetylene is the formation of CH+

2 ion, therefore
the CH+

2 and C2H
+
2 ion yields at different photon energies have been moni-

tored. We have not observed any substantial change in the ion yield ratio of the
isomeric ion (CH+

2 ) to its parent ion (C2H
+
2 ) for the case of doped droplet ion-

ization, when compared with the same ratio due to effusive acetylene ionization
at these energies. This suggests that there is no enhancement or inhibition of
isomerization process by the host He matrix.
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2 Experimental Details

We have performed our experiment at the GasPhase beamline [11] of Elettra
Synchrotron facility, Trieste, Italy. The schematic of the experimental setup has
been shown in Fig. 1. The detailed information about the experimental setup
could be found elsewhere [7,15]. The He droplets are generated by supersonically
expanding pressurized high purity helium gas (He6.0) through a cold nozzle of
5µm diameter into the vacuum. The size of the droplet depends on the backing
pressure and the nozzle temperature. For our experiment, we have kept the
backing pressure to be constant at 50 bar and varied the nozzle temperature
(Tnoz) from 14 to 22 K. From the previous studies, the mean droplet size could
be estimated to be 2000–15000 atoms per droplet at these expansion conditions
[16,17].

After passing through the skimmer of 0.4 mm diameter orifice, the droplet
beam is doped with acetylene gas via an effusive gas jet of acetylene in the
doping chamber. The amount of doping is controlled by the pressure of the
effusive acetylene gas in the doping chamber. We have varied the doping chamber
pressure (PDC) from 6.5×10−7 mbar to 4.5×10−6 mbar, where single to multiple
doping condition of acetylene molecules into the droplet has been achieved. A
mechanical chopper is introduced between pure He droplet source and the doping
chamber to eliminate the background signal coming from the effusive gas from
the doped droplet signal. Chopper open signal corresponds to ions and electrons

Helium

Cold Head

nozzle

MCP

Skimmer

Chopper

Effusive Gas Jet

Delay Line 
Detector

Skimmer

Source Chamber Doping Chamber Reaction Chamber

Fig. 1. Schematic of the experimental setup. He droplets are created in the source
chamber by supersonic expansion of the helium gas through the cold nozzle. In the
doping chamber, the droplets are doped with the effusive gas. At last the doped droplet
beam reaches the reaction chamber, where it is ionized by XUV synchrotron radiation,
and creates photoelectrons and ions which are then detected in coincidence via VMI
and TOF spectrometer respectively
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forming in the droplet and the effusive gas that is accompanied by the droplet.
On the other hand, chopper close signal denotes ions and electrons forming in the
effusive gas only. Therefore, to get the ionization signal only from the droplet,
chopper close signal has been subtracted from the chopper open signal.

The acetylene doped helium droplet beam is then passed through the second
skimmer to the reaction chamber, where the droplet beam interacts with the
EUV synchrotron radiation of the GasPhase beamline of Elettra. The photon
energy of the beamline can be varied between 13 and 900 eV with a good energy
resolution of E/ � E ≥ 104. However, we have used photon energy between
20 and 26 eV, which is required for electron excitation in the He droplet and
ionization to a few electonvolts above the first ionization threshold of He in the
droplets. The peak intensity of the radiation was kept around 15 Wm−2 with
repetition rate of 500 MHz.

We used a Velocity Map Imaging (VMI) spectrometer to detect the photoelec-
trons in coincidence with the photoions which are being detected with a Time of
Flight (TOF) mass spectrometer. This experimental detection scheme enabled us
to perform Photoelectron Photoion Coincidence (PEPICO) experiment, where
we could obtain the photoelectron energy spectrum (PES) correlated to differ-
ent ionic fragments. To get the full three-dimensional velocity distribution of
the photoelectrons from the two dimensional VMI images, MEVELER method,
introduced by Bernhard Dick [6], has been used. For calibrating the VMI spec-
trometer, effusive helium gas has been ionized with different photon energies
from 25 to 40 eV. Since the ionization energy of atomic helium (24.58 eV) is well
known, the photoelectrons with well-known kinetic energies have been imaged on
the VMI spectrometer at different photon energies. Since in the VMI spectrom-
eter, same energy electrons are mapped on the 2D position sensitive detector,
photoelectrons having specific constant kinetic energies form concentric circles
in the MEVELER inverted images. From these images, the relationship between
the kinetic energies of the photoelectrons and the radii of the circles has been
obtained. With this method, we have calibrated the VMI spectrometer.

3 Results and Discussion

Upon irradiation of EUV radiation, both pure and doped He droplets exhibit
very interesting excitation and ionization behaviour [4,5]. For photon energy
between 20.5 and 23.0 eV, He droplets are excited with very high cross section
into the energy band derived from 1s2s and 1s2p atomic He states. Following
this excitation, inter-band and intra-band relaxation happen in the droplet which
lead to He∗ and He∗

2 excimers formation inside the droplet [1,10,18,19]. These
He∗ and He∗

2 excimers then migrate to the surface of the droplet due to repulsive
interaction between the excimers and the droplet either by resonant hopping
process or by fast nuclear motion to the surface [1,3,14]. Depending on size
of the droplet, these He∗ are either released from the droplet or trapped at
the surface and eventually relaxed into the long lived 1s2s1,3S He states or
vibrationally excited He∗

2 states. The latter are eventually evaporated out of
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the droplet by vibrational relaxation through coupling with the droplet [3]. In
case of doped He droplet, when the droplet is relaxed to its ground state, the
relaxation energy can be transferred to the dopant atom or molecule and excite
or ionize the dopant by Penning ionization process [5].

When the droplet is excited by 23–24.6 eV photons, higher lying Rydberg
states of the He∗

2 [1,2,19] are accessed which can autoionize by very complex
mechanism. This leads to emission of very low kinetic energy (<1 meV) electron
[12,13]. Now for dopant present in the droplet, the vacancy created in the He
droplet, can be transferred to the dopant atom or molecule and produce dopant
ion via charge transfer process following the autoionization. For photon energy
above the ionization threshold of He (IPHe = 24.6 eV), He+ ions are created
in the droplet by direct ionization of He. For doped droplet, the positive hole
created in He+ can eventually migrate to the dopant and can ionize the droplet
by charge transfer process. In the autoionization and direct ionization regime,
ionization in the droplet leads to fragmentation in the droplet, producing small
He cluster ions (He+N ) [8].

In this work, we have studied photoionization process of acetylene doped
in the helium nanodroplet by measuring the dependence of photoion yield of
He+2 , CH+

2 and C2H
+
2 ion at different photon energies (see Fig. 2). The nozzle

temperature and doping chamber pressure are maintained at 16 K and 6.6 ×
10−7 mbar respectively. The green dashed lines correspond to the atomic energy
levels of He. Below the ionization threshold of He atom, we can see that, He+2
ion yield peaks around 23.1 and 23.8 eV photon energies which correspond to
1s3p1P and 1s4p1P excited levels of atomic He respectively. For photon energy
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Fig. 2. Photoion yield at different photon energies for He+2 , CH+
2 , and C2H

+
2 ions

coming from droplet at 16 K nozzle temperature and doping chamber pressure of
6.6×10−7 mbar. The dashed lines are corresponding to atomic excitation energies and
photoionization threshold energy of He atom
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above ionization potential of He (IPHe), direct ionization of the droplet can
be seen. Above 23.0 eV photon energy, photoion yield spectrum for C2H

+
2 and

CH+
2 ions are almost similar to that of He+2 , which implies that there is initial

autoionization (< IPHe) or direct ionization (≥ IPHe) of He in the droplet
which is followed by charge transfer ionization of acetylene. Around 21.6 eV
photon energy which corresponds to 1s2p1P excitation band of He droplet, we
can see a peak in the photoion yield of C2H

+
2 . Ionization in acetylene happens

at this energy through the Penning ionization process.
There is negligible C2H

+
2 ion yield coming from the droplet, before the Pen-

ning ionization and C2H
+
2 ions are detected only when there are excitation and

autoionization or direct ionization of the He in the droplet even though ioniza-
tion threshold of C2H2 (11.3 eV) is much below the Penning ionization energy.
One can argue that, C2H2 is only excited or ionized inside the droplet via the
initial excitation or ionization of He droplet environment.

There are two major states of [HCCH]+, X2Πu (11.3 eV) and A2Σ+
g (16.7

eV), in which the C2H2 can be populated due to the energy transfer to the
C2H2, following the relaxation of excited He droplet to its ground state in the
Penning ionization regime. Now the A2Σ+

g state of [HCCH]+ is unstable towards
isomerization since there is no potential barrier for isomerization to [H2CC]+

in the X̃2B1 (13.2 eV) and X̃2B2 (16.7 eV) states. On the other hand, X2Πu

does not lead to isomerization because of the finite potential differences [9]. For
different photon energies from 20 to 24.5 eV, the ratio of CH+

2 ion yield to the
parent C2H

+
2 ion yield in case of the doped droplet has been observed to be the

same as the ratio when measured with effusive C2H2. If there are any changes
in the relative populations of the isomeric state (A2Σ+

g ) and non-isomeric state
(X2Πu) of C2H

+
2 then we should expect to see otherwise. Therefore, we argue

that there is no enhancement or suppression of the isomerization process due to
the He droplet environment.

The photoelectron spectra correlated to C2H
+
2 ions and He+2 ions at 26 eV

photon energy for Tnoz = 16K and PDC = 6.6 × 10−7 mbar are shown in Fig. 3.
We can see that PES correlated to both the ions are exactly the same and
there is a sharp peak in the PES at the photoelectron kinetic energy of 1.5 eV
which is approximately equal to the excess photon energy above the ionization
threshold (24.58 eV) of He atom. Therefore we can say that the photoelectrons
detected in coincidence with the C2H

+
2 ions are actually coming from the direct

ionization of He atom inside the droplet which is followed by the charge transfer
ionization of C2H2. The PES correlated to C2H

+
2 at the Penning ionization and

autoionization regimes will be discussed in other papers.
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Fig. 3. Photoelectron Spectra correlated to a He+2 and b C2H
+
2 ions at 26 eV photon

energy for Tnoz =16 K and PDC = 6.6 × 10−7 mbar. The blue dashed line represents
the peak kinetic energy of the PES

4 Conclusion

Acetylene is ionized through Penning ionization process and charge transfer ion-
ization process following the autoionization and direct ionization of He droplet
in the He nanodroplet environment. In the Penning ionization regime, there is
no evidence to the role of droplet environment leading to either enhancement or
suppression of isomerization process in acetylene.
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Abstract. This article presents positron scattering cross sections for simple
hydrocarbons, viz., ethane, ethene, ethyne, propane, and propyne. The present
work focuses on the calculation of different elastic and inelastic interactions due
to positron impact with simple hydrocarbons in terms of inelastic cross sections
(both with and without positronium formation channel), electronic excitation
cross section (Qexc) and momentum transfer cross section (Qmtcs). Knowing that
positron-plasma study is one of the trending fields, the calculated data have
diverse plasma and astrophysical modeling applications. Due to the lack of
previous studies, all the cross sections presented have been reported for the first
time.

1 Introduction

Introduction of sophisticated trapping methods and storage [1] has now enabled
researchers around the world to perform a number of positron scattering experiments.
Similarly, many theories have come up to back these measurements. Even though these
technological and computational developments have helped in finding the cross sec-
tions for many systems, there is still a dearth of data in molecules such as the present
ones. The present work is a small step in improving the scenario of cross-section data
for positron scattering from simple hydrocarbons. Being an antiparticle of electron,
positron annihilates electrons. In addition to that, they can combine with electrons to
form neutral plasmas or pair plasmas. These plasmas have significance in the growth of
extreme astrophysical objects such as pulsars and black holes [2]. However, laboratory
experiments on pair plasmas such as positron accumulation experiment (PAX) [3] and
a positron-electron experiment (APEX) [3] have proved that positron collisions have
various applications in the field of plasma science as well.

Study of various cross sections for C2–C3 hydrocarbons (viz., ethane, ethene,
ethyne, propane, and propyne) via positron scattering is undertaken in the present
endeavor. This work is believed to be important due to numerous applications of the
chosen targets in the field of astrophysics and plasma physics. For example, the
plasma-facing material of almost all modern operating fusion devices contains carbon
as one of the major element. Chemical erosion caused by plasma-wall interactions is an
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abundant source of simple hydrocarbons which contaminate the hydrogenic plasma [4].
The composition of the hydrocarbon fluxes flowing inside the plasma covers a wide
spectrum of molecules from methane to propane [5]. These hydrocarbons play an
important role in plasma diagnostics in the diverter region of magnetically confined
high-temperature hydrogen plasma [6]. As the energy of ions striking the walls of
plasma surface decreases more complex C2–C3 hydrocarbons are discharged [4] and,
hence the importance of the present study becomes more vital. Moreover, the presence
of these hydrocarbons in the planetary and cometary atmosphere makes these targets
important in the field of astrophysics [6]. Various cross-section data such as different
excitation and momentum transfer cross sections are required to comprehend the
behavior of these molecules in various astrophysical and plasma environment. Fur-
thermore, these data are very essential in various modeling raging from RF plasma
processing to astrophysical media [7]. In addition to that, lighter linear hydrocarbons
such as ethyne are interesting targets due to their role in chemical vapor deposition
reactions [8].

The modified form of spherical complex optical potential (SCOP) formalism [9, 10]
and complex scattering potential-ionization contribution (CSP-ic) [11, 12] are used in
this work to calculate the positron scattering cross sections over a wide energy range
for the targets ethane, ethyne, propane, and propyne. The cross sections reported in the
present work are inelastic (with and without including the positronium (Ps) formation
channel), electronic excitation, and momentum transfer cross section. In our recent
article [13], positron scattering total cross section, elastic cross section, direct ionization
cross section positronium formation cross section, and total ionization cross section
have been reported for the same set of targets by employing an identical method.
However, for the present set of cross sections, no previous studies have been reported
in the literature. The following section outlines the theoretical methodology followed
by results and discussion and finally, conclusions are drawn from the calculated results.

2 Theory

The detail of the theoretical methods employed in this work is already given in the
articles [9–12]. However, an overview is provided in this section. The modified form of
SCOP [9, 10] and CSP-ic methods [11, 12] are used to calculate various cross sections
reported in this work. In this model, the potential experienced by the incident positrons
due to the target is represented by the following equation:

Vopt r;Eið Þ ¼ Vst rð ÞþVpol rð Þþ iVabs r;Eið Þ ð1Þ

where, Vst represents the static potential, which is an interaction potential experienced
by an incident positron due to the static electronic charge cloud of the target. Vpol is the
polarization potential, which occurs because of the distortion of the charge distribution
of the target due to the field created by the incident projectile. The first two terms form
the real part in (1), which gives rise to the elastic processes occurring during the
collision. The complex part of (1) is the absorption potential. This accounts for all the
inelastic processes occurring during the scattering process. Vabs represents the total loss

240 S. Singh et al.



of scattered flux into all allowed inelastic channels, such as positronium formation,
electronic excitation, and ionization channels. Since the present model treats the
scattering problem in the form of spherical potential, hence rotational and vibrational
channels cannot be included in the calculation.

The charge density and static potential have been formulated by the potential field
parameters of Cox and Bonham [14], whereas the correlation polarization potential
given by Zhang et al. [15] is used for the formulation of polarization potential. The
present work uses the absorption model of Reid and Wadehra’s [16] to calculate
various inelastic processes occurring during the collision.

Accurate evaluation of charge density of the targets is very essential in the present
model since all the interaction potentials depend on this. Since the parameters given by
Cox and Bonham [14] are only for atoms, the multi-scattering center (MSC) approach
is employed to derive the charge density for molecules. In this method, instead of
considering the collision between the incident positron and the whole molecule,
independent collision between the incident positron and a part of the molecule is
visualized. To develop the charge density of each center, the charge density of lighter
hydrogen atom is expanded from the center of the carbon atom. However, if the bond
length of C–C is smaller than the diameter of the carbon atom, then the charge density
of carbon atom is expanded from the center of mass of the system. For the present set
of targets, such condition arises in case of ethyne and propyne, where the triple bond
between two carbon atoms is smaller than the sum of the diameter of the respective
carbon atoms. The charge density of these two carbon atoms is expanded from their
center of mass. However, for the rest of the molecules, i.e., ethane, ethene, and pro-
pane, a simple addition of the charge density of the constituent atoms is done due to
large C–C bond length as compared to the diameter of the carbon atom. This is done on
the basis of the assumption that if the bond length is large, then the charge density of
one atom does not affect the charge density of the other atom of the same molecule.
Figure 1 gives the structure of the molecules, whereas Table 1 provides the respective
bond lengths.

Fig. 1. Molecular structure. a Ethane, b Ethene, c Ethyne, d Propane, e Propyne
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3 Calculation of Different Inelastic Cross Sections

The interaction potential obtained in (1) was used in the Schrödinger equation, which
was solved by partial wave method under suitable boundary conditions [17]. The
inelastic cross section contains many absorption channels such as positronium for-
mation, electronic excitations, and ionizations. Due to the two center problem, incor-
porating positronium formation channel in the absorption phenomena is one the most
difficult task that one has to deal with while studying positron scattering. A phe-
nomenological method is adopted to overcome this situation. The details of the method
can be obtained from our previous articles [9–12]. However, the essential parts are
discussed here.

For low incident energies, the convergence of the solution is obtained with less
partial waves. However, for positrons with high energies, more than 50 partial waves
were required for the convergence. The solutions were obtained in the form of complex
phase shifts dlð Þ which were used to calculate the absorption factor glð Þ, using the
relation gl ¼ expð�2ImdlÞ. This absorption factor forms the main parameter which is
essential to calculate the inelastic cross sections, which is given as follows:

QinelðEiÞ ¼ p
k2

X1

l¼0

2lþ 1ð Þ 1� g2l
� � ð2Þ

where l is the number of partial waves and k is the wave vector associated with the
scattered wave.

The phenomenological formula proposed by Chiari et al. [18] is employed in the
present work to determine the absorption threshold parameter. Since rotational and
vibrational excitations are not included in the present calculation, all the inelastic
processes are assumed to be prohibited below the absorption threshold. However,
beyond this value, the inelastic channels like Ps formation, electronic excitations, and
ionizations are included. Although this method is far from being accurate, however,
proves to be an effective process to include Ps formation channel in the calculation for
large and complex molecules which is not possible to do using any stringent theories
due to the complexity of the problem. The threshold parameter employed in this work
is given as

Table 1. Bond lengths [20]

Target Bond length (Å)

Ethane C–C = 1.536, C–H = 1.091
Ethene C=C = 1.339, C–H = 1.086
Ethyne C�C = 1.203, C–H = 1.063
Propane C–C = 1.526, C–H = 1.089, 1.094, 1.094
Propyne C–C = 1.460, C�C = 1.207, C–H = 1.060, 1.096
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DðEiÞ ¼ De � De � Dp
� �

e�ðEi�DpÞ=EmÞ ð3Þ

where Ei is the energy of the incident projectile (positron), Δe and Δp are the first
electronic excitation energy and Ps formation threshold, respectively. Em is the energy
at which the inelastic cross section has the maximum magnitude when Δe is used as the
inelastic threshold. In the present calculation, ionization energy (IE) is used as the
absorption threshold to calculate the absorption potential given by Reid and Wadehra
[16] which is then used to calculate the inelastic cross section without Ps formation
(Qin) using (2). Equation 3 is used to evaluate the dynamic inelastic threshold for the
calculation of inelastic cross section including the Ps formation channel (Qinel).

4 Calculation of Electronic Excitation Cross Section (Qexc)

As already mentioned, Qin only contains electronic excitation and ionization channels.
Thus, mathematically it can be given as

Qin ¼ Qexc þQion ð4Þ

where, Qexc represents the sum over all the discrete excitation cross sections for all the
accessible electronic states and Qion is the total cross sections of all allowed direct
ionization processes. The well-known CSP-ic method [11, 12] is used to estimate the
Qion, which is already reported in [13]. Since Qin is evaluated using the above-
mentioned method and Qion is already known, Qexc can be easily estimated by

Qexc ¼ Qin � Qion: ð5Þ

From [11, 12, 19], it is understood that the uncertainty in the estimation of the
direct ionization cross section is around 7%. Eventually, this results in an uncertainty of
7% in the determination of Qexc as well.

5 Calculation of Momentum Transfer Cross Section (Qmtcs)

Qmtcs provides information about the average momentum transferred by a projectile to
the target scattering process. The Qmtcs calculated here is averaged over all the scat-
tering angles. The expression for finding Qmtcs is given as

QmtcsðkÞ ¼ 4p
k2

X1

l¼0

ðlþ 1Þ sin2 dlþ 1ðkÞ � dlðkÞ½ � ð6Þ

Table 2 enumerates all the parameters used in the calculation, which includes target
properties. No other parameter is used in the present calculation, which renders the
present data to be easily reproducible.
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6 Results and Discussion

6.1 Electronic Excitation Cross Section (Qexc)

Figure 2 presents the total electronic excitation cross section for simple hydrocarbons
up to 500 eV. This cross section provides the absorption of flux due to the electronic
excitation of the target due to positron collision. However, since the threshold is taken
to be the ionization potential of the target, hence, the present cross section only pro-
vides information for the electronic states which lie beyond the ionization threshold.
The variation in the magnitude of cross section is dependent on the size of the target.
Hence, it is observed that the magnitude of Qexc is highest for propane and lowest for
ethene. Ethyne being the smallest target is studied in this work, hence, as expected it
has the lowest Qexc. Besides, it is noted that in the rising end, the curves are pretty steep
whereas it is rather flat in the trailing end of the curve. This signifies that the rate of
electronic excitation is high in the low energies which quickly attains a maximum and
then gradually decreases as the energy of the positron increases. Due to less interaction
time, the cross sections at higher energies decrease. Since the present Qexc is calculated
by subtracting the ionization cross section from the inelastic cross section (Qin), hence,
it has an uncertainty of 7% in its calculation [12].

Table 2. Target properties

Target Polarizability (Å3) [20] IE (eV) [20] De (eV) Dp (eV) Em (eV)

Ethane 4.226 11.52 10.00 4.72 40
Ethene 4.188 10.51 9.60 3.71 35
Ethyne 3.487 11.40 9.20 4.60 35
Propane 5.921 10.94 9.49 4.14 40
Propyne 5.550 10.36 9.07 3.56 35
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Fig. 2. Positron scattering electronic excitation cross section. Solid line: Ethane, dashed line:
Ethene, dotted line: Ethyne, dashed dot line: Propane, dashed dot dot line: Propyne
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6.2 Inelastic Cross Section Without Positronium Formation (Qin)
(i.e., Electronic Excitation Plus Ionization Cross Section)

Positron scattering inelastic cross section without the positronium formation channel is
pictorially represented in Fig. 3. The inelastic cross section reported here consists of all
the accessible electronic excited states and the allowed ionization channels. The general
trend of the graph is that the Qin increases as the energy increases then it reaches a
maximum and after which the curve starts decreasing. The magnitude of cross section
depends on the size of the molecule, thus the number of electron plays a role in
determining the cross section. Since the number of electrons is highest in propane,
hence, it has the largest magnitude of cross section. The magnitude of the cross section
is in the order propane > propyne > ethane > ethene > ethyne same as the order of the
number of electrons in the targets. On the left end of the peak the curves get steeper as
the size increases which is obvious due to the fact that as the size of the target increases
the magnitude of cross section increase, however, the peak position remains almost at
the same energy, which results in a steeper rising curve. It is worth mentioning that the
threshold of Qin is the ionization energy of that particular target.

6.3 Inelastic Cross Section Including the Positronium Formation
Channel (Qinel) (i.e., Electronic Excitation Plus Ionization Plus
Positronium Formation Cross Section)

Figure 4 provides the positron scattering inelastic cross section which includes the
positronium formation channel. Unlike the previous case, here the inelastic threshold is
varied with energy according to (3). The magnitude of cross section for each molecule
is greater than the cross sections observed in the previous case. This is due to the fact
that Qinel includes an additional absorption channel of Ps formation. Hence, it is evident
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Fig. 3. Positron scattering inelastic cross section without positronium formation channel. Solid
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that the difference between Qinel and Qin gives the Ps formation cross section. It is well-
known that Ps formation has major influence at low energies, which adds to the cross
sections calculated in Fig. 3. Hence, the peaks in the present curves show a left shift
when compared to Fig. 3. Unlike the previous case, the magnitude of cross section not
only depends on the number of target electrons but also on Δe. From Table 2, it is seen
that for molecules containing two carbon atoms, Δe decreases as the size of the
molecule decrease. Same is seen for molecules containing three carbon atoms as well.
It is known that low threshold value increases the cross section, whereas from the
previous case it is seen that the cross section decreases as the size of the molecule
decrease. These two contrasting variations make the magnitude of the Qinel non-
uniform with respect to the size of the target. This could be the reason that the peak
positions are different for each of the targets. The general trend of the graph is
somewhat like a Gaussian function similar to all the previous results as seen in Figs. 2
and 3. It is noticeable that in the trailing end of the curve, all the values tend to
coincide. This is in accordance with the first Born approximation, where the cross
section depends majorly on the incident kinetic energy of the projectile.

7 Correlation Plot

The total cross section reported in our recent work [13] agrees well with the experi-
mental studies and was found to lie within the experimental uncertainties. Since the
present work uses the same method, the cross sections reported is expected to be
reliable and consistent. However, to further ascertain the consistency of the present data
a correlation plot has been shown in Fig. 5. Figure 5a shows a correlation plot between
Qexc and number of electrons in the molecule at 45 eV. It is observed that there is a
linear relationship between the Qexc and number of electrons in the target. Likewise,
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Fig. 5b shows a correlation plot between Qin and number of electrons at 45 eV. This
figure also reflects a linear relationship between Qin and number of electrons in the
target. The energy is chosen to be 45 eV because of the fact that Qexc and Qin have the
maximum magnitude around this energy for all the targets. The intercept and slope of
the linear fit of Fig. 5a are 0.995 and 0.047, respectively, whereas for Fig. 5b they are
4.037 and 0.191, respectively. This linear relationship in the two figures demonstrates
the reliability of the present data.

8 Momentum Transfer Cross Section

Figure 6 illustrates the positron scattering momentum transfer cross section for simple
hydrocarbons from 5 to 300 eV. As evident from the size of the molecule, Qmtcs for
propane has the highest magnitude whereas Qmtcs for ethyne is the lowest. It is
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observed that as the size of the molecule decreases Qmtcs is seen to decrease as
well. However, for ethene and ethyne, the nature is slightly different from others.
Moreover, a hat like structure is observed for some molecules between the energy
range of 15–40 eV. Since Qmtcs is derived from the elastic cross section, which is
calculated in presence of absorption processes, the hat like structure could be due to the
inelastic channel. Since, in this region the inelastic cross sections have a higher
magnitude of cross section. This effect is maximum for propane and propene as they
have significantly higher inelastic cross sections than the rest of the targets in the
concerned energy range. These e± Qmtcs data are valuable in modeling positron
transport in gases.

9 Conclusion

This work reports different cross sections due to positron scattering from simple
molecules. No such previous studies have been found in the literature. Hence, no
comparisons were made for the present calculations. Different thresholds have been
employed to calculate various cross sections, which could be helpful to study several
threshold effects. The targets undertaken in this work have a variety of applications in
the field of plasma and astrophysics. Hence, the calculated cross sections are believed
to be useful to the modeling community. The calculations done are free from any
adjustable parameters thus making the calculation reproducible. Moreover, the SCOP
formalism employed in this work has a distinct advantage over other methods that
compute cross sections in the intermediate and high energy range, since it takes less
computing. Besides, it can handle complex and large targets with much ease as
compared to any other model. Hence, the present work is expected to be appreciated by
the atomic and molecular physics community.
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Abstract. We have used relativistic distorted-wave method to study electron-
impact excitation of the fine-structure transitions from the 6s26p 2P1/2,3/2 states
to the excited 6s26d 2D3/2,5/2, 6s6p

2 2D3/2,5/2 and 6s27 s 2S1/2 states of Pb
+ ion.

The bound state wavefunctions of the target ion are obtained within the multi-
configuration Dirac-Fock approach. The reliability of the calculated wave-
functions is determined by comparing our calculated oscillator strengths for the
different transitions with the available measurements and other theoretical cal-
culations. Finally, the cross sections for all the considered fine-structure tran-
sitions are reported in the incident electron energy range from the excitation
threshold to 100 eV. Cross section results for the resonance transition
6s26p 2P1/2 ! 6s26d 2D3/2 are compared with the only available recent mea-
surements [Gomonai et al. Eur. Phys. J. D 71 31 (2017)] and good agreement is
found at the high incident electron energies.

1 Introduction

Lead has been discovered in interstellar gas by the Goddard High-Resolution
Spectrograph (GHRS) onboard the Hubble Space Telescope (HST) [1]. It has also been
observed that the cosmic abundance of lead is the highest among the elements
heavier than barium (Z > 56). Pb+ is expected to be the dominant ionization stage
of gaseous lead in cold, neutral interstellar clouds [2]. The resonance line
6s26p 2P1/2 ! 6s26d 2D3/2 of the Pb+ at 1433.906 Å are reported in the emission
spectra of several stars as well as in archival Space Telescope Imaging Spectrograph
(STIS) data [1, 2]. Recently, Heidarian et al. [3] have reported the first detection of the
6s26p 2P1/2 ! 6s6p2 2D3/2 transition of Pb+ at 1203.616 Å in the interstellar medium.
Thus it is important to have accurate atomic data for a singly charged lead ion to
enhance our understanding of the production of elements heavier than iron as well as
depletion of heavy elements from the interstellar gas into the dust grains.

Electron-impact excitation processes play an important role in estimating the
abundances of species in the plasma as well as temperature and density of the plasma.
Most of the earlier theoretical and experimental work have reported wavelengths,
transition probabilities and oscillator strengths of the transitions and lifetime of the
states of Pb+ ion. Alonso-Medina [4] measured transition probabilities of 30 lines of
Pb+ by measuring the intensities of the emission lines of a laser-produced plasma of Pb.
Colón and Alonso-Medina [5] calculated transition probabilities for 190 lines, with
wavelengths lower than 15,000 Å using the relativistic Hartree–Fock method and
configuration interaction in an intermediate coupling scheme. These involved
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transitions from the 6s2ns (n = 7–14) 2S1/2, 6s
2np (n = 7–9) 2P1/2;3/2, 6s

2nd (n = 6–15)
2D3/2;5/2, 6s

2nf (n = 5–7) 2F5/2;7/2, and 6s6p2 (4P1/2;3/2;5/2,
2D3/2;5/2,

2P1/2;3/2, and
2S1/2)

levels of Pb+. Alonso-Medina et al. [6] also reported first experimental data of the
transition probability for the 2203.5 Å line of Pb+ arising from the transition
6s26p 2P3/2 ! 6s27s 2S1/2. Recently, Heidarian et al. [3] performed lifetime mea-
surements using beam-foil techniques on the levels of Pb+ producing lines at 1203.6 Å
(6s6p2 2D3/2) and 1433.9 Å (6s26d 2D3/2). They reported the first detection of the
1203.6 Å line in composite HST/STIS spectra. Quinet et al. [7], determined experi-
mentally as well as theoretically radiative decay rates from the 6s27s 2S1/2 level.
Safronova et al. [8] performed calculations using relativistic many-body perturbation
theory (MBPT) and obtained energies of 6s2npj (n = 6–9), 6s2ns1/2 (n = 7–9), 6s2ndj
(n = 6–8), and 6s2nf5/2 (n = 5–6) states. They also calculated reduced matrix elements,
oscillator strengths, and transition rates for the 72 possible 6s2nlj-6s2n′l′j electric–
dipole transitions.

So far, there is only one experimental work reported recently by Gomonai et al. [9]
for electron-impact excitation of Pb+ ion. They used crossed-beam technique to mea-
sure effective cross section of the electron-impact excitation for the resonance line
6s26p 2P1/2 ! 6s26d 2D3/2 of the Pb+ ion in the (6–100) eV energy range. Except for
this experiment, there is no other theoretical or experimental investigation to study
electron-impact excitation of singly charged lead. Therefore, in this paper, we have
focused on selected transitions due to electron-impact excitation of Pb+ ions. We have
considered only important resonance lines detected in the HST/STIS spectra of Pb+ ion
from the viewpoint of astrophysical applications. We have considered excitations of the
6s26d 2D3/2,5/2, 6s6p

2 2D3/2,5/2 and 6s27s 2S1/2 states from the fine-structure levels
2P1/2,3/2 of the ground state configuration 6s26p. Since lead (Z = 82) is a heavy element
with dominant relativistic effects, we have used a fully relativistic distorted-wave
(RDW) method to evaluate the scattering amplitude for the excitation processes. We
have already applied this method successfully to study electron-impact excitation of
neutral lead atom [10]. In this method, the projectile electron wavefunctions are
obtained by solving Dirac equation while the bound states of the Pb+ ion are calculated
within multi-configuration Dirac-Fock (MCDF) framework using GRASP2k code [11].
Since the accuracy of the atomic wavefunctions directly influence the quality of the
projectile electron wavefunction and consequently, the scattering parameters, we have
compared oscillator strengths of the transitions with previous measurements and the-
oretical results as well as NIST database. Finally, results are reported for excitation
cross sections from threshold to 100 eV electron energy. Cross sections for the reso-
nance line 6s26p 2P1/2 ! 6s26d 2D3/2 are compared with the only available measure-
ments [9].

The paper is arranged as follows: the next section describes briefly the RDW
method employed to obtain the cross section for the 8 dipole allowed transitions as
mentioned above. Subsequently, results and discussion are presented in Sect. 3 fol-
lowed by concluding remarks in Sect. 4.
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2 Theoretical Method

Using RDW approximation the scattering amplitude for excitation from the state
a ! b can be expressed as

f Jb;Mb; lb; Ja;Ma; la; hð Þ

¼ 2pð Þ2
ffiffiffiffiffi

kb
ka

r

W�
b 1; 2; . . .;Nþ 1ð ÞjVC � Ub Nþ 1ð ÞjWþ

a 1; 2; . . .;Nþ 1ð Þ� �

ð1Þ

where J;M refer to the total angular momentum quantum number and its associated
magnetic quantum numbers. la=b denote the spin projections of the projectile electron.
h is the angle between the momentum vectors ka and kb of the incident and scattered
electrons. VC is the target-projectile Coulomb interaction as given by equation

VC ¼ � Z
rNþ 1

þ
X

N

j¼1

1
rj � rNþ 1
�

�

�

�

ð2Þ

Here position coordinates of the atomic and projectile electrons with respect to the
nucleus are given by, respectively, rj 1; . . .;Nð Þ and rNþ 1, Z is the nuclear charge and
N is the number of bound electrons in the target. Ub is the distortion potential which
depends only on the radial coordinates of the projectile electron. We have chosen Ub to
be a spherically averaged static potential of the excited state of the ion. Assuming that
the projectile electron does not alter the wavefunctions of the target, the total wave-

functions Wþ =�
a=b in the initial/final channels a/b can be represented as

Wþ =�
a=b ¼ AUa=b 1; 2; . . .:;Nð ÞF þ =�

a=b ka=b;Nþ 1
� � ð3Þ

where Ua=b denotes the N-electron target wave functions and F þ =�
a=b represent the

projectile electron distorted-wave function with ± sign referring to the incoming and
outgoing waves. The procedure to obtain the distorted wavefunctions with the help of
partial wave expansion method and subsequently, solving coupled Dirac equations is
described in our earlier work [12].

The integrated cross section for excitation of atom from Ja to Jb state can be
obtained by using the following expression,

r Ja ! Jbð Þ ¼ 1
2 2Ja þ 1ð Þ

X

Mb;Ma

lb; la

Z

f Jb;Mb; lb; Ja;Ma; la; hð Þj j2dX ð4Þ

We have performed these calculations in the Collision frame of reference with
quantization axis (z-axis) to be along the incident electron beam direction while the
scattering plane is chosen to be the xz-plane.
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3 Results and Discussion

In the present work, we have calculated cross sections for electron-impact excitation of
the 6s26d 2D3/2,5/2, 6s6p

2 2D3/2,5/2 and 6s27s 2S1/2 states from the fine-structure levels
6s26p 2P1/2,3/2 of the ground state. These are 8 dipole transitions in total. The reliability
of the cross sections depends on the accuracy of the target wavefunctions used in the
calculation. Therefore, we first discuss our method of obtaining wavefunctions of the
target states and their quality assessment. These wavefunctions are obtained within
multi-configuration Dirac-Fock approximation by using GRASP2k code. Pb+ is a
heavy element with ground state electronic configuration [Xe]4f145d106s26p having
fully filled 5d and 6s inner shells and partially filled 6p outer shell. The previous
theoretical investigations on spectroscopic properties of Pb+ [7] have revealed the
importance of the correlation between valence and sub valence shells. Therefore, to
observe the effect of core-valence interaction we considered here single substitution
from inner 5d and 6s subshells.

We optimized various sets of wavefunctions of the atomic states by including a
number of configuration state functions. To ascertain the accuracy of these sets we
compared oscillator strengths with other theoretical and experimental values. We found
that the set-1, having configurations as shown in Table 1, shows overall best agreement
with results from NIST database [13], experimental measurements and other theoretical
methods. Adding more configuration to set-1, for example in set-2 which has additional
5d106s6d2 configuration, has very little effects on the oscillator strengths of the tran-
sitions as can be seen from Table 2. We observe from Table 2 that the beam-foil
measurements from the Toledo Heavy Ion Accelerator (THIA) [3] differ significantly
from the NIST values for 6s26d 2D3/2 ! 6s26p 2P1/2 and 6s26d 2D5/2 ! 6s26p 2P3/2
transitions. Similarly, there seems to be a wide discrepancy among theoretical results
for these two transitions, however, our value is closer to the THIA measurements
for both the transitions. For 6s26d 2D3/2 ! 6s26p 2P3/2 transition, all the theoretical
results are in good agreement with the measurements. Our calculations for
6s6p2 2D3/2,5/2 ! 6s26p 2P1/2,3/2 transition agree reasonably with the calculation of
Heidarian et al. [3]. All theoretical and experimental results are in good agreement for
6s27s 2S1/2 ! 6s26p 2P3/2.

The bound state wavefunctions of the target ion in the initial and final states are
used to calculate the distortion potential [12]. The projectile electron travels under the
influence of the distortion potential and its wavefunction is obtained by solving the
coupled Dirac equations with appropriate boundary conditions. Thus collecting all
necessary constituents required for the transition matrix (1), we finally obtain cross
sections.

Table 1. Configuration sets in atomic wavefunction calculation

Set - 1 5d106s26p; 5d106s26d; 5d106s27s; 5d96s26p2; 5d96s26d7s; 5d106s6p2

5d106s7s2; 5d106s27d; 5d106s28d; 5d96s27s2; 5d96s26d2

Set - 2 5d106s26p; 5d106s26d; 5d106s27s; 5d96s26p2; 5d96s26d7s; 5d106s6p2

5d106s6d2; 5d106s7s2; 5d106s27d; 5d106s28d; 5d96s27s2; 5d96s26d2
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We have calculated integrated cross sections (ICS) for 8 dipole allowed fine-
structure transitions as listed in Table 2 using atomic wavefunctions of set-1 and set-2.
These cross sections as a function of incident electron energy are shown in Fig. 1. It
can be seen that the two sets of ICSs are in good agreement with each other. All these
transitions show the characteristic feature of dipole—allowed transition, i.e., the ICSs
fall off as ln(E)/E with increasing incident electron energy. For excitation of 6s26p 2P1/2
to 6s26d 2D3/2 state, we have compared our results with the recent measurements
reported by Gomonai et al. [9]. The discrepancy in our results with the experimental
data for energies below 80 eV is due to the fact that the measurements include the
effect of cascade transitions and the resonance contribution of autoionizing states. Our
calculations, being two-state approximation in the first-order perturbation theory,

Table 2. Comparison of our calculated oscillator strengths of the transitions in Pb+ with
corresponding values from the NIST database [13], other theoretical methods and experiments

Transition levels f-value
Upper Lower Set-1 Set-2 Other

calculations
Measurements NIST

6s26d 2D3=2 ! 6s26p 2P
�
1=2

0.3079 0.3070 0.86a,
0.268b,
0.372c,
0.4518d,
0.869e

0.321(34)b 0.869

6s26d 2D3=2 ! 6s26p 2P
�
3=2

0.0673 0.0674 0.063b

0.074c,
0.06255d,
0.100e

0.064(7)b

6s26d 2D5=2 ! 6s26p 2P
�
3=2

0.1963 0.2004 0.123b,
0.054c,
0.5024d,
0.880e,

0.179(14)b 0.881

6s6p2 2D3=2 ! 6s26p 2P
�
1=2

1.2532 1.250 1.124b,
2.02c

0.75(3)b

6s6p2 2D3=2 ! 6s26p 2P
�
3=2

0.0004 0.0004 0.0011b,
0.0003c

0.0001(0)b

6s6p2 2D5=2 ! 6s26p 2P
�
3=2

0.4578 0.4476 0.573b,
0.897c

0.204(14)b

6s27s 2S1=2 ! 6s26p 2P
�
1=2

0.1697 0.1696 0.2316c,
0.139e,
0.1900f

–

6s27s 2S1=2 ! 6s26p 2P
�
3=2

0.1608 0.1616 0.201e,
0.1820f

0.1795c 0.180

References a: Cardelli et al. (1993) [1]; b: Heidarian et al. (2015) [3]; c: Colon & Alonso-Medina
(2001) [5]; d: Safronova et al. (2005) [8]; e: Migdalek (1976a) [14]; f: Kunisz and Migdalek
(1974) [15];
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do not incorporate resonance effects as well as cascading from higher states. However,
at 100 eV electron energy value of our cross section is 0:55� 10�16 cm2 which is in
excellent agreement with the measured value of 0:5� 0:3ð Þ � 10�16 cm2.

We find that the ICS for 6s26p 2P3/2 to 6s6p2 2D3/2 transition is three order of
magnitude smaller in comparison to the ICS of other transitions considered in the
present work, therefore, we have not shown it in Fig. 1. The small value of ICS for the
above transition may be attributed to the corresponding value of oscillator strength as
can be seen in Table 2. Further, the relative values of ICSs for various transitions can
be understood on the basis of their oscillator strengths. A transition having a greater
value of oscillator strength has larger cross sections over entire range of the incident
electron energy. The nearly identical shape of all the cross sections from ground state
represents the decreasing of cross section with increasing electron energy.

4 Conclusions

In the present work, we have applied RDW theory to study dipole allowed transitions
from the 6s26p 2P1/2,3/2 states to the 6s26d 2D3/2,5/2, 6s6p

2 2D3/2,5/2 and 6s27s 2S1/2
states. We found that Pb+ is a strong as well as the challenging candidate to exhibit the
correlation effects between valence and core subshells. The accuracy of the atomic

Fig. 1. ICS for Pb+ ion using the two sets of wavefunctions; solid circles with error bar present
the experimental results by Gomonai et al. [9]
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wavefunctions is established by comparing our calculated oscillator strengths with
other available theoretical and experimental results. Further theoretical and experi-
mental investigations are required to resolve the discrepancy among various results for
oscillator strengths. We compared our ICS results with the recent measurements of
Gomonai et al. [9] available for one transition 6s26p 2P1/2 ! 6s26d 2D3/2 only. We find
good agreement with the measured cross section at 100 eV as expected. We hope that
our results will be useful in encouraging more investigations for Pb+ for better
understanding of spectroscopic properties and collision dynamics of this cosmic
abundant element.
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Abstract. Experiments are starting to probe collisions and chemical
reactions between atoms and molecules at ultralow temperatures. We
have developed a new theoretical procedure for studying these collisions
using the R-matrix method. Here, this method is tested for the atom—
atom collisions described by a Morse potential. Analytic solutions for
continuum states of the Morse potential are derived and compared with
numerical results computed using an R-matrix method, where the inner
region wavefunctions are obtained using a standard nuclear motion algo-
rithm. Results are given for eigenphases and scattering lengths. Excellent
agreement is obtained in all cases. Progress in developing a general pro-
cedure for treating ultralow energy reactive and non-reactive collisions
is discussed.

1 Introduction

The ability to perform very low-energy collisions between heavy particles is lead-
ing to a quiet revolution at the border between atomic physics and experimental
quantum chemistry [1]. Studies of reactive and non-reactive collisions at tem-
peratures very significantly below 1 K are starting to probe processes which are
not easily resolved at higher temperatures. These experiments study chemical
reactions and scattering at the quantum scattering limit where, asymptotically,
only a few partial waves contribute [2].

To address these problems theoretically requires the development of new com-
putational techniques. Recently, we proposed adapting R-matrix theory to the
study of ultralow energy reactive and non-reactive, heavy-particle collisions [3].
R-matrix theory involves the division of space into an inner region encompass-
ing the whole collision complex and an outer region where species involved in
the scattering can be separately identified. Procedures based on the computable
R-matrix method have proved outstandingly successful for the study of electron
collisions with atoms and molecules [4,5], and are increasingly being adopted
in other areas [6]. In the computable R-matrix method, the Schrödinger equa-

c© Springer Nature Singapore Pte Ltd. 2019
P. C. Deshmukh et al. (eds.), Quantum Collisions and Confinement of Atomic
and Molecular Species, and Photons, Springer Proceedings in Physics 230,
https://doi.org/10.1007/978-981-13-9969-5_25
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tion for the restricted inner region is solved once and for all for each scattering
symmetry, independent of the precise scattering energy. For heavy-particle scat-
tering, this procedure is particularly appropriate for reactive or non-reactive
collisions which occur over deep potential energy wells. Thus, for example,
H + H2 collisions do not occur over a deep well as the H3 system is only weakly
bound [7], while collisions between H+ + H2 occur over the deep well of the H+

3

potential energy surface [8].
Strongly bound systems with deep potential energy wells support many

bound states. Even the very lowest continuum states which are associated with
ultralow-energy scattering feel the effect of these many bound states which lie
below them in energy. The result is that even the lowest scattering state has
a complicated wavefunction which couples many channels which are asymptoti-
cally closed. It is well known that this situation leads to a plethora of quasibound
states, or resonances, in the near-dissociation region [9–13]. Use of the R-matrix
method allows the region of the deep potential well to be treated using vari-
ational nuclear motion programs which are capable of giving highly accurate
results for energy-independent problems with complicated wavefunctions [14]. It
is then only necessary to treat a few partial waves in the energy-dependent outer
region. In this region it may be necessary to propagate solutions to very large
interparticle separations [15] and to scan over the many energies necessary to
characterise narrow resonances.

At present we are in the process of developing a heavy particle R-matrix
scattering code, RmatReact, based on the use of a variety of variational nuclear
motion codes in the inner region [16–20]. Doing this involves developing compu-
tational procedures which extend methods of the solutions into the continuum
[12,13,21]. In particular, the problem must be solved within a finite region and,
critically, use basis functions which give reliable amplitudes at the R-matrix
boundary. These amplitudes, and the associated inner region energies, are used
to construct the scattering energy-dependent R-matrix which links the inner and
outer regions [3].

In this paper, we report on tests we have performed using our methodology
for the Morse oscillator potential. Section 2 gives an overview of the general
theory while Sect. 3 demonstrates that the scattering problem can be solved
analytically for a Morse oscillator potential. This allows the rigorous assessment
of our numerical procedures, which are discussed in Sect. 4. Results are given in
Sect. 5, and conclusions and some pointers to our future work are given in the
final Section.

2 Theory: The RmatReact Method

The theory behind the RmatReact method has been discussed extensively
[3–5], and much of this explanation derives from those discussions. The gen-
eral principle behind the method is the partitioning of space into an inner and
outer region, dependent on the reaction coordinate, as discussed above.
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In the case of two atoms colliding, there is only one reaction coordinate: the
internuclear distance r. A point r = a0 is defined such that any internuclear
distance lower than that is the inner region and any distance larger is the outer
region.

Within the inner region, the system is treated as a bound diatom, and the
eigenenergies and eigenfunctions of the radial Schrödinger equation with the
Morse potential can be determined using software built for nuclear motion cal-
culations. Because the eigenfunctions and values refer to the bound states, they
are independent of scattering energy. Likewise, in the outer region, the system
is treated as a pair of weakly interacting, unbound atoms. Each atom will have
associated atomic channels describing its quantum state.

The inner region was solved in this work using a discrete variable representa-
tion (DVR) [22] grid method based on the Lobatto shape functions, which have
the property of always having a point defined on both boundaries of the grid.
Manolopoulos [23] and Manolopoulos and Wyatt [24] pioneered the use of these
functions for scattering problems. Lobatto shape functions [25] can be used to
obtain simple expressions for the components of the Hamiltonian matrix, making
it computationally efficient to diagonalise whilst avoiding much of the expensive
integration usually involved in constructing a Hamiltonian matrix. Once the
inner region has been solved to obtain a diagonalised Hamiltonian matrix, a
matrix known as the R-matrix, can be constructed on the boundary a0. The
R-matrix is constructed from the scattering energy, E, the bound eigenenergies,
and the values of the eigenfunctions on the boundary a0, known as the surface
amplitudes.

For a given angular momentum quantum number J , if the mth surface ampli-
tude associated with the ith atomic channel is defined as wJ

im(a0), the mth
eigenenergy is defined as EJ

m, and the scattering wavefunction for atomic chan-
nel i is defined to be F J

i (r, E), then the R-matrix has two equivalent definitions
at a0:

F J
i (a0, E) =

NJ
ch∑

j=1

a0R
J
ij(a0, E)

dF J
j (r, E)
dr

∣∣∣∣
r=a0

, (1)

RJ
ij(a0, E) =

�
2

2μa0

N∑

m=1

wJ
im(a0)wJ

jm(a0)
EJ

m − E
, (2)

where the sum in (1) is over the NJ
ch atomic channels for a given value of J

considered in the scattering event, and the sum in (2) is over the N solutions to
the Schrödinger equation within an atomic channel.

In the J = 0, single channel case considered in this work, i = j and (1)
reduces down to a single term, Nch = 1, and the single R-matrix element is
defined as R(a0, E). Furthermore, wJ

im(a0) becomes a single surface amplitude,
and the sum is over the N surface amplitudes.

As (1) suggests, the R-matrix can be thought of as the ‘log-derivative’ of
the channel function F J(r, E), which is an outer region function. However (2)
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shows that the R-matrix can be constructed as a sum over the eigenfunctions
and energies of the inner region. The fact that these inner and outer region
definitions of the R-matrix are equivalent is what gives the R-matrix method
its value: information about the energy-independent inner region provide the
starting point for obtaining scattering information.

In the outer region, it is assumed that the potential is small and slowly vary-
ing, compared to the deep wells of the inner region. As such, it is possible to use
methods which iteratively solve the Schrödinger equations over finite distances
to propagate the R-matrix from the boundary at a0 to an asymptotic distance
ap. At ap, the potential is assumed to be zero. In this work, the propagation
method due to Burke [4] and Walker and Light [26] is used.

For the single channel, the propagation algorithm takes as its input the R-
matrix element at the inner region boundary, R(a0, E), and produces the R-
matrix element at the asymptotic distance, R(ap, E). To produce the value of
the R-matrix at the outer region point as, Rs(as, E), the iteration equation takes
as its input the value of the R-matrix at as−1, Rs−1(as−1, E), and has the form:

Rs =
−1

asλs

(
1

tan(λsΔa)
+

2
sin(2λsΔa)

(as−1Rs−1λs tan(λsΔa) − 1)−1

)
, (3)

where Δa = as − as−1, and

λ2
s =

2μ

�2
(E − V (as)) . (4)

At the asymptotic distance ap, the R-matrix is used to construct the K-matrix
using the equation [4]:

KJ
ij(k) = −

(
sJ(kr) − RJ

ij(ap, E)krsJ ′
(kr)

cJ(kr) + RJ
ij(ap, E)krcJ ′(kr)

)
, (5)

where

sν(x) = xjν(x) (6a)
cν(x) = −xyν(x), (6b)

where jν(x) is the Spherical Bessel Function of the First Kind, yν(x) is the
Spherical Bessel Function of the Second Kind, and sJ ′

(x) and cJ ′
(x) are the

derivatives with respect to x of sJ(x) and cJ(x) respectively.
In the single channel, (5) reduces to

K(k) =
R(ap, E)kr − tan kr

1 + R(ap, E)kr tan kr
. (7)

The inner, outer and asymptotic regions are illustrated in Fig. 1.
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=

=

Inner Region ⇒ treat
system as a diatom,

obtain diatomic
energies, functions

Outer Region ⇒ assume
small potential between
atoms, propagate over 

potential

( ) ( )
Propagation

Asymptotic Region ⇒ assume no
interactions, use asymptotic

scattering solutions

Fig. 1. Schematic outlining the partitioning of space into an inner, outer and asymp-
totic region in the R-matrix method

3 Analytic Scattering in Morse Oscillators

3.1 Morse Oscillator Solutions

When there is no angular momentum and hence no centrifugal term, the Morse
potential for a diatom as a function of the internuclear distance r has the alge-
braic form:

V (r) = De

((
1 − e−aMorse(r−re)

)2

− 1
)

, (8)

where De is the well depth (assuming the zero of potential energy is placed at
the dissociation energy), re is the equilibrium position, or position of the well
minimum, and aMorse is a scaling parameter (the so-called Morse parameter)
affecting the shape of the well.
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The analytic eigenfunctions and eigenenergies of the Schrödinger equa-
tion with a Morse potential are well known. For the radial time-independent
Schrödinger equation

(
− �

2

2m

d2

dr2
+ Dee

−2aMorse(r−re) − 2Dee
−aMorse(r−re)

)
Ψn = EnΨn, (9)

the bound eigenenergies En and eigenfunctions Ψn are given by Morse [27]:

EMorse
n = −De +2aMorse

√
De�

2

2μ

(
n +

1
2

)
− 1

4De

(
2aMorse

√
De�

2

2μ

(
n +

1
2

))2

,

(10)
and

ΨMorse
n = Nnz(1/(aMorser0)−n−1/2) exp

(−z

2

)
L(2/(aMorser0)−2n−1)

n (z), (11)

where L
(α)
n (z) is the nth associated Laguerre polynomial, and Nn is a normalising

factor given by

Nn =

⎛

⎝

(
2

aMorser0
− 2n − 1

)
aMorseΓ (n + 1)

Γ
(

2
aMorser0

− n
)

⎞

⎠

1
2

, (12)

where Γ (x) is the standard Gamma function.

3.2 Scattering Observables

It is possible to derive analytic scattering observables for a quantum scattering
event involving the Morse oscillator potential energy curve because the time-
independent Schrödinger equation with a Morse potential is analytically soluble.

Similar to (9), for a scattering event between particles with reduced mass μ
with energy E interacting over a Morse potential, the radial wavefunction Ψ(r)
is given by the time-independent radial Schrödinger equation:

(
− �

2

2μ

d2

dr2
+ Dee

−2aMorse(r−re) − 2Dee
−aMorse(r−re)

)
ψ = Eψ. (13)

By defining

k =

√
2μE

�2
, (14)

one constraint that may be placed on ψ(r) is that in the no-potential limit it
must behave like the wavefunction of a free particle, i.e. it must be a plane wave.
Likewise, this means that in the infinite distance limit where the potential’s
strength tends to zero, the wavefunction must be sinusoidal such that

lim
r→∞ ψ(r) = sin(kr + δ(k)), (15)



Low-Temperature Scattering with the R-Matrix Method . . . 263

where δ(k) is defined to be the phase shift (also known as the eigenphase) induced
in the particle by its interaction with the potential.

Furthermore, by defining

r0 =

√
�2

2μDe
, (16)

z(r) =
2

aMorser0
e−a(r−re), (17)

and
Φ(z) = z

1
2 ψ(z), (18)

then it can be shown [28] that (13) can be re-written as

d2Φ

dz2
+

⎛

⎜⎝−1
4

+
1

aMorser0z
+

1
4 +

(
k

aMorse

)2

z2

⎞

⎟⎠ Φ(z) = 0. (19)

In this form, the equation is equivalent to the well-known Whittaker equation,
whose solutions are the Whittaker functions. There are two linearly independent
solutions to (19):

ψ±(z) = e−z/2z±ik/aMorse
1F1

(
1
2

− 1
aMorser0

± ik

aMorse
, 1 ± 2ik

aMorse
; z

)
, (20)

where 1F1(x, y; z) is the Kummer confluent hypergeometric function of the first
kind, and the ψ±(z) functions represent incoming and outgoing waves.

Using the results for the analytic scattering wavefunctions of the Morse
potential in (20), it is possible to construct an analytic equation for the eigen-
phase δ(k) associated with scattering with the Morse potential. The eigenphase
of the scattering event is desired because it can be used to generate other observ-
ables such as the cross section and scattering length.

The derivation below follows that of Rawitscher et al. [28] and Selg [29,30].
The general solution ψ(r) to (13) can be written in terms of the two solutions

to (19), which are given by (20), such that:

ψ(r) = C+ψ+(r) + C−ψ−(r), (21)

where C± are two constants.
There are two boundary conditions on ψ(r) that can be used to obtain an

expression for the eigenphase. Firstly, the asymptotic radial function must vanish
at r = 0, such that ψ(0) = 0. This fact can be used to express one of the C±
coefficients in terms of the other. Secondly the r → ∞ asymptotic limit is given
by (15). As r → ∞, z → 0. This means that due to a property of the Kummer
confluent hypergeometric functions, both hypergeometric functions tend to 1 as
r → ∞.



264 T. Rivlin et al.

The S-matrix can be defined in the r → ∞ limit as the negative of the ratio
of the coefficients of the outgoing plane wave component of the asymptotic radial
wavefunction to the incoming plane wave component [4].

Then, by defining z0 such that

z(r = 0) = z0 =
2

aMorser0
eare , (22)

the following expression can be obtained:

(
z

z0

)± ik
aMorse

= e∓ikr. (23)

Using the boundary conditions and (23), one can obtain an expression for the
ratio of the coefficients of ψ± in this limit, and hence one can obtain an analytic
expression for the S-matrix:

S(k) = lim
r→∞

C+

C−
=

1F1

(
1
2 − 1

aMorser0
+ ik

aMorse
, 1 + 2ik

aMorse
; z0

)

1F1

(
1
2 − 1

aMorser0
− ik

aMorse
, 1 − 2ik

aMorse
; z0

) . (24)

Besides (15), another way of defining the eigenphase is as the argument of the
S-matrix, such that:

S(k) = e2iδ(k). (25)

Note that the factor of 2 in the exponent is arbitrary, and other authors define it
differently, depending on whether the eigenphase is defined as the argument of
the S-matrix (as in [29]), or as the arctangent of the K-matrix, which is equivalent
to defining the eigenphase to be half of the argument of the S-matrix (as in this
work, and [28]).

The analytic expression for the eigenphase is then given by:

δ(k) =
1
2

arg

⎛

⎝ 1F1

(
1
2 − 1

aMorser0
+ ik

aMorse
, 1 + 2ik

aMorse
; z0

)

1F1

(
1
2 − 1

aMorser0
− ik

aMorse
, 1 − 2ik

aMorse
; z0

)

⎞

⎠ . (26)

Once the eigenphase has been obtained for a given Morse potential, then
many scattering observables can be derived, including the K-matrix, and the
T-matrix (also known as the transition matrix):

K(k) = tan δ(k), (27)

S(k) =
1 − iK(k)
1 + iK(k)

, (28)

T (k) = S(k) − 1. (29)

Note that other authors use different definitions of the T-matrix such as the
negative of its definition given here.
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The total cross section at a given energy, σtot(k), which is the integral of
the differential cross section over all solid angles, can be obtained from the
eigenphase:

σtot(k) =
4π

k2
sin2(δ(k)). (30)

Finally the scattering length, A, and the effective range, reff , are charac-
teristic length scales associated with low-energy scattering. A is defined as the
limit

A = lim
k→0

(− tan(δ(k))
k

)
, (31)

for the J = 0, s-wave (lowest energy) eigenphase [4]. The scattering length can
be thought of as the low-energy k → 0 limit of the gradient of the eigenphase.
The effective range can be analytically determined through an integral over all
spaces of the difference between the zero-energy scattering wavefunction, and
the zero-energy potential-free scattering wavefunction [31]. It can be thought of
as a length parameter which measures the overall effect the potential has on the
scattering event, since it is defined by the difference between scattering in the
cases with and without a potential. As such, calling it the effective range of the
potential is natural.

One way of obtaining these two quantities from the eigenphase is by taking
a Taylor expansion of the eigenphase close to zero scattering energy [4]:

k cot δ(k) =
−1
A

+
1
2
reffk2 + O(k4). (32)

4 Method

4.1 Potentials Investigated

The main Morse potential used in this work is presented in Fig. 2. This Morse
potential uses parameters with reduced mass of μ = 33.71525621 Da (and a value
of � obtained from Mohr et al. [32]). The value for μ was chosen for numerical
convenience when testing the algorithm, as it meant that �

2/2μ had a value of
0.5 to seven decimal places in the units of cm−1 and Å used in this work. The
specific value used for aMorse was chosen such that the ground state eigenenergy
was 90 cm−1 to six decimal places, for ease of comparison. The values of De

and re used in this work were chosen in analogy with the Ar2 dimer, which
is currently being used to investigate the application of this method to more
sophisticated potentials. The analytic eigenenergies were generated from these
parameters and (10).

Other Morse potentials were tested, notably several obtained from [33] for
actual diatoms: LiH, H2, HCl, and CO. Figure 3 shows one of these potentials:
LiH. In this paper, we present only results for the Morse potential shown in
Fig. 2. Similar numerical behaviour was observed for all of the potentials tested,
however.
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Fig. 2. A Morse oscillator potential energy curve for an Ar2-like potential with
De = 100 cm−1, re = 3.5 Å, aMorse = 1.451455517 Å−1. Wavefunctions of the vibra-
tional bound states are also shown at their associated eigenenergies, along with the
continuum states between 0 and 60 cm−1. The bound and continuum states were
generated by solving the Schrödinger equation with μ = 33.71525621 Da with an
R-matrix method with a boundary of 10 Å

Fig. 3. Morse oscillator potential and states for LiH. Parameters used are De =
20287.62581 cm−1, re = 1.5956 Å, aMorse = 1.128 Å−1 [33]. The states were generated
by solving the Schrödinger equation with μ = 0.8801221 Da [33] with an R-matrix
method with a boundary of 10 Å

4.2 Numerical Details

The R-matrix method was used to generate scattering results, including the
eigenphase and the scattering length, for the single channel, J = 0 Morse oscil-
lator potential. These results are compared with the analytic results quoted
above.

In the construction of the R-matrix, the inner region bound system was solved
numerically to generate the bound eigenenergies and radial eigenfunctions of two
particles interacting over a Morse potential well. To generate the numeric results,
N = 200 grid points and eigenfunctions were used to obtain the inner region
eigenenergies (and amplitudes) using the Lobatto shape functions DVR method
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outlined in Sect. 2. The inner region was defined to range from rmin = 0.01 Å to
a0 = 10.0 Å.

The R-matrix was then constructed on the boundary and propagated to an
asymptotic radius. For the results presented in the following, the propagation
was performed from a0 = 10.0 Å to ap = 25.0 Å, with Nprop = 2500 iterations
of the propagation equation over a uniform grid. The propagated R-matrix was
then used to construct the eigenphase for the J = 0 Morse scattering event.

To explore the low-energy behaviour of the numeric method, the analytic and
numeric eigenphases were used to generate the scattering length and effective
range. This was done by fitting the low-energy plot to the form given in (32)
using Mathematica’s FindFit function over the lower scattering energy range
k = 0.0004 Å to k = 0.001 Å. (This is equivalent to E = 8.0 × 10−8 cm−1 to
E = 5.0 × 10−7 cm−1 for this system.)

5 Results

5.1 Comparison Between Analytic and Numerical RmatReact
Results

The numerical and analytic results for the eigenenergies are presented in
Table 1. For low-lying states whose wavefunctions are essentially completely
contained in the inner region, the agreement between the two methods is excel-
lent. The final two states are more diffuse, as seen in Fig. 2, and hence they are
more likely to have significant amplitude outside the inner region. Due to this,
the inner region solution energies lies slightly below the true answer.

Table 1. Comparison of the analytic and numeric bound eigenenergies of the Morse
diatomic system for vibrational energy levels n = 0–9. The relative error refers to the
difference between each level’s numeric and analytic values, divided by the analytic
value (analytic minus numeric, divided by analytic)

n Analytic/cm−1 R-matrix/cm−1 Relative error

0 −90.000000 −90.000000 1.73 × 10−12

1 −71.580042 −71.580042 4.59 × 10−11

2 −55.266807 −55.266807 1.30 × 10−11

3 −41.060295 −41.060295 1.82 × 10−11

4 −28.960506 −28.960506 5.73 × 10−12

5 −18.967441 −18.967441 1.33 × 10−12

6 −11.081099 −11.081099 3.25 × 10−12

7 −5.3014807 −5.3014807 −6.42 × 10−12

8 −1.6285853 −1.6286033 −0.000011

9 −0.062413189 −0.094633937 −0.516
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Fig. 4. The same Morse oscillator potential as in Fig. 2. Energy levels of the contin-
uum states generated by the R-matrix below 60 cm−1 are coloured differently to the
vibrational bound states in order to distinguish the states close to dissociation from
the states just above dissociation. The R-matrix inner region boundary, a0 = 10 Å, is
also highlighted

Fig. 5. Upper plot: eigenphase (in radians) for a scattering event for the Morse potential
of Fig. 2 calculated both analytically and using R-matrix methodology. The two lines
overlap. Lower plot: difference (analytic − R-matrix) in eigenphase (in radians) between
the two methods

Figure 4 compares the RmatReact numerical eigenphase to the analytic solu-
tion for the eigenphase given by (26) over the scattering energy range of 0.001
to 0.1 cm−1 (0.00144 to 0.144 K). The root mean square difference between the
analytic and numeric results is approximately 4.6× 10−5 radians, which is small
(Fig. 5).

Analytic and numerical results for scattering length and effective range are
presented in Table 2. Again the results given by the two methods are very similar.



Low-Temperature Scattering with the R-Matrix Method . . . 269

Table 2. Table of comparisons for the analytic and numeric scattering length and effec-
tive range. The relative error refers to the difference between each quantity’s numeric
and analytic values divided by the analytic value (analytic minus numeric, divided by
analytic)

Analytic/ Å R-matrix/ Å Relative error

Scattering length 10.166078 10.166133 −5.34 × 10−6

Effective range 1.6537298 1.6667562 −0.00788

Table 3. Table of numerical parameters

Symbol Definition Units

N Number of inner region states and grid points Unitless

Nprop Number of propagation points Unitless

rmin Start of inner region Å

a0 End of inner region and start of propagation Å

ap End of propagation Å

Δr a0−rmin
N−1

Average inner region grid spacing Å

Δrprop
ap−a0
N−1

Average propagator grid spacing Å

5.2 Numerical Parameters

To investigate the accuracy of the R-matrix method in comparison to the analytic
results, the numerical parameters used in the algorithm were varied and the
resultant error was plotted. The seven numerical parameters which the method
relies on are summarised in Table 3.

To encapsulate all of the information in the lower plot of Fig. 4 in one number,
the error metric used was the root mean square deviation (RMSD) between the
eigenphase, δ(E) calculated using the R-matrix method (δnum(E)) and the ana-
lytic eigenphase (δana(E)). The eigenphase was calculated for 100 equally spaced
scattering energy values between 0.001 and 0.1 cm−1. The error characteristic,
the RMSD, was then calculated using:

δRMSD =
100∑

i=1

√
(δana(Ei) − δnum(Ei))2

100
. (33)

A version of this error metric which involved (numerically) integrating the
squared difference over the energy range was tested, and found to give the same
results as merely sampling over 100 equally spaced points in the energy range.
Plotting δRMSD as a function of different error parameters facilitated the assess-
ment of the numerical stability of the method. These plots can be found in Fig. 6.
For all of the plots in Fig. 6, rmin was kept constant at 0.01 Å.

When varying a0, any a0 value above approximately 9 Å appears to produce
converged results where the error changes very little. This is likely because a
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Fig. 6. Top left: The log of the RMSD of the eigenphase plotted against a0 between
6.5 Å and 11 Å. The other parameters were held constant at N = 200, Nprop = 2500,
rprop = 25 Å. Top right: The log of the RMSD of the eigenphase plotted against
ap between 11 Å and 26 Å. The other parameters were held constant at N = 200,
Nprop = 2500, a0 = 10 Å. Middle left: The log of the RMSD of the eigenphase plotted
against N between 20 and 220. The other parameters were held constant at Nprop =
2500, a0 = 10 Å, rprop = 25 Å. Middle right: The log of the RMSD of the eigenphase
plotted against Nprop between 500 and 2500. The other parameters were held constant
at N = 200, a0 = 10 Å, rprop = 25 Å. Bottom left: The log of the RMSD of the
eigenphase plotted against Δr between 0.0445982 Å and 0.156094 Å. N was allowed
to vary between 223 and 63 to vary Δr. The other parameters were held constant at
a0 = 10 Å, Nprop = 2500, rprop = 25. Bottom right: The log of the RMSD of the
eigenphase plotted against Δrprop between 0.005 Å and 0.164835 Å. Nprop was allowed
to vary between 3000 and 90 to vary Δrprop. The other parameters were held constant
at N = 200, a0 = 10 Å, rprop = 25

value of a0 which is too small cannot accurately ‘capture’ all of the bound states
of the potential well. Since the final bound state is of the order 10−2 cm−1 in
depth, V (a0) must be approximately of that order for the state to be found by
the method.

When varying ap, any value above 16 Å appears to produce converged results;
however, the error increases slightly as ap is extended beyond 16 Å. This is likely
due to Δrprop increasing as Nprop is held constant, which decreases the accuracy
of the approximations made in the propagator method.
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When varying N and Δr (where Δr is increased by decreasing N and vice
versa), there is a clear point where increasing N further has no effect, but where
decreasing N even slightly significantly increases the error. This suggests that
the method is converging on a solution once the grid spacing is sufficiently small,
as is common in numerical integration techniques. This further suggests that this
solution’s RMSD from the analytic solution is approximately 10−4.

Finally, when varying Nprop and Δrprop, the method appears to produce
results with very low error for all values of Nprop and Δrprop tested, with only
slight variation in the error recorded. This suggests that it is possible to prop-
agate the R-matrix using very few, very wide steps and still produce accurate
results. However, this may be a consequence of using as the test potential the
Morse oscillator potential, since it decreases exponentially with distance and
thus varies very little in the outer region. More relatistic potentials are longer
range and multipolar in nature at large r, so narrower steps may be needed in
the propagation.

6 Conclusions and Outlook

We clearly demonstrate that we can obtain excellent results using our R-matrix
implementation for low-energy scattering within a Morse oscillator potential.
Asymptotically this potential decays exponentially, which makes it unlike phys-
ical potentials, which have a much longer range. Physical potentials decay as
r−n, where n is a positive integer.

The next step is to implement DVR shape functions into variational nuclear
motion codes to facilitate the calculation of boundary amplitudes within these
codes. This been done for the general diatomic code Duo [16] and triatomic
code DVR3D [17]. The diatomic problems for which tests have been run so
far all involve a single asymptotic channel, which makes R-matrix propagation
straightforward. In general, this will not be true and it will be necessary to
consider multichannel problems. To address this issue we have successfully per-
formed propagations with a general code originally designed for electron—atom
problems [34]. This code now needs generalising to provide automated resonance
fitting [35,36] and bound state finding [37] features.

We intend to use this new methodology on physical problems, and to create a
generalisation of the R-matrix formalism to allow the explicit treatment of reac-
tive processes. We have conducted preliminary tests similar to the ones presented
here on more accurate Ar–Ar potentials with multipolar long-range expansions,
for which the leading term is n = 6, and also obtained excellent results. All of
these results will be reported elsewhere (10.1080/00268976.2019.1615143).
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Abstract. We study strong-field ionization of a hydrogenic target by
few-cycle Bessel pulses. In order to investigate the interplay between
the carrier envelope phase (CEP) and the orbital angular momentum
of a few-cycle pulse (OAM), we apply a semiclassical two-step model.
In particular, we here compute and discuss photoelectron momentum
distributions (PEMD) for localized atomic targets. We show how these
momentum distributions are affected by the CEP and TAM of the inci-
dent pulse. In particular, we find that the OAM affects the PEMD in a
similar way as the CEP, depending on the initial position of our target.

1 Introduction

The behavior of atoms in strong laser fields is closely connected to nonlinear pro-
cesses such as above threshold ionization (ATI) [1,2], high harmonic generation
(HHG) [3] or nonsequential double ionization (NSDI) [4]. Different theoretical
approaches like the numerical solution of the time dependent Schrödinger equa-
tion (TDSE), the strong-field approximation (SFA) [1,5] or semiclassical models
are used to explore the electron dynamics at the ultrafast timescale. Among
the semiclassical models the two-step model for ionization and measurement of
direct electrons [6] and the three-step model [7] for re-collisional phenomena
[8–11] (HHG, NSDI) have been applied widely and helped to describe many
experimental observations. In the three-step model, for instance, the first step
describes the tunnel ionization of an electron due to the supresed atomic poten-
tial in a strong laser field. Here, the so-called ADK theory (Ammosov Delone
Krainov), which was derived from the work of Perelomov et al. [12,13] and
Perelomov and Popov [14], models the ionization rate of the electrons. In the
second step, the released electron moves freely along its classical trajectory, while
its (in)elastic re-scattering, or recombination, is considered in the third step.
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Today, the strong-field ionization of atoms and molecules is quite well under-
stood for incident plane wave radiation for systems that can be described within
the single active electron approximation. Spectra for different polarizations
[15,16], for different pulse lengths and the corresponding CEP-effects [1,17,18]
or two-color ionization have been studied [5] and pulse shaping effects can nowa-
days be used to control attosecond dynamics.

During the past few years, twisted light beams gained a lot of attention
[19,20]. It is well known that plane wave photons carry spin angular momentum
(SAM), but twisted photons carry additional orbital angular momentum (OAM).
In contrast to plane waves, twisted light typically is characterized by helical phase
fronts and a much more complex spatial structure. For such twisted beams,
especially, the intensity profile perpendicular to the propagation direction does
not exhibit a uniform distribution but has concentric ring maxima and minima,
cf. Fig. 2. For the strong-field ionization by twisted light, therefore, the intensity
distribution within the profile of the beam is important, because strong-field
ionization only occurs near the intensity maxima, where the intensity is high
enough. Along the and near to the beam axis (vortex line), there is no ionization.
Moreover, since the field vectors point in different directions at different positions
in the beam, see [21], it is expected that differently localized single atomic targets
will result in different PEMDs.

In this work, we study theoretically the strong-field ionization of hydrogen by
twisted few-cycle near-infrared pulses. We apply a semiclassical two-step model
(Sect. 2) to calculate the photoelectron momentum distributions (PEMD). We
observe an asymmetry in the PEMD similar to the CEP dependent asymmetry
in the photo electron spectrum of strong-field ionization by circularly polarized
pulses [1,17] (Sect. 3.1). In contrast to the asymmetries in circularly polarized
fields, however, the asymmetries observed in this work do not only depend on the
CEP but also on the position of the atomic target in the field and the projection
of the total angular momentum (TAM), which is the sum of the orbital angular
momentum and spin angular momentum, of the Bessel pulse (Sect. 3.2). We will
provide two different explanations, how to understand the interplay of OAM
and CEP. Finally, we show that the PEMDs produced by Bessel pulses become
symmetric for infinitely extended targets.

2 Model

2.1 Semiclassical Two-Step Model

Here we explain the details of our semiclassical two-step model for strong-field
ionization. In this model, the atom is exposed to a strong laser field. This strong
external field causes a suppression of the atomic potential. Thus, the potential
forms a barrier, where the electron can tunnel through. To describe the tunneling
of the electron through the suppressed potential, we use the ADK ionization
rate. Tunneling is more likely when the atomic potential is more suppressed.
Thus the ionization probability is highest when the external field reaches its
maximum. The ADK rate attaches a weight to every possible time of ionization.
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At this time, we assume a free electron to be “born” at the place of the atom
and neglect the Coulomb potential of the parent ion when the tunnel ionization
has occurred. We remark, that this is a rough approximation, since the electron
cannot be born at the place of the atom. To be more precise, we should take the
tunnel exit and the Coulomb potential into account [22]. The coulomb potential
for example would change the angle of peak emission in the PEMD [23,24].
However, in this work we will drop these details because they have no effect on
the qualitative comparison of strong-field ionization between plane waves and
twisted light. In the two-step model, the component of the electron velocity
longitudinal to the instantaneous field direction is set to zero, while the initial
velocity transversal to the instantaneous electric field is given by a Gaussian
distribution and therefore is not necessarily zero. Therefore, the probability for
an electron to tunnel through the barrier at a given time t0 with absolute initial
velocity v0⊥ is given by Liu [25]

w(t0, v0⊥) = wt0wv0⊥ , (1)

where

wt0 =
(

E(b, t0)
4

)(
4κ4

E(b, t0)

)2/κ

e
− 2κ3

3E(b,t0) (2)

gives the probability for ionization at time t0 and

wv0⊥ =
√

κ

πE(b, t0)
e
− κv2

0⊥
E(b,t0) (3)

is the Gaussian distribution of initial velocities. E(b, t0) denotes the magnitude
of the electric field at time t0 at impact parameter b = (b, ϕb, z), [cf. Fig. 2], and
κ =

√
2IP with IP being the ionization potential. Note that it is important for a

twisted beam to consider the spatial dependence of the electric field E(b, t0) and
not only the time dependence E(t0) because in the case of twisted light beams
or pulses the electric field depends on the position of the target.

After the release of the electron into the continuum, we neglect the parent
ion so that the electron moves freely on its classical trajectory in the external
field. Then, the dynamics of the electron are given by Newton’s equation

r̈ = −E(r, t). (4)

Here we consider the spatial dependence of the electric field explicitly to properly
describe the twisted pulse. For a twisted Bessel beam, for instance, the electric
field components can be easily obtained from the vector potential in Coulomb
gauge [19]

A(r, t) =
∑

ms=0,±1

ηms
Ams

(r) e−iωt, (5)
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where the coefficients Ams
(r) are given by

Ams
(r) =

√
κ

2π
(−i)mscms

Jmγ−ms
(κ r⊥)ei(mγ−ms)ϕeikzz

and ηms
are eigenvectors of the z-component of the SAM operator

η0 =

⎛
⎝0

0
1

⎞
⎠ , η±1 =

∓1√
2

⎛
⎝ 1

±i
0

⎞
⎠ .

The expansion coefficients can be written as

c0 =
Λ√
2
, c±1 =

1
2

(1 ± Λ cos ϑk) .

The structure and derivation of the vector potential (5) was explained in detail by
Matula et al. [19]. To solve Newton’s equation (4) in terms of real trajectories,
we need a real valued field. Therefore, we only use the imaginary part of the
vector potential, so we can rewrite the vector potential as

A(r, t) = Ar er + Aϕ eϕ + Az ez (6)

with components

Ar(r, t) =

√
1

4πκ

(mγ

r
Jmγ

(κr)

+ κΛ cos ϑk

(
Jmγ−1(κr) − mγ

κr
Jmγ

(κr)
))

cos(mγϕ + kzz − ωt),

(7)

Aφ(r, t) = −
√

1
4πκ

(
κ

(
Jmγ−1(κr) − mγ

κr
Jmγ

(κr)
)

+
mγ

r
Λ cos ϑkJmγ

(κr)
)

sin(mγϕ + kzz − ωt), (8)

Az(r, t) =
√

κ

4π
Λ sinϑkJmγ

(κr) sin(mγϕ + kzz − ωt), (9)

where mγ is the projection of the TAM upon the z-axis (propagation direction),
Λ is the helicity, κ =

√
k2 − k2

z and k = ω
c , where c is the speed of light.

To consider the ionization of the atoms by a short pulse, we need to multiply
the vector potential above by an envelope function:

Apulse(r, t) = f(t)A(r, t). (10)

Here f(t) is chosen to be a sin2-envelope

f(t) = sin2

(
ωt

2np

)
, (11)
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and np is the number of cycles. Thus, the pulse duration can be written as
Tp = npT with the cycle duration T = 2π

ω . The electric field is then given by

Epulse(r, t) = − ∂tApulse(r, t). (12)

To obtain an electron’s trajectory we randomly choose an initial time t0 (time of
ionization) and an initial velocity perpendicular to the electric field at the time
of ionization, as explained above. We use a 4th-order Runge–Kutta algorithm
to solve Newton’s equations (4). We start the integration of this equation at the
time of ionization and propagate it up to the end of the pulse. After the laser is
switched off, the momentum of the electron does not change anymore. Thus, the
momentum of the electron at the end of the laser pulse is its final momentum.
To gather a distribution of final momenta, which we call PEMD, we evaluate
about 107 trajectories, and associate each trajectory by its weight given by the
ADK rate (1).

3 Results

3.1 Strong-Field Ionization by Few-Cycle Circularly Polarized
Pulses

Let us first consider the strong-field ionization with circularly polarized few-cycle
pulses to analyze how the CEP modifies the PEMD. We model the pulse by

A(t) =A0 f(t) (cos(ωt + ϕcep) ex + sin(ωt + ϕcep) ey)

where ϕcep is the carrier envelope phase. Since it is well known that the rescat-
tering of the electron can be neglected in an intense circularly polarized field [26],
we can apply our semiclassical two-step model, where we only consider photo
electrons which do not interact (rescatter) again with the parent ion, but rather
move directly to the detector. With this model we can reproduce the prediction
of Cormier and Lambropoulos [27] that the photo electron angular distribution
of a few-cycle pulse becomes asymmetric because of the CEP of the pulse, which
was experimentally confirmed by Paulus et al. [28] and Milošević et al. [29].

In our simulations we applied an 800 nm two cycle pulse with a peak intensity
of 1014 W cm−2. For a two cycle pulse with ϕcep = 0 the vector potential (13) is
symmetric with respect to the x-axis (see Fig. 1c, blue curve). The corresponding
PEMD resulting from strong-field ionization by a 2-cycle pulse is also symmetric
with respect to the x-axis, see Fig. 1a. Each PEMD mirrors the negative vector
potential of the interacting pulse. If we change the CEP of the interacting pulse
to ϕcep = π

2 , the symmetry of the vector potential changes (see Fig. 1c, red
curve) and thus the symmetry of the PEMD (Fig. 1b).
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Fig. 1. The momentum distributions of photo electrons for λ = 800 nm circularly
polarized 2 cycle pulses with peak intensity of 1014 W cm−2. The pulse propagates
in z-direction. The CEP was changed from ϕcep = 0 (a) to ϕcep = π/2 (b). The
vector potentials corresponding to (13) are shown in (c). The blue curve displays vector
potentials for ϕcep = 0 and the red curve for ϕcep = π/2, respectively

3.2 Strong-Field Ionization by Few-Cycle Bessel Pulses

Single-Atom Simulations The electric field of a twisted pulse has a more
complex structure than a plane wave field. Because of the spatial dependence,
the electric field vector points in different directions at different positions or as
usually called, impact parameters b [30]. In this section we model our target by
a single atom which is localized at an impact parameter b = (b, ϕb, z = 0). In
order to investigate strong-field ionization, we choose the impact parameter to
coincide with the first intensity maximum (see Fig. 2). In these simulations we
will vary the angle ϕb. The distance from the beam axis to the first maximum
(≈ 600 nm) is large compared to the length of a classical trajectory of an electron
(≈ 10 nm), which is accelerated for two cycles in the field. The impact angle of
the electron does not change much during the propagation of the electron in
the external field. The expression mγϕ in (7–9), therefore acts like an additional
phase, similar to the carrier envelope phase.

In Fig. 3, we present the PEMDs corresponding to strong-field ionization by
a two- cycle Bessel beam with Λ = 1, ϑk = 20◦ and λ = 800 nm. The atom
was placed on the first intensity maximum. For each PEMD we analyzed up
to 107 trajectories. Columns 1, 2 and 3 correspond to ϕb = 0◦, 45◦ and 90◦,
respectively, and rows 1, 2 and 3 to TAM of mγ = 2, 3, 4. When the TAM
projection of the Bessel pulse is increased, the first intensity maximum occurs
further away from the beam axis and, hence from the vortex line of zero intensity.
The peak intensity on the first maximum decreases, if we increase the projection
of the TAM. To compare the PEMDs for beams with different projection of the
TAM we normalize each pulse to a peak intensity of 1014 W cm−2 on its first
maximum. In the upper row of Fig. 3 we get similar results to the strong-field
ionization with a circularly polarized pulse and different CEP (cf. Fig. 1). As
can be seen, the PEMD rotates about 45◦, when we change the impact angle
ϕb to 45◦ and from changing this angle ϕb to 90◦ the PEMD rotates about 90◦
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Fig. 2. Scheme of the strong-field ionization of atomic hydrogen with twisted pulses.
The red rings represent the intensity profile of the Bessel beam, see also [19]. The
pulse propagates in z-direction. A cloud of atoms (or single atom) is centered around
an impact parameter b = (b, ϕb, z = 0). The atomic target (cloud) is illustrated by
the small atom. To describe the strong-field ionization of atomic hydrogen, an impact
parameter b is chosen for the atom on the first intensity maximum (first ring). On the
left we see a side view and right we see a front view, to illustrate better how the impact
angle ϕb can be understood

compared to the PEMD with ϕb = 0◦. If we change the projection of the TAM
of the pulse from mγ = 2 (row 1) to mγ = 3 (row 2), the rotation of the PEMD
about the propagation axis increases. The vector potential of a Bessel beam
is an eigenfunction of the z-component of total angular momentum operator,
which is a sum of the projection of the orbital (Lz) and spin angular momentum
operator (Sz). However, in general, it is not an eigenfunction of the operators Lz

and Sz. Therefore, the beam has no well defined OAM. A Bessel beam can be
associated with its dominating OAM, which is given by m = mγ −Λ. In our case
the projection of the TAM mγ = 2 and the helicity Λ = 1, the dominating OAM
is mγ − Λ = 1, in the case of a TAM projection mγ = 3, we have mγ − Λ = 2.
The dominating OAM for mγ = 3 is twice as large as for mγ = 2, thus the angle
of rotation of the PEMD is doubled as well. A similar argument holds true for
mγ = 4.

Another way to explain why the PEMD for mγ = 3 is rotated twice as much
as for mγ = 2 is to analyze the vector potential at each impact parameter. We
consider the PEMD for mγ = 2, ϕb = 0◦ and mγ = 2, ϕb = 90◦ (both Fig. 3). If
we examine the term mγϕb, one would intuitively expect a phase shift of

(mγϕb)90◦ − (mγϕb)0◦ = 2 · π

2
− 2 · 0 = π (13)

in the vector potential and therefore that the PEMD should rotate about 180◦.
Instead of a rotation of 180◦ we observe a rotation about 90◦ (comp. Fig. 3, first
line, left and right column). The x-component of the vector potential at ϕb = 0◦
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Fig. 3. PEMDs of atomic hydrogen, if ionized with a strong two-cycle 800 nm Bessel
pulse with a peak intensity of 1014 W cm−2. The pulse propagates in z-direction, and
the photo electrons are measured in x-y-direction. Each row corresponds to a different
projection of the TAM with mγ = 2 (upper row), mγ = 3 (middle row) and mγ = 4
(lower row). Different columns represent different impact angles. In the first (second,
third) column we have ϕb = 0◦ (45◦, 90◦)

can be written as

Ax = Ar cos(ϕb) − Aφ sin(ϕb) = Ar ∼ cos (kzz − ωt) . (14)

However, the x-component at an impact angle ϕb = 90◦ is similar to

Ax = Ar cos(ϕb) − Aφ sin(ϕb) = −Aφ ∼ sin (π + kzz − ωt) . (15)

The expressions (14) and (15) differ by a phase shift of π
2 . The same argument

can be applied to the y and z component of the vector potential. This phase
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shift of π
2 is the reason for rotation of the PEMD about 90◦. If we consider the

PEMD for mγ = 3 and impact angles ϕb = 0◦ and ϕb = 90◦, respectively, we
can calculate a phase shift of π and therefore a rotation of the PEMD about
180◦.

Although for every PEMD the CEP was chosen to be 0 in the twisted pulse,
the calculated PEMD exhibit an asymmetry which can be compared to the CEP
dependent asymmetries, discussed in Sect. 3.1. Instead of the CEP, only the
impact parameter was changed. Because of the dependence of the asymmetry in
the PEMD on the impact parameter, we can think of a local phase in a twisted
pulse. This local phase is caused due to the OAM of the beam.

Localized Extended Targets If we consider a cloud of atoms in a plane wave
field, every single atom is exposed to a field with the same phase. If we expose a
cloud of atoms to a short twisted pulse, atoms at different positions in the pulse
are exposed to a local field with a different phase. Therefore, in order to obtain
the PEMD of an extended target, we need to integrate over different phases.
Therefore, an increase of the atomic target reduces the asymmetry due to the
averaging over different positions of the atoms in the beam. We model our target
by a cloud of atoms. The cloud is described by a Gaussian distribution

ρ =
1

(2πσ2)3/2
exp

(
− 1

2σ2
((x − b)2 + y2 + z2)

)
, (16)

where the center of the cloud coincides with the impact parameter b on the
x-axis. We refer the size of the cloud to the full width of half maximum of a
Gaussian distribution, which is given by 2.4σ.

Figure 4 displays the PEMD for a beam with mγ = 2 and Λ = 1 at impact
parameter b = (b, ϕb = 0, bz = 0), where b is chosen to coincide with the
first intensity maximum and for targets of different size: single atom (left), an
atomic cloud with diameter d = 600 nm (middle) and a cloud with d = 2400 nm
(right), respectively. The asymmetry in the PEMD vanishes, if we increase the

Fig. 4. PEMDs for different sizes of the atomic targets. The spectra were calculated
for a single atom and clouds with a diameter of b 600 nm and c 2400 nm. The PEMDs
become symmetric for large targets
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size of the target. To measure the asymmetry in an experiment, it is necessary
to localize the atomic target to if the atoms can be localized to an accuracy of
approximately 1µm scale.

4 Summary and Conclusion

The semiclassical two-step model has been applied for studying the strong-field
ionization of atoms by few-cycle, near-infrared twisted pulses. We showed that
the PEMD of localized targets is sensitive to the position of the target in the
beam. If we ionize an atomic target with a few-cycle circularly polarized pulse,
the PEMD strongly depends on the carrier envelope phase. In particular, it is
possible to extract the carrier envelope phase from the shape of the PEMD.
Similar to the carrier envelope phase in circularly polarized pulses, we found
that the PEMD of atoms ionized by strong few-cycle Bessel pulses is affected
by the position of the atomic target in the beam. If we change the impact angle
ϕb of the target, we also change the local phase of the field that interacts with
the atom. This was explained as a position- dependent asymmetry in the vector
potential that mirrors in the PEMD. Furthermore, this asymmetry depends on
the projection of the TAM of the beam. For higher TAM projection the PEMD
is more sensitive to small deviations in the impact angle.

For extended targets with a diameter larger than 2µm the reported asym-
metry in the spectrum of photoelectrons vanishes. Therefore, it is required to
localize the atomic targets below this scale to measure these asymmetries in the
PEMDs.
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