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Abstract. Fuzzy Min-Max Neural Networks (FMNN) is a single epoch
learning Pattern Classification algorithm with several advantages for
online learning. The information loss due to Contraction step of FMNN
leads to several improvements in literature such as MLF, FMCN etc.
These approaches do not use Contraction step and provide additional
structures in FMNN for decision making in overlapped regions overcom-
ing the problem of Contraction with the cost of an increase in training
complexity of FMNN. This work proposes a hybridization of FMNN
with kNN algorithm for achieving the ability to handle decision making
in overlapped regions without altering the structure of FMNN. Compar-
ative studies with existing approaches over benchmark decision systems
have proved the utility of the proposed kKNN-FMNN approach.
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1 Introduction

In 1965, Zadeh [16] introduced the new concept called Fuzzy sets, to manipu-
late the imprecise data into the fuzzy pattern. The Fuzzy logic aims at creat-
ing approximate human reasoning that is helpful on cognitive decision making.
Several Hybrid systems were developed with Fuzzy sets combining other soft
computing models such as artificial neural networks, expert systems and genetic
algorithm ete. [6,12,14,18,19].

A hybrid system like the combination of the artificial neural network with
fuzzy logic has proved their effectiveness in being helpful for real-world prob-
lems [6]. In 1992, Simpson [15] proposed Fuzzy Min-Max Neural Network
(FMNN) classifier based on fuzzy hyperboxes. The union of fuzzy hyperboxes
represents individual decision classes. A hyperbox is defined as a region in n-
dimensional pattern space characterized by minimum points, maximum points
and fuzzy membership function. FMNN learning algorithm computes the min-
max points of hyperboxes to acquire knowledge. These placing and adjustment
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of hyperboxes create a granular structure of pattern in pattern space which is
useful for pattern classification. This method also constitutes with several salient
learning features like online learning, non-linear separability and non-parametric
classification, thus, making FMNN more flexible.

FMNN has been applied successfully in different applications such as fault
detection, lung cancer, medical data analysis, classification of music and text
classification etc. [1,4,9-13,20].

However, FMNN is facing problems due to contraint of the size of hyperboxes
and contraction process which may lead to gradation error in classification [8,17].
Several developments have been proposed for FMNN in order to overcome its
limitation and for enhanced classification.

In 2000, Gabrys et al. [7] proposed a generalization and extension based
on FMNN known as General Fuzzy Min-Max Neural Network (GFMNN) that
incorporates a significant modification on conventional FMNN with the new
fuzzy membership function and hyperbox expansion criteria. But they used the
same contraction process as FMNN that tempered the acquired knowledge in
the boundary region causing gradation error in classification.

Many researchers have achieved an innovative way to exclude the contraction
process to retains overlapping information for better pattern classification. In
2004, Bargiela et al. [2] proposed a new classifier known as Inclusion/Exclusion
Fuzzy Hyperbox classifier (EFC) using an inclusion hyperboxes that includes
input patterns belonging to the same class, and exclusion hyperboxes (erroneous
hyperboxes) that includes input patterns in a confusion region of a different class.
However, this method resulted in the reduction in classification accuracy owing
to the removal of exclusion hyperboxes.

In 2007, Nandedkar et al. [8] introduced a novel concept called Fuzzy
Min-Max Neural Network classifier with Compensatory Neuron Architecture
(FMCN). This method can protect the min-max points of confusion overlap
region to enhance the learning algorithm as this information is highly significant
for pattern classification. Although this method did not allow the overlapped
hyperboxes to be expanded for next time which tends to increase in cardinality
of hyperboxes, thus increasing the time and space complexity.

In 2007, Zhang et al. [17] proposed a new approach called as Data Core Based
Fuzzy Neural Network (DCFMN) to overcome the limitation in FMCN with the
help of geometrical centre and data core of hyperbox which can additionally
benefit to handle noisy data. Hence, this method results in high classification
accuracy than other prominent approaches like GFMNN, FMCN, EFC and also
classical FMNN. In 2014, Devtalab et al. [3] proposed a new method called
Multi-Level Fuzzy Min-Max Neural Network (MLF) classifier employing a multi-
level tree structure to classify the pattern. Each level of model operates the
smaller hyperboxes to handle the confusion region problem. It resulted in the
enhancement of classification accuracy in the boundary region compared with
existing approach GFMNN, EFC, FMCN, DCFMN and FMNN.

The above-mentioned improvement to FMNN has been obtained at an
increased cost of training as additional is added to the simple three-layer architec-
ture of FMNN. This motivated us to explore for the methodology for achieving the
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better classification accuracies without resorting to modification of the structure
of FMNN. The proposed work introduces hybridization of k£ Nearest Neighbour
algorithm in FMNN as kNN-FMNN classifier for dealing with overlapping regions
without change of Neural Network structure of FMNN. We perform the experi-
ments on benchmark dataset mentioned in [3] to establish the importance of kKNN-
FMNN. Comparative experiments are conducted against the existing approaches
GFMNN, EFC, FMCN, DCFMN and MLF respectively for establishing the rele-
vance of the proposed approach.

The remaining part in this paper is organized as follows: Sect. 2 briefly intro-
duces the basics of FMNN for Classification. Section 3 gives the proposed kNN-
FMNN algorithm. Section4 provides the experiments and analysis of results.
Paper ends with the conclusion.

2  Fuzzy Min-Max Neural Network

In 1992, Simpson [15] proposed the single-pass dynamic network structure with
salient learning features as online learning, non-linear separability and non-
parametric classification, to deal with pattern classification using fuzzy systems
known as the fuzzy min-max neural network (FMNN). It is a supervised learn-
ing neural network that uses n-dimensional hyperbox fuzzy sets to represent
pattern spaces [15]. FMNN learning process creates and adjusts hyperboxes in
n-dimensions space for all decision classes in the pattern space.
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Fig. 1. (a) Hyperbox, (b) Overlapped region by two hyperboxes

Each hyperbox is determined by min points, max points with corresponding
fuzzy membership function, defined as:

where X is the input pattern, V; and W; are the minimum and maximum points
of B; hyperbox. I" is the n-dimensional unit pattern space.
The fuzzy membership function (b;) defined in Eq. (2):

n

1
b;(Xn) = o Z[max(o, 1 —max (0,v.min (1,2p —wj;)))
i=1

+ maz(0,1 — maz (0,y.min (1,v,; — xp)))] (2)
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where X, = (p1, Th2, ..., Thy) is Input pattern in n dimensional space and, V; =
(vj1, V52, ..., Vjn) and W; = (w;1,wj2, ..., wj,) are the corresponding min points
and max points for hyperbox B;. v is the sensitive parameter that regulates how
fast the membership decreases as the distance between A; and B; increases.

FMNN training is a single epoch algorithm. For each training pattern, the
learning involves three stages: (1) Expansion (2) Overlap Test (3) Contrac-
tion Process of Hyperboxes. During the training phase, when an input pattern
enters into the network, the network tries to accommodate into one of existing
same class hyperbox that gives full membership value. Otherwise, the network
attempts to find the closest same label hyperbox which have the highest mem-
bership degree. The input pattern attempts to expand the particular hyperbox,
bounded by expansion criteria given in Eq. (3). The range of user-defined param-
eter theta in Eq. (3) is (0 < # < 1) and controls the volume of hyperbox.

(max(wjs, Thi) — min(vjs, Tri)) < nb (3)
1

n
i=
When the condition in Eq. (3) is satisfied, the Hyperbox expands to incor-
porate the input pattern by adjusting the min and max points by using the

Egs. (4) and (5).
new

v

= min(vﬂd, xhi) YVi=1,2,3,...,n. (4)

wif = max(w%d,xm) Vi=1,2,3,...,n. (5)

If the condition Eq.(3) is not satisfied, a point hyperbox is created with
minimum and maximum value same as the input pattern.

After the expansion process, the overlap test [15] examines the overlap for
the expanded hyperbox with all hyperboxes of other decision classes. Two hyper-
boxes don’t overlap as long as there is at least one dimension at which they are
not overlapping. If there is an overlap in all dimensions, then the test determine
the dimension at which the smallest overlap occurs. If overlap test results in
identifying the dimension having the smallest overlap, the contraction steps [15]
adjust the hyperboxes along that dimension resulting in non-overlapping hyper-
boxes.

For example in Fig. 1b, both hyperboxes have overlapped in all dimensions.
Overlap test determines that the least overlap exist horizontal dimension. The
contraction step adjusts the hyperboxes along this dimension and resulting
adjusting hyperboxes are given with a bold outline.

In testing an FMNN for a given test pattern z, the fuzzy membership of = into
all the hyperboxes is computed. The test pattern z is classified to the decision
class corresponding to the hyperbox achieving highest fuzzy membership.

3 Proposed kKNN-FMNN Algorithm

Classical FMNN algorithm [15], described in Sect. 2, results in non-overlapping
among the hyperbox of different classes. This results in information loss existing



36 A. Kumar and P. S. V. S. Sai Prasad

in the overlapping (boundary) region and results in the possibility of objects of
one class being absolute members of hyperboxes of other class. The defuzzifi-
cation of the overlapping region affects the generalizability of the FMNN. The
existing approaches [2,3,7,8,17] dealing with the representation of overlapping
region by avoiding overlapping and contraction process, are resulting in increas-
ing the complexity of FMNN structure. The proposed kKNN-FMNN approach
aims at retaining the simple structure of FMNN while having the ability to deal
with decision making in overlapping regions.

In kNN-FMNN approach, the kNN classification algorithm is used for deci-
sion making when a testing pattern falls into an overlapping region.

kNN classification algorithm doesn’t have any training phase. For every input
test pattern, the distance is evaluated between the test pattern with all the train-
ing patterns. The nearest k training patterns are selected as the nearest neigh-
bours. Based on the classes of those k nearest neighbours, voting is conducted,
and the test pattern is characterized to majority class of nearest neighbours. But
in the presence of large training data, kNN requires significant testing time.

FMNN gives a natural way to group the nearest objects into the granular
structure of hyperbox. So, using this we can restrict the space in which k nearest
neighbour computation needs to be performed. This aspect we are employing in
dealing with respect to overlapping region of FMNN testing algorithm.

The rest of section described the training and testing phases of KNN-FMNN
algorithms given in Algorithms1 and 2 respectively.

3.1 Training of kKNN-FMNN Algorithm

Let DT represents the set of the training pattern, and FM represents the FMNN
model be constructed. Initially, FM is empty, and as training proceeds, hyper-
boxes are added to the FM model extending the representation of hyperbox H in
FMNN, given in Sect. 2. The index list of objects belonging to H is maintained
in our approach. For each input pattern x belonging to DT, only the expansion
step is performed to preserve the overlapping region. In traditional FMNN based
on expansion criteria, given in Eq. (3) , hyperbox can expand non-uniformly in a
different dimension as cumulative widths of all dimensions needs to be less than
n#. This can result in a narrow strip of hyperboxes along few dimension and
found to be unsuitable for decision making with respect to kNN. To overcome
this, we have adopted the modified expansion criteria given by Gabriel et al. [7]
in their work on General Fuzzy Min-Max Neural Network for Clustering and
Classification (GFMNN). For a hyperbox H with V and W as min and max
points, and x as the input pattern, the modified expansion criteria is given in
Eq. (6).

Vie1..n(max(wji, xpi) — min(vji, xp) < 6 (6)
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This modified expansion criteria bounds every width of hyperbox on each
dimension by 6 and helps in generation of more uniform hyperboxes found suit-
able for kNN based decision making.

Algorithm 1. Training of kKNN-FMNN
Input : DT:Training Samples, ~, 0
Output: Learning Model FM

1 Let FM: FMNN model (Initial empty);
2 for every x in DT do

3 if FM.Belong(x) == True then
4 H = FM.HMemb(x);

5 FM.Save(H,x);

6 else

7 H = FM.HMemb(x);

8 if H exist then

9 if Expy(x) == True then
10 FM.Expand(H,x);

11 FM.Save(H,x);

12 else

13 FM.Create(x);

14 FM.Save(H,x);

15 end

16 else

17 FM.Create(x);

18 FM.Save(H,x);

19 end

20 end

21 end

22 Return FM

For every training pattern x, the method Belongs(x) finds fuzzy membership
value of x with all hyperboxes pertaining to class of x using Eq. (2) and determine
whether there exists a hyperbox giving full membership of one to x.

Belong(x) = {3h € HBS | Memby(x) == 1 & class(z) == class(h)}  (7)

where H BS represents a set of hyperboxes.

If Belongs(x) is true, x is added to the hyperbox giving the full membership
without resulting in any modificaiton of hyperbox. Otherwise using H Memb(x)
the hyperbox H giving the highest membership is obtained. In case of the exis-
tence of such H, if expansion criteria are satisfied the hyperbox H is expanded
using Egs. (4) and (5) and object = stored as a member of resulting hyperbox.
In case of expansion criteria not being met, or no hyperbox of a corresponding
class existing, a point hyperbox is created using Create(x), and = is added to
the point hyperbox created.
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3.2 Testing of kKNN-FMNN Algorithm

Let DS be a set of testing sample. For every testing pattern x in DS, we compute
the fuzzy membership value with all hyperboxes in FM. Because the overlap-
ping among hyperboxes is allowed in the training phase, it is possible to obtain
absolute membership of 1 to multiple hyperboxes. The absMemb(zx) returns all
the hyperboxes giving full membership. If this set is empty, then the testing
pattern is not belonging to any of hyperboxes and decision is taken like tradi-
tional FMNN testing by assigning the decision class corresponding to nearest
hyperbox. In case absMemb(z) return a non-empty collection of hyperboxes
then the purity of collection is examined. The resulting collection is pure if only
if all hyperboxes correspond to a single decision class and in which case, with-
out ambiguity that class is assigned to the testing pattern. In case of impurity
objects belonging to all this hyperboxes collected in LocalSet function and kNN
is performed locally for determining the decision class of x. The descriptions of
functions used is given below:

absMemb(z) = {h € HBS | Memb,(x) == 1}: Collection of hyperboxes
which have full membership for the object x.

pure(absMemb(x)) = {VYhy, he € absMemb(z) | class(h1) == class(ha)}:
Collection of all hyperboxes that containing x correspond to same decision class.

Members(h): Collecting the objects belonging to hyperbox h.

LocalSet(absMemb(z)) = Upeapsmemp(a) (Members(h)).

knnlocal(Local Set(absMemb(z)),z): applying kNN methods on selected
objects.

Algorithm 2. Testing of kKNN-FMNN Algorithm
Input : DS: Testing Samples, Learning Model FM, k

1 for every x in DS do

2 Compute fuzzy membership of « with all hyperboxes of FM model;
3 if |absMemb(x)| > 1 then

4 if pure(absMemb(z)) == True then

5 | Classify x as absMemb(z).class ;

6 else

7 HO = LocalSet(absMemb(x)) ;

8 Classify x using knnlocal(HO, z).class

9 end
10 else
11 ‘ Classify = to highest membership hyperbox class
12 end

13 end

4 Experiments

4.1 Performance Comparison with MLF [3] Approach

For evaluating the performance of KNN-FMNN, we have adopted the experimen-
tation model given in [3] for MLF algorithm. In [3], MLF algorithm’s performance
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was compared with popular variants of FMNN such as FMNN [15], GFMNN [7],
EFC [2], FMCN [8] and DCFMN [17] in the aspects of average mis-classification,
average number of hyperboxes produced and computational time given in millisec-
onds. The experiments were conducted on a synthesized and standard datasets.
Furthermore, The stratified 3-fold cross-validation technique was performed on
the original dataset to comprehend the model’s ability. The original dataset was
partitioned into three subsets. In each iteration, one group was retained for the
testing part and, the remaining two groups were used for training the model. This
validation continues for three times (in each fold).

Table 1. Benchmark datasets

Dataset Attributes | Objects | Decision classes
Iris 3 150 3
Breast Cancer | 30 569 2
Glass 9 214 6
Tonosphere 32 351 2
Thyroid 21 7200 3
Wine 13 178 3
Parkinson 22 195 2
Ozone layer 72 1848 2
Spambase 57 4597 2

In this paper, we have conducted experiments on kKNN-FMNN following the
same procedure given in [3]. The system configuration used for our experiments is
CPU: Intel i5 7500, Clock Speed: 3.40 GHz x 4, RAM: 8 GB DDR4, OS: Ubuntu
16.04 LTS 64 bit and Software: Rstudio Version 1.1.456. The configuration for
experimentation in [3] for MLF and associated algorithms is CPU:core 2 dual,
Clock Speed: 1.3 MHz and Ram: 4 GB.

The experiments are conducted on nine benchmarks numeric dataset, col-
lected from the UCI machine learning repository [5] which were used in MLF [3]
experimentation. The description of numeric datasets used is shown in Table 1.
The synthesized datasets used in [3] were not experimented because of unavail-
ability of datasets. Here, we employed different expansion criterion (theta = 0.2
and 0.3) on kNN-FMNN with ~ as 0.4 and ‘k’ in kNN is set to 3.

All experiment results of the kKNN-FMNN with other FMNN methods are
listed in Table 2. The results given for MLF and associated algorithms are repro-
duced from [3] for comparison. The best result under each category for each
dataset is shown in boldface.
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Table 2. Comparative experiment results

Dataset Method Classification (%) No. of Hyperbox | Time (ms)
Min Max Average
Iris GFMNN 81.33 | 96.67 | 86.33 37.5 175
EFC 88.67 | 96.67 | 91.31 42.0 54
FMCN 90.00 | 97.33 | 92.76 63.6 44
DCFMN 92.11 | 97.33 | 94.66 37.7 50
MLF 95.33 | 97.33 | 96.33 56.3 60
kKNN-FMNN (6 = 0.2) | 94.0 96.0 94.66 22.3 20
kNN-FMNN (6 = 0.3) | 94.0 98.0 96.0 13 15
Breast Cancer | GFMNN 55.51 | 95.74 | 78.35 154 1586
EFC 58.44 | 94.27 | 79.34 183 629
FMCN 68.58 | 95.30 | 83.16 244 472
DCFMN 84.15 | 95.74 | 90.54 190 416
MLF 93.69 | 96.48 | 95.59 227 1451
kNN-FMNN (6 = 0.2) | 94.66 | 96.82 | 96.13 164 700
kNN-FMNN (6 = 0.3) | 94.70 | 96.85 | 95.6 79.6 347
Glass GFMNN 43.48 | 66.67 | 49.79 56 583
EFC 35.27 | 66.63 | 42.53 89 115
FMCN 29.47 | 66.63 | 41.26 394 96
DCFMN 29.47 | 66.67 | 39.97 7 114
MLF 56.04 | 68.12 | 60.32 227 225
kNN-FMNN (6 = 0.2) | 60.56 | 76.05 | 65.91 49 41
kNN-FMNN (6 = 0.3) | 56.33 | 69.01 | 63.54 35.6 33
Ionosphere GFMNN 42.74 | 89.46 | 68.93 120 2163
EFC 33.33 | 87.46 | 62.12 150 424
FMCN 46.15 | 89.46 | 78.43 271 329
DCFMN 79.54 | 93.45 | 87.77 132 448
MLF 83.76 | 93.45 | 89.30 184 909
kNN-FMNN(6 = 0.2) | 88.03 | 91.45 | 90.02 146.6 399
kNN-FMNN(6 = 0.3) | 87.17 | 90.59 | 88.88 121.3 308
Thyroid GFMNN 30.59 | 85.39 | 61.37 57 345
EFC 74.89 | 90.87 | 85.30 66 116
FMCN 74.89 | 90.87 | 85.78 116 94
DCFMN 74.89 | 93.17 | 89.76 66 103
MLF 75.34 | 94.52 | 90.88 72 152
kNN-FMNN (6 = 0.2) | 94.72 | 95.29 | 94.86 327 16542
kKNN-FMNN (6 = 0.3) | 94.12 | 94.37 | 94.26 255 13811
Wine GFMNN 85.00 | 96.67 | 92.91 129 817
EFC 92.22 | 96.67 | 94.47 133 234
FMCN 92.22 | 97.33 | 94.47 183 160
DCFMN 92.22 | 97.33 | 94.53 124 127
MLF 92.22 | 97.33 | 94.61 133 274
kNN-FMNN (6 = 0.2) | 93.33 | 100 96.08 91 95
kNN-FMNN (6 = 0.3) | 93.33 | 100 96.64 55.6 63
Parkinson GFMNN 76.41 | 82.97 | 80.83 98 786
EFC 40.77 | 78.97 | 74.66 111 256
FMCN 40.77 | 82.56 | 75.54 207 216
DCFMN 67.70 | 83.08 | 78.97 99 265
MLF 77.95 | 84.10 | 83.49 111 302
kNN-FMNN (6 = 0.2) | 87.69 | 96.92 | 92.30 81.6 163
kNN-FMNN (6 = 0.3) | 86.15 | 96.92 | 91.79 53.3 109
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Table 2. (continued)

Dataset Method Classification (%) No. of Hyperbox | Time (ms)
Min Max Average

Ozone layer | GFMNN 41.66 | 92.16 | 79.84 929 61481
EFC 77.13 | 92.95 | 87.38 1031 27221
FMCN 90.05 | 92.87 | 91.89 2759 30850
DCFMN 73.79 | 92.60 | 87.51 988 24694
MLF 89.92 | 92.78 | 91.12 1314 49699
kNN-FMNN (6 = 0.2) | 96.80 | 96.42 | 97.41 1034.6 28436
kNN-FMNN (6 = 0.3) | 96.94 | 96.75 | 96.32 531 14208

SpamBase GFMNN 39.90 | 83.39 | 54.15 293 86696
EFC 43.21 | 81.04 | 56.78 700 12988
FMCN 67.67 | 86.91 | 75.42 4982 6310
DCFMN 71.95 | 86.91 | 80.70 693 98644
MLF 82.89 | 89.39 | 88.41 7614 76929
kNN-FMNN (6 = 0.2) | 89.29 | 88.31 | 88.68 550 12686
kNN-FMNN (6 = 0.3) | 87.40 | 90.14 | 89.21 254.3 4974

4.2 Analysis of Results

The computational complexity of FMNN training algorithm is proportional to
the cardinality of hyperboxes created. In addition to the cardinality of hyper-
boxes, the cost of complex structures such as a compensatory neuron, exclusion
hyperboxes and hierarchical layers in algorithms like FMCN, DCFMN and MLF
increases the complexity. The computational time reported in Table 2 validates
the same as KNN-FMNN achieved training much lesser time compared to MLF
and other approaches. The computational efficiently of kKNN-FMNN is due to
adapting FMNN with only the expansion step and also achieving much lesser
cardinality of hyperboxes compared to other approaches.

From Fig. 3, it is observed that the average number of hyperbox creation is
less than other FMNN methods except for thyroid dataset because of sparsity in
the dataset. As the number of hyperboxes created thyroid dataset is more, the
computation training time is higher only for this dataset.

Figure2 depicts the experimental result of classification accuracy. It is
observed that in all the datasets, KNN-FMNN with theta (0.2 or 0.3) achieved
similar or better classification accuracy compared to MLF and other approaches.

kKNN-FMNN has achieved significantly better classification accuracies in
Parkinson, Ozone layer, Glass and Thyroid datasets. For example for Parkinson
dataset, by using the kNN-FMNN algorithm with user-defined parameter (6 =
0.2), obtained 92.3% of average classification accuracy with 81 average number of
hyperboxes creation respectively, whereas MLF gave 83.49% accuracy along with
111 hyperboxes.

We have experimented kKNN-FMNN with several theta () values, and all
the results were not reported due to space contraint. It is observed that for
less theta values such as 0.02, the cardinality of hyperboxes is huge and for
high theta values such as 0.9, the cardinality of hyperboxes is less in the cost of
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misclassification. The best result (minimization of the cardinality of hyperboxes,
maximation of classification accuracy) are obtained for theta values between 0.2
to 0.3, and the same is recommended.

5 Conclusion

Several improvements were proposed for the Fuzzy Min-Max Neural Network
to overcome limitations arise due to contraction step. These extensions have
resulted in adding additional complexity to FMNN thus increasing the training
time. This work proposed kNN-FMNN as hybridization of FMNN with kNN
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for overcoming the contraction step in FMNN. The proposed approach resulted
in building the classification model with a fewer number of hyperboxes and
achieving good classification accuracy by utilizing kNN locally for disambiguat-
ing classification decision in the overlapping region. The experimental results
have established that kKNN-FMNN achieved better classification accuracy than
existing approaches such as MLF, FMCN, DCFMN, EFC, GFMNN in less com-
putation time. In future, attempts will be done for proposing parallel and dis-
tributing kKNN-FMNN for achieving scalability in large-scale decision systems.
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