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Abstract. Tracking-by-detection frameworks have made significant progress in
recent years. However, proposal and classification of this framework could still
be severely affected by occlusion and motion. In this paper, we propose a
tracking algorithm MPLST to improve the accuracy and robustness of proposal
and classification under challenges. First, we provide a multi-cue proposal
method, which combines Gaussian sampling utilizing previous target state, and
motion and appearance selective search making use of the motion and appear-
ance features of the target respectively. Second, we provide a long short-term
features learning approach for target classification and network updating. The
long-term features are robust to occlusion, and the short-term features can keep
up with the fast motion of the target. Experiments on the OTB100 [1] and
VOT2015 [2] datasets demonstrate that our MPLST can effectively deal with
occlusion and motion, and achieve competitive performance against state-of-the-
art trackers.
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1 Introduction

Tracking-by-detection mainly contains two stages: proposals and classification. This
framework has made significant progress in improving accuracy for regular tracking.
However, it sometimes fails under the challenges like occlusion and motion, which
would strongly influence both two stages of detection. Tracking algorithms require
cautious updating under occlusion but need to be fast updated for following the fast
motion of the target. As a result, tracking algorithms suffer from the challenges of
dynamic occlusion and motion. Specifically, in the proposal stage, Gaussian sampling
[3] relies too much on the previous target state and fails under camera motion and target
deformation. Region proposal networks [7] and selective search [6] only utilize the
appearance features of objects and usually leave out the small and occluded target. In
the classification stage, the most important process is to learn the target features and
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online update a target classifier. However, robust classifiers [3–5] usually cautiously
update the network and fail to follow the fast changes of the target. In contrast, other
classifiers [10–13] which continuously keep up with the target are sensitive to occlu-
sion and could fall into tracking drift easily.

In this paper, we propose a tracking algorithm MPLST based on multi-cue pro-
posals and long short-term features learning. We balance fast learning and robust
tracking, in order to solve dynamic occlusion and motion. Main contributions of our
work are summarized as the following three folds:

(1) Multi-cue proposals: We provide a multi-cue proposal method to extract more
accurate proposals by utilizing cues of previous target state, motion and appear-
ance features. The Gaussian sampling is robust to occlusion. The motion-
appearance selective search can generate high-quality proposals under motion and
deformation.

(2) Long short-term features learning: We propose a feature learning and target
classification method. Long-term features are robust to occlusion, while short-
term features can keep up with fast motion of the target. The optimal represen-
tation of the target is obtained by combining long-term and short-term target
features.

(3) Accuracy and robustness balancing: We evaluate our MPLST on two tracking
benchmarks, the OTB100 [1] and VOT2015 [2] datasets. The experiments
demonstrate that MPLST can deal with occlusion and motion, and achieve
competitive performance on both accuracy and robustness against state-of-the-art
trackers.

2 Related Work

2.1 Challenges Handling

Challenges of tracking include occlusion, scale change, deformation, illuminate vari-
ation and so on [1]. Occlusion is the dominant challenge followed by scale change and
fast motion [2]. To handle fast motion, [22] utilizes the image template of the previous
target and a regression network; [12–14, 30] use discriminative correlation filters to
model the target. Those approaches can adapt to current target features quickly but
suffer from wrong training samples caused by occlusion. As a contrast, [3–5, 23, 31]
initialize and update the deep neural networks [24] using hundreds of training samples
to resist the influence of occlusion. However, those approaches usually fail under fast
motion because of the slow learning rate of the network.

2.2 Region Proposals

Proposals generation is the first stage of tracking-by-detection framework. [3–5] utilize
Gaussian sampling to randomly extract proposals around the previous target by the
Gaussian distribution. Gaussian sampling only relies on the previous location and size
of the target and achieves robust performance under heavy occlusion. However, it
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cannot deal with fast motion and deformation due to the lack of target motion features.
[25] utilizes selective search [6] to make use of appearance features of the target. [26]
generates flexible and tight proposals using deep features of the target extracted by
region proposal network [7] and takes advantages of appearance contrasts between the
target and background. However, those methods usually extract proposals on salient
objects and ignore small and occluded target, leading to tracking drift as a result.

2.3 Classification and Updating

Classification and model updating also suffer from dynamic occlusion and motion.
Classifiers used in state-of-the-art trackers can be roughly categorized into two types:
convolutional neural network (CNN) based models [3–5, 23] and discriminative cor-
relation filters (DCF) based models [10–13, 16]. CNN based models take advantages of
stable deep semantic features of the target to achieve better performance under heavy
occlusion, but suffer from fast motion because a large number of samples and learning
iterations are needed to online update the model. On the other hand, DCF based models
only need several samples to update the classifier and can follow the fast change of the
target. However, those methods usually fail when update models with wrong samples
under heavy occlusion. Classifiers for tracking have to deal with dynamic occlusion
and motion at the same time to achieve better performance.

3 Overview of Tracking Framework

Our MPLST is a tracking-by-detection framework with four parts as shown in Fig. 1.
The fundamental purpose of MPLST is making better proposals and classification to
handle the challenge of dynamic occlusion and motion in one tracking framework.

The first part of MPLST is feature extraction. The inputs are the current frame and
the previous target states. We compute the optical flow map and extract motion and
appearance features of the whole image using convolutional layers. The motion and
appearance features are further concatenated as the feature maps. We utilize a network
with only three layers because the targets are usually small and a shallow network will
increase location precision. The networks are the convolutional layers of the VGG-M
[14] network pre-trained on the ImageNet [8] dataset.

Second, 256 candidates are extracted by the multi-cue proposal approach com-
bining Gaussian sampling and motion-appearance selective search. The Gaussian
sampling generates 128 candidates by randomly sampling around the previous target
state, which is robust to occlusion. The motion-appearance selective search extract 64
samples on the optical flow map and the current image respectively by standard
selective search, which is more flexible for motion and deformation. We limit the
search region around the target and choose candidates through previous target state.
ROI pooling is further performed to obtain features of the candidates with a size of
3 � 3 � 1024.

Third, the target-background classification is performed by combining long-term
and short-term features of the target. The long-term features extracted by fully con-
nected layers trained using samples collected over a long time period (100 frames). In
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contrast, the other path responses to the short-term features of the target which are
learned using samples collected in a short time (10 frames). Those two paths also have
different network architectures. We delete one fully connected layer for faster learning
of the short-term features. The optimal representation of the target is obtained by
training the classifier combining the long-term and short-term features. The reason for
using two complementary features is that the long-term features are robust to occlusion
and the short-term features can keep up with fast motion of the target.

Fig. 1. Overview of our MPLST tracking frameworks which has four parts. The motion and
appearance feature maps are extracted by the convolutional neural networks. The multi-cue
proposal which combines Gaussian Sampling and motion-appearance selective search generates
accurate proposals under occlusion and motion. The multi-path fully connected layers classify
proposals utilizing the long-term and short-term features. Several high score proposals will be
fused and a box regression is performed to refine the target state.

Finally, the boxes with the highest scores will be fused into one prediction box in
the fourth part. We perform a linear bounding box regression to refine the target box.
The regression model is trained by 1000 target samples collected in the first frame.
Positive and negative samples are collected in each frame for online updating.

4 Multi-cue Proposals

The multi-cue proposal method combines three algorithms to generate better candi-
dates. The Gaussian sampling makes use of the previous state of the target. Motion
selective search utilizes optical flow map as motion features for sampling. Appearance
selective search generates candidates using appearance contrasts between objects.
Those three methods are complementary for handling multiple challenges.

4.1 Optical Flow Map

The states of proposals mainly depend on the motion of the target. The target motion
usually contains two parts, the camera motion and the object motion. The camera
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motion influences the absolute locations of objects and the search region of tracking
algorithms. The object motion influences the relative positions of objects and the
posture of the target. Hence, we first calculate the optical flow between two frames to
obtain the motion features of the target. The Horn-Schunck method [9] is performed to
calculate dense optical flow around the target. The visual optical flow map is further
generated by a pseudo-color transformation approach [29]. We make use of the optical
flow map in two ways. First, the average optical flow outside the previous target state is
regarded as the camera motion. The search region of our tracking algorithm is relocated
according to the camera motion. Second, the optical flow around the previous target is
regarded as the object motion and utilized for motion selective search.

4.2 Gaussian Sampling

Gaussian sampling is widely used in state-of-the-art tracking algorithms [3–5]. We
choose Gaussian sampling as the basic proposal method of our tracking framework. In
each frame, 128 samples are generated by translation and scale dimension of the target
state in the previous frame. The translation is subject to Gaussian distribution whose
mean is previous target state and the covariance is 0.09r2, where r is the mean of the
height and width of the target. The scale st is also subject to Gaussian distribution
whose mean is the initial target scale and the covariance is 0.25. The scale of candidates
is calculated by multiply 1:05st to previous target scale. The camera motion has been
excluded before the Gaussian sampling. Because the Gaussian sampling mainly utilizes
the previous target state, it is a highly effective proposal method for small target or
target whose motion is not too large.

4.3 Motion-Appearance Selective Search

In order to utilize the motion and appearance features of the target, we draw 64 samples
with motion selective search and 64 samples with appearance selective search. We
choose motion and appearance features because those features are complementary
features. A target that remains stationary will not be influenced by motion blur and has
clear appearance contrast with backgrounds. On the other hand, a target with large
motion will be salient on the optical flow map. We first determine the search region
because performing selective search on the whole image is a waste of computation and
could extract too many background objects. A region that is two times larger than the
previous target is regarded as the search region. Next, selective search [6] is performed
on the optical flow map and the current image respectively. We generate 256 samples
in total with the Gaussian sampling and the motion-appearance selective search. The
results of the proposals are demonstrated in Fig. 1.

5 Long Short-Term Features Learning

The features of the target usually continuously change during tracking. The long-term
features can resist interference and increase tracking robustness. The short-term fea-
tures represent the recent states of the target and increase tracking accuracy. In order to
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balance the accuracy and robustness, we propose a long short-term features learning
method to make use of long-term and short-term features at the same time.

5.1 Motion and Appearance Features

The convolutional features of the current frame represent the appearance features of the
target. Although they are widely used in tracking algorithms, the appearance features
are not enough to deal with fast motion and scale change. Hence, we extract the motion
features of the target on the optical flow map using pre-trained convolutional networks.
The motion features and the appearance features are further concatenated as the target
features and used to classify the target and the backgrounds. The features of candidates
with a size of 3 � 3 � 1024 are generated after ROI pooling on the concatenated
feature maps.

5.2 Long-Term Features

The fully connected layers are used to further extract the feature vectors of the can-
didates and perform target/background classification. The single path of fully connected
layers [3] is duplicated into two paths for learning long-term and short-term features
respectively. The long-term features are robust to occlusion because the true target
samples are much more than noisy occluded samples. The long-term path has two
fully-connected layers with a size of 3 � 3 � 1024 � 512 and 1 � 1 � 512 � 512.
This path extracts the long-term high-level features of the target using relatively deeper
FC layers, in order to improve updating robustness under occlusion. The target samples
for online updating are collected in a long time as shown in Fig. 1. We choose target
samples in recent 100 frames, about 4 s, which are long enough during tracking.
Finally, the long-term feature vector with 512 channels is generated.

5.3 Short-Term Features

The short-term path has shallower fully connected layers than the long-term path for
quickly online updating. This path is used to learn fast feature change of the target
under big motion and deformation. Hence, the short-term features focus on what the
target exactly looks like recently. We force the network branch to learn the short-term
features in two ways. First, the second fully-connected layers are deleted to learn the
low-level target features. A shallow network is also easy to online update. Second, only
target samples extracted in recent 10 frames are used to train the short-term path, in
order to exclude the influence of the long-term target samples. The short-term feature
vector also has 512 channels as the long-term vector.

5.4 Classification and Online Updating

The long-term and short-term features are concatenated into one feature vector with
1024 channels for target/background classification. The classifier is a fully connected
layer with a size of 1 � 1 � 1024 � 2. The classifier generates a target score Pþ xið Þ
and a background score P� xið Þ for each candidate xi. The target scores are used to
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evaluate the similarity between candidates and previous target features. The optimal
target state x� is predicted by Eq. 1.

x� ¼ argmaxxi P
þ xið Þ: ð1Þ

The classifier and the long short-term paths are updated using a three-step method.
First, positive and negative training samples are collected during tracking. We collect
50 positive samples and 200 negative samples in each frame. The positive samples
have > 0.7 IoU overlap ratios with the predicted target. The negative samples
have < 0.5 IoU overlap ratios. Second, the long-term path and the short-term path are
trained using positive samples collected in recent 100 frames and 10 frames. The
negative samples in recent 20 frames are used. The loss function is softmax loss as
Eq. 2 with K = 2. Where fj denotes the score of category j, fyi denotes the score of the
ground-truth category. Stochastic gradient descent (SGD) is used for loss
backpropagation.

L ¼ �fyi þ log
XK

j¼1
efj : ð2Þ

Third, the target/background classifier is trained to make use of long-term and
short-term features at the same time. The positive and the negative samples in recent 20
frames are used. The purpose of our network architecture is to obtain the optimal
representation of the target using long short-term features. The loss function is also
softmax loss as Eq. 2. The classifier and the long short-term paths are initialized in the
first frame with 500 positive samples and 5000 negative samples.

Fig. 2. Expect average overlap curves and ratios ranks from right to left.
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6 Experiments

Our challenges handling network (MPLST) is evaluated on two large-scale visual
tracking benchmarks: the VOT2015 [2] and OTB100 [1] datasets. We compare our
tracking algorithm with other state-of-art trackers under multiple challenges.

6.1 Evaluation on VOT2015

VOT2015 [2] is a commonly used dataset which contains 60 sequences with full
annotation. The 60 videos provide different challenges, including camera motion,
illumination change, motion change, occlusion and size change. Three main metrics
including accuracy, robustness and expect average overlap (EAO) are utilized to
evaluate the performance of trackers. We compare our tracker MPLST with state-of-art
trackers including MDNet [3], DeepSRDCF [13], CCOT [12], SRDCF [11] and DSST
[10]. Our tracker is pre-trained using sequences in OTB100 [1] datasets excluding
sequences in VOT2015 [2].

Table 1 illustrates the accuracy (left) and robustness (right) evaluation of trackers
under challenges. Our MPLST achieves better performance on most challenges,
especially on occlusion and size change. We improve the accuracy by 2.0% on
occlusion, 2.1% on size change and 1.4% in the average. And the robustness is also
improved under most challenges, especially on camera motion and size change. Fig-
ure 2 plots the expect average overlap (EAO) curves and the ranks of trackers. EAO
evaluates the expected accuracy of the results on long-term tracking. Our MPLST has
better feature learning ability for long-term tracking as shown in Fig. 2.

6.2 Evaluation on OTB100

OTB100 [1] is consist of 100 fully annotated videos with different attributes including
fast motion, occlusion, deformation, etc. The one-pass evaluation (OPE) is performed
on our MPLST comparing with 14 state-of-art trackers including MDNet [3], CCOT
[12], DeepSRDCF [13], HDT [15], SRDCFdecon [16], CF2 [17], CNN-SVM [18],
SRDCF [11], staple [19], MEEM [20], SAMF [21], LCT [27], KCF [28] and DSST
[10]. The main metrics for performance evaluation are precision and success plots. The

Table 1. Accuracy and Robustness evaluation of our MPLST and state-of-the-art trackers on
VOT2015 [2] dataset under challenges including camera motion, illumination change, motion
change, occlusion and size change. Left of slash is accuracy and right of slash is robustness. Top
performance is highlighted in bold.

empty camera illume motion occlu size mean

DSST 61.1/37 55.8/69 67.3/7 49.1/61 38.4/28 52.2/33 54.0/39.2
SRDCF 58.0/16 53.6/43 69.2/8 48.6/36 42.1/22 47.2/21 53.1/24.3
CCOT 57.0/11 53.5/24 66.0/2 46.4/20 44.5/14 49.1/13 52.8/14.0
DeepSRDCF 62.8/9 56.4/25 66.5/0 49.7/23 45.2/26 53.1/8 55.6/15.2
MDNet 65.0/6 61.0/20 68.0/1 56.0/15 54.3/14 56.0/11 60.0/11.4
MPLST (Ours) 65.0/4 61.9/17 70.6/0 56.6/13 56.3/13 58.1/9 61.4/9.3
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precision plot measures the accuracy of the target location. The success plot evaluates
the bounding box overlap ratio. Our tracker is pre-trained on VOT2015 [2], excluding
sequences in OTB100 [1].

Figure 3 illustrates the precision and success plots of OPE on the OTB100 [1]
dataset. Our MPLST outperforms state-of-the-art trackers on both location accuracy
and bounding box overlap. We make progress of 1.4% on precision and 1.4% on
success. We further evaluate trackers under different attributes and plot the precision
curves as shown in Fig. 4. Our MPLST performs better on most attributes, especially
scale variation, out-plane rotation, and fast motion. The experiment results demonstrate
that our MPLST can handle multiple dynamic challenges in one framework.

6.3 Experimental Analysis

The experiments mainly evaluate the accuracy and robustness of trackers under chal-
lenges. We summarize the results of experiments in three folds:

First, our MPLST achieves competitive performance against state-of-art trackers on
both accuracy and robustness on the OTB100 [1] and VOT2015 [2] datasets. MPLST
improves both proposal and classification stage of a tracking-by-detection framework.
The multi-cue proposal method is utilized to generate more accurate candidates. The
long short-term learning method learns features of the target in different time periods.

Second, our MPLST achieves better performance on multiple challenges, especially
deformation, fast motion, and occlusion. The experiments results achieve the funda-
mental purpose of our tracking frameworks. Complementary approaches are effective
to deal with dynamic occlusion and motion at the same time.

Third, some future work needs to be done to further improve our tracking per-
formance. MPLST cannot deal with the extremely small target and similar background.
The features of the small target will be lost after convolution and pooling in deep
layers. Also, our tracker cannot distinguish the target and similar background because
their features are almost the same (Fig. 5).

Fig. 3. Precision and success plots of OPE on OTB100 [1], comparing our tracker MPLST with
state-of-the-art trackers.
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7 Conclusions

The proposed MPLST tracking framework handles the challenge of dynamic occlusion
and motion simultaneously by multi-cue proposals and long short-term features
learning. The multi-cue proposal method which combines Gaussian sampling and
motion-appearance selective search improves the robustness of proposal under occlu-
sion and the accuracy of proposals under fast motion. The long short-term features
learning approach constructs the optimal representation of the target by combining
long-term and short-term target features. Our MPLST resists occlusion using the long-
term features and keeps up with fast motion of the target using short-term features. Our

Fig. 5. Qualitative results of our MPLST comparing with other state-of-the-art trackers.

Fig. 4. Precision plots of OPE under different attributes on OTB100 [1]. The attributes include
scale variation, fast motion, deformation, out-plane-rotation, motion blur, and illumination
variation.
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tracking algorithm improves both tracking accuracy and robustness under challenges
including occlusion, motion, deformation, and scale variation and achieves competitive
performance against state-of-the-art trackers. In the future work, the feature pyramid
networks could be utilized to learn low-level features and handle small targets. The
training frequency should be adaptively adjusted to improve real-time performance.
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