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Abstract
An endophyte is a microorganism which colonizes the healthy tissues of the host 
plant without causing any symptoms of disease. The relationship between the 
endophyte and the host ranges from latent phytopathogenesis to mutualistic sym-
biosis. Endophytes obtain nutrition and protection from plants and, in return, 
help their hosts to adapt to different ecological stress conditions by producing 
certain functional metabolites. Consequently, endophytes are usually metaboli-
cally more active than their non-endophytic counterparts. By virtue of their func-
tions in nature, endophytes produce multitude of natural products, particularly 
those having potential antimicrobial activities. As all the plants analysed for 
endophytism have been found to possess such organisms, endophytes represent 
a comparatively unexplored as well as a huge reservoir of bioactive metabolites. 
In this chapter, an effort is made to present an overview of the potential of endo-
phytic microorganisms as a source for antimicrobial agents.
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1	 �Introduction

The discovery of new antimicrobial agents is imperative for the treatment of infec-
tions caused by drug-resistant pathogens. Microorganisms are a well-known reser-
voir of bioactive natural products having huge potential in the field of pharmaceutical, 
industrial and agricultural applications (Demain 1999; Keller et al. 2005). From the 
foremost antibiotics, such as penicillin and streptomycin, to other life-saving drug 
molecules, like rapamycin and cyclosporin, microorganisms have contributed 
numerous molecules to natural product repositories that have the potential to treat 
human diseases. Natural products derived from microbial sources have been an 
important source of novel drugs (Clardy and Walsh 2004; Khosla 1997; Sieber and 
Marahiel 2005). Further, most of the anticancer and antimicrobial drugs currently 
available in the market are either natural products or their derivatives (reviewed by 
McAlpine et  al. 2005). In comparison to other natural sources, such as plants, 
microorganisms are both highly diverse and poorly explored. Reports based on esti-
mation of microbial population unfolded that only about 1% of bacteria and 5% of 
fungi have been identified and characterized, whereas the rest remain unexplored 
(Heywood 1995; Staley et  al. 1997). The contribution of microorganisms to the 
pharmaceutical industry is further limited by the potentiality of orphan biosynthetic 
pathways that do not express themselves under optimum conditions (Bok et  al. 
2006; Hertweck 2009). However, the vast array of techniques pertaining to the 
growth and manipulation of microorganisms, such as media engineering, co-cul-
ture, chemical induction, epigenetic modulation and metabolite re-modelling, cou-
pled with fermentation technology for scale-up, make them suitable for the 
production of useful natural products, both known and novel (Bok et  al. 2006; 
Knappe et al. 2008; Bergmann et al. 2007; Schroeckh et al. 2009; Riyaz-Ul-Hassan 
et al. 2012). Hence, microbiologists explore unique niches including extreme envi-
ronments, such as ocean beds, geothermal vents and cold desserts, in search of 
novel strains with promising bioactive potential (Staley et al. 1997).

In the recent past, it has been observed that much of the wealth of microbial 
biodiversity with complex biochemistry and secondary metabolite production 
resides in plant tissues (Strobel 2006). Interest in such microorganisms, termed as 
endophytes, increased immensely with the discovery of the billion-dollar anticancer 
drug, Paclitaxel, which was discovered in an endophytic fungus isolated from Taxus 
longifolia (Stierle et al. 1993). Since this ground-breaking discovery, numerous bio-
active molecules have been isolated from endophytic fungi (Strobel 2006; Wang 
et al. 2011a; Deshmukh et al. 2015). Endophytes share a symbiotic association with 
the plant host, growing in the interstitial spaces of tissues without causing any 
adverse effects on the host. The interaction between the partners may vary from a 
mutualistic association to a balanced antagonism (Strobel and Daisy 2003). Due to 
their asymptomatic nature, endophytic microorganisms remained a hidden reserve 
until their potential was realized in the recent years.

As much of the previous research focused on exploring the host-plant metabo-
lites in the endophytic partner (Stierle et al. 1993; Puri et al. 2006; Kusari et al. 
2009), the theory of horizontal transfer of the gene clusters, coding for the 
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secondary metabolites of the host, and other interactions between the plant and its 
endophytes received much impetus (Strobel and Daisy 2003). Interestingly, later 
studies suggest that the endophytes possess biosynthetic pathways independent of 
the plant host (Staniek et al. 2009). However, it could also be logical that the micro-
organisms produce similar metabolites to those of their endophytic partners, given 
that they would have more chances of thriving in plant tissues if they were resistant 
to the present metabolites, thus favouring the findings that many endophytes pro-
duce the metabolites of their hosts.

Endophytic microorganisms may influence the ability of the plants to function in 
the specific environmental conditions. They may also impact the structure of the 
plant communities by playing crucial roles in colonization, coexistence, competi-
tion and dynamics of soil nutrients (Clay and Holah 1999). In other cases, herba-
ceous plants and grasses are associations with dominant endophytes that produce 
toxic alkaloids, thus providing protection against herbivores (Braun et  al. 2003). 
Endophytes in woody plants are known to play specific defence roles to prevent 
them from pathogens (Strobel 2003). Overall, the biology and biochemistry of 
endophytic microorganisms is a novel emerging field with multitude of ecological 
outcomes.

Endophytes are metabolically more active than their free-living counterparts, 
and thus, they have the potential to produce exceedingly high numbers of secondary 
metabolites, which are often bioactive and of low molecular weight, and are pro-
duced as families of related compounds, with production often correlated with a 
specific stage of morphological differentiation (Keller et al. 2005). Several reasons 
are attributed to the increased metabolic activity of endophytes. Firstly, the organ-
ism needs to evolve in order to survive in the tissues of the plant, thus activating the 
production of molecules that help in the evasion of host defence mechanisms. 
Secondly, there exists a balanced antagonism between the endophyte and its host, 
resulting in the production of several phytotoxins by the microbial symbiont (Strobel 
and Daisy 2003; Strobel 2006). Recently, it has also been proposed that the chemi-
cal constituents of the host plant may bring about permanent epigenetic changes in 
the endophyte, thus turning on some of its otherwise ‘silent’ biosynthetic pathways 
(Riyaz-Ul-Hassan et al. 2012).

Endophytes have been known to produce volatile organic compounds (VOCs) 
with specific or nonspecific antimicrobial activities (Mitchell et al. 2010; Meshram 
et al. 2013) and may be involved in nature to build microenvironments that kill or 
inhibit pathogenic microorganisms (Riyaz-Ul-Hassan et  al. 2012; Strobel et  al. 
2011). VOCs are important in the functioning of both atmospheric and soil ecosys-
tems and have potential applications in biotechnological fields, viz. agriculture, 
industry and medicine. Surprisingly, no two microorganisms, even those that are 
morphologically and genetically identical, produce the same array of VOCs under 
similar growth conditions (Kudalkar et al. 2012).

The whole genome sequencing of microorganisms ushered a new area in the field 
of natural product research and drug discovery. The available knowledge about 
genetics and enzymology of natural products synthesized from microorganisms 
have expedited the identification and analysis of gene clusters involved in 
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biosynthesis of natural products in sequenced microbial genomes (Fischbach and 
Walsh 2006). Genome analysis of one of the first sequenced microbes, Streptomyces 
coelicolor, revealed that there are many more gene clusters encoding biosynthetic 
pathways than there are known natural products of the organism (Bentley et  al. 
2002). Similar observations have now been reported for several diverse, sequenced 
microorganisms, such as Aspergillus (Bok et  al. 2006), Streptomyces avermitilis 
(Ikeda et al. 2003), Saccharopolyspora erythraea (Oliynyk et al. 2007), Pseudomonas 
fluorescens (Paulsen et  al. 2005) and Salinispora tropica (Udwary et  al. 2007). 
These studies revealed that many novel natural compounds are still unidentified and 
thus unexplored from natural sources and indicated that the withdrawal of big phar-
maceutical companies from natural product drug discovery was premature. Over the 
past several years, genome mining for new natural products and biosynthetic path-
ways has become a rapidly advancing field (Corre and Challis 2007; Challis 2008). 
These findings strongly support the one-strain-many-compounds (OSMAC) 
approach, according to which varying growth conditions can positively influence 
the metabolite profile of microorganisms. Therefore, a multitude of potentially use-
ful natural products still awaits discovery (Peric-Concha and Long 2003).

In this chapter, we review the potential of antimicrobial compounds obtained 
from endophytic microorganisms with potential and touch-up on the board tech-
niques employed in the field of endophytic biology.

2	 �Why Endophytes?

In the battle against the increase of drug-resistant pathogens, there is an urgent need 
for novel alternatives to currently used antibiotics. Exploration of the unique niches 
of biodiversity leads to the discovery of new natural products, and the perusal of lit-
erature suggests that the microorganisms residing within the plant are an enormous 
untapped source of potential bioactive molecules (Menpara and Chanda 2013).

For a better understanding of why endophytes have been playing a key role in 
antimicrobial research, it is necessary to review their role in nature. Endophytes 
colonize internal plant tissues without causing any symptoms of disease. They are 
diverse at the species level, phylogenetically abundant, ecologically primed, evolu-
tionarily strong and are an unexplored group of taxonomic, genetic and functional 
diversity. Endophytes are ubiquitous and have been found in every studied plant. 
Microbes enter tissues of the plant through the roots or wounds or rather by creating 
wounds through the production of enzymes like cellulases. It is still unknown why 
plant’s defence mechanisms are ineffective against colonization by endophytes or 
why plants and endophytes coexist. Regardless, there exists a symbiotic (mutually 
beneficial) relationship between a plant and its endophytes; the endophytes are ben-
efitted by their access to plant nutrients, and the plant is benefitted by protections 
provided by the endophytes against pathogens, the promotion of plant growth and 
increased tolerances to biotic and abiotic stressors. Recently, it was shown that plant 
microsymbionts produce a variety of secondary metabolites that not only play a 
major role in providing defences to the host but which also aid in specific 
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interactions and communication with the plant (Brader et al. 2014). Due to the con-
stant process of microbial strain development by passage through various stages of 
plant growth and development, as well as their acquired ecological functions, endo-
phytes have evolved into proficient producers of bioactive secondary metabolites 
(Strobel et al. 2004; Porras-Alfaro and Bayman 2011; Nalli et al. 2015).

Endophytes, in particular, assist their hosts in evading pathogens by producing 
antimicrobial secondary metabolites. The potential antimicrobial activity of these 
strains may be due to their evolution over billions of years in diverse ecological niches 
and natural habitats (Strobel et al. 2004; Aly et al. 2011; Mousa and Raizada 2013).

Many studies have revealed a novel role of endophytes in the improvement of 
plant physiology, where some are known to interact directly or indirectly with min-
eral and nutrient uptake by the host plant (Singh et al. 2011a). In one study, it was 
revealed that endophytic fungi present in drought-tolerant species not only exert 
their action through the storage and secretion of sugars and alcohols but also through 
triggering minor changes in leaf physiology, which ultimately leads to reduced tran-
spiration losses (Auge et al. 2008). It has also been seen that under heavy metal 
stress, endophytes protect the host plant by reducing metal accumulation and trans-
port (Yamaji et al. 2016).

Some endophytic microorganisms are known to confer their own ecological 
functions, such as thermal tolerance, to the plants. They can also affect community 
structure and microbial interactions, which are the lead determinants of biodiversity 
in plants, and can interact with the systems of the host plant by influencing the avail-
ability of nutrients and by their ability to provide resistance to biotic and abiotic 
stress. Importantly, endophytes can be modified in such a way that their positive 
effects are exploited. For example, Leifsonia xyli, a xylem-inhabiting bacterial 
endophyte, has been genetically modified with a gene from Bacillus thuringiensis, 
thereby producing delta-endotoxin, which is active against insects in nature, espe-
cially Lepidoptera and Coleoptera (Mills et al. 2001). Endophytes can also be used 
as biological control agents (BCAs) and are advantageous over conventional BCAs 
due to their ability to be directly applied to the seeds, thereby avoiding the treatment 
of a large number of established plants (Ezra et al. 2009).

Various groups have been working on endophytes, and a significant amount of 
literature is available on the field. However, as stated before, the primary focus has 
been in isolating promising plant metabolites from the endophytes of the host, with 
considerable success (Puri et al. 2006; Kusari et al. 2009). Other works have focused 
on using endophytes as growth-promoting agents in various plants/crops (Tiwari 
et al. 2010; Singh et al. 2013; Wani et al. 2017). The endophytes studied have been 
mostly acquired from individual plants sporadically, but significant efforts have 
been made to bioprospect the endophytes from different locations (Raviraja 2005; 
Puri et al. 2006; Shweta et al. 2013; Qadri et al. 2013, 2014; Arora et al. 2016; Yu 
et al. 2010; Yedukondalu et al. 2017). Considering the enormity of the biodiversity, 
concerted efforts are needed to tap the endophytic microorganisms for bioprospec-
tion. It seems also logical to isolate and characterize sustainable microbial com-
pounds from these endophytes and to use new biology for known endophyte-produced 
molecules in order to discover bioactivities that have so far not been elucidated.
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3	 �Endophytes as a Source of Bioactive Antimicrobials

Bioactive molecules from endophytes have potential uses in medicine, agriculture, 
cosmetics and the food industry (Strobel and Daisy 2003; Shukla et  al. 2014). 
Classes of bioactive metabolites obtained from endophytes include, but are not lim-
ited to, alkaloids, cytochalasins, polyketides, terpenoids, flavonoids, steroids, cyclo-
hexanones, depsipeptides, lactones, lignans, peptides and quinines with 
antimicrobial, anticancer, antioxidant, insecticide and immunosuppressant potential 
(Fig. 1) (Guo et al. 2008; Kharwar et al. 2011; Mousa and Raizada 2013). Thus, 
numerous bioactive molecules of microbial origin have been characterized from 
endophytes, and many more await isolation (Mousa and Raizada 2013).

The extraction of secondary metabolites from the endophytic isolates is a crucial 
step (Fig. 2). It is affected by a number of factors, including solvent used and the 
methods employed for extraction. The evolution of the microorganism, which may 
have incorporated genetic information from its host plant, is known to directly influ-
ence the production of secondary bioactive metabolites that help them to adapt and 
carry out specific functions, such as protection the host from insects, pathogens and 
grazing animals (Gouda et al. 2016).

� Fungi

� Bacteria

� Actinomycetes

� Mycoplasma

Coevolution

Endophytes

Host Plant

Bioactive metabolites

Antimicrobial

Anticancer

Antioxidants

Insecticides

Immunosuppressant

Plant 
Biotechnology

Microbial 
Fermentation

Fig. 1  Plant-endophyte 
symbiotic relationship 
along with their potential 
applications. Endophytes 
are associated with plants 
in various forms including 
fungi, bacteria, 
actinomycetes and 
mycoplasma. They are 
known to produce 
bioactives that serve as 
antimicrobial, anticancer, 
antioxidant, insecticide and 
immunosuppressant 
compounds
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A list of endophytic microorganisms, with their host plants and identified antimi-
crobial activities that have been discovered in recent years, is provided in Table 1, and 
the chemical structures of potential secondary metabolites isolated from endophytes 
are illustrated in Fig. 3. Some of the most promising agents are discussed below:

•	 Leucinostatin A, produced by the endophyte, Acremonium sp., which originated 
from Taxus baccata, has exhibited antimicrobial activity against Pythium ultimum 
with a 50% inhibitory concentration of less than 1 μmol (Strobel et al. 1997).

•	 Ecomycins belong to a novel family of lipopeptides containing uncommon 
amino acids, such as β-hydroxy aspartic acid and homoserine, which exhibit 
antimycotic potential. Ecomycin A, B and C are isolated from Pseudomonas 
viridiflava, a plant-associated bacterium having significant bioactivities against a 
broad spectrum of human and plant pathogens. Ecomycin B, in particular, exhib-
ited the most potential, with an MIC of 40 mg/ml against Cryptococcus neofor-
mans and 31 mg/ml against Candida albicans (Miller et al. 1998).

•	 Cryptocandin, a unique lipopeptide with significant antimycotic activity, was 
isolated from the endophytic fungus Cryptosporiopsis quercina. It was reported 
with the MIC value of 0.03–0.07 μg/ml against the fungal pathogens Candida 
albicans, Trichophyton mentagrophytes and Trichophyton rubrum. It was also 
found to be active against a number of fungal phytopathogens, including 
Sclerotinia sclerotiorum and Botrytis cinerea (Strobel et al. 1999).

Structural illustration of the isolated compounds through spectroscopy

Isolation and analysis of compounds using HPLC

Pre purification through solid-phase extraction

Concentrate organic soluble fraction using rotor 
evaporator 

Extract using equal volume of organic solvent
thrice (Ethyl acetate or Dichloro-methane)

Homogenized using 10% methanol

Cultivation in liquid medium

Maintenance on solid medium

Fig. 2  Extraction of secondary metabolites from endophytes
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Table 1  A list of endophytic microorganisms, with their host plants and identified antimicrobial 
activities that have been discovered in recent years

Endophyte Host Plant Activity against pathogens References
Colletotrichum sp. Artemisia annua Rhizoctonia cereal, 

Phytophthora capsici and 
Helminthosporium sativum

Lu et al. (2000)

Colletotrichum 
gloeosporioides

Artemisia 
mongolica

Bacillus subtilis, 
Staphylococcus aureus and 
Sarcina lutea

Zou et al. (2000)

Phomopsis longicolla Dicerandra 
frutescens

B. subtilis and S. aureus Wagenaar and 
Clardy (2001)

Paenibacillus 
polymyxa, Bacillus 
sp. and Pseudomonas 
poae

Panax ginseng Achlya klebsiana and Pythium 
spinosum

Adhikari et al. 
(2001)

Streptomyces sp. Monstera sp. Cryptococcus neoformans Ezra et al. 
(2004)

Nodulisporium sp. Juniperus cedre B. megaterium, Chlorella 
Fusca, Microbotryum 
violaceum and Septoria tritici

Dai et al. (2006)

Phomopsis cassia Cassia 
spectabilis

Cladosporium cladosporioides 
and C. sphaerospermum

Silva et al. 
(2006)

B. amyloliquefaciens Scutellaria 
baicalensis 
Georgi

Streptococcus thermophilus, 
Saccharomyces cerevisiae, 
Botryodiplodia theobromae and 
Penicillium expansum

Sun et al. (2006)

Botryosphaeria 
mamane

Garcinia 
mangostana

S. aureus and MRSA Pongcharoen 
et al. (2007)

Phomopsis sp. Excoecaria 
agallocha

Candida albicans and 
Fusarium oxysporum

Huang et al. 
(2008)

Ampelomyces sp. Urospermum 
picroides

S. aureus, S. epidermidis and 
Enterococcus faecalis

Aly et al. (2008)

Phomopsis sp. Garcinia dulcis Mycobacterium tuberculosis Rukachaisirikul 
et al. (2008)

Phoma sp. Saurauia 
scaberrinae

S. aureus Hoffman et al. 
(2008)

Penicillium sp. Acrostichum 
aureum

S. aureus and Candida albicans Cui et al. (2008)

Penicillium sp. Cerbera 
manghas

S. aureus Han et al. (2008)

Edenia 
gomezpompae

Callicarpa 
acuminate

P. capsici, P. parasitica, F. 
oxysporum and Alternaria 
solani

Macias 
Rubalcava et al. 
(2008)

Coniothyrium sp. Sideritis 
chamaedryfolia

Escherichia coli and B. 
megaterium

Krohn et al. 
(2008a)

Dinemasporium 
strigosum

Calystegia 
sepium

B. megaterium Krohn et al. 
(2008b)

Chaetomium 
globosum

Viguiera robusta S. aureus and E. coli Momesso et al. 
(2008)

(continued)
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Table 1  (continued)

Endophyte Host Plant Activity against pathogens References
Xylaria sp. Ginkgo biloba S. aureus, E. coli, S. typhi, S. 

typhimurium, S. enteritidis, A. 
hydrophila, Yersinia sp., V. 
anguillarum, Shigella sp. and 
V. parahaemolyticus

Liu et al. (2008)

Microdochium bolleyi Fagonia cretica E. coli and B. megaterium Zhang et al. 
(2008)

Pestalotiopsis sp. Lichen 
Clavaroids sp.

S. aureus Ding et al. 
(2009)

B. subtilis Wheat Gaeumannomyces graminis 
var. tritici (Ggt)

Liu et al. (2009)

Nodulisporium sp. Erica arborea B. megaterium Dai et al. (2009)
B. licheniformis, B. 
pumilus, Bacillus sp.

Platycodon 
grandiflorum

P. capsici, F. oxysporum, 
Rhizoctonia solani and Pythium 
ultimum

Islam et al. 
(2010)

Enterobacter sp., B. 
subtilis

Raphanus 
sativus L

E. coli, Pseudomonas 
aeruginosa, Salmonella 
enterica, S. enteritidis, S. 
typhimurium, Shigella flexneri, 
Shigella sonnei, B. cereus, 
Listeria innocua, L. ivanovii, L. 
monocytogenes and S. aureus

Seo et al. (2010)

Pichia guilliermondii Paris polyphylla A. tumefaciens, E. coli, P. 
lachrymans, R. solanacearum, 
X. vesicatoria, B. subtilis, S. 
aureus and S. haemolyticus

Zhao et al. 
(2010)

Paenibacillus sp. Manihot 
esculenta

R. solani Canova et al. 
(2010)

Burkholderia sp. Huperzia serrata P. capsici, F. graminearum and 
Sclerotinia libertiana

Wang et al. 
(2010)

Phoma sp. Salsola 
oppositifolia

B. subtilis and E. coli Loesgen et al. 
(2011)

Microdiplodia sp. Lycium 
intricatum

Legionella pneumophila Siddiqui et al. 
(2011)

Streptomyces sp. Kandelia candel Methicillin-Resistant S. aureus 
and Vancomycin-Resistant 
Enterococcus faecalis

Ding et al. 
(2011)

Penicillium 
chrysogenum

Marine red alga 
Laurencia sp.

MRSA, P. fluorescens, P. 
aeruginosa and S. epidermidis

Gao et al. (2011)

Fusarium oxysporum Cinnamomum 
kanehirae

MRSA and B. subtilis Wang et al. 
(2011b)

Phomopsis longicolla Bostrychia 
radicans

S. aureus and S. saprophyticus Erbert et al. 
(2012)

Diaporthe 
phaseolorum

Laguncularia 
racemosa

S. aureus and S. typhi Sebastianes 
et al. (2012)

(continued)
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Table 1  (continued)

Endophyte Host Plant Activity against pathogens References
B. amyloliquefaciens Memecylon 

edule, Tinospora 
cordifolia

B. subtilis, E. coli, S. aureus, 
Pseudomonas aeruginosa and 
Candida albicans

Bhoonobtong 
et al. (2012)

Dothideomycete sp. Tiliacora 
triandra

S. aureus and MRSA Senadeera et al. 
(2012)

Aspergillus sp. Bruguiera 
gymnorrhiza

S. aureus and B. subtilis Li et al. (2012)

Nigrospora sp. Pongamia 
pinnata

MRSA, E. coli, P. aeruginosa, 
P. fluorescens and S. 
epidermidis

Shang et al. 
(2012)

Pestalotiopsis 
mangiferae

Mangifera indica B. subtilis, P. aeruginosa and 
K. pneumoniae

Subban et al. 
(2013)

Coniothyrium sp. Salsola 
oppositifolia

E. coli and B. megaterium Sun et al. 
(2013b)

Microsphaeropsis 
arundinis

Pinus sp. S. aureus Luo et al. (2013)

Bacillus sp., 
Pseudomonas sp.

Plectranthus 
tenuiflorus

S. aureus, E. coli, Klebsiella 
pneumoniae, Streptococcus 
agalactiae, Proteus mirabilis 
and Candida albicans

El-Deeb et al. 
(2013)

B. amyloliquefaciens, 
B. methylotrophicus

Panax 
notoginseng

F. oxysporum, Ralstonia sp. 
and Meloidogyne hapla

Ma et al. (2013)

Lewia infectoria Besleria insolita S. aureus Casella et al. 
(2013)

B. subtilis, 
Pseudomonas 
fluorescens

Centella asiatica Colletotrichum higginsianum Rakotoniriana 
et al. (2013)

B. subtilis, C. 
flaccumfaciens, Ps. 
Fluorescens, P. 
ananatis

Panicum 
virgatum L.

Trichoderma virens and 
Rhizoctonia solani

Gagne-Bourgue 
et al. (2013)

Cryptosporiopsis sp. Viburnum tinus B. megaterium Saleem et al. 
(2013)

B. subtilis, B. 
licheniformis

Codonopsis 
lanceolata

Phytophthora capsici, F. 
oxysporum and Rhizoctonia 
solani

Kang et al. 
(2013)

Streptomyces sp. Polygonum 
cuspidatum

Aspergillus niger, Aspergillus 
fumigatus, Klebsiella 
pneumoniae, S. aureus and B. 
subtilis

Sun et al. 
(2013a)

Aspergillus sp. Bauhinia 
guianensis

B. subtilis, E. coli, P. 
aeruginosa and S. aureus

Pinheiro et al. 
(2013)

Phialophora mustea Crocus sativus C. albicans Nalli et al. 
(2015)

Phoma sp. Glycyrrhiza 
glabra

S. aureus and S. pyogenes Arora et al. 
(2016)

Diaporthe 
terebinthifolii

Glycyrrhiza 
glabra

Candida albicans Yedukondalu 
et al. (2017)
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•	 The antifungal agent, cryptocin, was isolated from an endophytic strain of 
Cryptosporiopsis quercina from the inner bark of the stems of Tripterygium wil-
fordii. Cryptocin is a unique tetramic acid exhibiting antimycotic activity against 
Pyricularia oryzae with the MIC value of 0.39 μg/ml. It also possesses activity 
against a wide variety of plant-pathogenic, but not human-pathogenic, fungi (Li 
et al. 2000).

•	 The continual natural occurrence of cyclohexane epoxides and the exploration of 
their biological activities have gained interest within pharmacologists, biologists and 
chemists (Marco-Contelles et  al. 2004). Jesterone and hydroxy-jesterone are 
potential cyclohexenone epoxides recovered from the fungal endophyte, Pestalotiopsis 

Fig. 3  Chemical structures of potential secondary metabolites isolated from endophytes
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Fig. 3 (continued)
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jester, with bioactive potential against Pythium ultimum. In particular, it showed 
selective antimycotic activity against the oomycetous fungi, which are some of the 
most phytopathogenic of all disease-causing fungi (Li and Strobel 2001).

•	 Pestacin, from Pestalotiopsis microspore, an endophytic fungus indigenous to 
Papua New Guinea, exhibits moderate antifungal and antioxidant activity (Harper 
et al. 2003).

•	 Brefeldin A is a fungal metabolite, exhibiting antitumor, antimitotic, antifungal 
and antiviral activities (Harri et al. 1963). Brefeldin A has been isolated from an 
endophytic culture of Cladosporium sp. associated with Quercus variabilis.

•	 Echinocandins are a group of lipopeptides with potential antifungal activities 
against Candida albicans, Candida parapsilosis and Candida guilliermondii 
(Grover 2010). Several echinocandins (A, B, C, D and H) have been isolated 
from endophytic Cryptosporiopsis sp. and Pezicula sp. (Noble et al. 1991). The 
antimicrobial compounds, ergosterol and 5a,8a-epidioxyergosterol, were iso-
lated from the endophytic fungus Nodulisporium sp., which is associated with 
Juniperus cedre (Dai et al. 2006).

•	 Munumbicins were described as a novel group of antibiotics with a broad range 
of activity against many human pathogens and fungal phytopathogens. Four 
munumbicins (A, B, C and D) were isolated from Streptomyces sp., an endo-
phyte of the medicinal plant, Kennedia nigriscans, also known as snake vine. In 
particular, munumbicin B exhibits the MIC value of 2.5 μg/ml against S. aureus 
(including MRSA), and munumbicin D showed activity against the malarial par-
asite Plasmodium falciparum, displaying the IC50 value of 4.5 ng/ml (Castillo 
et al. 2002). In another study, the structurally similar munumbicins E-4 and E-5 
were isolated from Streptomyces sp. Both E-4 and E-5 showed potent activity 
against Pythium ultimum and were also active against Plasmodium falciparum, 
with IC50 values of 0.50 and 0.87 μg/m, respectively (Castillo et al. 2006).

•	 Five new octaketides, named the cytosporones (A, B, C, D and E), from the 
culture broth of two endophytic fungi, Cytospora sp. and Diaporthe sp., were 
isolated from the tissues of Conocarpus erecta and Forsteronia spicata plants, 
respectively. Cytosporones D and E displayed strong antibacterial activity, with 
an MIC for cytosporone D against representative strains of E. faecalis, S. aureus 
and E. coli and the fungus C. albicans of 8, 8, 64 and 4  μg/ml, respectively 
(Brady et al. 2000). In another report, cytosporone B and C were isolated from 
Phomopsis sp., an endophytic fungus of mangrove, and these compounds inhib-
ited C. albicans and F. oxysporum, with MIC values ranging from 32 to 64 mg/
ml (Huang et al. 2008).

•	 Altersolanol A, isolated from Ampelomyces sp., is an endophyte of the medici-
nal plant, Urospermum picroides, and has exhibited antimicrobial activity against 
the bacterial pathogens Staphylococcus aureus, Staphylococcus epidermidis and 
Enterococcus faecalis at MICs of 12.5 and 12.5–25  mg/ml, respectively 
(Haraguchi et al. 1992; Aly et al. 2008).

•	 Phomoenamide, an antibacterial alkaloid, was isolated from the endophytic fun-
gus Phomopsis sp., along with five more metabolites: phomonitroester, deacetyl 
phomoxanthone B, dicerandrol A, (1S,2S,4S)-p-menthane-1,2,4-triol and uri-
dine. Phomoenamide exhibited moderate activity with the MIC value of 6.25 mg/
ml against Mycobacterium tuberculosis (Rukachaisirikul et al. 2008).
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•	 Pestalachloride A and B have been isolated from and endophytic strain of 
Pestalotiopsis adusta and showed significant antifungal activity against three 
phytopathogens, including Fusarium culmorum, Gibberella zeae and Verticillium 
aibo-atrum (Li et al. 2008).

•	 The sordarin family of compounds, characterized by a unique tetracyclic diter-
pene core, inhibits protein synthesis in fungi (Liang 2008). Sordaricin, produced 
by an endophytic fungal isolate Xylaria sp., recovered from the leaves of Garcinia 
dulcis, displayed moderate activity against a variety of fungal pathogens 
(Pongcharoen et al. 2008).

•	 Chaetoglobosins, well-known mycotoxins, have gained interest due to a large num-
ber of biological activities, viz. cytotoxic, antifungal, phytotoxic and nematicidal 
(Li et al. 2014). Till now, more than 40 chaetoglobosins have been reported from the 
cultures of some fungi, most belonging to the genus Chaetomium. Chaetoglobosins 
A, G, V, Vb and C were characterized from the culture of an endophytic strain C. 
globosum isolated from the leaves of Ginkgo biloba (Qin et al. 2009).

•	 The non-nitrogenous methyl phenalenones produced by a fungal endophyte, 
Coniothyrium cereal, possessed potential antimicrobial activity. 
Conioscleroderolide, coniosclerodione, (–)-cereo lactone and (–)-scleroderolide 
showed strong antimicrobial activity against S. aureus SG 511. Z-coniosclerodinol, 
(S, S)-sclerodinol and coniolactone inhibited the growth of Mycobacterium phlei 
in agar diffusion assay. Also, trypethelone strongly inhibited the growth of M. 
phlei, S. aureus and E. coli (Elsebai et al. 2011a, b).

•	 Azaphilones or azaphilonoids are a structurally variable family of fungal 
polyketide metabolites exhibiting a wide range of significant biological func-
tions, including antimicrobial, antiviral, cytotoxic, anticancer and anti-inflam-
matory activities (Gao et al. 2013). Pestafolide A, a novel antifungal azaphilone, 
has been isolated from the solid cultures of an endophytic isolate, Pestalotiopsis 
foedan (Ding et al. 2008). Four new azaphilone-derived molecules, Phialomustin 
A–D, were isolated and characterized from an endophytic fungus, Phialophora 
mustea, obtained from Crocus sativus. Compounds C and D displayed signifi-
cant antifungal activities, with IC50 values of 14.3 and 73.6 μM against Candida 
albicans (Nalli et al. 2015).

•	 Diketopiperazines are the smallest cyclic peptides known for having important 
biological activities, such as antifungal, antibacterial, antitumor, antiviral, anti-
hyperglycaemic and glycosidase inhibition. They also have the potential to dis-
rupt bacterial biofilm formation (Carvalho and Abraham 2012). Five new 
sulphide diketopiperazine derivatives, penicibrocazines A–E, were isolated from 
the culture extract of Penicillium brocae, an endophytic strain recovered from the 
tissues of the marine mangrove plant Avicennia marina. Compound B showed 
antimicrobial activity against a few of the test pathogens, with the MIC values 
ranging from 0.25 to 64 μg/ml (Meng et al. 2015). Also, the chemical investiga-
tion of an endophytic strain, Phoma sp., associated with Glycyrrhiza glabra, led 
to the isolation of two thiodiketopiperazine derivatives. Both of these compounds 
inhibited the growth of several bacterial pathogens especially that of 
Staphylococcus aureus and Streptococcus pyogenes, with IC50 values of less than 
10 μM. In addition, the compounds strongly inhibited biofilm formation by both 
of the pathogens (Arora et al. 2016).
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•	 Two new fatty acid-derived metabolites, diapolic acids A and B, were isolated 
from the crude extract of Diaporthe terebinthifolii, with moderate antimicrobial 
potential against Yersinia enterocolitica (Yedukondalu et al. 2017).

•	 Javanicin, a highly functionalized naphthoquinone, was recovered from an 
endophytic fungus, Chloridium sp., isolated from the fresh tissues of neem. It 
exhibits strong antibacterial potential against P. aeruginosa and P. fluorescens, 
with thee MIC value of 2 μg/ml (Kharwar et al. 2009).

In the past years, natural and biological control agents against insects, pests and 
diseases affecting plants have attracted more attention as a way to reduce the use of 
insecticides and pesticides in agriculture biotechnology. In this regard, endophytes 
have gained much focus as a promising source of such agents. Earlier studies have 
reported that biological control of many plant diseases could be achieved by using 
antagonistic endophytes. Different bacterial species, namely, Alcaligenes spp., 
Kluyvera spp. (de Assis et al. 1998), Pseudomonas fluorescens, P. alcaligenes, P. 
putida, Flavobacterium spp., Bacillus megaterium (Reiter et al. 2002), B. pumilus 
(Benhamou et  al. 1998), Microbacterium spp., Clavibacter michiganensis, 
Curtobacterium spp. and B. subtilis (Zinniel et al. 2002), and fungal species, namely, 
Coniothyrium carteri, Fusarium larvarum, Truncatella spadicea (Qadri et al. 2014), 
Trichoderma harzianum, Porostereum sp., Alternaria sp., Alternaria alternata and 
Botrytis fabiopsis (Wani et al. 2016) have been reported as endophytes that were 
inhibitory to plant pathogens. The fungi Fusarium and Neotyphodium have been 
found active against nematodes and Triticum spp., respectively (Pocasangre et al. 
2000; Tunali et al. 2000).

Thus, a myriad of antimicrobial bioactivities have been recovered from endo-
phytic species, and it is believed that these bioactivities can aid in solving the cur-
rent threat of drug-resistant pathogens.

4	 �Antimicrobial Volatile Organic Compounds (VOCs)

VOCs are considered important chemicals produced by microorganisms in the envi-
ronment that impact the kinetics of the ecosystem and vice versa (Wheatley 2002). 
Under optimum conditions, VOCs produced by microorganisms are consistent and 
reproducible. The discovery of the mycodiesel-producing organism Ascocoryne sp. 
(Strobel et al. 2008; Griffin et al. 2010), and further exploration of antimicrobial 
VOCs of Muscodor species (Strobel 2006a), led to the conclusion that fungal iso-
lates produce diverse batteries of VOCs having potential applications in industrial 
as well as agriculture. In this chapter, the NIST database chemical terminology has 
been used for naming the VOC compounds.

In agriculture, the interest in fungal VOCs is for their potential as biological 
control (biocontrol) agents to combat fungal pests through the employment of a 
more environmentally sound pest management strategy, namely, by reducing fungi-
cide use on crop plants (Morath et  al. 2012). That is, since VOCs are naturally 
occurring, they have the potential to be used as possible alternatives to hazardous 
fungicides, pesticides and insecticides (Kanchiswamy et al. 2015).
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Several potential VOC-producing endophytes with great industrial and agricul-
tural potential have been reported in the last two decades. These compounds belong 
to different chemical classes, such as terpenoids and benzene derivatives, naphtha-
lene derivatives, cycloalkanes, alcohols, organic acids, ketones and aldehydes, and 
often have antimicrobial potential, suggesting that these volatile substances may 
play an important role in nature to create microenvironments free of challenging 
microorganisms (Riyaz-Ul-Hassan et  al. 2012; Strobel et  al. 2011). Some of the 
most promising endophyte produced VOCs and are detailed in the following 
paragraphs.

More than 28 volatile organic compounds were isolated from the fungal endophyte 
Muscodor albus, associated with Cinnamomum zeylanicum, which are found to be 
potent antimicrobials, as they completely inhibited the majority of the test pathogens, 
including Escherichia coli, Staphylococcus aureus, Micrococcus luteus, Bacillus sub-
tilis and some fungal pathogens, killing them within a period of 3 days. These VOCs 
are mixtures of gases belonging to five classes, made up of alcohols, organic acids, 
esters, ketones and lipids, among which the most effective were the esters, with 
1-butanol-3-methyl-acetate having the highest activity (Strobel et al. 2001).

Another strain of Muscodor, namely Muscodor crispans, was also found to pro-
duce antimicrobial VOCs, namely, propanoic acid, 2-methyl-1-butanol, 3-methyl-
1-butanol, 3-methyl-acetate, 2-methyl-2-methyl butyl ester and ethanol. The VOCs 
of the fungus were effective against a wide range of plant pathogens, including the 
fungi Pythium ultimum, Phytophthora cinnamomi, Sclerotinia sclerotiorum and 
Mycosphaerella fijiensis (the black sigatoka pathogen of bananas), and the serious 
bacterial pathogen of citrus plants, Xanthomonas axonopodis pv. citri. In addition, 
the VOCs of M. crispans killed several human pathogens, including Yersinia pestis, 
Mycobacterium tuberculosis and Staphylococcus aureus.

Artificial mixtures of fungal VOCs have also been constituted and evaluated for 
antimicrobial potential (Mitchell et al. 2010). A synthetic mixture of the VOCs from 
M. crispans demonstrated antimicrobial effects against a broad range of human and 
plant pathogens, including fungi, bacteria and oomycetes. Pythium insidiosum is an 
oomycete capable of causing a life-threatening disease in humans, called pythiosis. 
The synthetic mixture, at amounts as low as 2.5 μl, significantly reduced the growth 
of all P. insidiosum isolates by at least 80% (Krajaejun et al. 2012). VOCs produced 
by M. yucatanensis were also found effective against several fungi. Epigenetic mod-
ulation of this organism was found to induce the production of several new VOCs 
and other molecules (Qadri et al. 2017).

An endophytic fungus of Persea indica, identified as Hypoxylon sp., produced 
1,8-cineole, 1-methyl-1,4-cyclohexadiene, the tentatively identified (+)-.alpha.-
methylene-.alpha.-fenchocamphorone, and several other unidentified compounds. 
Six-day-old cultures of this endophyte displayed maximum antimicrobial activity 
against several pathogens. This was the first report of the production of 1,8-cineole 
by a fungal culture (Tomsheck et al. 2010). It was later found that epigenetic modula-
tion of this endophytic fungus resulted in phenotypic changes, as well as modulation 
VOC profiles (Riyaz-Ul-Hassan et al. 2012). Similarly, the endophyte, Hypoxylon 
sp., produced a unique an array of bioactive VOCs, including 1,8-cineole. The  
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organism uniquely produced a series of ketones, including acetone; 2-pentanone; 
3-hexanone, 4-methyl; 3-hexanone, 2,4- dimethyl; and 2-hexanone, 4-methyl, and 
5-hepten, 2-one, and these account for about 25% of the total, Hypoxylon-produced 
VOCs. The VOCs of this isolate were selective active against a number of plant 
pathogens and induced the death of Phytophthora palmivora, Rhizoctonia solani and 
Sclerotinia sclerotiorum, and a 100% inhibition of Phytophthora cinnamomi, with 
only slight to no inhibition of the other pathogens that were tested. From this work, 
it has becoming increasingly apparent that each isolate of this endophytic 
Nodulisporium spp., including Daldina sp. and Hypoxylon spp. teleomorphs, seems 
to produce their own unique set of VOCs (Riyaz-Ul-Hassan et al. 2013).

An endophytic Phomopsis sp. was found to produce a unique mixture of VOCs, 
including sabinene, which is a monoterpene with a peppery odour, only previously 
known from higher plants. Additional VOCs produced by this organism were 
1-butanol, 3-methyl; benzene ethanol; and 1-propanol, 2-methyl and 2-propanone. 
The gases of Phomopsis sp. also possessed antifungal properties, with the IC50 val-
ues for an artificial gas mixture varying between 8 and 25.65 μl/ml (Singh et al. 
2011b). The endophytic fungus Phoma sp., associated with the creosote bush, also 
produced a mixture of VOCs, including a series of sesquiterpenoids, some alcohols 
and several reduced naphthalene derivatives. The gases emitted by Phoma sp. pos-
sessed antifungal properties, and the compounds were markedly similar to that of a 
methanolic extract of the host plant (Strobel et al. 2011).

Thus, endophytic fungi are capable of producing unique arrays of VOCs with 
antimicrobial activities, having applications in several fields. These applications 
include alternate fuels, perfumery, biodegradation and decontamination of human 
and animal wastes, biofumigation, and post-harvest food processing, to name a few.

5	 �Exploration of New Endophytic Metabolites by Culture-
Independent Methods

Molecular approaches have conservatively estimated that microbial diversity is 
highly unexplored, with only about 1% of bacteria and 5% of fungi characterized so 
far. Surprisingly, less than 1% of microorganisms can be cultivated by with current 
laboratory techniques (Amann et al. 1995). Thus, culture techniques inadvertently 
prejudice our perspective on microbial diversity, including that of both prokaryotic 
and eukaryotic phyla (Connon and Giovannoni 2002). In particular, endophytic 
fungi are well known for their potential to produce diverse and active secondary 
metabolites. The identification and characterization of microbial communities in the 
environments have been reformed by the use of molecular methods involving PCR 
amplification of rRNA and conserved protein genes, such as histones and beta tubu-
lins (Vianna et al. 2009; Tejesvi and Prakash 2009). Traditional methods, such as 
restriction fragment length polymorphisms (RFLP), terminal restriction fragment 
length polymorphisms (T-RFLP), single-strand conformation polymorphism 
(SSCP) and quantitative PCR (qPCR) (Laguerre et al. 1994; Lee et al. 1996; Dunbar 
et al. 2000; Takai and Horikoshi 2000), have been in practice for more than two 
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decades, but they can only be applied for the identification of microorganisms and 
not for functional screening. Now, with the development of next-generation sequenc-
ing techniques, researchers have gained new methods, such as metagenomics and 
metaproteomics (Felczykowska et al. 2012; Jang et al. 2012), that have enabled the 
functional screening and identification of candidate gene-encoded proteins from 
endophytes for their use in agricultural, food and pharmaceutical industries. 
Recently, many bioactive compounds have been discovered by means of metage-
nomics, particularly antibacterials, such as indigo, turbomycins, violacein and 
nocardamine, all of which were isolated from soil samples (Banik and Brady 2010).

6	 �Conclusion

Endophytes constitute an enormously diverse microbial resource for bioprospect-
ing, due to the fact that they are usually metabolically proficient. Their capability to 
produce vast spectrums of natural products is attributed to their diverse functions in 
nature. In fact, similar organisms isolated from different plants in the same region, 
or those isolated from the same plants in different regions, may produce different 
metabolites. These endophytes may play an important role in conferring pathogen 
resistance to their host by virtue of their metabolites, and therefore, they are of par-
ticular interest for the isolation of novel antimicrobial agents. The search for endo-
phytes should be preferentially conducted in the areas of high biodiversity, as their 
diversity is directly linked to that of the plants. Preference for bioprospecting may 
be given to taxonomically novel microorganisms, as novel taxonomy may lead to 
the discovery of new natural products. Once isolated, endophyte potential may be 
explored through use of media manipulations, inducers, epigenetic modulators, fer-
mentation technology, co-culture and other biotechnological approaches. Thus, 
given their potential to aid in the fight against antimicrobial resistance, a concerted 
effort is needed to explore the vast array of endophytes for the discovery of novel 
antimicrobial agents.
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