
239© Springer Nature Singapore Pte Ltd. 2019
I. Ahmad et al. (eds.), Antibacterial Drug Discovery to Combat MDR, 
https://doi.org/10.1007/978-981-13-9871-1_11

P. Srivastava (*) 
AMITY Institute of Biotechnology, AMITY University, Lucknow, Uttar Pradesh, India
e-mail: psrivastava@amity.edu 

N. Srivastava 
AMITY Institute of Biotechnology, AMITY University, Lucknow, Uttar Pradesh, India 

Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India

Computational Approaches 
for Antibacterial Drug Discovery

Prachi Srivastava and Neha Srivastava

Abstract
With the emerging problem of antibacterial drug resistance and resurgence of 
disease, there is immediate need for the development of new and effective thera-
peutic interventions to combat pathogens. Traditional methods of drug discovery 
are very expensive and time consuming, and carry high error rates. Computational 
approaches, on the other hand, predict drug targets and therapeutic agents with 
fewer side effects (i.e., minimal disease resurgence) and reduce the time and cost 
for discovery. Thus, the computational approaches have become a crucial part of 
drug development, as they streamline processing and testing in a cost-effective 
manner. This chapter highlights the significance and progress of computational 
approaches in antibacterial drug discovery.
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1  Introduction

Bacterial diseases, such as tuberculosis, pneumonia, cholera, diphtheria, meningitis, 
tetanus, Lyme disease, gonorrhea, and syphilis, are a leading global health threat 
and represent a major cause of morbidity and mortality. The disease pathologies are 
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largely caused by the production of toxins or by an aggressive immune response to 
bacterial antigens. Although improved awareness about sanitation, advancements in 
vaccination, and the discovery of antibiotics have greatly minimized the impact of 
these diseases, many hurdles yet remain. The emergence of drug-resistant bacterial 
strains and the subsequent resurgence of diseases such as tuberculosis have reestab-
lished infection as a prominent global threat.

Despite the rising problem of drug resistance, no effective alternative therapeu-
tics has emerged to protect against these deadly bacterial infections. According to 
the World Health Organization (WHO), approximately 700,000 people die every 
year due to drug-resistant infections worldwide (de Kraker et al. 2016), with those 
numbers estimated to reach ten million by 2050. Currently available approaches to 
drug discovery are very expensive and time consuming, and thus there is a great 
need to develop new and advanced perspectives to overcome this problem. 
Advancements in computational methods are currently playing a key role in scien-
tific research, not only in the discovery of novel drug targets but in regard to many 
other fields, such as genomics, proteomics, metabolomics, transcriptomics, systems 
biology, and molecular phylogenetics. These methods allow scientists to link dis-
ease symptoms to particular mutations, epigenetic modifications, and various other 
genetic and environmental alterations, thereby identifying potential drug targets and 
novel therapeutics with fewer side effects and potential for drug resistance (i.e., 
minimizing long-term adverse effects on human health while improving cost- and 
time-effectiveness). Thus, the current chapter focuses on the significant role and 
real-world applicability of computational approaches with respect to antibacterial 
drug discovery.

2  Genomic Approaches to Drug Discovery

Genomics approaches are regularly used for the detailed study of an organism’s 
genetic code and are applied in the fields of DNA sequencing and recombinant 
DNA technology, and in understating the assembly, annotation, and interpretation 
of the structure and function of a genome (Mishra and Srivastava 2017). The rise of 
the genomics era has played a significant role in vaccine and drug development 
from sequence-based approaches and has provided a novel path to the investigation 
of underlying disease mechanisms. Genomic study is well suited for the identifica-
tion of potential drug targets and the design of novel therapeutics and vaccines, as 
well as the prediction of their side effects on human health, and represents a promis-
ing approach to combatting drug resistance and disease resurgence.

Identification of potential antibacterial drug targets based on genome sequences 
is a major challenge, as the number of genes with unknown biological function is 
still high. The emergence of bioinformatics has played a crucial role in the identifi-
cation of homologs of known genes by comparative genomic analysis of new 
sequences with biochemically characterized sequences of proteins/enzymes. The 
complete genome sequencing of bacteria provides insight into new information 
about the disease, its pathogenesis, resurgence, and drug resistance. Thus, genomics 
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is used to predict potential antibacterial drug targets for disease. After the comple-
tion of the first whole genome bacterial sequence of Haemophilus influenza in 1995, 
computational approaches have been vital in providing significant information 
about pathogens, pathogenesis, and antibiotic resistance. To date, thousands of bac-
terial genomes have been sequenced and many more are presently ongoing. The 
genome sequence of a particular bacterial pathogen can contain thousands of genes, 
providing a massive collection of potential antigens and drug targets. Thus, genom-
ics can be used to identify potential drug candidates faster and more accurately than 
conventional methods. Genomic approaches are not only used in target-based 
screening studies but also in whole genome expression profiles to study the cellular 
response to therapeutic manipulation of an antimicrobial drug target. Additionally, 
genomics can be used in screening large numbers of herbal compounds possessing 
antibacterial activity and can identify novel structural classes of antibiotics. Thus, 
the genomics era has had a significant influence on vaccine and therapeutic 
development.

2.1  Reverse Vaccinology

Reverse vaccinology is defined as a genome-based approach to vaccine develop-
ment. It uses computation to design novel vaccines by taking information present in 
the genome without the need to grow specific microorganisms in the laboratory. The 
first vaccine developed by reverse vaccinology was the meningococcal B (MenB) 
vaccine for the prevention of Neisseria meningitides (R. Rappuoli et al. 2012). In 
this study, the complete genome of MenB was sequenced and computationally ana-
lyzed. The selected in silico vaccine candidate was then expressed in Escherichia 
coli to allow for in vitro testing. This work represented a significant contribution to 
the field of vaccine development. Since then, the approach has been successfully 
applied in the development of vaccines against various organisms, including 
Bacillus anthracis, Streptococcus pneumonia, Staphylococcus aureus, Chlamydia 
pneumoniae, Porphyromonas gingivalis, Edwardsiella tarda, and Mycobacterium 
tuberculosis (Motin and Torres 2009). The approach is also being used in the devel-
opment of protein-based vaccines against antibiotic-resistant Staphylococcus aureus 
and Streptococcus pneumoniae, and to interpret transcriptomic and proteomic data 
in order to generate a short list of candidate antigens that can be used for in vitro 
analysis, thereby reducing the cost and time of downstream processing (Del Tordello 
et  al. 2017). Thus, reverse vaccinology represents a revolutionary new vaccine 
development strategy that greatly improves upon conventional methods.

2.2  Next-Generation Sequencing

Present approaches for the identification of human pathogen are not sufficient to 
provide complete information related to disease pathogenesis. Next-generation 
sequencing (NGS) identifies the complete genome of an organism in a single 
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sequence. The results interpreted from these data provide, in detail, the underlying 
mechanisms of disease virulence and resistance, provides information on disease 
outbreak, and is being used to monitor the current and historic emergence of drug 
resistance in bacteria and other microbes. NGS technologies are used in various 
medical microbiology laboratories for the identification and characterization of 
causal pathogens, rapid identification of bacteria using the 16S–23S rRNA region, 
and in taxonomic and metagenomic approaches to the study of infectious disease. It 
is specifically used in the study of evolution and dynamics of drug resistance in 
bacterial pathogens (ECDC 2016). Various NGS software are available for analysis, 
including CLC Genomic Workbench (Qiagen) (Powell 2018), SPAdes (Lapidus 
et al. 2014), and Velvet (Zerbino 2010) for genome assembly analysis, multi-locus 
sequencing typing (Belén et  al. 2009) (MLST) approaches, and conserved core 
genome (Ghanem et al. 2018) (cgMLST), or whole genome (wgMLST), for inves-
tigating genetic relationships (Chen et al. 2017). Many others, such as SeqSphere 
(Ridom) (Kohl 2014) and BioNumerics (Applied Maths, Biomérieux) (Hunter et al. 
2005), or online tools, such as EnteroBase and BIGSdb (Bacterial Isolate Genome 
Sequence Database) (Jolley and Maiden 2010), are also available.

3  Proteomic Approaches to Drug Discovery

Proteomics is a science dealing with the global analysis of cellular proteins (Osman 
et al. 2009). It is defined as a complete set of proteins that are produced by an organ-
ism under certain conditions (Wasinger et al. 1995). In recent years, proteomics has 
become a powerful tool for the analysis of complex biochemical mechanisms, and 
identification of new protein structure, function, and protein–protein interactions. In 
addition, investigating protein profiles in response to antibiotic sensitivity and drug 
resistance can significantly contribute to the development of therapeutics for disease 
recurrence. Furthermore, with the emergence of bioinformatics it has become easier 
to retrieve information about specific genomes and proteomes for in-depth analysis. 
In short, proteomics has a diverse range of applications, including drug target iden-
tification and validation, efficacy and toxicity testing, and the investigation of drug 
mechanisms and activities.

3.1  Molecular Modeling

Protein 3D structure is an important perspective for structure-based drug design, as 
protein structure is vital to ligand binding. With the rapid emergence of homology 
modeling, it has fast become the first choice for protein 3D structure prediction 
(Srivastava and Tiwari 2017). Homology modeling techniques for structure predic-
tion are based on sequence similarity to a homologous structure. It is an easy, reli-
able, low-cost, and less-time-consuming method than conventional means. The 3D 
structures of proteins provide valuable information about the underlying mecha-
nisms and functions of the molecules, which plays a significant role in drug 
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discovery. Presently, over 137,000 experimental protein structures are available in 
the Protein Data Bank (PDB) (19).

Homology modeling involves several steps, including template identification, 
multiple sequence alignment, and model building based on the 3D structure of a 
template, as well as model refinement, optimization, and validation. Various studies 
have been conducted that reveal the significance of homology modeling in drug 
discovery. In one such study, the 3D structure of the N315 stp1 protein produced by 
a clinical strain of Staphylococcus aureus was predicted using homology modeling 
through modeler software (Jain et al. 2014). The predicted structure was then vali-
dated through PROCHECK, ERRAT, VERIFY-3D, and ProSA tools. Further, the 
structure was refined through GROMACS software to obtain a more stable and 
refined configuration. Thus, the predicted 3D structure of Staphylococcus aureus 
N315 stp1 provided valuable information about structure–activity relationships and 
interactions with the protein. Another study found that drug resistance in 
Mycobacterium tuberculosis is due to a multidrug efflux mechanism of the 
Mycobacterium multidrug resistant (MMR) protein (Malkhed et al. 2013), which 
belongs to small multidrug-resistant family of proteins (SMR). Thus, considering 
the MMR protein as a novel target, an in silico tertiary structure of protein was 
designed and constructed in order to identify a novel drug molecule for drug resis-
tance in Mycobacterium tuberculosis. Another study on a virulent strain of CGSP 
14 Streptococcus pneumoniae (Karavadi et al. 2014a, b) revealed that the genome 
codes for 2206 proteins, among which the polysaccharide polymerase protein 
(B2ILP9) and capsular polysaccharide biosynthesis protein (B2ILP4) act as effi-
cient drug targets and were modeled through homology in order to discover the role 
of the proteins in the disease pathway of pneumonia. Hence, homology modeling 
plays a significant role in providing information about protein structure and func-
tion in less time, and in a cost-effective manner than conventional means, represent-
ing a boon for drug design and development. Various tools for molecular modeling 
are available, such as Modeller, I-TASSER, LOMETS, SWISS-MODEL, and 
Gromacs (Frantisek et al. 2007; Zhou et al. 2015; Chou 2004).

3.2  Virtual Screening and Molecular Docking

Virtual screening is defined as the process of screening the molecules from a library 
of chemical compounds based on their scoring and binding affinity to the specific 
target (Chen 1977). It is performed for the screening of most potential drug candi-
dates based on their chemical properties, the Lipinski rule of five (Lipinski et al. 
2001), their ADMET (Cheng et  al. 2013) properties (absorption, distribution, 
metabolism, excretion, and toxicity), their interaction with the specific target, and 
their binding affinity as determined by a molecular docking study.

These methods have been used to screen a host of potential therapeutics. For 
example, in a study involving abnormal prion protein (PrPSc), which is responsible 
for the pathogenesis of prion diseases, structure-based drug discovery approaches 
were used to filter out the most promising compound with anti-prion effects, 
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showing high binding score and spatial interaction with the target, and remarkably 
reducing prion disease pathogenesis (Ishibashi et al. 2016). In another study, pro-
teins identified from highly virulent strains of Streptococcus pneumonia 
(HUNGARY19A-6, D39, TIGR4, G54, CGSP14, TCH8431-19A) were modeled 
and validated (Nastasa 2018). Structure-based virtual screening was then performed 
to identify novel drug molecules against the proteins, and a docking study was uti-
lized to analyze the protein–ligand interactions and binding affinity. Peptide defor-
mylase protein (PDF), which is essential to the pathogenesis of several bacterial 
diseases, is used as an attractive target to identify novel antibacterial drug molecules 
based on binding affinity with hydrazine derivatives using virtual screening and 
molecular docking study (Karavadi et al. 2014a, b). Bacterial topoisomerase (khur-
sheed 2013), a key target in antibacterial and anticancer drug discovery, was used to 
discover potential bacterial topoisomerase I inhibitors and structural motif using in 
silico screening. Various online and offline tools and software, such as Pharmer, 
Catalyst, PharmaGist, Blaster, Anchor Query, Ligandscout, Autodock, Swiss-Dock, 
and GOLD, are available for study and analysis (Sandhaus et al. 2018; Peter 2010; 
Kujawski et al. 2012; Jones and Rowland 2013; Parrott et al. 2014; Dubey et al. 
2011).

3.3  Molecular Dynamic Simulation

Molecular dynamic (MD) simulation plays a very significant role in the drug dis-
covery process. Through MD simulation, one can track the rapid processes of bio-
logical systems that can occur in less than a millisecond. It is used to study the 
physical movement of all the macromolecules, proteins, nucleic acids, atoms, and 
carbohydrates of biological significance (Cumming et  al. 2013). Calculating the 
free binding energy of ligand–protein and protein–protein interactions is an impor-
tant feature of the simulations.

Structure-based virtual screening with MD simulation and free energy calcula-
tion was used to study the activity of anon–peptide compound against falcipain 1 
and 2 (FP-1 and FP-2), Plasmodium-produced proteins that catalyze hemoglobin 
degradation, and their analogs (D W. Borhani 2012). A South African natural com-
pound, 5PGA, and five further potential compounds were identified as having inhib-
itory activity against FP-1, FP-2, and their analogs. In another study utilizing MD 
simulation of two E. coli–produced Resistance-Nodulation-Division (RND) trans-
porters, AcrB and AcrD, which play a major role in multidrug resistance, research-
ers connected various specificity patterns of the two transporters to their 
physicochemical and topographical properties based on calculation of multifunc-
tional recognition sites on the molecular surface (Musyoka et al. 2016). Another 
molecular docking and MD simulation study was performed on meropenem and 
imipenem, two antibiotics having different binding affinity for the efflux pump in P. 
aeruginosa and AcrB structures, revealed a greater susceptibility of meropenem 
over imipenem to the binding site of AcrB, and in-depth analysis identified a key 
residue involved in the binding interaction (Ramaswamy et  al. 2017). These 
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examples illustrate how MD simulation is a very beneficial tool for structure-based 
drug design. Various MD simulation software is available, such as Amber, CHARMm, 
Gromacs, NAMD, and Schrodinger’s Desmond (Bajic et al. 2016; Salomon-Ferrer 
et al. 2013; Brooks 2009; Phillips et al. 2005).

3.4  Toxicity Prediction

Determining the safety and toxicity of chemical compounds represents a crucial 
step in the drug discovery process. In silico toxicology prediction is a computational 
method used to visualize, analyze, simulate, and predict the toxicity of a chemical 
(David E. Shaw 2006). The aim of toxicity testing is to identify the effects of harm-
ful chemicals on both the patient and the environment. Various parameters are 
involved in toxicity testing, such as the rate, frequency and dosages of exposure, 
ADMET (absorption, distribution, metabolism, excretion/elimination, and toxicity) 
properties, as well as other biological and chemical properties. In silico toxicology 
testing using computational approaches minimizes the use of animals while also 
reducing the cost and time requirements. Along with this, it also improves the safety 
and assessment of the chemicals. Various tools and software are available for com-
putational toxicity testing, including OSIRIS Property Explorer, ALOGPS, ADMET 
Prediction, Molinspiration, and TOPKAT (Parthasarathi and Dhawan 2018; Dearden 
2003; Tetko and Bruneau 2004; Ekins et al. 2017; Nadeem et al. 2015).

4  Antibacterial/Antimicrobial Databases

Biological databases are the most important feature of bioinformatics. They contain 
vast libraries of biological information, including genes, proteins, metabolic path-
ways, microarray data, next-generation sequencing data, and much more. Many 
antibacterial/antimicrobial databases are freely available that provide valuable 
information about the sequences, structures, and signatures of genes and proteins. 
This information plays a vital role in the drug discovery process in terms of gene/
protein and screening of novel synthetic/herbal therapeutic compounds. Selections 
of important and useful antibacterial/microbial databases are listed in Table 11.1.

5  Future Perspectives

The emergence of drug-resistant bacteria is a major threat facing the world today, 
and there is a great need to improve the methods by which we investigate antibacte-
rial drug-resistance mechanisms and to discover new therapeutic interventions to 
combat the issue. Traditional approaches to antibacterial drug discovery are very 
time consuming and expensive, and thus, the emerging field of computational 
approaches allows researchers to combine biological and chemical parameters in 
order to streamline the drug discovery pipeline in a time- and cost-effective manner. 
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Table 11.1 List of antibacterial/antimicrobial databases

Name of Database Description Website Address
Antimicrobial peptide 
database (APD)

Database of antimicrobial and 
peptides

http://aps.unmc.edu/AP/

Antimicrobial drug 
database (AMDD)

Includes a detailed repository of 
antibacterial and antifungal 
compounds, along with their basic 
information and properties

http://www.amddatabase.info

Antimicrobial 
compounds database

Provides information about 
antimicrobial compounds

http://www.dsf.unica.
it/~gmalloci/abdb/

Collection of 
antimicrobial peptides 
(CAMPR3)

Database of antimicrobial peptide 
family-based studies, including 
information related to sequence, 
structure, and signatures of 
peptides

http://www.camp3.bicnirrh.res.
in/

The antimicrobial 
index

Contains information on 
microorganisms and antimicrobial 
agents

http://antibiotics.toku-e.com/

Data repository of 
antimicrobial peptides 
(DRAMP)

Includes information regarding 
sequences, structures, 
antimicrobials, physiochemical 
data, patents, references, etc.

http://dramp.cpu-bioinfor.org

PhytAMP database Contains information about 
taxonomic, microbiological, and 
physicochemical data on small 
cysteine-rich antimicrobial 
peptides (AMPs)

http://phytamp.hammamilab.
org/

Antibiotic resistance 
genes database 
(ARDB)

Provides information on antibiotic 
resistance

https://ardb.cbcb.umd.edu/

MIC database Contains 2D structures of 
synthesized compounds/
antibiotics, IUPAC names, smiles, 
MIC values, etc.

www.trimslabs.com/mic/index.
htm

Antibacterial biocide 
and metal resistance 
genes database 
(BacMet)

Includes antibacterial biocide and 
metal resistance genes

http://bacmet.biomedicine.
gu.se/

A database linking 
antimicrobial peptides 
(LAMP)

Provides a useful resource and 
tools for AMP studies.

http://biotechlab.fudan.edu.cn/
database/lamp

MilkAMP database Provides information on 
antimicrobial dairy peptides, 
including microbiological and 
physicochemical data

http://milkampdb.org/home.
php

Antimicrobial 
consumption database 
(ESAC-net)

Provides data on antimicrobial 
consumption based on community 
and the hospital sector

https://ecdc.europa.eu/en/
antimicrobial-consumption/

(continued)
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Combining computational methods with wet laboratory experiments provides effi-
cient ways to understand the entire mechanism of drug resistance, as well as patho-
gen virulence and progression. Computational approaches play a significant role in 
predicting the functions, properties, and activities of antimicrobial agents and their 
interactions with therapeutic targets throughout the drug discovery process. 
Bioinformatics provides advanced tools and software that allow microbiologists to 
analyze and interpret high throughput experimental data in a cost-effective manner, 
while the use of various databases, tools, and software by R&D laboratories makes 
practical application that much easier to realize. It is foreseen that the continued 
synergy of experimental data with computational approaches will lead to a new age 
of antibacterial drug discovery.

References

Bajic et al. (2016, March/April) In silico toxicology: Computational methods for the prediction 
of chemical toxicity (Vol. 6). WIREs Computational Molecular Science published by Wiley.

Belén, A., Pavón, I., & Maiden, M. C. J. (2009). Multilocus sequence typing. Methods in Molecular 
Biology, 551, 129–140.

Borhani, D. W. (2012). The future of molecular dynamics simulations in drug discovery. Journal 
of Computer-Aided Molecular Design, 26, 15–26.

Brooks, B.R. (2009, July 30). CHARMM: The biomolecular simulation program. Journal of 
Computational Chemistry 30(10): 1545–1614.

Chen, N.  Y. (1977). The biological functions of low-frequency phonons. Scientia Sinica, 20, 
447–457.

Yi Chen et al. (2017). Whole genome and core genome multilocus sequence typing and single 
nucleotide 2 polymorphism analyses of Listeria monocytogenes associated with an outbreak 
linked to 3 cheese, United States, 2013. Applied and Environmental Microbiology.

Cheng, F., Li, W., Liu, G., & Tang, Y. (2013). In silico ADMET prediction: Recent advances, cur-
rent challenges and future trends. Current Topics in Medicinal Chemistry., 13(11), 1273.

Chou, K.  C. (2004). Review: Structural bioinformatics and its impact to biomedical science. 
Current Medicinal Chemistry, 11, 2105–2134.

Cumming, J. G., Davis, A. M., Muresan, S., Haeberlein, M., & Chen, H. (2013). Chemical predic-
tive modelling to improve compound quality. Nature Reviews Drug Discovery, 12, 948–962.

David E.  Shaw (2006). Scalable algorithms for molecular dynamics simulations on commod-
ity clusters. Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), Tampa, 
Florida, November 11–17, 2006.

de Kraker, M. E. A., Stewardson, A. J., & Harbarth, S. (2016, November). Will 10 million people 
die a year due to antimicrobial resistance by 2050? PLoS Medicine 13(11): e1002184.

Table 11.1 (continued)

Name of Database Description Website Address
The comprehensive 
antibiotic resistance 
database (CARD)

Provides information about 
resistance genes, their products, 
and associated phenotypes

https://card.mcmaster.ca/

Antimicrobial 
combinations 
database

Provides information on 
antimicrobial combination 
therapies

http://sing.ei.uvigo.es/
antimicrobialCombination/

Computational Approaches for Antibacterial Drug Discovery

https://card.mcmaster.ca/
http://sing.ei.uvigo.es/antimicrobialCombination/
http://sing.ei.uvigo.es/antimicrobialCombination/


248

Dearden, J. C. (2003). In silico prediction of drug toxicity. Journal of Computer-Aided Molecular 
Design, 17(4), 119–127.

Del Tordello, E., Rappuoli, R., & Delany, I. (2017) Reverse vaccinology. Human vaccines. 
Academic press.

Dubey, R. D., Chandraker, G., Sahu, P. K., Paroha, S., Sahu, D. K., Verma, S., Daharwal, S. J., 
& Reddy, S.  L. N.  P. (2011). Computer aided drug design: A review. Research Journal of 
Engineering and Technology, 2(3), 104–108.

ECDC. (2016). Expert Opinion on Whole Genome Sequencing for Public Health Surveillance.
Ekins, S., Spektor, A. C., Clark, A. M., Dole, K., & Bunin, B. A. (2017). Collaborative drug discov-

ery for More Medicines for Tuberculosis (MM4TB). Drug Discovery Today, 22(3), 555–565.
Frantisek, F., Christopher, G. J., & Smytha, W. F. (2007). A simple, fast hybrid pattern-matching 

algorithm. Journal of Discrete Algorithms, 5(4), 682–695.
Ghanem, M., Wang, L., Zhang, Y., Edwards, S., Lu, A., Ley, D., & El-Gazzar, M. (2018). Core 

genome multilocus sequence typing: A standardized approach for molecular typing of myco-
plasma gallisepticum. Journal of Clinical Microbiology, 56(1), e01145–e01117.

Hunter, S. B., Vauterin, P., Lambert-Fair, M. A., Van Duyne, M. S., Kubota, K., Graves, L., Wrigley, 
D., Barrett, T., & Ribot, E. (2005). Establishment of a universal size standard strain for use with 
the PulseNet standardized pulsed-field gel electrophoresis protocols: Converting the national 
databases to the new size standard. Journal of Clinical Microbiology, 43(3), 1045–1050. https://
doi.org/10.1128/JCM.43.3.1045-1050.2005. http://www.applied-maths.com/bionumerics.

Ishibashi, et al. (2016). Structure-based drug discovery for prion disease using a novel binding 
simulation. EBioMedicine, 9, 238–249.

Jain et al. (2014). Homology modeling and molecular dynamics simulations of a protein serine/
threonine phosphatase stp1 in Staphylococcus aureus N315: a potential drug target (pp. 592–
599). Received 20 Dec 2013, Accepted 03 Mar 2014, Published online: 15 Apr 2014.

Jolley, K. A., & Maiden, M. C. (2010). BIGSdb: Scalable analysis of bacterial genome variation at 
the population level. BMC Bioinformatics, 11, 595.

Jones, H., & Rowland, Y. K. (2013). Basic concepts in physiologically based pharmacokinetic mod-
eling in drug discovery and development. CPT: Pharmacometrics & Systems Pharmacology, 
2(8), e63.

Karavadi et al. (2014a) A novel approach of inter strain docking in accelerating the process of 
lead identification in pneumonia. Journal of Chemical and Pharmaceutical Sciences ISSN: 
0974-2115.

Karavadi, et  al. (2014b). Homology modeling of polymerase and cps biosynthesis proteins in 
cgsp14 strain of streptococcus pneumonia and its ligand identification: An insilico approach. 
I. Asian Journal of Pharmaceutical and Clinical Research, 7(Suppl 2), 162–165.

Khursheed, A. (2013). In silico development of broad spectrum antibacterial by targeting peptide 
deformylase. ethesis.nitrkl.ac.in/5132/.

Kohl, et al. (2014). Whole-genome-based Mycobacterium tuberculosis surveillance: A standard-
ized, portable, and expandable approach. Journal of Clinical Microbiology, 52(7), 2479–2486.

Kujawski, J., Bernard, M. K., Janusz, A., & Weronika, K. (2012). Prediction of log P: Alogps 
application in medicinal chemistry education. Journal of Chemical Education, 89(1), 64–67.

Lapidus, A., Antipov, D., Bankevich, A., Gurevich, A., Korobeynikov, A., Nurk, S., Prjibelski, A., 
Safonova, Y., Vasilinetc, I., & Pevzner, P. A. (2014) New Frontiers of Genome Assembly with 
SPAdes 3.0. (poster).

Lipinski, C. A, Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001, March ). Experimental and 
computational approaches to estimate solubility and permeability in drug discovery and devel-
opment settings. Advanced Drug Delivery Reviews 46(1–3): 3–26. https://doi.org/10.1016/
S0169-409X(00)00129-0.

Malkhed et al. (2013) Identification of novel leads applying in silico studies for Mycobacterium 
multidrug resistant (MMR) protein (pp. 1889–1906). Received 01 Jan 2013, Accepted 04 Sep 
2013, Published online: 14 Oct 2013.

Mishra and Srivastava. (2017). Review on computational approaches for identification of new tar-
gets and compounds for fighting against Filariasis. The Open Bioactive Compounds Journal 5.

P. Srivastava and N. Srivastava

https://doi.org/10.1128/JCM.43.3.1045-1050.2005
https://doi.org/10.1128/JCM.43.3.1045-1050.2005
http://www.applied-maths.com/bionumerics
http://ethesis.nitrkl.ac.in
https://doi.org/10.1016/S0169-409X(00)00129-0
https://doi.org/10.1016/S0169-409X(00)00129-0


249

Motin, V. L., & Torres, A. G.. (2009). Molecular approaches to bacterial vaccines (pp. 63–76). 
Vaccines, 2009, Academic press.

Musyoka et  al. (2016). Structure based docking and molecular dynamic studies of Plasmodial 
cysteine proteases against a South African natural compound and its analogs. Scientific Reports 
6: 23690.

Nadeem, et al. (2015). Synthesis, spectral characterization and in vitro antibacterial evaluation and 
Petra/Osiris/Molinspiration analyses of new Palladium (II) iodide complexes with thioamides. 
Alexandria Journal of Medicine, 52, 279–228.

Nastasa, et al. (2018). Antibacterial Evaluation and Virtual Screening of New Thiazolyl-Triazole 
Schiff Bases as Potential DNA-Gyrase Inhibitors. International Journal of Molecular Sciences, 
19, 222.

Osman, K. M., Ali, M. M., Radwan, M. I., Kim, H. K. & Han, J. (2009, July 21). Comparative 
Proteomic Analysis on Salmonella Gallinarum and Salmonella Enteritidis Exploring Proteins 
That May Incorporate Host Adaptation in Poultry. Journal of Proteomics 72(5): 815–821. 
ISSN 1876-7737.

Parrott, N., Hainzl, D., Scheubel, E., Krimmer, S., Boetsch, C., Guerini, E., & Martin-Facklam, M. 
(2014). Physiologically based absorption modelling to predict the impact of drug properties on 
pharmacokinetics of bitopertin. AAPS Journal, 16(5), 1077–1084.

Parthasarathi, R., & Dhawan, A.. (2018). In Silico Approaches for Predictive Toxicology. In Vitro 
Toxicology (pp. 91–109).

Peter, E. (2010). Molecular structure input on the web. Journal of Cheminformatics, 2, 1.
Phillips, et  al. (2005). Scalable molecular dynamics with NAMD. Journal of Computational 

Chemistry, 26, 1781–1802.
Powell, M. (2018, April 23). ECCMID18: QIAGEN announces European launch of platform for 

syndromic insights, QIAstat-Dx. Infectious Diseases Hub. Retrieved 28 June 2018. https://
www.qiagenbioinformatics.com/products/clc-genomics-workbench/

Ramaswamy, et al. (2017). Molecular rationale behind the differential substrate specificity of RND 
transporters AcrB and AcrD. Scientific Reports volume, 7.

Rappuoli, R. et  al. (2012, October). Developing vaccines in the era of genomics: a decade of 
reverse vaccinology. Clinical Microbiology and Infection 18 (Supplement 5).

Salomon-Ferrer, R., Case, D. A., & Walker, R. C. (2013). An overview of the Amber biomolecular 
simulation package. WIREs Comput. Mol. Sci., 3, 198–210.

Sandhaus, et al. (2018). Discovery of novel bacterial topoisomerase I inhibitors by use of in silico 
docking and in vitro assays. Scientific Reports volume, 8, 1437.

Srivastava and Tiwari. (2017). Critical Role of Computer Simulations in Drug Discovery and 
Development. Current Topics in Medicinal Chemistry, 17.

Tetko, I. V., & Bruneau, P. (2004). Application of ALOGPS to predict 1-octanol/water distribution 
coefficients, logP, and logD, of AstraZeneca in-house database. J Pharm Sci.

The Protein Data Bank and the challenge of structural genomics. (2000). Nature. Structural 
Biology, 7(11), 957–959. https://doi.org/10.1038/80734. http://www.rcsb.org/.

Wasinger, V.  C., Cordwell, S.  J., Cerpa-Poljak, A., Yan, J.  X., Gooley, A.  A., Wilkins, M.  R., 
Duncan, M. W., Harris, R., Williams, K. L. & Humphery-Smith, I. (1995, July). Progress with 
Gene-Product Mapping of the Mollicutes: Mycoplasma Genitalium. Electrophoresis 16(7): 
1090–1094. ISSN 0173-0835.

Zerbino, D.  R. (2010). Using the Velvetde novo Assembler for Short-Read Sequencing 
Technologies. In Andreas D. Baxevanis (ed.), Using the Velvet de novo assembler for short- 
read sequencing technologies. pp. Unit 11.5. https://doi.org/10.1002/0471250953.bi1105s31. 
ISBN 0471250953.

Zhou, G.  P., Huang, R.  B., & Troy, F.  A. (2015). 3D structural conformation and functional 
domains of poly sialyltransferase st8sia iv required for polysialylation of neural cell adhesion 
molecules. PPL, 22, 137–148.

Computational Approaches for Antibacterial Drug Discovery

https://www.sciencedirect.com/science/book/9780128046678
https://www.sciencedirect.com/science/book/9780128046678
https://www.qiagenbioinformatics.com/products/clc-genomics-workbench/
https://www.qiagenbioinformatics.com/products/clc-genomics-workbench/
https://doi.org/10.1038/80734
http://www.rcsb.org/
https://doi.org/10.1002/0471250953.bi1105s31

	Computational Approaches for Antibacterial Drug Discovery
	1	 Introduction
	2	 Genomic Approaches to Drug Discovery
	2.1	 Reverse Vaccinology
	2.2	 Next-Generation Sequencing

	3	 Proteomic Approaches to Drug Discovery
	3.1	 Molecular Modeling
	3.2	 Virtual Screening and Molecular Docking
	3.3	 Molecular Dynamic Simulation
	3.4	 Toxicity Prediction

	4	 Antibacterial/Antimicrobial Databases
	5	 Future Perspectives
	References


