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Abstract
The worldwide emergence of resistant bacteria to multiple antimicrobial drugs is 
one of the greatest hurdles to chemotherapy. Multidrug resistance (MDR) is the 
capability of pathogenic bacteria to survive lethal doses of antimicrobial drugs. 
One of the underlying mechanisms of survival under stressful conditions is the 
extrusion of drugs through membrane-embedded efflux proteins. These ubiqui-
tous resistance elements, which confer resistance or cross resistance to multiple 
drugs, are considered MDR efflux transporters. Consequently, efflux pump 
inhibitors (EPIs) from various natural and synthetic sources have been developed 
to increase the therapeutic armamentarium for combating bacterial resistance 
and restoring the antibiotic activity. Owing to less toxicity issues than chemical- 
based EPIs, plant-based EPIs are gaining much importance, but none are yet 
undergoing clinical trials. In this review, we will introduce the concept of efflux 
pumps and their diversity and then provide a comprehensive understanding of 
efflux pump inhibitors from both plant and chemical sources, their mode of 
action and the recent advances in their development.
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1  Introduction

In the present century, antimicrobial resistance (AMR) has become a global threat 
to chemotherapy of infection control as stated by data obtained from global surveil-
lance (WHO 2014). Evolution of resistance leads to the emergence and spread of a 
large number of resistant bacteria globally that expresses sophisticated phenotypic 
or genotypic variants towards a variety of antimicrobial drugs. Antibiotic resistance 
has become a topic of interest in various science and political summits and has been 
referred to as a slow motion tsunami (Cox 2015). Bacterial resistance towards anti-
biotics develops as a result of mutations and/or gene acquisitions through genetic 
exchange mechanisms. Broadly, the mechanism of resistance is classified into three 
categories: first, production of drug hydrolysing or modifying enzymes; second, 
mutation in the transporters of antibiotics that hinders their entrance; and the third 
is by the impaired accessibility of an antibiotic to its target by using energy- 
dependent efflux pumps for its exclusion. In bacteria, active efflux pumps play an 
important role in both intrinsic and acquired multiple drug resistance as opposed to 
other various biochemical and molecular resistance mechanisms. Energy-dependent 
efflux pumps are ubiquitous and important to the drug resistance of all organisms 
from prokaryotes to mammals. In the case of humans, they are relevant contributors 
of anticancer drug resistance, and in bacteria, they contribute resistance to antibiot-
ics (Amaral et al. 2012; Nikaido 2009). Efflux pumps were firstly described in the 
1970s as the mechanism of resistance to P-glycoprotein in humans (Gottessman and 
Ling 2006) and resistance towards tetracycline in Escherichia coli (Levy S., 1992).

Considerable progress has been made in understanding the various types of 
efflux pumps prevalent in bacteria that are responsible for different types of drug 
resistance (Chitsaz and Brown 2017). Subsequently, researchers have found meth-
ods to inhibit efflux pump functions by using efflux pump inhibitors. The specific 
mechanisms involved may vary accordingly (Sjuts et al. 2016). Both synthetic and 
natural product-derived efflux pump inhibitors have been developed, and their clini-
cal and therapeutic potential have been reported. In this chapter, we will provide a 
summary of recent updates on the diversity of efflux pumps and variance of 
both  synthetic and natural efflux pump inhibitors and their significance in 
chemotherapy.

Drug efflux pumps are protein complexes embedded in the membranes of MDR 
bacteria. Their overexpression causes extrusion of structurally unrelated drugs and 
contributes to reduced susceptibly, thereby decreasing the concentration inside the 
cell to sub-toxic levels. This class of proteins are encoded by genes that are located 
on chromosomes or plasmids (Piddock et al. 2006; Nikaido and Pages 2012; Blanco 
et  al. 2016). A generalized scheme of the five major families of bacterial efflux 
pumps is represented in Table 1.
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2  Major Classes of Efflux Pumps

Efflux pump transporters in the prokaryotic kingdom are classified into five major 
superfamilies based on their composition, energy source, number of transmembrane 
spanning regions and substrate specificity: resistance-nodulation-division (RND) 
superfamily, the ATP (adenosine triphosphate)-binding cassette (ABC) superfamily, 
the major facilitator superfamily (MFS), the multi-drug toxic compound extrusion 
(MATE) superfamily and a small multidrug resistance (SMR) family (a member of 
a much larger metabolite or drug superfamily). These efflux pump transporters are 
found in both gram-positive and gram-negative bacteria except the RND efflux 
pumps that are predominantly distributed in gram-negative bacteria. The genes 
encoding this class of transporter proteins can be chromosomally encoded or plas-
mid encoded (Piddock 2006).

The RND superfamily have a tripartite composition that includes an inner mem-
brane transporter, a periplasmic adapter protein and an outer membrane channel and 
are extensively associated with antibiotic resistance such as AcrB in Escherichia 
coli and MexB in Pseudomonas aeruginosa (Li and Nikiado 2009). With advance-
ments in molecular biology and biochemistry, there has been a growing 

Table 1 The five major families of bacterial efflux pumps)

Family of 
efflux pump Organisms

Substrate used for 
extrusion

Energy 
source

Structural 
properties

ABC 
superfamily

Lactococcus lactis, 
Staphylococcus 
aureus, E. coli

Multiple 
antibacterial drugs

Hydrolysis 
of ATP

Multiple 
transmembrane 
helices of varying 
amino acids in the 
ATP-binding 
cassette

SMR family Acinetobacter 
baumannii, 
Staphylococcus 
aureus

Acriflavine 
Benzalkonium

Proton 
motive 
force 
(PMF)

4 helices and 
primary structure 
comprises of 
100–120 amino 
acids

MFS family E. coli and 
Staphylococcus 
aureus

Acriflavine 
Benzalkonium

Proton 
motive 
force 
(PMF)

12 or 14 
transmembrane 
helices

MATE 
family

Vibrio 
parahaemolyticus, 
E. coli and 
Staphylococcus 
aureus

Fluoroquinolones 
Aminoglycosides 
Cationic drugs

Na+ 12 putative 
transmembrane 
helices spanning 
the membrane

RND-type 
family

Pseudomonas 
aeruginosa and E. 
coli

Multiple 
antibacterial drugs

Proton 
motive 
force 
(PMF)

Multi-subunit 
complex

Bremner (2007) and Kumar and Pooja Patial (2016)
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identification and characterization of MDR pumps in numerous problematic species 
of bacteria, particularly the pathogens belonging to ESKAPE group [Enterococcus 
faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, 
P. aeruginosa, Enterobacter species], evoking their predominant role in clinical set-
tings (Davin-Regli et al. 2016). Among gram-positive bacteria, the MFS family of 
efflux transporters is widely distributed like NorA efflux pumps in Staphylococcus 
aureus and PmrA from Streptococcus pneumonia (Jang 2016).

2.1  ATP-Binding Cassette (ABC) Family MDR Efflux Pumps

ABC transporters that are involved in drug extrusion are found in fungi and animal 
cells. There are only a few examples reported of ABC transporters in gram-negative 
bacteria, although MSbA transporters that export the biosynthetic intermediate of 
lipopolysaccharides carry out erythromycin extrusion when they are overexpressed 
in Lactococcus lactis. ABC pumps are composed of four domains in which two are 
hydrophobic and membrane-embedded and are responsible for substrate recognition 
and translocation. The other two domains are hydrophilic nucleotide-binding 
domains (NBDs) and serve as a site for ATP hydrolysis, which then generates the 
energy for the translocation of drugs (Crow et al. 2017). The most commonly studied 
ABC drug exporter in gram negatives is MacB of E. coli, which becomes functional 
when it comes into contact with the periplasmic MacA adapter and TolC of the outer 
membrane channel. Overexpression of MacA–TolC transporters increases the MIC 
of macrolide antibiotics and results in the emergence of resistance (Lu and Zgurskaya 
2013). MacB also possesses moderate ATPase activity. ATP hydrolysis is triggered 
by the continuous presence of MacA, which becomes fully functional when it comes 
together with dimeric MacB and TolC trimer unit of the pump (Wilkens 2015).

2.2  SMR Transporters

SMR transporters are small, proton motive force-dependent drug transporters that 
consist of four transmembrane segments (TMSs). These proteins generally function 
as homodimers, but their arrangement is either in parallel or antiparallel and is a 
matter of controversy (Lloris-Garcera et al. 2013). Overexpression of these proteins 
by their corresponding plasmids causes reduced susceptibility to aminoglycoside 
antibiotics. EmrE, one of the transporters of the SMR superfamily, generates hyper- 
osmotolerant phenotypes in E. coli also harbouring AcrAB proteins. Most of the 
common substrates of EmrE pumps are mainly quaternary ammonium compounds 
like osmoprotectants of E. coli and betaine. The overexpression of such pumps 
increases the susceptibility of cells to alkalinity in the medium and hyperosmolarity 
conditions as well (Bay et al. 2008). In the case of S. aureus, the SMR proteins like 
QacC are mainly plasmid encoded, while in other bacteria, the genes for the related 
components are also present on chromosomes. QacC carries out the efflux of bio-
cides such as ethidium bromide and also quaternary ammonium compounds (Furi 
et al. 2013; Wassenaar et al. 2015).
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2.3  Multidrug and Toxin Extrusion (MATE) Family

MATE transporters were firstly identified in Vibrio parahaemolyticus as sodium or 
cationic antiporter, i.e. NorM with 12 TMS (Kuroda and Tsuchiya 2009). The 
MATE family of drug transporters act as a contributing factor for resistance and are 
in recent discovery. Most of the work has been done with these pumps, and well 
reports are obtained in gram-negative bacteria including the crystal structures of 
four proteins out of them (Lu and Zgurskaya 2013). Some of the significant work 
has been done to determine the function and structure of MATE transporters in 
gram-positive bacteria, such as S. aureus MATE pumps like MepA. Interestingly, it 
was reported that in methicillin-susceptible strains, the majority of the population 
overexpresses MepA, but the reason behind this remains uncertain (Schindler and 
Kaatz 2016). MATE proteins are dependent either on Na ions or the proton gradient 
and are regulated by the MepR regulatory protein. Dimers in single and dimeric 
form bind to MepR and MepA, respectively. MepR belongs to the MarR family of 
proteins and consists of winged helix-turn-helix that retards the expression of its 
own gene as well as mepA (Jang 2016). Additional MATE efflux pumps in gram 
positive have been described like PdrM of S. pneumoniae, FepA of Listeria mono-
cytogenes and Cda of C. difficile (Hashimoto et al. 2013; Gurein et al. 2014). The 
substrate utilized by FepA is larger in number since they decrease susceptibility to 
several dyes, ciprofloxacin, norfloxacin and biocides. A regulatory protein that 
belongs to the TetR group regulates the expression of fepA, and mutation in FepR 
increases the overexpression of fepA and thus reduces the drug susceptibility.

2.4  Major Facilitator Superfamily (MFS) Transporters

There are 74 families of MFS transporters, grouped on the basis of their sequence 
homology. Most of them are embedded in an inner membrane in a free state, and 
these pumps transport the drugs from the cytosol only to the periplasm. Antimicrobial 
agents have the ability to cross the lipid bilayer through diffusion, and once they are 
pumped out, they are unable to come, but in this case, MFS pumped out drugs can 
easily come to the cytosol. Thus, this kind of transporters is not responsible for high 
level of resistance. It was found that in P. aeruginosa, these pumped out drugs are 
easily captured in the periplasm by MexAB–OprM RND pumps, which are consti-
tutive expressed, synergistically enhancing the activity of singlet pumps in the 
development of resistance (Choudhury et al. 2015).

In case of E. coli, MFS forms a tripartite efflux system that includes an outer 
membrane protein channel, Tol-C and periplasmic adapter proteins. These efflux 
systems include EmrB and EmrY and carry out the extrusion of a variety of sub-
strates and uncouplers (Nishino and Yamaguchi 2008). A central cavity which is 
surrounded by hydrophobic and hydrophilic side chains is found in most of the MFS 
pumps. It was also noted that the loops formed through connections between H4, 
H5, H10 and H11 are localized towards the cytosol and responsible for substrate 
recognition and binding (Yin et al. 2000). A dimer of EmrAB is formed when EmrA 
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comes into association with EmrB.  Among the singlet MFS transporters, MdfA 
pumps lead to MDR when they are overexpressed. In combination with the SMR- 
type transporter EmrE, these exporters carry out efflux of cationic agents like qua-
ternary ammonium compounds (Tanabe et al. 2009).

NorA is an MDR pump predominantly found in S. aureus which is chromosom-
ally encoded and also belongs to the MFS family of proteins. In Escherichia coli 
and S. aureus, expression of the plasmid-encoded norA gene leads to the resistance 
of hydrophilic quinolones like norfloxacin (Yu et al. 2002). MgrA is a global regula-
tory protein that controls expression of not only NorA pumps but also other pump 
proteins like TetG, NorB and NorC.  Additionally, another regulatory protein 
involved in NorA expression is GntR which is able to interact with the promoters of 
NorC, NorB and NorA. In addition to interacting with these promoters, this regula-
tory protein reduces the transcription of NorG, leading to a fourfold decrease in 
fluoroquinolone susceptibility (Redgrave et al. 2014; van der Putten et al. 2018). A 
deletion of GntR does not affect NorA, NorB or NorC but does cause a significant 
increase in the transcription of the ABC family of transporters that play an impor-
tant role in the susceptibility of S. aureus towards β-lactams (Foster 2017; Ranaweera 
et al. 2015).

2.5  Resistance-Nodulation-Cell Division (RND) Transporters

RND-type efflux pumps are predominant in gram-negative pathogens. These tripar-
tite protein complexes span throughout the membrane and enable bacteria to pump 
antibiotics out of the cell. These protein assemblies are composed of an inner mem-
brane protein (IMP), a periplasmic membrane fusion protein (MFP) and an outer 
membrane protein. The IMP exhibits selectivity towards drugs and carries out catal-
ysis of the drug/proton antiport (Venter et al. 2015). The most widely studied RND- 
type efflux pumps are AcrAB–TolC in E. coli and MexAB–OprM in P. aeruginosa 
(Blair et al. 2014). In recent years, the elucidation of crystal structures of different 
efflux pumps that are complexed with their substrate or inhibitors has greatly 
increased our understanding of their specificities towards multiple substrates. The 
AcrAB pump protein of E. coli was the first crystal structure of an efflux pump to 
be resolved at 3.5 Å resolution (Murakami et al. 2002). Later the same research 
group identified the interaction of crystal structure with the substrates doxorubicin 
and minocycline. The crystal structure is comprised of a periplasmic headpiece, 
which constitutes a large portion and a transmembrane domain. The upper part rep-
resents the TolC docking domain, and the central region of the headpiece makes up 
the pore domain (Murakami et al. 2006).

The best characterized efflux pump is MexAb–AcrB produced by the opportu-
nistic pathogen P. aeruginosa and confers resistance towards a broad spectrum of 
antimicrobials. The crystal structure of P. aeruginosa efflux pump components that 
closely resembles with E. coli tripartite AcrAB-TolC has also been reported and 
characterized (Sennhauser et al. 2009). There is structural similarity in the trans-
membrane domains of all RND-type transporters. The MexB docking domain in P. 
aeruginosa is composed of two sub domains, one of which forms a loop that inserts 
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into the docking domain of an adjacent pump subunit. These findings clearly dem-
onstrate that RND efflux pumps and outer membrane channels have low affinity and 
interact in transient ways (Yamaguchi et al. 2015; Daury et al. 2016).

3  Efflux Pump Inhibitors (EPIs)

Overexpression of multidrug efflux pumps is the principle cause of antibiotic resis-
tance in pathogenic bacteria that have increased MIC towards variety of antibiotics. 
These efflux transporters have become major resistance determinants for the effi-
cacy of both old and new antimicrobial drugs (Hernado-Amado et al. 2016). The 
structure of efflux transporters not only provides a deep insight into the mechanism 
of extrusion of drugs but also makes the discovery of efflux pump inhibitors possi-
ble (Lomovskaya and Bostian 2006). Broadly speaking, the agents that cause inhi-
bition of efflux, either through disrupting the proton motive force, interacting with 
proteins or inhibiting the efflux of pump-associated genes, are called efflux pump 
inhibitors. Because of the increasing evidence of resistance emerging in pathogenic 
bacteria, alternative therapeutic strategies that counteract antibiotic efflux are 
needed. The strategies for inhibiting efflux pump include:

 (i) Structural alterations in the chemical design of existing antibiotics so that their 
binding affinity to the efflux pump protein sites is reduced.

 (ii) Interference with the energy source that is needed for the activity of efflux 
pumps.

 (iii) Downregulating the expression of genes required for the expression of active 
efflux pumps in bacterial cell envelopes.

 (iv) Interference with the functional subunit of efflux pump complexes.
 (v) Competitive or non-competitive inhibition of antibiotics towards substrate- 

binding sites in efflux pumps.
 (vi) Hindrance in the activity of membrane channels responsible for antibiotic 

extrusion by inserting designed molecular plugs.

EPIs act as therapeutic agents since they have the potential to restore the activity of 
conventional antibiotics. The combination of EPIs along with antibiotics is expected 
to reduce the intrinsic resistance of bacteria towards a varying range of antibiotics, 
decrease the frequency of emerging resistant mutant strains and facilitate the rever-
sal of acquired resistance in strains that have multiple targeted mutations. 
Lomovskaya et al. (2001) provided the following criteria that a potent efflux pump 
inhibitor should satisfy:

 (a) It must potentiate the antibiotic activity against the resistant strain that has 
developed as a result of the drug efflux pump.

 (b) It must have the potential to enhance the accumulation and reduce the extrusion 
of a substrate that shows specificity towards the efflux pump.

 (c) It should not have outer membrane permeabilizing ability.
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 (d) It should not decrease the MIC of antibiotics that are not the substrate of the 
efflux pump.

 (e) The proton gradient across the inner membrane must be unaffected by the EPI.

The use of a combination of EPI and antibacterial agents have the potential to 
enhance the activity of antibiotics against efflux pumps and lead to a reduction in 
mutant frequency. For example, in the case of the food-borne pathogen 
Campylobacter jejuni, the combination of PAβN with antimicrobials caused a 2000- 
fold reduction in the minimum inhibitory concentration of the substrate used against 
CmeABC efflux of C. jejuni and a 1000-fold decrease in the development of 
erythromycin- resistant mutants (McCrackin et al. 2016).

Several EPIs are used in combination with a photosensitizer dye in the presence 
of light and exhibit broad-spectrum antibacterial activity. The photoactivable dye 
generates reactive oxygen species and singlet oxygen, which kill microbial cells. 
Tegos et al. (2008) used a cationic phenodizidium dye, Toluidine Blue (TBO), under 
red light in combination with a variety of known EPIs that inhibit the NorA and 
MexAB–OprM efflux pumps of S. aureus and P. aeruginosa, respectively. Quinolone 
derivatives such as alkylaminoquinolone, alkoxyquinolone, chloroquinolone and 
pyrridoquinolone are also used as EPIs and exhibit structural similarity with the 
quinolone group of antibiotics (Pages and Amaral 2009). These derivatives inhibit 
antibacterial extrusion and increase antibiotic susceptibility in clinical strains of 
Klebsiella pneumonia and Enterobacter aerogenes (Cheveleir et al. 2004).

The efflux transporters between different gram-negative bacteria exhibit struc-
tural similarity so that the EPI used against pumps such as the AcrA–AcrB–TolC of 
E. coli can also be effectively used against other gram-negative pathogens. At the 
present time, two classes of EPIs have been extensively characterized such as pyri-
dopyrimidines and peptidomimetics that exhibit broad-spectrum activity. A third 
class of EPIs have also been established known as quinolone derivatives (Sun et al. 
2014; Aygul 2015). The chemical structure of some synthetic and natural efflux 
pump inhibitors are shown in Fig. 1.

4  Synthetic EPIs for Modulating the Reversal of MDR 
Phenotypes

L-Phenyl alanine-L arginine β Napthylamide (PAβN) [MC-207,110] was the first 
compound developed as an EPI for gram-negative bacteria and is characterized as a 
dipeptide amide compound, MC-207,110. It inhibits all four efflux systems of 
Pseudomonas aeruginosa, MexAB–OprM, MexCD–OprJ, MexEF–OprN and 
MexXY–OprM.  Overexpression of the AcrAB–TolC efflux pumps of E. coli, S. 
typhimurium and S. pneumoniae is also reduced by combining PAβN with fluoro-
quinolones (Kourtesi et al. 2013). However, the use of PAβN is still limited because 
of issues associated with its bioavailability and toxicity (Bhardwaj and Mohanty 
2012). A derivative of PAβN, MC-04,124, has been developed to target the overex-
pressed pumps of Pseudomonas aeruginosa with less toxicity and greater stability 
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in biological fluids (Pages and Amaral 2009). Additionally, a number of pyranopyri-
dine EPIs have been developed like MBX2319 that exhibits potent activity against 
the members of Enterobacteriaceae, but it has reduced activity in P. aeruginosa 
strains (Oppeman et al. 2014). The efficacy of this compound has not been tested in 
animal models and is the stages of lead optimization.

Quinoline compounds also show enhanced activity against the AcrAB–TolC 
efflux pumps of Enterobacter aerogenes. These compounds effectively increase the 
intracellular accumulation of chloramphenicol by inhibiting drug extrusion.

More recently, a molecular modelling and docking study conducted to determine 
promising EPI activities of aminoguanidine hydrazones found that they act as com-
petitive inhibitors of the NorA efflux pump of S. aureus against norfloxacin. By 
binding with NorA, they restored the activity of norfloxacin and ultimately reduced 
resistance emergence (Dantas et al. 2018).

5  EPIs from Natural Sources

EPIs have been screened from both microbial and plant sources like in study two 
compounds, Ea-371α and EA-371δ, as effective efflux pump inhibitors through the 
microbial fermentation process have been identified (Lee et al. 2001). These two 
compounds have the potential to suppress the MexAB–OprM pumps of P. 
aeruginosa.

In developing countries, medicinal plants have had a long history to treat various 
health-related issues. Natural phytochemical compounds are routinely used as anti-
bacterial agents, and their strength is their ability to synergize with antibacterial 
drugs, which can make antibiotics that are not used in infection control due to resis-
tance, relevant again (Lee et  al. 2011). These compounds cripple the resistance 
mechanisms of bacteria making, and due to the complexity of plant EPIs, bacteria 
may take decades to develop resistance to them (Wink 2012). Researchers have 
classified the phytocompounds that potentiate the activity of antibiotics and exhibit 
activity against multidrug-resistant pathogens as modifying, modulating or reversal 
agents (Fankam et al. 2017).

A well-known example of an EPI from a natural source is the plant alkaloid 
reserpine, obtained from the roots of the poisonous devil’s pepper (Rauwolfia vomi-
toria Afz), which inhibits the Bacillus subtilis efflux pump Bmr (Ahmed et  al. 
1993). Phytochemistry has played a significant role in the search for EPIs against 
the NorA efflux pumps of S. aureus, and it has been reported that plant-derived EPIs 
containing varied chemical constituents, such as porphyrin phaeophorbide, acylated 
glycosides, flavones and isoflavones, have the ability to inhibit NorA pumps (Holler 
et al. 2012). Moreover, in case of gram-negative bacteria, it was found that a syner-
gistic combination of cefixime and aqueous extracts of Terminalia chebula and gal-
lactotannin, isolated from Terminalia chebula, enhances the antibiotic potential and 
competes with multidrug-resistant efflux pumps of E. coli as well (Bag and 
Chattopadhyay 2014).
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Some plants produce a variety of antimicrobials along with compounds that 
inhibit the extrusion of antibiotics from the bacterial cell. This was first exemplified 
by the discovery of the antimicrobial compound berberine from berberis, a medici-
nal plant, which also synthesizes 5′-methoxyhydnocarpin (5′MHC), a S. aureus 
NorA efflux pump inhibitor, which reduces the MIC of berberine (Stermitz et al. 
2000). Unfortunately, its use is limited because of toxicity issues. There are some 
EPIs of plant origin that have been patented, such as a tetrandrine-based EPI that 
reduces the resistance of E. coli to fluoroquinolones and also a natural compound 
called geraniol that is effective against Enterobacter aerogenes (Berti et al. 2010).

Maisuria et al. (2015) extracted maple syrup with methanol and demonstrated EPI 
activity against P. aeruginosa ATCC15692, Proteus mirabilis and E. coli ATCC 
700928. The active compound catechol was isolated from maple syrup and found to 
inhibit ethidium bromide efflux but not to a larger extent than maple syrup extract 
itself. Lysergol which is a clavine alkaloid obtained from Ipomoea muricata (L) Jack 
(Convolvulaceae) exhibited efflux pump inhibitory potential against both sensitive 
and resistant strains of E. coli. It was reported that the active compound lysergol and 
its derivative 17-O-3″,4″,5″ trimethoxy benzyl lysergol have promising EPI activity 
compared to that of reserpine in an EtBr accumulation assay (one of the assays for 
the screening of efflux overexpressing strains), and it was shown that the YojI efflux 
pump of E. coli is the target of this compound (Maurya et al., 2013). In another case, 
the essential oil obtained from Salvia fruticosa Mill (Lamiaceae) by means of hydro-
distillation is found to be active against the TetK pumps of tetracycline- resistant S. 
epidermis. It was reported that this oil caused a 63% reduction in the overexpression 
of Tet proteins (Chavanova et al. 2015). Furthermore, a known fatty acid, linoleic 
acid, was obtained from the herb Portulaca oleracea L (Portulacaceae) and found to 
inhibit EtBr efflux at a concentration of 64  mg/L compared to reserpine against 
MRSA strains. This unsaturated fatty acid restored the activity of erythromycin in 
overexpressing ABC efflux pumps of MRSA (Chan et al. 2015). The overexpression 
of the NorA efflux pump can be inhibited by Olympian A obtained from Hypericum 
Oylmicum L.cf. uniflorum. This patented acylphloroglucinol compound is active 
against S. aureus 1199B strains with decreased cytotoxicity at about 8.9 μM in can-
cer cell lines (Shiu et al. 2013). Previously, it was observed that carnosic acid from 
Rosmarinus officinalis can block NorA-induced efflux of EtBr in MDR S. aureus 
1199B strains (Smith et al. 2007). In a study of triterpenes from plant sources, active 
compound such as karavilagenin C and balsaminagenin B from the medicinal plant 
Momordica balsamina L (Cucurbitaceae) was obtained and was checked for the EPI 
activity against MRSA COLoxa (MRSA that are highly resistant to oxacillin) strains 
and E. faecalis ATCC 29212, and it was found that balsaminagenin B was most 
active at a concentration of 30  μM in E. faecalis cells (Ramalhete et  al. 2016). 
Another triterpenes isolated from the same plant were Karavilagenin C and balsami-
nol F, found effective at a concentration of 3 μM in NorA pump overexpressed 
MRSA COLoxa cells (Ramalhete et al. 2011a, b).

It can be emphasized that natural compounds are effective at inhibiting the SMR, 
MFS and ABC transporter superfamilies found in gram-positive bacteria; however, 
the transporters in gram negatives are highly complex because of the presence of an 
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outer membrane permeability barrier. Furthermore, there are certain compounds 
that inhibit human transporters. Thus, EPIs should be designed in such a way that 
can specifically target the efflux pumps of bacterial origin (Amaral et  al. 2014). 
Recently, in a screening of a small molecule library containing 8000 molecules, a 
compound (IIR08027) was found to potently inhibit the proton-driven efflux pump 
AbeS of Acinetobacter baumannii. Although the molecule does not have growth 
inhibitory action, it restored the activity of ciprofloxacin against Acinetobacter 
baumannii- resistant strains (Bhattacharyya et al. 2017). In Table 2, we list some of 
the newly synthesized EPIs from natural sources. Previously identified EPIs are 
discussed elsewhere (Tegos et al. 2011; Abreu et al. 2012 and Kourtesi et al. 2013).

6  Mechanisms of Action of the Major Classes of EPIs

Bacterial efflux pumps are novel target for a variety of antimicrobial compounds for 
combating MDR resistance. EPIs are used as adjuvant to enhance the efficacy of 
antibiotics. Efflux pump inhibitors have been exploited from both natural and syn-
thetic sources, including gram-positive and gram-negative bacteria. RND pumps in 
gram negatives play a predominant role in virulence and pathogenicity. EPIs that are 
targeted towards RND pumps are useful as adjunctive therapies in combination with 
antibiotics to reduce spread and emergence, decrease virulence and inhibit biofilm 
formation in Klebsiella pneumoniae and E. coli (Kvist et al. 2008; El-Banna et al. 
2016). A variety of EPIs have been developed, but recent reports suggest that only 
three of the synthetic EPIs are optimized and in preclinical trials (Mahmood et al. 
2016). Owing to the structural complexity of the RND-type efflux pumps, the mech-
anism of action of EPIs complicates their development and discovery. Generally, 
efflux pump inhibitors are designed to target pump components as depicted in Fig. 2.

6.1  1-(1-Naphthylmethyl)-Piperazine (NMP) and Analogs 
of Arylpiperazine

NMP was discovered as an EPI against E. coli by Bohnert and Kern (2005). This 
research group screened a library of N-heterocyclic compounds and found that 
phenylpiperazines act as effective potentiators of levofloxacin in AcrAB and AcrEF- 
resistant strains of E. coli.

Schuster et  al. (2014) were the first research group to determine the mode of 
action of NMP-resistant mutants. They screened a library of NMR-resistant mutants 
that were able to grow on linezolid, and focusing their study on the binding and 
extrusion domains of the AcrB pumps in these mutants. Subsequently, they found a 
mutation in the amino acid residue, Phe610, near the substrate-binding pocket that 
plays an important role in the extrusion process. Mutated amino acid residues were 
also present across the G-loop that separates the distal and proximal binding sites 
(Eicher et  al. 2012). A predicted study of MD simulations also suggested Nmp 
bound to these locations across the G-loop and allowed for the extrusion of linezolid 
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in resistant mutants (Vargiu et al. 2014). This clearly demonstrates that NMP inter-
feres with the G-loop and is responsible for substrate extrusion, inhibiting the action 
of AcrB. Similar to the mode of action of PAβN, NMP is able to cause conforma-
tional changes that lead to reduction in the width of the substrate-binding domain as 
predicted by MD simulations (Vargiu and Nikaido 2012; Bohnert et  al. 2016) 
(Table 3).

6.2  Pyranopyridines (MBX2319)

MBX2319 is a novel inhibitor of the AcrAB efflux pumps of E. coli, reported by 
Opperman et al. (2014). The efflux proteins of other members of Enterobacteriales 
like K. pneumoniae, Shigella flexneri and E. cloacae are also inhibited by this com-
pound. MBX2319 possesses no antibacterial activity (MIC≥100 μg/ml) but has pro-
found effects on the MIC of antibiotics like beta-lactams, fluoroquinolones, 
chloramphenicol, linezolid and erythromycin, acting in the range of 3.1–12.5 μg/m 
as substrate for AcrB pumps. The underlying mechanism of this efflux transporter 
inhibition involves conformational changes in binding sites due to the functional 
rotation of AcrB. Once MBX2319 binds these sites, it hinders their rearrangement, 
and as a result, the translocation of proteins from the periplasm to the cytoplasm 
occurs. Additionally, a distal binding site, which is also the site for doxorubicin and 
minocycline, becomes shrunk when the compound binds to them (Nakashima et al. 
2013). The results obtained through MD simulation closely resemble those from 
crystallographic methods and generate a molecular hypothesis that supports the 
mode of action of this EPI on the basis of biochemical and genetic experiments. The 
compound is effective against the RND pumps of gram negatives since it does not 

Fig. 2 Possible EPI targets of RND-type efflux pumps. (Source Venter et al. 2015)
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possess any antibacterial activity nor has any additional targets like outer/inner 
membranes (Opperman et al. 2014; Nguyen et al. 2015).

6.3  D13–9001 and Pyridopyrimidinone Analogs

D13–9001 was discovered by Yoshida et al. (2007) and possesses in vivo activity 
and good solubility against MexAB–OprM overexpressing P. aeruginosa. The 
three-dimensional structure of this compound was elucidated by Nakashima et al. 
(2013). The hydrophobic tert-butyl thiazolyl amonocarboxyl pyridopyrimide moe-
ity unit of D13–9001 comes into contact with a depression in the hydrophobic trap 
of the substrate-binding site. This narrow depression is lined with hydrophobic resi-
dues and branches off from the substrate translocation channels. The substrate- 
binding regions are surrounded by aceto amino-ethylene amino acetate moieties 
that are the sites for minocycline and doxorubicin. The crystal structures suggest 
that the binding sites are similar for both AcrB and MexB, as the compound strongly 
bound to the hydrophobic trap of the MexB binding domain and inhibited confor-
mational changes required for pump activity (Nakashima et al. 2013). The silver 
lining of this study is the fact that these data lead to an understanding of the MOA 
of EPIs as well as provide information concerning the unknown binding sites of 
RND pumps.

7  Conclusion

Efflux-mediated antibiotic resistance can be abolished by screening or designing 
EPIs against multidrug-resistant organisms. EPIs have the promising potential to 
restore the activity of antibiotics by decreasing their MIC. Significant advancement 
has been made in understanding the physiology, mechanisms of action and regula-
tion of MDR pumps. Efflux pump crystal structures bound to their substrate/specific 
inhibitors increase our knowledge of MDR pumps as well as aiding in the develop-
ment of EPI. However, to date, there are still no efflux pump inhibitors that are used 
in treating human/animal infections caused by bacteria. However, EPIs have been 
developed from synthetic and natural sources and some of them are in preclinical 
trials. Meanwhile, numerous researchers have suggested that the secondary metabo-
lites of plants display greater activity as EPIs against gram-positive than gram- 
negative bacteria. So, there is need to develop effective EPIs against gram negatives. 
A silver lining is the fact that in the near future, standardized methods and tech-
niques for discovering EPIs from natural sources will likely be established. Future 
endeavours involve the search for EPIs that exhibit low cytotoxicity, improved solu-
bility and a broad spectrum of activity against clinically significant different classes 
of efflux proteins.
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