
An Upper Bound for Sorting Rn with LE

Sai Satwik Kuppili1, Bhadrachalam Chitturi1,2(B), and T. Srinath1

1 Department of Computer Science and Engineering, Amrita Vishwa Vidyapeetham,
Amritapuri, India

satwik.kuppili@gmail.com, bhadrachalam@am.amrita.edu,
srinathnairt@gmail.com

2 Department of CS, University of Texas at Dallas, Richardson, Texas, USA

Abstract. A permutation on a given alphabet Σ = (1, 2, 3, . . . , n) is a
sequence of elements in the alphabet where every element occurs precisely
once. Sn denotes the set of all such permutations on a given alphabet.
In ∈ Sn be the Identity permutation where elements are in ascending
order i.e. (1, 2, 3, . . . , n). Rn ∈ Sn is the reverse permutation where ele-
ments are in descending order, i.e. Rn = (n, n − 1, n − 2, . . . , 2, 1). An
operation has been defined in OEIS which consists of exactly two moves:
set-rotate that we call Rotate and pair-exchange that we call Exchange.
Rotate is a left rotate of all elements (moves leftmost element to the
right end) and Exchange is the pair-wise exchange of the two leftmost
elements. We call this operation as LE. The optimum number of moves
for transforming Rn into In with LE operation are known for n ≤ 10;
as listed in OEIS with identity A048200. The contributions of this arti-
cle are: (a) a novel upper bound for the number of moves required to
sort Rn with LE has been derived; (b) the optimum number of moves
to sort the next larger Rn i.e. R11 has been computed. Sorting permuta-
tions with various operations has applications in genomics and computer
interconnection networks.

Keywords: Permutations · Sorting · Cayley graphs · Upper bound ·
Set-rotate · Pair-exchange

1 Introduction

Sorting a permutation can be either in an increasing or a decreasing order. In
this article, increasing order is employed. The alphabet for the permutations is
Σ = (1, 2, 3, . . . , n). LE operation consists of two generators: (i) Rotate that
cyclically left shifts the entire permutation and (ii) Exchange that swaps the
elements at the two left most positions. The application of (i) and (ii) yields
the corresponding moves L and E respectively. 1-based indexing is employed,
thus, the two leftmost indices are one and two. Sn is the set of all permutations
over Σ. Rn is the reverse permutation of Σ, i.e. Rn = (n, n − 1, . . . , 3, 2, 1). The
identity permutation In = (1, 2, 3, . . . , n−1, n). The problem of transforming Rn

into In (i.e. sorting Rn) with LE operation is of theoretical interest and has been
c© Springer Nature Singapore Pte Ltd. 2019
M. Singh et al. (Eds.): ICACDS 2019, CCIS 1046, pp. 240–249, 2019.
https://doi.org/10.1007/978-981-13-9942-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-9942-8_23&domain=pdf
https://doi.org/10.1007/978-981-13-9942-8_23

An Upper Bound for Sorting Rn with LE 241

studied. The problem appears in OEIS [1] as follows “A048200 Minimal length
pair-exchange/set-rotate sequence to reverse n distinct ordered elements”.

The optimum number of moves to sort Rn with LE appears with a sequence
number of A048200, OEIS [1] where the values are known only for n ≤ 11 [1]
(n = 11 is our contribution). We establish the first upper bound on the number
of moves required to sort Rn with LE.

A Cayley graph Γ corresponding to an operation O with a generator set G
consists of n! vertices each corresponding to a unique permutation that denotes
it. An edge from a vertex u to another vertex v indicates that when a generator
g ∈ G acts upon permutation u yields v. Applying a generator is commonly
known as making a move. An upper bound k to sort any π ∈ Sn indicates that
the distance between any two permutations in Γ is at most k. An exact upper
bound equals the diameter of Γ [3]. Cayley graphs are shown to posses various
desirable properties in the design of computer interconnection networks [3,8].
Various operations to sort permutations have been posed [8]. A permutation
models a genome where a gene is presumed to be unique and an operation like
transposition, reversal etc. models the corresponding mutation. Thus, transform-
ing permutations with various operations has applications in genomic studies.

Jerrum showed that when the number of generators is greater than one, the
minimum sequence of generators (also called as distance) to sort a permutation
is hard to compute [2]. LE operation has two generators and the complexity of
transforming one permutation in to another with LE operation is not known.
Exchange move is a reversal of length two, in fact it is a prefix reversal of length
two. Chen and Skiena studied sorting permutations of length n with reversals of
size p [5]. For both permutations and circular permutations for all n and p, they
characterized the number of equivalence classes of permutations. For sorting all
circular permutations of length n that can be sorted by reversals of length p an
upper bound of O(n2/p + pn) and a lower bound of Ω(n2/p2 + n) were shown.
For sorting permutations with (unrestricted) prefix reversals the operation that
has n − 1 generators, the best known upper bound is 18n/11 + O(1) [4]. In
LE operation, Rotate cyclically shifts the entire permutation whereas in [6] a
modified bubblesort is considered, where, in addition to the regular moves, a
swap is allowed between elements at positions 1 and n. Given an operation O,
all the moves of O constitute its generator set. Jerrum showed that when the
number of generators is greater than one, the minimum sequence of generators to
sort a permutation is hard to compute [2]. LE operation has two generators and
the complexity of transforming one permutation into another with LE operation
is not known. We call O symmetric if for any move of O its inverse also belongs
to O. Exchange is inverse of itself whereas Rotate does not have an inverse.
Thus, LE is not symmetric. Further, LE is very restrictive due to the presence
of Rotate move compared to the other operations that are frequently applied
in genetic studies e.g. [7]. The methodology of this article might be helpful for
problems whose generator set does not have a Rotate generator. Research in
the area of Cayley graphs pertaining to their efficacy in modelling a computer
interconnection network, their properties in terms of diameter, presence of greedy
cycles in them etc. has been active [11–15].

242 S. S. Kuppili et al.

Two permutations are equivalent if one can be transformed into another
by applying a finite number of Rotate moves. In order to show that LE opera-
tion generates the entire symmetric group Sn, we need only show that any two
elements can be swapped.

Transformation of strings also has been extensively studied [16,17]. Several
string transformation problems including the burnt pancake distance problem
are shown to be NP-hard [17]. An operation called as short reversal on strings
has been defined [7] that has exactly two types of generators. The computation
of short reversal distance has been reduced to the computation of a Maximum
Independent Set on the corresponding graph that is computed from the two
given input strings [9] an efficient algorithm for it has been designed in [10].

Observation 1. Any two elements can be swapped with LE operation.

Proof. Consider two arbitrary elements a and b in a permutation π. WLOG
assume that a is to the left of b. So π = (. . . , u, a, v, . . . , x, b, y, . . .). First
we perform a sequence of Rotate moves to yield (a, v, . . . , x, b, y, . . . , u).
Here we perform a sequence of (Exchange followed by Rotate) to
yield (a, b, y, . . . , u, v, . . . , x,). After Rotate, Exchange, Rotate this yields
(b, . . . , u, v, . . . , x, a, y) where a is between x, y. We follow the same procedure
to place b between u and v. Then we will get a permutation that is equivalent
to the permutation in which a and b are swapped. Rotate moves accomplish the
rest of the task.

Let π be the one based index array containing the input permutation. The
element at an index i of π is denoted by π[i]. Initially for all i, π[i] = Rn[i].
A block is a sublist (continuous elements of a permutation) that is sorted. Let
EL denote Exchange move followed by a Rotate move. Further, let (EL)p be
p consecutive executions of EL. Let Lp be p consecutive executions of L. We
define a permutation Pr,n ∈ Sn as follows. The elements 1, 2, 3, . . . , r are in
sorted order. However, (n, n − 1, . . . , r + 1) that we call U(Pr,n) is inserted in
between. Thus, (1, 2, 3, . . . , r) is split into two blocks with U(Pr,n) in between.
Further, the starting position of U(Pr,n) in Pr,n is x + 2 where r = 2k − x and
2k−1 < r ≤ 2k. Let M(n) be the number of moves required to sort Rn with LE.
Let f(x) denote the number of additional moves required to sort Rn with LE
when compared to Rn−1. Therefore, number of moves required to sort Rn with
LE is sum of all f(x) where x ranges from 1 to n.

2 Algorithm

The algorithm that we design is called Algorithm LE. The algorithm first trans-
forms Rn into P3,n by executing n − 2 L moves and an E move. Subsequently,
Pi+1,n is obtained from Pi,n by executing the moves specified by Lemma 2. Thus,
eventually we obtain Pn,n which is In. Pseudo Code for the Algorithm LE is
shown below.

An Upper Bound for Sorting Rn with LE 243

Algorithm LE
Input: Rn. Output: In. Initialization: ∀iπ[i] = Rn[i]. All moves are executed
on π.

Algorithm 1 Algorithm LE
for r ∈ (2, . . . , n − 1) do

if r=2 then
Execute Ln−2

Execute E move
else

if r = 2k for some k then
Execute (EL)n−r

else
x ← (mink s.t. 2k ≥ r)
Execute Lx−r

Execute (EL)n−r−1

Execute L move
Execute (EL)2r−x−1

Execute L move
end if

end if
end for

Lemma 1. The starting position of U(Pr,n) in Pr,n is x + 2 where r = 2k − x
and 2k−1 < r ≤ 2k.

Proof. Executing n−2 L moves and an E moves on Rn yields (1, 2, n, n−1, . . . , 3)
which is P3,n. Since, 3 = 22 − 1, x = 1. Thus, x + 2 = 1 + 2 = 3. If we
observe the starting position of U(P3,n) in P3,n is x + 2 = 3. Hence, lemma
is true for r = 3. Assume, that lemma is true for r = 2k − x. So, Pr,n is
(1, 2, . . . , x + 1, n, n − 1, . . . , r + 1, x + 2, x + 3, . . . , r) where starting position of
U(Pr,n) in Pr,n is x+2 where r = 2k −x and 2k−1 < r ≤ 2k. Executing Lx yields
(x+1, n, n−1. . . . , r+1, x+2, x+3, . . . , r, 1, 2, . . . , x). Then executing (EL)n−r−1

yields (x+1, r+1, x+2, x+3, . . . , r, 1, 2, . . . , x, n, n−1, . . . , r+2). Then executing
R yields (r + 1, x + 2, . . . , r, 1, 2, . . . , x, n, n − 1, . . . , r + 2, x + 1). Then executing
(EL)r−x−1 yields (r + 1, 1, 2, . . . , x, n, n − 1, . . . , r + 2, x + 1, x + 2, . . . , r). Then
executing L yields (1, 2, . . . , x, n, n−1, . . . , r+2, x+1, x+2, . . . , r, r+1) which is
Pr+1,n. Since r = 2k −x, r +1 = 2k − (x− 1). Therefore, the starting position of
U(Pr+1,n) in Pr+1,n should be (x−1)+2 = x+1. In Pr+1,n the starting position
of U(Pr+1,n) is in fact x + 1. Hence by mathematical induction Lemma 1 holds
for all values of r.

Lemma 2. The number of moves required to obtain Pr+1,n from Pr,n is (a)
2n − 2r if r= 2k for some k. (b) r − 2k + 2n − 2 otherwise.

Proof. Case (a): r = 2k for some k.
According to Lemma 1 the starting position of U(Pr,n) in Pr,n is 2. Therefore,
Pr,n is (1, n, n−1, . . . , r+1, 2, 3, . . . , r). Executing (EL)n−r yields Pr+1,n. There-
fore, number of moves to obtain Pr+1,n from Pr,n when r is in the form of 2k is
2 ∗ (n − r) = 2n − 2r.

244 S. S. Kuppili et al.

Case (b): 2k−1 < r < 2k.
Let us suppose r = 2k − x where 2k−1 < r < 2k. According to Lemma 1 the
starting position of U(Pr,n) in Pr,n is x+2. Therefore, Pr,n is (1, 2, . . . , x+1, n, n−
1, . . . , r + 1, x + 2, x + 3, . . . , r). Executing L2k−r i.e. Lx yields (x + 1, n, n −
1, . . . , r + 1, x + 2, x + 3, . . . , r, 1, 2, . . . , x). Then executing (EL)n−r−1 yields
(x+1, r+1, x+2, . . . , r, 1, 2, . . . , x, n, n−1, . . . , r+2). Then executing R yields (r+
1, x + 2, . . . , r, 1, 2, . . . , x, n, n − 1, . . . , r + 2, x + 1). Then executing (EL)2r−2k−1

i.e. (EL)r−x−1 yields (r+1, 1, 2, . . . , x, n, n−1, . . . , r+2, x+1, x+2, . . . , r). Then
executing L yields Pr+1,n. Therefore, number of moves to obtain Pr+1,n from Pr,n

when r is not in the form of 2k is 2k−r+(2∗(n−r−1))+1+(2∗(2r−2k−1))+1 =
r − 2k + 2n − 2.

3 Analysis

Lemma 3. The number of moves required to obtain P3,n from Rn is 1 more
than the number of moves required to obtain P3,n−1 from Rn−1.

Proof. P3,n is obtained from Rn by executing n − 2 L moves and an E move,
i.e. a total of n − 1 moves. P3,n−1 is obtained from Rn−1 by executing n − 3 L
moves and an E move, in a total of n−2 moves. Therefore, the number of moves
required to obtain P3,n from Rn is 1 more than the number of moves required
to obtain P3,n−1 from Rn−1.

Lemma 4. The number of moves required to obtain Pr+1,n from Pr,n is 2
more than the number of moves required to obtain Pr+1,n−1 from Pr,n−1 ∀r ∈
(3, . . . , n − 2).

Proof. (a) According to Lemma 2, if r = 2k for some k, the number of moves
required to obtain Pr+1,n from Pr,n is 2n − 2r where as the number of moves
required to obtain Pr+1,n−1 from Pr,n−1 is 2(n−1)−2r = 2n−2r−2. Therefore,
the number of moves required to obtain Pr+1,n from Pr,n is 2 more than number
of moves required to obtain Pr+1,n−1 from Pr,n−1.
(b) According to Lemma 2, if 2k−1 < r < 2k for some k, the number of moves
required to obtain Pr+1,n from Pr,n is r−2k+2n−2 where as the number of moves
required to obtain Pr+1,n−1 from Pr,n−1 is r−2k+2(n−1)−2 = r−2k+2(n)−4.
Therefore, the number of moves required to obtain Pr+1,n from Pr,n is 2 more
than number of moves required to obtain Pr+1,n−1 from Pr,n−1.

From (a) and (b) it follows that Lemma4 holds for all r ∈ (3, 4, . . . , n − 2).

Lemma 5. If x = 2k + 1 for some k then f(x) = 2x − 5.

Proof. Sorting of Rx−1 involves (P3,x−1, P4,x−1, . . . , Px−1,x−1) as intermediate
permutations. According to Lemma3, the number of moves required to obtain
P3,x from Rx is 1 more than the number of moves required to obtain P3,x−1 from
Rx−1. According to Lemma 4, the number of moves required to obtain Pr+1,x

from Pr,x is 2 more than number of moves require to obtain Pr+1,x−1 from Pr,x−1

An Upper Bound for Sorting Rn with LE 245

∀r ∈ (3, 4, . . . , x − 2). Since, x = 2k + 1, x − 1 = 2k. According to Lemma 2 the
number of steps required to obtain Px,x i.e. Ix from Px−1,x is 2x − 2(x − 1) = 2.
Therefore, number of additional moves required for sorting Rx when compared
to Rx−1 when x = 2k + 1 for some k is f(x) = 1 + 2(x − 4) + 2 = 2x − 5.

Lemma 6. If x = 2k + 2 for some k, f(x) = 3x − 6.

Proof. Sorting of Rx−1 involves (P3,x−1, P4,x−1, . . . , Px−1,x−1) as intermediate
permutations. According to Lemma 3, the number of moves required to obtain
P3,x from Rx is 1 more than the number of moves required to obtain P3,x−1 from
Rx−1. According to Lemma 4, the number of moves required to obtain Pr+1,x

from Pr,x is 2 more than number of moves require to obtain Pr+1,x−1 from Pr,x−1

∀r ∈ (3, 4, . . . , x − 2). Since, x = 2k + 2, x − 1 = 2k + 1 = 2k+1 − (2k − 1) =
2k+1 − (x − 3). According to Lemma 2, the number of steps required to obtain
Px,x i.e. Ix from Px−1,x is (x−1)−2k+1+2x−2 = (x−1)−2x+4+2x−2 = x+1.
Therefore, number of additional moves required for sorting Rx when compared
to Rx−1 when x = 2k + 2 for some k is f(x) = 1 + 2(x − 4) + (x + 1) = 3x − 6.

Lemma 7. If x not in the form 2k + 1 or 2k + 2 then f(x) = f(x − 1) + 5.

Proof. Recall, f(x) gives us number of additional moves required to sort Rx

with LE when compared to Rx−1. From Lemmas 3 and 4, we can say that
difference between number of moves required to obtain Px−2,x−1 from Rx−1 and
the number of moves required to obtain Px−2,x−2 i.e. Ix−2 from Rx−2 is same as
the difference between number of moves required to obtain Px−2,x from Rx and
the number of moves required to obtain Px−2,x−1 from Rx−1

(a) According to Lemma 4, the number of moves required to obtain Px−1,x from
Px−2,x is 2 more than number of moves require to obtain Ix−1 from Px−2,x−1.
(b) Let z be the number of moves require to obtain Ix−1 from Px−2,x−1. Since
x − 1 cannot be of the form 2k for some k, according to Lemma 2 z = (x − 2) −
2k + 2(x − 1) − 2 = x − 2k + 2x − 6. Similarly, the number of moves require to
obtain Ix from Px−1,x is (x − 1) − 2k + 2(x) − 2 = x − 2k + 2x − 3 = z + 3. The
number of moves require to obtain Ix from Px−1,x is 3 more than the number of
moves require to obtain Ix−1 from Px−2,x−1.

Therefore, from (a) and (b), f(x) = f(x − 1) + 2 + 3 = f(x − 1) + 5.

Theorem 1. An upper bound for number of moves required to sort Rn with LE
is 11

6 n2.

246 S. S. Kuppili et al.

Proof. According to Lemma 5, the value of f(x) when x = 2k + 1 for some k is
2x − 5.
Therefore, for some k,
f(2k + 1) = (2 ∗ (2k + 1)) − 5 = 2k+1 − 3
According to Lemma 6, the value of f(x) when x = 2k + 2 for some k is 3x − 6.
f(2k + 2) = (3 ∗ (2k + 2)) − 6 = 3 ∗ 2k

According to the Lemma 7,

f(2k + 3) = f(2k + 3) + 5

f(2k + 3) = (3 ∗ (2k)) + 5

Similarly, f(2k + 4) = (3 ∗ (2k)) + 5 + 5

f(2k + 5) = (3 ∗ (2k)) + 5 + 5 + 5
...

f(2k + 2k) = (3 ∗ (2k)) + (5 + 5 + . . . + (2k − 2)times)

Let A(k) = f(2k + 3) + f(2k + 4) + . . . + f(2k + 2k)

= (3 ∗ 2k ∗ (2k − 2)) + (5 + 10 + 15 + . . . + (2k − 2)terms)

= (3 ∗ 2k ∗ (2k − 2)) +
1
2
(5 ∗ (2k − 2) ∗ (2k − 1))

=
11
2

22k − 27
2

2k + 5

Let B(k) = f(2k + 1) + f(2k + 2) + A(k)

= f(2k + 1) + f(2k + 2) + f(2k + 3) + . . . + f(2k + 2k)

From Lemmas 5 and 6,

B(k) = 2k+1 − 3 + (3 ∗ 2k) +
11
2

22k − 27
2

2k + 5

=
11
2

22k − 17
2

2k + 2

B(log2(
⌈n

2

⌉
)) = f(

⌈n

2

⌉
+ 1) + f(

⌈n

2

⌉
+ 2) + . . . + f(

⌈n

2

⌉
+

⌈n

2

⌉
)

An Upper Bound for Sorting Rn with LE 247

Therefore, for M(n) the total number of moves to sort Rn we obtain the following
recurrence relation.

M(n) ≤ M(
⌈n

2

⌉
) + B(log2(

⌈n

2

⌉
))

=
log2 n∑
k=1

B(log2(
⌈ n

2k
⌉
))

=
log2 n∑
k=1

11
2

22 log2(� n

2k �) − 17
2

2log2(� n

2k �) + 2

(Ignoring the lower order terms)

≤
log2 n∑
k=1

11
2

∗ 22 log2(� n

2k �)

≤
log2 n∑
k=1

11
2

∗ 22 log2(
n

2k
+1)

=
log2 n∑
k=1

11
2

∗ (
n

2k
+ 1)2

(Ignoring the lower order terms)

≈
log2 n∑
k=1

11
2

∗ (
n2

22k
)

≤
∞∑
k=1

11
2

∗ (
n2

22k
)

=
11
2

∗ n2

3

=
11
6

∗ n2

Therefore, an upper bound for number of moves required for Rn with LE is
11n2

6 .

4 Exhaustive Search Results

An exhaustive search algorithm based on BFS, i.e. Algorithm Search, has been
implemented to identify the optimum number of moves to sort Rn for a given
n. It yielded a novel value i.e. 67 for n = 11. The known values for n = 1 . . . 11
are (0, 1, 2, 4, 10, 15, 23, 32, 42, 55, 67). We maintain a list of already visited per-
mutations and we terminate upon reaching In. Each intermediate permutation
is acted upon by the moves E and R yielding the corresponding permutations.
BFS gives us the minimum number of moves to reach In from Rn. We avoid

248 S. S. Kuppili et al.

two consecutive E move (that nullify each other). Notation: Node contains a
permutation ∈ Sn and its distance from Rn corresponds to the optimal moves.
Employing this algorithm, with a better processor and larger RAM one should
be able to obtain optimum number of moves for higher values of n.

Algorithm Search
Initialization: The source vertex δ contains the permutation Rn and its path is
initialized to null. It is enqueued into BFS queue Q.
Input: Rn. Output: Optimum number of moves to reach In.

Algorithm 2 Algorithm Search
while (Q is not empty) do

Dequeue u from Q
if (u is visited) then

continue
end if
Mark u as visited
if (u is In) then � Array is sorted

return length of u.path
break

end if
if (Last move on u.path �= E or u.path = null) then

Execute E on u → v
if v is not visited then

v.path ← u.path followed by E
Enqueue v to Q

end if
end if
Execute R on u → v
if v is not visited then

v.path ← u.path followed by R
Enqueue v to Q

end if
end while

5 Conclusions and Future Work

The first known upper bound for sorting Rn with LE operation is shown. The
future work consists of identifying a tighter upper bound and obtaining optimum
number of moves for sorting Rn for larger values of n. An upper bound for
sorting any permutation in Sn with LE operation is open. Let I∗

n be the set of
all permutations that are equivalent to In. An upper bound for transforming Rn

into a π ∈ I∗
n with LE operation is open where any convenient π can be chosen.

An Upper Bound for Sorting Rn with LE 249

References

1. The On-Line Encyclopedia of Integer Sequences. oeis.org
2. Jerrum, M.R.: The complexity of finding minimum-length generator sequences.

Theor. Comput. Sci. 36, 265–289 (1985)
3. Akers, S.B., Krishnamurthy, B.: A group-theoretic model for symmetric intercon-

nection networks. IEEE Trans. Comput. 38(4), 555–566 (1989)
4. Chitturi, B., Fahle, W., Meng, Z., Morales, L., Shields, C.O., Sudborough, H.: An

(18/11)n upper bound for sorting by prefix reversals. Theor. Comput. Sci. 410(36),
3372–3390 (2009)

5. Chen, T., Skiena, S.S.: Sorting with fixed-length reversals. Discrete Appl. Math.
71(1–3), 269–295 (1996)

6. Feng, X., Chitturi, B., Sudborough, H.: Sorting circular permutations by bounded
transpositions. In: Arabnia, H. (ed.) Advances in Computational Biology. AEMB,
vol. 680, pp. 725–736. Springer, New York (2010). https://doi.org/10.1007/978-1-
4419-5913-3 81

7. Chitturi, B., Sudborough, H., Voit, W., Feng, X.: Adjacent swaps on strings. In:
Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 299–308. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-69733-6 30

8. Lakshmivarahan, S., Jho, J.-S., Dhall, S.K.: Symmetry in interconnection networks
based on Cayley graphs of permutation groups: a survey. Parallel Comput. 19,
361–407 (1993)

9. Chitturi, B.: Perturbed layered graphs. In: ICACCP (2019)
10. Chitturi, B., Balachander, S., Satheesh, S., Puthiyoppil, K.: Layered graphs: appli-

cations and algorithms. Algorithms 11(7), 93 (2018)
11. Mokhtar, H.: A few families of Cayley graphs and their efficiency as communication

networks. Bull. Aust. Math. Soc. 95(3), 518–520 (2017)
12. Zhang, T., Gennian, G.: Improved lower bounds on the degree-diameter problem.

J. Algebr. Comb. 49, 135–146 (2018)
13. Chitturi, B., Das, P.: Sorting permutations with transpositions in O(n3) amortized

time. Theor. Comput. Sci. 766, 30–37 (2018)
14. Erskine, G., James, T.: Large Cayley graphs of small diameter. Discrete Appl.

Math. 250, 202–214 (2018)
15. Gostevsky, D.A., Konstantinova, E.V.: Greedy cycles in the star graphs. Discrete

Math. Math. Cybern. 15, 205–213 (2018)
16. Fertin, G., Labarre, A., Rusu, I., Vialette, S., Tannier, E.: Combinatorics of

Genome Rearrangements. MIT Press, Cambridge (2009)
17. Chitturi, B.: A note on complexity of genetic mutations. Discrete Math. Algorithms

Appl. 3(03), 269–286 (2011)

http://oeis.org/
https://doi.org/10.1007/978-1-4419-5913-3_81
https://doi.org/10.1007/978-1-4419-5913-3_81
https://doi.org/10.1007/978-3-540-69733-6_30

	An Upper Bound for Sorting Rn with LE
	1 Introduction
	2 Algorithm
	3 Analysis
	4 Exhaustive Search Results
	5 Conclusions and Future Work
	References

