
Chapter 8
Neuroglia in Ageing
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Abstract Ageing reduces the functional capacity of all organs, so does that of the
nervous system; the latter is evident in the reduction of cognitive abilities, learning
and memory. While the exact mechanisms of ageing of the nervous system remain
elusive, it is without doubt that morpho-functional changes in a variety of neuroglial
cells contribute to this process. The age-dependent changes in neuroglia are charac-
terised by a progressive loss of function. This reduces glial ability to homeostatically
nurture, protect and regenerate the nervous tissue. Such neuroglial paralysis also
facilitates neurodegenerative processes. Ageing of neuroglia is variable and can be
affected by environmental factors and comorbidities.
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8.1 Mechanisms of Ageing

Ageing reduces the functional capacity of all organs and systems ultimately weaken-
ing the whole organism, reducing its adaptability, wearing its defensive systems and
bringing it to death through age-dependent diseases. The nervous system similarly
undergoes senescence that often impairs upon cognitive abilities, affects learning
capabilities and enfeebles memory. Nonetheless, brain sustains ageing with surpris-
ing tenacity; the cognitive functions attain the summit inmiddle age and often sustain
into old age, while the decline in other systems (including skeleto-muscular, cardio-
vascular or endocrine) progresses much faster. What are the mechanisms of ageing
and which molecular and cellular processes underlie the ageing of the brain remains
a matter of intense polemics. Indeed, there are in excess of 300 theories of ageing,
which highlight various pathways, many of which do contribute to this process [52].

Probably, the very first coherent theory of ageing was proposed by August Weis-
mann [99], who considered ageing as a very natural process favoured by natural
selection to prevent competition of species with their own progeny. According to
this view, mechanisms of ageing could be many and they can be different in different
organisms. The only common future is guaranteed termination of individual life after
a presumed fulfilment of the reproductive duties. One of the widely considered path-
ways is the activation of endoplasmic reticulum stress/unfolded protein responses
that positively correlate with longevity and negatively with fertility [86]. Another
relatively old group of theories regards ageing as a result of mechanochemical dete-
rioration of molecules and basic systems such as organelles or cell membranes; this
was initially proposed as ‘hysteresis of colloids’ [72, 73]. The mitochondrial or free
radical theory of ageing links the damage of biological systems to reactive oxygen
species and regards mitochondria as the age-defining clock [29, 30]. By reducing
caloric intake this may resist the rate of ageing [48]. The gene regulation theories
assume that changes in gene expression define ageing process [39], while the telom-
ere theory postulates that it is the telomere DNA localised at the end of chromosomes
which determines the life span: the shortening of telomeres eventually brings to the
arrest of cell replication and death [28], The inflammatory theory of ageing became
popular in recent years leading to the concept of ‘inflammaging’ [21]. Additionally,
several theories look into the role of signalling systems both at organism (e.g., neu-
roendocrine or immune theories of ageing [20]) and cellular (e.g., calcium theory of
ageing [40, 45, 89]) levels.

8.2 Ageing of the Brain

Themaintenance of cognitive capacity of the brain over most of the human’s lifespan
results, most likely, from prominent neuroplasticity, remarkably long development
and high degree of homeostatic and protective capabilities of neuroglia. The human
brain is optimised for learning, with numerous mechanisms from adult neurogenesis
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(which supplies the hippocampus with new neurones [54]) and adult myelination
(which lasts well into the fourth decade of human life [1, 98], while oligodendroglial
progenitors are present throughout the brain across the whole lifespan and probably
contribute to late-life regenerative myelination), to the highly sophisticated glym-
phatic system that purges the brain from toxic waste products [36], thus maintaining
neural environment. Ageing affects cognition components in a rather distinct way.
The age-dependent decline mainly affects the real-time processing and formation of
new memories and behaviours, whereas the capacity to analyse semantic and long-
term memories suffer much less [18, 35]. For example, a group of young adults were
significantly better than the group of old people in recalling a list of words. However
the ability of elders to use complex processing activities was indistinguishable from
the youngsters [47]. This benign or physiological brain ageing is not granted to all,
and age-dependent pathologies, most notably of neurodegenerative nature, affect a
substantial part of population.

Age is the main risk factor for neurodegenerative diseases, which are often con-
sidered as a natural outcome of senescence process. However, there is a fundamental
difference between physiological ageing and neurodegeneration. The latter reflects
massive neuronal death and atrophy of the brain tissue, whereas the former is not
associated with a substantial neuronal loss. The overall number of neurones is not
significantly affected in physiological ageing in rodents, primates and humans [6, 12,
19, 100]. Likewise, the number and density of synapses are not significantly affected
by ageing [23, 80], albeit synaptic size is reduced [56].

Factors which determine the fateful difference between physiological and patho-
logical ageing are many. These are represented by genetic factors (the best example
being familial Alzheimer’s disease or Huntington disease), the environment and
life style (including diet, education, mental or physical activity) and the associated
pathology (such as vascular disorders and ischaemic lesions). Another fundamental
factor that defines the degree of cognitive deficit of ageing and age-dependent neu-
ropathologies is known as the cognitive reserve. The cognitive reserve is an intrinsic
quality of an individual brain that determines the neurological deficit when a similar
brain damage results in very different cognitive outcomes in different subjects [82,
103]. The cognitive reserve in turn is defined by (i) neuronal reserve, which is the sta-
tus of neuronal networks acquired during the life span through learning and cognitive
load and (ii) neuronal compensation that reflects the defensive, plastic and regener-
ative capacities of the individual brain. To a large extent, the neuronal compensation
is defined by neuroglia, which is responsible for neuroprotection, regeneration and
post-lesion remodelling of the neural circuitry. The role of neuroglia is therefore
fundamental in defining physiological versus pathological senescence; the failure
of glial cells to protect and sustain the neuronal networks, the neural tissue and the
CNS as an organ facilitates the progression from physiological to pathological brain
ageing [93].
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8.3 Astroglia in Physiological Ageing

8.3.1 Morphology and Gene Profiling

Age-dependent changes in astroglial morphology and gene expression are complex
and region specific. Total number of astrocytes in physiologically aged human brain
does not seem to change significantly, even in centenarians [19, 59]. When it comes
to astroglial morphological profiles and expression of glial fibrillary acidic protein
(GFAP), which are indicative of astroglial reactivity, the data remain quite contro-
versial. Both a decrease [7] and an increase [14] in the number of GFAP-positive
astrocytes, in particular in hypothalamic areas [27], as well as astroglial atrophy and
astroglial hypertrophy were observed. The volume of astroglial territorial domains
has been found to almost double in 21-month-old mice when compared to 5-month-
old animals [26]. Increase of GFAP expression and hypertrophy of GFAP-positive
astrocytes have been described in the hippocampus of aged rodents [7, 34, 49] and
humans [10, 55]. Ageing had a distinct effect on different subpopulation of astrocytes
in a region-dependent manner (Fig. 8.1, [69]). The densities of GFAP-positive astro-
cytes in the CA1 region and dentate gyrus of the hippocampus of old (24-month-old)
mice demonstrated prominent hypertrophy when compared to young (3-month-old)
or adult (9-month-old) controls. To the contrary, GFAP-positive profiles of astrocytes
in the entorhinal cortex of old animals were atrophic when compared to the young
or adult mice. Ageing results in a substantial decrease in the number and complexity
of processes of astrocytes in the entorhinal cortex. The astrocytes immunoreactive to

Fig. 8.1 Age-dependent remodelling of astroglial profiles in different brain areas. Confocal images
showing glial fibrillary acidic protein—GFAP (a to f), s100β (g to l) and glutamine synthetase—GS
(m to r) immunolabelled astrocytes in the dentate gyrus and CA1 hippocampal areas as well as in
the entorhinal cortex of mice at 3 and 24 months. Modified from [69]
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s100β protein were hypertrophic in the aged dentate gyrus but not in the CA1 region
of the hippocampus as well as in the entorhinal cortex, whereas the profiles of a
subpopulation of astrocytes labelled with glutamine synthetase were atrophic in the
hippocampus with no changes in the entorhinal cortex [69]. Glutamine synthetase is
a central enzyme necessary for operation of glutamine–glutamate/GABA shuttle, as
well as for ammonium detoxification [70]. Suppression of expression of this enzyme
may therefore affect neurotransmission and promote astroglial synthesis of GABA,
an inhibitory neurotransmitter [22]. In parallel, hypertrophy of GFAP-positive astro-
cytes may be connected with environmental stimulation and plasticity representing
the neural compensation. Exposure to the enriched environment is known for its
positive effects on learning and memory, which occur in parallel with an increase in
GFAP-positive astroglial profiles [68, 75].

The transcriptomic analysis of aged astrocytes similarly found a complex mod-
ification in genes expression. For example, astroglial cells from the cerebral cortex
of aged mice demonstrated an increase in genes related to immune response with a
decrease in expression of GFAP and genes related to neuroprotection and neuronal
support [58]. Comparison of RNA-Seq from old and young astrocytes in the motor
and visual cortices, hypothalamus and cerebellum revealed region specificity, with
more significant changes in astroglia from the hippocampus and cerebellum [4],
where astrocytes increased an expression of proinflammatory genes, genes encoding
GFAP and Serpin3n, and genes linked to synaptic elimination such as complement
component 3 and 4b [4]. Very similar results have been obtained in analysing the gene
expression profiles of astrocytes from the hippocampus, cortex and striatum. Ageing
affected hippocampal and striatal astrocytes the most with up-regulation of inflam-
matory genes and genes related to synaptic elimination [8]. Analysis of the gene
expression profiles of different brain cells from ten brain regions of post-mortem tis-
sue of humans, aged between 16 and 102 years, found that changes in astrocytes and
oligodendrocytes were more prominent and complex compared to other cell types
[81]; in particular, no age-dependent changes in neuronal gene expression pattern
were identified. Again, these results indicate that functional preservation of neuroglia
is critical for maintaining the ageing brain.

8.3.2 Astroglial Function

Although the data on physiology of aged astrocytes are rather limited, there are
some hints for age-dependent remodelling of signalling and homeostatic profiles of
astroglial cells. The resting membrane potential (around −80 mV) and membrane
input resistance of astrocytes in cortical slices (from animals aged between 1 and
21 months) does not change much in ageing; if anything the input resistance is some-
what smaller in young adult mice (3–6-month-old—Fig. 8.2, [44]). Astrocytes from
older mice express major types of receptors and are capable to generate ionotropic
receptor-driven glial “postsynaptic” currents in response to neuronal activity [24,
44]. The density of ionotropic glutamate (AMPA and NMDA) receptors and P2X
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Fig. 8.2 Basic
electrophysiological
properties of cortical
astrocytes in brain slices
from mice of different ages.
a Experiments were
performed on mice
expressing EGFP under
control of human GFAP
promoter. Representative
EGFP images (left column)
of cortical layer II astrocytes
of different age groups and
corresponding whole-cell
currents (right column)
evoked by depolarizing steps
from the holding potential of
−80 mV; the voltage
protocol is shown on the top.
b Age-related changes in the
input resistance of cortical
astrocytes. Data are
presented as mean ± SD for
15 cells in each age group;
decrease in the astrocyte Rin
measured in 3 and 6 months
in comparison to 1 month
was statistically significant
with P < 0.05 (one-way
ANOVA). Reproduced with
permission from [44]
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purinoceptors, as well as the density of plasmalemmal glutamate transporter currents
demonstrate bell-shaped age dependency (Fig. 8.3). Ionic currents generated by the
above receptors and transporters are maximal in young adult (3- to 6-month-old)
animals; at 9–21 months of age these currents are much smaller, although they are
similar to currents recorded in 1-month-old animals [44].

Astrocytes are endowedwith specific type of excitability, known as ionic excitabil-
ity, which is associated with spatially and temporally organised fluctuations in the
cytosolic concentration of several ions, including Ca2+, Na+, Cl− and possibly K+

and H+ [95, 97]. Intracellular Ca2+ and Na+ signalling are of particular importance
[95, 96] being involved in regulation of numerous astroglial physiological processes
such as secretion [94] or homeostatic transport [41, 71]. Neurotransmitter or synap-
tically induced astroglial Ca2+ signals are age dependent. For example, Ca2+ signals
are the largest in young adult mice and are relatively small in old and very young
animals (Fig. 8.4; [44]). This dependence may be reflected in the functional expres-
sion of astrocytic receptors. Most likely an increase in the density of receptors, as
well as in the density of plasmalemmal glutamate transporters and in the amplitude
of Ca2+ signals, occur in the period of maximal environmental stimulation associated

Fig. 8.3 Ageing affects the density of plasmalemmal glutamate transporters and ionotropic
receptor-mediated currents in acutely isolated single cortical astrocytes. aRepresentativewhole-cell
currents elicited in the acutely isolated astrocytes by application of 100μMglutamate (left column),
10 μM NMDA (middle column) and 10 μM ATP/αβmeATP (a potent and stable agonist at P2X1,
P2X3, P2X2/3, P2X1/5 and P2X4/6 receptors is also a weak partial agonist at human andmouse P2X4
receptors, but an antagonist at the rat P2X4 receptor; it has little or no effect at other P2X and P2Y
receptors), at holding potential of−80 mV. Glutamate- and NMDA-evoked currents were inhibited
by 10 μM D-AP5, an NMDA antagonist and 30 μM CNQX, an AMPA receptor antagonist; ATP-
evoked currents were inhibited by 10 μM PPADS, a selective purinergic P2X antagonist. b The
density of currents mediated by P2X, NMDA and AMPA receptors and plasmalemmal glutamate
transporters (GluT) in cortical astrocytes (mean± SD for 9–12 cells for each age group); statistical
significance of difference between average value for 1 month and corresponding values for 3 and
6 months P < 0.02 (ANOVA) for all types of currents
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�Fig. 8.4 Age-dependent changes in synaptically induced ionotropic Ca2+ signals in protoplasmic
astrocytes in situ in cortical slices. a Cortical layer II astrocyte of 9-month-old mouse was loaded
with the Ca2+ indicator Fura-2 in situ via patch pipette. Fluorescence images were recorded simul-
taneously with glial currents evoked by neuronal afferent stimulation in presence of a mixture of
TBOA (GluT blocker) and CNQX in control, and after consecutive application of 10 nM NF-449
(selective antagonist of P2X receptors) and at that in a company of 30 μM D-AP5. Representative
images (pseudo-colour, pipette image subtracted) and glial synaptic currents (GSC, right column)
were recorded before (rest) and after stimulation as indicated. Ca2+ transients (middle column)
are expressed as F340/F380 ratio averaged over the corresponding regions of interest shown in the
GFAP image of astrocyte (top right). b Age-related changes in the astrocytic Ca2+ signalling. Left
panel, average peak amplitudes of [Ca2+]i increases, induced by stimulation of neuronal afferents
in cortical astrocytes of different ages. Right panel, average inhibitory effect of antagonists of P2X
(NF449) and NMDA (D-AP5) receptors on the amplitudes of [Ca2+]i increases responses in cortical
astrocytes. Data are presented as mean ± SD for 3–4 cells for each age group; * P < 0.05, ** P <
0.01 one-way ANOVA compared to 1 month. Reproduced with permission from [44]

with intense learning; in younger and older ages synaptic activity is lower, which is
reflected in a decrease in receptors expression.

A decrease in astroglial gap junctional coupling was found in old (20–27-month-
old mice) neocortical astroglial syncytia [63]; there were no changes at earlier ages
(up to 14-month-old [9]). Astrocytes in older brains down-regulate expression of
aquaporin 4 (AQP4). A decrease in the density of these channels in the perivascular
endfeet affects clearance of the brain parenchyma through the glymphatic pathway
[42]. This decrease in AQP4 in the endfeet may be linked to the deficits in vesicular
trafficking, which is the key pathway in delivery of numerous molecules to specific
locations at the plasmalemma [64]. Ageing affects astroglial metabolic pathways, as
an age dependent increase in oxidative metabolism was reported in older astrocytes,
which may limit their ability to supply neurones with metabolic substrates [37].
There is also evidence of age-dependent alterations in astroglial ability to produce
lactate and hence to operate lactate shuttle [31]. Similarly, ageing is associated with
an increase in the ratio of glutamate to glutamine in the brain that indicates some aber-
rations in the operation of the glutamate/GABA-glutamine shuttle [16, 32]. Ageing
is also associated with a decrease in the brain levels of glutathione, mainly produced
in astrocytes; this limits the ability of astroglia to resist the oxidative damage to the
neural tissue [17, 50].

8.4 Oligodendroglia in Physiological Ageing

The human brain has a disproportionally large white matter when compared to other
mammals and even high primates [76], as indeed the white matter occupies >50% of
the human brain. Additionally, the level of myelination is well developed in the grey
matter [43], further demonstrating the importance of connectome to the cognition and
intelligence. The anatomical prevalence of the whitematter in the human brain is also
associated with very long development: myelination attains its peak at ~45–47 years
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of age,with a subsequent slow and yet progressive age-dependent decline [1].Normal
ageing causes rather substantial shrinkage of the white matter which diminishes by
~11%; in comparison, the volume of the grey matter is decreased by only ~3% [33].
The highest degree of age-dependent alterations of the white matter is detected in
the prefrontal cortex and associative tracts [66], which suffer early in Alzheimer’s
disease [15]. Incidentally, these brain regions emerge late in evolution and they are the
slowest to develop, which instigated a ‘last in, first out’ hypothesis of thewhitematter
ageing [66, 90]. Conceptually, changes in the white matter can be considered as a
valuable marker of ageing [90], and moreover, accelerated degeneration of the white
matter seems to indicate development of neurodegeneration and profound cognitive
decline [65, 90].

Cells of the oligodendroglial lineage represented by oligodendrocytes and their
precursors (also known as NG2 glia [13]) are, arguably, the most numerous glial cells
in the human brain. Cells of the oligodendroglial lineage, in contrast to astrocytes,
are highly vulnerable to excitotoxicity and to oxidative stress. The oligodendroglial
precursors/NG2 cells, as well as more mature oligodendroglia, express several types
of ionotropic glutamate receptors (including NMDA receptors) and P2X purinocep-
tors, which all can mediate excitotoxic Ca2+ overload and cause cell death [51, 53,
74, 92]. Furthermore, oligodendrocytes are highly vulnerable to oxidative damage,
which is stipulated by a rather low content of antioxidants. In particular oligoden-
droglial cells contain two times less of glutathione compared to astrocytes, and yet
they experience six times more of oxidative stress in physiological conditions [38,
87].

Ageing is associated with a significant decrease, by up to 30%, of the total num-
ber of oligodendrocytes [19, 59]. Rather surprisingly, in monkeys the number of
oligodendroglial cells has been claimed to increase with age; for example, in the
visual cortex of old monkeys the number of oligodendrocytes increased by 50%
[62]. Notably, these oligodendrocytes also showed aberrant atrophic morphology
and a deficiency in myelin production, which defined decreased CNS myelination
in old primates [62]. The age-dependent myelin deficiencies are also associated
with vasculature lesions in the white matter that add strain on oligodendrocytes and
promote their degeneration [3, 101]. Ageing is also associated with a diminished
capacity of remyelination supported by the NG2 glia. Notwithstanding the fact that
the population of NG2-oligodendroglial precursors does not change numerically in
the old brain, the capacity of NG2 cells to differentiate into mature oligodendrocytes
is reduced. The NG2 cells in the old brain tend to retain their precursor status, so that
the time of differentiation into mature myelinating phenotype is increased by almost
two times [102]. All in all, age-dependent changes in the white matter are prominent
and may be the leading cause of age-dependent cognitive decline.
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8.5 Microglia in the Ageing Brain

Microglia in the ageing human brain undergoes rather idiosyncratic metamorphoses,
which are not present in laboratory animals. Fundamentally, human microglia grad-
ually degenerates, thus, reducing the defensive capabilities of the senescent nervous
tissue.

In animals, the ageing process results in complex changes in microglial numbers
and state. In old rats, microglial numbers decreased in the nigrostriatal system and
cerebral cortex [77], and remained unchanged in the hippocampus [91]. In contrast,
in old rhesus monkeys the densities of microglial cells increased, while these cells
showed signs of increased phagocytosis [61]. In humans, ageing is associated with
dystrophy and degeneration of microglia which resulted in deterioration of neuro-
protective and defensive functions of these cells [84]. Morphological features of
dystrophic aged microglia include deramification, spheroid formation, gnarling and
fragmentation of processes [84]. The processes of aged microglial cells are shorter
with less branching and reduced arborized area; the total number of microglia seems
not to change with age [11]. Microglial dystrophy and a loss of function arguably
increase the vulnerability of the old brain to neurodegeneration and may facilitate
evolution of age-dependent cognitive disorders, including Alzheimer’s disease [83].
The age-dependent microglial dystrophy can be associated with cytoskeleton abnor-
malities that underlie the cytorrhexis, rupturing of cells [88]. Microglial cells can
accumulate tau [5] and the aged microglia (in marmosets) were reported to contain
hyperphosphorylated tau [67]; this microgliatauopathy can be a factor that initiates
microglial degeneration and dystrophy [67]. The prevalence of dystrophic microglia
limits the neuroinflammatory capabilities of the old brain tissue, questioning the
concept of inflammaging.

There is also evidence for age-dependent microglial activation in normal ageing,
especially in rodents [57, 60] and in Macaca nemestrina monkeys [78]. There is
an overall trend of hyperreactivity of microglia in aged mice [25, 46, 79], which is
strikingly different to the dystrophy and a loss of function of human aged microglia,
questioning the validity of rodents as an experimental models for brain ageing.

Aged human microglial cells are represented by two morphologically distinct
classes identified as dystrophic or senescent microglia and dark microglia. The dys-
trophic microglial cells [85] are characterised by spherical swellings of processes,
dilatation of the endoplasmic reticulum and abundance of lipofuscin deposits (that
emerge from incomplete lysosomal degradation and endolysosomal stress and over-
load). The dystrophic microglial cells have been identified both in old brains and
in high densities around senile plaques of Alzheimer’s diseases patients [88]. Dys-
trophic microglial cells have fragmented processes and have a substantially dimin-
ished activation capacity [85, 88]. The darkmicroglia have been defined so because of
the electron-dense cytoplasm and nucleoplasm, which in electronmicroscopy appear
as dark as mitochondria [2]. The dark microglia are also characterised by ultrathin
and highly ramified processes that frequently enwrap synaptic elements, axons and
dendrites. This may indicate that dark microglial cells are involved in eliminating
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synapses [2]. In addition, dark microglia have altered expression of classical marker
IBA1and they donot express theP2Y12 purinoceptor,which is considered as amarker
for healthy surveillance microglia. Dark microglial cells cumulate with ageing and
even more so in age-dependent pathologies [2].

8.6 Conclusions

All types of neuroglial cells undergo age-dependent remodelling which seems to
be critical to define a physiological or pathological outcome of ageing process. In
general, the age-dependent changes in neuroglial cells are characterised by a pro-
gressive loss of function which limits neuroprotection and regenerative potential
of the neural tissue. This process of neuroglial senescence, however, is variable and
most likely individually tailored by the lifestyle, environmental stress and comorbidi-
ties. Neuroglial paralysis facilitates emergence of neurodegeneration and cognitive
decline, and hence a neuroglial state represents a potential therapeutic target for
age-associated neurological disorders.
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