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Abstract. Smart contracts are programs that help in automating agreement
between multiple parties involving no external trusted authority. Since smart
contracts deal with millions of dollars worth of virtual coins, it is important to
ensure that they execute correctly and are free from vulnerabilities. This work
focuses on smart contracts in Ethereum blockchain, the most utilized platform
for smart contracts so far. Our emphasis is mainly on two core areas. One
involves the runtime verification of ERC20 tokens using K framework and the
other involves the comparison of tools available for detecting the vulnerabilities
in smart contract. The six core functions of ERC20, namely allowance(),
approve(), total-supply(), balanceof(), transferfrom() and transfer() were con-
sidered for runtime verification. ERC20 contracts were tested with ERC20
standard and the results showed that only 30% in allowance() function, 50% in
transferfrom() function, and 90% in transfer() function, were compliant to the
standard. The other focus area involves the comparison of existing tool that
could identify vulnerabilities in smart contract. Five tools were taken for the
comparison, namely Oyente, Securify, Remix, Smartcheck and Mythril and
were tested against 15 different vulnerabilities. Out of the 5 tools taken,
Smartcheck was found to detect the highest number of vulnerabilities.
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1 Introduction

A blockchain is essentially a distributed database of records of all transactions or digital
events that have been shared among participating parties. It is also known as a dis-
tributed ledger which uses cryptographic methods to store information and provides
better security [1]. Applications like financial transactions, Internet of Things etc., uses
blockchain technology. It was initially implemented by Satoshi Nakamoto on bitcoin
platform [2]. Ethereum is one among the best blockchain platform which enables
decentralized applications. As stated by Vitalik Buterin, Ethereum is a blockchain
platform which can understand programming languages. Unlike bitcoin, Ethereum
provides one common platform for all the use cases.
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Smart contracts are the decentralized applications that are designed to run on
Ethereum using Ethereum Virtual Machine (EVM). Once a smart contract is deployed
in the blockchain, it cannot be modified or updated. This can be both advantage as well
as disadvantage. As an advantage, it provides better security by preventing the users
from editing/modifying the smart contract that are deployed into the Ethereum
blockchain. The disadvantage is that if there are any bugs/vulnerabilities in smart
contract, they can be addressed only by deleting the entire smart contract from the
blockchain. As Dijkstra stated “testing shows the presence not the absence of bugs”
there is a requirement to formally verify the smart contract code to provide better
compliance of the contract to its standard.

In this work we focus on using runtime verification to verify smart contract
functionality against ERC20 standard to ensure that the contract behaves as they are
designed for. This is done by taking ERC20 standard rules written in K language [4]
and the EVM semantics (KEVM). It works by symbolically executing the bytecode of
the contract in the KEVM and identifying its compliance with ERC20 standard using
the K framework [3, 5, 6]. We have also examined the tools, to detect security vul-
nerabilities in smart contracts in Ethereum, which can analyze solidity code to identify
vulnerabilities in smart contract. In our work, we compared 5 different tools, namely
Oyente, Securify, Remix, Smartcheck and Mythril against 15 vulnerabilities.

The paper is organized as follows. In Sect. 2, background study of Smart contract
and K framework is explained in detail. Section 3 describes the related work done in
the field of formal verification and vulnerability assessment of smart contracts. Sec-
tion 4 explains the proposed work on runtime verification and vulnerability testing of
smart contracts, the results of which are explained in Sect. 5. Finally Sect. 6 concludes
about the work done and briefly explain about the scope of this work in future.

2 Background Study

2.1 Smart Contract

Smart contracts are used to eliminate the need of trusted third parties and are usually
written using programming languages like Solidity, Vyper, Java etc., Smart contracts
work in the same way as that of classes in object oriented programming and they are
made up of functions and fields [8]. The smart contract code is arranged in a low-level
stack-based bytecode. Since the bytecode is openly available, it may be said that the
smart contract code can be examined by each and every node in the network. So if the
contract is vulnerable everyone in the network can see and understand the vulnerability
and can exploit it easily.

Apart from creating decentralized applications, a smart contract can also be used to
create tokens for the purpose of developing their own economy on top of Ethereum [7].
In order to standardize token creation, Ethereum community has come up with token
standards like ERC20, ERC721 etc., ERC stands for Ethereum Request for Comment,
and 20 is the number assigned to the request. It includes six core functions, namely
allowance(), approve(), totalsupply(), balanceof(), transferfrom() and transfer() [9]. The
use of ERC20 standard makes the risk of tokenization less since every token adhere to
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the same standards. It also makes the token interaction less complex and also brings in
uniformity to the network. If the tokens doesn’t match with the ERC20 standard it will
not be possible to use the ERC20 compliant wallets like metamask. So it is necessary to
check for the compliance of the core functions of ERC20 tokens with the ERC20
standard functions.

2.2 K Framework

K is a framework in which programming languages can be defined and programs can
be symbolically executed according to semantics of the language written in K. In order
to write semantics of a language in K, we need to define three sections, namely
configurations, computations and rules [10]. The configuration part contain the initial
values of parameters to be used while writing the semantics. In computations part, we
will define the computations that are to be performed to the parameters declared in
configuration part. Finally, the rule contains the conditions that should be satisfied
while executing the program. The execution of language in K framework will take two
inputs. One is the semantics of the language written in K and the other is the program
that is written in that language. Executing the program using K will run the program
according to the semantics defined in K.

3 Related Work

This section describes the formal verification of smart contracts and also the security
vulnerabilities present in smart contracts.

3.1 Formal Verification of Smart Contracts

This section gives an overview of related work on formal verification of smart con-
tracts. In Karthikeyan et al. [19], they focused mainly on formal verification of smart
contracts at the source level and also at the EVM level. This is done by converting the
solidity code and bytecode into solidity* and bytecode* which can be used to verify the
smart contract properties. They have also explained in detail about the conversion of
solidity code and bytecode to solidity* and bytecode* respectively. Another formal
verification method is given in [20] in which they characterized trace vulnerabilities
efficiently by analyzing a smart contract multiple times. The main focus was on three
main properties of trace vulnerabilities such as finding contracts that sends ether to
arbitrary users, locks funds indefinitely and the contracts that are vulnerable to suicidal
attack. They created a tool to detect the above mentioned trace vulnerabilities and
named it as MAIAN. It is also known to be the first tool that utilizes symbolic analysis
and indicates the trace properties for vulnerability detection in smart contracts. In [16],
the authors focuses on creating a semantics for ethereum virtual machine and is known
to be the first completely executable formal semantics of the EVM in which the smart
contracts can be executed in the form of bytecodes. It deals with identifying the
vulnerabilities such as integer overflow and unhandled exceptions.
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3.2 Security Vulnerabilities

This section explains about the related work on analysis of security vulnerabilities in
smart contracts from various research papers and articles. In Atzei et al. [11], the levels
chosen to represent the vulnerabilities are in the following manner: solidity, EVM and
blockchain. It is classified into different levels to group all the vulnerabilities in each
and every level. So, if a new vulnerability is found, it can be matched to any of these
levels. Another classification is given by Alharby and Moorsel [8, 14, 15] in which they
found four major issues in smart contracts. They are security, performance, coding and
privacy issues. In security issues, they identified the bugs and vulnerabilities where as
in privacy they identified the issues like data exposure to unauthorized people. In
coding issues they found out flaws in smart contract code and methods to improve
them. Finally performance deals with the capacity of blockchain code. Some research
papers and articles mainly focused on tools that could detect security vulnerabilities.
Ethereum community found Oyente as the first and most important investigation tool in
terms of security. It was developed by Luu et al. [16] and uses symbolic execution to
identify the security vulnerabilities.

4 Methodology

4.1 Runtime Verification of Smart Contracts

In order to perform runtime verification ERC20 contracts were taken and checked for
its compliance with ERC20 standard. For this purpose, K framework was used. Three
main inputs to K are contract specification, ERC20 contract bytecode and a trusted
input to execute the bytecode. Contract specification states what the contract “should
do” in K language. The contract bytecode is the low level code of the smart contract

Table 1. Contracts and its description.

ERC20-token
contracts

Description

Storj (STJ) Decentralized cloud storage network
Odyssey (OCN) Decentralized sharing economy and peer-to-peer ecosystem
Dentacoin (DCN) Blockchain designed for improving the quality of dental care

worldwide
Wax Decentralized platform designed to serve video gamers to trade virtual

assets
Populous (PPT) Peer-to-peer invoice discounting platform
Rchain (RHOC) Decentralized applications platform powered by Rho virtual machine
ICON (ICX) Decentralized transactions network
Gifto (GTO) Decentralized universal gifting protocol
OpenZeppelin OpenZeppelin is a library for secure smart contract development
Dragonchain
(DRGN)

Simplifies the integration of real business applications on blockchain
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which ethereum virtual machine can understand. And the trusted input is the semantics
of the ethereum virtual machine in which the bytecode can be executed. Contracts that
were taken for compliance check with ERC20 standard are shown in Table 1.
60 functions from these 10 ERC20 contracts were matched with six core functions of
ERC20 standard, namely allowance(), approve(), totalsupply(), balanceof(), transfer-
from() and transfer(). The results would show whether an ERC20 contract follow the
ERC20 standard. The above process is shown step-by-step in Fig. 1.

The bytecode of each smart contract is obtained from Remix, an online interface for
solidity [22]. The contract when written in the interface have to be compiled. Suc-
cessful compilation of a contract will produce details like bytecode, assembly code,
application binary interface etc., The bytecode in Ethereum are executed using ether-
eum virtual machine and involves gas. So a semantics of ethereum virtual machine is
used for executing the bytecode. In our work, we have used K semantics of ethereum
virtual machine for symbolically executing the smart contract. The execution result and
the ERC20 contract standard in K are given as input to the K framework which then
check for its compliance.

4.2 Vulnerability Testing

According to the research paper [16] out of 19,366 existing Ethereum contracts, 8,833
are vulnerable in many ways. We selected 15 different, namely timestamp dependence,
use of untrusted input, transaction-ordering dependence, reentrancy, insecure coding
patterns, unexpected ether flows, mishandled exceptions, tx.origin usage, blockhash
usage, gas costly patterns, DoS by external contract, unchecked external call, locked
money, unprotected functions and integer overflow/underflow whose occurrence is
very frequent and conducted a study on the tools that could detect these vulnerabilities.
Smart contract with above vulnerabilities were taken from different websites given in

Fig. 1. Runtime verification of smart contracts.
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[16, 23–25]. The results of this work would allow us to have an idea about the tools to
be used to detect the above mentioned vulnerabilities. It would also allow us to identify
the tool which could detect highest number of vulnerabilities. The above process falls
into 3 steps as depicted in Fig. 2.

5 Analysis and Results

5.1 Analysis of Contracts Based on ERC20 Standard Using K
Framework

Among the 10 contracts chosen 6 contracts were not compliant with the ERC20
standard and 4 contracts were compliant with the ERC20 standard, the results of which
are shown in Table 2. The analysis also showed that 3 contracts were not compliant
with allowance() function, 5 contracts were not compliant with trans ferfrom() function

Fig. 2. Vulnerability testing of smart contracts.

Table 2. Results of compliance check of contracts with the standard.

Smart contracts Compliant/Non compliant

Storj Non compliant
Odyssey Compliant
Dentacoin Non compliant
Wax Non compliant
Populous Compliant
Rchain Compliant
ICON Non compliant
Gifto Non compliant
OpenZeppelin Compliant
Dragonchain Non compliant
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and 1 contract were not compliant with transfer() function. The Fig. 3 shows the
analysis result of 60 functions with the ERC20 standard.

5.2 Analysis of Smart Contract Vulnerability Testing Tools

The analysis on security detection methods helped in understanding different tools and
was able to classify them based on solidity analysis or bytecode analysis performed. As
shown in Table 3, it was found that Securify and Mythril was the tools that performed
both solidity and bytecode analysis. The tools like oyente, Remix and smartcheck
performed only solidity analysis.

Fig. 3. Analysis of smart contracts based on ERC20 standard.

Table 3. Comparison of tools based on detection method and number of vulnerabilities
detected.

Security
tool

Method Bytecode
analysis

Solidity
analysis

No. of bugs
detected

Oyente Symbolic
execution

p
5

Securify Formal
verification

p p
4

Remix Formal
verification

p
5

Smart
check

Symbolic
execution

p
7

Mythril Formal
verification

p p
4
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The analysis was also done based on the vulnerability detection capabilities of
different tools. Comparison results are briefly explained in Table 4. Oyente was able to
detect transaction ordering dependence, timestamp dependence, mishandled excep-
tions, reentrancy and integer overflow/underflow. Securify was able to detect
transaction-ordering dependence, reentrancy, unexpected ether flows and use of
untrusted input. Remix an online tool was able to detect timestamp dependence,
reentrancy, tx.origin usage, blockhash usage and gas costly patterns. Smartcheck was
able to identify timestamp dependence, reentrancy, tx.origin usage, gas costly patterns,
DoS by external contract, locked money and unchecked external call. Mythril detected
reentrancy, tx.origin usage, unprotected functions and integer overflow/underflow.

6 Conclusion and Future Work

A runtime verification and security analysis of the existing Smart contract was per-
formed and it was discovered that many of the contracts were not compliant with
standards like the ERC20 standard. Also the solidity code which was used to write
smart contracts in ethereum was vulnerable in many aspects. Some of vulnerabilities
are integer overflow, timestamp dependency, invalid random entropy sources, excep-
tion handling, unnecessary usage of delegate call, denial of service and callstack depth
problem.

The Runtime verification of smart contracts was performed using K framework.
60 functions from 10 contracts were taken and it was found that, some of the functions
does not follow ERC20 standard. Also, a comparison of the tools that are developed for

Table 4. Results of comparison of tools based on vulnerabilities detected.

Vulnerabilities Oyente Securify Remix Smart check Mythril

Transaction-ordering dependence
p p

Timestamp dependence
p p p

Mishandled exceptions
p

Reentrancy
p p p p p

Insecure coding patterns
Unexpected ether flows

p
Use of untrusted input

p
tx.origin usage

p p p
Blockhash usage

p
Gas costly patterns

p p
DoS by external contract

p
Locked money

p
Unchecked external call

p
Unprotected functions

p
Integer overflow/underflow

p p
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identification of vulnerabilities was performed and analyzed different vulnerabilities
detected by different tools. Our research showed Smart check as one of the best
vulnerability testing tool which can detect seven vulnerabilities. The above two
research helped us to perform runtime functionality verification of smart contracts and
also to check for vulnerabilities in smart contract.

There are several lines of research arising from this work which should be pursued.
Firstly, on developing a platform in which all vulnerabilities in smart contract can

be detected instead of using different tools. A second line of research, which follows
from Sect. 4.1, is to write k rules for ERC721 which can be used to check the func-
tionality of ERC721 contracts. Finally, performance checking of semantics of Ether-
eum Virtual Machine.
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