
Chapter 13
Microglia in Parkinson’s Disease

Margaret S. Ho

Abstract Microglia are the most abundant immune cells in the central nervous sys-
tem (CNS), where they interact with neurons and exhibit a wide array of functions
in physiological and pathological conditions. Physiologically, microglia mediate
synaptic pruning and remodeling crucial for neural circuits and brain connectiv-
ity. In pathological conditions such as neurodegeneration in the Parkinson’s disease
(PD), microglia are activated, migrated to the injury site, and prone to engulf debris,
sense pathology, and secrete possible pro- and anti-inflammatory factors. Microglia
mediate responses such as inflammation and phagocytosis associated with neurode-
generation and are pivotal players in exacerbating or relieving disease progression.
This chapter provides an overview on microglial function in the neurodegenerative
disease—Parkinson’s disease (PD). An overview on the pathology of PD will first
be given, followed by discussion on receptors and signaling pathways involved in
microglia-mediated inflammation and phagocytosis. Mechanism of how microglia
contribute to PD by inflammation, phagocytosis of α-Synuclein (α-Syn), and inter-
action with PD genes will also be discussed.
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13.1 Introduction

As the most abundant immune cells residing in the central nervous system (CNS),
microglia are small cells intertwining with neurons both physically and functionally,
exhibiting a wide array of functions in physiological and pathological conditions.
Microglia display differential density in various brain regions, with different com-
binations of markers underlying their regional identity and distinct functional roles
[37]. This distributional difference, dynamic behavior, and unique cellular features
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have made them significant brain cells that receive substantial attention and merit
in-depth exploration.

Microglia in physiological conditions mediate a variety of brain functions such as
synaptic pruning and remodeling. Neuron-microglia bidirectional signaling is partic-
ularly crucial for neural circuits and brain connectivity [98, 114, 142]. Upon patho-
logical trigger, microglia migrate to the injured site and act as a double-edged sword
to relieve or exacerbate the injury. Decades of study have indicated that microglia
doing these jobs are in two major states, resting and activated, distinguishable by
the forms of their morphology. While microglia constantly surf around the environ-
ments and sense pathology in their resting state [93], they transit to an activated
state once the nervous system is under detrimental attack and becomes pathologi-
cal. Transition from the resting to activated state requires complex regulation, thus
allowing microglial activation to be under tight control [55]. Despite this common
bipartite categorization, it is generally believed that different targets and receptors
tune microglial responses in a continuous manner and multiple forms of activation
state exist [43, 116, 137].

Intriguingly, activation of microglia is often associated with neurodegeneration,
a degenerative process underlying the ultimate pathology of neurodegenerative dis-
eases. Distinct from resting microglia, activated microglia are often of amoeboid
morphology, short processes, enlarged soma, and de novo expression of cell surface
receptors. They are prone to engulf debris, sense pathology, and secrete possible pro-
and anti-inflammatory factors that exacerbate or relieve disease progression. Thus,
the activation profile of microglia is often an important indicator for and reflects
neuronal dysfunction in neurodegenerative diseases. In this chapter, we will dis-
cuss microglial function in the neurodegenerative disease Parkinson’s disease (PD).
An overview of the pathology of PD will first be given, followed by a discussion
on receptors and signaling pathways involved in microglia-mediated inflammation
and phagocytosis. How microglia contribute to the occurrence of PD pathological
hallmarks such as dopaminergic (DA) neuron death and formation of α-Synuclein
(α-Syn)-containing Lewy bodies (LB) aggregates and mechanisms pertaining to PD
gene function will also be discussed.

13.2 Parkinson’s Disease

As the second most common neurodegenerative disorder, PD is clinically character-
ized by symptoms such as resting tremor, bradykinesia, postural instability, accom-
panying non-motor symptoms like cognitive impairment and autonomic dysfunction.
Inside the brain, a series of neuropathological changes appears throughout the course
of PD development, ultimately leading to the diagnostic hallmark: the aggregation of
intracellular inclusions named Lewy bodies (LBs) and Lewy Neurites (LNs) and the
loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc).
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This progressive brain pathology can be staged by the LB appearance in different
regions of the brain [12, 13], with initial detection of LB in the periphery such as
dorsal motor nucleus of the glossopharyngeal and vagal nerves or the olfactory bulb
[74], followed by the appearance in the SNpc DA neurons in mid-stage, then the
rostral propagation to other parts of the brain.

While most of the PD cases are sporadic, studies on rare familial cases offer the
strength of identifying possible genetic causes for PD. The central component for LB
and LN, α-Synuclein (α-Syn), is the gene product from SNCA (PARK1)—the first
PARK gene identified in the studies of rare familial PD cases. Not only that genome-
wide association (GWAS) studies have identified SNCA SNPs as risk variants for
sporadic PD [112, 118], the missense SNCAmutation A53T [104], along with many
others and duplications in the SNCA locus, have all been shown to associate with
PD [2, 18, 66, 73, 101, 119, 141]. Interestingly, PD-associated mutations of α-Syn
confer differential self-aggregation properties [19, 21, 28, 34, 35, 38], implicating
that mutant α-Syn with altered propensities are potentially toxic and more prone for
aggregation in disease conditions.

13.3 Microglia in PD

How microglia contribute to PD pathology remains to be an important area of study
for researchers centering on the perspective of non-cell-autonomous regulation of
neurodegeneration. Although no affirmative connection between DA neuron death
and microglial activation has been established yet, microglial activation is thought
to be a significant part of the disease process integrated either as a cause or conse-
quence [11, 56]. Some of the earlier studies have provided evidence that microglia
are involved in PD. First, the human leukocyte antigen gene (HLA-DRA) expressed
specifically in microglia has been identified by a genome-wide association (GWAS)
study as a genetic risk factor for late-onset PD [40]. p.R47H variant of microglial
triggering receptor expressed on myeloid cells-2 (TREM-2) is also associated with
PD [106]. These results suggest that microglia-specific regulation of PD progression
exists. In addition, positron emission tomography (PET) studies show that microglio-
sis is an early and sustained response of PD [6, 33, 122]. Reactive microglia have also
been detected in toxin-induced and transgenic mouse models of PD [22, 46, 84, 111].
Brainswith an injection of theGram-negative bacterial endotoxin lipopolysaccharide
(LPS), a toxin that specifically induces microgliosis, show signs of DA neuron loss
in the substantia nigra (SN). In toto, these findings suggest that microglial activation
correlates with PD progression and induces DA neuron toxicity and death. Finally,
studies on regional density ofmicroglia revealed that they are prominently distributed
in SN and striatum, where microglia exhibit a region- and stage-specific release of
cytokines andmediators, thereby affectingDAneuron death [37, 76]. Taken together,
these observations indicate a pivotal role for microglia in PD disease progression and
raise interests in studying their functional roles during PD pathology (Fig. 13.1).
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Fig. 13.1 Microglia in PD. Microglia transit from resting state to activating state when the nervous
system undergoes pathological attack such as DA neuron loss in PD. A number of observations have
dictated a pivotal role for microglia during this process, such as the identification of a microglial
specific gene HLA-DRA by GWAS associated with PD, p.R47H variant of TREM-2 associated
with PD, and microgliosis as an early and sustained response of PD shown by PET studies

13.4 Microglial Receptors in PD

Similar to other immune cells, CNS microglia express pattern recognition recep-
tors (PRRs) that respond to pathogen-associated molecular patterns (PAMPs) and
recognize invading pathogens for host defense immune mechanisms. One type of
microglial PRRs, toll-like receptors (TLRs) [132, 136], are single-pass transmem-
brane proteins with an N-terminal extracellular ligand recognition domain carrying
leucine-rich repeats [83] and the C-terminal intracellular Toll-interleukin 1 receptor
(TIR) domains transforming extracellular recognition into an intracellular response
[15, 48, 140]. TIR domains interact with adaptor molecules such as MyD88, TRIF,
and TRAM in response to various stimuli. For instance, α-Syn or Pam3CSK4, a syn-
thetic triacylated lipopeptide, activates TLR2-mediated downstream signaling via
the adaptor MyD88 and a co-receptor, either TLR1 or TLR6. Upon α-Syn activation
of the TLR1/2 receptor, interaction between MyD88 and TIR domain first activates
the kinase activity of the interleukin-1 receptor-associated kinase (IRAK) complex
[75], which in turn interacts with and activates the TNF receptor-associated factor 6
(TRAF6) via its K63-linked auto-ubiquitination. These sequential events lead to the
activation of the transforming growth factor β-activated kinase-1 (TAK1) complex
and the release of IKKs, which mediate IκBα degradation and the ultimate pro-
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duction of pro-inflammatory cytokines through MAPK activation and the nuclear
translocation of NF-κB, JNK, and p38 (Figs. 13.1 and 13.2) [57, 58, 125].

Microglial TLR1/2 has been shown to be central to the α-Syn pathogenesis: an
important therapeutical target for analysis [4]. First, the expression level ofmicroglial
TLR2 is elevated in patients of incidental Lewy Body disease (iLBD) which equals
to a prodromal Braak stage 1–3, suggesting that elevated TLR2 level correlates
early microglial activation response in PD [25]. Next, α-Syn activates microglial
TLR1/2 in different experimental systems including BV-2 microglia, primary mouse
microglia, or human microglia [7, 23, 60]. Similarly, medium from α-Syn over-
expressing SH-SY5Y cells containing oligomeric α-Syn activates microglia in a
TLR2-dependent manner [60, 61]. Upon TLR1/2 activation, microglia release pro-
inflammatory cytokines tumor necrosis factor-alpha (TNFα) and interleukin (IL)-1β
in aMyD88-dependentmanner [23, 124, 143]. On the other hand, activatedmicroglia
also release anti-inflammatory cytokines, pointing to a diverse functional output upon
α-Syn activation of microglial TLR1/2. Taken together, these results suggest that
microglial TLR1/2 is a direct α-Syn target and the subsequent TLR1/2-activated sig-
naling pathways participate in PD progression by releasing cytokines that tune the
degree of neuroinflammation.

Furthermore, mice lacking the fractalkine receptor CX3CR1 show extensive loss
of tyrosine-hydroxylase (TH)-positive neurons in the MPTP-induced PD mouse
model [17]. CXCL-CX3CR1 signaling is also involved in a 6-hydroxydopamine (6-
OHDA) ratmodel of PD,whereCX3CL1was found to suppressmicroglial activation
and reduce neuronal loss [96]. It has also been shown that mice lacking CX3CR1
exhibit reduced α-Syn-mediated inflammatory response and microglial phagocyto-
sis, further strengthening the importance of CXCL-CX3CR1 signaling in PD [128].

13.5 Microglia-Mediated Neuroinflammation in PD

The very first evidence that inflammation is involved in PD came from the observa-
tion that pro-inflammatory mediators such as TNFα, IL-1β, and IL-6 were detected
in elevated levels in the cerebral spinal fluid (CSF) and brains of PD patients, par-
ticularly in the striatum [87, 88, 91]. The elevation of cytokine levels is part of the
microglial activation and recruitment (microgliosis) process that starts early, accom-
panies neurodegeneration, and persists throughout the course of PD [50, 51, 65].
When activated microglia induces neuroinflammation, they either exhibit the M1
neurotoxic phenotype or the M2 neuroprotective phenotype [42, 63, 89, 105]. In the
scenario of activated M1-like microglia, these cells often adopt an amoeboid mor-
phology, are highly capable to phagocytose and remove apoptotic cell debris, and
release massive pro-inflammatory factors such as IL-1β, IL-12, TNFα, and inducible
nitric oxide synthase (iNOS). Microglial release of these factors often couples with
DA neuron loss in PD. On the contrary, M2-like activated microglia are of thin cellu-
lar bodies and ramified processes, and secrete anti-inflammatory cytokines including
IL-4, IL-13, IL-10, TGFβ, and neurotrophic insulin-like growth factor 1(IGF-1) to
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Fig. 13.2 Microglial receptors in PD. An example of microglial receptor TLR1/6 and its down-
stream pathway was illustrated. TIR domains of TLRs interact with adaptor molecules such as
MyD88, TRIF, and TRAM in response to various stimuli. Ligands such as α-Syn or Pam3CSK4
activate TLR2-mediated downstream signaling via the adaptor MyD88 and a co-receptor, either
TLR1 or TLR6. Upon α-Syn activation of the TLR1/2 receptor, interaction between MyD88 and
TIR domain first activates the kinase activity of the interleukin-1 receptor-associated kinase (IRAK)
complex,which in turn interactswith and activates theTNF receptor-associated factor 6 (TRAF6) via
its K63-linked auto-ubiquitination. These sequential events lead to the activation of the transforming
growth factor β-activated kinase-1 (TAK1) complex and the release of IKKs, which mediate IκBα

degradation and the ultimate production of pro-inflammatory cytokines through MAPK activation
and the nuclear translocation of NF-κB, JNK, and p38
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ease inflammation and accelerate repair. Thus, microglia-mediated inflammation
has double-sided effects in terms of relieving and exacerbating disease progression
[139]. At one end, the inflammatory response might be beneficial by promoting neu-
ron survival, whereas, on the other hand, the production of neurotoxic factors might
also enhance the neurodegeneration. It is noteworthy to mention that microglia-
released pro- and anti-inflammatory molecules coexist in the early stage of PD and
their expression profiles change over time, suggesting that dynamic regulation of
microgliosis correlates with PD progression [102, 113].

Interestingly, prominent microgliosis is detected in various toxin-based models
of PD such as 6-OHDA, MPTP, and rotenone [80, 81, 94, 120, 133, 138] as well as
transgenic models of PD based on α-Syn. Microgliosis in α-Syn transgenic models
occurs early in the stage and precedes DA neuron death, suggesting that cell death is
not necessarily a prerequisite for microglial activation [71, 85, 123]. Based on these
findings, it has been suggested that signals inducing microgliosis and inflammation
might be released from the toxicα-Synprotein aggregates or the degenerated neurons,
making an increasing number of microglial cells reactive and migrate to the injury
site to defend the progressively degenerating environment.

13.6 Microglial Activation by α-Syn

Microglia-mediated inflammation is regulated by PD risk factors such as DJ-1,
LRRK2, and α-Syn. For instance, lacking LRRK2 attenuates inflammation via
inhibiting p38 MAPK and NF-κB pathways [59, 86]. α-Syn, as mentioned above,
positively regulates microglial inflammatory responses [124, 143]. These findings
provide the molecular link between microglia-mediated neuroinflammation and PD
pathology. Given that some of these factors might be neuronal specific, bidirectional
signaling between neurons and microglia is therefore established as an extremely
important theme in PD disease progression.

During PD pathology, α-Syn is secreted to the extracellular space from neurons
and detected in the extracellular biological fluids in PD patients [79, 129]. Clear
evidence shows that extracellular α-Syn directly activates microglia [124, 143]. This
activation has significant consequences. First, it is part of a key event for fully shift-
ing activated microglia to exhibit a pro-inflammatory phenotype [3, 127]. Next,
α-Syn-induced microglial activation promotes α-Syn phagocytosis via microglial
FcγR receptor and subsequently activates a series of pro-inflammatory events such
as nuclear translocation of NFγB p65 and elevated release of cytokines, potentiating
the loss of DA neurons and chronic neurodegeneration in PD [16, 64, 69, 72, 124].

Results from studies on the form of α-Syn that activates microglia were contra-
dictory. Different forms of α-Syn exhibit different effects on microglial phagocy-
tosis and inflammatory activation. Pathogenic form of α-Syn, such as α-SynA53T,
triggers pro-inflammatory microglial response and impairs phagocytosis [46, 108].
In a different study, however, α-SynA53T is implicated in promoting phagocytosis
[109]. Physiological α-Syn, on the other hand, inhibits inflammation yet promotes
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phagocytosis [3]. It is generally believed that monomeric α-Syn promotes phago-
cytosis whereas oligomeric α-Syn acts in an opposite way [100], yet other studies
also indicate enhanced microglial phagocytosis by fibrillar and C-terminal truncated
α-Syn [29]. Aggregated α-Syn has been shown to inhibit microglial phagocytosis
by activating SHP-1 via interaction with FcγRIIB, and is more potent in mediating
microglial release of TNFα and IL-1β [20, 47]. Taken together, α-Syn conformation
and its pathogenic form play pivotal roles in regulating microglial phagocytosis and
subsequent activated inflammatory response, accompanying neurodegeneration in
PD.

In addition to the aforementionedTLRs,α-Syn interactswith a number of different
microglial receptors for potentiating phagocytosis and inflammatory responses. For
instance, in response to α-Syn, the Prostaglandin E receptor subtype 2 (EP2) regu-
lates α-Syn phagocytosis andCD11b-mediatedmicroglial activation [54]. α-Syn also
interacts with CD11b to activate NOX2 through Erk1/2 kinase activation and RhoA-
dependent pathway to direct microglial migration [49, 134]. Furthermore, α-Syn,
in its monomeric or pathogenic mutant form, interacts with the scavenger receptor
CD36 to regulate microglial activation and TNFα release [123, 124]. Another recep-
tor associated with α-Syn is the protease-activated receptor (PAR-1), working in a
paracrine manner initiated by the secretion of matrix metalloproteinases [69]. The
microglial purinergic P2X7 receptor is also implicated in α-Syn-mediated microglial
activation via PHOX activation [53]. Taken together, these receptors receive signals
from α-Syn and trigger different cascades of signaling pathways within microglia
to activate inflammatory responses, creating the diversity in microglial outputs upon
pathological trigger as PD progresses.

13.7 Microglial Phagocytosis in PD

Microglia mediate phagocytosis of apoptotic cells, unfolded proteins, or neuronal
debris, a process carried out by the resting microglia in the developing brain or the
reactive microglia in pathological conditions such as PD [116, 117]. Interestingly,
phagocytosis has been considered beneficial associated with the anti-inflammatory
function of microglia, raising the interest in studying cellular machinery mediating
this process. A list of receptors has been shown to mediate microglial phagocyto-
sis, including TLRs, the scavenger receptors CD14, TAM (Tyro3, Axl, and Mer)
receptor, and TREM-2 [31, 41, 121, 131]. First, microglial phagocytosis of α-Syn is
impaired in the absence of TLR4, suggesting TLR4 is involved in microglial α-Syn
uptake. Alternation of TLR4 signaling modulates pro-inflammatory responses and
ROS production, and promotes neurodegeneration [29, 121], whereas treatment of
TLR-4 agonist also protects the survival of transgenic α-Syn overexpressing mice
[131]. These findings suggest that TLR4 promotes microglial clearance of α-Syn,
thus playing a beneficial role in controlling α-Syn spread and PD progression.

TREM-2 is another microglia-specific receptor that mediates phagocytosis of
apoptotic neurons [126]. Alternation in TREM-2 expression affects phagocyto-
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sis and subsequent microglia-mediated inflammatory responses by regulating pro-
inflammatory gene transcription. TREM-2 is considered neuroprotective as increased
levels of TREM-2 enhancesmicroglial phagocytosis and decreases pro-inflammatory
responses by regulating TLR4-mediated activation of NF-κB signaling [107].

Expression of the scavenger receptor Mannose Receptor C-Type 1 (MRC1) is
decreased in an MPTP mice PD model, suggesting MRC1-mediated microglial
phagocytosis is crucial for PD progression. Like TREM2, increased MRC1 expres-
sion (thus MRC1-mediated phagocytosis) is also beneficial as the increased MRC
expression is part of the peroxisome proliferator-activated receptor gamma (PPARγ)-
mediated mechanism of neuroprotection [68]. It is noteworthy mentioning that
despite the supporting evidence from TREM-2 and MRC1 that microglial phago-
cytosis is beneficial for PD, other evidence has suggested phagocytosis contributes
to neurodegeneration [5]. For instance, loss of TAM phagocytic receptor slightly
extended survival of α-SynA53T overexpressing mice, suggesting TAM-mediated
microglial phagocytosis promotes neurodegeneration and accelerates animal death
[31] (Fig. 13.3).

Microglial phagocytosis is also regulated by PD risk factors such as DJ-1, α-Syn,
and LRRK2 [20, 78, 82, 92, 100]. For instance, DJ-1 regulates microglial phagocy-
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Regulate
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Fig. 13.3 Microglial phagocytosis in PD. Using α-Syn as an example, the receptor-mediated
microglial phagocytosis were illustrated. TLR4, TREM-2, and MRC1 are receptors that medi-
ate microglial phagocytosis during PD. This process is under tight regulation by other PD factors
such as LRRK2, DJ-1, and α-Syn
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tosis of α-Syn via autophagy and in an LC3 (microtubule-associated protein 1A/1B-
light chain 3)-dependent (LAP) manner [52, 92], whereas α-Syn is both a regulator
and a substrate for microglial phagocytosis. How α-Syn contributes to microglial
activation and phagocytosis is discussed above, and microglial phagocytosis of α-
Syn is summarized in the next section.

13.8 Microglial Phagocytosis of α-Syn

Previous studies have indicated that microglial phagocytose α-Syn [10, 70]. Some of
the receptors functioning in microglial phagocytosis and activation, like TLR2 and
TLR4, have been implicated in α-Syn uptake and α-Syn-mediated activation [29,
60, 121, 130]. While TLR4 is required for both microglial activation and phagocy-
tosis of α-Syn [29, 121], TLR2 mainly receives signals from oligomeric α-Syn, but
not monomeric or fibrillar α-Syn [60]. TLR2 activation is also crucial in neurons to
decrease the uptake and autophagy of α-Syn, promoting neuronal α-Syn accumula-
tion [26, 62]. These findings suggest that signaling cascade initiated by TL2 might
be different in neurons and glia, and contribute differently to the disease. More-
over, microglia have been observed in vitro to uptake α-Syn-containing exosomes
released by oligodendrocytes via macropinocytosis [30]. In addition to phagocytosis
and macropinocytosis, other clathrin-independent routes such as monosialoganglio-
side (GM1)-dependent lipid rafts have also been shown to mediate microglial uptake
of α-Syn [99]. Reduced expression of DJ-1, another PD risk factor, reduces cell
surface lipid raft expression in microglia and impairs their ability to uptake soluble
α-Syn [92].

13.9 Microglia, LRRK2 and PD

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common
cause of familial PD and a risk factor for sporadic PD [44, 67, 97]. In the immune sys-
tem, LRRK2 expression inmonocytes is increased upon inflammation and the release
of pro-inflammatory mediators like IL-1β, TNFα, and IFNγ [32]. Upon microglial
activation by LPS in the brain, LRRK2 expression is also increased in a TLR4-
dependent manner [86]. It is generally believed that LRRK function correlates with
its phosphorylation level on Serine residue 935 (Ser935) [27, 115], a site in which
phosphorylation level is crucial for microglial activation and induces inflammatory
response in PD. It has also been shown that PD-associated mutations of LRRK2
at position R1441 reduce PKA-mediated LRRK2 phosphorylation and prevent its
binding with the adaptor protein 14-3-3 binding [90], suggesting that mutations in
LRRK2 associated with PD could affect LRRK2 phosphorylation, hence its kinase
activity and cellular function.
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One of the major LRRK2 funtions is to regulate the autophagy/lysosome degra-
dation pathway. LRRK2 is localized on the autophagosome vesicles as shown by
immune-electron microscopy and biochemical approaches [1, 36, 115]. Membrane
localization of LRRK2 on autophagic and lysosome-related vesicles indicates that
LRRK2 plays a pivotal role in regulating their function [8, 9]. LRRK2 also inter-
acts with membrane proteins on these vesicles such as Rab7 (late endosomes) and
Lamp2A [24, 45, 77, 95]. These results suggest that LRRK2 is involved in different
steps of autophagy/lysosome pathway and its activity alters the degradative activity,
development, or final maturation of these different vesicles.

Interestingly, the PD-associated LRRK2 mutation, G2019S, in its kinase domain
results in an upregulation of LRRK2 kinase activity [39, 135] and has been impli-
cated in autophagic dysfunction. Cells expressing LRRK2G2019S consistently exhibit
increased autophagic vesicles or marker expression [14, 103, 110], possibly due
to an increase in autophagic flux or an arrest in autophagosome/lysosome fusion.
It is possible that defects in the autophagy/lysosome pathway caused by increased
LRRK2 activity result in insufficient degradation of accumulated protein such as
α-Syn, disrupting α-Syn proteostasis and underlying the mechanism of PD.
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